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1. Introduction 

There are few worse situations I could imagine than getting lost in a foreign city. It is even worse if 

the language barriers keeps us away from the chance of getting help. Though it has happened to me 

several times, what really drives my research efforts is rather the aim of designing the model of a 

touristic recommender system, that might later be the base of a mobile application. Such an 

instrument would possibly be the best partner during our journeys feeding us with filtered and 

tailor-made information as a decision support engine. I have always dedicated my research to solve 

practical problems, so advocating someone in discovering a new place or an immersive experience 

would be considered as the ultimate success measure of my work. 

1.1 Research objectives 

In my life I have the pleasure to wander so many cities, although it has always been a challenge to 

create such a tour plan that efficiently uses my disposable resources (namely my time and budget). 

The objective of my dissertation is to design the theoretical foundations of a touristic 

recommendation system, that is sufficiently precise and capable of designing tailor-made itineraries 

in a foreign city, taking into account the user's needs and constraints. Implementing the user 

preferences and constraints into the model is nontrivial, however we attempt to design a model that 

considers the user’s preferences. First of all we develop a statistical method to estimate the user’s 

velocity while accounting for the steepness of the ground, the user’s current physical conditions and 

many other circumstances. Then we design a model that is capable of providing personalised 

recommendation for tourists based on minimal information given previously by them. We use 

techniques of recommender systems to map the preferences of  users accurately and transform them 

to evaluations of touristic hotspots. By using above information we designed a routing algorithm 

that creates personalised city tour plans for users and offers visits in desired POIs organised into 

effective routes.  

In this paper we intend to answer questions below:  

1. How can we prepare raw GPS tracklogs that allows us to perform our analysis? Is there a digital 

elevation model (DEM) that approximates well the actual height values? 

2. Is there a function that describes more precisely than the current solutions the relationship 

between the steepness of the ground and the velocity of the hiker 
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3. How can we design a method to estimate the hikers travel time more precisely than the current 

solutions? 

4. How can we create a touristic recommender system that provides individualised 

recommendations based on minimal information given by the user? 

5. Is the a possibility to classify the users based on the information provided by them? How can 

we design the questionnaire of the recommender system? 

6. How can we accurately describe the user preferences related to tourist attractions by a utility 

function. What kind of objective function leads our routing algorithm to practically acceptable 

route plans? 

7. How can we design an algorithm to solve the Team Orienteering Problem (TOP) that keeps run 

time low and enables its implementation in a mobile application? 

1.2. Thesis Structure 

In this paper according to our previously stated research objective we follow ternary structure. We 

dedicate the 2nd chapter to the Estimated time of Arrival problem and we present a novel method to 

estimate the travel time of a hiker considering many circumstances. We utilise more than 2400 

tracklogs to perform our estimations that is unique according to the literature. Based on NASA data 

on Earth’s surface we developed a DEM model to substitute GPS elevation data that is rather 

unreliable. We smoothen longitude-latitude pairs of the raw GPS tracklogs with Kalman-filter to 

eliminate GPS noises. We follow Tobler’s earlier results estimate a function describing the relation 

between ground steepness and hiker’s velocity. Later we use this function to our two novel hiking 

time estimation method. 

To fulfil the needs of tourist and to recommend tailor-made tourist attraction lists we have to be able 

to understand their preferences and capabilities. The 3rd chapter provides a brief introduction to the 

theory and history of Recommender systems. Then we perform an empirical study to obtain 

sufficient information from the users to determine classification of tourist types that enables us to 

give more accurate recommendations. For this purpose we designed a list of touristic factors (such 

as Museum, Art, History, etc.) to describe each POI with the linear combination of these factors. 

�5



This content based method helps us to provide recommendations to users based on minimal 

information from the beginning.  

In the 4th chapter we present a brief summary on the types of routing problems and the history of 

the algorithmic approaches. By using the this theoretical background we design a heuristic routing 

algorithm to solve the TOP. Our added value lies in the novel objective function which enables us to 

adopt the user’s preferences rather collecting profit units at each vertex. The graph that symbolise 

the city is created based on the information learnt during the previous chapters: at each vertex we 

can earn a profit determined by the recommender system, while the cost of each arc is calculated 

based on our travel time estimation method. To facilitate the understanding of the model’s structure 

we created a data and process flow chart (fig. 1) 

The results of this paper are summarised in the 5th chapter where we also designate the directions 

of our future research. 

Figure 1: Data and Process flow of the Touristic Recommender system 

2. Hiking time estimation 
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2.1. Problem formalisation 

Since ancient Roman Empire there has been several attempts to estimate the speed of hikers. The 

most commonly used rule of thumb dates back to 1892, when a Scottish mountaineer, William 

Naismith described his estimation [1]: a man with average physical conditions can walk 3 miles 

(4827,9m) in 1 hour on flat ground , while he needs additional 1 hour for every 2000ft (632m) 

elevation. So practically 1 unit of elevation equals to 7,92 units of horizontal walk. There has been 

many attempts to refine Naismith’s estimation (Langmuir [2], Aitken [3]), including Waldo Tobler 

[4], who conjectured exponential relationship between steepness of the ground and the velocity of 

the hiker. We compared the hiking time estimations on Figure 2. 

Figure 2: Comparison of hiking time estimations 

Based on Tobler’s concept we performed a novel function that refines Tobler’s results and enables 

us to have more accurate estimation of hiking times.  

Our database consists of 2400 tracklogs (after removing outliers). In case of each tracklog we 

removed the raw GPS elevation data and substituted with the elevation values calculated by our 

DEM. The DEM is based on NASA Earth’s surface data (that assigns a single elevation value to 

every 30mx30m square of the surface). Our DEM model uses bilinear interpolation (that we 

summarised in Appendix A) to calculate elevation estimation and as a result it provides 

approximation of the Earth’s surface. According to our comparison between our DEM and Google 

Elevation API the average difference between the two estimations is 13cm. It is an excellent result 

(by assuming Google as a good benchmark) considering that error’s of mobile devices can be 
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higher than 150m. The Longitude and Latitude values of raw GPS tracklogs have been smoothened 

by Kalman-filtering method. Thus we obtained adjusted 3D tracklogs, and standardised to 20 

second long logs. Based on these logs steepness (m) and velocity (v) values we calculated the 

average speed of hikers in every 1/8 degree of steepness and fitted function in R with linear model 

package (that uses QR matrix decomposition method). 

 

Figure 3: Fitted steepness-velocity function 

Based on the fitted v(m) function we developed two novel hiking time estimation method calculated 

as follows: 
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2.2. The steepness based method 

Let mi denote the steepness of the ground of the ith log of a trail. Let us estimate the velocity of the 

first log with v(m1) then after measuring back the actual results (v1)on the first log, adjust our 

estimations with the ratio of actual and estimated values, that is b1 = v1/v(m1). We consider this as 

the estimated personal fitness factor of a particular hiker, that enables us to adjust our estimations 

dynamically through the trail. After observing the fitness factor of the second log, we can estimate 

the 3rd log’s velocity with (b1+b2)v(m3)/2, i.e we calculate the overall fitness factor as the arithmetic 

mean of the observed fitness factors assigned to each log. More generally we estimate the velocity 

of the nth log as follows: 

By adjusting our initial estimation with the dynamically calculated fitness factor we can amend the 

estimated hiking and account for other circumstances, as the actual physical state of the hiker or the 

weather. Though during the first logs (namely in the first 10%) we observed that the estimation has 

poorer results due to the high variance of the fitness factors, after obtaining a stable fitness 

estimation we performed far better results comparing to earlier estimation methods (e.g. Pitman et 

al. [5]).  

2.3. Mean velocity based method 

The idea of  this method is extremely simple: we estimate the first 20% of the trail with the v(m) 

fitted steepness-velocity function and gather the observed velocity values of each log. After this test 

period we estimate the velocity of the nth log of the trail with the arithmetic mean velocity of the 

n-1 previous trails:  

During the first 20% of the trail this estimation has typically yield poor estimation, hence we 

substituted the mean velocity based estimations with the v(m) values. 

We compared our results to the existing solutions (we considered Tobler’s curve as the most 

sophisticated and accurate one) and performed a test on the available 2400 tracklogs (splitting it to a 

75-25% learning and test dataset). On the learning dataset we fitted the v(m) curve, then we used it  

on the test dataset to estimate hiking time) and we performed 10 iterations. To measure the 
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goodness of our estimations we partitioned each tracklog separately to 100 equal pieces and for the 

pth percentile of the tracklog we calculated the estimated hiking time of the remaining trail (denoted  

r*ip for the ith tracklog) comparing with the actual remaining time (rip). We used the Mean Absolute 

Relative Error (MARE) measure for our estimations: 

In Table 1. we summarised the results of the test (highlighting the mean of 10 iterations). The Wech-

tests performed (based on 100 iterations) has rejected the null hypothesis that the MARE value’s 

means of any of the above 3 methods are equal, hence the proposed two hiking time estimation 

methods provided significantly better results that the earlier estimations (Pitman’s method was 

based on a multivariate regression and resulted in 18% mean MARE value). On fig. 4 we illustrated 

the results (red: steepness based model, black: mean velocity based model, blue: Tobler’s 

estimation). Our methods seems to perform relatively better on the 15-80% percent of the trail. At 

the beginning do to the variance of the estimated factors the errors are higher, and at the beginning 

the smaller errors seem to be relatively high as we compare them to a smaller value of the 

remaining hiking time. 

 Figure 4: MARE values of the 3 estimation methods 
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We also tested whether we can reach better MARE results by applying the steepness based method 

with the Tobler-curve instead of our fitted v(m) function. According to the test results our method’s 

mean MARE value (11,12%) was significantly better than the Tobler-curve based solution 

(13,48%), see Figure 5.  

Figure 5: MARE values comparison for v(m) and Tobler-curve based methods 

2.4. Conclusions and future work 

By following Tobler’s initial idea to conjecture a relationship between steepness of the ground and 

velocity of the hiker we refined his earlier results. We developed two novel methods to estimate 

hiking time using only our fitted steepness-velocity curve and the observed velocity values of 

previous logs. The tests were performed on an outrageously large dataset (2400 tracklogs) and 

resulted in 11,58% and 12,94% Mean Absolute Relative Error compared to Tobler’s result of 

17,36%. In the near future we intend to broaden the list of explanatory variables used in our model 

to enhance the accuracy of our estimations. In case we would be able to acquire a larger dataset 

where we could also identify tracklogs related to the same user, we could probably design a 

collaborative estimation method where could utilise previous trails of the user and other users who 

are similar to him to adjust our predictions. 
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Table 1: MARE values of  the 3 methods compared

MARE_mer MARE_atl MARE_Tobler

mean 11.58% 12.94% 17.36%



3. Recommendation Systems 

3.1. Problem formalisation 

In our everyday life we make decisions countless times, sometimes even unnoticed. How to dress 

up in the morning considering our schedule? Which menu to pick in the restaurant? Which 

television to buy? Thousands of  these everyday questions have to be answered besides couple of 

crucial ones day by day. To make the correct decision in some cases we ask our friend’s opinion or 

an expert, but there are other options that raised recently to support us in our decisions. We not 

necessarily need to nag the librarian or the vendor at the bookstore finding a book that would fit to 

our mood and preferences, if we have the possibility using Amazon to recommend us a book based 

on our previous readings. Youtube also recommends audiovisual content to its users based on their 

previous views. The advantage of using Youtube’s recommendation engine instead of asking our 

friends lies in the immense content it sees through, while our friends’ overall knowledge is just a 

fraction of that. I would like to avoid even the semblance of advising the substitution of our friends 

and family with an engine, perhaps I would urge those who are open to innovation to use these 

websites and applications as decision support tools that might spare some time to them or facilitates 

new experiences.  

Based on dozens of recommendation system definitions ([6], [7], [8]) I have encountered during my 

research hereby I intend to determine a definition that synthesise the previous one, though also 

eliminates unnecessary aspects: a Recommendation system is an information filtering system 

that supports the user to make a decision in a given situation by narrowing the set of available 

options and ranking options considering the context. Ranking can be done based on the user’s 

preferences expressed either explicitly or implicitly, and it can take into account similar user’s 

behaviour observed previously in similar situation.  

3.2. The proposed model 

As we intend to build a touristic recommendation engine from scratch we are facing with the well 

known problem of cold start, i.e. the scarcity of information. Thus we decided to build  a hybrid 

system consisting of two modules: 

• Content based module requires the designer to understand the structure of the product to be 

recommended. Maybe the best example is the Music Genome Project [9] dates back to the late 
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90s that where the project scope was to understand the structure and factors of music that 

influences people when deciding which one they prefer or dislike. There has been more than 400 

individual factors identified during the project and Pandora Radio’s recommender system is 

based on this achievement even nowadays. By following this idea we initially identified 17 

individual factors to describe with their linear combinations Point of Interests (POI) related to 

tourism (see Table 2). For this purpose we also assigned relevance values for each factor in case 

of each POI, e.g. The Hungarian National Gallery is described as Museum/art, Top sight, 

History/culture, with relevance numbers of 3, 3, 2 respectively. As per our experience almost 

every POI can be described by 3 factors at most. Thus we created a test instance of 150 POIs 

using the touristic attraction of Budapest (and 350 further POIs for London and Paris) containing 

the locations (longitude - latitude values), the factors and corresponding relevance values (0 to 

3), the importance values (0 to 3) to signal how frequently a POI is visited. The database has 

been used while we performed a questionnaire on our website (www.travelschedule.org), though 

this is related to the second module. 

• Knowledge based module [10] serves our needs of gathering information from the users on their 

preferences. On our website we asked the test subjects to evaluate the 17 factors according to 

their preferences, then evaluate the 4 recommended list of POIs (15 per each) on a scale 1 to 10, 

that have been calculated based on 4 different methods: 

• KPI1: we calculate the scalar product of the factor evaluation vector with the relevance 

vector multiplied by the importance number. 

• KPI2: we multiply the value of KPI1 in case importance number equals to 2, then divide the 

value by the number of factors with positive relevance number.  

• KPI3: here we multiply the value of KPI2 with the number of factors that has the highest 

relevance number (3) and the highest corresponding factor evaluation (3) at the same time. 
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Table 2: Touristic factors
top sight church/religious place museum/art
history/culture architecture/facade monument
street/square vista point park/nature
university/science/technology amusement/family/children bath/sport/recreation
market/local food cafe/restaurant theatre/entertainment/cinema

music/bars/nightlife shopping/fashion

http://www.travelschedule.org


• KPI4: the first 7 items of the list is identical with the fist 7 items of KPI1, the remaining  8 

fields are filled with items of KPI2, avoiding any duplications. 

3.3. Experimental Results 

Hence KPI1 usually recommends the popular places, while KPI2 and KPI3 aims to come up with 

some less known ones. KPI4 is clearly a mixture the two concept. The questionnaire has been 

completed by 50 user for Budapest and 33 for London and Paris (see Fig. 6). In case of Budapest 

clearly KPI2 performed the best, while for Paris and London most of the users found KPI1 to 

recommend the most attractive places. Considering almost all the test subjects were Hungarian I 

presume they preferred to see the well known attractions instead of the latent sights.  

Figure 6: Evaluation results 

Based on the evaluations we have calculated the correlation matrix of the 17 factors and grouped 

factors that are in close relation with each other. As an interpretation of the grouped factors we have 

identified 6 different tourist types described by preferring the corresponding factors (see Table 3). 

We investigated the evaluations of the segmented user groups that resulted in different 

recommendation strategies for the tourist types (see the summary of KPI evaluations in Table 4). 
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By applying the key takeaways of the KPI evaluations of the user groups we created a simple 

decision process which KPI to use: 

• In case of a city abroad, pick KPI1 
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Table 3: Identified tourist types

Touristic factors Culture 
lover

Nature 
lover Families Young Mundane Gourmet

museum/art x

park/nature x

architecture/facade x

history/culture x

shopping/fashion x x

vista point x

top sight x

music/bars/nightlife x x

market/local food x x

street/square x x

monument x

bath/sport/recreation x x

theatre/entertainment/cinema x x x

cafe/restaurant x x x

church/religious place x

university/science/technology x x

amusement/family/children x

Table 4: Ranking of  recommendation methods for tourist types

Touristic 
factors Eljárások Culture 

lover
Nature 
lover Families Young Mundane Gourmet

Budapest

KPI1 3 4 2 4 4 4

KPI2 1 1 1 3 3 2

KPI3 2 2 4 2 2 3

KPI4 4 3 3 1 1 1

London - 
Paris

KPI1 1 1 1 1 1 1

KPI2 4 4 4 3 4 3

KPI3 3 3 3 4 2 2

KPI4 2 2 2 2 3 4



• In case of inland, and the mean overall evaluation of factors above 2.2 points: pick KPI1 again 

• For Culture lovers pick KPI2 (still inland) 

• If the person is not culture lover but young, pick KPI4 

• For everyone else in inland recommend according to KPI2. 

With this method we 86,4% success rate (i.e. picked the best KPI in 76 cases out of 88). 

3.4. Conclusions and future work 

We have created a hybrid (Feature augmenting) recommender system (see Melville et al. [11]) 

consists of a Knowledge based and a Content based module. Thanks to their characteristics we have 

overcome the cold start problem and have the ability to recommend users touristic attractions with 

minimal information shared in the beginning. By using the identified 6 tourist types we have been 

able to refine the accuracy of our initial recommendations. 

As part of our future research plan we would like to review the results of the existing 4 KPIs and 

probably design some more competitive versions. In case we would be able to acquire a larger 

evaluation dataset we consider refining or initial 17 factors and identified 6 user groups by using 

matrix factorisation technique. Additional evaluation dataset would also enable us to build a 

collaborative module to our recommender system to enhance the accuracy of our current 

recommendations. 

4. Route Planning 

4.1. Introduction 

In the 3rd pillar of this paper we present a novel, heuristic routing algorithm that aims to provide 

personalised tour plans for the users. We strongly build on the achievements of previous chapters, 

namely the routing algorithm optimises tours on an individualised graph where the profits collected 

at each vertex are derived from the previously designed recommender engine and the cost of each 

arc (travel time) has been determined by our hiking time estimation method.  

We also consider important to highlight that as of our knowledge there is no such existing solution, 

that is able to deliver route plan for P days, assigned and optimised to a dedicated hotel. Besides the 
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algorithm itself we also designed a utility function and an objective function to adjust route plans to 

user preferences. 

4.2. Problem formalisation 

We intend to solve the Team orienteering problem (formalised first by Butt and Cavalier in 1994 

[12]), though as we do not necessarily agree with the maximisation of sum of profit points by 

visiting each arc, we recommend a new approach. This objective function has been inherited from 

the Traveling Salesman Problem (formalised and solved first by Karl Menger in the late 20s [13]), 

where we can attach particular meaning to collecting profit points by visiting the vertices. As per 

my understanding tourists are not interested in attraction they have evaluated poorly (namely 

assigning 4 or less points on a scale 1 to 10). Hence we decided to design an objective function as 

an extension of the broadly applied version. Let the utility function be u(si ,a), where si is the 

evaluation of the vertex i by a certain user, and and a is a parameter that measures how much the 

user appreciates an attraction evaluated as s comparing to s-1. The utility function is designed as 

follows: 

 

Figure 7: Utility function 

The effect of parameter a on the evaluation is depicted on Fig. 7. By using the utility function 

determined above we have the opportunity to rule out POIs that are undesirable for the user (namely 

with evaluation under s*). Thus we avoid visiting POIs that are very close to our planned route, 

despite their poor evaluation. We use the following denotement in the problem formalisation:  

• N - number of vertices in graph G(N,E) 

• E - number of arcs in graph G(N,E) 

• P - number of available days 

• B - daily budget constraint (the user only have to meet with the overall budget constraint BP) 
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• Tmax - daily time limit (the user has to meet with the daly time limit every day, and he can only 

exceed it with 5%) 

• si - evaluation of vertex i 

• vi - visit time of vertex i 

• tij - travel time from vertex i to j 

• τijp - is equal to 1 if in the pth path the vertex j is visited right after vertex i, 0 in any other cases 

• θip - is equal to 1 if in the pth path the vertex i is visited, 0 in any other cases 

• β - parameter of “laziness”  

• ⍺ - parameter of the objective function to balance the importance of utility and visiting time - 

travel time ratio 

• R - denotes the set of planned routes for P days 

• bi - entrance fee for vertex i 

The objective is to design P routes for P days that maximises the objective function and observe the 

constraints. All vertices of the graph can be visited not more than once, except the hotel. Each route  

starts at the hotel and ends at the hotel (vertex number 1 and N denotes the hotel). The problem is 

formulated as follows: 
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The interpretation of the lines: 

1. Objective function to be optimised, where the two considered factors are the sum of visit times 

divided by the sum of travel times and the sum of utilities earned by visiting vertices. 

2. Every route starts at vertex 1 and ends at vertex N (both denotes the same hotel). 

3. Every vertex is visited once at most. 

4. Every route is connected severally. 

5. The routes are meeting with the time constraint for each day. 

6. The routes are meeting with the budget constraint for the overall tour of P days. 

7. and 8. together grants avoiding cycles in the route according to Miller–Tucker–Zemlin [14] 

9.    The value set of τijp and θip is 1 or 0. 

Where our problem differs from the literature is the objective function which is clearly an extension 

of the usual profit collecting (since it yields the same formula for ⍺=a=0). 

4.3. Routing algorithm 

We start presenting our routing algorithm with two functions: 

Lexicographical ranking: We determine the rank of a set of vertices (C1) to another set of vertices 

(C2) considering the effectiveness of the constraints and the score threshold. More formally L(C1, 

C2, sc, s*), where sc denotes the resource that is more scarce (the estimation is going to be presented 

in the 3rd step of the algorithm) and C1 is the set of vertices to be ranked based on the set of vertices 

in C2. Let us calculate the two below measures: 

where d*(ci,C2) denotes the mean distance between vertex ci (element of C1) and the elements of C2. 

The nominator interprets the utility of si in the units of the utility of s*+1 (which is the lowest score 

assigned to a vertex we consider to visit, see the first step of the algorithm). In case of the second 
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measure we divide the utilities by the corresponding entrance fee. L(C1, C2, sc, s*) first determines 

the scarce constraint, e.g. let it be the time. In this case it rank the vertices of C1 based on the first 

measure, cuts the list into 6 equal pieces (the number of elements in the last group can differ), then 

it rerank the vertices within each group based on the second measure. 

Identifying outliers: O(H, cr) determines the outliers for a given Hamiltonian-cycle considering the 

cr threshold parameter. First we calculate for each vertex of the Hamiltonian-cycle the sum of travel 

times of the inbound (ti,be) and outbound (ti,ki) arcs. Vertex i is considered to be an outlier in case: 

where tH* is the mean of inbound and outbound travel time and σH is the standard deviation. The 

value of cr  differs in some cases, that we indicate later. 

The algorithm 

1. Simplification of the problem space: let us eliminate all vertices with evaluation less than or 

equal to s*. We call the remaining vertices as the set of relevant points, denoted by Cr 

2. Fixed vertices: let us appoint mandatory vertices, practically vertices with maximum evaluation 

(max{si}). 

3. Grouping: Let us first estimate which is the more scarce resource. As a rule of thumb we 

calculate the below two measures: 

• Take the sum of visiting times of relevant points and the average distance between them (once 

for each) and divide it by the overall time constraint PTmax 

• The sum of entry fees for all relevant points divided by the budget constraint BP 

The higher is considered to be the more scarce resource (so sc is determined). Let us choose the 

vertices with the highest score (as those are mandatory) then for all the remaining ones use L(C1, C1, 

sc, s*) and pick the first 5P points and add them to the mandatory vertices. Now determine an 

optimal Hamiltonian-cycle (including the hotel) on the vertex set, then apply O(H,1) to eliminate 

outliers.  

4. Initial daily routes: The remaining vertices to be separated into P groups (without any overlap) by 

Hartigan-Wong-algorithm. For each cluster we determine the shortest Hamiltonian-cycle (including 
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the hotel), and choose the best result after 10 iterations. We consider a solution to be better in case 

the objective function’s value is higher for the P routes altogether. 

5. Refill: In case of any free capacities in each day we refill the routes with the remaining points 

from Cr, hence we use L(Cr, Ci, sc, s*) for each day i, then fill the routes until we reach any of the 

resource constraints. 

6. Switch: We determine for each point in all existing routes the mean of the 3 lowest distances 

from the points of the regarding route (we also calculate this measure for the route contains the 

given point), and we assign the point to the route where the value of this measure is the lowest, and 

repeat it in 10 iterations. 

7. Cut: In case a day exceeds the time constraint with more than 5%, we apply L(Ci, Ci, sc, s*) and 

eliminate the vertices from the last in the rank until we meet with the constraint. 

8. Refill: If we still have free capacities at day i, we apply L(Cr, Ci, sc, s*) and insert points from Cr 

from the top rank until we meet with any of the constraints. 

4.4. Experimental results 

We have performed our experiment on a POI list consists of 150 touristic attractions in Budapest, 

including the visit times, entry fees, locations (longitude and latitude values) and the evaluations 

given by the user (that we assumed to be calculated based on our recommender system). The travel 

times are derived from the location applying OpenStreetMap API to calculate the distance matrix 

for 150 POIs and the hotel assigned to the user. Hereby we summarise our experiences: 

• We obtain large bypasses in case of positive a parameter values, moreover the routes disintegrate 

when we apply low parameter values for ⍺ and β. 

• In case ⍺ < 0.5 we can only obtain acceptable routes if β > 1.5 and a < -0.5 

• Generally we obtain relatively good results in case a < - 0.5; ⍺ > 0.5 and β >1.5 

• Considering the chargeability and the visiting time - travel time ratio as a measure of goodness we 

found  ⍺ = 0.75; a = -1 and β = 2 parameter-set optimal in case of 1-2-3 and 4 days. We present in 

Appendix B a tour of 4 days calculated applying these parameter values. The profit collection case 

has shown poor results: though the chargeability is almost equal to our solution (95% average) 
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and the computation time is lower by 1 second, the visit time - travel time ratio is 1.43 comparing 

to 3.8 in case of our parameter values. 

• We ran the algorithm 100 times to calculate a 3 day tour, and we obtained 3.73 seconds mean 

computation time (we ran our tests in R software on a laptop with following details: 3.8 GB 

RAM, Intel Core i3-3217U CPU, 1.80GHz × 4 proc). Though we cannot compare our results to 

Vansteenwegen et al. [15] or Gavalas et al. [16], as we solved a different problem, as a point of 

comparison we mention the results of Sylejmani and Dika [17], who presented a tour planner 

algorithm in 2011. The designed Taboo Search algorithm has created a tour of 3 days on a graph 

of 40 vertices with a mean computation time of 81.7. 

• We also present the results of the test runs for each parameter combination (performing 20 

iterations each). As we can see the in Fig. 8. the mean computation time increasing significantly 

between the tours designed for 2 and 3 days. The average visit time - travel time ratio and the 

average chargeability slightly decreases by increasing the number of days. 

Figure 8: Test results of the routing algorithm 
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4.5. Conclusions and future work 

We presented a modified version of the TOP, that - at least according to our intentions - focusing 

more on a practical problem formulation related to the Touristic trip design problem. As part of our 

endeavour we designed an objective function that adjust the problem formulation according to the 

user’s preferences. A novel heuristic solution has been introduced to solve the TOP which provides 

an opportunity implementing in a mobile tour planning application considering its low computation 

time. As a future goal we would like to extend the algorithm with the ability to handle time 

windows which we consider the next milestone towards a practically useful solution. We also plan 

to refine the algorithm with looking over more hotels and appointing the one where the value of the 

objective function is maximum for the P days tour. We plan to replace the first clustering step with a 

method that identifies P vertices in sufficient distance from each other and builds trees including the 

hotel.  

5. Thesis summary 

1. Designing two DEM solutions  

How can we prepare raw GPS tracklogs that allows us to perform our analysis? Is there a 

digital elevation model (DEM) that approximates well the actual height values? 

The correction of the longitude and latitude values of the raw GPS tracklog has been performed by 

applying Kalman-filter. As the elevation data of the GPS tracklogs are unreliable we created 2 novel 

solution to approximate the Earth’s surface. The firs Digital Elevation Model is based on bilinear 

interpolation, while the second approximated the surface with triangles. Both solutions provides 

very similar results to the values of Google DEM, which is considered to be nowadays the market 

standard. 

2. Refining the steepness-velocity function determined by Tobler 

Is there a function that describes more precisely than the current solutions the relationship 

between the steepness of the ground and the velocity of the hiker? 

The relationship between steepness of the ground and the velocity of the hiker has been determined 

by Waldo Tobler in 1993 [4], unfortunately it has not been reconsidered or refined until now. Based 
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on 2400 tracklogs we designed a novel function that enables us to valculate more accurate 

estimations of hiking time than by using the Tobler-curve. We would also highlight that one of the 

key reason of our success is the quality and quantity of tracklogs we used to our experiments, which 

is - as per our knowledge - outrageous in the literature. 

3. Designing two hiking time estimation methods 

How can we design a method to estimate the hikers travel time more precisely than the 

current solutions? 

Naismith’s rule of thumb [1] to estimate the hiking time has been used since 1892. In the era of 

mobile applications we have the opportunity to refine these approximations. We proposed two 

estimation methods that collect information during the trail and adapts the estimations dynamically. 

The mean velocity based method has resulted in 12.94% mean absolute relative error while the 

steepness based method was 11.58%. These two are the most accurate solutions as per our 

knowledge. 

4. Designing a Touristic Hybrid Recommender System 

How can we create a touristic recommender system that provides individualised 

recommendations based on minimal information given by the user? 

As we are lack of sufficient quantity of evaluation at this stage of our research, we have created a 

POI database (consists of 500 POIs) and determined 17 touristic factors to describe each POI as a 

linear combination of the factors (content based module). The knowledge based module gathers the 

users’ evaluations on the 17 factors, hence we can perform recommendations to users based on very 

limited information by applying our Feature Augmenting hybrid Recommender System. 

5. Classification of Tourists 

Is the a possibility to classify the users based on the information provided by them? How can 

we design the questionnaire of the recommender system? 

As part of our experiment we have created a website where the users received 4 different 

recommendations after evaluating the 17 touristic factors. Based on the ratings related to the 

recommendations we have identified 6 different types of tourists. These groups has been created 
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considering the high correlation values between the factors assigned to each group. By identifying 

tourist types we have been able to refine our initial recommendations. 

6. Objective function for the TOP 

How can we accurately describe the user preferences related to tourist attractions by a utility 

function. What kind of objective function leads our routing algorithm to practically 

acceptable route plans? 

The broadly used objective function has been inherited from the Traveling Salesman Problem 

(formalised and solved first by Karl Menger in the late 20s [13]), where we can attach particular 

meaning to collecting profit points by visiting the vertices. As per our understanding tourists are not 

interested in attraction they have evaluated poorly (namely assigning 4 or less points on a scale 1 to 

10). Hence we decided to design an objective function as an extension of the broadly applied 

version, which is clearly an extension of the usual profit collecting (since it yields the same formula 

for ⍺=a=0). 

 

7. Creating heuristic algorithm to solve TOP 

How can we design an algorithm to solve the Team Orienteering Problem (TOP) that keeps 

run time low and enables its implementation in a mobile application? 

We presented a modified version of the TOP, that - at least according to our intentions - focusing 

more on a practical problem formulation related to the Touristic trip design problem. As part of our 

endeavour we designed an objective function that adjust the problem formulation according to the 

user’s preferences. A novel heuristic solution has been introduced to solve the TOP which provides 

an opportunity implementing in a mobile tour planning application considering its low computation 

time. 
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APPENDIX A 

Let (N1,c ,N2,c ,N3,c ,N4,c) denote the elevation values assigned by the NASA DEM to centers 

of 4 neighbor squares and (Q1,1 ,Q1,2 ,Q2,1 ,Q2,2) are their projections to the ground. Let f(x) 

denote the elevation value assigned to x point of the ground. Thus the bilinear interpolation 

of point P can be esimated as follows: 

 

 

  

(source: https://en.wikipedia.org/wiki/Bilinear_interpolation) 
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APPENDIX B 

4 day tour (⍺ = 0.75; a = -1 and β = 2) 
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