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Preface 
 

Environmental conscious material and inventory management will be studied in this 

dissertation. It is named as reverse, inverse, or waste disposal logistics in the last decade. In 

the Hungarian literature there are no uniform definitions for this scientific area. This research 

field is defined in English speaking countries as reverse logistics. A former name of this idea 

was inverse logistics, but this name is used mainly in Japan.  

 

The dissertation consists of three chapters. In the first chapter I define reverse logistics and its 

problems. 

 

In the second chapter I present six deterministic reverse logistics inventory models. These 

inventory models were constructed in the last three decades. A natural extension of EOQ-type 

inventory models was examined in the last decade. The first reverse logistic inventory model 

was built in 1967. The second model was published in 1979. In the eighties no paper was 

published on this research area. The European Union has aided some research projects in the 

nineties to support European environmental regulation. The publication of new reverse 

logistic inventory models is in progress nowadays. Main point of the research is now 

inventory models with shortage. The dissertation contains all available deterministic EOQ-

type models without shortage. 

 

The last chapter investigates shortly the influence of reverse logistics on production planning, 

and on material requirements planning systems. EOQ-type reverse logistics models can be 

used, as a basis for the dynamic lot size reverse logistic model. The first publication appeared 

on this field in 2000. The solution of Wagner-Whitin-type reverse logistic model is not easy, 

because of the complexity of dynamic programming algorithms. EOQ-type reverse logistic 

models can serve as heuristics to solve such kind of inventory models. This is a potential 

application of this research field. 

 

And last I summarize the results of this dissertation. 
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1. Reverse Logistics: A Framework 
 

1.1. Introduction 

 

Collection of used products, as paper, bottle, and battery, is a known idea in modern 

economies. Reuse, remanufacturing and recycling of cars and electronic appliances, and 

disposal of hazardous waste are very recent research field. The listed activities include a very 

broad area, and it seems to have different management problems. This chapter summarizes the 

reverse logistics which offers a theoretical background to solve such kind of business 

problems. 

 

The reuse is not a new phenomenon in the practice, but a lot of publications are appeared in 

the international literature in eighties, named reverse logistics. In Hungarian literature there 

are only a few publications on this research field. The first publication is paper of Rixer 

(1995). He has called this field as “inverse logistics”. Cselényi et al. (1997) has used the 

expression “recycling logistics”, and Mike (2002) has given the name “reverse logistics” 

which is used in English speaking countries. There are some new publications about reverse 

logistics in Hungarian, as well. (Richter and Dobos (2003)), Dobos (2004)) Reverse logistics 

includes not only the material flow from supplier to consumer, but also the material flow of 

used products from consumer to producer and supplier, in order to reduce the burden of  

environment. 

 

The aim of this chapter is to present the international (mainly Anglo-Saxon) literature on this 

field. The environmental regulation becomes rigorous in the European Union and in Hungary. 

There are recently a lot of environmental regulations about wastes along the life cycle of a 

product in the European Union. (For example, about used cars.) 

 

The European Union plans to solve environmental problems in the near future by the help of 

legal regulation. These include the use of renewable environmental resources and energy; 

avoid wastes, and substitution of non-renewable resources. 

 

The Hungarian Parliament has legislated a law about the waste management in 2000. The aim 

of this law is to protect the human health and environment, to support the rational use of 
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resources, and to reduce the environmental load, in order to promote sustainable development 

and economic growth. The law disposes of wastes and activities of its handling. This law does 

not touch the emissions in the air, and nuclear hazardous wastes. Some of principles are 

mentioned in this law, as prevention, responsibility of producer, divided responsibility, 

pollutant pays principle, best available technique, cost efficiency, and so on. The law disposes 

of responsibility of producers, retailers, consumers, and owners of wastes. Steps of waste 

management and reuse, and explanation of ideas are included in the law. There are defined 

collection and transportation of wastes, reuse of wastes and handling. Separate sections 

present responsibility of handling of communal and hazardous wastes, and organization of 

waste management. It is to emphasize obligation of publicity and information. 

 

Firms must keep this law, but application of reverse logistic methods can lead to cost savings 

in long range. Legal registration can not force enterprise to produce an environmental 

conscious way, but economic earnings can result an environmental friendly production 

structure of firms. 

 

In this chapter I present shortly the development of reverse logistics, and then I show a 

conceptual framework, considering the development of this idea in the last decades. After that 

I look for answer the main questions of reverse logistics: “why-how-what-who”. And last I 

analyze the participants of reverse logistics, examined the main management problems. 

 

1.2. About development… 

 

There were economic and historic causes of development of logistics, as it is for the reverse 

logistics. Retailers have recognized the chance of takeback of products in the United States at 

the end of eighties, as a tool of market growth. Control of takeback was not directed, because 

there was no uniform and serious regulation of forms of return policies of used products. The 

result of this development was that consumers have taken back a number of products. The 

costs of this process have dramatically increased at the producers and at the retailers, which 

has reduced the profitability and competitiveness of firms. They have recognized that an 

effective reverse logistics system is an important integral part of corporate strategy of firms. 

 

The importance of reverse logistics is out of question, but the application of this concept 

makes more difficult that authors define reverse logistics differently, and the solution of 
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reverse logistics concepts differs from each other at firm level. Because of this difficult 

applicability, I try to define the idea, and I determine the potential research fields of reverse 

logistics. 

 

1.2.1. Determination of the concept 

 

The reverse logistics was first defined in the eighties. In this time there were published only a 

few articles in the literature, so the theoretical basis of investigations was unsettled. One of 

the first publications on this field is the paper of Lambert and Stock (1981). They have 

defined reverse logistics, as a reverse material flow opposite to supply chain, which is a “bad” 

process along the material flow of firms. It means that until material flow of traditional supply 

chain occurs in supplier-producer-wholesaler-retailer-consumer chain, reverse logistics seizes 

the return material flow of used products, in order to follow this process backward from 

consumer to supplier. 

 

After the negative definition of Lambert and Stock, Murphy and Poist (1989) have offered a 

new approach to determine reverse logistics. They have defined reverse logistics, as a material 

flow of products from consumers to producers in the supply chain. This definition is accepted 

by Pohlen and Farris (1992), who prefer to apply marketing concepts to reverse logistics. The 

importance of their paper is that they have named the final consumer, and they have 

emphasized that the process is reverse in the supply chain. A drawback of this definition is 

that they have not determined the main activities of reverse logistics, which makes more 

difficult to limit the framework of reverse logistics. 

 

In the nineties Stock (1992) has given a wide definition, which is a basis for waste 

management. He stresses the role of logistics, which contains recycling, waste disposal, 

substitution of hazardous material, reduction of resources, and reuse. This definition of Stock 

is more accurate than that of earlier. The connection with supply chain activities is missing in 

this general definition, and the reverse process is not emphasized, as well. 

 

These last approaches are summarized by Kopicky et al. (1993). This definition contains all 

above-mentioned activities, the reverse movement of materials along the supply chain, 

opposite to traditional logistics. Kopicky et al. (1993) have introduced information flow in the 
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definition of reverse logistics, which helps on effective practical functioning of reverse 

logistic systems. 

 

Carter and Ellram (1998) have collected a number of definitions of reverse logistics. I will 

cite one of the definitions. The more general definition is: “Reverse logistics is such an 

activity, which helps to continue an environmental effective policy of firms with reuse of 

necessary materials, remanufacturing, and with reduction of amount of necessary materials”. 

This efficiency touches the personal in production, supply, and consumption process. Carter 

and Ellram (1998) approach reverse logistics from point of view of environmental protection. 

Environmental consciousness occurs at three level of activity of firms: governmental 

regulation, social pressure, and voluntary self restriction. 

 

A next definition contains both traditional and reverse logistics. Council of Logistics 

Management defines logistics: Logistics is a successful, cost-effective planning, realization, 

and control of raw material, work-in progress, final products, and connected information from 

the beginning to consumption, in order to perform consumer’s needs. 

 

Rogers and Tibben-Lembke (1999) defines reverse logistics, as: Logistics is a successful, 

cost-effective planning, realization, and control of raw material, work-in progress, final 

products, and connected information from consumption to the beginning, in interest of value 

regain, and handling of wastes. 

 

Reverse Logistics Executive Council (RLEC) has given a more general definition of reverse 

logistics, which summarizes the above definitions: Reverse logistics is a movement of 

materials from a typical final consumption in an opposite direction, in order to regain value, 

or to dispose of wastes. This reverse activity includes tackback of damaged products, renewal 

and enlargement of inventories through product takeback, remanufacturing of packaging 

materials, reuse of containers, repair and renovation of products, and handling of obsolete 

appliances. 

 

European Working Group on Reverse Logistics (REVLOG) has given a similar definition of 

reverse logistics in 1998. The difference is that the beginning of collection is not only the 

consumption, but it can be also production, distribution, or use. 
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The development of concept of reverse logistics was presented. The concept has changed 

dramatically in the last two decades. Till the first approach has considered reverse logistics, as 

a bad direction, nowadays the theory of reverse logistics contains marketing, financial, and 

environmental points of view. In nineteen’s reverse logistics has become a well established 

theory. This complex definition supports the idea that reverse logistics covers all activities 

along the supply chain. 

 

1.3. Factors of reverse logistics: Why? – How? – What? – Who? 

 

After definition of reverse logistics I examine the factors that stand behind this concept. Four 

questions arise in this context: why, how, what, and who. These questions are answered by 

Brito and Dekker (2002) most comprehensively. 

 

1.3.1. Why? 

 

This question contains two research fields. First, why send persons used products back, and 

why accept others used items? I have mentioned the causes of reverse logistics in the second 

section of these chapter, i.e. economic, legislative, and social consequences. These causes 

touch the “receiver” of groups. Brito and Dekker (2002) distinguish direct and indirect gains 

inside of economic advantages. Direct gains are the possibility of profit increase that means a 

reduction of use of raw materials, decrease of costs of waste disposal, and value added 

through reuse. Indirect advantages are the “green” image of a firm which is a factor of 

competitiveness for enterprises. Experiences have supported that environmental conscious 

functioning of firms results in a stable consumer connection. It is a competitive advantage of 

firms that increases in profit chances. A strict legislative regulation is a new argument for 

practical application of reverse logistic processes, which serves as a method for environmental 

protection. The United States and the European Union are leading in environmental 

legislation, which forces the firms to keep the law. Thirdly, voluntary social responsibility of 

firms directs organizations to protect environment. In the practice this voluntary activity 

increases in competitive advantages of firms. 

 

A second area is to investigate the group of “sender”. They have decided to send back a used 

product to the manufacturer. As by the “receiver”, three fields are to be analyzed: return by 

manufacturers, distributors, and users. 



 9

 
 

Return of used products by manufacturers means a send back in the production process 

because of raw material surplus, shortage on quality of products and by-products. 

 

Return by distributors means a send back of non sellable, unsold products. These products 

embody in inventory, defective transport and products, and packaging waste. 

 

Return of users is guarantee, services, and end-of-life products which are at the end of 

economic and physical span of life of products. A next group of products is the end-of-use 

products that have no consumer value for their owner, but they can be sold for other 

consumers. It is very hard to distinguish these last two groups of products, so it is easier to 

supply some examples. The end-of-life products are, for example, wreck cars, which can be 

dismantled and its parts or modules can be reused. End-of-use products are rented cars, which 

can be rented after a known deadline. 
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 Figure 1: Integrated Supply Chain, Source: Thierry et. al. (1995) 
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1.3.2. How? 

 

Now I will investigate the how question: How can be realized a reverse logistics system? I use 

to answer this question the paper of Thierry et al. (1995). This process consists of eight steps: 

direct reuse, repair, refurbishing, remanufacturing, cannibalization, recycling, incineration and 

landfilling. Figure 1 shows the connection between the elements of reverse logistics activities. 

 

Direct reuse: the physical and quality property of products is unchangeable in the reverse 

logistics process. 

 

Repair: The product will be transformed, and after this transformation (repair) the product can 

be used or sold, as a new product. Repair can occur at the user or in a repair shop. Under 

transformation I understand a change of parts, but other modules or elements of the product 

are intact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hierarchical connection of reverse logistics activities, Source: de Brito – 

Dekker (2002) 

 

Refurbishing: Refurbished products are dismantled into modules, and then they assembled 

under less rigorous quality. There are repaired only the defective modules, so the lifespan of 

products are enlarged. 
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Remanufacturing: From remanufactured products we wait as good quality as a new product. 

Remanufacturing is more than refurbishing, because all modules and parts are rigorously 

inspected before use process. Defective modules and parts are totally exchanged in the 

remanufacturing process. 

 

Cannibalization: In this reuse process all of the returned products are dismantled, and there is 

a rigorous quality inspection. The regained parts and modules are reused in repair, 

refurbishing, and remanufacturing activities. 

 

Recycling: The product loses the original function in this reuse method. The objective of 

recycling is to recover all usable material. If the quality of recovered materials is appropriate, 

then they can be used for manufacturing of new products. 

 

Incineration and landfilling: These two categories belong to the waste management. Both 

activities must fill rigorous requirements. Economic advantages can be gained from 

incineration, if the rising energy is reused. 

 

The above-mentioned fields are summarized in a pyramid in figure 2. This pyramid creates a 

close connection between reverse logistics and environmental protection. The levels shows 

which logistic activities promote the protection of environment. Some of the materials and 

wastes, as products of reverse logistics, can be handled with activities at the bottom of 

pyramid. The objective of a reverse logistics system is to introduce activities at the top of 

pyramid. The question is now, if the objective is reuse or reduction of resources, then the 

pyramid is why not broad at the top. The ideal situation would be an inverse pyramid, but 

reuse is nowadays not so general. 

 

1.3.3. What? 

 

The next question deals with the quality of the returned products in reverse logistics. In this 

case the assortment of returned products is examined: which factors damage the possibility of 

reuse, and how will the consumer use the reused products. 

 

Assortment influences the reuse in two ways: homogeneity, and measure of the returned 

products. Lifespan of products is influenced by perishability, age of elements and 
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amortization of the products, which make more difficult the reuse. A typical example is 

electronic items, where the technical progress supersedes functioning, but obsolete products. 

 

The way of use of products influences the reuse. It depends on place, intensity, and duration 

of use, which determine a later remanufacturing. The collected items can be distinguished 

whether they originate from communal or industrial consumption. (E.g. because of 

transportation, handling, or quantity.) Here must be mentioned packaging materials, spare 

parts, or public goods. 

 

1.3.4. Who? 

 

The fourth important field is the identification of participants in the reverse logistics. In this 

context I distinguish the participants of traditional value chain, and of reverse processes, and 

other participants, e.g. charity organizations. Till some of interested persons organize the 

reverse process, others deal with the practical realization. It is very important to coordinate 

the connection between supply chains. One of the coordination mechanisms is a reliable 

information flow. Necessary information for a successful functioning is summarized in paper 

of Thierry et al. (1995). On the basis of this article there are four groups: 

 

- Information about product assortment, i.e. about materials, their combination, quality, 

value, hazard, and possibility of manufacturing (analyzes). 

- Information about extent and uncertainty of reverse processes: 

• Warranty – quantity and quality of returned products is 

uncertain, necessary repair activities are hard to plan. 

• Off-lease and off-rent contracts – they can be estimated very 

well in quantity and in time, but to estimate the quality is hard. 

• Voluntary buy-back – it depends on the possibility of 

manufacturer. The advantage of this solution is that it insures 

inexpensive resources for manufacturing and repair. Waste 

disposal costs decrease at the consumer, and it makes possible 

for the manufacturer to sell new products. 

- Information about the market of reused products, parts and materials. It is hard to find 

markets, so competitive advantages are in difference of quality and costs for new and 
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used products. Reuse can be made by the manufacturer, but other firms can realize the 

reuse inside and outside supply chain. 

- Information about collection of used products and waste disposal. The examination 

includes organizations involved in the process, obstacles occurred, quantity of 

returned products, and cost-benefit analyzes. 

 

1.4. Stakeholders of reverse logistics 

 

Participants of reverse logistics can be approached in another way. A theoretical background 

is supplied in paper of Carter and Ellram (1998), in which there are internal and external 

factors that influence reverse logistics. 

 

In general, there are factors within organizations and between organizations, which are 

external factors. Internal factors belong interested persons inside of firms, steps for protection 

of environment, successful applied business ethics standards, and mainly those persons who 

are responsible for the environment friendly corporate philosophy. Also internal influences 

have the consumers, supplier, competitors, and government. These four elements are 

influenced also by the macro environment with social, political, and economic trends that 

touch reverse logistics indirectly. 

 

The listed sectors have a different effect, and they have several interpretations. Among 

external factors governmental sector has a most determining influence. It can be accepted 

from environmental protection point of view, considering that environmental problems initiate 

most of the questions in the European Union. It must be remarked that law forces enterprises, 

till other competitors have to consider enterprise competitiveness in the same way. From this 

point of view a firm must meet the consumer need under keeping the environmental 

regulation of government. Without keeping governmental instruction an enterprise can not 

become competitive. There are two views about firm behavior. 
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Figure 3: Connection of reverse logistics processes, Source: Kohut – Nagy (2004) 
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information. The quality of returned products has a risk potential for the supplier, so the 

integration between supplier and producer must be strengthened. 

 

The role of the touched persons is an important internal factor. The owners of the firm can 

influence the functioning of reverse logistics system. They do not determine the activity of 

firms directly, but they can hinder it in a long range. Their assistance is a pre-requisite for a 

successful reverse process. 

 

The role of management is similar to that of owners. Without any assistance of management a 

reverse logistics system can not be functioned effectively, but the functioning is made by the 

middle leaders of the firm. They must have good diplomatic and communication skills, and 

leading ability. They have the work to persuade the touched persons about the necessity of 

effective reverse logistics system. 

 

Employees belong to the third group of stakeholders, who can help to introduce reverse 

logistics system through their contribution. Stimulation system can assist the efficiency. The 

above-mentioned external and internal factors have a synergy effect, i.e. both can make 

stronger their effect together. The consumer need must be considered, as a general rule. Also 

the internal and external interest must be considered. Without consideration of these interests 

a reverse logistics system can not be realized. 

 

Figure 3 summarizes the examined connections about reverse logistics. I emphasize that the 

processes must be close. The figure presents a paper mill manufacturing process. Some of the 

important activities are neglected because of the simplicity. 

 

1.5. Summary 

 

All of the presented reverse logistics activities can not be found in a firm. There are a number 

of reasons, why. The available technology, great variety of products, and economic situation 

of firm influence the enterprise decision about applied reverse logistics system. 

 

I do not investigate, what reverse logistics means for a specific product, and how a successful 

system could be introduced. These points requires further examinations, e.g. how a final 

product can be dismantled, which elements and modules of this product can be reused in the 
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manufacturing process. At the same time, it is hard to follow all parts and modules from 

manufacturers to consumers, then through collection network to reuse fabrication. Nowadays 

there is no information system to follow the correct material flow along the supply chain. In 

some cases it is easy to model the reuse process, but in general it is not so. Some of the parts 

and modules can not reuse, and it is difficult to find an economic sector, where the reuse 

process can build up effectively. A typical example is computer, from which relatively a few 

parts can be recovered, and the reuse is economical only in a great extent. 

 

These above-mentioned problems can be eliminated with a cooperation of different industrial 

sectors, and with a coordinated, reliable information flow between these sectors. 

 

Our starting point was the protection of environment, which is stimulated by legal regulation 

and by enterprise responsibility. The firms are forced to meet governmental regulation, but a 

voluntary responsibility is influenced by the available financial sources. In a long range the 

costs and revenues must be analyzed. Environmental consciousness is not attractive without 

any economic gains. 

 

The aim of this review is to give an introduction in the theory of reverse logistics systems. 

This chapter is a starting point to get acquainted with reuse processes, which raise a numbers 

of questions. This theoretical chapter gives a theoretical background, but the practical 

application of reverse logistics system needs further empirical investigations. The physical 

realization faces with technological difficulties, and on the other side the costs must be 

examined, as well. A successful reverse logistics along the supply chain can contribute to the 

reduction of loads of environment. 
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2. Economic Order Quantity Models in Reverse Logistics 
 

Reverse logistics is an extension of logistics, which deals with handling and reuse of reusable 

used products withdrawn from production and consumption process. Such a reuse is e.g. 

recycling or repair of spare parts. An environmental conscious materials management and/or 

logistics can be achieved with reuse. It has an advantage from economic point of view, as 

reduction of environmental load through return of used items in the manufacturing process, 

but the exploitation of natural resources can be decreased with this reuse that saves the 

resources from extreme consumption for the future generation. 

 

In this chapter I present three reverse logistic economic order quantity (EOQ). These models 

are not only shown, but extended, and I show that all of these models lead to the same 

mathematical structure named meta-model analyzed in the appendix. (Dobos-Richter (2000)) 

properties of meta-model are presented in the appendix. The following models are presented. 

 

The first reverse logistic (repair/reuse/recycling) model was first investigated by Schrady 

(1967) in an EOQ context. The paper has examined the cost savings of repair of high cost 

items at the U.S. Navy Aviation Supply Office in opposite to procurement. The condition of 

the basic model is that there are only procurement and several repair batches. The question is 

the lot sizes of procurement and repair. 

 

Model of Nahmias and Rivera (1979) was the second lot sizing model. This model has 

extended the results of Schrady (1967) with finite repair rate, i.e. the repair process needs 

time. The repair rate is constant in time. The problem considers waste disposal of a reuse 

process. In the basic model Nahmias and Rivera (1979) have examined the case of one repair 

lot size. These investigations were supported by U.S. Air Force Systems Command. 

 

The last model is model of  Koh, Hwang, Sohn és Ko (2002). The authors of this paper 

analyze a model similar to that of Schrady (1967). Till the first two models examine a 

situation, where the new manufactured/procured and repaired products can arrive in a store, if 

the inventory level is equal to zero, in this model the recoverable inventory fulfils this 

property. This inventory strategy was named by Schrady (1967) as “continuous supplement” 

policy, but modeling of this situation was not published in his paper. The models of Schrady 
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(1967) and Nahmias and Rivera (1979) have applied an other inventory policy named 

“substitution”. Koh, Hwang, Sohn and Ko (2002) have not expressed the batch sizes, but they 

investigate two separate cases: number of purchasing batch is one, and repair batch is one. I 

show a new formulation of the model, which treats these two cases in a general model. Koh et 

al. (2002), examine an other model. In this model the reuse capacity is not greater than the 

demand rate. In my investigation I ignore this type of model. 

 

There is a multi product generalization of EOQ-type reverse logistics models published by 

Mabini, Pintelon and Gelders (1998). They have extended the basic model of Schrady (1967) 

with capital budget restriction. The examined models have determined the lot sizes, but they 

have not taken into account that number of lots is integer, and the sensitivity of return process 

from parameters was not investigated. 

 

After this brief overview I summarize the common conditions of these models. 

 

1. The inventory holding policies are known in the models. It means that in an inventory 

cycle the inventory status is given and known in time. 

2. The demand for new and recovered products is constant and deterministic in time.  

3. The return rate of used items is constant and known in time. It is a similar condition to 

that of last point.  

4. The ordering costs of purchasing and setup costs of repair are known. 

5. The inventory holding costs of recovered and new products and holding costs of used 

items waiting for repair are known. 

6. There is no shortage in store of recovered and new products and store of returned 

items. 

 

The first condition defines the inventory holding policy. The variables of these strategies must 

be determined in a model, i.e. the lot sizes for new and recovered products, number of batches 

for new and used products, and cycle time. The next four conditions are similar to that of 

traditional one product EOQ model, i.e. cost structure and demand process. The shortage 

situation is excluded with the last condition. Consideration of shortage is not a complicated 

mathematical problem, but the aim of this chapter is to give an introduction in the basic 

models of EOQ-type reverse logistics models. 
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I present the models in the following sections. 
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2.1. A Reverse Logistics Model with Procurement and Repair 
 

2.1.1. Introduction 

 

A deterministic EOQ-type inventory model for repairable items was first offered by Schrady 

(1967). This model can be seen as the first reverse logistics model. His model has examined 

the U.S. Naval Supply Systems Command stock holding problem with repairable items. The 

repairable items may be scrapped upon a failure, but the products are usually returned from 

the user to the overhaul and repair point. The repaired items are sent then to the ready-for-

issue (RFI) inventory to await demand. Based on the feasibility of repair, the items not sent 

back are disposed of and they are replaced with new procured products. The returned and not 

repaired items are held in a second stock point, i.e. the inventory of non-ready-for-issue 

(NRFI) items are awaiting repair at the overhaul and repair point. 

 

Schrady has offered to inventory holding policy to solve problem: the “continuous 

supplement” and “substitution” policies. To this last policy he has determined the optimal 

procurement and repair quantities. It was assumed that there are only one procurement 

quantity (batch size) and more than one repair quantities. 

 

The aim of the paper is to analyze the introduced substitution policy in a general framework. 

In this generalization it is allowed a more than one procurement quantity. To solve the 

problem we use the meta-model. (See appendix.) Schrady has not investigated the integer 

solution for the repair batch number, it is examined now. We will show that the by Schrady 

offered solution can be improved in dependence on the recovery (return) rate. 

 

The paper is organized as follows. The next section summarizes the parameters and 

functioning of the model. In section 3 we construct the inventory holding cost function of the 

model. Then analyzing the total average costs, we determine the optimal procurement/repair 

cycle. After eliminating the cycle time we have attained the model in dependence on 

procurement and repair batch numbers which leads to the meta-model investigated by the 

author, as well. Section 5 presents the basic model of Schrady with one procurement batch. 

We will show the optimal integer solution to this model. The following section solves the 

generalized model with continuous batch numbers. 



 21

 

2.1.2. Parameters and functioning of the model 

 

The system contains two inventories. The user’s demand can be satisfied from the RFI 

inventory. The demand of the user is constant in time. The RFI inventory is filled up with 

procured and repaired items. Shortage is not allowed in this stock point. The procurement and 

repair quantities are equal. From the user the repairable items are sent back to the overhaul 

and repair point with a constant rate. The repairable items are stored in the NRFI stock point 

waiting for repair. After repair products are seen as new and they are sent back to the RFI 

inventory. The material flow of the model is depicted in Figure 1. We define the variables and 

parameters as follows: 

 

The decision variables of the model: 

 

- QP procurement quantity, 

- m number of procurements, m ≥ 1, integer, 

- QR repair batch size, 

- n number of repair batches, n ≥ 1, integer, 

- T procurement/repair cycle time. 

 

Parameters of the model: 

 

- d demand rate, units per unit time, 

- r the recovery rate, percent of the demand rate d, the scrap rate is 1-r, 

- AP fixed procurement cost, per order, 

- AR fixed repair batch induction cost, per batch, 

- h1 RFI holding cost, per unit per time, 

- h2 NRFI holding cost, per unit per time. 

 

The following equalities show relations between the in- and outflows in the stocking points in 

a procurement/repair cycle. 
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Figure 1. Material flow of the model 

 

The offered “substitution” policy has the next property. The lead times for procurement and 

repair batches are disregarded, because in deterministic models its influence can be eliminated 

with a moving away. Let us assume that a procurement/repair cycle begins with induction of a 

repair cycle. The initial inventory level in NRFI stock point is reduced with a repair batch 

size. Then the remaining NRFI inventory decreases with a new repair batch, until it reaches 

the zero inventory level after supply in the RFI inventory. The time history of this policy is 

shown in Figure 3. 

 

In the next two sections we construct the inventory holding and average inventory cost 

function of the model. 

 

2.1.3. The inventory holding cost function 

 

The holding costs of the model are calculated with the help of the inventory levels in time, as 

it is presented on Figure 2. 
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Lemma 1. 

 

Let the inventory holding costs for RFI items HRFI and for NRFI items HNRFI. Then the cost 

functions have the next form: 

 

2121

22 RPRFI Qn
d

hQm
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hH ⋅⋅
⋅

+⋅⋅
⋅

=  

 

222 1
2 RNRFI Qn

r
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d
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




 +

−
⋅⋅

⋅
=  

 

Proof. We will prove the second equation for the NRFI items, the first equation can be 

calculated in a similar way. Let us divide the area into n-1 triangles A, triangle C and n-1 

rectangles B1, B2, ..., Bn-1. See Figure 3. The length of a repair cycle is 
d

QR . The area of a 

triangle A is 
d

QQr R
R ⋅⋅⋅

2
1 . The area of a rectangle Bi is equal to ( )

d
QQri R

R ⋅⋅−⋅ 1 . The 

maximum inventory level of NRFI items is ( ) RR QrnQn ⋅⋅−−⋅ 1 . The area of triangle C is 

( )[ ] ( )
dr

QrnQnQrnQn RR
RR ⋅

⋅⋅−−⋅
⋅⋅⋅−−⋅⋅

11
2
1 . 

 

Let us now summarize the areas: 
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1

1

2222 1
2

1
2

1 rnnQ
dr

hiQr
d
hQr

d
hnH R

n

i
RRNFI ⋅−−⋅⋅

⋅⋅
+⋅⋅−⋅+⋅⋅

⋅
⋅−= ∑

−

=

. 

 

After some elementary calculation we have the equation b). 

 

Example 1. Let d = 1,000, r = 0.9, h1 = $ 750, h2 = $ 100. Then for this data the inventory 

holding cost function is 

 

2222
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1
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11
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1

RRPNRFIRFI QnQnQmHH ⋅⋅+⋅⋅+⋅⋅=+  
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Figure 2. Inventory levels in the RFI and NRFI stock points (n = 3, m = 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The calculation of the inventory costs of NRFI items (m = 3) 
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2.1.4. Optimal procurement/repair cycle time 

 

The fixed procurement and repair induction costs 

 

RP AnAmF ⋅+⋅=  

 

The total average costs are 
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Let now use the equations the balance equations 
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After substitution the economic order quantities we obtain a simpler cost function: 
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This function is convex in the cycle time then the necessary conditions of optimality are 

sufficient, as well. The optimal cycle time is 
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The simplified cost function is 
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or 
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Example 2. Let d = 1,000, r = 0.9, h1 = $ 200, h2 = $ 20, AP = $ 750,  AR = $ 100. Then for 

this data ( ) ( ) ( ) ( ) ( ) 200,1939.0,1809.0,1359.0,2009.0,650,1339.0 ===== EDCBA  

 

2.1.5. The basic model of Schrady 

 

Schrady has investigated the case with only one procurement batch m = 1. The cost function 

of this model is 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]rErCnrDrB
n

rAdr,n,Cr,nC S ++⋅++⋅⋅⋅==
1212  

 

The optimal continuous solution for this case is 

 

Lemma 2. 

 

The solution of model of Schrady is 

 

a) if ( ) ( ) ( ) 011 2
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2
21 >−⋅⋅−−⋅⋅⋅−⋅+⋅ rhArrhArhhA RRP ,  
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Proof. Let us investigate the function ( )r,nC S . This function is convex in n. The minimal 

value of the repair batch number is 
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After substitution the optimal value of n, we have the condition a) of the lemma. If this 

number is smaller then one, then the cost function is monotonously increasing for all n ≥ 1. 

This fact supports this condition b). 

 

Remark 1. The function ( ) ( ) ( ) ( )212
2

21 11 rhArrhArhhArF RRP −⋅⋅−−⋅⋅⋅−⋅+⋅=  is quadratic 

and monotonously increasing between zero and one. Value ( ) 10 hAF R ⋅−=  is negative and 

( ) ( )211 hhAF P +⋅=  positive, so there exists a recovery rate r2 for which ( ) 02 =rF . Then the 

optimal batch number is equal to one for all [ ]2,0 rr ∈  and it is greater than one for all 

( ]1,2rr ∈ . 

 

Remark 2. The solution for the batch number is not always integer for all ( ]1,2rr ∈ . If value 

( )rno  is integer then the problem is solved. Let us now assume that ( )rno  is not integer. Let 

( ) ( )( )rnintrn o=  denote the maximal integer not greater than ( )rno  and ( ) ( )( ) 1+= rnintrn o  
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the minimal integer not smaller than ( )rno . The optimal integer solution can be determined 

from the following relation 

 

( ) ( )( ) ( )( ){ }rnCrnCrn SSo
i ,minarg= . 

 

Theorem 1. 

 

The optimal continuous the cycle time and order quantities of model of Schrady are 
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Proof. If [ ]2,0 rr ∈ , i.e. the optimal repair batch number is one, then after substitution we have 

the optimal cycle and order quantities. To determine the other case, we use the following 

relation 
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Substituting the optimal repair batch number and cycle time in balance equations, we get the 

results of the theorem. 

 

Schrady in his paper has not analyzed those cases, for which the optimal batch number is even 

one. In this formulation we have shown that the solution supplied by Schrady 

 is limited to the case for ( ]1,2rr ∈ . The method proposed in this paper has the same result for 

the economic order quantities, as obtained by Schrady. The optimal cycle time and economic 

order quantities for the integer batch number can be calculated with substitution and with 

some elementary operations. 

 

Example 3. Let as in Ex. 2. d = 1,000, r = 0.9, h1 = $ 200, h2 = $ 20, AP = $ 750,  AR = $ 100. 

Then for this data the optimal continuous solution and the switching point r2 are r2 = 0.2316 

and 4.357,8$,151.30,828.62,628.0,1,754.18 ====== So
R

o
P

ooo CQQyearsTmn . 

 

2.1.6. The optimal number of repair and procurement batches 

 

To minimize the costs in dependence on the batch numbers we apply an auxiliary problem 

(meta-model). The problem is 

 

( ) ( ) ( ) ( ) ( ) ( ) minrEnrDmrC
m
nrB

n
mrAdr,n,mC →+⋅+⋅+⋅+⋅⋅⋅= 22  

 

subject to 

 

11 ≥≥ n,m . This problem was extensively studied in papers [1-5]. Based on the mentioned 

papers we examine the continuous solution of this model. 

 

Theorem 2. 

 

There are three cases of optimal solutions ( ) ( )( )rmrn ,  and the minimum cost expressions 

( )rC3  in dependence on the return rate for this problem 
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It is easy to see that the three regions for the optimal solution in dependence on the return rate 

are not intersected. So we can calculate the values r1 and r2 (r1 < r2) for which either the 

procurement batch or the repair batch is equal to one, but the other batch number is greater 

than one. Between these values both of the batch numbers are equal to one. 

 

Example 4. Let as in Ex. 3. d = 1,000, h1 = $ 200, h2 = $ 20, AP = $ 750,  AR = $ 100. Then 

for this data r1 = 0.2341 and r2 = 0.2616. Let now substitute r = 0.9 in the optimal solution. 

Then the optimal values are as calculated in Ex. 3. 

 

The optimal procurement and repair batch sizes and the cycle times of the model are in 

dependence on the return rate: 

 

Theorem 3. 

 

The order quantities and cycle times are 
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The proof is easy; we must substitute the continuous batch numbers in the order quantities and 

cycle times. 

 

Example 5. Let as in Ex. 3. d = 1,000, r = 0.05, h1 = $ 200, h2 = $ 20, AP = $ 750,  AR = $ 

100. Then for this data the minimal cost for the basic model: CS(0.05) = 17,589.8 and the 

minimal cost for the generalized model C(0.05) = 17,002.2. This means a cost saving of 3.5 

percent of the total EOQ related costs. 

 

 

2.1.7. Conclusion 

 

In this paper we have reformulated and solved the model of Schrady. We have shown that for 

smaller recovery rate it gives a better solution if the procurement batch number is greater than 

one and on the basis of model of Schrady we can obtain a more effective solution for higher 

return rate. This result can be interpreted as a generalization of model of Schrady for the case 

of more than one procurement batch. 
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2.2. A Model with  Purchasing and Finite Repair Rate: Substitution Policy  
 

2.2.1. Introduction 

 

The model of Nahmias and Rivera (1979) is a natural generalization of model of Schrady 

(1967). This model takes into account that repair process needs time, i.e. it depends on 

capacity. 

 

The model and its solution will be presented in three steps. First I show the functioning of the 

repair-procurement process. After that the cost function will be constructed, and then the 

optimal decision variables are determined sequentially. 

 

The presented model is an extension of basic model of Nahmias and Rivera (1979). The 

authors of this article have allowed only one procurement batch size. I allow in this chapter 

more than one procurement. As it will be shown, the number of repair and procurement batch 

sizes depends on the return rates. 

 

2.2.2. Parameters and functioning of the model 

 

This inventory system contains two stocking points. The demand of the user is satisfied from 

supply depot. Demand is constant in time in a repair and procurement cycle. Supply depot is 

filled up from procurement and repair. Shortage is not allowed in this stocking point, so there 

are always new products. Procurement and repair batch sizes equal. User of spare parts sends 

back the used products in the repair depot with a constant return rate, till they are waiting for 

repair. In opposite to the model of Schrady (1967), the capacity of the overhaul department is 

finite. It is assumed that repair rate is greater than the demand rate. After repair the spare parts 

are sent back to the supply depot, and they are used as newly purchased products. The length 

of repair and purchasing lead times are constant, so they do not influence the decision 

variables. The material flow of the model is shown in figure 1. The used decision variables 

and parameters are similar to that of used by Schrady (1967). This circumstance makes it 

easier to compare these models. 

 

The decision variables of the model: 
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- QP procurement quantity, 

- m number of procurements, m ≥ 1, integer, 

- QR repair batch size, 

- n number of repair batches, n ≥ 1, integer, 

- T procurement/repair cycle time. 

 

Parameters of the model: 

 

- d demand rate, units per unit time, 

- r the recovery rate, percent of the demand rate d, the scrap rate is 1-r, 

- λ repair rate per unit time, λ > d, 

- AP fixed procurement cost, per order, 

- AR fixed repair batch induction cost, per batch, 

- h1 holding cost in supply depot, per unit per time, 

- h2 holding cost in repair depot, per unit per time. 

 

Figure 1. Material flow of the model 
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The following equalities show relations between the in- and outflows in the stocking points in 

a procurement/repair cycle. These equations make it possible to reduce the number of 

variables of the model. 

 

TdrQn
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RP

⋅⋅=⋅
⋅=⋅+⋅

         (1) 

 

This problem contains waste disposal, but it is not decision variable. The material flow and 

inventory status are illustrated in figures 1 and 2. 

 

The proposed inventory holding strategy of this model is the substitution policy offered by 

Schrady (1967). Figure 2 presents the strategy where a cycle is begun with some repair batch 

sizes and then these lot sizes are followed by some procurement batches. The maximal 

inventory level is equal to 





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λ
dQR 1 , which can be obtained from monographs of inventory 

controls. Used items are repaired at a rate of λ units per time, and r⋅d units are sent back to 

repair depot. 

 

2.2.3. The inventory holding cost function 

 

Inventory holding costs can be calculated by the help of figure 2. Lemma 1 summarizes this 

result. 

 

Lemma 1. 

Let inventory holding cost functions of supply and repair depot be A1 and A2. These two cost 

functions can be written in the following form: 
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Figure 2. Inventory levels in model of Nahmias és Rivera  (n = 3, m = 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. We will prove the second equation for the repair depot; the first equation can be 

calculated in a similar way. Let us divide the area into n triangles A, n-1 triangles B, triangle 
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After some elementary calculation we have the second equation. 

 

Figure 3. The calculation of the inventory costs in repair depot (m = 3) 

 

 

 

 

 

 

 

 

 

 

2.2.4. Optimal procurement/repair cycle time 

 

The fixed procurement and repair induction costs are 
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The model leads to the following nonlinear optimization problem: 
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Let us now use the balance equations 
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After substitution the economic order quantities we obtain a simpler cost function: 
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This function is convex in the cycle time then the necessary conditions of optimality are 

sufficient, as well. The optimal cycle time is 
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The simplified cost function is after substitution 
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Problem (P) is simplified as an integer optimization model C2(n,m). Model (2) is the meta-

model of appendix. 

 

2.2.5. The basic model of Nahmias and Rivera 

 

Nahmias and Rivera have investigated the case with only one procurement batch m = 1. The 

cost function of this model is 
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The optimal continuous solution for this case is 
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Proof. Let us investigate the cost function CS(n). This function is convex in n. The minimal 

value of the repair batch number is 
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After substitution the optimal value of n, we have the condition a) of the lemma. If this 

number is smaller then one, then the cost function is monotonously increasing for all n ≥ 1. 

This fact supports this condition b). 

 

Remark 1.   
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 is a 

quadratic function in r and monotonously increasing between zero and one. Value 

( ) 10 hAF R ⋅−=  is negative, and expression ( ) ( ) 





 −⋅+⋅=

λ
dhhAF P 11 21  is positive, so there 

exists a reuse rate r2, for which ( ) 02 =rF . Then the optimal batch number is equal to one for 

all [ ]2,0 rr ∈  and it is greater than one for all ( ]1,2rr ∈ . 

 

Remark 2.   

The solution for the batch number is not always integer for all ( ]1,2rr ∈ . If value ( )rno  is 

integer then the problem is solved. Let us now assume that ( )rno  is not integer. Let  onn =  

denote the maximal integer not greater than no, and   1+= onn  the minimal integer not 

smaller than no. The optimal integer solution can be determined from the following relation 
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( ) ( ){ }nCnCn NRNRi ,minarg= . 

 

The following theorem summarizes the continuous solution of the basic model, not 

investigated the integer case. 

 

Theorem 1. 

The optimal continuous the cycle time and order quantities of model of Nahmias and Rivera 

are in dependence of reuse rate r 
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Proof. If [ ]2,0 rr ∈ , i.e. the optimal repair batch number is one, then after substitution we have 

the optimal cycle and order quantities. To determine the other case, we use the following 

relation 
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Substituting the optimal repair batch number and cycle time in balance equations, we get the 

results of the theorem. 

 

Nahmias and Rivera in his paper has not analyzed those cases, for which the optimal batch 

number is even one. In this formulation we have shown that the solution supplied by Nahmias 

and Rivera is limited to the case for ( ]1,2rr ∈ . The method proposed in this paper has the 

same result for the economic order quantities, as obtained by Nahmias and Rivera. The 

optimal cycle time and economic order quantities for the integer batch number can be 

calculated with substitution and with some elementary operations. 

 

2.2.6. The optimal number of repair and procurement batches 

 

To minimize the costs in dependence on the batch numbers we apply an auxiliary problem 

(meta-model). The problem is 

 

( ) min2,2 →+⋅+⋅+⋅+⋅⋅⋅= EnDmC
m
nB

n
mAdnmC  

 

subject to 

 

11 ≥≥ n,m . This problem was extensively studied in papers (Dobos-Richter (2000), Richter 

(1996a), Richter (1996b), Richter (1997), Richter-Dobos (1999)). Based on the mentioned 

papers we examine the continuous solution of this model. 

 

Theorem 2. 
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There are three cases of optimal solutions ( ) ( )( )rmrn ,  and the minimum cost expressions 

( )rC3  in dependence on the return rate for  this problem 
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It is easy to see that the three regions for the optimal solution in dependence on the return rate 

are not intersected. So we can calculate the values r1 and r2 (r1 < r2) for which either the 

procurement batch or the repair batch is equal to one, but the other batch number is greater 

than one. Between these values both of the batch numbers are equal to one. 

 

2.2.7. The integer solution 

 

Let us now apply the results of appendix. 

 

Theorem 3.  

The optimal integer repair and procurement batch numbers, and cycle times are in dependence 

of reuse rate r 
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Here function ⋅ denotes the maximal integer not greater than the argument. The proof of the 

theorem is easy, with elementary manipulation we get the results. With these results I have 

finished the investigation of the model. 

 

2.2.8. Conclusion 

 

The model of Nahmias and Rivera is similar to that of model of Schrady. In this chapter I 

have not presented numerical examples. Nahmias and Rivera (1979) have mentioned some 

possible extensions in their paper. Such generalizations are e.g. constraints on depot capacity. 

The costs of waste disposal and return rate as decision variables are proposed by them. 
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2.3. A Model with Purchasing and Finite Repair Rate: Continuous 

Supplement Policy  

 

2.3.1. Introduction 

 

The authors of this model investigate a simple model. The problem is similar to that of 

Nahmias and Rivera (1979), but they apply an other inventory holding policy, which is 

initiated by Schrady (1967) and called continuous supplement policy instead of substitution 

policy. The authors do not express the batch sizes explicitly. The model of Koh et al. (2002) 

contains a new formulation for continuous supplement policy. They examine the case of 

capacitated remanufacturing rate that is not greater than production and reuse rate, but I do 

not analyze that case. 

 

2.3.2. Parameters and functioning of the model 

 

The inventory system contains two stocking points. Demand of users is satisfied from depot 

of usable products. Demand is constant in time during reuse cycle. The depot of usable 

products is fulfilled from purchase and repair. Shortage is not allowed in this system, so there 

are always usable products in depot. The procurement and repair batch sizes are equal. Use 

items return from the consumption process with a known return rate. The capacity of repair 

department is finite, as it was assumed by Nahmias and Rivers (1979). It is assumed that 

repair rate is greater than demand rate that is greater than return rate. After repair the spare 

parts are sent back and they are used as new products. Replenishment and repair lead times 

are disregarded, because they don not influence the decision variables. The material flow of 

this model is depicted on figure 1. Let us now define the decision variables and parameters of 

the model. 

 

The decision variables of the model: 

 

- QP procurement batch size, 

- m number of procurements, m ≥ 1, integer, 

- QR repair batch size, 

- n number of repair batches, n ≥ 1, integer, 
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- T procurement/repair cycle time. 

 

Parameters of the model: 

 

- d demand rate, units per unit time, 

- r return rate, d > r, 

- p production rate, p > d, 

- Co fixed procurement cost, per order, 

- Cs fixed reuse batch induction cost, per batch, 

- Ch2 holding cost of usable products, per unit per time, 

- Ch1 holding cost of reusable items, per unit per time. 

 

The inventory levels are presented in figure 2. 

 

Figure 1. Material flow in model of Koh, Hwang, Sohn és Ko 

 

The following equations represent the in- and outflow of materials in stocking points during 

purchasing-repair cycle. I use these stock-flow identities to reduce the numbers of decision 

variables. 
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The inventory status is different in this model compared to that of Nahmias and Rivera 

(1979). The authors of this model have assumed that the inventory holding of remanufactured 

and usable products is more expensive than that of reusable items, i.e. replenishment is 

economical, if the inventory level is zero. In opposite, Koh et al. (2002) have assumed that 

inventory level of returned and reusable items must be zero in a reuse cycle. The question 

arises, when model of Nahmias and Rivera (1979) and when Koh, Hwang, Sohn and Ko 

(2002) can be applied. In the following this question is answered. 

 

Figure 2. Inventory status in model of Koh, Hwang, Sohn és Ko 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A difference between two models is that problem of Nahmias and Rivera (1979) is modeled 

with only one procurement batch. I have generalized this assumption in the last chapter, so the 

models can be compared. Koh et al. (2002) have separated the examination in two parts: 

Procurement batch number are equal to one, and repair batch number is one. I do not 
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dependence of cost parameters and return rates. Of course, these investigations are supported 

by the meta-model offered in appendix. 

 

I construct the inventory holding cost function in dependence of decision variables in the next 

section. The solution of the model is led to a nonlinear programming problem. 

 

2.3.3. The inventory holding cost function 

 

Calculation of inventory holding costs is made by inventory levels in figure 2. Inventory 

holding policy is predetermined. The authors calculate these costs independent on optimality 

of inventory holding strategy. The determination of costs is summarized in lemma 1. 

 

Lemma 1. 

Let inventory holding cost functions of usable products and reusable items be S1 and S2. These 

two cost functions can be written in the following form: 
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Proof. We will prove the second equation for the repair depot; the first equation can be 

calculated in a similar way. Let us divide the area into m-1 reuse cycles, the last mth reuse 

cycle, and n procurement cycles. Inventory holding costs are defined, as integral of a curve. 
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Let us now summarize the areas: 
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After some elementary calculation we have the second equation. 

 

Figure 3. The calculation of the inventory costs of reusable items (m = 3) 

 

 

 

 

 

 

 

 

 

 

 

2.3.4. Optimal procurement/repair cycle time 

 

The fixed procurement and repair costs are 
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The model leads to the following nonlinear optimization problem: 

The model leads to the following nonlinear optimization problem: 
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Let us now use the balance equations (1) to simplify the problem. Two continuous variables 

are substituted in the inventory holding cost function. For the sake of simplicity, let these 

variables be the batch sizes. Of course, the batch numbers can be chosen, but this choice 

makes more difficult the investigations. 
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After substitution the economic order quantities we obtain a simpler cost function. Let the 

new cost function denote C1(.). 
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I exclude the cycle time sequentially from this cost function. This function is convex in the 

cycle time then the necessary conditions of optimality are sufficient, as well. The optimal 

cycle time is 
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Let this last expression substitute in cost function C1(.). Then the following cost function C2(.) 

is obtained: 
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Problem (P) is simplified as an integer optimization model C2(n,m). Model (2)  is the meta-

model of appendix. 

 

2.3.5. The integer solution 

 

In the last two chapters I have constructed the continuous solutions for purchasing and repair 

batch numbers, but now I disregard from them. I apply the expression of appendix direct to 

produce the discrete solutions. 

 

Theorem 1. 

The integer solution of the model is 
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Here function ⋅ denotes the maximal integer not greater than the argument. The proof of the 

theorem is easy; with elementary manipulation we get the results. With these results I have 

finished the investigation of this model. 

 

2.3.6. Summary 

 

It is easy to prove that the costs of model of Koh et al. (2002) are higher than that of model of 

Nahmias and Rivera (1979), if the unit inventory holding costs of usable products are higher 

than that of reusable items. In other case the model of Koh et al. (2002) functions better, i.e. 
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with lower costs. This fact was proven by Teunter (2004). After some reformulation of model 

of Koh et al. (2002) the model becomes problem of a Nahmias and Rivera (1979). 
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3. Inventory Models with Waste Disposal 

 

The objective of the models of last chapter was to minimize the relevant costs, in order to 

determine the purchasing and repair lot sizes, and the number of their batches. Cost 

minimization is the primary management goal. A second question arises from management 

point of view: If the rate of product return is an influenced variable, then how much used 

products must be recovered in an inventory cycle. The answer will be looked for this question 

in three models of product recovery management. 

 

The three models consist of two parts: first, the optimal lot sizes and number of batches are 

determined for reuse/repair and purchasing/manufacturing; secondly, the optimal reuse rate is 

determined for known unit manufacturing/purchasing, reuse/repair, and waste disposal costs. 

So I define two steps inventory optimization problems. 

 

The first model was initiated by Richter (1996a). The products (containers in this case) are 

manufactured in a shop or used containers are repaired in this shop, in order to transport spare 

parts in them to an other shop. The empty containers are stored at the second shop, and then 

they are collected and sent back to the first manufacturing-repair shop at the end of the 

production period. It is decided in the second shop, how many containers are sent back to the 

first shop for repair and how many containers are disposed off as waste outside. (Waste 

disposal can mean a secondary market of containers.) The following questions arise in this 

context: how much percentage of containers are repaired, and lot sizes of manufacturing and 

repair, if the aim of decision makers is to minimize the relevant costs. 

 

The next model (Teunter (2001)) investigates a remanufacturing situation. Remanufacturing is 

followed by manufacturing in this model. A known part of sold products is returned from the 

market, from customers. Waste disposal process begins after ending of remanufacturing, and 

after that manufacturing process starts. The question is now, how many items must be 

remanufactured from the returned products, and how many items must be disposed of. This 

model consists of two parts: minimization of inventory costs, and then determination of reuse 

rate. 
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Last, I present a third problem. (Dobos-Richter (2004)) Let us assume that a firm satisfies the 

demand from production and recycling. I assume that the production and recycling processes 

go on time, so production and recycling rate is finite. The firm purchases the used products to 

recycling from market, and the firm can purchase all of its manufactured and used products. 

The question is the quantity of product bought back from the market so that the firm 

minimizes the total relevant costs, i.e. the sum of EOQ-type and non EOQ-type costs. 

 

The conditions of the three models are common in inventory holding subsystem. These 

conditions are found at the end of chapter 2. The conditions must be extended with the 

assumption that non EOQ-type costs are linear. 

 

Let us now brief summarize the solution of the models. Since the aim of the models is to 

determine the optimal reuse rate, the results are similar for these problems. The optimal reuse 

is on the boundary in the optimal solution, i.e. either all of the returned items must be 

recovered and the rests are replaced from manufacturing, or the demand is met from 

manufacturing and all returned items are disposed off. I prove this property in these models. 

 

And now I present the models. 
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3.1. A Repair Model with Three Stocking Point 
 

3.1.1. Introduction 

 

In the Economic Order Quantity model for one item the optimal quantity to be ordered or to 

be produced is determined. It is assumed that the sum of fixed cost and holding cost per time 

unit is minimized and some deterministic stationary demand is satisfied. The advantage of this 

model consists in its simplicity as well as in the possibility to express explicitly the optimal 

lot size and the minimum cost. For the inputs s = set-up cost, h = per time unit per unit 

holding cost, d = time unit demand the practicable optimal lot size h/ds2*x =  and the 

minimum cost K dsh* = 2  are discussed in many textbooks of production economics. 

 

It is a reasonable question to ask how these widely used solutions will change if the model is 

regarded in the framework of reverse logistics or remanufacturing (Fleischmann et al. (1997), 

Gupta (1995), Kelle and Silver (1989)) and one fraction  β  of products having been produced 

will be reused and the other fraction α = 1-β  will be disposed off. By of one of the authors it 

was shown in former papers (Richter (1994), Richter (1996a, b, c), Richter (1997), Richter 

and Dobos (1999)) that just economic pressure  (cost minimization) implies a certain level of  

reuse β (or disposal α) of products and by this implies a certain ecological attitude, no matter 

which technical or technological restrictions have to be considered.  

 

 

 

 

 

 

 

 

 

 

Figure 1. The 2-shop system 

 

Shop 1 
Repairing β Producing α 

Inventory of serviceables  

Shop 2 
Using α+β=1 

Inventory of nonserviceables 

Disposal α 
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There is a variety of situations which might be studied and only one of them (Richter and 

Dobos (1999)) is discussed here: In one shop new products are produced as well as used 

products are repaired. The equally good regarded new products and repaired products 

(serviceable items) are then used just a moment in a second shop and after that they are either 

disposed off at unit cost  e  or stored as nonserviceable  items at per time unit per unit cost  u  

up to the end of a variable collection interval  [0, T] (see Fig. 1).  

 

 

 

 

 

 

 

 

 

Figure 2: Cost inputs and inventory stocks for the set-up numbers m = 1 and n = 3 at the 

first shop 

 

In the first shop the process starts with repairing m lots of used products with the size βdT/m  

at unit cost k and at set-up cost r, and later n lots of  new products with the size  αdT/n  are 

produced at unit cost b and at set-up cost s. The variable numbers m and n are called set-up 

numbers. The total lot size x of one repair/production cycle of length T is mβdT/m + nαdT/n= 

dT (see Fig. 2). 

 

 

 

 

 

 

 

Figure 3. Cost inputs and inventory stocks for the setup numbers m = 1 and n = 3 at the 

second shop 
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The products are delivered according to the demand of the second shop and from every  d  

units the fractions  αd  is disposed off and  βd  is stored (see Fig. 3). The parameters α, β  are 

called waste disposal rate and repair rate, respectively.  

 

The problem sketched here covers three levels of complexity and in this way three models 

which use the functions determined in the previous model:  

 

Model I: For given rates and set-up numbers, the cost-minimal total lot size x(m,n,α) = dT,  

i.e. ),n,m,x(Gminarg),n,m(x
x

αα ∈ , can be found by simple calculus. Then the minimal 

cost is G(m,n,α)  = G(x(m,n,α),m,n,α). This model shows the impact of the fixed ecological 

attitude α and the given set-up numbers on the total lot size and on the length of the 

repair/production cycle. 

Model II: For the given rate the optimal set-up numbers m(α) and n(α) can be determined, i.e. 

( ) ),n,m(Gminarg)(n),(m
n,m

ααα ∈ . The minimal cost is then G(α) = G(m(α),n(α),α). This 

model shows the impact of the fixed ecological attitude α  on the value of the set-up numbers 

and to the lot size. 

 

 

 

 

 

Figure 4. Three levels of the problem solving 

 

Model III: The optimal )(Gminarg* αα
α

∈  can be found. The minimal cost is G* = G(α*).  

This model shows which ecological attitude follows from the overall cost minimization. 

 

The overall minimal cost, i.e. the cost regarded for all three levels is then 

),n,m,x(Gminminmin*G
xn,m

α
α

= , or, as presented in Fig. 4. 

 

If the set-up numbers are allowed to be non-integer then a calculus based solution solves also 

the second level problem (Richter (1994), Richter (1996a, b, c), Richter (1997), Richter and 

Model I 
Given (m,n,α) and G(x,m,n,α): 

Find x(m,n,α) and G(m,n,α) 
x* = x(m*,n*,α*) 

Model III 
Given G(α):  

 
Find α* and G*  

Model II 

Given α and G(m,n,α): 

Find m(α), n(α) and G(α) 
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Dobos (1999))). The function G(m,n,α) has been separated in (Richter (1996a, b, c), Richter 

(1997), Richter and Dobos (1999))) into G(m,n,α) = K(m,n,α) + R(α) where K(m,n,α) is the 

so called EOQ-related cost and  R(α) = d(α(e+b)+(1-α)k) expresses the EOQ-independent 

per time unit repair, manufacturing and disposal cost. As long as model I /II are regarded 

where α  is fixed, the cost R(α) does not have impact on the minimum and the main question 

is the determination of the optimal solutions for K(m,n,α). This remains also true for model III 

because of the linearity of R(α). 

 

Here, however, it will be asked what happens if the numbers m and n must be integers. In 

papers Richter (1994), Richter (1996a, b, c), Richter (1997), Richter and Dobos (1999)) the 

non-integer problem of minimizing the cost function  G(m,n,α), i. e. the non-integer problem 

of minimizing the cost function K(m,n,α) on m,n ≥ 1, has been solved by analyzing a special 

fractional program S(m,n) → min, subject to m,n ≥ 1.  

 

Similarly, the integer problem  

 G(m,n,α) → min [= G(α)],    m,n ∈ {1,2,...}     (1) 

 K(m,n,α) → min [= K(α)],    m,n ∈ {1,2,...} 

can be solved if a solution is found for minimizing that auxiliary function S(m,n) on m,n ∈ 

{1,2,...}. In paper Richter and Dobos (1999) the integer problem (1) has been analyzed and it 

was stated that 

• the optimal solution is boundary, i.e. one of the lot numbers equals one under certain 

conditions, 

• some relative error for the non-optimality of boundary solutions can be given, 

• the minimum cost functions are partly convex and partly concave under various 

conditions and 

• these results can be applied to the initial models I-III. 

 

In this papers all properties from paper of Richter (1997) will be proved now, will be 

discussed in greater detail and an example will be provided that shows that the optimal integer 

solution is not necessarily boundary. 

 

The auxiliary function S(m,n) has been derived in papers of Richter (1994), Richter (1996a, b, 

c), Richter (1997), Richter and Dobos (1999)) from the following cost function 
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which covers the EOQ-related cost from G(m,n,α). Due to monotonicity considerations the 

function S(m,n,α) = (mr+ns)(hα2/n+ (h-u)β2/m+u(β+β2)),     (3) 

can be analyzed instead of (2). For both functions the relationship K(m,n,α)= 

2d S m n⋅ ( , , )α  holds. 

The parameters in the function (3) can be replaced by 

A = rhα2, B = s(h-u) β2, C = ru(β+β²), D= su(β+β²), E = shα2+r(h-u) β2   (4) 

and, thus, the function    

S m n A m
n

B n
m

Cm Dn E( , ) = + + + + ,       (5) 

appears. If the minimum of the function (5) on m,n ∈ {1,2,...} is determined then also the 

problem K(m,n,α) → min on m,n ∈ {1,2,...} is solved, and, since  G(m,n,α) = K(m,n,α) + 

R(α). Therefore, it will be asked in the next section, which solution can be found for the 

problem of minimizing the function (5) on the set of positive integers. 

 

3.1.2. Application to the repair and waste disposal model 

 

3.1.2.1. The optimal solution 

 

Due to paper of Richter (1997) the relations A, C, D, B+D, E  > 0 hold and the results of the 

Lemma 4 of appendix are to be applied. 

 

Theorem 1 (Richter (1997)): The continuous optimal solution for minimizing the function 

(2) is 

(i)  {h > u} ∧ {s(h-u) β² ≥ r ( )α β β² h+ u( )1+ } ⇒  m(α) = β ( )
s h u

r u
( )

( )
−

+α β β² h+ 1
, n(α)= 1, 

 (ii)  rhα²-suβ(1+β) ≤ s(h-u)β² ≤ r( )α β β² h+ u( )1+    ⇒  (m(α),n(α)) = (1,1),   

 (iii) α²rh ≥ sβ β( )h u+   ⇒  m(α) =1,  n(α) = α rh
s h uβ β( )+

, 
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According to the cases (i) - (iii) the  region (0,1)  is separated into three subregions and it is 

clear that the problem of finding an optimal integer solution needs special attention only for   

α ∈ (0, α1) ∪ (α2,1). Therefore the two cases (i) and (iii) will be studied in detail and the 

results of Theorem 3 from [13] will be extended. 

 

Lemma 1: (i) 49A ≤ 527C holds if α ≤ α3 = 1054
49 1054

u
h u+

and 49h-527u > 0 and α3 = 2/3 in 

the opposite case and (iii) 49B ≤ 527D holds if α ≥ α4 = 49 1103
49 576

h u
h u
−
−

 and 49h > 576u and 

for every α in the opposite case. 

 

Proof: (i) The inequality holds if and only if 49hα2 ≤ 527uβ(1+β) or  (49h-527u)α2 +1571uα 

≤ 1054u. Since  u > 0 and α ≥ α2  holds the inequality is satisfied at most by   α ≤ α3. 

(iii) The other inequality holds if and only if 49(h-u)β ≤ 527u(1+β) is fulfilled or (49h-576u)β 

≤ 527u. If 49h ≤ 576u then that inequality holds for every β and α. In the other case the 

inequalities  β ≤ 527u/(49h-576u) and α ≥ α4 hold. � 

 

Lemma 2: The boundaries of the two sets  α1  and α2  fulfill: 

(i) α1 ≤  s h u ru
s h u r h u

( )
( ) ( )

− −
− + −

2
2

  if s(h-u) >  r(h+u) and  α1 ≤  
h u
h u
−
−2

 in the other case. 

(iii) α2  ≥ 
s h u

s h u hr
( )

( )
+

+ +
 if r > s and α2  ≥ 

h u
h u
+
+2

 if r ≤ s 

 

Proof:  (i) The relation B ≥ A+C  holds if h > u and β²s(h-u) ≥ r ( )α β β² h+ u( )1+ hold. After 

some transformation the inequality β2[s(h-u) - r(h+u)]+ βr(2h-u) ≥ rh has to be analyzed and 

the formulas under (i) appears. 

(iii)  The relation A ≥ B+D  implies that  rhα2 ≥ s(1-α)[h(1-α)+u]  and that 

α2h(r-s)+ αs(2h+u) ≥ s(h+u).         (6) 

If s=r  the statement holds obviously. If r > s then  

α[hr+ s(h+u)] = αh(r-s)+ αs(2h+u) ≥ α2h(r-s)+ αs(2h+u)  

and every α satisfying (11) satisfies also α[hr+ s(h+u)] ≥ s(h+u)     (7) 

Therefore the lower bound for α obtained from (13) is also a bound for (12).  

If r < s then every α satisfying (12) also satisfies αs(2h+u) ≥ s(h+u). �    
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Remark: Due to the Lemmas 1 and 2 boundary optimal integer solutions will be found if 

α1  ≤ α3 and α4 ≤  α2,          (8) 

respectively. In the next Theorem conditions are formulated which secure that the relations 

(14) hold. 

 

Theorem 2:  The optimal integer solution of the EOQ repair and waste disposal model is 

boundary  (i)  if α ≤  α1   and 

(ia)  s(h-u) ≤  r(h+u) and 49u < 49h ≤ 1103u or  (ib)  49h > 527u  and 1152
49

ur ≥ s(h-u) >  

r(h+u) or (ic) 49u < 49h ≤ 527u  and  2r(h+u) ≥ s(h-u) >  r(h+u) or 

(iii) if α2 ≤  α  and  

(iiia) 49h ≤ 576u, or  (iiib) 49h > 576u, r > s and 527us(h+u) ≥ hr(49h-1103u), or (iiic)  49h 

> 576u, r ≤ s and 527u2+1640uh ≥ 49h2. 

 

Proof:  (i) With respect to the previous two lemmas the relation α1  ≤ α3  holds if and only    

(ia) if h u
h u

u
h u

−
−

≤
+2

1054
49 1054

 or (ib) if  s h u ru
s h u r h u

u
h u

( )
( ) ( )

− −
− + −

≤
+

2
2

1054
49 1054

.  The analysis of 

these inequalities produces the mentioned results.   

(iiia) If 49h ≤ 527u then due to Lemma 7 the inequality α4 ≤  α2  holds obviously. If 49h > 

527u  the cases (iiib) and  (iiic) are dealt with by analyzing the inequalities  

α4  = 49 1103
49 576

h u
h u

s h u
s h u hr

−
−

≤
+

+ +
( )

( )
= α2 and 49 1103

49 576 2
h u
h u

h u
h u

−
−

≤
+
+

 . � 

 

Remark: Let some simple cases be considered: 

r = s: Then  49h ≤ 576u guarantees the boundary property of the optimal integer solution for a 

wide range of inputs.  

h = u:  Then  α1 =  α4  = 0, i.e. the first region is empty and for the second region the 

boundary property is fulfilled.  

 

By applying the Theorem 2 of the appendix the following property of the boundary optimal 

integer solution can be found. 

  



 64

Theorem 3 (Richter and Dobos (1999)): The boundary optimal solutions for the discrete 

EOQ repair and waste disposal problem is: 

( ) ( ) , ( )

( ) ( ) , ( )

i
B

A C

iii m
A

B D

g g

g g

  m   n

    n

1

2

α α α α

α α α α

≤ ⇒ =
+

+ +








 =

≥ ⇒ = =
+

+ +










1
4

1
2

1

1
1
4

1
2

     (15) 

 

A more detailed expression of the optimal solution will not be given at the moment. 

 

3.1.2.2. The boundary solution as an approximate solution 

 

Let now the Theorem 4 of the appendix be applied to the EOQ repair and waste disposal 

model. 

 

Theorem 4 (Richter and Dobos (1999)): The relative error of an optimal boundary solution 

is dKG = 
K K

K

b −
≤

*
*

1
48

, where Kb denotes the minimal value for boundary solutions and K* 

denotes the global minimum. 

Proof: Let dKG = 
K K

K

b − *
*

 be estimated. Since K(m,n,α)= 2d S m n⋅ ( , , )α  the relation can 

be expressed as  dK S S
S

S S
S S S

S S
SG

b b

b

b

=
−

=
−

+ ⋅
≤

−
≤

*
*

*
( * ) *

*
*2

1
48

. 

 

Hence, the relative error of optimal boundary solutions is not greater than 2.1 %. 

 

 

3.1.2.3. Minimum cost for the integer problem 

  

According to the first section the minimum cost Kg(α) = min{K(m,n,α): m,n ∈ {1,2,...}} is 

 

K d A
m
n

B
n
m

Cm Dn Eg

g

g

g

g
g g( )

( )
( )

( )
( )

( ) ( )α
α
α

α
α

α α= + + + +








2  
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If  the set-up numbers are integer this function coincides with K(α). If α is changing there 

must be switching points where two neighbor set-up numbers are optimal. Below these points 

are determined and the behavior of the cost function between these switching points is 

characterized. 

 

Lemma 3: If the boundary property holds there are two sets M and N of switching numbers α 

with the properties 

(i)  M = {α: B = m(m+1)(A+C), m=1,2,...}  and 

 Kg(α) = K(mg(α),1,α) = K(mg(α)+1,1,α) for  α ∈ M and 

(iii)  N = {α: A = n(n+1)(B+D), n=1,2,...}  and  

 Kg(α) = K(1,ng(α),α) = K(1,ng(α)+1,α) for  α ∈ N. 

 

Proof: It follows from K(mg(α),1,α) = K(mg(α)+1,1,α) immediately that  

B = mg(α)(mg(α)+1)(A+C). Hence, the structure of M is proved. The second case can be dealt 

with in the same way. � 

 

Remark: The finite set M = {αm1, αm2,..., αml} and N =   {αn1, αn2, αn3,...}   separate the 

regions (0, α1) and  (α2,1) into such subsets of identical optimal set-up numbers mg(α) and 

ng(α).  

 

Let for instance, h = u and r = s.   Then the set       N = {α: α2 = n(n+1)(2-3α+α2)} = {0.764, 

0.883, 0.932, 0.956, 0.97, 0.978...}  

 

Let finally the behaviour of the function Kg(α) be studied at the different intervals [αmi, 

αm,i+1] and [αnj, αn,j+1].  

 

 

Lemma 4 (Richter and Dobos (1999)): The function Kg(α) is  

(i)  convex on the intervals  [αmi, αm,i+1], i=1,2,...,l, 

(ii) convex on [α1, α2] if 4h2+4hu-u2 ≥ 0, 

(iii1) convex on [αnj, αn,j+1] if   4(h2 +hu) ≥  u2n(αnj)  and   

(iii2) concave in the other cases. In other words, the function is partly piecewise convex and 
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piecewise concave. 

 

Proof:  

Let n = n(αnj). The careful analysis of K d A
n

Bn C Dn Eg nj
nj nj( )

( )
( ) ( )α

α
α α= + + + +







2  

shows that the function is convex and concave in the appropriate situations. � 

Remark: Lemma 8 (iii) makes clear that for small α and n(α) the function Kg(α) might be 

convex, although the non-integer continuous function K(α) is concave! 

 

Due to the linearity of R(α) the properties of this function hold also for the total cost function 

Gg(α) = Kg(α) + R(α), i.e. the total cost is also partly piecewise convex and partly piecewise 

concave, respectively. As in the continuous case, if 0 < α < 1, there might exist some optimal 

(cost minimal) waste disposal rate. If, however, the extreme values α = 1 are feasible, then 

one of them is optimal. (Richter (1997))     
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Figure 5. The minimum cost function Gg(α) and the corresponding set-up numbers ng(α) 

 

Example: Let s = 200, r = 100, h = 6, u = 3, e = 5, d = k = b = 1. Then the optimal integer 

solution is obviously boundary and the previous Lemmas can be used to express the minimum 

cost (comp. Fig. 5) 
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3.1.3. Conclusion 

 

The EOQ repair and waste disposal model was analyzed. The variable set-up numbers n and 

m  for production and repair within some collection time interval were supposed to be natural. 

First, conditions for some auxiliary fractional program were discussed to have optimal integer 

solutions at the boundary of the feasible region. Secondly, these conditions were used to 

determine the optimal integer solution and the minimum cost for the repair and waste disposal 

model for a wide class of model inputs. Thirdly, it was shown that the minimum cost is a 

partly piecewise convex, partly piecewise concave function of the waste disposal rate and the 

relative error of optimal boundary solutions is not greater than 2.1 %. Several problems are 

subject to further studies as for instance how to determine the optimal integer solution, if the 

optimal solution is not boundary, how to include non-linear repair cost and finite 

production/repair rates in the integer model.   
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3.2. A Recoverable Item Inventory System 
 

3.2.1. Introduction 

 

Quantitative models for inventory systems with product recovery management provide an 

actual generalization of classical EOQ models. The classical EOQ model analyzes one 

product inventory systems. The difficulty of recovery system is that a number of authors have 

proposed such models. This chapter deals with one of these proposals, we investigate the 

model of Teunter (1999). 

 

Teunter in his work has stated that in the proposed model there should be either no more than 

one manufacturing batch and no more than one remanufacturing batch in a cycle. A cycle is a 

sequence of activities with a fixed number of batches. 

 

The goal of the chapter is to reconsider the Teunter`s model. First the explicit model will be 

discussed and a solution is given for this model, because the author has neglected to describe 

the explicit model. After solving the problem, we give a counterexample, where the 

manufacturing and remanufacturing batches are strictly greater than one. By this 

counterexample we show that the Teunter’s graphical proof, that one of the batch numbers 

equal to one is not correct. In fact, he proved this property of the batch numbers for the 

assumption that only relatively prime (coprime) batch numbers of manufacturing and 

remanufacturing are considered, or in other words, for batch numbers with a greatest common 

divisors greater than one. 

 

The paper continues the investigations of the proposed model. Now we assume that the 

planning horizon, as cycle time, is decision variable. 

 

3.2.2. The model 

 

Teunter has investigated in his model the following activities: 

 - remanufacturing, 

 - disposal and 

- manufacturing. 
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Let a cycle be the above-mentioned schedule with fixed batch sizes for manufacturing and 

remanufacturing.  In a planning period there is only one cycle. (This can be proved very easily 

by grouping the remanufacturing and manufacturing lots.) 

 

The goal of the decision maker is to minimize the cost for manufacturing and remanufacturing 

batch numbers and sizes and for the reuse rate. There are EOQ-oriented setup and holding 

costs for remanufacturing and manufacturing, linear production and remanufacturing costs, 

linear disposal cost and holding cost for non-serviceable items. 

 

The notations of the model are the following: 

 

System parameters: 

 - r return rate (0≤r≤1), 

 - λ rate of demand. 

 

Cost parameters: 

 - Km setup cost for manufacturing, 

 - Kr setup cost for remanufacturing, 

 - hm holding cost for manufactured items, 

 - hr holding cost for remanufactured items, 

 - hn holding cost for non-serviceable items, 

 - cm manufacturing cost, 

 - cr remanufacturing cost, 

 - cd cost for disposing one non-serviceable item. 

 

Let us assume that cm + cd > cr, i.e. the unit manufacturing and disposal costs are strictly 

greater than the cost of remanufacturing. If the material flow of this model is studied, then it 

cen be seen that the disposed items must be newly manufactured. For this reason these two 

costs must be summarized. If remanufacturing is economical, then the unit remanufacturing 

costs are lower than that of manufacturing and disposal. 

 

Decision variables: 

 - Qm batch size for manufacturing, 
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 - Qr batch size for remanufacturing, 

 - M number of manufacturing batches, positive integer, 

 - R number of remanufacturing batches, positive integer, 

 - T length of the product recovery cycle, 

 - u reuse rate (0 ≤ u ≤ r). 

 

We assume that all parameters and the decisions variables are nonnegative numbers. We will 

describe the mathematical model with some application. 

 

Fig. 1. Material flow in the model 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

First we examine stock-flow balance of serviceable and recoverable stocks. The equation (1) 

shows that the sum of manufactured  and remanufacted products must cover the demand in a 

cycle. Equation (2) is the relation between the returned products and the use of these products 

for remanufacturing and disposal. The material flow of the model is shown in Figure 1. 

 

 M⋅Qm + R⋅Qr = λ⋅T       (1) 

 

 R⋅Qr + (r-u)⋅ λ⋅T = r⋅T      (2)  
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R⋅ Qr =u⋅λ⋅T

R⋅ Qr =u⋅λ⋅T

λ⋅T

r⋅λ⋅T 

(r-u)⋅λ⋅T 

 
Manufacturing 



 71

From the linear systems (1) and (2)  we can write two separate equations for the 

manufacturing and remanufacturing bathes: 

 

Fig. 2. Modelling the inventory policy (R=3, M=7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 M⋅Qm = (1 − u)⋅λ⋅T        (3) 

 

and 

 

 R⋅Qr = u⋅λ⋅T         (4) 

 

If the reuse rate is equal to zero, i.e. u=0, than the remanufacturing lot size is zero, i.e. Qr=0 

in relation (4). It means that all returned parts are disposed, there is no reuse in system and the 

management problem turns into a simple inventory problem. Another interesting case is, if  

the return rate equal to reuse rate (u=r). This case shows an example, when all returned parts 

are reused and there is no disposal activity. Identity (3) and (4) will be useful to create our 

cost function. 
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Now we construct the total cost function. We make it in two steps. In the first step we 

investigate the inventory holding cost function H(Qm,Qr,T,M,R,u) for serviceable and non-

serviceable parts.In the second step we describe the linear costs L(Qm,Qr,T,M,R,u) of 

manufacturing, remanufacturing, and disposal. 

 

Let us now calculate the inventory holding costs H(Qm,Qr,T,M,R,u). The inventory holding 

policy is shown in Figure 2. This policy is a predetermined policy and we look for the optimal 

parameters (Qm,Qr,T,M,R,u) of this strategy. Let us assume that the inventory level functions 

for a known strategy are function  Is(t) for serviceable stock and function  Ir(t) for recoverable 

stock, 0≤t≤T. The inventory holding costs are the area below this functions, i.e. 

 

( ) ∫∫∫ ⋅+⋅+⋅=
⋅

⋅ T
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00

)()()(,,,, . 

 

Now we use the property of the inventory policy that the sum of serviceable and recovarable 

products is a monotone decreasing, linear and continuous function of time in the 

remanufacturing cycle. So the inventory cycle can be divided into two subcycles. 

 

(1) the demand is satisfied from remanufacturing, and the recoverable stock is positive. 

The length of this interval is equal to 
λ

rQuT −⋅ . 

(2) The demand is satisfied from the last remanufacturing batch and from manufacturing, 

and the stock level of recoverable items are monotone nondecreasing. A 

remanufacturing batch is used in an interval length of 
λ

rQ . The length of this subcycle 

is ( )
λ

rQ
uT +−⋅ 1 . 

 

So the inventory holding cost function can be expressed with the help of the cycles, as 
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We must now calculate the five integrals. The first integral consists of R-1 pieces 

remanufacturing batches. The costs are ( ) ( ) ( )
λ

λ

2
1)(

2

0

r
nr

q
uT

s
nr

QhhRdttIhh

r

⋅−⋅−=⋅− ∫
−⋅

. The 

second integral is only a remanufacturing batch 
λ

λ

2
)(

2
r

r

uT

q
uT

s
r

Q
hdttIh

r

⋅=⋅ ∫
⋅

−⋅

. The third value is 

the cost of inventory holding of manufactured products, which consists of M batches 

λ2
)(

2
m

m

T

uT

s
m

Q
hMdttIh ⋅⋅=⋅ ∫

⋅

. The computation of the fourth integral is a little bit complicated. 

We have pointed out that the sum of the inventory levels Is(t)+Ir(t) is a monotone decreasing 

linear function. The tangent of this linear function is (1-r)⋅λ. In point of time 
λ

rQ
uT −⋅  this 

function has a value of Qr. With this assumption the value of the integral is 
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Summing up the integrals and with elementary calculations, we have the following expression 

for the inventory holding costs: 
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In this expression we have applied from equation (4) that 
λ

rQR
uT

⋅
=⋅ . 

 

The linear costs of manufacturing, remanufacturing, and disposal can be calculated very 

easily: 

 

L(Qm,Qr,T,M,R,u) = cm⋅M⋅Qm + cr⋅R⋅Qr + cd⋅λ⋅T⋅(r-u) = ( ) ( )[ ]rcccccuT dmdmr ⋅++−−⋅⋅⋅ λ  
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Now we can formulate the average cost function Ca(Qm,,Qr,T,M,R,u) summing up the total 

inventory holding costs (setup and inventory holding costs) and the linear manufacturing, 

remanufacturing, and disposal costs, and divided with the length of the cycle: 

 

( )

( ) ( )rcccccu
T

R
r

rR
Q

h
Q

hMKM
Q

hRKR

uRMTQQC

dmdmr

r
n

m
mm

r
rr

rma

⋅+⋅+−−⋅⋅+

+





 +

−
⋅⋅⋅+⋅⋅+⋅+⋅⋅+⋅

=

=

λλ

λλλ
1

222

,,,,,

2
222

 

 

This way we have constructed a non-linear mixed-integer mathematical programming 

problem: 
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Before solving problem (P) we will show that 

 

In the next section we will solve the problem for the relevant variables. 

 

3.2.3. Solutions of the model 

 

In this section we solve proble (P) in two different way. The difference is the order of 

eliminating the continuous variables from the cost function using equations (3) and (4). The 

first method offers to eliminate the integer variables R and M, in order to express the 

manufacturing and remanufacturing lot sizes. Second method suggests elimination the lot 

sizes in order to investigate an integer programming problem. Let us follow this two ways. 
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3.2.3.1. Elimination of lot sizes Qr and Qm 

 

We can follow an other way to solve the problem. Let us substitute the manufacturing and 

remanufacturing lot sizes 
M

TuQm
⋅⋅−

=
λ)1(  and 

R
TuQr
⋅⋅

=
λ  in the cost function from 

equations (3) and (4). After substitution the  the problem has the next form: 
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The cost function is now convex in the length of the cycle, so the optimal length can be 

calculated as follows: 
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After substitution the optimal length in the cost function, we have the following cost function 

CI(R,M,u): 
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The function CI(R,M,u) can be written in the next form 
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and variables R and M are positive integers, and 0 ≤ u ≤ r. 

 

The manufacturing and remanufacturing lots are in this case 
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Function CI(R,M,u) is quasiconvex in R and M and convex in u. This property guarantees the 

existence of optimal solution, as it is prooved by Dobos and Richter (2000). Let us now 

introduce an auxilliary function S(R,M,u), as follows 
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We look for an optimal solution of this function for remanufacturing and manufacturing 

batches R and M. This function is the expression under the square in (5). Due to monotonicity 
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considerations the function S(R,M,u) can be analysed for solving batch sizes R and M, where 

all coefficients A(u), B(u), C(u), D(u) and E(u) are positive. 

  

3.2.3.2. The continuous solution of the problem 

 

Due to the relations A(u), B(u), C(u), D(u), E(u)  > 0 hold and the results of the Theorem 1 of 

the appendix are to be applied. 

 

Theorem 1: The continuous optimal solution for minimizing the function CI(R,M,u)  for R 

and M is 
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Figure 3. Set of u in dependence on returne rate r 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cost function C(u) can be written in the following form: 
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where 
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Let us now represent the function f1(r) and f2(r). This figure shows the set of possible disposal 

rate u for given return rates r. The functions f1(r) and f2(r) contain the points where the lot 

numbers are equal to one. If the return rate is smaller than r1, then the cost function C(u) 

consists of function described in point (i) of theorem, and the number of lots is one for 

remanufacturing. In this case the cost function is linear. If the return rate is between r1 and r2, 

then the cases (i) and (ii) of theorem occur. And if the return rate is over r2, then all three 

cases occur. Points r1 and r2 can be calculated as solution of equations f1(r) = r, and f2(r) = r. 

The function C(u) is convex for all return rate u. 

 

Lemma 1: Cost function C(u) is convex in u, and twice continuously differentiable. 

 

The lemma can be proven very easily with calculus. The reuse rate will be determined in the 

following section. 

 

3.2.3.3. The determination of optimal reuse rate 

 

Now the cost optimal reuse rate will be calculated, and the dependence of the optimal solution 

on return rate is examined. Let us assume that 

 

 hm·(1-r2) > hr·r2 + hn. 
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This assumption shows that the inventory holding costs of newly manufactured products are 

higher than that of used and returned, and then remanufactured products. Return rate r2 is a 

switching point. This is the highest return rate where the manufacturing and remanufacturing 

rates are equal to one. The inequality points out that ramanufacturing is more economical that 

manufacturing. 

 

The problem is now 
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I solve the problem for three cases in dependence on return rate. 

 

(i) 0 ≤ r ≤ r1 

 

The cost function C(u) has the next form 
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It is easy to see that the optimal reuse rate is: 
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It shows that it is optimal to manufacture without remanufacturing and to dispose of all 

returned units, if the return rate is very low. 
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(ii) r1 < r ≤ r2 

 

In this case the cost function C(u) has two parts. 

 

( )

( )

( ) ( )

( )

( ) ( )














≤≤

⋅+⋅+−−⋅⋅+

+







⋅





 −⋅+⋅++−⋅⋅+⋅⋅

≤≤

⋅+⋅+−−⋅⋅+

+

















 ⋅+⋅⋅+⋅⋅−⋅⋅

=

rurf

rcccccu

u
r

huhhuhKK

rfu

rcccccu

r
hhKuhKu

uC

dmdmr

nnrmmr

dmdmr

nrrmm

)(
11)()1(2

)(0
112

1

222

1

λλ

λ

λλ

λ

. 

 

Since cost function C(u) is a convex function, it is enough to examine the function on point r2, 

whether the function in this point is decreasin or increasing. Let us now reformulate the 

condition in the follwing form: 
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It means that the cost function is monotonuously decreasing, so uo = r. For this case it is 

optimal all returned items to remanufacture withaout any waste disposal. 

 

(iii) r2 < r ≤ 1 

 

Now the cost function is 
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Let us differentiate this function in point r, and examine the differential function. The 

expression is 
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This derivated function in point r is decreasing. Since C′(r2) > C′(r) it follows that C′(r) < 0, 

so the function is monotonuously decreasing in u. The optimal reuse rate is uo = r. 

 

3.2.4. Conclusion 

 

An inventory model was investigated in thsi chapter. The question was for which lot size and 

reuse rate are the costs lowest. If the sum of unit manufacturing and disposal costs is higher 

than remanufacturing costs, and the inventory holding costs of newly manufactured products 

are higher than that of remanufactured and reused items, then there are two cases. If the return 

rate is very low, then it is optimal to manufacture and to dispose of all returning items. After a 

given return rate it is optimal all returned items to remanufacture without disposal. In 

dependence of this return rate u all manufacturing and remanufacturing lot sizes can be 

determined. 
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3.3. A production-recycling model with buybacking 
 

3.3.1. Introduction 

 

Classical logistic systems manage the material and related informational flow from raw 

material until the final products are delivered to the customer. This means a forward flow. 

Reverse logistics manages backward process, i.e. the used and reusable parts and products 

return from the customers to the producers. Environmental consciousness forces companies to 

initiate such product recovery systems. These way natural resources can be saved for the 

future generations, so the firms can contribute to the sustainable development efforts. This 

work analyzes a situation where the returned items are recycled and the firm saves with the 

recycling the mining of other natural resources. 

 

In this paper a model of the EOQ type is developed and analyzed, in which a producer serves 

a stationary product demand occurring at  the rate D > 0. This demand is served by producing 

or procuring new items as well as by recycling some part 0 ≤ δ ≤ 1 of the used products 

coming back to the producer at a constant return rate d = αD, 0≤ α ≤ 1. It is assumed that the 

producer is in the situation to buy back all used product to recycle and/or to dispose off them. 

The parameters  δ   and α are called marginal use rate and marginal buyback (return) rate, 

respectively. The remaining part of the non-serviceable products (1-δ)d will be disposed off. 

(1-δ) is called marginal disposal rate. 

 

First, an analysis of the situation is provided. The inventory stocks for serviceable products 

from the production and recycling processes (PRP) and for the non-serviceable items is 

determined. On the basis of these results the lot sizes and cycle times for the PRP can be 

found which minimize the per time unit total set-up and holding cost. This results in the 

explicit determination of a function CI(α,δ) which expresses these minimal costs as function 

of the marginal use and buyback rates. 

 

Secondly, if linear waste disposal, production, recycling and buyback costs are introduced, the 

problem appears at which δ and α the total set-up, holding and linear costs CI(α,δ)+CN(α,δ) is 

minimal. In this formulation the producer makes decision about how much used items buy 

back to recycle. 
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In this paper we examine a production/recycling system with predetermined production-

inventory policy and assume that there is no difference between newly produced and recycled 

items, i.e. we apply the “as-good-as-new” principle. The paper is organized as follows. The 

next section introduces the used parameters and decision variables as well as the functioning 

of the production and recycling processes. In the section 3 the cost function of the inventory 

holding will be constructed. In the following two sections we determine the cost minimal 

cycle time and batch numbers for production and recycling in dependence on the buyback and 

use rates. Section 6 provides the optimal buyback and use rates for the inventory holding cost, 

while section 7 shows the optimal policy of the total (EOQ and non-EOQ related) cost model. 

In the last section we summarize the obtained results and show some directions of 

generalization. 

 

3.3.2. Parameters and functioning of the system 

 

To model the production-recycling we use the following parameters and decision variables. 

The material flow of the modeled situation is shown in Fig. 1 with the introduced parameters 

and decision variables. 

 

Lot-size related parameters of the model: 

 

- D  demand rate, 

- P=
β
1 D production rate (β < 1), 

- d=αD buyback rate (0 ≤α ≤ 1), 

- R=
γ
1 D recycling rate (γ < 1), 

- SR  setup costs of recycling, 

- SP  setup costs of production, 

- hs  holding cost of serviceable items, 

- hn  holding cost of non-serviceable items. 

 

Lot-size independent cost parameters:  
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- Cw  waste disposal cost for (1-δ)⋅αD⋅T,  

- CP linear production cost for (1-δα)D⋅T, 

- CR linear recycling cost for δ⋅αD⋅T, 

- CB buyback cost for α⋅D⋅T. 

 

Figure 1. The material flow in the model in a production and recycling cycle 

 

 

 

 

 

         

  

        

          

 

 

       

        

 

    

 

Decision variables of the model: 

 

- δ marginal use rate, 

- α marginal buyback rate, 

- m number of recycling lots, positive integer, 

- TR time interval of recycling, 

- xR recycling lot size, xR = D ⋅ TR 

- n number of production lots, positive integer, 

- TP time interval of production, 

- xP recycling lot size, xP = D ⋅ TP 

- T length of production and recycling cycles. 
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Figure 2. Inventory status in the model (m = 3, n = 2) 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The demand is satisfied by recycling the non-serviceable products during time period TR , and 

stored until the end of this cycle as well as the used products arrive at the rate d =αD < D in 

non-serviceable stocking point (compare Fig. 2). Due to the given recycling rate R > D = γR  

the process of recycling lasts for some γ ·TR time units. When the recycling process is stopped 

the demand can be served by the accumulated stock of recycled products. Parameter of this 

figure TR  denotes the length of the recycling cycle.  
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After recycling  the producer serves a demand of one product, which appears at a constant rate 

D > 0 The producer has to determine how much of new items to produce at a rate P, D = βP 

< P. Depending on this information he can found out how long he has to store the excess 

production. The time interval in which production and carrying new production is 

accomplished is called the production cycle and it is be denoted by TP. The time interval T = 

m⋅ TR + n⋅ TP gives the length of the production and recycling cycles. 

 

The process of storing and disposing off non-serviceable goods can be organized in the 

following way: the  (1-δ)dT units which have to be disposed during some interval T  are 

disposed  during the time disposal interval  TD  = (1-δ)T just when they arrive. Hence some 

stock of non-serviceable items is set up during the collection interval TRC = T - TD = δT. 

 

At the end of the production cycle the inventory stock of non-serviceable products attains its 

peak In = [(1-α)m+α(1-γ)]·DTR which is the initial inventory level at the beginning of the 

production and recycling cycle. At the end of a recycling period the inventory stock of 

serviceable recycled products attains its peak IR = (1-γ)·DTR. The peak of the inventory stock 

of newly produced items is IP = (1-β)·DTP. 

 

3.3.3. Determination of the inventory cost 

 

Let hs denote the inventory cost for serviceable items per unit and time unit, and let hn denote 

the same cost for non-serviceable items. If the length of the production and recycling cycle T 

is given the average inventory cost HP, HR, Hn  for the newly produced items, recycled items 

and for the non-serviceable items, correspondingly, are as shown in Lemma 1. Let us now 

assume that the return rate α and the use rate δ are positive, i.e. there is recycling and the 

buyback and use rates are not equal to one, i.e. there is production, as well. 

 

Lemma 1: The average inventory costs are in this model: 
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Proof. We will prove equality (3), the other cases can be proved in the same way. The 

inventory holding costs of non-serviceable items can be computed with dividing the area into 

m triangles A, (m-1) triangles B, triangle C and  rectangles D1, D2, …, Dm-1. (See Figure 3.) 

The area of triangle A is 

 

( ) 21
2
111

2
1

RRRA DTTDTT ⋅−⋅=⋅







−⋅⋅= αγγγ

γ
γ . 

 

The area of triangle B is equal to 

 

( ) ( ) ( ) 221
2
111

2
1

RRRB DTTDTT ⋅−⋅=−⋅⋅−⋅= γαγαγ . 

 

The area of triangle C is 

 

( ) ( )[ ] ( ) ( ) ( ) ( )[ ] 22111
2
11111

2
1

RRRC TmDT
D

mDTmT ⋅−+−⋅=⋅
−+−
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Figure 3. Inventory status for the non-serviceable stock 
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( ) 21 RiD DTiT α−⋅= . 

 

The total costs are now 

 

( ) ∑
−

=

++⋅−+⋅=
1

1
1

m

i
iDCBAn TTTmTmH . 

 

After some simple calculation we get the result of (3). 

 

Lemma 2: The total inventory cost per time unit is 

 

 HT = =
++

T
HHH nRP ),,,(

2
1 δαnmVTD ⋅       (4) 

with 

 

( )( ) ( )( ) ( ) 2222 111111),,,( δαααδβδαγδα −+⋅−−+⋅−+= nsns h
n

h
m

hhnmV  (5) 

 

Proof. Formulas (4) and (5) are obtained, if the cost and time parameters on the left-hand side 

of (4) are substituted by the expressions (1) – (3). 

 

Example 1: Let D = 1,000, hs = 850, hn = 80, β = 2/3, γ = 2/3, m = 1, n = 2, α = 1/2 and δ = 

2/3. For this data V(2,1,1/2,2/3) = 0.167hs+ 0.130hn = 106.296 and HT = 296.106000,1
2
1

⋅⋅⋅T  

53,148.1T  hold. 

 

The function ),,,( δαnmV  expresses the total inventory cost per time unit and per demand 

unit. 

 

3.3.4. Total cost minimization for the cycle time 

 

Let the setup cost S  per production and recycling cycle as the sum of setup costs SP and SR for 

the production and the recycling, respectively, be given. Then the setup cost per time unit is 
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( ) nSmSnmS PRT ⋅+⋅=, . 

 

The average inventory costs of the model CA(T,m,n,α,δ) can be written in the following form 

 

( )
min),,,(

2
1,),,,,( →⋅+= δαδα nmVTD

T
nmSnmTC T

A     (6) 

 

Because of the convexity of the cost function in the production and recycling cycle time the 

cost optimal cycle time is 
( )

),,,(
,2),,,(

δα
δα

nmVD
nmSnmT To

⋅
=     (7) 

 

and the minimal total setup and inventory cost per time unit is 

 

( ) ),,,(,2),,,(~ δαδα nmVnmSDnmC TA ⋅⋅= .     (8) 

 

The optimal recycling and production cycle times are 

 

 
( )

),,,(
,2),,,(

δα
αδδα

nmVD
nmS

m
nmT To

R ⋅
= ,     (9) 

 

 
( )

),,,(
,21),,,(

δα
αδδα

nmVD
nmS

n
nmT To

P ⋅
−

= .     (10) 

 

The optimal lot sizes are 

 

 
( )

),,,(
,2),,,(
δα

αδδα
nmV

nmDS
m

nmx To
R = ,      (11) 

 

 
( )

),,,(
,21),,,(
δα

αδδα
nmV

nmDS
n

nmx To
P

−
= .     (12) 

 

Example 2: Let as in examples 1 D = 1,000, hs = 850, hn = 80, β = 2/3, γ = 2/3, m = 1, n = 2, 

α = 1/2 and δ = 2/3.  It is known from Example 1 that V(m,n,α,δ) = 106.296 and HT = 
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53,148.1T  hold. Setting SP = 1,960 and SR = 440 the total cost per time unit is according to 

formula (6) T
T

TCA 1.148,53360,4
3
2,

2
1,2,1, +=






 . The optimal length of the production cycle 

and recycling cycle is 286.0
3
2,

2
1,2,1 =






T  year or 104 days. The minimal cost per time unit 

is 

 

1.445,301.148,53360,42
3
2,

2
1,2,1~

=⋅=







AC . 

 

3.3.5. The optimal number of lots for production and recycling 

 

Now we will minimize the cost function ),,,(~ δαnmCA  in order to determine the optimal    

number of lots. After some calculation this cost function can be written in the following the 

form 

 

( ) ( ) ( ) ( ) ( )



 +⋅+⋅+⋅+⋅⋅= δαδαδαδαδαδα ,,,,,2),,,(~ EnDmC

m
nB

n
mADnmC A  (13) 

 

where 

 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( )( ) ( )( )222

22

222

111,

,1,,1,

,1,,11,

αδβδαγδα

δααδαδααδα

δαγδααδβδα

−−+−+=

−=−=

−+=−−=

sPnsR

nPnR

nsPsR

hShhSE

hSDhSC

hhSBhSA

 

 

To solve this problem we can introduce a relaxed auxiliary problem (meta-model) (Richter 

(1996), Dobos and Richter (2000)): 

 

 min),( →++++= EDnCm
m
nB

n
mAnmS , m ≥ 1, n ≥ 1. 

 

Applying the results of Dobos and Richter (2000), the optimal continuous solution for the lots 

number (m,n) is 
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Lemma 3: There are three cases of optimal continuous solutions (m(α,δ),n(α,δ)) and 

minimum cost expressions  CI(α,δ)  for the function (13): 

 

(i) A(α,δ) ≥ B(α,δ)+D(α,δ), B(α,δ) ≤  A(α,δ)+C(α,δ) 

( ) ( )( ) ( )
( )( ) ( ) 











−+−+
−−

=
αααγ

β
δ
αδδαδα

11
11,1,,, 2

nns

s

P

Roo

hhh
h

S
Snm  

( ) ( ) ( ) ( )( ) ( )[ ]{ }αααγδβαδδα −+−+⋅+−⋅−= 11112, 2
nnsRsPI hhhShSDC  

 

(ii) A(α,δ) ≤ B(α,δ)+D(α,δ), B(α,δ) ≤  A(α,δ)+C(α,δ) 

( ) ( )( ) ( )1,1,,, =δαδα oo nm  

( ) ( ) ( )( ) ( )( ) ( )[ ]2222 11112, δααδαγαδβδα −+−++−−+= nnssPRI hhhhSSDC  

 

 (iii) A(α,δ) ≤ B(α,δ)+D(α,δ), B(α,δ) ≥  A(α,δ)+C(α,δ) 

( ) ( )( ) ( )( )
( )( ) ( ) 











−+−−

−+
⋅⋅= 1,

111
1

,,,
22 δαααδβ

γ
αδδαδα

ns

ns

R

Poo

hh
hh

S
Snm  

( ) ( )( ) ( )( ) ( )[ ]{ }22 11112, δαααδβγαδδα −+−−+−+⋅= nsPnsRI hhShhSDC  

 

Note that the expressions for the found optimal lot (batch) numbers are not necessarily 

integer! Nevertheless we shall see in the next section that this (immediately practically not 

very useful) result will help us to prove that the mixed strategies are dominated by pure ones.  

 

Now we introduce the following functions 

 

( ) ( )
( ) ( )( ) ( )[ ]αααγβα

β
αδ

−+−++−⋅

−⋅
=

111

1
21

nnsPsR

sR

hhhShS

hS
 

 

and 
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( ) ( )
( ) ( )( ) ( )αααγβα

β
αδ

−⋅−−+⋅+−⋅

−⋅
=

111

1
22

nRnsPsR

sR

hShhShS

hS
. 

 

Functions δ1(α) and δ2(α) are such switching points for which the optimal number of lots 

(m,n) is equal to one. This is shown in Figure 5. Function δ1(α) separates the cases (i) and (ii) 

and δ2(α) the cases (ii) and (iii). To calculate the functions, we have used the conditions in 

cases of equality. It is easy to see that δ1(α) ≤ δ2(α). The proof is left to the reader. 

 

Let us now define the possible sets for (α,δ) with the help of functions δ1(α) and δ2(α): 

 

( ) ( ){ }10,10,, 1 ≤≤≤≤≤= δααδδδαI , 

 

( ) ( ) ( ){ }10,10,, 21 ≤≤≤≤≤≤= δααδδαδδαJ , 

 

( ) ( ){ }10,10,, 2 ≤≤≤≤≥= δααδδδαK . 

 

The set I is represented by the borders of the possible values of (α,δ), the function δ1(α) and 

the points (α1,1) and (1,δ0), where value α1 is the solution of the following equality for α 

 

( )
( ) ( )( ) ( )[ ] ( )αδ

αααγβα

β
12 111

1
1 =

−+−++−⋅

−⋅
=
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hhhShS
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and  

 

( )
( ) ( )( )γβ

β
δ

−+⋅+−⋅

−⋅
=

11
1

0
nsPsR

sR

hhShS
hS

. 

 

And the set K is represented by the borders of the possible values of (α,δ), the function δ2(α) 

and the points (α2,1) and (1,δ0), where value α1 is the solution of the following equality for α 
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( )
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β
22 111

1
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−⋅
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hShhShS
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The inventory cost function CI(α,δ) can be written as 
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Example 3: Let as in examples 2 D = 1,000, hs = 850, hn = 80, β = 2/3, γ = 2/3, SP = 1,960,  

SR = 440, α = 1/2 and δ = 2/3. Then A(1/2,2/3) = 55,407.4, B(1/2,2/3) = 67,511.1, C(1/2,2/3) 

= 3,911.1, D(1/2,2/3) = 17,422.2,  E(1/2,2/3) = 261,970. The optimal batch numbers are 

m(1/2,2/3) = 1.067 and n(1/2,2/3) = 1. The minimal costs are CI(1/2,2/3) = 28,494.1. 

 

Figure 4. The representation of sets I, J and K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,1) 

(1,δ0) 

(α2,1) (α1,1) 

δ 

α 

I 

J

K

δ1(α) 

δ2(α) 



 95

 

3.3.6. Minimizing the inventory holding costs for the buyback and use rates 

 

Before minimizing the inventory holding costs CI(α,δ) we will prove a simple lemma. 

 

Lemma 3: Let values a, b, c and d be positive. Then the following equality holds 

 

 ( )( ) bdacdcba +≥++ . 

 

Proof. Let both sides of the inequality raise to the second power. Then 

 

 ( )( ) abcdbdacdcba 2++≥++  

 

and after simplifying 

 

 abcdbcad 2≥+  

 

and this inequality holds for all positive a, b, c and d, because ( ) 0
2
≥− bcad . 

 

Let us apply this result to the strategy with one-one lots: 

 

( ) ( )( ) ( ) ( )[ ] JhhhSSDC nssRPI ∈−+−+−−⋅+= ),(,11112),( 2222 δαδααδαγαδβδα . 

 

Let now 
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DSb
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Using the result of lemma 3 we have the following inequalities 
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( )( ) ( ) ( )[ ]
( ) ( ) ( )( )γαδβαδ

δααδαγαδβδα

−+⋅+−⋅−≥

≥−+−⋅+−−⋅≥

12121

112112),( 2222

nsRsP

nsRsPI

hhDShDS

hhDShDSC
 

 

The last inequality holds because we have reduced the costs with the expression 

( ) 21 δαα −nh . With this method it can be shown that over sets I and K 

 

( ) ( ) ( )( )γαδβαδδα −+⋅+−⋅−≥ 12121),( nsRsPI hhDShDSC  

 

The last expression is a convex linear combination of the pure strategies, i.e. the recycling and 

production. The weights are the possible products of marginal use and buyback rates αδ  

which is non-negative and not greater than one. This cost expression is always greater than 

the smaller of the costs of pure strategies: 

 

( ) ( ) ( )( )
( ) ( )( ){ }γβ

γαδβαδ

−+⋅−⋅≥

≥−+⋅+−⋅−

12;12min

12121

nsRsP

nsRsP

hhDShDS

hhDShDS
 

 

By this last inequality a proof is given for the  

 

Theorem 1: The optimal inventory holding strategy in this production-recycling model is a 

pure strategy: either to produce to meet the demand (αo = δo = 0) or to buy back and to 

recycle all used product without production (αo = δo = 1). 

 

Example 5. Let D=1,000, β = γ = 2/3, SP =1960, SRR  =440, hs = 850 and hn = 80. Then the 

inventory holding costs of recycling is 16,516.7 and that of production 33,326.7. It is 

economical to recycle with buyback of all used items. 

 

Example 6. Let D=1,000, β =2/5 γ = 2/3, SP =360, SRR  =440, hs = 85 and hn = 80. Then the 

inventory holding costs of production is 6,059.7 and that of recycling 6,957.01. It is more 

effective to produce and not to recycle. 
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7. Minimizing the total lot-size related and lot-size independent costs 

 

In this section we minimize the sum of the EOQ-related and EOQ independent costs. The cost 

function is in this case 

 

( ) ( )δαδαδα ,),(, NIT CCC +=  

 

where function ( ) ( ) ( ) DCDCDCDCC BPRWN αδαδααδδα ⋅+−⋅+⋅+−⋅= 11,  is the sum of 

the linear waste disposal, recycling, production and buyback costs.  

 

The problem to be solved has the form 

 

 min),( →αδTC  

 

subject to 

 

 [ ] [ ]1,0,1,0 ∈∈ αδ . 

 

In the last section we have seen that 

 

( ) ( ) ( )( )γαδβαδδα −+⋅+−⋅−≥ 12121),( nsRsPI hhDShDSC  

 

i.e. the inventory holding costs are not greater than the convex linear combination of the pure 

production and recycling strategies. The non-EOQ related costs can be approximated in the 

following way 

 

( ) ( ) ( )RBPN CCDCDC +⋅+⋅−≥ δαδαδα 1, . 

 

To get this inequality, we have reduced the lot-size independent costs with the waste disposal 

costs ( ) DCW αδ−⋅ 1  and with costs of bought back but not recycled items ( ) DCB αδ−⋅ 1 . 

 

Using these two approximations we can give a lower bound of the total cost function 
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( ) ( ){ } ( )( ) ( ){ }RBnsRPsPT CCDhhDSCDhDSC +⋅+−+⋅+⋅+−⋅−≥ γαδβαδδα 12121),( . 

 

The right-hand expression is again a convex linear combination of the pure strategies, so 

 

( ) ( ){ } ( )( ) ( ){ }
( ) ( )( ) ( ){ }RBnsRPsP

RBnsRPsP

CCDhhDSCDhDS

CCDhhDSCDhDS

+⋅+−+⋅⋅+−⋅

≥+⋅+−+⋅+⋅+−⋅−

γβ

γαδβαδ

12,12min

12121
. 

 

This result proves the next 

 

Theorem 2: The optimal production-recycling strategy for the total cost model is either to 

buyback all sold and used items (αo = δo = 1) or to produce new items without buybacking 

and recycling (αo = δo = 0). 

 

This result was shown by Richter [10] for another waste disposal model and by Dobos and 

Richter [3] for a production/recycling model. In the case of linear waste disposal, production, 

recycling and buyback costs and free choice of buyback and recycling rates between 0 and 1 

one of the pure strategies to buy back and recycle or  to produce is optimal. The optimal pure 

strategy can be found by comparing the values ( ) PsP CDhDS ⋅+−⋅ β12  and 

( )( ) ( )RBnsR CCDhhDS +⋅+−+⋅ γ12 . 

 

8. Conclusions and further research 

 

In this chapter we have investigated a production-recycling model. By minimizing the 

inventory holding costs it was shown that one of the pure strategies (to produce or to recycle 

all products) is optimal. A similar proposition can be obtained minimizing the total EOQ and 

non-EOQ related costs. A similar result was obtained by Richter (1997) in a waste disposal 

model with remanufacturing and by Dobos and Richter (2003) in a production and recycling 

model. 

 

Probably these pure strategies are technologically not feasible and some used products will 

not return or even more as the sold ones will come back, and some of them will be not 
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recyclable. This kind of generalization of this basic model could be the introduction of an 

upper bound on the buyback rate which is strongly smaller than one. In such a case a mixed 

strategy would be economical compared to the pure strategy “production”. 

 

An other way to generalize this model is to ask for the quality of the bought back products. In 

the proposed model we have assumed that all returned items are serviceable. One can be put a 

question: Who must control the quality of the returned items? If the suppliers examine the 

quality of the reusable products, then the buyback rate is strongly smaller than one. If the user 

makes it, then not all returned items are recyclable, i.e. the use rate is smaller than one. Which 

one of the control systems are more cost advantageous in this case? 
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4. Production Planning in Reverse Logistics 

 

4.1. Introduction 

 

Several management problems arise along the reverse material flow.  Some important 

questions are the collection of used products and materials and organization of this process; 

transportation, storage, and stocking of products, as well as introduction of parts and modules 

in the production planning process after organization and control of disassembly. 

 

One of the important research and application field is the integration of reuse in the 

production planning. There are only a few international publications on this field. Most of 

them are German speaking literature. (Inderfurth (1998), Spengler et al. (1997), Rautenstrauch 

(1997)) There are some Anglo-Saxon papers on this field. (Ferrer-Whybark (2000), Guide 

(2000)) As I know, there are no Hungarian publications that investigate this problem. In this 

chapter I do not examine the organization of return processes, i.e. return management. 

 

This chapter consists of following sections. The second section tries to extend production 

planning with reuse. It means that I give some insights in the connection of production 

planning and recycling planning. I create a model to analyze disassembly planning, which can 

be viewed as a “negative” bill of material. The next section presents the integration of reuse in 

the MRP production planning and control system. I show a material requirement planning 

(MRP) item record, and the planning steps till the use of materials. The fourth section 

summarizes the role of recycling in production planning. 

 

4.2. An extension of production planning with reuse 

 

The collection and reuse of used products and materials cause new problems in the production 

planning, which necessitates a connection between MRP and recycling planning. Involvement 

of recycling in material flow means a new problem in material management. 

 

Production planning and control systems are developed for traditional production processes, 

which is not characterized by a cyclical material flow. The role of recycling activities has 

increased because of decreasing amount of raw materials and of rise in storage prices, which 
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have economic and ecological causes. Strong social pressure and increasing governmental 

regulation make a current problem from reuse. 

 

In this chapter I define recycling as a return of used products from production process and 

from outside, in order to reuse of these used products. Internal recycling products are those 

products that are not necessary in a following production process, i.e. by-products, or wastes. 

External recycling products are those products that are at the end of life and they originate 

from the consumer processes. Both internal and external recycling products are reused then in 

the production process. The aim of a recycling process is to produce new products from 

recycled products or to manufacture reusable parts and modules for further use. The further 

not usable parts and materials can be sold in a second hand market or disposed outside. 

 

Material flow extended with recycling processes involves storage of raw materials, semi-

finished products, end-products, and recycling products. Uncertainty of wastes and returned 

products in time, quality and quantity, and uncertainty of duration of reuse process make the 

recycling planning process uncertain. So the planning becomes a more complex problem, and 

there are a number of decision variables in the decision making. The first situation is decision 

about disassembly, reuse and use processes. A second relevant decision is on the field of 

manufacturing and purchasing, i.e. the substitution between recycled and newly procured 

products and materials, as alternative possibility of material supply. From this context it is 

clear that an integration of production and recycling planning is necessary. 

 

Recycling planning, as production planning as well, means a strategic and tactical point of 

view, and then it has an operative content. This operative content can be divided as an original 

production planning and control, quantity planning, time and capacity planning, and 

manufacturing planning. Of course, these activities are extended with recycling activities. 

 

Program planning in recycling means a demand forecasting of type, quantity and duration of 

recycling products. On the basis of this forecasting the recycling activity can be formed, and 

on the basis of forecasted and returned products an active planning can be developed. If this 

forecasting is not taken to be account, then this process is defined as passive recycling 

planning, because the enterprise reacts only on the known amount of returned recycling 

products. 
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4.2.1. Connection between production and recycling planning 

 

Integration is necessary between production and recycling planning, because program and 

quantity plans of production is a basis for forecasting of program plan of recycling products, 

and quantity plan of recycling influences the raw material requirements in time and quantity. 

There are three concepts of extension of MRP systems: 

 

1. Integration of recycling and MRP. 

2. Disassembly and requirements planning. 

3. Integrated material disposition planning. 

 

 
 
Figure 1. Connection between production and recycling planning (Corsten-Reiss (1991)) 

 

The first concept does not integrate decision support systems in the MRP extended with 

recycling in opposite to second and third concepts. It is a deterministic and direct extension of 

MRP, because it uses only the passive recycling planning and it includes only known 

dismantling, recycling and material supply strategies. The essence of second and third 

concepts is summarized in the following section, and I discuss the first concept, i.e. the 

integration of MRP system and recycling, in an other section. The connection of these two 

systems is presented in figure 1. 
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4.2.2. Disassembly and use planning 

 

Disassembly and use planning means often a decision making about disassembly and use 

measures, as a determination of recycling products in tactical planning and production 

planning. Disassembly planning means a decision about the deepness of dismantling process, 

steps and frequency of execution of disassembly process. It must be decided in disassembly 

planning whether the original product will be recovered, or modules, parts and raw materials 

will be regained. It is determined in case of recycling of materials and parts that available 

materials, alternative internal or external possibility of use are applied. There is always an 

alternative use under traditional methods of recycling. This decision is determined by 

technological and political conditions, which are fixed by product takeback, disassembly, 

manufacturing, and use. The following data are necessary to planning: quality of the reusable 

products or their parts, disassembly, inspection, manufacturing and storage costs, and revenue 

from sales. 

 
 

Figure 2.  Simultaneous handling of disassembly and reuse activities (Inderfurth (1998)) 

 

Spengler et al. (1997) have determined the exact use capacities with a simultaneous 

disassembly and use plan. The planning problem is described with an activity analytical 

model, which is a mixed integer linear programming model in this case. They have created a 

disassembly graph, which contains alternative disassembly steps of a product (vj , where 
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j=1,…..n). The product can be dismantled in m different components, which can be further 

decomposed, or have different methods of use that can be landfilling, as well. The execution 

frequency of different disassembly activities (xj,, where j=1,….n) that is given by number of 

treatable products determines the number of components (yji, where j=1,… m), which are 

usable for further dismantling. The usable quantities determine the number of manufacturing 

and preparation steps (zis, where s=1,….r) that are revenues and costs in use. 

 

The objective is to maximize the profit through the disassembly and use activity variables xj 

and zis. An overview of this planning system is shown in figure 2. 

 

4.2.3. Integrated material disposition 

 

The main point of integrated material disposition is that it connects the return of reusable 

products, or components of these products with appropriate levels of manufacturing process. 

It is a difficult problem that is caused by satisfaction of product requirements of 

manufacturing and use with returned products, while the time requirements of these processes 

are different.  The problem of disposition is to co-ordinate traditional production, recycling, 

and waste disposal activities, further to minimize the expected (manufacturing, recycling, 

storage, and transportation) costs in a planning period. There are two possible solutions of the 

disposition problem of storage: 

 

1. continuous control of decision process, and 

2. periodical control of decision process.  

 

The uncertainty problems can be cleared by calculation of product requirements and of 

returned recycling products. In general, the storage of all products can be solved, and there is 

a choice between manufacturing and waste disposal of recycling products. 

 

Ordering restricted strategies are characterized by three storage disposition: 

 

1. storage restriction in traditional production, 

2.  restriction on recycling, and 

3. restriction on waste disposal in a landfilling site. 
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If the storage of recycling products is not possible, then restriction of recycling and waste 

disposal is in keeping with this fact. (Inderfurth (1998)) 

 

4.3. Integration of reuse planning in MRP 

 

4.3.1. Rise and groups treatable products 

 

New products are manufactured in a production process using input products, but by-products 

are originated from the production process that is not excluded in industrial production. It 

means that such goods originate in a manufacturing process, which does not occur in a 

production plan. By-products are fully excluded, if production of planned goods is stopped. 

Quantity of by-products can be reduced with steps in product planning process, and with 

appropriate steps in fields of purchasing, production, and quality management. 

 

Wastes can be categorized in two groups: subjective and objective wastes. Subjective wastes 

are those materials, which are not further used by the owners, and there is no information 

about the reusability of these materials. Objective wastes are those materials, which are not 

reusable and they must disposed in a landfilling site. Wastes that are reusable are named by 

Corsten and Reiss (1991) as recycling goods. They have grouped these goods as follows: 

 

1. By-products are those materials and energy, which occur in the end-products. By-

products can be grouped in an other way: rests and wastes. Rests are those materials, 

which are reusable, and they can be results of a reuse process.  Wastes are not 

reusable, or the reuse process is not realized in an economical way. 

2. Substandard goods originate by products and by-products in a production process. The 

reuse form of these three categories is named as recycling. If these materials are not 

directly used, then they become inventory and it leads to an inventory decision 

problem.  

3. Used products are the end-of-life or end-of-use products. 

 

A fault of this grouping is that all by-products are recycling goods, although these wastes are 

objective wastes, and they can not be object of recycling. The idea of recycling goods does 

not contain objective wastes. A grouping of wastes is shown in figure 3. 
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Figure 3. Groups of reusable products (Becher-Roseman (1993)) 
 
4.3.2. Process of collection and return 

 

The reuse is come before collection of wastes in a firm. The collection of used products 

realizes through physical and information connection of sources and destinations. 

 

4.3.2.1. Collection 

 

The first element of a return process is collection. Collection means the transportation of used 

products to a collection place. Collection process is based on the planning information. Data 

collection is a part of collection of used products, which is an information process. The 

collection requirements are determined in this process including address of consumers and 

due dates of transportation of collected goods and appliance. Further information is necessary 

about type, age, and quality of used appliances. This information are the basis of a vehicle 

routing planning, and disassembly and reuse planning process, i.e. these activities are the 

planning basis of the collection. 

 

There are three types of collection: 

 

1. The collectors transport the used products to a collection place, that can be a 

disassembly factory or a transfer place. 

2. The owners of used products transport the materials to the collection place. 

3. The combination of the above mentioned two strategies. 

 

In general, the collection process is realized by waste transportation companies, although the 

retailer firms take back the used products nowadays, if the consumer purchases a new one. 

Treatable products 

Wastes Reusable materials 

Landfilling Rests Substandard goods Used products 
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Collection of data and used products has different problems: 

 

1. There are parallel channels for consumers to collect data, and the supply is not 

appropriate concrete. 

2. Taking an order per telephone or data collection is not always possible. If it is 

possible, then the waiting time is very long and after a number of trials.  

3. The time between registration and collection can be more than a week because of the 

attainability of these places. 

4. The given due date can not be kept. 

5. The collection means only the availability of products collected in containers, and not 

the products stored in a house or in a cellar. 

6. It is used such a vehicle, which capacity is not fully used. 

7. The increase in collection systems leads to a competition for used products. The goal 

is to maximize the utilization of collection systems and of reuse capacity. In this case 

the collection routes become longer, and this means greater transportation costs and 

environmental burden. 

 

4.3.2.2. Loading 

 

Loading is all transportation and storage process, which is loading and unloading vehicle with 

products, and it emerges in case of change of transportation facilities. Loading is necessary in 

a number of cases, in order to reduce the concentration of material flow. The loading is not 

optional activity since there are direct and gradual return processes. Loading are realized 

mainly with hand, which leads to high loading costs and to cause damages in used products. 

 

4.3.2.3. Transportation 

 

Transportation is determined as to get used products to a collection place or to a central 

collection place. In a one-step return process transport means transportation of products to 

assembly factory, and it is transportation of goods to next collection center in a several-step 

return process. Other types of vehicles are used to transport than collect goods, in order to 

reduce transportation costs. Transportation is not a forced activity in the return process, since 
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source and destination are the same places, if the distances are not so long and the collection 

tour is ending at the destination. Transport is fulfilled by trucks. 

 

The arising questions are the following: 

 

1. The number of automotive and more effective loading processes is limited. 

2. The used products can be damaged at loading and unloading processes, as in transport 

process. 

3. Moisture leads to corrosion, which reduces the disassembly of the products. 

4. Auxiliary materials used in transportation are not storable, so there is no possibility to 

store them in a place economical way. 

 

4.3.2.4. Storage 

 

Storage is a planned placing of usable products. The aim of storage is 

 

1. to prevent the fluctuation of purchasing, transportation, and production,  

2. to balance the difference between supply and demand,   

3. to reduce the uncertainty of unknown supply and demand divergences,  

4. to choice assortment. 

 

There is output and input oriented storage. Output oriented storage concentrates on the 

sources of used products, i.e. on owners, who will sell the used products. The input oriented 

storage concentrates on the destination of used products, which is a disassembly factory. This 

factory produces new inputs for the manufacturing process with dismantling. 

 

4.3.2.5. Selection and assort 

 

Selection of collected used products is the assort of products according to special disassembly 

or reuse operation. The documentation of transportable used products is stored in addition to 

concrete dismantling at this place This disassembly information plays an important role to 

estimate the factory capacity and sales from the dismantled parts and modules. A preliminary 

disassembly can be made in the selection process, so the efficiency of the transport process 

can be increased and the disassembled quantity can be reduced. These two facts lead to a 
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better utilization of capacity. These supplement activities increase the demand for assort 

factory providing special services. Assort is not a selection of products after type of machines 

and modules, but it is an activity to support disassembly. 

 

4.3.2.6. Packaging 

 

Packaging has a function to prevent, to store, to transport, to identify, and to inform others 

about the goods. This function necessitates the sale and use of products. One of the aims of 

packaging activities is to achieve such a state, which do not pollute the environment in 

process of packaging. It can be attained by use of such transportation facilities that requires 

less or no packaging materials, i.e. containers. 

 

The return process is influenced by the improvement programs and service level and quality. 

It is important to know the consumer needs in return processes, for example service quality. 

This determines the use level of built system and network, i.e. the demand for reverse 

logistics services, which can reduce the costs of these services. (Waltemath, 2001) 

 

4.3.3. Definition and types of recycling 

 

Reuse is return of solid, liquid and gas state rests, substandard goods, and used products in the 

manufacturing process. All firms are such systems that emit goods and wastes in the 

environment, as output and absorb raw and other materials, and energy, as input. Jahnke 

(1986) distinguishes internal, among firm, and external recycling. 

 

1. Internal recycling means that products intended for recycling return to the 

manufacturing firm. There is direct and indirect recycling. In case of direct recycling 

the products are returned to the manufacturing process that they produced. Recycling 

is indirect, if the return is preceded by a handling before production process. 

2. Recycling among firm is defined as reuse of used products of other firms. 

3. External recycling is the case when the product recycling is made by other firms.  

4. Cooperative recycling can be defined, if not only used recycling products flow among 

firms, but also planning and organizational information. This is a special case of 

external and among firm recycling. 

5. Manufacturing recycling is defined, as reuse of recycling products by their emittents. 



 110

This is a special case of internal and among firm recycling. 

6. Reuse of products created in the production process is called as primary recycling, in 

other cases the reuse is a secondary recycling. The connection between primary and 

secondary recycling is shown in figure 4. (Rautenstrauch (1997)) 

 

  

Direct 

 

 

Indirect 

 

Primary 

 

 

Reuse 

 

Further use 

 

Secondary 

 

 

Resale 

 

Further sale 

 

Figure 4. Groups of recycling (Rautenstrauch (1997)) 

 

4.3.3.1. An other groups of recycling 

 

1. Rests or substandard goods are returned in the same manufacturing process without 

any handling, as an input. 

2. Rests or substandard goods are returned in an other manufacturing process without 

any handling, as an input. 

3. Rests and substandard goods are handled that is a disassembly or a transformation. 

4. After transformation the materials are returned in the same manufacturing process, as 

input. 

5. The recycling products are returned in an other production process after product 

recovery (regain and reuse). After use they are stored and transported in a landfilling 

site. 

6. The recycling products are sent to an other firm for handling, and used after that as 

input. 

7. There is a possibility of handling goods in a landfilling site. 

8. Points 1 to 6 are internal recycling, and points 7 and 8 are among firm recycling. 
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Heterogeneity of rest materials and low concentration of rest materials are problems in reuse 

process, which means the measure of use, corrosion, and level of hazardousness. Both factors 

make more difficult the collection, storage, transportation, assort, and handling of materials. 

(Corsten H., Reiss M., 1991) 

 

4.3.3.2. Groups of recycling after processes 

 

1. Production waste recycling is an internal recycling that touches the rests and 

substandard products of manufacturing process. 

2. Recycling during product use is a use of products in order to make the product partly 

reusable.  

3. Used material recycling is a different form recycling during product use. The 

difference is that the product can not be as new recycled. These products are 

dismantled and recovered, and as raw or other materials are returned in the production 

process. 

 

4.3.4. Objectives, conditions, tools and restrictions of recycling 

 

4.3.4.1. Objectives 

 

The objectives of recycling are the reduction of raw material and energy requirements, load of 

environment, and saving of storage capacity through decrease and liquidation of wastes and 

rest materials. The aim of a private enterprise is to reduce the requirements of raw materials, 

and to lengthen the lifetime of recycling goods in a long run, in order to slow down the 

creation rate of these goods, and to decrease the uncertainty. 

 

Minimization of expensive capital investment causes the decrease of lifetime in development 

of production process. This minimization includes the recycling, logistics, manufacturing, 

planning, and transaction costs. 

 

4.3.4.2. Conditions 

 

The firm must consider a number of exogenous facts in reuse process, which restrict the 

activity of the enterprise, for example: 
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1. the full recovery of raw materials from recycling goods is often not possible, 

2. recycling goods are not reused with an intended frequency , 

3. not all recycling products are reusable economically, 

4. environment injuring products originate in a recycling process,  

5. reuse of certain goods is regulated by a law, so the use of these products is not a 

decision problem. 

 

Recycling can be seen, as a temporary relieve of use or consume of primary raw materials in 

order to lengthen the lifetime of a product. 

 

4.3.4.3. Tools 

 

To investigate the tools used in recycling, there is a difference between application and 

handling of recycling products: 

 

1. Some of the recycling goods are reusable without any remanufacturing by the help of 

assorts, transportation, and storage. 

2. A selection or transformation procedure must be made in a handling process, which 

can be a biological-technical or chemical-technical process, in order to make the 

recycling products reusable. 

 

A recycling decision model can be applied as a decision and planning model, if relevant 

information about the recycling goods are available, e.g. price, quantity, and quantity of 

recycling products. One of the factors influencing the decision complexity is the fundamental 

goals, which can be a multidimensional goal function. In case of multidimensional goals there 

is a conflict among the goals, and not only conflicts between ecological and economic 

objectives. 

 

The different groups of factors determine the next levels of complexity. 

 

1.) Production process: 

a) the lower and upper bounds are given for a usable quantity of recycling goods,  

b) the fitting requirements of production and recycling process are known, 



 113

c) the return of recycling products in the same and other manufacturing processes is 

known. 

 

2.) Recycling products: 

a) only rests, substandard goods, or used products or both of them are examined,  

b) the beginning of recycling products can be continuous or discontinuous in time, 

c) the storability of goods after heterogeneity, i.e. cleanness, form, color, or heat-

resistance etc., 

d) separability of parts and modules, material substitution. 

 

3.) Reuse process: 

a) depth of reuse process, i.e. level of dismantling and processing,  

b) by-products of a reuse process, i.e. usable and unusable, damages and losses in reuse, 

c) losses in quality. 

 

The aim of a production planning and control system is to determine the production and 

purchasing quantities in time under consideration of capacity restrictions, and handling steps 

for deviation of planning, realization and control, in order to catch the fundamental goals. 

 

4.3.4.4. Restrictions 

 

1. Technical restrictions: recycling products are not usable without any frequency, 

because the quality of goods deteriorates with the frequency of reuse. Further, 

recycling goods are not fully reusable, because their decomposability is restricted 

and dismantling is technically not possible. 

2. Economic restrictions: costs caused by recycling can exceed its result, and the 

savings in primary materials. 

3. Ecological restrictions: recycling necessitates energy to transport recycling goods, 

and often primary materials to refurbish their quality. Recycling is not useful from 

ecological point of view, since recycling can cause environmental burden, which 

exceeds the environmental utility. 

4. Psychological restrictions: products manufactured from used products seem to have 

a lower quality than new one, so the market reacts abstained with these products. 

(Rautenstrauch (1998)) 
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4.3.5. An MRP system 

 

Fundamental objective of an MRP system is to minimize the influenceable costs, i.e. 

production, transportation, storage, and capacity costs. The time and quantity aims of these 

systems are the following: 

 

a) minimal throughput time 

b)  great accuracy, 

c) low inventory level, 

d) maximal capacity utilization. 

 

Figure 5 shows the endogenous and influenceable elements of an MRP system. 

 

Object

  

Goal   

Capacity Order 

Time Utilization of capacity Throughput time 

Quantity Work force and assets Transportability 

Costs Costs of capacity 
Costs of shortage and 

storage  

 

Figure 5. Objectives of MRP (Corsten-Reiss (1991)) 

 

In order to integrate reuse processes in an MRP system, it is necessary to collect the relevant 

information to planning about recycling products and recycling processes. An enterprise 

environmental information system must be built to attain this information in an appropriate 

form. Laws and instructions must be followed with attention in this information system; steps 

to reduce emission must be introduced, which contain environmental statistics and 

information about waste disposal, purchasing methods, quality and material and energy 

balance considering different inputs and outputs. Environmental pollution and quantity of this 

pollution are examined in a production process, since the pollution tax is paid on this basis. 
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Horizontal extension of an MRP system with a reuse process means three possible 

generalizations: 

 

1) recycling program planning, 

2) recycling capacity planning, 

3) recycling throughput planning.  

 

I.) Breadth and depth of a recycling program is specified. 

 

The following extension possibilities are in an MRP system: 

 

1) Transportation and storage capacities must be considered, and priority rules have to 

determine, in order to use the restrictedly storable products first.  

2) Revision of transportation is necessary to consider the quantity and due date of 

transportable recycling products. Immediate inclusion of not or only restrictedly 

storable recycling products in the production process is very important. It is necessary 

further to consider the manufacturing steps, quantity of recycling products, and due 

dates in a manufacturing process. Emission limits have to be paid attention in case of 

handling of not reusable by-products. Quantitative and qualitative criteria must be kept 

in a further manufacturing. 

 

II.) Quantity planning 

 

Extension and transformation of an MRP system is necessary with quantity planning. Net 

requirements of parts and raw materials are reduced by rests and wastes, and these reused 

input goods are used as inputs in the production process, but rise of recycling goods means a 

great uncertainty. Gross requirements are determined from material requirement planning. 

There is an extension requirement in data handling and processing. It contains collection, 

storage, refreshing, and processing of data connected with: 

 

a) reliability (production time, quantity, and quality),  

b) machines (waiting time), 

c) work force (absence and presence time) and,  

d) materials (shortage, and availability of materials at production places).  
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Of course, these materials must be available not only in the production, but also in the reuse 

process. It is necessary a plan to group of recycling goods after quantity and type. 

 

III.) Recycling throughput planning 

 

The planning levels depend on one-sided each other in an MRP system, they follow each 

other consecutively. Recycling process has a circular character, i.e. their processes are 

independent from each other. Different steps of production planning are built up linearly, so 

independence on planning levels is not considered. Performability of each steps depends on 

precedents, i.e. each decision levels are conditions for the following decision levels. 

Production program and capacity are connected with each other. If activities are realized with 

independent throughput time from capacity, then this leads to an inconsistency in planning, 

since quantities are fixed in quantity plan, and due date and capacity plans are not held for a 

given due date, because due dates given in contracts do not correspond with necessary due 

date. Since rest and waste materials return in not constant, but unsystematical quantities, 

recycling makes more complex the estimation of due dates in a traditional MRP system. 

Linearity of planning and cyclicality of planning object make more difficult the timeliness of 

planning. 

 

Reused products are used for net requirement. Factory and ordered products, spare parts and 

safety stocks are used to cover gross requirement under recycling goods. 

 

The measure of centralized decision must be mentioned in planning. If rests, wastes, 

substandard goods, and used products appear in a recycling process, then the recycling 

process is a multiple process, and the MRP system becomes more centralized. There is a 

positive correlation between complexity and centralizedness. If a recycling process is more 

uncertain, then an extended MRP system is less centralized. (Corsten-Reiss (1991)) 

 

4.3.6. MRP item record extended with recycling 

 

The first part of an MRP item record extended with recycling is similar to that of traditional 

MRP item record, although there is a recycled product stock line, which means that traditional 

inventory line is extended with an alternative inventory. These stocks contain the spare parts 
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and materials recovered from returned items, and they become inventory. Then there is no 

difference between reused and newly manufactured materials. Let us assume that the length of 

planning horizon is 6 weeks, safety stock is 15 units, and lead time is 2 weeks. The data of 

this example contain figure 6. The material flow is shown in figure 7.  

 

The stock line is equal to the sum of produced, recycled, and initial stock level reduced with 

gross requirements. The safety stock is 15 units, which is considered at the stock. The 

expected level of returned items is 4 units. Recycling stock level is given. Recycling 

requirements are equal to 4 units, which are the number of returned items. Recycling order 

comes from recycling requirements with a leg of 2 weeks lead time. Handling requirement is 

the stock level of recycling process reduced with recycling order. Planned order receipt is the 

net requirement reduced with recycling requirement. Planned order release is planned order 

receipt with a leg of lead time that is 2 weeks in our example. 

 

 0 1 2 3 4 5 6 

Gross requirement  10 10 10 10 10 10 

Produced stock  8 14     

Recycled stock  5 4     

Stock 9 12 20 15 15 15 15 

Net requirement  3 0 5 10 10 10 

Planned return  4 4 4 4 4 4 

Recycling stock 7 4 4 4 4 4 4 

Recycling requirement  - - 5 4 4 4 

Recycling order  5 4 4 4 - - 

Handling requirement  2 0 0 0 - - 

Planned order receipt  - - 0 6 6 6 

Planned order release  0 6 6 6 - - 

 

Figure 6. MRP item record extended with recycling (Inderfurth-Jensen (1998)) 
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Figure 7. Material flow in MRP item record 

 

4.4. Summary 

 

Environmental protection is become more important in enterprise praxis nowadays. Till 

environmental protection is not a great business for firm, i.e. reverse logistics is not a factor of 

competitive advantage; it can not be treated at a strategic level. It becomes competitive, if 

society acknowledges environmental conscious activity supported with environmental audits 

and the members of society purchase environment friendly products. Some of methods are 

presented in this chapter, which help firm reduce the use of primary raw materials and energy, 

as well environmental pollution. Firm can choose the best appropriate method from this 

checklist. View of society must change in interest of environment. The government plays an 

important role to influence the corporate strategy of firms. The saving of natural resources and 

lengthen of use of natural resources support to achieve a sustainable development path in 

interest of future generations. 

Recycling 
stock 

End-product 
stock Demand 

Production 

Recycling 
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5. Summary and Further Research 
 

Reverse logistics and its application in production planning are investigated in this work. 

Reverse logistics can completely built in material requirements planning (MRP) systems. The 

extension is that classical MRP item records contain the files of returned and reusable 

products in addition to traditional information. Last rows of MRP item records show the 

requirements of previous production phases and/or purchasing. The inventory problem occurs 

at this level, whether the decision maker must unite production and/or purchasing lots, or not. 

It is used heuristics in traditional MRP systems to determine the lot sizes, as Groff-algorithm, 

or Silver-Meal heuristics, and so on. These heuristics apply the optimality conditions of EOQ 

model. This property is that the ordering and/or setup costs are equal to the inventory holding 

costs in cot minimum. The question is now, whether EOQ-type reverse logistic inventory 

models are applied to lot sizing in extended MRP systems. 

 

To answer the last question, I have presented six reverse logistic EOQ-type inventory models. 

The models have common conditions, that are the exclusion of shortage. The cost structure is 

similar to that of classical EOQ model, i.e. there are cycle fix purchasing/production costs, 

inventory holding costs for new products, and fix and holding costs for reusable items. 

 

I have investigated the examined models under these conditions, I have shown that the models 

lead to a meta-model presented in appendix. I can simplify the cost function after its 

construction with two equalities. Either the number of lots or the lot sizes can be substituted in 

the cost function. If the number of batches is substituted in the cost function, then the 

variables are the lot sizes and the problem that the number of lots is integer can not be studied 

in the model further. This is the reason why it is more simply to substitute the lot sizes in cost 

function. With the help of this method I have shown such an example, where purchasing and 

reuse lot numbers are strictly greater than one. 

 

I have examined those cases, when EOQ-type and non EOQ-type linear 

purchasing/manufacturing, reuse, and waste disposal costs are included in the cost function. 

For this type of models I have shown that waste disposal is neglected in the optimal solution, 

i.e. all returned and reusable items are economical to reuse. The necessary and sufficient 
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condition for reusability of all used items is that one of the pure strategies, i.e. only 

purchasing/manufacturing and complete reuse, is cost minimal. 

 

The presented inventory models can be the basis for those heuristics, which are applicable in 

extended MRP systems. As I know, there is no publication on this field. The generalization of 

Wagner-Whitin dynamic lot size model with reuse was undertaken by Richter-Sombrutzki 

(2000), Richter-Weber (2001) and Richter-Gobsch (2005). 

 

I present the generalized model of Richter-Sombrutzki (2000), which is the extension of 

model of Schrady (1967) for the case of time varying demand and return. In this model there 

is no waste disposal activity. The parameters and variables are different that of published 

article, and they are the same, as they were introduced by Schrady (1967). 

 

The stock-flow identity relations are the following: 
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where I0 = i0 =0. The first equality is the balance connection in tth period for new products, 

i.e. the inventory level at the end of period t is equal to the sum of initial inventory level, 

purchasing and repair reduced with demand. The second equation includes the returned items 

and the items taken in reuse process. The last inequalities are the nonnegativity conditions of 

variables. 

 

The cost function is  
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The cost function includes the ordering, setup, and inventory holding costs. Function sign is 

zero, if its argument is nonpositive, and one in other cases. 

 

Let us now summarize the parameters and variables of the model. 

 

Parameters of the model: 

 

- Dt demand for new products in period t, nonnegative,  

- Rt returned used items in period t, nonnegative,  

- I0  initial inventory level of new products, 

-  i0 initial inventory level of returned items, 

- AP fixed procurement cost, per order, 

- AR fixed repair batch induction cost, per batch, 

- h1 holding cost of new products, 

- h2 holding cost of used items, 

- T length of planning horizon. 

 

Variables of the model: 

 

- It  inventory level of new product in period t, nonnegative, 

-  it inventory level of used items in period t, nonnegative, 

- QP procurement quantity, nonnegative, 

- QR repair batch size nonnegative. 

 

Richter and Sombrutzki (2000) have proven some properties of the model. 

 

Lemma (Richter-Sombrutzki (2000)): 

                                                             

It holds in optimal solution: 

 

i) Qt
P ⋅ Qt

R =0,  (t = 1,2,…,T) 

ii) It−1 ⋅ (Qt
P + Qt

R) = 0, (t = 1,2,…,T). 
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I do not prove these properties, it can be found in above mentioned paper. Condition (i) says 

that both repair and purchasing can not occur in a period in optimal solution. The second 

equation expresses that purchasing or repair occurs only those periods, when initial inventory 

level is zero. If the initial inventory level is zero, then purchasing or repair must occur. This 

property is similar that of Wagner-Whitin dynamic lot size model, i.e. 

procurement/production occurs in periods with zero initial inventory level. As we see, the 

inventory holding policy offered by Schrady (1967) applies these two properties. This 

dynamic model can be solved with method of dynamic programming, but the solution is very 

time consuming for relatively small problem, so construction of heuristics to create 

suboptimal solution is necessary. 

 

A need for further research is obvious, but the question is whether EOQ-type reverse logistic 

models are appropriate to construct a suboptimal solution of extended Wagner-Whitin 

models, i.e. to create with it satisfactory lot sizes for repair and purchasing. And now a 

question is how to construct such an algorithm. 

 

The next group of question is; if there are effective heuristics, then how they function. For 

which cost and system parameters offer the algorithms a satisfactory solution? To test the 

effectiveness of algorithms, it is necessary to make simulations. Without any numerical 

analysis we can not answer this question. These offered heuristics can be used in production 

planning and MRP systems. 
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Appendix 
 

A. The meta-model 

 

The meta-model is a fractional program of minimizing the following function for arbitrary 

real inputs, 

 

 S(m,n) → min           

 (m,n) ∈ RG = {(m,n): m,n ∈ {1,2,...}}, 

       

i. e. the problem of finding an optimal (m,n) is discussed below. The problem studied by 

Dobos and Richter (1999)  will be shortly called ”integer problem”. 

 

The relaxed fractional program 

 

 S(m,n) → min 

 (m,n) ∈ R = {(m,n): (m,n) ≥ 1} 

         

has been studied by Richter (1994, 1996a, 1996b, 1996c, 1997) and Richter and Dobos 

(1999). It will be called the ”continuous problem”. First some properties found by Richter 

(1994, 1996a, 1996b, 1996c, 1997) will be presented here. 

 

A.1. The existence of optimal solutions for the continuous and the integer problem 

 

Both the problems have optimal solutions at the same time. 

 

Lemma 1 (Richter (1997)): The function S(m,n) is bounded on R and on RG  if and only if  

 

C ≥ 0 ∧  D ≥ 0 ∧  A+C ≥ 0  ∧ B+D ≥ 0.       (1) 

 

Let below the relations (1) be fulfilled: 

 

Lemma 2 (Richter (1997)): Provided the relations (6) hold the integer and the relaxed 
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problems have an optimal solution if and only if  

 {A ≤ 0 ∧ B ≤ 0} ∨ { A+C > 0 ∧ B+D > 0}.        (2) 

 

A.2. The structure of the optimal solution for the continuous problem 

 

Let us assume that parameters A and B are positive. 

 

Lemma 3 (Richter (1997)): There are two curves M(n) = n
B

A Cn+
 and N(m) =m

A
B Dm+

 

of local minima in m or n for n and m, respectively, with the values  

 

S(M(n),n) = 2 ( )A Cn B Dn E+ + +  

 

and 

 

S(m,N(m)) = 2 ( )B Dm A Cm E+ + +  

 

for the function S(m,n). The function S(m,n) is monotonously increasing along these two 

curves.   

 

The level set of a function is defined as levFS = {(m,n) > 0: S(m,n) ≤ F} for an arbitrary F. 

The function S(m,n) is called quasi-convex if the level sets  levFS are convex for all feasible F. 

An equivalent definition of quasi-convexity for a function f is 

 

 
( ) { }

( )

f x x f x f x

x x X

( ) max ( ), ( )

, , ,

λ λ

λ

+ − ′ ≤ ′

∀ ∈ ∀ ′ ∈

1

0 1
 

 

(see Arrow and Enthoven (1961), Takayama (1985)).  A function f is strictly quasi-convex if 

 

 
( ) { }

( )

f x x f x f x

x x X

( ) max ( ), ( )

, , ,

λ λ

λ

+ − ′ < ′

∀ ∈ ∀ ′ ∈

1

0 1
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Below some example of  the level set for a quasi-convex function is given. 

 

Theorem 1: If  the relation  A > 0, B > 0, C+D ≥ 0  holds then function S(m,n) is strictly 

quasi-convex. 

 

Proof: To prove the theorem, let us check the conditions of strictly quasi-convexity. It follows 

from the definition of quasi-convexity, that the function F f x x x( ) ( ( ))λ λ= ′ + − ′  has no 

maximum between 0 and 1. Let us investigate our problem in the following form: 

 

 ( ) ( )G A
m m
n n

B
n n
m m

C m m D n n E( )λ
λ
λ

λ
λ

λ λ=
+

+
+

+

+
+ + + + +

∆
∆

∆
∆

∆ ∆ , 

 

where (m,n)>(0,0) is an arbitrary point, and  (∆m,∆n) a feasible direction. We must now 

prove, that function G(λ)  has no maximum for every (m,n) and (∆m,∆n). 

 

(i) ∆m < 0, ∆n > 0 

 

In this case the function 

 

 
m m
n n

m
m
n

n

n n
m
n

+

+
=

−

+
+

λ
λ λ
∆
∆

∆
∆
∆

∆
∆

  

 

is convex because the numerator is positive, and the function 

 

 
n n
m m

n
n
m

m

m m
n
m

+

+
=

−

+
+

λ
λ λ
∆
∆

∆
∆
∆

∆
∆

  

 

is also convex, because value ∆m is negative. The other functions are linear and convex, and 

the function G(λ) is convex and has no maximum for every λ>0. The case  ∆m>0, ∆n<0 can 

be handled similarly. 
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(ii) ∆m > 0, ∆n > 0, n∆m-n∆m > 0 

 

Let us now investigate the derivative of function G(λ). We will show that the function has a 

minimum, if any. 

 

 
( ) ( )

′ =
−

+
+

−

+
+ +G A

n m m n

n n
B

m n n m

m m
C m D n( )λ

λ λ

∆ ∆

∆

∆ ∆

∆
∆ ∆2 2  

 

The case is considered when the function G(λ) is monotonously non-decreasing. Then 

 

( ) ( )
( )

( )( ) ( )A n m m n
m m

n n
C m D n m m B n m m n∆ ∆

∆

∆
∆ ∆ ∆ ∆ ∆−

+

+
≥ − + + + −

λ

λ
λ

2

2

2
 

 

The left-hand side function is monotonously increasing, and the quadratic function is 

monotonously decreasing because of the non-negativity of parameters C and D. (It is easy to 

check with derivation.) There exists one and only one λ0 satisfying the equality, if  

 

( ) ( ) ( )A n m m n m
n

C m D n n B n m m n∆ ∆ ∆ ∆ ∆ ∆− ≥ − + + −
2

2
2 . 

 

It means, that on the interval λ>λ0 the function is monotonously increasing, and 

monotonously decreasing in other case. If value λ0  does not exist, then the function G(λ) is 

monotonously increasing for every nonnegative λ. And we have proved of the theorem. � 

 

In case of quasi-convex programming the following theorem provides a necessary and 

sufficient condition of optimality. A variable is called relevant, if it can take on a positive 

value without necessarily violating the constraints. 

 

Theorem 2. (Arrow and Enthoven (1961), Takayama (1985)): Let f(x) be a differentiable 

quasi-convex function of the n-dimensional vector x, and let g(x) be an m-dimensional 

differentiable quasi-convex vector function, both defined for x ≥ 0. Let x0 and λ0 satisfy the 

Kuhn-Tucker-Lagrange conditions, and let one of the following conditions be satisfied: 
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 (a) f xi0
0>  for at least one variable xi0

; 

 (b) f xi1
0<  for some relevant variable xi1 ; 

 (c) f x ≠ 0 and f(x) is twice differentiable in the neighborhood of x0; 

 (d) f(x) is convex. 

 

Then x0 minimizes f(x) subject to the constraints g(x) ≤ 0, x ≥ 0. 

 

Proof is omitted; see Arrow and Enthoven (1961).   

 

Let us now check condition (c) of Theorem 2 to our problem. 

 

Lemma 4: Let point (m0, n0) ≥ (1, 1). Then 
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The proof of the lemma is easy and is left to the reader. 

 

As it is shown, our continuous auxiliary problem is a quasi-convex, and the function S(m,n) 

satisfies the condition (c) of Theorem 2. This condition guarantees the optimal solution. An 

example of the function S(m,n) in shown in Fig. 1. 
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1

0.5

1

 

 

Fig. 1.:  The curves of local minima and the level set of the function S(m,n)   

 with A = 25, B  = 10, C = 10, D = 5, E = 0  and F = 48.73      

 

Some of the properties of the function S(m,n) provided by Richter (1997) are collected in Tab. 

1. 

 

 

 

 

 

 

case A B C+D A+C B+D properties of S(m,n) 

a) > 0 > 0 ≥ 0   convex in m and in n, strictly quasi-convex in (m,n)

b) ≤  0 > 0  > 0 > 0 increasing in m , convex in  n 

 > 0 ≤ 0  > 0 > 0 increasing in n,  convex in  m 

c) ≤ 0 ≤ 0  ≥ 0 ≥ 0  increasing in m and in n  

 

Tab. 1. Properties of the function S(m,n) 

 

The explicit solution of the continuous problem is given by  

 

Theorem 3 (Richter (1996a)) If the relations (6) - (7) hold there are three cases of optimal 

solutions (m,n) and minimum cost expressions  S  for the function (5) on R: 

(i) B ≥  A+C  (m*,n*) = 








+
1,

CA
B ,   S* = EDCAB +++ )(2 , 

n 

m 

M(n) 

N(m) 
 P 
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(ii) A-D ≤ B≤  A+C (m*n*) = (1,1),   S* = A+B+C+D+E   

 (iii) A ≥ B+D  (m*,n*) = 








+ DB
A,1 , S* = ECDBA +++ )(2 . 

 

A.3.  The optimal solution for the integer problem 

 

A.3.1. The cases a) in Tab. 1 

 

Lemma 5: Let in Theorem 1 to the condition (i) additionally 49A ≤ 527C  or to (iii) 

additionally  49B ≤ 527D   be fulfilled. Then the optimal integer solution is on the line n = 1 

or on the line m=1, respectively. 

 

Proof: Let the case (iii) be considered. Let us assume, that S(1,n) ≥  S(1,n+1) and the optimal 

continuous solution is (1,n*). Let   n+1 = n*+δ.  It can be shown by elementary operations 

that 

 

( )
S n A B D C E A B D

n n
( , ) ( ) ( )

* *
1 1 2

2

+ = + + + + +
+

δ
δ

 , 

 

where 0 < δ < 0.5. Let the following problem be investigated:  

 

 sup
* ( * )* . , .n n n≥ < < +











1 5 0 0 5

2

δ

δ
δ

. 

 

The function is monotonously increasing in δ  and monotonously decreasing in n*. Then 

 

 
( )
δ

δ

2
1

12n n* * +
≤ , 

 

and 
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 S n A B D C E( , ) ( )1 1 25
12

+ ≤ + + + .      (10) 

 

Any other integer solution with m ≥ 2 attains no smaller value than S(2,n2) where n2 = M(2) 

and S(2, ECDBA
DB

A
+++=

+
2)2(2)

2
2  according to Lemma 3. The inequality 

),2(2)2(2)(
12
25)1,1( 2nSECDBAECDBAnS =+++≤+++≤+  holds if and only if  

25
12

2 2A B D A B D C( ) ( )+ − + ≤  is fulfilled. The indicated condition of the lemma 

secures this inequality. If S(1,n) ≤  S(1,n+1) then  n=n*-δ  and the same estimation will be 

found. 

 

Remark: Let, for instance A=20.25, B=1, C=0.04, D=0.0001, E=5. Then the optimal 

continuous solution is given by (1,n*) = (1;4.5) with S(1,n*) = 14.04, while S(1,4) = 14.103 

> S(1,5) = 14.091 >  S(2,9) = 14.081, i. e. the optimal integer solution is not on the line m=1. 

It is also clear that the case b) from Tab. 1 the same effect might occur (see Fig. 2.). 
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1
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n

m

S(m,n)=14,081

S(m,n)=14,04

 
Fig. 2:  The level set of the function S(m,n) for continuous and integer solution  

 with A = 20.25, B  = 1, C = 0.04, D = 0.0001, E = 5 
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A.3.2. The cases b) in Tab. 1 

 

Lemma 6: If the continuous optimal solution is not integer then the optimal integer solution is 

 

(i)  B ≥  A+C ⇒ (mg,1) where mg is one of nearest integers of 
B

A C+
 

 

(iii)  A ≥ B+D ⇒ (1,ng) where ng is one of nearest integers of 
A

B D+
. 

 

Proof:  (i) Then  A ≤ 0 < B. Since the function S(m,n) is at the same time convex in n and 

concave and increasing in m, one of the mentioned solutions is optimal. � 

 

A.3.3. The case c) in Tab. 1 

 

This case occurs only for A-D ≤ B ≤ A+C  in Theorem 1 and the continuous optimal solution 

is automatically integer.  

 

An optimal integer solution on the line n = 1 or on the line m= 1  found in the previous 

Lemma will be called boundary, and below the question if boundary optimal integer solutions 

can be found for a significant part of the repair and waste disposal problems will be discussed. 

 

Theorem 4 (Richter and Dobos (1999)) Let the conditions of the Lemmas 4 or 5 be fulfilled. 

Then the following boundary optimal solutions for the discrete problem can be found: 

 

( ) ,

( ) ,

( ) ,

i A C m B
A C

ii D B A C m n

iii B D m A
B D

g g

g g

g g

  B   n

  A

  A   n

≥ + ⇒ =
+

+ +








 =

− ≤ ≤ + ⇒ = =

≥ + ⇒ = =
+

+ +










1
4

1
2

1

1

1 1
4

1
2

     (11) 

 

Proof: (iii) It is clear from the lemma that one of the two integer solutions (1,n), (1,n+1) with  

n < n* < n+1  is optimal. Then S(1,n) ≤ S(1,n+1)  holds if and only if  A
n n

B D
1

1( )+
≤ + , 
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or, if  n n
A

B D
2 0+ −

+
≥ , or, if   n

A
B D

A
B D

≥
+

+ −








 = +

+ +










1
4

1
2

1
4

1
2

.  

 

This right hand side is not less than n* and not greater than n* . If n does not fulfill that 

inequality then n+1 does and it is optimal. The first case can be studied similarily. � 

 

Theorem 5: Let SG denote the minimal value for the integer problem.  Then for the boundary 

solution (11) the relative error dSG = S m n S
S

g g
G

G

( , ) −
≤

1
24

 holds. 

Proof: Let the case (iii) be considered and let the solution (11) not be optimal. 

 

a)  ng=  n* . Then  S(1,ng) - SG  ≤  S(1,ng) - S(1,n*)  and 

 

 
( )S n S

S

S n A B D C E

A B D C E

g
G

G

g
( , ) ( , ) ( )

( )
1 1 2

2
−

≤
− + + +

+ + +
. 

 

Then using inequality (10):  

 

dS
A B D

A B D C E
A B D

A B D C EG ≤
+

+ + +
=

+
+ + +

1
12

2
1
24

2
2

( )

( )
( )

( )
. 

 

 b) If ng = n* then the same estimation will be found. The case (i) can be treated similarly. �  

 

If the boundary property is not guaranteed the following Lemma holds. 

 

Lemma 7: The optimal solutions of the integer problem fulfill 

 

(i) ng = 1 , mg  = m*  or   mg ≥  m*  and (iii) mg = 1 , ng  = n*  or ng ≥  n*. 

 

Proof: (i) If mg <  m* and Fg = S(mg,1)  then ( , )m lev Sg
Fg

1 ∈ , but ( , )m lev Sg
Fg

+ ∉11  and 

any other solution is not optimal because of quasi-convexity of function S. The case (iii) can 

be discussed similarly. � 
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Remark: As a consequence from that Lemma it can be noted that the optimal integer solution 

follows the changes of the optimal continuous solution. If m* (n*) increases, the appropriate 

lower bounds of the components of the optimal integer solution will not decrease! 

 

 

 


