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I. Research history and justification of the topic 
 

In the last 15-20 years there have been revolutionary changes on the market of 

financial services. Banks started to use automatic decision-making methods and 

decision support models to be able to speed up credit approval decisions.  

An information asymmetry exists between creditor and applicant. One of the 

greatest risks for banks is the crediting risk, which expresses the risk that the credit 

applicant does not pay, or pays only partly the borrowed capital and/or its interests 

back, and thus the bank suffers loss.  The basic interest of the banks is to gain more 

information of better quality possible about the customers, and to get more 

information from them about the liquidity and willingness to pay with the help of 

different data mining systems. Credit scoring, used for rating serves this aim.  

Credit scoring played a very important role in the explosive growth of the stock of 

consumer credits.  Without an accurate and automatic risk analyzing system banks 

could not have increased their retail placing in such a big measure.  

Despite the wide application of credit scoring methods, the methodology still has 

aspects, which are not paid enough attention to neither in the special literature, nor 

in practice. The question of representativity of the model building sample is a field 

like this. Scoring models are usually built on a non-representative sample, as in this 

case we have a total data base typically only at those customers, who have come 

through a credit-review process and have been accepted. The credit scoring model, 

used to accept/ reject the applications by and by looses its actuality, accuracy so 

needs to be re-built. If the model is not refreshed, it does not follow the forthcoming 

changes in the population and the effect of explanatory variables, and the original 

model loses its predictive power. On the other hand, however, if only the data of 

customers accepted is used to refresh the model, the validity of the new model will 

be questionable, as the distribution of accepted and rejected will probably differ as a 

result of the systematic judgment process, so the accepted do not represent all 

applicants, indicating the whole population. 

This phenomenon is called reject bias, or more generally selectional bias. 
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Model building, using the features of rejected (reject inference) may serve an answer 

for the dilemma. This is actually the estimation of how the rejected applicant would 

have behaved, if he had been granted the credit.   

An often quoted example is the old offender. Old offender applicants are almost 

always rejected.  If all were rejected, then without reject inference this criterion 

would not appear in the final model. The fact that the majority is rejected often 

means, that the minority, who is accepted, disposes really special features, and 

usually does not represent old offenders at all. So, if a model is constructed only on 

the performance of the accepted, the final model will be too optimistic.   

 

In the dissertation we deal with methods, suitable for the reduction of selectional 

bias in case of credit scoring models. The analysis of the phenomenon is almost 

completely missing from the Hungarian special literature, and could be met only on 

the level of mentioning.  

Beyond its curiosity, the choice of topic is reasonable because of its practical 

importance. As if the performance of the model can be improved a little bit, it may 

result in a huge increase in profit or a decrease of risk for the banks, as it is about 

placing of great volumes. The more accurate appraisal of risk is at the same time 

advantageous for the customers too, as it makes the reduction of additional price of 

risk for good debtors possible, or those, who have been rejected so far, can get a 

credit of an adequate additional price of risk.   

 

Summarizing former researches in connection to the topic, we can state, that the 

adoption of rejected during the model building can be a sensible and useful solution 

only, if certain conditions come true for the accepted and rejected population. These 

solutions may work in practice as assumptions are usually reasonable, or at least 

show to a good direction. For instance it is a rational assumption that the ratio of bad 

is higher within the rejected, than within the accepted (even with the same score), 

even if it cannot be correctly defined numerically how much it is greater. 
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The benefit of the application of the real and imputated data of the rejected depends 

on the rejection rate, the distribution within the population and sample and the 

fulfillment of applied statistical conditions. There are some portfolios, where the 

ratio of rejected is really low (for example the market of mortgages). In these cases 

dealing with the rejected may be unnecessary, as their ratio within the population is 

negligible, so bias caused by them does not need any correction. On the other hand 

in case of portfolios of greater risk, for example in case of crediting small- and 

beginner companies, the rejection rate may be really high, so selectional bias can not 

be neglected.   

The best solution, applicable may be occasionally different (by customer groups, 

products). There is no finished theoretical background in reference, whether the 

dropout of which conditions cause significant bias in parameter estimations. Such a 

general principle would be difficult to lay down, as bias is greatly dependent on the 

database.      

According to some statisticians, the problem of conclusion from a non-random 

sample can be solved with the right imputation of the missing collapse data of the 

rejected. (Joanes 1993/4, Donald 1995, Copas and Li 1997, Greene 1998). 

Generatives of scorecard already apply reject inference techniques abroad, in which 

they are supported by statistical software packages (e.g. SAS). However, they 

usually work as black boxes, because the underlying principles and assumptions are 

not clear for the users.  

If certain assumptions are acceptable, and the rejected are applied with some kind of 

imputation, we face a question: how can our model be validated and how can the 

improvement be measured? Only a few relevant studies were made in this topic, as 

the majority of data bases, used for testing is not complete, or was simulated 

(Donald 1995, Feelders 1999, Manning et al. 1987). Hand and Henley (1993/4) 

revealed that solutions, used in business life are problematic, as they are usually 

based on really doubtable assumptions.  

 

 

 6



II. Methods applied  
 

I examined the applicability of some methods in my dissertation, and then chose the 

one, which seemed to be the best applicable in case of the concrete research data 

base.  

 

Selectional bias, appearing in case of credit qualifying models is a problem, 

deriving from missing data, as in case of customers, previously rejected, the value of 

the variable, describing credit risk (re-payment) is missing (is not observable), so in 

chapter I. the types and possible methods of handling of missing data is taken one 

after another.  

  

In the next chapter (II.), the tasks of credit scoring, the most often used methods and 

indices, suitable to value them are shortly looked over.  In practice the application of 

logistic regression is most widespread in case of credit scoring models; therefore I 

also used logit models during the empirical research to estimate the non-payment 

possibility of the customers.   

 

In chapter III. methods, presented in the special literature and serving the reduction 

of selectional bias appearing in case of scoring model are reviewed.  All methods 

use somehow the information available about the rejected.  

The effective re-payment information of the rejected is unknown, that’s why – as 

information cannot arise from nothing – if we want to use them for the model 

building, we need to use assumptions, or additional information needs to be 

gathered about their re-payment behavior.  

In this chapter the theoretical background of such techniques (reject inference) will 

be introduced, highlighting the assumptions applied or the method of gathering and 

using additional information and sum up the practical experiences so far.   

 

The fulfillment of the conditions applied cannot be generally tested, so -after 

studying the special literature- I came to the conclusion that the only robust and 
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effective way to eliminate bias, is to credit a part of rejected and their behavior and 

possible collapse is observed in this way. 

 

It is undoubted, that the model could be corrected with the use of additional 

information, as this time we lean on more information during model building. This 

way, however, can not always be realized, because of the money and time need of 

the solution. The application of gate opened for a mouth with a kind of cost optimal 

sample distribution is a possible way to decrease the costs of the procedure. 

This means, that all customers, who are otherwise to be rejected have chance to get 

into the sample, but not with the same possibility. Those, whose expected loss is 

higher, can get a loan with a lower possibility and with a higher possibility those, 

where this expected loss is smaller. So we get a stratified sample with a certain sort 

of cost-optimal sample distribution. Finally a sample, representing the whole 

population is achieved by reweighting without taking charge of huge costs by 

allowing everybody in. 

 

In terms of the empirical research I examined on a real bank data base (retail credit 

card data) the improvement, costs and benefits attainable with the method of gate 

opened for a mouth, on the scoring model, built with the help of logistic regression.   
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III. The results of the dissertation 
 

• Making the special literature known I have introduced methods categorized 

adequately for missing data mechanisms, suitable for the reduction of 

selectional bias appearing by credit scoring models 

 

In terms of the empirical research I examined the improvement, costs and expected 

benefit of the method of gate opened for a mouth on a real bank data base (on retail 

credit card data). As a result of the model calculations utilizable recommendations 

are formed for practical experts.  

 

• During the empirical research we experienced, that models of lower 

performance can be built in case of higher rejection rate (strong and not 

completely random selection), than in case of a lower-ratio rejection. One of 

the reasons for this is that in this case only a few bad customers are included 

in the portfolio, making the recognition of the characteristics of bad for the 

models more difficult. The other reason is that certain values of otherwise 

significant variables do not get into the sample as a result of selection; 

therefore the explanatory variable will not be significant.  

 

• In such cases one method of collecting additional information may help, if 

new observations are gained from internal source with the application of gate 

opened for a mouth. We have seen that the performance of the model was 

improved by the method of gate opened for a mouth, and as a result the 

profit, attainable on the product increased.  

 

• We found that if the aim is to maximize profit, it is better to use a cutoff 

value determined theoretically, opposite to the method of empirical 

definition, which is in practice widespread.   
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• According to our results the degree of model improvement and increase of 

profit was the highest in the first step. So other customers, close to those 

customers, who are otherwise to be accepted and only a little bit worse than 

them worth being allowed in with the help of gate opened for a mouth. 

This first step, extensive improvement of the model and increase in the profit 

is probably only the characteristic of the data base, but other general 

considerations suggest this strategy too. Our estimations are much better 

close to the acceptance range. The ratio of bad can probably be well 

estimated here, therefore the costs of the extra sample can be more easily 

estimated, and are lower, than taking the sample from a further range of the 

sample.   

 

Finally we can say, that techniques, theoretical- and practical considerations 

reviewed in the dissertation can be applied not only in the fields of credit scoring, 

but in case of many data mining problems, including similar sample selectional 

mechanism.  
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