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1. Motivation 

 

The objective of this thesis is to provide education on the various aspects 

of systemic risk that originate from multiple sources, such as the financial 

sector and the energy market, as well as other potential sources that may 

not yet be identified. 

Systemic risk, a crucial concept within finance and economics, refers to 

the potential for disturbances or shocks to cascade across interconnected 

financial institutions and markets. This can result in widespread 

disruptions and possibly severe consequences for the entire financial 

system and economy. As implied by the term, systemic risk threatens the 

stability of the financial system and, by extension, the broader economy, 

particularly in concentrated markets. It is distinct from the more 

commonly understood systematic risk, which pertains to market-wide 

factors such as interest rates and economic cycles. While systematic risk 

is relatively predictable and can be quantitatively measured, systemic risk 

is often elusive and challenging to assess. 

The concept of systemic risk was first introduced in the banking sector 

due to the significant impact that banking issues can have on the broader 

financial system. Initially, the term "systemic risk" described threats to 

the overall stability of the financial system, including the potential for 

widespread failures and disruptions. The phrase “too big to fail” emerged 

during the Global Financial Crisis (GFC), conveying the notion that 

certain banks are so large and integral to the economy's functioning that 

their failure could have severe systemic consequences. 

Even if systemic risk originates within the banking sector, where 

interconnected institutions and markets can amplify disturbances or 

shocks, this kind of risk extends beyond this realm, affecting other 

markets such as the sovereign debt markets and energy sector, for 
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example. The aim of this thesis is to broaden the terminology of systemic 

risk by these aspects. 

Chapter III. of this dissertation is dealing with systemic risk on the 

sovereign bond market. The Global Financial Crisis heightened concerns 

about the fragility of debt markets. In Europe, these worries were 

compounded by the European Sovereign Debt Crisis (ESDC) and the 

potential systemic risk that could arise from a sovereign default and its 

impact on other European debt markets. Consequently, it is not surprising 

that most papers related to systemic risk focus on this region during that 

era. Since the perception of systemic risk is often tied to how financial 

distress in an asset or institution affects other assets or the entire financial 

system, it is closely related to the spread of failures from one asset, 

institution, or market to another. Many studies on systemic risk in 

sovereign bond markets apply this concept of systemic risk, considering 

the repercussions of a possible sovereign debt default in one country on 

other sovereign bond markets (Reboredo and Ugolini, (2015)). 

In Chapters IV. and V. energy market related systemic risk is discussed. 

The energy market holds a critical position in the economic system, and 

recent years have seen increased volatility in energy prices, bringing high 

risk and significant uncertainty (Ji and Zhang, (2019)). Such fluctuations 

substantially impact the real economy and pose an indirect threat to the 

stability of the financial system, potentially creating systemic risks for 

global financial markets. In studies on the energy market, systemic risk 

is primarily associated with the transmission of price and volatility 

shocks within the financial system (Lautier and Raynaud, (2012)). Since 

the GFC, there has been a growing focus on cross-market risk contagion 

within the energy system, particularly during turbulent periods. Key areas 

of attention include risk spillovers across different energy markets, risk 

spillovers into various commodities markets, and risk spillovers into 

distinct stock markets. 
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Financial networks are valuable for quantifying systemic risk as they map 

interconnected financial institutions and markets. Such networks are 

complex systems composed of numerous institutions and assets 

interconnected in various ways. Despite differences in the nature of the 

financial network, all models underscore how financial 

interdependencies contribute to systemic risks. By employing a formal 

model of financial networks, the sources of systemic risk can be 

measured, predicted, and monitored. 

In many cases, financial entities are not always directly connected 

through flows of money, shareholdings, or financial exposures but rather 

through indirect co-occurrences such as commonality, similarity, or 

correlation (Bardoscia et al., (2021)). A common example of a co-

occurrence network is one where nodes represent financial entities 

characterized by empirical time series data, such as stocks traded in a 

financial market. The connections between these nodes are weighted 

based on measured correlation (Tumminello et al., (2005); Kremer et al., 

(2019)) or causality (Billio et al., 2012) between the respective time 

series. 
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2. Used Methodologies 

 
2.1. The Diebold-Li yield curve decomposition method 

Nelson and Siegel, (1987) propose a flexible and parsimonious 

framework based on exponential components, which effectively captures 

a range of common yield curve shapes such as forward sloping, inverse, 

and humped curves. This framework allows for clear interpretation of the 

estimated factors. Diebold and Li, (2006) (D-L) expanded upon the 

Nelson-Siegel (N-S) approach by enabling dynamic changes in the latent 

factors. A key aspect of this model is that the factors can be understood 

as Level, Slope, and Curvature, as demonstrated by Diebold et al., (2006). 

Building on the N-S and D-L models, these components are assumed to 

encompass most of the information in the term structure of the yield 

curve. The D-L model is versatile and widely applicable across various 

markets. The observed yield curve can be described with the following 

equation: 

 

𝑦𝜏 = 𝛽1 + 𝛽2 (
1 − 𝑒−𝜆𝜏

𝜆𝜏
) + 𝛽3 (

1 − 𝑒−𝜆𝜏

𝜆𝜏
− 𝑒−𝜆𝜏) 

 

where 𝑦𝜏 denote yields for 𝜏 maturity, 𝛽1, 𝛽2 and 𝛽3 are the Level, Slope, 

and Curvature parameters respectively, and 𝜆 is a parameter that controls 

the shapes of loadings for the D-L factors. 

 

2.2. The Toda-Yamamoto causality method 

The Toda and Yamamoto (1995) model (T-Y hereafter) is a key tool for 

researchers studying complex causal relationships in economic data. This 

model extends the traditional Granger causality test to accommodate non-

stationary time series data, offering valuable insights into dynamic 

interdependencies between economic variables. As T-Y highlight, the 
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classic Granger causality test (Granger, (1969)) based on a VAR model 

for cointegrated time series can produce spurious connections (Dolado 

and Lütkepohl, (1996); Zapata and Rambaldi, (1997); Pittis, (1999)). The 

T-Y model addresses this issue by introducing a modified Wald test 

(MWald) that imposes restrictions on the parameters of the VAR(p) 

model. TheT-Y approach eliminates this shortcoming by introducing a 

modified Wald test (MWald) which has restrictions on the parameters of 

the VAR(𝑝) model. The test is based on a 𝜒𝑝 distribution, where 𝑝′ =

 𝑝 +  𝑑𝑚𝑎𝑥. The order of VAR is increased artificially, 𝑝 gets increased 

by 𝑑𝑚𝑎𝑥, which is the maximal order of the integration. Then, a VAR 

with an order of (𝑝 +  𝑑𝑚𝑎𝑥) is estimated, where the last 𝑑𝑚𝑎𝑥 lag 

coefficient is ignored. A VAR(𝑝 + 𝑑𝑚𝑎𝑥) is described by the below 

equations: 

 

𝑌𝑡 = 𝛼0 + ∑ 𝛿1𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛼1𝑗𝑌𝑡−𝑗 + ∑ 𝜃1𝑖𝑋𝑡−𝑗

𝑝
𝑗=1

𝑑𝑚𝑎𝑥

𝑗=𝑝+1 + ∑ 𝛽1𝑗𝑋𝑡−𝑗 + 𝜔1𝑡
𝑑𝑚𝑎𝑥

𝑗=𝑝+1  

𝑋𝑡 = 𝛼1 + ∑ 𝛿2𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝛼2𝑗𝑌𝑡−𝑗 + ∑ 𝜃2𝑖𝑋𝑡−𝑗

𝑝
𝑗=1

𝑑𝑚𝑎𝑥

𝑗=𝑝+1 + ∑ 𝛽2𝑗𝑋𝑡−𝑗 + 𝜔2𝑡
𝑑𝑚𝑎𝑥

𝑗=𝑝+1  

 

where 𝛼, 𝛿,𝜃 ,𝛽 are model parameters, 𝑝 is the optimal lag for the original 

VAR model, 𝜔1𝑡 and 𝜔2𝑡 are the error terms of the VAR model and 𝑑𝑚𝑎𝑥 

is the maximum integration order. 

 

2.3. The Diebold-Yilmaz spillover method 

The spillover index of Diebold and Yilmaz, (2009), Diebold and Yilmaz, 

(2012), Diebold and Yılmaz, (2014) (D-Y hereafter) is a popular method 

for measuring total interdependence or connectedness in a dynamic 

system of random variables. The Diebold-Yilmaz (D-Y) model relies on 

a VAR method (Sims, (1980)) with a strong emphasis on calculating the 

Forecast Error Variance Decomposition (FEVD). The model employs a 

generalized VAR framework (e.g., Koop et al., (1996)) that maintains the 

FEVDs' invariance to the ordering of variables, thus circumventing the 

need to order variables within the VAR model. This approach is 
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particularly advantageous given the goal of evaluating the extent of 

volatility spillovers rather than pinpointing the causal impacts of 

structural shocks, making it a preferred choice in the current context 

(Diebold and Yilmaz, (2023)).  

Under the generalized VAR framework, we consider a covariance-

stationary VAR (𝑝) model with 𝑁-variable i.e., 𝑌𝑡 =  𝜓𝑖𝑌𝑡−𝑖 + 𝑒𝑡, where 

𝑒𝑡 ~ 𝑖. 𝑖. 𝑑(0, 𝛴) is a 𝑁 × 1 vector of residuals. The moving average 

representation of the VAR model takes the form of 𝑌𝑡 =  ∑ 𝜓𝑖𝐴𝑗 +∞
𝑗=0

𝑒𝑡−𝑗 where 𝐴𝑗 is an 𝑁 × 𝑁 coefficient matrix. 𝐴𝑗 follows recursive pattern 

as 𝐴𝑗 =  𝜓1𝐴𝑗−1 + 𝜓2𝐴𝑗−2 + ⋯ + 𝜓𝑝𝐴𝑗−𝑝. 𝐴0 is an identity matrix and 

𝐴𝑗 = 0 for 𝑗 <  0. Diebold and Yilmaz, (2012) apply a generalized VAR 

framework to calculate the 𝐻-step-ahead generalized forecast error 

decompositions as follows: 

𝛷𝑖𝑗(𝐻) =
𝜎𝑖𝑖

−1 ∑ (𝑒′𝑖𝐴ℎ𝛴𝑒𝑗)2𝐻−1
ℎ=0

∑ (𝑒′𝑖𝐴′ℎ𝛴𝑒𝑖)
𝐻−1
ℎ=0

 

where 𝜎𝑖𝑖 the 𝑖-th element on the principal diagonal of 𝛴. Since the sum 

of each row of 𝜎𝑖𝑗(𝐻) is not equal to 1, each element of the matrix is 

normalized by taking the ratio: 

�̃�𝑖𝑗(𝐻) =
𝛷𝑖𝑗(𝐻)

∑ 𝛷𝑖𝑗(𝐻)𝑁
𝑗=1

 

so that the decomposition including shocks in each market equals to 

unity, i.e., ∑ �̃�𝑖𝑗(𝐻) = 1𝑁
𝑗=1  and total decomposition of all variables 

sums to 𝑁, i.e., ∑ �̃�𝑖𝑗(𝐻) = 𝑁.𝑁
𝑖𝑗=1  The total spillover index is computed 

as 

𝑇𝑆(𝐻) =
∑ �̃�𝑖𝑗(𝐻)𝑁

𝑖𝑗=1,𝑖≠𝑗

𝑁
∙ 100 

The total spillover index explains the spillovers from all the assets to the 

total FEVD. Similarly, directional spillovers which measure the volatility 
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spillover received by asset 𝑖 from the universe of markets 𝑗 is calculated 

as 

𝐷𝑆𝑖←𝑗(𝐻) =
∑ �̃�𝑖𝑗(𝐻)𝑁

𝑗=1,𝑖≠𝑗

𝑁
∙ 100 

and 

𝐷𝑆𝑖→𝑗(𝐻) =
∑ �̃�𝑗𝑖(𝐻)𝑁

𝑗=1,𝑖≠𝑗

𝑁
∙ 100 

Finally, the net spillovers from one variable to another for a set of 

variables are calculated by taking the difference the upper two equations 

𝑁𝑆𝑖(𝐻) = 𝐷𝑆𝑖→𝑗(𝐻) − 𝐷𝑆𝑖←𝑗(𝐻). 
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3. Main contributions 

 
3.1. The impact of crisis periods and monetary decisions of the Fed 

and the ECB on the sovereign yield curve network 

This paper offers four main contributions to existing literature. First, it is 

the first study to employ the Toda-Yamamoto, (1995) causality test to 

analyze a comprehensive network of sovereign yield curves over an 

extended time frame. While the Time-Varying Parameter Vector 

Autoregression (TVP-VAR) model has been recently suggested for 

network analysis (Rossi, (2005); Rossi and Wang, (2019)), the choice of 

the Toda-Yamamoto model is motivated by its simplicity and flexibility, 

which avoids complexities associated with TVP-VAR in cointegrated 

series. 

The T-Y causality test can be applied regardless of whether the series are 

𝐼(0), 𝐼(1), or 𝐼(2), or whether they are cointegrated in any order. This 

approach eliminates biases from unit root and cointegration tests by 

avoiding the need to pre-test the system's cointegrating properties. This 

paper provides evidence of several cointegrated time-series yield curve 

pairs using the Engle-Granger (Engle and Granger, (1987)) and Johansen 

(Johansen, (1988)) tests. 

Second, this paper analyzes a large dataset of sovereign yield curves from 

12 countries over 23 years, using the Level, Slope, and Curvature factors 

as modeled by Diebold and Li, (2006). It explores the interconnections 

among these sovereign yield curve factors and reveals significant 

linkages between the Level, Slope, and Curvature sub-networks. The 

study identifies the US factors as dominant key participants in the 

sovereign yield curve network across all sub-periods, with some temporal 

variations. These findings build upon other recent research on yield curve 

papers, which focused on spillover effects among Level, Slope, and 

Curvature factor networks but did not identify the primary nodes within 

the system. 
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USA Level USA Slope 

 
USA Curvature 

Role of the USA nodes in the system, estimated by static Toda-Yamamoto model 
Notes: Level factors are displayed in red, Slopes in blue, and Curvatures in green. An arrow 

between two factors indicates the direction of causation, and the color of the arrow indicates the 

source factor. Time series are differentiated at a maximum of one time, and the ideal lag time is 

chosen based on the AIC. For USA Level factors, 31 (44.29%); for Slope, 29 (41.43%); for 

Curvature 29 (41.43%) connections are significant from the total possible 70 =  (2  (12 +
 12 +  11)). Cross-connection ratios are 67.7% for Level, 62.1% for Slope and 38.0% for 

Curvature. 

 

 

 

 

 



10 

 

Third, this study offers unique insights by delving into the intricate 

structure of the network, revealing the following: (1) global crises result 

in denser networks compared to local crises; (2) US latent factors play a 

pivotal role in the network, although their influence varies over time; (3) 

the cointegrated relationship between Canada and the US leads to 

Canada's co-driving role within the network during crisis periods. 

 

  
 

Dotcom bubble Calm period 1 Global financial crisis 

   
European s. d. crisis Calm period 1 Covid-19 Pandemic 

Network connectedness in different subperiods, estimated by static Toda-Yamamoto 

model 
Notes: Level factors are displayed in red, Slopes in blue, and Curvatures in green. An arrow 

between two factors indicates the direction of causation, and the color of the arrow indicates the 

source factor. Time series are differentiated at a maximum of one time, and the ideal lag time is 

chosen based on the AIC. Number of connections in DCB: 236, in CALM1: 206, in GFC:414, in 

ESDC: 234, in CALM2: 225, in C19: 763. 

 

Lastly, this paper adds to the body of literature on the spillover effect of 

monetary policy decisions, offering valuable insights for discussions on 

monetary policy. This study extends previous research on sovereign yield 

curve studies by examining the dynamics of key participants' dominance 
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in the network and linking these dynamics to monetary policy decisions. 

Through an analysis of the influence of easing and tightening decisions 

by the Federal Reserve (Fed) and the European Central Bank (ECB) on 

key participants in the sovereign yield curve network, the research finds 

that the dominance of US factors peaks when the Fed leads a rate hike 

cycle and diminishes when the ECB leads an interest rate cycle. 

 

 
Dynamic dominance of US factors, estimated by dynamic Toda-Yamamoto model  
Notes: Window size of 750 days and a lag determined by the AIC, smoothed by cubic spline 

method. The orange areas denote the Fed interest rate cut, the green-shaded parts show Fed 

interest rate hikes and the cyan field represents the period when ECB leads the interest rate cycle. 

The red line stands for the Fed rates over time, while the blue represents ECB rates. The black 

line is the dynamic ratio of summarized outgoing USA edges and the total number of outgoing 

edges, smoothed by a cubic spline. 
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3.2. Dynamic volatility transfer in the European oil and gas 

industry 

This paper contributes to literature in three significant ways. First, it 

provides the first comprehensive analysis of volatility transmission 

dynamics across all major European oil and natural gas companies, 

encompassing over 90% of the European energy sector's total market 

capitalization over nearly 20 years (from 2003 to 2022). Previous 

research has concentrated on a limited number of major oil companies 

(e.g., Antonakakis et al., (2018)) and shorter time frames. The study 

covers three key exogenous shock periods: the 2008 Global Financial 

Crisis (GFC), the European sovereign debt crisis (ESDC), and the 

COVID-19 pandemic (C19). 

Second, this study adopts a full network approach, offering a broader 

view of volatility transmission across all major European energy 

companies. While prior research has focused on individual companies 

during both normal and stress periods, this paper includes all major 

participants in the European energy network to identify the most 

significant net connections (i.e., edges in the network). This approach 

provides crucial insights into the system's vulnerable points. 

Third, this study differentiates Upstream, Downstream, Midstream, and 

Integrated Oil and Gas (IOG) segments along the production line to 

pinpoint the mechanisms behind idiosyncratic volatility spillovers in 

European energy companies. 
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Static, full-sample volatility interconnectedness network 
Notes: An arrow between two nodes indicates the direction of the spillover, and the color of the 

arrow indicates the industry segment of the asset that originates from. Thinner lines represent 

the strongest 5% of connections, while thicker lines show the uppermost 1% of connections. For 

the figure, Lag=3 and H=10 model inputs are used. 

 

By identifying system fragility points during stressful periods, the 

analysis highlights the energy market's vulnerability to external factors 

such as weather, political decisions, wars, and pandemics. For instance, 

Russia's war on Ukraine has negatively impacted publicly traded 

European energy companies, particularly those in the IOG segment. 

Since the war began in February 2022, the IOG segment has emerged as 

a major transmitter of volatility, a concerning shift given its prior role in 

receiving and absorbing volatility and supporting system stability. 
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Total volatility spillover over the observation horizon 

Notes: The total volatility (100%) is indicated on the left axis. The shaded areas represent 

various crises periods, namely the GFC: January 1, 2008 - July 1, 2009 (pink area), the ESDC: 

July 1, 2011 - January 1, 2013 (blue area), and the C19: September 1, 2019 - July 1, 2020 

(yellow area). In creating the figure, we used Lag=3 and H=10 as model parameters with a 

window size of 250 days. 
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3.3. European equity markets volatility spillover: Destabilizing 

energy risk is the new normal 

This study examines the spillover effects of oil and natural gas prices on 

equity indices, offering a broader perspective on the energy commodity 

market and various aspects of energy risk. It makes three unique 

contributions. First, it is the first to apply the Diebold and Yılmaz, (2014) 

spillover index in the context of the European Economic Area (EEA) to 

understand how European economies are interconnected and respond to 

economic, political, and energy shocks. 

 

  
2004 2005 - 2008 

  
2009 - 2012 2013 - 2015 

 

Static volatility interconnectedness network during various periods 
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2016 - 2019 2020 

  
2009 - 2012 2013 - 2015 

 
Static volatility interconnectedness network during various periods (continued) 

Notes: An arrow between two nodes indicates the direction of the spillover, and the color of the 

arrow indicates the group of countries or the asset from which it originates from. Thinner lines 

represent the strongest 5% of connections, while thicker lines show the uppermost 1% of 

connections. For the figure, we use Lag = 3 and H = 10 model inputs. The figure is prepared 

using the Diebold and Yilmaz (2014) Spillover index method. 
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Second, in addition to oil, natural gas (i.e., TTF) is included in the 

network model, in view of Europe’s increasing gas dependency.  

 

Finally, this study goes beyond existing applications of the Diebold and 

Yılmaz Index by offering a comprehensive panel regression analysis on 

the effects of crude oil and natural gas price shocks on equity markets. 

This approach provides a more complete view by incorporating 

additional, unidentified external factors in the model with fixed effects. 

In the panel regression analysis, the equity market performances of the 

sample countries are evaluated using MSCI index daily returns. The 

results indicate that crude oil and natural gas prices systematically 

influence equity markets and contribute significantly to MSCI index 

volatility. Notably, countries with relatively underdeveloped exchanges 

or weaker domestic currencies exhibit greater sensitivity to energy 

shocks.  



18 

 

4. Main references 

 

• Antonakakis, N., Cunado, J., Filis, G., Gabauer, D., De Gracia, F.P., 

2018. Oil volatility, oil and gas firms and portfolio diversification. 

Energy Economics 70, 499–515. 

• Bardoscia, M., Barucca, P., Battiston, S., Caccioli, F., Cimini, G., 

Garlaschelli, D., Saracco, F., Squartini, T., Caldarelli, G., 2021. The 

physics of financial networks. Nature Reviews Physics 3, 490–507. 

• Billio, M., Getmansky, M., Lo, A.W., Pelizzon, L., 2012. 

Econometric measures of connectedness and systemic risk in the 

finance and insurance sectors. Journal of Financial Economics 104, 

535–559. 

• Dolado, J.J., Lutkepohl, H., 1996. Making Wald tests work for 

cointegrated VAR systems. Econometric reviews 15, 369–386. 

• Engle, R.F., Granger, C.W., 1987. Co-integration and error 

correction: representation, estimation, and testing. Econometrica: 

Journal of the Econometric Society, 251–276. 

• Diebold, F.X., Li, C., 2006. Forecasting the term structure of 

government bond yields. Journal of Econometrics 130, 337–364. 

• Diebold, F.X., Li, C., Yue, V.Z., 2008. Global yield curve dynamics 

and interactions: a dynamic Nelson–Siegel approach. Journal of 

Econometrics 146, 351–363. 

• Diebold, F.X., Rudebusch, G.D., Aruoba, S.B., 2006. The 

macroeconomy and the yield curve: a dynamic latent factor 

approach. Journal of Econometrics 131, 309–338. 



19 

 

• Diebold, F.X., Yilmaz, K., 2009. Measuring financial asset return 

and volatility spillovers, with application to global equity markets. 

The Economic Journal 119, 158–171. 

• Diebold, F.X., Yilmaz, K., 2012. Better to give than to receive: 

Predictive directional measurement of volatility spillovers. 

International Journal of Forecasting 28, 57–66. 

• Diebold, F.X., Yılmaz, K., 2014. On the network topology of 

variance decompositions: Measuring the connectedness of financial 

firms. Journal of Econometrics 182, 119–134. 

• Diebold, F.X., Yilmaz, K., 2015. Trans-Atlantic equity volatility 

connectedness: US and European financial institutions, 2004–2014. 

Journal of Financial Econometrics 14, 81–127. 

• Diebold, F.X., Yilmaz, K., 2023. On the past, present, and future of 

the Diebold–Yilmaz approach to dynamic network connectedness. 

Journal of Econometrics 234, 115–120. 

• Granger, C.W., 1969. Investigating causal relations by econometric 

models and cross-spectral methods. Econometrica: Journal of the 

Econometric Society, 424–438. 

• Ji, Q., Zhang, D., 2019. China’s crude oil futures: Introduction and 

some stylized facts. Finance Research Letters 28, 376–380. 

• Johansen, S., 1988. Statistical analysis of cointegration vectors. 

Journal of Economic Dynamics and Control 12, 231–254. 

• Kremer, M., Becker, A.P., Vodenska, I., Stanley, H.E., Sch¨afer, R., 

2019. Economic and political effects on currency clustering 

dynamics. Quantitative Finance 19, 705–716. 



20 

 

• Lautier, D., Raynaud, F., 2012. Systemic risk in energy derivative 

markets: a graph-theory analysis. The Energy Journal 33. 

• Nelson, C.R., Siegel, A.F., 1987. Parsimonious modeling of yield 

curves. Journal of Business, 473–489. 

• Pittis, N., 1999. Efficient estimation of cointegrating vectors and 

testing for causality in vector autoregressions. Journal of Economic 

Surveys 13, 1–35. 

• Reboredo, J.C., Ugolini, A., 2015. Systemic risk in European 

sovereign debt markets: A CoVaR-copula approach. Journal of 

International Money and Finance 51, 214–244. 

• Rossi, B., 2005. Optimal tests for nested model selection with 

underlying parameter instability. Econometric Theory 21, 962–990. 

• Rossi, B., Wang, Y., 2019. Vector autoregressive-based granger 

causality test in the presence of instabilities. The Stata Journal 19, 

883–899. 

• Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector 

autoregressions with possibly integrated processes. Journal of 

Econometrics 66, 225–250. 

• Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.N., 2005. A 

tool for filtering information in complex systems. Proceedings of the 

National Academy of Sciences 102, 10421–10426. 

• Zapata, H.O., Rambaldi, A.N., 1997. Monte Carlo evidence on 

cointegration and causation. Oxford Bulletin of Economics and 

statistics 59, 285–298. 

  



21 

 

5. Own references 

 

• Badics, M.C., Huszar, Z.R. and Kotro, B.B., 2023. The impact of crisis 

periods and monetary decisions of the Fed and the ECB on the 

sovereign yield curve network. Journal of International Financial 

Markets, Institutions and Money, p.101837. 

• Huszár, Z.R., Kotró, B.B. and Tan, R.S., 2023. Dynamic volatility 

transfer in the European oil and gas industry. Energy Economics, 127, 

p.107052. 

• Huszár, Z.R., Kotró, B.B. and Tan, R.S., 2023. European equity 

markets volatility spillover: Destabilizing energy risk is the new 

normal. Journal of Financial Research, 46, pp. S205-S271. 


