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PREFACE

This doctoral dissertation represents the culmination of an extensive research jour-
ney, presented in a format that adheres to conventions typical of scientific finance writing
- an article-based thesis. In contrast to the traditional monograph, this work is struc-
tured around three distinct articles, each intended for submission to esteemed academic
journals. Together, these articles form a comprehensive exploration of co-occurrence
network-based systemic risk, making a significant contribution to the existing body of
knowledge in this field.

The decision to pursue an article-based dissertation was driven by a desire to dissem-
inate research findings in a manner consistent with prevailing academic practices. This
format not only enables the dissemination of research outcomes through rigorous peer-
reviewed publications but also serves to enhance the visibility and impact of the research,
facilitating meaningful engagement with the broader academic community and policy-
makers.

The focal point of the dissertations are three research articles which are framed by
the introduction and the conclusion to provide foundation knowledge, contextualization
and discussion of further research based on the research findings. Each of the three ar-
ticles represents a distinct investigation within the broader research domain. While they
can stand alone as individual contributions, they are interconnected by common research
themes: systemic risk and network models.

The articles within this dissertation are the product of original ideas and personal
intellectual contributions. However, to align with established academic conventions, the
collective pronoun ’we’ is utilized instead of ’I’ in the articles. This linguistic choice is
made to reflect the collaborative nature of the research process, acknowledging the active
participation of senior coauthors during the publication phase.

This journey is a testament to our commitment to advancing knowledge and fostering
innovation in the field of systemic risk analysis.
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CHAPTER

INTRODUCTION I

This thesis aims to educate about the different facets of systemic risk, that emanate
from multiple sources, including the financial sector and the energy market, and poten-
tially others that are yet to be identified.

Systemic risk, a critical concept in the field of finance and economics, refers to the
potential for a disturbance or shock to propagate through interconnected financial institu-
tions and markets, leading to widespread disruptions and potentially catastrophic conse-
quences for the entire financial system and economy. Systemic risk, as the term suggests,
poses a threat to the entire financial system and, by extension, to the broader economy that
can be detrimental, especially in a concentrated market. It differs fundamentally from the
well-understood systematic risk, which relates to market-wide factors such as interest
rates and economic cycles. While systematic risk is characterized by a certain degree of
predictability and is amenable to quantitative measurement, systemic risk is marked by its
elusive nature.

Unlike systematic risk, the sources, implications, and characteristics of systemic risk
remain shrouded in ambiguity, and continuously evolve, much like the global financial
markets themselves. The roots of systemic risk can be traced back to the intricate web
of relationships and dependencies within mainly the financial sector, but other markets
as well. This interconnectedness not only facilitates the transmission of shocks but also
creates a scenario where the failure of a single institution could trigger a domino effect,
causing a cascade of failures across the system. The interconnectedness is also prevalent
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at the country levels within the EU, or the USA dominance in the financial sector.

In light of these challenges and knowledge gaps, this thesis contributes to the ongoing
discourse surrounding systemic risk. By investigating its sources, implications, and char-
acteristics, we seek to shed light on this elusive risk and explore the development of tools
for its measurement. As we traverse the terrain of systemic risk in both known and po-
tentially unidentified sources, our objective is to equip financial professionals, regulators,
and policymakers with a more nuanced understanding of this complex risk and the means
to mitigate its detrimental effects on the global economy.

The inherent fragility of the international economic and financial system was made
evident by the 2008 Global Financial Crisis (GFC). A genuine real economy shock be-
came a systemic financial event that affected a large number of (mostly financial) firms
and had significant social and public consequences because of the financial industry’s
size, interconnection, opacity, and complexity. To comprehensively understand systemic
risk, it is essential to adopt a holistic perspective on diverse economic systems, which
incorporates the internal and external feedback dynamics that lie at the heart of financial
systemic events.

As of today, there is still no consensus about the definition of systemic risk. In an
early study on measuring systemic risk with econometric models, Billio et al. (2012) (p.
536) say: ”... although most regulators and policymakers believe that systemic events

can be identified after the fact, a precise definition of systemic risk seems remarkably

elusive. . . ”. According to the European Central Bank (ECB), systemic risk is a risk of
financial instability: ”...so widespread that it impairs the functioning of a financial sys-

tem to the point where economic growth and welfare suffer materially.” (ECB (2010), p.
129). Others concentrate on more particular mechanisms, including negative externalities
(Financial Stability Board (2009)), information disruptions (Mishkin et al. (2009)), im-
balances (Caballero (2010)), asset bubbles (Rosengren et al. (2010)), contagion (Moussa
(2011)), feedback behavior (Kapadia et al. (2012)), correlated exposures (Acharya et al.
(2017)) and event probability (Montagna et al. (2020)). Anabtawi and Schwarcz (2011)
(p. 1351) define systemic risk as ”...the risk that a localized adverse shock, such as the

collapse of a firm or market, will have repercussions that negatively impact the broader

economy.” which can be regarded as a broad definition. By this means, systemic risk is
not restricted to a single industry or type of corporation and relates to an impact on the
entire economy.

The lack of agreement about systemic risk, suggests that likely more than one risk
measure is required to adequately account for the financial system’s complexity and
adaptability. Despite increased attention, it is still challenging to define and assess the
concept of systemic risk (Hansen (2013)). To evaluate systemic risk, several theoretical
frameworks have been proposed. Some studies measure tail interdependence between
assets market indices (Adrian and Brunnermeier (2011); Acharya et al. (2017)) or on es-
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timating the threat carried on by interconnectedness (Diebold et al. (2008); Billio et al.
(2012)). Other approaches (Basel Committee (2011); Hollo et al. (2012)) aggregate sev-
eral market indicators to determine the system’s level of stress, taking into account the
multidimensionality of systemic risk. Last but not least, a class of popular models uses
microstructural approaches, in which interactions between agents are individually mod-
eled, to describe a complex system and investigate the spread of financial contagion via
various channels in response to an exogenous initial shock (Allen and Gale (2000); Gai
and Kapadia (2010); Acemoglu et al. (2012); Montagna and Kok (2016); Nyman et al.
(2021)). Since the Global Financial Crisis (GFC), defining, characterizing, and measuring
systemic risk has remained a contentious issue in financial economics and econometrics.
The multifaceted nature of systemic risk defies a universal definition. Equally challenging
is the development of robust quantitative methodologies to measure it. In this dissertation,
a comprehensive exploration of systemic risk is undertaken from various angles, aiming
to contribute to this ongoing discourse and provide valuable insights into its intricate
complexities.

After this very brief summary of the concept of systemic risk, the rest of this thesis
is structured as follows. In Chapter II, a short review is given on the interpretation of
systemic risk in the context of the financial industry. In Sections II.1.3 and II.2 this context
is broadened to the market of sovereign bonds and energy assets.1 Section II.3 provides
an overview of different financial networks, while Section II.3.3 introduces the usage of
the econometric models utilized in Chapters III, IV and V.

In Chapter III, we examine the sovereign yield curve network of 12 developed coun-
tries by analyzing the term structure of interest rates using a decomposition model. The
connections between latent yield curve factors across countries are measured using a suit-
able cointegration model, revealing differences during global and local crises. The Chap-
ter also explores the role of US latent factors, network density variations during crises,
and the relationship between central banks’ decisions and the dominance of the US yield
curve in the network.

Chapter IV investigates the volatility transmissions within the European energy indus-
try across different production segments. Analyzing the period from October 2006 to June
2022, the research identifies notable internal volatility spillovers, particularly originating
from Upstream companies. The study demonstrates that Downstream and Midstream
segments can also transmit volatility under specific circumstances. Remarkably, promi-
nent Russian Integrated Oil Gas (IOG) firms shifted from being volatility absorbers to
significant transmitters post-2022 due to geopolitical events, potentially causing systemic
instability.

1In sections II.1, II.1.3 and II.2, only those literature is presented that is not part of the later body of this
thesis.
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In Chapter V, we examine energy risk’s systemic nature and its regional impact. An-
alyzing 24 European Economic Area countries, we explore the links between energy
price fluctuations, equity market behavior, and volatility using various methods. Find-
ings highlight major sources of volatility, energy shocks’ influence on equity markets, and
increased risk from green energy sources. It also reveals Central and Eastern European
market sensitivity to energy shocks during currency depreciation against the Euro. Chap-
ter VI provides future research ideas, focusing on climate risk and asset pricing models,
then lastly Chapter VII concludes.
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CHAPTER

LITERATURE REVIEW ON SYSTEMIC RISK AND NETWORK
MODELS II

II.1 Systemic risk from the financial sector

Due to the substantial influence that issues in the banking industry may have on the
larger financial system, the idea of systemic risk was first introduced in the field of bank-
ing. Initially, the phrase ”systemic risk” was used to refer to threats to the overall stability
of the financial system, such as the possibility of widespread failures and disruptions. The
phrase ”too big to fail” originated with the GFC and expresses the idea that some banks
are so enormous and essential to the economy’s operation that their failure would have
serious systemic repercussions. In this section, the basic concepts of banking-related sys-
temic risk are introduced to understand the theoretical background and set the scope to be
broadened in Sections II.1.3 and II.2.

Jackson and Pernoud (2021) make a distinction between two types of interbank de-
pendencies that may lead to systemic risk. First is when a change in the value of one bank
ripples across the system and has wide-ranging effects. A change in the value of bank i
impacts bank j, this then affects the values of the banks connected to j and so on. The
majority of the financial contagion literature focuses on this type of risk.

The existence of several equilibria and the potential for a change in equilibrium are
the sources of the second category of systemic risk. Interdependencies can result in self-
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fulfilling feedback effects wherein changes in beliefs become realized, even in the absence
of any change in the fundamentals.

The first kind of systemic risk describes how a change in fundamentals might for-
mally propagate across the banking system and how much equilibrium values change in
response to an initial change in fundamentals while maintaining the equilibrium being
constant. On the other hand, the second type of systemic risk captures shifts between
equilibria. A contagion-based crisis can be caused by a change in fundamentals, however,
what triggers an equilibrium shift is less clear.

II.1.1 Financial contagion

A cascade of insolvencies is a classic example of contagion. A bank’s investments
provide minimal returns, leaving it unable to pay its loans. As those liabilities are not
paid for, the balance sheets of other institutions go worse, which causes some of them to
go bankrupt. As more become insolvent, others’ values are further diminished, which has
a domino effect on the system.

Early models of counterparty risk include Rochet and Tirole (1996); Allen and Gale
(2000) model the behaviors of banks and depositors. Banks can exchange some of their
ex-ante deposits as insurance against shocks. Banks with extra liquidity can provide it
to banks that need it. However, these transactions can lead to financial instability and
contagion when a shock occurs that is either unexpected, impacts several institutions, or
the banking system is improperly connected. In these cases, illiquidity may cascade as a
result of liquidity drawn by one bank from another.

Less direct contagion is caused by externalities in asset values. When a bank expe-
riences insolvency, it frequently needs to hold fire sales when substantial quantities of
assets are prematurely sold. These dumpings lower the value of these asset prices, which
eventually lowers the portfolio values of other institutions that hold such assets. Kiyotaki
and Moore (1997)), Cifuentes et al. (2005), Gai and Kapadia (2010), Capponi and Larsson
(2015) and Greenwood et al. (2015) emphasize how this might cause others to bankrupt
and sell their assets, creating a downward spiral. Through simulations, Cifuentes et al.
(2005) and Gai and Kapadia (2010) show how fire sales can amplify the spread of coun-
terparty risk. They take into account financial networks that provide two different kinds
of links between banks: obligations on balance sheets and price effects whenever a bank
is required to deleverage its portfolio. They then investigate how the network structure
of interbank commitments, namely its density, affects the probability of contagion. This
is not only a theoretical concern, there is evidence that two banks are considerably more
likely to be counterparties if their portfolios have a higher correlation, showing that insti-
tutions that are connected via financial obligations also tend to be more connected through
commonality in exposures (Elliott et al. (2021)).
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Exposure similarities open the door for another type of contagion called ”guilt by

similarity”. People are skeptical of the solvency of other banks that resemble bankrupt
ones. Such contagion is made feasible by connected portfolios across banks and uncer-
tainty over the value of fundamentals and/or the portfolio structures. Given the incomplete
understanding of those portfolios, banks draw conclusions that may or may not be vali-
dated in hindsight. The fact that banks are members of a complicated financial network
with an imperfectly known structure makes this type of inference-based contagion worse.
Caballero and Simsek (2013) show that cautious banks may take precautionary measures
more frequently than needed and refrain from lending money to each other during a crisis,
because of the complex interbank cross-exposure system.

II.1.2 Multiple Equilibria

Even in the absence of a shift in fundamental values, systemic risk can arise. When
a financial network allows for many equilibrium states, a simple change in beliefs might
cause the system to abruptly switch between states, with actual economic repercussions.
These belief changes can arise from inferences, that reflect real underlying correlations,
but they could also arise via sunspots (Shell (1989)), bubbles (Brunnermeier and Oehmke
(2013)), or exogenous events that can be conditioned upon by investors (Angelini et al.
(1996)). The fundamental principle is that, in the case of many equilibria, the equilibrium
that actually holds relies on what people anticipate.

The conventional form of bank runs and panics belongs to this category of systemic
risk, in which behavior becomes self-fulfilling. This risk arises from the banks’ core func-
tion of converting short-term deposits into long-term illiquid investments, which renders
banks inherently fragile institutions: if enough depositors withdraw their money before
the bank realizes its investments, the bank will be unable to repay them all and default
(Reinhart and Rogoff (2009)). Diamond and Dybvig (1983) demonstrate how depositors
might cause a bank to become bankrupt by withdrawing their funds. This is an ineffi-
cient situation since a depositor’s decision on investment relies on how other depositors
behave. When investments are complementary, multiple equilibria can exist because the
assumptions about how assets will be valued might become self-fulfilling and fear be-
comes contagious.

Not only might depositors and outside investors experience fear and reduce their in-
vestments, but banks themselves may also do so. Banks may have second thoughts about
how financially viable many businesses will be due to economic uncertainty. This might
get out of control because banks may reduce their capital if they anticipate a recession thus
demanding higher interest rates. This might result in a spiraling situation and perhaps a
total credit freeze. The absence of investment worsens the conditions of companies and
financial intermediaries, making them worse investments, which then justifies the with-
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drawal. As a result, this type of freeze can be self-fulfilling and still be a problem even if
there are no changes in the fundamentals that drive the assumptions (Bebchuk and Gold-
stein (2011)). This was present in the freeze of overnight lending between 2007 and 2009
(Brunnermeier (2009); Diamond and Rajan (2011)).

Financial contracts between banks have the potential to set off a chain reaction of
defaults as bank values are linked due to interbank contracts. The chance of one bank de-
faulting on its obligations might reduce the value of other banks and have a domino effect
back on the original bank, self-fulfilling the failure. They appear in any system of expo-
sures between banks for which there are multiple equilibrium values for interbank claims
(Elliott et al. (2014); Roukny et al. (2018); Jackson and Pernoud (2020)). Such cascades
are not only transfers that are not done; they also result in real economic losses, and the
multiplicity of equilibria has an impact on efficiency when there are costs connected with
bankruptcy.

Fire sales may result in many equilibria and a self-fulfilling deterioration of the finan-
cial system. The investment model of Krishnamurthy (2010) allows multiple equilibria to
coexist and exhibit various degrees of liquidation and price levels. Caballero and Simsek
(2013) take into account a model that includes both fire sales and cross exposures across
banks. They demonstrate that there may be an equilibrium where contagion is restrained
and prices remain fair, as well as an equilibrium where banks adopt conservative measures
that result in fire sales, low market prices, and worse contagion.

Naturally, all the above-mentioned forms of systemic risk are present and interact at
the same time.

II.1.3 Systemic risk on the sovereign bond market

Among other things, the Global Financial Crisis sparked worries about the fragility of
the debt markets. In Europe, this was aggravated by the European Sovereign Debt Crisis
(ESDC) and the potential systemic risk impact of a sovereign default on other European
debt markets. Therefore, it is not surprising that the majority of the systemic risk-related
papers target this region from this era. As the perception of systemic risk is typically
linked to how an asset’s or financial institution’s financial distress affects other assets or
the entire financial system, it is closely related to how failures spread from one asset or
institution to another or to the system as a whole. The vast majority of articles discussing
systemic risk on the sovereign bond markets use this idea of systemic risk and take into
account the effects of a potential sovereign debt default in one country on all other markets
for sovereign bonds (Reboredo and Ugolini (2015)).
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II.1.3.1 Risk spillover within the spread and return of European government bonds

One strand of the literature on sovereign systemic risk includes articles that look at the
co-movements and factors that influence changes in government bond spreads or returns,
such as credit risk, exchange rate fluctuations, particular news, rating shifts, and even the
likelihood that some nations will leave the eurozone. Depending on whether they focus
on the GFC or the ESDC, they can be further divided.

Manganelli and Wolswijk (2009) emphasize that there is a positive relation between
short-term interest rates and the euro area government bond spreads. Haugh et al. (2009)
show that bond yield spreads in the euro area may be explained in part by differences in
fiscal policies, especially as they relate to their impact on future deficits and the debt ser-
vice ratio. Investigating bond spreads compared to both US and German bonds, Von Ha-
gen et al. (2011) claim that a small number of macroeconomic and financial variables
reliably account for the majority of the spreads’ behavior. Moreover, markets penalize
fiscal imbalances much more strongly since the GFC. Borgy et al. (2011) come to similar
conclusions by estimating the joint dynamics of eight euro area government bond yield
curves making use of three common euro area macro factors and one latent fiscal fac-
tor for each country. They conclude that fiscal factors are the main determinants in the
increase of yield spreads since 2008.

De Santis (2014) separates aggregate risk, country-specific risk, spillover risk and
contagion risk. The aggregate risk is driven by changes in monetary policy, global un-
certainty and risk aversion, while the country-specific risk is related to changes in default
probabilities on the sovereign debt, the ability to raise funds in the primary market and
liquidity factors in the secondary market. De Santis (2014) also claims that separating
liquidity risk, spillover risk and contagion risk from aggregate risk is required to make
proper policy decisions in terms of central bank interventions. Beetsma et al. (2013) fo-
cus on the PIIGS (Portugal, Italy, Ireland, Greece, Spain) countries and find that bad news
spill over from PIIGS countries onto non-PIIGS countries, affecting the bond spreads.
Afonso et al. (2015) suggest that the set of financial and macro spreads’ determinants in
the euro area is rather unstable but generally becomes richer and stronger in significance
as the crisis evolves. Silvapulle et al. (2016) proposed a semi-parametric copula model in
a bivariate case to evaluate tail dependence parameters and the joint distribution of yield
spreads. The approach for contagion showed a significant increase in tail dependence
from the pre-crisis (1999 - 2008) to the post-crisis (2008 - 2013) periods.

II.1.3.2 Risk spillover from the European government bond market to other finan-
cial areas

The other strand of this literature implicates the European debt crisis on the financial
industry. Alter and Schüler (2012) evaluate the connection between sovereign default risk
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and domestic banks. They contend that while government and bank credit risk intercon-
nectedness varies among countries, it is homogeneous within the same country. Through
the use of assets, collateral, and rating channels, De Bruyckere et al. (2013) investigate
the contagion between bank and government default risk in Europe. They discover that
banks with poor capital buffers, lousy funding structures, and less conventional bank-
ing operations are most prone to risk spillovers. The study of Perego and Vermeulen
(2016) focuses on the Eurozone asset markets and provides evidence on the importance
of macroeconomic factors on stock, bond and stock-bond correlation.

Mink and De Haan (2013) analyze the impact of highly volatile Greek bonds on Euro-
pean bank stock prices in 2010. They note that PIIGS assets are particularly vulnerable to
news on the Greek bailout. Using impact analysis on news, Bhanot et al. (2014) examines
how changes in Greek sovereign yield spreads affect stock returns in the banking industry.
Their analysis indicates that news events lead to spillovers in excess of increases in do-
mestic interest rates and higher funding costs. Similarly, Pragidis et al. (2015) study the
contagion of the spread of government bonds on the stock market during the Greek finan-
cial crisis and acknowledge that it is not straightforward to reject or accept the contagion
hypothesis since there are many potential channels for contagion.

While researchers focus mainly on the links between sovereign yields of European
economies, more recently papers targeting other geographic regions appeared. In Chapter
III, a few examples are mentioned, however, it is safe to say, that papers targeting the Eu-
ropean area are in the majority. Chapter III provides an analysis that focuses on developed
economies worldwide thus providing an extension to the existing body of literature.

II.2 Systemic risk from energy sector

The energy market is one of the most crucial parts of the economic system, and in
recent years, energy prices have become more volatile with high risk and significant un-
certainty (Ji and Zhang (2019)). As a result, such volatility has a major impact on the
real economy and indirectly threatens the stability of the financial system, even creating a
systemic danger to the world’s financial markets. In the context of energy market-related
studies, systemic risk is mainly associated with the propagation of price and volatility
shocks in the financial system (Lautier and Raynaud (2012)). The cross-market risk con-
tagion in the energy system, particularly during times of turbulence, has received a lot of
attention since the GFC. Risk spillover between different energy markets, risk spillover to
different commodities markets, and risk spillover to different stock markets are the three
primary strands of energy-related spillovers.
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II.2.1 Risk spillover within different energy markets

In an early study, Hammoudeh et al. (2003) investigate WTI, gasoline and heating oil
to determine the volatility spillover between future and spot prices. They claim that both
spot and futures prices have bi-directional causal links, but the spot prices have the most
spillover effects. Papież and Śmiech (2015) assess the dynamics of the integration pro-
cess of the international steam coal prices and look into how particular coal prices have
changed in relation to this market’s supply and demand structure. Lin and Li (2015) in-
vestigate the global crude oil and natural gas markets and find that while US gas prices are
decoupled from oil due to natural gas market liberalization and shale gas growth, Euro-
pean and Japanese gas prices are cointegrated with Brent oil prices. Exploring the impact
of uncertainties (economic policy, financial markets and energy markets) on energy prices
Ji et al. (2018b) suggest that there generally exists negative dependence between energy
returns and changes in uncertainty.

Using MSCI energy indices of 21 major economies, Singh et al. (2019) show that re-
turn spillover is significant and is more prevalent in some nations. However, this behavior
alters during times of crisis. In the global crude oil system, where Brent and WTI play
the major roles in risk transmission, China’s crude oil futures act as a net risk receiver,
claims Yang et al. (2021). Gong et al. (2021) look into four major energy commodities
(crude oil, natural gas, heating oil, and gasoline) and find that the main net transmitters of
information about volatility risk are the crude oil and heating oil futures, while the main
net receivers are the gasoline and natural gas futures.

II.2.2 Risk spillover between energy and other commodity markets

The literature on risk spillover from energy assets to other commodities is very rich.
Two groups of commodities are often examined against energy commodities, from which
the first one is precious and industrial metals. In the case of metals, the interconnection
between energy prices and industrial and precious metals could be explained since an
increment in oil, gasoline, coal and gas prices results in an increase in production costs,
passing through to the final metal prices (Hammoudeh and Yuan (2008)).

Upon investigating safe haven characteristics of precious metals, Shahzad et al. (2019)
claim that the safe haven function of each precious metal can change depending on how
well or poorly it protects against downward or upward oil shocks. Guhathakurta et al.
(2020) examine how oil price shocks affect various metal commodities over time and their
implications for investment choices. During particular oil price regimes, they provide
portfolio decisions. Umar et al. (2021b) explores the dynamic connectedness of industrial
and precious metals to crude oil shocks. They conclude that there are more differences
between the net dynamic connectedness of the metal markets analyzed in terms of return
than volatility. Mensi et al. (2020) examine co-movements, risk spillovers, and portfolio
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implications between precious metals and main energy futures price returns and volatility.
They demonstrate that, regardless of market conditions, gold and oil are net contributors
to volatility while the other assets are net recipients of risk.

The second type of commodities that are in the scope of energy-related studies (and
mainly crude oil) are the agriculture commodities. In general, there are three ways to
establish links between crude oil and agricultural prices. First, a significant percentage of
the cost of agricultural goods is attributable to the use of commercial nitrogen fertilizers
and other production-related inputs, which indirectly links the price of these products to
the price of energy (Esmaeili and Shokoohi (2011); Mensi et al. (2017b)). Second, as
agriculture got more industrialized, it used more fuel, chemicals, and fertilizers, which
made it an energy-intensive sector of the economy (Zhang and Qu (2015); Hasanov et al.
(2016)). Third, due to a sharp increase in oil costs, renewable energy, particularly biofuels,
has been expanding quickly (Ji and Fan (2012); Nazlioglu et al. (2013); El Montasser et al.
(2015); Hasanov et al. (2016)).

In an earlier study, Du et al. (2011) discover evidence of volatility spillover among
crude oil, corn, and wheat markets, explained by tightened interdependence between
crude oil and these commodity markets induced by ethanol production. Luo and Ji (2018)
investigate the realized volatility connectedness of US crude oil futures and five of China’s
agricultural commodity futures. The findings support the presence of volatility spillover
from the US crude oil market to Chinese markets, even though the scale of the spillover
is modest. Shahzad et al. (2018) find evidence of spillovers from oil to agricultural com-
modities that intensify during financial turmoil. On the contrary Umar et al. (2021a) state
that a set of agricultural commodities are transmitters (canola and corn) while others are
receivers (orange juice, lean hog, sugar and rubber). In a related study, Balcilar et al.
(2021) come to a similar conclusion, claiming that crude oil, grains, livestock, sugar, and
soybean oil are the transmitter commodities while corn, lean hogs, soybeans, cattle, and
wheat are the main receivers of shocks.

II.2.3 Risk spillover between energy and equity markets

There is conflicting evidence in the empirical literature on the effects of oil price
shocks and stock market returns about how oil price changes affect stock prices. The
influence of oil prices on stock returns may be classified as positive, negative, or null, as
well as the effect of oil price volatility on the volatility of stock market returns.

Hammoudeh and Li (2005) claim that there is an inverse relation between oil prices
and stock returns in oil-exporting countries and US oil-sensitive industries. Similarly,
Ghouri (2006) observe a negative connection between WTI and US monthly stock posi-
tions. Basher and Sadorsky (2006) and Hammoudeh and Choi (2007) provide evidence of
the adverse impacts of oil prices on stock markets for developing countries. The analysis
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of Nandha and Faff (2008) on the connections between oil prices and 35 global industrial
sectors reveals that, except the oil and gas sectors, all industries had negative effects from
rising oil prices. Driesprong et al. (2008) discover evidence of high predictability and a
negative and statistically significant association between oil prices and stock returns using
data for 48 developed and developing countries. These findings are consistent with the
idea that investors underreact to information about oil prices. Narayan and Sharma (2011)
look at the relationship between the price of oil and stock returns for companies listed on
the NYSE and discover that the impact of the oil price varies depending on the sector, that
there are lag effects consistent with the investors’ underreaction hypothesis, and that the
intensity of the impact on firm returns varies with firm size.

Given that oil future returns and volatility have a negative and positive impact on
industry returns, respectively, Elyasiani et al. (2011) offer evidence at a sectoral level
that oil price movements are asset price risk factors. Miller and Ratti (2009) provide
evidence of a negative long-run impact of the global price of crude oil on international
stock markets that can momentarily alter. Zhu et al. (2011) further establishes that there
is bidirectional long-run Granger causality between crude oil prices and stocks for both
OECD and non-OECD countries. Tiwari et al. (2018) look at nine Indian equities sectors
and discovers that in eight of them, there are inverse relationships between oil prices and
equity returns. The carbon sector is the only one that is immune to oil price risk.

Besides linear models, Aloui and Jammazi (2009), Chen (2010) and Reboredo (2010)
study nonlinearities in the relationship between crude oil shocks and stock markets. They
come to the same conclusion that oil has a negative effect on the mean and the volatility
of stock returns in some regimes. Jammazi (2012) also look at how components of the
oil price (obtained through wavelet decomposition) relate to overall stock market returns
and discover that crude oil shocks temporarily restrained expanding stock market phases.
Using non-linear Autoregressive Distributed Lag cointegration methodology, Badeeb and
Lean (2018) show weak negative linkages between oil price changes and the Islamic com-
posite index.

A positive association between oil prices and stock market returns has been also shown
in several research. For instance, El-Sharif et al. (2005) conduct a study on the relation-
ship between crude oil prices and equity values in UK oil and gas companies with a result
of a positive linkage. Narayan and Narayan (2010) discover a significant positive effect of
oil on Vietnamese stock prices. Using Seemingly Unrelated Regression (SUR) methods,
Arouri and Rault (2012) document a positive impact of oil price increases on stock prices
in Gulf Cooperation Council (GCC) countries. According to Mollick and Assefa (2013),
crude oil prices have a positive impact on the US stock returns but only from mid-2009.
Reboredo and Rivera-Castro (2014) finds positive interdependence between oil and stock
prices in Europe and the USA since the onset of the GFC. Ma et al. (2019) investigate the
interconnectedness between WTI oil price returns and the returns of listed firms in the US
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energy sector and detect positive relations.

Many publications also offered evidence for the independence of oil and stock mar-
ket returns. Henriques and Sadorsky (2008), for example, who examine the connection
between alternative energy stock prices, technology stock prices, oil prices as well as in-
terest rates, claims that shocks to oil prices had only a weak impact on the alternative
energy companies. Apergis and Miller (2009) investigate how structural shocks affected
stock market returns for a sample of eight nations and discover that oil market shocks
had little to no effect on stock market returns. Looking into GCC countries, Al Janabi
et al. (2010) found evidence of no Granger causality for oil prices and stock price indices.
Broadstock and Filis (2014) investigate the effect of oil price shocks both on the US and
Chinese equity markets, and claim that while China is resilient to oil price shocks, the
USA is not. By investigating clean energy firms, Bondia et al. (2016) finds that from
crude oil, there is no causality running towards prices of alternative energy stock prices
in the long run. Looking into clean energy stock indices and crude oil prices, Dawar et al.
(2021) provide insignificant connections during bullish episodes (but find strong negative
effects in bearish periods).

The oil-stock market volatility link was examined by Hammoudeh et al. (2004), who
employ generalized autoregressive conditional heteroskedasticity (GARCH) models to
show that oil volatility decreases the volatility of stocks in the downstream industry, but
increases it for companies in the upstream sector. Aloui et al. (2008), find that oil price
changes had causal effects on stock market volatility in six developed countries. Ham-
moudeh et al. (2010) study the effect of oil price changes on stock return volatility, finding
a positive effect for increases in return volatility for sectors that use oil intensively, a neg-
ative effect for oil-related sectors and a negative and asymmetric effect for all sectors. Vo
(2011) studies the volatility of stock and oil future markets using a multivariate stochastic
volatility model, reporting evidence of time-varying correlation, volatility persistence and
a positive effect for volatility innovation in one market on the other. Tsuji (2018) examies
volatility spillovers and financial risks among oil futures and oil and gas sector equity
returns of the US, Canada, Australia, and Russia. Their results suggest that there are uni-
directional and bidirectional volatility spillovers between oil futures and oil equities and
mostly bidirectional volatility spillovers among oil equities.

As the above-mentioned summary suggests, the literature on systemic risk in the field
of energy assets is very extensive. However, it is less common to investigate the effects
neither on sovereign level nor on company level. Chapter IV examines the volatility
spillover between major European energy companies, while Chapter V provides an anal-
ysis of oil and natural gas-related risk spillover within European countries. It is also
noteworthy that Europe is underrepresented in the literature hence this thesis provides a
multifold contribution to the literature.
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II.3 Measuring systemic risk with network models

Financial networks are intricate systems where several institutions or assets are con-
nected to one another in a variety of ways. The notion that financial interdependencies
lead to systemic hazards is highlighted by all models, notwithstanding differences in the
nature of the financial network. The sources of systemic risk may thus be measured,
predicted, and tracked using a formal model of financial networks.

II.3.1 Interbank networks

The connections and interdependence between financial institutions (banks) are repre-
sented by interbank networks. First and foremost, institutions are linked through financial
contracts. To smooth out idiosyncratic liquidity variations and meet deposit requirements,
institutions lend to and borrow from each other. They also work together on investment
opportunities and operate in chains, repackaging and reselling assets among themselves.
A significant portion of the literature focuses on these networks of interdependencies
(Allen and Gale (2000); Eisenberg and Noe (2001); Elliott et al. (2014); Acemoglu et al.
(2015a); Diem et al. (2020)).

Second, despite the absence of direct transactions between financial institutions, sim-
ilarity across their exposures causes their values to be interrelated. This can be examined
via a network in which the correlation between the portfolios of two institutions is cap-
tured by a (weighted) connection between them (Acharya et al. (2007); Allen et al. (2012);
Diebold and Yılmaz (2014); Cabrales et al. (2017), Elliott and Golub (2022)).

A bank’s vulnerability to value declines or defaults from additional sources increases
as it adds counterparties, which tends to raise the risk of cascading events. Holding the
overall exposure of a bank constant, however, distributing that exposure over a greater
number of counterparties reduces the bank’s exposure to any particular counterparty,
hence reducing the risk of contagion. Elliott et al. (2014) separates two fundamental
aspects of the interconnectivity between financial institutions to study these two forces:
the number of partners each institution has, referred to as the network’s ”density” and the
percentage of a bank’s portfolio that is held in contracts with other institutions, referred
to as the network’s ”integration”.

According to Gai and Kapadia (2010) and Haldane (2013), financial networks exhibit
a paradoxical characteristic of being ”robust yet fragile”. Banks rely on each other through
lending and liquidity provision, which helps to distribute risk. This allows individual in-
stitutions to be less vulnerable to liquidity or portfolio shocks. The impact of those shocks
is shared among various counterparties. This type of diversification effectively reduces
the likelihood of any single institution’s failure. Financial networks are considered robust
for this reason. Despite diversification, large shocks can still cause institutions to fail. In
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such cases, interdependencies can spread the shock more extensively. There are nuances
to consider based on the specific model and the types of contracts established between in-
stitutions (Allen and Gale (2000); Gale and Kariv (2007); Gai and Kapadia (2010); Elliott
et al. (2014); Acemoglu et al. (2015b)). The property of being robust yet fragile means
that a network can be better than an other one in certain situations but can be a poorer
choice in others.

Acemoglu et al. (2015b) focus on networks of unsecured interbank debt, and study
how a shock to a bank’s returns propagates through the network. There are two types of
shock regimes that they differentiate between, shocks that can be absorbed by the excess
liquidity in the system, and those that cannot. Under the former regime, interdependencies
reduce the possibility of contagion. The ideal network structure for resisting contagion is
the complete network, where each bank’s liabilities are evenly distributed among all other
banks. This leads to maximal risk sharing and a minimal expected number of defaults.
On the other hand, if the shocks are greater than the overall excess liquidity in the system,
interdependencies make it easier for the shocks to spread.

In a different model, one in which interdependencies between banks represent the
correlation in their investments, Cabrales et al. (2017) emphasizes the importance of the
size of shocks. They take into account a collection of ex-ante identical banks, each having
debt due to outsiders and access to a risky project. The returns on these projects may be
affected by unpredictable events that occur independently among different banks. If a
bank is unable to cover its debt to outsiders, it defaults and incurs some costs due to
distress. By exchanging claims on each other’s projects, banks have the opportunity to
diversify their portfolios. For example, the connection from bank i to bank j captures the
claim that bank i has on the return of j’s project. Links in their model, therefore, indicate
portfolio correlation between banks rather than any kind of interbank obligation. When it
comes to managing risk, the trade-off is the same as it is in the model of Acemoglu et al.
(2015b). Having more links between parties can lead to better risk sharing, but it also
means being exposed to more potential sources of risk. The optimal network structure to
minimize the number of defaults depends on how the shocks are distributed.

One challenge with financial networks is the existence of significant asymmetries,
particularly the presence of a core-periphery structure, which can impact the risk of con-
tagion. Large core banks can be resilient to modest shocks, however, when faced with
enormous shocks they can fail catastrophically, especially when those shocks are corre-
lated. This was what loomed in 2008. There is further research that supports the idea that
heterogeneity makes a substantial difference. Simulations by Gai et al. (2011) demon-
strate how the degree of concentration in networks of interbank claims affects the spread
of contagion. Teteryatnikova (2014) demonstrates how the network becomes more robust
by creating a negative correlation between nearby institutions. According to theoretical
findings by Glasserman and Young (2015), in a particular class of networks, contagion is
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greatest when banks are heterogeneous in size and the shock originates at a large central
bank.

By employing the above-mentioned network models, researchers regulators and pol-
icymakers can gain deeper insights into the critical nodes and linkages that contribute
to the potential failure of a financial institution. Analyzing the structural patterns and
dynamics of these networks aids in identifying potential sources of contagion and formu-
lating effective risk management strategies. As such, a comprehensive understanding of
the interactions and dependencies within networks can serve as a cornerstone for building
more resilient and stable systems in the face of potential crises.

II.3.2 Co-occurrence networks

In several circumstances, financial entities are not necessarily related via direct inter-
actions (such as flows of money, holdings of shares or financial exposures) but via some
form of co-occurrence, which may be indirect, such as commonality, similarity or corre-
lation (Bardoscia et al. (2021)). A common type of co-occurrence network is a network
with nodes that represent financial entities described by some empirical time series (for
example, stocks traded in a financial market) and whose links are weighted by the mea-
sured correlation (Tumminello et al. (2005), Kremer et al. (2019)) or causality (Billio
et al. (2012)) between the corresponding time series.

The analysis of these types of financial networks has shown that co-occurrence can
reveal higher-order properties that are not immediately evident or predictable from the in-
trinsic properties of nodes. Data-driven clustering of assets can improve the performance
of standard factor models for risk modeling and portfolio management (Antonakakis et al.
(2018); Guhathakurta et al. (2020); Mensi et al. (2020)). In general, because shocks on
portfolios can propagate to their owners, the existence of non-obvious groups of corre-
lated financial assets can have important consequences for shock propagation.

Various characteristics of co-occurrence networks require special caution and can
make their analysis more complicated than that of other types of networks. First, al-
though other types of networks are typically sparse, one-mode projections obtained from
empirical co-occurrence can be very dense (Billio et al. (2012)) and often do not contain
zeros (Diebold and Yılmaz (2014); Härdle et al. (2016)), in which case, they do not im-
mediately result in a network. This property has led to the introduction of several filtering
techniques aimed at sparsifying those matrices while retaining the strongest connections.

Second, in the presence of heterogeneous entities, the same measured value of similar-
ity might correspond to very different levels of statistical significance for distinct pairs of
nodes. For this reason, simply imposing a common global threshold on all co-occurrences
is inadequate, and alternative filtering techniques are required (Verma et al. (2019)). These
approaches found that financial entities belonging to the same nominal category can have
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very different connectivity properties in the network (Bartesaghi et al. (2020)). An open
question is the theoretical justification for the choice of the embedding geometry wherein
the network is constructed.

Third, in general, all entries of empirical similarity matrices tend to be shifted towards
large values, as a result of an overall relatedness existing across all nodes, as, for example,
a common market trend (Laloux et al. (1999)). The network representation only seeks to
depict true linkages, but this global phenomenon hides them.

Finally, the measurement of co-occurrence networks is intrinsically prone to the curse
of dimensionality. With n the number of time series and m the length of those time series,
to measure with statistical robustness the n(n− 1)/2 entries of a correlation or similarity
matrix one needs m ≥ n, that is, a sufficiently large number of temporal observations (or
nodes in the other layer of the bipartite network) in the original data to avoid dependency
and statistical noise. Unfortunately, increasing m for a given set of n nodes is often
not possible in practice, for instance, because one would need to consider a period so
long that nonstationarities would unavoidably kick in, making the measured correlation
unstable and not properly interpretable.

The above complications lead to the requirement of a comparison with a proper null
hypothesis that controls simultaneously for node heterogeneity, for a possible ‘obfuscat-
ing’ global mode and for ‘cursed’ noisy measurements. An important caveat here is that,
in co-occurrence networks, the model necessarily has mutually dependent links. This
arises from the fact that, if node i is positively co-occurring with node j, which is, in
turn, positively co-occurring with node k, then nodes i and k are typically also positively
co-occurring. Therefore, naively using those null models introduces severe biases in the
statistical analysis of co-occurrence networks.

II.3.3 Methodological framework

II.3.3.1 The Toda-Yamamoto model

The Toda and Yamamoto (1995) model (T-Y hereafter), has emerged as a significant
tool for researchers seeking to explore complex causal relationships in economic data.
This model extends the traditional Granger causality test to handle non-stationary time
series data, making it particularly valuable for understanding dynamic interdependencies
between economic variables. Although originally it is an econometric model, Fig. II.1
highlights that the method is particularly popular in environmental science and energy-
related journals as well, due to the characteristics of time series occurring in these fields.
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Fig. II.1. The citation network of Toda and Yamamoto (1995), as of July 2023

Note: A node represents a citing article, the number in the node stands for the number of citations
of that given article according to Scopus, as of July 2023. An arrow between two nodes indicates
the direction of the citation, and the colors of the nodes indicate the main fields of the hosting
journal according to Scimago. Only those articles are represented that are cited at least 200
times, as of July 2023.

In an unconstrained VAR context, the traditional Granger causality tests rely on the
presumption that the underlying variables are stationary, or integrated of order zero. The
stability criterion of the VAR is intended to be broken if the time series are non-stationary.
As a result, the χ2 (Wald) test statistics for Granger causality, which are used to check the
combined significance of all other lagged endogenous variables in VAR equations, are
no longer valid. Investigating cointegration in the case of non-stationary time series is
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necessary, and if found, the vector error correction model should be used in place of
the unconstrained VAR. No test for the long-run relationship is used if the series are not
integrated of order I(1) or are integrated of different orders. On the other hand, using unit
root and cointegration tests may have low power compared to the alternative. Therefore,
they can be misplaced and may suffer from pre-testing bias (Toda and Yamamoto (1995);
Pesaran and Shin (1998)).

To address some of these issues, Toda and Yamamoto (1995) and Dolado and Lütkepohl
(1996) introduce the modified Wald (MWALD) test for restriction on the parameters of
the VAR(p), where p is the lag length of the VAR system. According to their method,
the greatest order of integration (dmax) is added to the system’s correct order (p), and the
VAR(p+ dmax) is then computed without taking into account the coefficients of the most
lagged dmax vector. Toda and Yamamoto (1995) confirm that regardless of whether the
process is stationary, around a linear trend, or whether it is cointegrated, the Wald statistic
converges in distribution to a chi-square random variable with degrees of freedom equal
to the number of the removed lagged variables.

The T-Y approach is unique in that it eliminates the possible bias brought on by unit
roots and cointegration tests by not requiring pre-testing for the system’s cointegrating
characteristics (Zapata and Rambaldi (1997); Clarke and Mirza (2006)). It suggests using
augmented level VAR modeling to test for causality in a system that may be integrated and
cointegrated (of arbitrary orders), allowing for the long-run information that is frequently
overlooked in systems that first require differencing and pre-whitening (Clarke and Mirza
(2006); Rambaldi and Doran (1996)). The test statistic (MWALD) is valid as long as the
order of integration of the process does not exceed the true lag length of the model (Toda
and Yamamoto (1995)).

However, besides its appealing characteristics, the T-Y approach has some weaknesses
as well. The method suffers some loss of power because the VAR model is intentionally
over-fitted (Toda and Yamamoto (1995)). Kurozumi and Yamamoto (2000) also warn that
for small sample size, the asymptotic distribution may be a poor approximation to the
distribution of the test statistic.

II.3.3.2 The Diebold-Yilmaz spillover index

The spillover indices of Diebold and Yilmaz (2009), Diebold and Yilmaz (2012),
Diebold and Yılmaz (2014) (D-Y hereafter) is a popular method for measuring total in-
terdependence or ”connectedness” in a dynamic system of random variables. The D-Y
index became one of the cornerstones of the literature studying systemic risk, and it has
been widely used in policy (e.g., ECB (2021); IMF (2023)) and industry to assess sys-
temic risk in financial markets. Although the D-Y index is a relatively young method, as
Fig. II.2 points out, Diebold and Yılmaz (2014) is widely cited, especially in the fields
of Economics, Econometrics and Finance. This section provides a brief oversight of the
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history and usage of the framework, Sections IV.3.2 of Chapter IV and V.4 of Chapter V
provide a complete description.

Fig. II.2. The citation network of Diebold and Yılmaz (2014), as of July 2023

Note: A node represents a citing article, the number in the node stands for the number of citations
of that given article according to Scopus, as of July 2023. An arrow between two nodes indicates
the direction of the citation, and the colors of the nodes indicate the main fields of the hosting
journal according to Scimago. Only those articles are represented that are cited at least 100
times, as of July 2023.

In Diebold and Yilmaz (2009) the volatility spillover metric which is based on Fore-
cast Error Variance Decomposition (FEVD) coming from a Vector AutoRegressive model
introduced by Sims (1980). Variance decomposition measures how exactly the H step
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ahead forecast error variance of a variable i can be attributed to the innovation of another
variable j, thereby creating an intuitive method for measuring the spillover of volatil-
ity. In this form of the procedure two limitations encounter, one of which is that the
VAR method uses Cholesky factor identification, so the results depend on the order of
the variables. The second is that only the spillover index for the entire population can be
calculated, not between constituent pairs.

Diebold and Yilmaz (2012) eliminate both limitations using a generalized VAR model
built on the results of Koop et al. (1996) and Pesaran and Shin (1998), getting a process
which is nonsensitive to the order of variables. This method allows correlated shocks
assuming the normality of error distribution. Thus, the shocks to each variable are not
orthogonal. The generalized spillover index (Diebold and Yilmaz (2012)) is based on the
contribution to a variable’s forecast error variance coming from all other variables’ shocks
in the system - the ”spillover” inherent in the system. Going from low-dimensional to
high-dimensional environments, Diebold and Yılmaz (2014), Diebold and Yilmaz (2015)
and Demirer et al. (2018) study the connectedness of financial institutions within the USA,
across the Atlantic, and across the globe, respectively.

There are various interpretations of D-Y’s generalized measures of total spillover in
extant studies. For example, Diebold and Yılmaz (2014) (p 126) interpret the generalized
total spillover from others as ”...the share of volatility shocks received from other financial

firm stocks in the total variance of the forecast error for each stock.” In the context of
bond yield volatilities of eleven European countries, Fernández-Rodrı́guez et al. (2015) (p
340) claim to ”...obtain a value of 54.23% for the total volatility spillover index among the

eleven countries under study, indicating that slightly more than half of the total variance

of the forecast errors during the sample is explained by shocks across countries, whereas

the remaining 45.77% is explained by idiosyncratic shocks.” Numerous other papers (and
this thesis as well) similarly interpret the generalized total spillover from others to variable
i as the percent of the forecast error variance of variable i that can be explained by the
shocks of all other non− i variables in the system.

As per Diebold and Yilmaz (2023) it is easy to comprehend why the D-Y connectivity
assessment has become so popular. The approach is straightforward and compelling, in-
tegrating classic ”econometric modeling thinking” with contemporary ”network and Big

Data thinking”, putting the pieces together to go to entirely new places. It is based on vari-
ance decompositions, which are well-known and easy to use, and it is supported by the
innovative discovery that ”a variance decomposition is a network” which makes a con-
nection between the apparently separate VAR literature and the network literature. There-
fore, network methods that easily scale to large dimensions offer significant assistance in
summarising and visualizing connections as determined by variance decompositions.
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CHAPTER

THE IMPACT OF CRISIS PERIODS AND MONETARY DECISIONS
OF THE FED AND THE ECB ON THE SOVEREIGN YIELD
CURVE NETWORK III

Chapter III is based on the work of Badics et al. (2023). Minor modifications are made

to align with the dissertation format.

III.1 Introduction

Over the past few decades interlinkages between global financial markets increased due
to the fundamentals, regulatory convergence, and growing international trade. Global-
ization and surging connectedness led to a higher likelihood of local and global crises.
Furthermore, during turbulent periods the strength of connections sharply increases, and
risk spills over across markets and asset classes, as it happened during the Dotcom Bub-
ble, the Global Financial Crisis of 2007–2009, the European Sovereign Debt Crisis, or
the recent Covid-19 Pandemic. Examining financial systems is crucial for investors and
other market participants too because a shock and a crisis in one market can affect the
return and volatility of another market and infect the decision-making for portfolio risk
management. For this reason, it is essential for regulators to monitor the rapid changes,
understand the network dynamics on different levels, and identify the key participants
of financial networks. During the last few years, motivated by these episodes of crises,
the connections between financial markets have been widely investigated in academia,
especially from a network perspective (Diebold and Yilmaz (2009), Billio et al. (2012)).

To examine financial networks, several approaches have appeared in the literature since
the Global Financial Crisis. On the theoretical side, Gai and Kapadia (2010), Gai et al.
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(2011), Elliott et al. (2014), Acemoglu et al. (2015b) and Glasserman and Young (2015)
analyze the effects of financial contagion on risk. On the empirical side, there are vari-
ous ways to quantify connectedness. In the last decade, the widespread methods are the
Granger causality (Billio et al. (2012)), Conditional Value at Risk (CoVaR) (Adrian and
Brunnermeier (2011)), Systemic Expected Shortfall (SES) and Marginal Expected Short-
fall (MES) (Acharya et al. (2012)), and the spillover measure based on Forecast error
variance decompositions (FEVD) from Vector autoregressive (VAR) model, shown by
Diebold and Yilmaz (2009), Diebold and Yilmaz (2012) and Diebold and Yılmaz (2014).
These techniques are frequently used to examine networks in various asset classes, such
as equities (Bernal et al. (2014), Vỳrost et al. (2015), Billio et al. (2016), BenSaı̈da
(2019)), bonds (Antonakakis and Vergos (2013), Reboredo and Ugolini (2015), Corsi
et al. (2018)), currency rates (Bubák et al. (2011), Antonakakis (2012), Ji et al. (2019))
or commodity prices (Kang et al. (2017a), Ji et al. (2018a), Umar et al. (2021d)). The
Granger and FEVD-based frameworks have the benefit over CoVaR and MES approaches
in that they can better analyze the network on different levels (pairwise, subsystem and to-
tal connectedness, Diebold and Yılmaz (2014)). The Granger causality and the Diebold-
Yilmaz (D-Y) approaches are extensively used in the network literature (Barigozzi and
Brownlees (2019)).

The network-related econometrics frameworks are increasingly evolving (Barunı́k and
Křehlı́k (2018), Demirer et al. (2018)). Despite the high number of recent connectedness-
related articles and the widespread methods, the deeper structure of the networks (ana-
lyzing on different levels) has been investigated by far fewer. In addition to that, only
a few studies (Hautsch et al. (2015), Sedunov (2016), Nucera et al. (2016), Hué et al.
(2019)) try to identify the key participants of the financial networks and. Although there
is a large body of both theoretical (Gai and Kapadia (2010), Gai et al. (2011)) and empir-
ical (Diebold and Yilmaz (2012), Alter and Beyer (2014), Bouri et al. (2021)) literature
focusing on differences between calm and turbulent periods, the comparison of different
crises has only come into focus in recent years (e.g. Mensi et al. (2018), Gunay (2021),
Batten et al. (2022), Jebabli et al. (2022), Jana et al. (2022), Baumöhl et al. (2022)).

The majority of the network-related literature focuses on equities and fewer papers turn
attention toward sovereign bonds. Given that two recent crises, which had serious, cross-
county impacts, have been closely related to the fixed-income market (namely, the Sub-
prime and the European Sovereign Debt Crises), a study that focuses on sovereign yield
curves is essential. While researchers focus mainly on the links between sovereign yields
of European (Antonakakis and Vergos (2013), Fernández-Rodrı́guez et al. (2015)) or
Asian (Gabauer et al. (2022)) countries, only a few studies explore the connections be-
tween the most developed (Umar et al. (2022), Berardi and Plazzi (2022)) markets. Ad-
ditionally, the most developed sovereign bond markets have significant influences on the
yield curves of other countries, as shown by Ahmad et al. (2018) and Stona and Caldeira
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(2019).

In this paper, to address the gap in the empirical literature, we calculate the yield curve
factors (Level, Slope, and Curvature) of 12 developed sovereigns based on the model of
Diebold and Li (2006) and investigate the connectedness among them from 1998 to 2021.
Our examination covers cross-factor relations as well, and we use the Toda-Yamamoto
(Toda and Yamamoto (1995)) causality test to handle cointegrated time series. We are
particularly interested in investigating the density of networks during calm and turbulent
periods. To deeper understand the structural changes and identify the key participants in
the sovereign yield curve network, we analyze the connections on factor, country, and
node level. In addition, in analyzing the nodes’ connections, we examine the relation
between the monetary policy decisions and the sovereign yield curve network. We explore
links between the easing and tightening decisions by the Fed and ECB, and the time-
varying dominance of the key participants in the sovereign yield curve network.

The contribution of this paper to the existing literature is fourfold. First, to our knowl-
edge, we are the first to adopt the Toda-Yamamoto (Toda and Yamamoto (1995)) causality
test to examine a large network of sovereign yield curves over an extended period of time.
While the Time-Varying Parameter Vector Autoregression (TVP-VAR) model recently
suggested choice for network analysis (Rossi (2005), Rossi and Wang (2019)), our choice
of the Toda-Yamamoto model (T-Y hereafter) is motivated by its simplicity and flexibility
(see Rambaldi and Doran (1996)), alleviating complications that may arise from using
TVP-VAR with cointegrated series. The T-Y causality test is applicable regardless of
whether a series is I(0), I(1), or I(2) are cointegrated or not cointegrated in any arbitrary
order. The procedure avoids the bias associated with unit roots and cointegration tests
(Rambaldi and Doran (1996); Zapata and Rambaldi (1997); Clarke and Mirza (2006)), as
it does not require pre-testing of the cointegrating properties of the system. Consistent
with earlier studies (e.g., Cavaliere et al. (2010); Engsted and Tanggaard (1994); Hall
et al. (1992); Wilms and Croux (2016)), we also provide evidence of numerous cointe-
grated time-series yield curve pairs using Engle-Granger (Engle and Granger (1987)) and
Johansen (Johansen (1988)) tests. To address potential limitations of T-Y model, and ac-
count for potentially time-varying parameters in the network, we use 750-day estimation
moving window estimation during the sample period.

Second, using a large sample of sovereign yield curves, from 12 countries over 23 years,
we consider Level, Slope, and Curvature factors using the Diebold and Li (2006) model.2

We explore cross-connections between sovereign yield curve factors and show evidence
of a significant amount of linkage between the Level Slope and Curvature subnetworks.
We identify the key participants in the sovereign yield curve network and find that the US
factors dominate as key network participants throughout the sample, in each subperiod,

2Our model is a close network approach, containing only yield curve factor data, as we focus on the
endogenous relationships. Therefore omitted variable bias might occur.
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with some variation across time. These results extend the findings of other recent yield
curve papers (e.g., Cavaca and Meurer (2021); Umar et al. (2021c); Umar et al. (2022)
and Gabauer et al. (2022)) who examine spillover effects among networks created from
Level, Slope and Curvature factors only and do not identify the top nodes in the system.
Third, we provide several unique insights by analyzing the deeper structure of our network
showing the followings: (1) the two global crises have more dense networks, than the
local ones;3 (2) US latent factors act as key participants in our network, however, their
contribution is time variant; (3) cointegrated relationship between Canada and the USA
results in the Canada being co-driver in the network during in crises periods.
Lastly, we contribute to the literature about the spillover effect of monetary policy de-
cisions (e.g., Hofmann and Takáts (2015); Kearns et al. (2018); Albagli et al. (2019);
Lakdawala et al. (2021); Miranda-Agrippino and Ricco (2021); Jarociński (2022) and
Miranda-Agrippino and Nenova (2022)) and provide insights for monetary policy discus-
sions. We also extend the scope of the earlier sovereign yield curve studies as we inspect
the dynamics of the key participants’ dominance in the network and connect these dynam-
ics to the monetary policy decisions. Specifically, by analyzing the influence of the easing
and tightening decisions by the Fed and the ECB on the key participants of the sovereign
yield curve network we find that the dominance of the US factors peaks if the Fed leads
the rate hike cycle and reaches its minimum when the interest rate cycle is led by the ECB.
We provide insights for the more exposed market participants to prepare for the expected
impacts of US intervention potentially better. We also highlight the potential structural
breaks in crisis and tranquil periods, by showing that Canada is effectively an extension
of US monetary policy impact during crisis periods, highlighting the importance of close
trade partner relations.
The rest of this paper is structured as follows. In Section III.2 we review the literature
on the sovereign yield curve networks, in Section III.3 we discuss the methodology for
extracting the latent factors with the Diebold-Li model and we introduce the T-Y model.
In Section III.4 the data is presented, in Section III.5 we discuss our empirical results and
in Section III.6, we conclude and present the policy implications.

III.2 Literature review

There are two families of articles investigating links among sovereign bonds. The first one
examines the market integration and comovements between short and long-term yields of
international bonds. The second one estimates the connectedness among sovereign yields
or yield curve factors with network-based econometric methods.

3We examine the Dotcom Bubble (DCB), the Global Financial Crisis (GFC), the European Sovereign
Debt Crisis (ESDC), and the Covid-19 Pandemic (C19). From these, we consider the GFC and the C19
Pandemic as global, while the other two as local crises. It is revealed that the two global crises have more
connection counts, than the local ones.
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An overview of existing literature on the bond market reveals that there are only two pio-
neer studies that analyze the connectedness of international bond markets from a network
view, without using the last 10 years’ network-based econometrics methodologies. In an
early paper, Sander and Kleimeier (2003) investigate connections among Asian sovereign
bond spreads with Gragner-causality during four episodes of Asian crises. They show
that the Asian crisis changed causality patterns on a regional base. Christiansen (2007)
examine the volatility spillover between the US and European sovereign bond markets
using a GARCH model. Results indicate volatility spillover from the US to European
bond markets, but not vice versa.

Since the GFC network-based methodologies have gained popularity. Antonakakis and
Vergos (2013) examine the spillover in the sovereign yield spread among Eurozone coun-
tries using measures developed by Diebold and Yilmaz (2012) and find that more than
60% of the variances are explained by spillovers from other countries. Gómez-Puig and
Sosvilla-Rivero (2013) analyze the time-varying nature of Granger causal relationships
between the yields on 10-year government bonds issued by five EMU countries. In a sim-
ilar study Gómez-Puig and Sosvilla-Rivero (2016), using sovereign bond yield spreads of
ten central and peripheral countries to examine the dynamic evolution of Granger causal-
ity network connections. Both studies document peaks of linkages during the ESDC.
Claeys and Vašı́ček (2014) measure the direction of the linkages of the sovereign bond
market among sixteen European Union countries, using a factor-augmented version of
the D-Y model. They show that spillover effects from other countries dominate the do-
mestic fundamental factors for EMU countries’ sovereign yields. Fernández-Rodrı́guez
et al. (2015) investigate 10-year yield volatility spillovers in eleven Eurozone countries
using the D-Y framework. They document that more than half of the total variance of
the forecast errors is explained by systemic shocks. A year later in Fernández-Rodrı́guez
et al. (2016) study the time-varying integration of EMU bonds with the same framework.
Contrary to previous empirical studies, they find a significant decrease in connectedness
during the crisis period. Reboredo and Ugolini (2015) use conditional value-at-risk (Co-
VaR) to measure systemic risk in European sovereign bond markets around the ESDC.
They find that prior to the crisis, the markets were all coupled, while after that, the
risk decreased for the affected countries. Bernal et al. (2016) use the same methodol-
ogy to analyze the risk spillovers within the EMU and examine the impact of Economic
Policy Uncertainity to the net connections. They find that uncertainty has an impact to
country-level spillovers which is stronger for key countries. Using Diebold-Yilmaz-based
structural vector autoregressions, De Santis and Zimic (2018) examine the bond market
connectivity among the 10-year sovereign yields of 12 developed countries. They doc-
ument that connectedness among sovereign bond yields declined during the 2008-2012
period due to financial fragmentation. Chatziantoniou and Gabauer (2021) concludes the
same while examining the financial risk synchronization of 11 EMU members’ govern-
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ment bond yields with a time-varying parameter Diebold-Yilmaz model. They document
fragmentation during the ESDC and find that core countries spillover risk shocks to pe-
riphery countries. Hamill et al. (2021) investigate the network connectivity of the Eu-
ropean sovereign bond markets and compare the different variants of D-Y frameworks.
They document that the Lanne-Nyberg dynamic connectedness model provides an accu-
rate indication of the GFC. In a recent study, Benlagha and Hemrit (2022) investigate the
impact of Economic Policy Uncertainty (EPU) on the connectedness among G7 sovereign
bond yields. They find that EPU affects the connectedness of long-term yields but is in-
significant for short-term yield spillovers. Berardi and Plazzi (2022) investigate the con-
nectedness between the yield curve components of four developed countries after they
decompose the nominal yields into the sum of expectations, the term premium, and the
convexity term. They find that the USA indicates the strongest spillovers in long-term
yields.

While the above-mentioned studies investigate the linkages among government bond
yields in the last few years, another strand of literature analyze yield curve factor con-
nectedness among sovereign markets.

Sowmya et al. (2016) are the first to investigate linkages across latent factors of yield
curves using D-Y framework in a sample of four developed and seven emerging Asian
economies. They find that the regional influence is higher in Slope and Curvature factors
among the Asian countries. In a recent paper, Umar et al. (2021c) study connectedness of
11 Eurozone countries and document that the core countries are net transmitters while the
peripheral countries are net receivers. Cavaca and Meurer (2021) examine the spillover
between yield curve factors of the United States and four South American countries. They
prove that the degree of spillover is highest for the Slope subnetwork, followed by the
Level and the Curvature. Gabauer et al. (2022) explore the spillover of yield curve fac-
tors across the Asia-Pacific sovereign bond markets with a time-varying parameter D-Y
model. They find that the highest market connectedness is in the Level subsystem fol-
lowed by the Slope and Curvature subnetworks. Umar et al. (2022) examine the connect-
edness between the Level, Slope, and Curvature factors individually. They conclude that
France and Germany are the transmitters whereas the UK and Japan are the net receivers
for all the yield curve components’ networks.

We briefly summarize and highlight the gaps in the literature in A.1. As of today, a large
number of connectedness studies use VAR-based Diebold-Yilmaz frameworks despite the
concern that the application of the VAR model on cointegrated time series can lead to spu-
rious connections. A notable exception is Cavaca and Meurer (2021)’s work where the
authors try to handle this problem within the estimation of the network model. However,
unlike the Vector Error Correction Model (VECM)-based (D-Y) approach, which relies
on the variables being integrated in the same order for cointegration analysis, the T-Y
model does not require such an assumption. Although there is a large number of recent
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sovereign bond connectedness-related studies, deep structural network analysis, examina-
tion networks at multi-levels (analyzing on different levels), is scarce. The papers analyze
the network either on node- or on factor level. Lastly, while a number of bond market
works compare tranquil and turbulent periods without specific distinction in crisis peri-
ods, comparing different crisis periods and exploring the network behavior of key market
players are underrepresented in the literature.

III.3 Methodology

Our approach consists of two steps. First, the Diebold and Li (2006) methodology is used
to decompose the yield curve into latent and economically meaningful factors. Next, we
quantify the significant causality relations between the different yield curve components
using the Toda and Yamamoto (1995) model. We describe both of these processes in the
next subsections.

III.3.1 The Nelson-Siegel yield curve model and the Diebold-Li de-
composition

Nelson and Siegel (1987) (N-S hereafter) suggest a flexible, parsimonious, exponential
components framework that has the ability to capture a variety of frequently observed
yield curve shapes (forward sloping, inverse, humped) and allows for a clear interpretation
of the estimated factors. Diebold and Li (2006) (D-L hereafter) extend the N-S approach,
by allowing the dynamic change of the latent factors. A central feature of the model
is that these factors can be interpreted as the Level, Slope, and Curvature as proven by
Diebold et al. (2006), Mumtaz and Surico (2009), Mönch (2012), Koopman et al. (2010)
and Christensen and Rudebusch (2012). Following N-S and D-L, we assume that these
components include the majority of the information in the term structure of the yield
curve. The D-L model offers an adaptable structure and has a wide applicability in any
market (Yu and Zivot (2011), Xu et al. (2019), Bredin et al. (2021)).

The observed yield curve can be described with the following equation:

yτ = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
(III.1)

where yτ denote yields for τ maturity, β1, β2 and β3 are the Level, Slope, and Curvature
parameters respectively, and λ is a parameter that controls the shapes of loadings for the
D-L factors (especially for Curvature). The βi parameters have an economic meaning: β1
(Level) represents the long end of the yield curve, β2 (Slope) is the short-term component,
while β3 (Curvature) mimics the middle interval. The Level factor applies equally to all
maturities. Some of the articles focus on the Level and Slope factors only, however,
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De Pooter (2007), Almeida et al. (2009) and Ullah et al. (2015) draw attention to the
importance of the third factor, therefore we involve Curvature in our analysis.

We estimate the latent factors using the two-step procedure on a daily basis proposed
and applied by Diebold and Li (2006). We use simple ordinary least squares (OLS) on
every day to extract the time-varying latent Level, Slope, and Curvature factors. Follow-
ing Diebold and Li (2006), Bianchi et al. (2009), Koopman et al. (2010) and Van Dijk
et al. (2014) we set the λ parameter at 0.06093 such that the Curvature factor attains its
maximum at τ= 30 months.

III.3.2 The Toda-Yamamoto model

The T-Y model is a popular causality testing approach, introduced by Toda and Yamamoto
(1995). Over the past few years several network-based studies applied the T-Y model to
handle cointegrated time series (Gündüz and Kaya (2014), Bratis et al. (2020), Nazli-
oglu et al. (2020)). As T-Y point out, the classic Granger causality test (Granger (1969))
obtained by a VAR model on cointegrated time series can lead to spurious connections
(Dolado and Lütkepohl (1996), Zapata and Rambaldi (1997), Pittis (1999)). The T-Y ap-
proach eliminates this shortcoming by introducing a modified Wald test (MWald) which
has restrictions on the parameters of the VAR(p) model. The test is based on a χp distri-
bution, where p′ = p + dmax. The order of VAR is increased artificially, p gets increased
by dmax which is the maximal order of the integration. Then, a VAR with an order of
(p+ dmax) is estimated, where the last dmax lag coefficient is ignored. A VAR(p+ dmax)

model is described by Equations (III.2) and (III.3):

Yt = α0 +

p∑
i=1

δ1iYt−i +
dmax∑
j=p+1

α1jYt−j +

p∑
j=1

θ1jXt−j +
dmax∑
j=p+1

β1jXt−j + ω1t (III.2)

Xt = α1 +

p∑
i=1

δ2iYt−i +
dmax∑
j=p+1

α2jYt−j +

p∑
j=1

θ2jXt−j +
dmax∑
j=p+1

β2jXt−j + ω2t (III.3)

where α, δ, θ, and β are model parameters, p is the optimal lag of the original VAR model,
ω1t and ω2t are the errors of the VAR model, and dmax is the maximal integration order
in terms of the T-Y model. The hull hypothesis states that the lagged values of Yt do not
significantly contribute to explaining changes in Xt (H0 : β1j for all j = 1, 2, . . . , p +

dmax). Hereby based on (III.2), there is a Granger causality between X and Y , if β1j 6= 0.
In the same way, based on (III.3), Granger causality is observable between Y and X , if
β2j 6= 0.

From the VAR(p+ dmax) model, the T-Y model is realized in three steps:
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• Perform dmax ordered stationarity tests on all of the time series by applying ADF
(Augmented Dickey-Fuller test), KPSS (Kwiatkowski-Phillips-Schmidt-Shin test),
and PPE (Phillips-Perron test) tests individually or in combination.

• Determine the optimal lag, (p) with the maximal consistency of the AIC (Akaike’s
Information criterion), BIC (Bayesian Information Criterion), the HQ (Hannan-
Quinn criterion), or the LR (Likelihood Ratio test) criteria.

• With the application of the upper-mentioned parameters, rejecting the Granger test
between X and Y at a given significance level (usually 1%), means a causality
relation in Toda-Yamamoto terms. Bivariate rejection suggests a mutually causal
relation between the variables.

III.4 Data

Following Sowmya et al. (2016), Hamill et al. (2021), Umar et al. (2022) and Stenfors
et al. (2022), we collect daily data from twelve developed countries. We select sovereigns
with the highest GDPs and liquid bond markets, resulting in the sample dataset: Australia,
Canada, Switzerland, Germany, Spain, France, Great Britain, Italy, Japan, South Korea,
the Netherlands, and the United States of America.4 Similarly to Antonakakis and Vergos
(2013), Sowmya et al. (2016), Byrne et al. (2019), Umar et al. (2022) and Gabauer et al.
(2022), we collect the zero-coupon sovereign bond yields from Bloomberg. The specific
yield curves and the corresponding tickers are listed in Table A.2 in the Appendix. We
consider 15 maturities5 to obtain the yield curve factors of the term structure for each
country as Umar et al. (2021c) and Umar et al. (2022) and we extend the analysis of
Sowmya et al. (2016), Cavaca and Meurer (2021) and Gabauer et al. (2022) who use
shorter terms only. The time period is from September 30, 1998, to December 31, 2021.
Our sample spans over various business cycle phases and major turbulent periods too.
Based on Byrne et al. (2019) and Bouri et al. (2021) we cover the following crisis periods:6

• The Dotcom Bubble (DCB): 03/10/2000 - 12/02/2001

• The Global Financial Crisis (GFC): 09/15/2008 - 07/21/2010

• The European Sovereign Debt Crisis (ESDC): 11/21/2010 - 03/13/2013

• The Covid-19 Pandemic (C19): 01/20/2020 - 12/31/2021

4The countries are frequently referred to by the three-letter shorthand created by the OECD so hence-
forth we use AUS, CAN, CHN, DEU, ESP, FRA, GBR, ITA, JPN, KOR, NLD, and USA.

53, 6, 12, 24, 36, 48, 60, 72, 84, 96, 120, 180, 240, and 360 months
6Start dates and end dates of such crises are linked to global events, described in A.3 in the Appendix.

Our results are robust to the choice of the selected dates. The results of this robustness analysis are not
reported here but are available from the authors upon request.
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and two longer calm periods (CALM1, CALM2) between these crises.7 According to our
best knowledge, we are the first to examine the characteristics of four different crises on
the bond market. We differentiate between global (GFC, C19) and local (DCB, ESDC)
crises, as GFC and C19 are worldwide events as opposed to the other crises (DCB and
ESDC) which primarily affect one country or a region.
The zero-coupon sovereign bonds are denominated in local currency and we use these
yields for two reasons. As per Cavaca and Meurer (2021), debt in local currency better
represents the different interest rate cycles of the economy and the domestic monetary
policy. Additionally, according to Sowmya et al. (2016), local currency denominated
bonds have better liquidity than debt issued in US dollars.
Descriptive statistics for the 1-, 5-, 10- and 30-year nodes of each country’s yield curve
are provided in Table A.4 of the Appendix. The yield curve characteristics are in line
with the findings of previous studies (Sowmya et al. (2016), Cavaca and Meurer (2021)).
The normalized time series of the D-L factors are shown in Fig. III.1 in which, DCB is
depicted in green shading, GFC is denoted with red, ESDC is represented with blue, and
C19 is marked with yellow.
Fig. III.1 sheds light on several stylized facts. Level factors decline and converge across
countries during the examination period. Evans and Marshall (2007) find evidence from
the USA market that macro shocks shift the level factor of the yield curve, which is
visible in our sample too, during the GFC and ESDC in III.1a. Slope time series show
countercyclical behavior and comoves across countries. As per Diebold et al. (2006), the
curvature factor has only weak links with the macroeconomic fundamentals thus trends
or cyclicality are less specific for this factor.

7CALM1: 12/03/2001 - 09/14/2008; CALM2: 03/14/2013 - 01/19/2020. Before the Dotcom Bubble,
there is an additional calm period (CALM0), due to the rolling window estimation in the dynamic analysis
we don’t provide results from this era. The timeframe between GFC and ESDC is very short, therefore we
do not consider it as a separate subperiod.
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(a) Level (b) Slope

(c) Curvature

Fig. III.1. Normalized time series of Level, Slope, and Curvature factors

Notes: The green area denotes the DCB, the red-shaded area shows the GFC, the blue field rep-
resents the ESDC and the yellow area the C19 period.

The descriptive statistics of the estimated D-L factors are represented in Table III.1. The
average Level factors are positive in all cases, with South Korea having the highest values
and Japan the lowest. The mean Slope is negative for all countries, which refers to the
typical upward-sloping shape of the yield curves. In absolute terms, Italy has the highest
Slope, while Australia has the lowest. The average Curvature is also negative, highest for
Italy and lowest for Great Britain (in absolute terms).
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Table III.1
Descriptive statistics of the yield curve factors

Factor Average Std. dev. Minimum Maximum Jarque-Bera t-stat. P value

Australia
Level 4.87 1.50 1.06 7.71 540.29 0.00***
Slope -1.11 0.99 -4.14 0.97 85.24 0.00***
Curvature -2.15 1.90 -6.80 2.93 205.41 0.00***

Canada
Level 3.94 1.56 0.70 6.62 404.33 0.00***
Slope -1.83 1.37 -5.35 0.58 364.08 0.00***
Curvature -2.18 1.94 -6.27 4.83 400.29 0.00***

Switzerland
Level 2.19 1.56 -0.79 4.63 528.09 0.00***
Slope -1.60 0.94 -4.10 -0.06 543.73 0.00***
Curvature -2.71 1.49 -7.25 1.05 30.68 0.00***

Germany
Level 3.35 1.98 -0.55 6.56 542.63 0.00***
Slope -1.84 1.11 -4.69 0.22 234.39 0.00***
Curvature -3.51 1.73 -6.81 0.96 256.80 0.00***

Spain
Level 4.54 1.73 0.75 8.56 397.05 0.00***
Slope -2.78 1.52 -7.35 -0.07 282.06 0.00***
Curvature -4.01 2.09 -8.75 3.90 115.59 0.00***

France
Level 3.72 1.80 0.11 6.63 575.05 0.00***
Slope -2.15 1.17 -4.85 0.16 241.96 0.00***
Curvature -3.98 1.90 -8.08 0.57 47.29 0.00***

Great Britain
Level 3.69 1.37 0.47 5.77 764.03 0.00***
Slope -1.39 1.73 -5.40 3.21 233.43 0.00***
Curvature -1.82 3.58 -8.79 8.77 93.08 0.00***

Italy
Level 4.83 1.43 1.43 7.90 481.67 0.00***
Slope -3.01 1.39 -6.36 -0.24 196.68 0.00***
Curvature -4.19 1.96 -8.74 4.06 142.96 0.00***
Japan
Level 1.79 0.91 -0.03 3.57 599.64 0.00***
Slope -1.43 0.75 -3.30 -0.09 318.65 0.00***
Curvature -3.72 1.44 -6.54 -0.95 508.30 0.00***

South Korea
Level 6.13 2.49 1.88 17.23 842.90 0.00***
Slope -3.00 1.58 -7.85 0.10 169.56 0.00***
Curvature -4.17 3.00 -14.38 2.67 1961.09 0.00***

The Netherlands
Level 3.45 1.97 -0.36 7.01 539.12 0.00***
Slope -1.95 1.14 -4.89 0.20 237.11 0.00***
Curvature -3.30 1.57 -8.40 0.74 180.26 0.00***

USA
Level 4.39 1.45 0.96 6.98 383.47 0.00***
Slope -2.44 1.72 -5.71 0.91 311.13 0.00***
Curvature -3.61 2.68 -10.35 3.27 197.93 0.00***

Notes: This table reports the descriptive statistics of latent factors for each country extracted
from the Diebold-Li model. Jarque-Bera tests the normality of the distribution. Rejection of
null hypothesis at 1%, 5%, and 10% levels are denoted by ***, **, and * respectively.

We employ the Jarque - Berra test statistics for the normality test, which is always re-
jected. Furthermore, the ADF and KPSS unit-root tests for stationarity are applied. The
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Level time series is stationary for Korea and the USA, the Slope for Japan, and Curvature
for Australia and Italy on a 99% confidence level, according to the ADF test. According
to the KPSS test, neither of the time series is stationary. The first difference is stationary
for all time series based on the two tests. The results of the ADF and KPSS tests are in
the Appendix in Table A.5.
Pairwise Engle-Granger (Engle and Granger (1987)) and Johansen (Johansen (1988)) tests
are used to determine cointegrations before using the first differences for further analysis.
The ratios of the cointegrated time series, grouped by factors, are shown in Table III.2.

Table III.2
The ratio of cointegrated time series pairs based on the Engle-Granger and Johansen tests,
aggregated by the yield curve factors

Level Slope Curvature

Level 83.3% 41.7% 86.1%
Slope 16.0% 65.0% 90.3%
Curvature 23.6% 61.1% 91.7%

(a) Engle-Granger test

Level Slope Curvature

Level 68.1% 88.9% 83.3%
Slope 88.9% 88.9% 59.0%
Curvature 83.3% 59.0% 37.5%

(b) Johansen test
Notes: Instead of the 36 × 36 matrix which we obtain from the pairwise Engle-Granger and
Johansen tests, we show only the subsystems-based aggregated values in this table

Tables III.2a and III.2b provide a high ratio of cointegrated connections, for example, the
Level-Curvature subsystem is greater than 80% in both cases. Based on Table III.2 and
Table A.5 of the Appendix, applying the T-Y model is required because the time series
are not stationary in the same order and the ratio of cointegrated time series is high.

III.5 Results

III.5.1 Static, full-sample connectedness analysis

Following Antonakakis and Vergos (2013), Claeys and Vašı́ček (2014), and Fernández-
Rodrı́guez et al. (2015), we begin our analysis with a static investigation on a factor level.
We measure the connections within the Level, Slope, and Curvature subsystems, and
identify the cross-relations among them. Fig. III.2 displays the causal linkages at a 1%
level of significance, separated by subnetworks. The figure shows connections estimated
by the Toda-Yamamoto procedure, using all the available data.
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(a) Level subnetwork (b) Slope subnetwork

(c) Curvature subnetwork (d) Cross connections

Fig. III.2. Causality relations within subnetworks, estimated by static Toda-Yamamoto
model

Notes: Level factors are displayed in red, Slopes in blue, and Curvatures in green. An arrow
between two factors indicates the direction of causation, and the color of the arrow indicates the
source factor. Time series are differentiated at a maximum of one time, and the ideal lag time is
chosen based on the AIC. For Level factors, 34; for Slope, 47; and for Curvature, 36 connections
are significant from the possible 132 = (12 × (12 − 1)). In the case of cross-connections, 258
are significant from the possible 864 = (1260 − 3 × 132). For total connections, 375 links are
significant from the possible 1260 = (36× (36− 1)).

The Slope network has the highest density of the three subsystems with 35.61% of the
potential relations being significant. It is followed by Curvature (27.27%), then Level
(25.76%). The findings of Sowmya et al. (2016), Umar et al. (2021c), Umar et al. (2022)
and Gabauer et al. (2022), who all claim that Level subsystem has the largest spillover
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effect, followed by Slope, and Curvature, are in contrast with ours. However, according
to Cavaca and Meurer (2021), the Slope is the most connected subnetwork, which is
supported by our findings. In addition to the different country set and the sample length,
the other reason for the different results could be the T-Y model, which is suitable for
filtering out spurious connections in the case of highly cointegrated systems (compared to
the widely used VAR-based D-Y spillover index which is applied in the above-mentioned
papers).

We also analyze the cross-connections among the yield curve components, for further
insights. Altogether 258 significant cross-connections are defined, about 29.86% of the
total 864 possible edges. From these connections, 95 (36.8%) originate from Slope-, 92
(35.3%) from Level-, and 72 (27.9%) from Curvature nodes. Altogether 258 significant
cross-connections can be defined, which is 29.86% of the total possible edges of 864.
From these, 95 (36.8%) originate from Slope, 92 (35.3%) from Level, and 72 (27.9%)
from Curvature nodes. Based on Table III.3a, on factor level, the Curvature has the most
incoming edges, while the Slope has the most outgoing ones. The Level has the least
incoming links while it is second in the list of outgoings. The Curvature subnetwork has
the least outgoing edges, and in this sense, it is the least connected, which is in line with
the findings of Dewachter and Lyrio (2006).

Table III.3
The number and distribution of the significant connections defined in the system

Level Slope Curvature Outgoing
Level 34 43 48 125
Slope 33 47 62 142
Curvature 34 38 36 108
Incoming 101 128 146 375

(a) Number of connections,
grouped by factors

Level Slope Curvature Outgoing
Level 25.8% 29.9% 33.3% 29.8%
Slope 22.9% 35.6% 43.1% 33.8%
Curvature 23.6% 26.4% 27.3% 25.7%
Incoming 24.0% 30.5% 34.8% 29.8%

(b) Distribution of connections, grouped by
factors

Notes: In the diagonal, we divide the connections by 132 = (12 × (12 − 1)), since this is the
maximum definable relation in the subnetworks. Between two subsystems this number is 144 =
(12×12), we scale the upper and lower triangular by this. The values in the summarized row and
column are divided by 420 = (132 + 144 + 144). The total definable connections in the network
are 1260 = (420× 3), we divide 375 by this.

Fig. III.2d and Table III.3 highlight that the connections between different subsystems are
not negligible. The cross-factor connections are 68.8% of the defined causality relations
(258 out of 375).

Although Figs. III.2 and III.3 provide information about the subsystems of the factors,
these are not sufficient to draw conclusions about the main economics drivers behind the
network. To extend the factor level-based analysis in the next subsection we examine our
sovereign yield curve network on a country and a node-wise level too.
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III.5.1.1 Country-level analysis and the key participants of the network

Despite the high number of recent connectedness-related articles, there are limited in-
sights about the different levels, changes in density and key participants (i.e., dominant
factors). In this section, we use the net (outgoing-incoming) and sum connections to
identify the core countries of the system, as shown in Table III.4.

Table III.4
Net and sum connections throughout the study
period, aggregated by countries, ordered by net
connections

Country Net connections Sum connections

USA 45 89
DEU 18 74
AUS 16 80
CAN 11 69
CHE 9 51
NLD 2 58
KOR -8 56
GBR -13 59
ESP -16 58
ITA -18 60
JPN -22 44
FRA -24 50

Aggregating the connections on a country level, the United States and Germany are at the
top of the list. Our results align with the findings of Umar et al. (2022) and Berardi and
Plazzi (2022) but we also consider cross-factor connections. They also claim that Japan
and Great Britain are net importers of shock and hereby we confirm this statement.

Table III.4 only provides an aggregated overview on a country level, however, to deeper
understand our network, and identify the key participants, it is useful to aggregate on a
node-level too, as they are driven by different economic effects. None of Sowmya et al.
(2016), Cavaca and Meurer (2021) or Gabauer et al. (2022) carry out this examination
(as far as we know, we are the first to investigate this on the bond market), so hereby we
extend their results. Nodes with the most connections are shown in Table III.5. The first
quarter of the table represents the summarized relations, whereas the subsequent columns
show the nodes with the highest numbers of separate incoming and outgoing connections.
For finding the dominating participants in our network we use net (outgoing-incoming)
connections which is an accurate measurement according to Barigozzi and Brownlees
(2019).

Table III.5 highlights that in our network, the Slope factor of Canada has the most connec-
tions overall, at 32, from which 19 arrows originate and 13 come in. In a previous study,
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Table III.5
Key country factors having either the most of summarized, incoming, outgoing or
netted edges

Top 5 Sum Top 5 Incoming Top 5 Outgoing Top 5 Net
Node Total In Out Node In Node Out Node Net
CAN S 32 13 19 ESP C 20 USA L 25 USA L 19
USA L 31 6 25 ITA C 19 USA C 22 USA C 15
AUS C 30 12 18 FRA C 18 USA S 20 USA S 11
AUS S 29 13 16 KOR L 14 CAN S 19 DEU L 9
DEU S 29 11 18 ITA S 14 DEU S 18 CAN L 8

Umar et al. (2022) find that Noth-American countries have the most net connections in
all subsystems. On 10-year Treasury bond yields, the results of Umar et al. (2020) show
that the USA is the most dominant, followed by Canada, then the European countries.
These findings are in line with our results, except we consider cross-connections too, in
addition, in our case, all three factors of the USA lead the list of net connections.
To better comprehend the role of the USA sovereign yield curve in the network, we
analyze the node-wise connections of the three factors. The connections of the USA
Level, Slope, and Curvature components are highlighted in Fig. III.3. The graphs support
the statement of Table III.5, while the US factors have few incoming connections, they
have many outgoing ones. It is also visible that all three factors have numerous cross-
connections (56.2% of the defined edges) which further emphasizes the importance of
such relations.
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(a) USA Level (b) USA Slope

(c) USA Curvature

Fig. III.3. Role of the USA nodes in the system, estimated by static Toda-Yamamoto
model

Notes: Level factors are displayed in red, Slopes in blue, and Curvatures in green. An arrow
between two factors indicates the direction of causation, and the color of the arrow indicates the
source factor. Time series are differentiated at a maximum of one time, and the ideal lag time
is chosen based on the AIC. For USA Level factors, 31 (44.29%); for Slope, 29 (41.43%); for
Curvature 29 (41.43%) connections are significant from the total possible 70 = (2× (12 + 12 +
11)). Cross-connection ratios are 67.7% for Level, 62.1% for Slope and 38.0% for Curvature.
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The USA is not only dominant on a country level, as shown by Table III.4, but on a
node-wise level as well. Based on these outcomes, we conclude that relying on a static
connectedness analysis, the US yield curve factors are the key participants of our the net-
work. After the full-sample investigation, we examine the network behavior in turbulent
(global and local crises) and tranquil periods.

III.5.2 Connectedness during different subperiods of the study hori-
zon

The effects of crises on the sovereign yield curve networks are well documented in the
empirical literature (Claeys and Vašı́ček (2014), Reboredo and Ugolini (2015)), however,
it is less common to compare different crises.8 We examine the sovereign yield curve net-
work in the crisis periods on different levels (yield curve factor, country, and node-wise)
in a static way, then we investigate the networks in four previously discussed turbulent
and tranquil periods to understand the differences between the global (GFC, C19) and
local (DCB, ESDC) crises.
To deeper understand the different crises, we perform a static connectedness analysis on
six separate time periods. Fig. III.4 shows the periods introduced in Section III.4, of
which four are turbulent (2 globals and 2 locals) and two are calm.9

8Previous articles such as Antonakakis and Vergos (2013), Fernández-Rodrı́guez et al. (2015),
Fernández-Rodrı́guez et al. (2016), Hamill et al. (2021), Chatziantoniou and Gabauer (2021) and Umar
et al. (2022) examine calm and turbulent periods, using a time frame that includes the Global Financial
Crisis and the European Sovereign Debt Crisis while Karkowska and Urjasz (2021) and Umar et al. (2022)
extend the investigation window to involve the Covid-19 pandemic as well. However, these papers only
compare calm and turbulent periods with a dynamic model, and we widen their research twofold.

9These periods range in length (DCB: 451 days, CALM1: 1770 days, GFC: 483 days, ESDC: 603 days,
CALM2: 1787 days, C19: 510 days), so to maintain consistency, we first averaged the time span of the
crises (512 days) and then pick such lengthy sets from the calm periods randomly (CALM1: 01/13/2004 -
12/28/2005; CALM2: 05/06/2014 - 04/20/2016). Our results are robust to the choice of the selected dates.
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(a) Dotcom Bubble (b) Calm period 1 (c) Global Financial Crisis

(d) European Sovereign Debt
Crisis

(e) Calm Period 2 (f) Covid-19 Pandemic

Fig. III.4. Network connectedness in different subperiods, estimated by static Toda-
Yamamoto model

Notes: Level factors are displayed in red, Slopes in blue, and Curvatures in green. An arrow
between two factors indicates the direction of causation, and the color of the arrow indicates the
source factor. Time series are differentiated at a maximum of one time, and the ideal lag time is
chosen based on the AIC. Number of connections in DCB: 236, in CALM1 (sample): 206, in GFC:
414, in ESDC: 234, in CALM2 (sample): 225, in C19: 763.

Fig. III.4 highlights that C19 (763) and GFC (414) provide the networks with most con-
nections, followed by DCB (236) and ESDC (234). The ratio of cross-connections is
the following in each subperiod: DCB: 39.9%, CALM1: 57.8%, GFC: 62.6%, ESDC:
62.0%, CALM2: 62.7%, C19: 65.0%. These results further emphasize the importance of
investigating cross-factor linkages.

The number of significant connections is higher in the two global crises (GFC, C19)
than in local ones (DCB, ESDC), or calm periods. Fernández-Rodrı́guez et al. (2016),
Chatziantoniou and Gabauer (2021) and Karkowska and Urjasz (2021) all find that in
crisis periods the spillover is higher in the sovereign bond markets, which is in line with
our results. We extend the contribution of the latter studies, by showing that while the
density difference between calm periods and local crises is rather small, it is significantly
larger during the two worldwide crises.

Similarly to the full-sample investigation, after identifying the density structures of the
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different time frames on yield curve factor level, we determine the countries that are
responsible for the significant causal relations within the networks. The net connections
for each subperiod, averaged by countries, are shown in Table A.7.

Except for the DCB period, the USA is the dominant country in each subperiod.10 On a
country level, the USA is the main exporter and Japan the main importer of interest rate
shocks (apart from the cases of DCB and C19, when Japanese net connections add up to
zero), which further emphasizes the findings of Berardi and Plazzi (2022).

To achieve a deeper understanding of the role of the key participants in the sovereign yield
curve network during the selected periods, we aggregate the connections by nodes. Table
III.6 outlines the role of Level, Slope, and Curvature factors for the twelve countries. As
far as we are aware, ours is the first paper that examines the roles of latent yield curve
factors in calm, local and global crisis periods.

Table III.6
Factors being net transmitters or net receivers of causality connections during the six
sub-periods

Level Slope Curvature
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AUS + - - - - - - + - - + - - - + - - - -
CAN + + + + + + + + + + + - + + - + + + + + +
CHE + + - - + + + - + - - - - + - + - + -
DEU + - - + + + + + - - - + - + + + + + + -
ESP + - + + + - + - + - + + - - + - + + -
FRA + + + + + + + - - - + + - - + + + - + -
GBR - + + + + + + - - - - - - - + -
ITA - - + + + + - + - + + + - + + - + + -
JPN - + - - - - - - - - - - - + - - - - +
KOR - + + + + - - - + + + + + - - + + - + -
NLD + - + + + + + + - - + + + - - - + - - + -
USA + + + + + + + + + + + + + + + + + + + + +

Notes: + signs indicate that the factor is a net transmitter in the given period, while - signs
indicate that the factor is a net receiver.

Considering the first column, we conclude that the majority of Level and Slope factors are
net providers (7 out of 12 in both cases), while Curvatures are usually net recipients (8 out
of 12) of causality relations. Based on Table III.6 the USA is the only country where all
the three yield curve factors net connections are positive during each subperiod.11 Table

10At the end of the ’90s, South Korea (and other Southeastern Asian countries) went through a serious
financial crisis and its consequences are felt during the 2000-2001 horizon which overlaps with the Dotcom
Bubble in the US (Kihwan (2006)). Most of the net connections of South Korea in this period are due to the
Level factor (15) which originates from the Bank of Korea’s monetary policies described in Coe and Kim
(2002) and Chung and Kim (2002).

11In addition to the US factors, the Canadian Level and Slope have a high impact on the network for
the majority of the time frame and Canada also can be found in a high position in the different subperiods
in Table A.7. Greenwood-Nimmo et al. (2015) document that since Canada is a member of the North
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III.6 confirms our previous statement, besides the US factors being the dominant nodes
on the whole study period we claim that they are the key participants in every identified
subperiods as well.

III.5.3 Dynamic, rolling-window-based connectedness analysis

Running a static analysis may not capture perfectly the cyclical and structural changes
in the dynamics of the network and we are keen on exploring the potential changes in
the network on different levels and the key participants through the examination hori-
zon. Thus after the static examination, we perform a dynamic analysis of the sovereign
yield curve network, similar to Sowmya et al. (2016), Cavaca and Meurer (2021), Umar
et al. (2021c), Umar et al. (2022) and Gabauer et al. (2022).12 We estimate 1064 differ-
ent models as we roll the estimation window by one business week (5 days) through our
sample. In Fig. III.5 the purple, cyan, and grey lines represent the ratios of total signifi-
cant connections, summarized edges in the three subnetworks, and the cross-connections,
respectively compared to the maximum number of possible linkages.

American Free Trade Agreement (NAFTA), it can be an indicator for being net positive in most cases.
12There is no exact rule to chose the sufficient window size and based on Arce et al. (2013) and Papana

et al. (2017) we choose a rolling window method with 750 days. This can be seen as three years with 250
business days. In subsection A.2 of the Appendix, we extend our analysis with window sizes of 500 and
1000 days. Furthermore, we perform a Granger causality test, with a rolling window size of 750 days, as
an additional robustness check.

45



Fig. III.5. Summarized connection ratios during the study period, estimated by dynamic
Toda-Yamamoto model

Notes: Window size of 750 days and a lag determined by the AIC. The green area denotes the
Dotcom Bubble, the red-shaded shows the Global Financial Crisis, the blue field represents the
European Sovereign Debt Crisis, and the yellow covers the Covid-19 period. The purple line
indicates the ratio of total significant connections, the cyan represents the summarized edges in
the three subnetworks, and the grey line is the time series of the cross-connection ratios, compared
to the maximum number of possible edges.

The behavior of the three time series is very similar, and all of them peak during the
GFC, and the C19 outbreak. In the empirical literature, there is general agreement that
connectedness rises during turbulent times. The DCB and the ESDC cannot be viewed as
a global phenomenon, thus the graphs in Fig. III.5 do not indicate an upward tendency
during these times. While Diebold and Yilmaz (2009), Billio et al. (2012) and Diebold and
Yilmaz (2015) find this evidence for stocks, Antonakakis and Vergos (2013), Fernández-
Rodrı́guez et al. (2015), Sowmya et al. (2016), Fernández-Rodrı́guez et al. (2016), Ahmad
et al. (2018), Chatziantoniou and Gabauer (2021), Karkowska and Urjasz (2021), Hamill
et al. (2021), Chatziantoniou and Gabauer (2021) and Umar et al. (2022) all exhibit the
same on the bond markets. However, none of these studies differentiate between local and
global crises (as far as we know, we are the first to investigate this on the bond market) so
hereby we extend their results.
The average summarized connections for each subperiod are shown in Table III.7.
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Table III.7
Average connection count by types during the six sub-periods - 750 days long
window size

Whole period DCB CALM1 GFC ESDC CALM2 C19
L+S+C 32.4 34.2 24.3 67.4 35.1 25.9 44.9
Cross connections 75.5 43.4 54.3 139.7 93.1 65.9 100.3
All connections 108.0 77.6 78.6 207.1 128.2 91.8 145.3

Table III.7 demonstrates that as the Level, Slope, and Curvature subnetworks get denser,
cross-connections also increase during times of crisis.13 Fig. III.5 and Table III.7 jointly
show that the magnitude of cross-connections is around twice the combined number of
connections in the yield curve factor subnetworks. Our dynamic analysis supports the
results of the earlier studies of Sowmya et al. (2016), Cavaca and Meurer (2021), Umar
et al. (2021c), Umar et al. (2022) and Gabauer et al. (2022), but we complete them with
cross-connections between the Level, Slope and Curvature subnetworks.

III.5.4 The shift in the dominance of US factors across the study hori-
zon

There is growing evidence in the empirical literature that US market shocks play a spe-
cial role in international asset market comovements and Fed monetary policy affects the
global bond market. Hofmann and Takáts (2015) are the first who document economi-
cally and statistically significant spillovers from the US short and long-term interest rates
to advanced economies’ government yields. In an influential paper Miranda-Agrippino
and Rey (2020) study how the existence of a ’Global Financial Cycle’ shapes the global
financial spillovers of US monetary policy shocks. Lakdawala et al. (2021) also document
that the Fed’s communication on uncertainty regarding future actions is an additional, new
monetary policy instrument through which the Fed can influence global financial condi-
tions.
Empirical evidence on the effects of ECB policies on international government bonds is
less clear (Jarociński (2022)). Kearns et al. (2018) find significant spillovers from ECB
announcements and Curcuru et al. (2018) document that US and European government
bond yields also co-move around these actions. Jarociński (2022) complete these results
while he documents that spillovers of ECB interest rate shocks are smaller because they
are conditional on the integration of European interest rates. Contrary to these findings,
Miranda-Agrippino and Nenova (2022) document comparable magnitudes of spillovers
related to the two central bank’s monetary policy decisions. Based on these results, it is
worth examining how the Fed and ECB monetary policy decisions affect the key partici-
pants of a sovereign bond-related network as well.

13A detailed view of the average edge counts by countries in these six periods is available in Table A.6
in the Appendix.
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Hofmann and Takáts (2015), Albagli et al. (2019), Miranda-Agrippino and Rey (2020),
Lakdawala et al. (2021) all emphasize that the Fed exerts a significant impact on the rest
of the world’s fixed-income market through its monetary policy, which presents itself in a
dominant role at the yield-curve factor level in our network. However, as evidenced by the
lead-lag effect of the Fed’s interest rate politics, based on Kearns et al. (2018), Jarociński
(2022) and Miranda-Agrippino and Nenova (2022) this dominance can vary over time.
Therefore we also examine the ECB monetary policy decisions.

In subsections III.5.1 and III.5.2 we show that the US factors are the key participants in
our network, considering the whole time frame, as well as each subperiod. Upon fur-
ther examination of the time series of these connections, based on Fig. A.3, we discover
that these yield curve factors are the key participants of the system from a dynamic per-
spective too. Fig. A.3 highlights that the dominance of the US factors is time-varying;
therefore, further economic drives can be behind these nodes’ dynamics. Since monetary
policy decisions have a great impact on the evolution of the yield curve, it is useful to
investigate the linkage between the Fed’s and ECB’s easing and tightening decisions and
the dominance of US factors.

Fig. III.6. Dynamic dominance of US factors, estimated by dynamic Toda-Yamamoto
model

Notes: Window size of 750 days and a lag determined by the AIC, smoothed by cubic spline
method. The orange areas denote the Fed interest rate cut, the green-shaded parts show Fed
interest rate hikes and the cyan field represents the period when ECB leads the interest rate cycle.
The red line stands for the Fed rates over time, while the blue represents ECB rates. The black line
is the dynamic ratio of summarized outgoing USA edges and the total number of outgoing edges,
smoothed by a cubic spline.
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In the lower part of Fig. III.6 the time series of the policy rates set by the Federal Reserve
(Fed, red line) and the European Central Bank (ECB, blue line) are visible.14 Orange
shading represents those periods when Fed cuts interest rates, while during green shading,
Fed raises interest rates. Additionally, with cyan filling, the only period is noted when the
ECB changes rates while the Fed does not. The upper part of Fig. III.6 represents the
ratio of the outgoing USA connections (Level, Slope, Curvature summarized) compared
to the aggregated outgoing connections of the entire network. Fig. III.6 shows that the
Fed, in general, leads the ECB and this phenomenon is in line with the hypothesis that the
Fed is the leader of the interest rate cycle. According to Brusa et al. (2020), the Fed is the
global central bank and generally leads the other central banks in setting monetary policy.

Fig. III.6 highlights that the US dominance decreases in the sovereign yield curve network
when Fed cuts rates. Furthermore, its dominance reaches the global minimum when
the interest rate cycle is led by the ECB (during the years 2011-2014). Based on Fig.
III.6, during interest rate hiking cycles, the dominance of the US factors also change,
however, from 2016 to 2019, the dominance increased sharply, while a slight decrease is
experienced between 2004 and 2006.

III.6 Concluding remarks

This study investigates the network of sovereign yield curves of 12 developed countries.
We decompose the term structure of the interest rates into the Level, Slope, and Curvature
factors using the dynamic Nelson-Siegel (Nelson and Siegel (1987)) model as in Diebold
and Li (2006). The connections between the latent yield curve across countries are mea-
sured using the Toda and Yamamoto (1995) method, which is suitable for cointegrated
time series. Our examination also covers cross-factor relations. For deeper understanding
the structural changes and identify the key participants in the sovereign yield curve net-
work, we analyze the connections on factor, country, and node levels too. Our timeframe
lasts over a 23-year long interval; therefore, we can compare two global (GFC and C19)
and two local (DCB and ESDC) crises.

When considering the whole time period, the Slope subnetwork has the most connec-
tions of the three subsystems followed by Curvature and Level. Additionally, we claim
that there is a significant amount of linkage between the three subnetworks on factor
level, so cross-connections are not negligible. The number of total connections in the
network increases during turbulent periods. During the two global crises (GFC and C19)
the sovereign yield curve network is denser than in the two local (DCB, ESDC) cases. We
found that the USA factors are the key participants in our network, considering the whole
time frame, as well as each subperiod and the dynamic analysis too, but this behavior is

14The rates for the Fed and ECB are collected from https://fred.stlouisfed.org and https:
//www.ecb.europa.eu respectively.
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time-varying. Although the dominance of the USA factors is independent of the charac-
teristics of the subperiod (whether it is a calm, local or global crisis) it is affected by the
Fed’s and ECB’s monetary policy decisions. The dominance of the US factors peaks if
the Fed leads the hiking cycle and reaches its minimum when the interest rate cycle is led
by the ECB.
Our results are relevant for academics, central bankers, and policymakers by providing
insights into the behavior of sovereign yield curve networks during turbulent and tranquil
periods. Our findings related to Fed and ECB monetary policy decisions are important
for central bank policymaking. Identifying the key participants provides insights into the
dynamics of the market. Specifically, monitoring the activities of these players can aid
policymakers’ assessment of the market conditions, identify potential risks, and detect
any deviation from tranquil periods that may impact market stability. All network par-
ticipants have linkages with various financial institutions and other asset classes, locally
and globally. Policymakers need to be aware of these connections to assess systemic risk
and the potential for contagion in times of market stress. Overall, our results about the
influence of the Fed and the ECB, the two key players, can be useful for policymakers
in smaller economies for managing their macroeconomic and monetary policy decisions.
Essentially smaller economies have to be aware of their network exposure to key players
to be prepared. Identifying the important players can help policymakers anticipate and
mitigate the likely spillover effects emanating from disruptions or shocks from the key
participants.
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CHAPTER

DYNAMIC VOLATILITY TRANSFER IN THE EUROPEAN OIL
AND GAS INDUSTRY IV

Chapter IV is based on the work of Huszár et al. (2023a). Minor modifications are made

to align with the dissertation format.

IV.1 Introduction

Today, the oil and natural gas industry plays a critical role in the global economy and
the everyday life of citizens who rely on oil and gas for work, transportation, heating and
nourishment, among others. The processes, systems and companies involved in producing
and distributing oil and gas are increasingly complex, capital-intensive and continuously
evolving with technological innovations (CRS Report (2021)). Due to the high entry
barriers, the industry is characterized by an oligopolistic structure where governments
often have direct or indirect involvement in the management of these strategically and
economically important national companies. The involvements are non-negligible since
these national oil companies (NOCs) controlled over $3 trillion in assets in 2019 and
produced much of the world’s oil and gas, while their operations are often non-transparent
to the public (IMF (2019a)). With the recognition of energy risk as a new source of
systemic risk, (e.g., Jang et al. (2020); Caporin et al. (2023); Yang and Hamori (2021))
there have been an increasing number of studies into oil price behaviors in relation with
equity markets, debt markets and political uncertainty (e.g., Kang et al. (2017b)).

It is important to understand the link between oil and gas markets. First, the supply
and demand dynamics of all energy commodities are interconnected (Al-Maamary et al.
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(2017)). Second, as a number of companies are involved in both exploration and produc-
tion of oil and gas, their financial performance can be influenced by the performance of
both commodities simultaneously (George et al. (2016)). While traditionally Brent, WTI,
and natural gas prices are strongly correlated, gas prices seem to have decoupled recently,
as government policies and environmental regulations have preferential treatment towards
natural gas. For example, the European Union (EU)’s energy strategy change with a shift
towards gas as a ”green alternative” from oil (SPGlobal (2022)) and diversification of the
energy supply chain, increasing reliance on US and other non-European energy sources
call for examination of oil and gas prices together.

Globally, a few oil-rich countries are the dominant players in the oil and gas industry.
While the US energy sector is privatized and therefore data is readily available, it is not
the case for non-US companies (IMF (2019a)). Thus energy studies tend to focus on
the US market (e.g., Antonakakis et al. (2018); Zhao (2020)), in particular, studies on
renewable energy and clean energy sources (Ferrer et al. (2018)). Apart from the US,
the European continent is also a big player in the energy sector. Although the European
Union produced 1.9 million Tera Joule (TJ) worth of natural gas in 2020 (Eurostat (2023)),
it remained heavily dependent on external energy, with an over 80% increase in natural
gas dependence ([import - export] / inland demand). The top gas exporters to the EU are
Russia (23.3%), Norway (22.7%), Ukraine (10.2%) and Belarus (8.9%) (Eurostat (2023)).

Even without external disruptions such as Russia’s war on Ukraine (Council of Europe
(2023)), energy prices can be highly volatile because of the slow production/distribution
process and the limited number of large production players (who can collude on supply
and engage in price setting). While there are hopes that in the long run, the use of nuclear
power, renewables and alternative energy sources can be exploited to reduce carbon emis-
sions and improve energy security throughout Europe, in the short term the end users are
largely dependent on traditional oil and gas producers (IMF (2022b)).

In this study, we focus on the European energy market where the impact of environmen-
tal and geopolitical risks on stability and sustainability are of growing concern, espe-
cially since the start of Russia’s war on Ukraine. Specifically, we investigate the volatility
spillover among crude oil, natural gas, unleaded gasoline prices and the stock prices of
major European oil and gas companies over the period from October 2006 to June 2022.
We separate our sample into different industry segments, namely Upstream, Midstream,
Downstream and Integrated Gas and Oil, to analyze the flow of volatility throughout the
production and distribution process.

The economics and financial literature often distinguish between fundamental versus fi-
nancial excess volatility. Fundamental excess volatility of different economic entities can
be interconnected through the supply chain of goods, services (including technology) and
capital flows. These effects are known in the literature as spillovers (Masson (1999)),
interdependence and interconnectedness (Forbes and Rigobon (2002); Forbes (2012)), or
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fundamental-based contagion (Kaminsky and Reinhart (2000)). On the other hand, finan-
cial contagion is defined as shocks that could trigger crises elsewhere and spread to all or
most of the system participants (Masson (1999)).

In the empirical literature, various methods have been used to measure connectedness.
For example, Granger causality network by Billio et al. (2012), Conditional Value at
Risk (CoVaR) by Liu et al. (2022), Marginal Expected Shortfall (MES) by Acharya et al.
(2012) and VaR-GARCH model by Arouri et al. (2012). In the last decade, Diebold
and Yilmaz (2012)’s generalized spillover index (D-Y spillover index, hereafter), using
generalized forecast error variance decomposition, has gained traction in risk transmission
analysis, particularly in energy sector analysis. In extensions for the model, for example,
Antonakakis et al. (2023) and Ghosh et al. (2023) examine volatility transmissions, using
time-varying parameter VAR variant of the connectedness approach.

The popularity of the DY model can be attributed to its intuitiveness and flexibility, suit-
able for network analysis even in market turbulence and transition. Specifically, the model
considers the dynamic nature of volatility, allowing for changing market conditions and
accounting for the interaction between the market (or the network) participants. In addi-
tion, the approach can distinguish between directional spillovers, aiding the identification
of the main source of potential systemic risk. The net spillover matrix is a popular tool
for representing systematically important elements within a set of companies or assets.

We adopt the D-Y spillover index for our analysis of volatility transmission across the
European energy industry in relation to oil and natural gas prices. Our contribution to the
literature is threefold. First, to the best of our knowledge, our work is the first compre-
hensive analysis of the volatility transmission dynamics across all major European oil and
natural gas companies. Covering more than 90 percent of the total market capitalization
of the European energy sector and close to 20 years, from 2003 to 2022. The existing
literature covers only a handful of major oil companies (e.g., Antonakakis et al. (2018)),
and over shorter periods. Our time series coverage includes three exogenous shock peri-
ods, namely the 2008 Global Financial Crisis (GFC), the European sovereign debt crisis
(ESDC), and the Covid-19 pandemic (C19).

Second, while previous studies examine volatility transmission across individual energy
companies across normal and stress periods, we provide a full network approach view.
By including all major European energy network participants, we seek to display the
most significant net connections (i.e., edges in the network) and provide key insights into
the vulnerable points of the system.

Third, by differentiating across Upstream, Downstream, Midstream, and Integrated Oil
and Gas segments along the production line, we identify the emission mechanism for the
idiosyncratic volatility spillover shocks in the context of European companies and identify
system fragility points during stressful conditions. We note that the energy market has
exposure to external impacts, such as weather, political decisions, wars, and pandemics.
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System instability can arise from various sources, such as Russia’s war on Ukraine which
has adversely affected the publicly traded European energy companies, many of which
are in the IOG segment. Since the start of the war in February 2022, the IOG segment has
become a significant volatility transmitter. This evidence is rather alarming since prior
to the Russian conflict, the IOG segment serves as volatility receivers and absorbers and
supports system stability.

In summary, this paper provides new insights into the volatility transmission mechanism
in the European oil and gas industry with a unique network approach, highlighting various
causes of system shifts, and showing how different types of shocks (e.g., demand, supply
and uncertainty) affect various groups of the energy supply chain participants.

The rest of the paper proceeds as follows. Section IV.2 reviews the relevant literature.
Section IV.3 presents the research methodology followed by data description. Section
IV.4 provides the full sample and subsample results. Section IV.5 concludes.

IV.2 Literature review

The interconnectedness of the energy commodity and the equity market has attracted
much research attention over the years. Earlier studies focus on the connection between
oil prices and overall stock returns, providing various conclusions. Using US stock data
and crude oil prices, Sadorsky (1999), Jones and Kaul (1996) and Kling (1985) find an in-
verse relationship, while Chen et al. (1986) find insignificant results. Huang et al. (1996),
on the other hand, examine the relationship between oil futures and US stocks and con-
clude that while price movements of oil futures have no impact on aggregate equity market
indexes, they do influence specific stocks. In a follow-up work, Sadorsky (2001) find re-
sults that support the inverse relationship between stock returns and oil price by using
interest rates and foreign exchange rates as additional explanatory variables.

In addition to the numerous studies into the linkages between oil prices and stock re-
turns, (e.g.,Cuñado and de Gracia (2003); El-Sharif et al. (2005); Kilian (2009); Wang
et al. (2013)), there were studies on the volatility relationship across the commodity mar-
kets (including oil) and the equity market. Mostly aggregated stock market indices are
considered in studies evaluating the link between oil and stock market volatility in the
USA (e.g., Phan et al. (2016); Arouri et al. (2011a)) and in major oil producing countries
(Arouri et al. (2011b)).

Phan et al. (2016) document positive contemporaneous relationship between trading vol-
ume, price volatility and bid-ask spread, using crude oil, E-mini NASDAQ and S&P 500
index futures data. While Maghyereh et al. (2016) analyze the connections between oil
and equity indices across 11 countries, their insights into European companies remain
limited. Thus, a comprehensive analysis of major European oil and gas companies will
be a material contribution to the literature.
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Despite the numerous extant studies on the spillover between crude oil and the stock
market, there are relatively few studies on natural gas and financial markets. Ewing
et al. (2002) analyze the volatility spillover between oil and natural gas markets using the
GARCH model, while Zhang (2017) investigate the spillover effect of the stock market
volatility index for crude oil and natural gas markets. Zhang et al. (2020)study the re-
turn and volatility spillover from commodity and utility sectors to equity indices in North
America and Europe. Their results show that, compared to natural gas, crude oil has a
greater volatility spillover on the utility stock indices. Dai and Zhu (2022) document the
return volatility spillover and the dynamic connectedness of WTI crude oil futures, natu-
ral gas futures, and the Chinese stock market indices. They find a high interdependence
among all analyzed asset classes and a sharp increase in the total volatility spillover under
major crisis events.

Malik and Umar (2019) show that aggregate stock market indices may mask the het-
erogeneity of responses to oil price volatility in the different sectors. They examine the
transmission of volatility shocks between oil prices and five US major sectors and find
significant volatility transmission between the oil market and some of the examined sec-
tors. Arouri et al. (2012) investigate the volatility transmission between oil and stock
markets in Europe and the US, at a sectoral level and show significant volatility interac-
tion between oil and stock market sectors. Arouri et al. (2012) show that for Europe, the
transmission of volatility is much more apparent from oil to stocks than from stocks to
oil.

Using information from the Dow Jones Stoxx Europe 600 index and seven DJ Stoxx sector
indices, Arouri et al. (2012) report significant volatility spillovers between oil prices and
sector stock returns. Sadorsky (2012) on the other hand, analyzes the volatility spillovers
between oil prices and the US clean energy and technology sectors, and finds that clean
energy sector prices are more highly correlated with technology sector volatility than
with oil price volatility. In a related study, Ferrer et al. (2018) measure the volatility
and return spillover between oil prices and the returns of the green energy sector in the
US. They find that crude oil price is not a key driver of the stock market performance
of renewable energy companies. In the context of the Chinese market, Wang and Wang
(2019) investigate the volatility spillover between WTI and 11 Chinese equity sectors.

To our knowledge, only a handful of recent papers investigate the volatility spillover at
the individual stock level in relation to oil and gas prices. Antonakakis et al. (2018)
examine the volatility spillovers and co-movements among oil prices and stock prices of
major oil and gas corporations. They find significant volatility spillover effects between
oil, and oil and gas companies with BP, Chevron, Exxon, Shell, and Total being the major
net transmitter. Corbet et al. (2020) test for the existence of volatility spillovers and
co-movements among energy-focused corporations during the outbreak of the Covid-19
pandemic. They find positive and economically meaningful spillovers from falling oil
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prices to both renewable energy and coal markets. Wu et al. (2021) investigate the risk
connectedness using a Value-at-Risk (VaR) measure within a network comprising the top
20 global energy companies. Their results show that the dynamics are mainly driven by
the US stock market volatility and investors’ sentiment over the full sample, while energy
market risks and exchange rate movements exert significant but short-term influences.
Only a handful of studies (e.g., Antonakakis et al. (2018); Corbet et al. (2020); Wu et al.
(2021)) examine the oil and gas industry at the firm level. However, these studies either
combine the analysis of energy commodity firms, such as coal, electric utility and renew-
able energy companies, or examine only a few key market players globally, or focus only
on the US market. Overall, this study widens the research scope of Corbet et al. (2020)
by focusing on European oil and natural gas companies, providing more insights into the
sustainability and stability of the European energy market which is an acute concern for
decision makers globally after 2022, with the start of Russia’s war on Ukraine.

IV.3 Data and Research Methodology

IV.3.1 Data

As this study focuses on the European Energy market, including a representative sample
of all the firms belonging to Energy - Fossil Fuels business sector from Thomson Reuters
Refinitiv. The sample is restricted to the companies with primary exchange listing is on
European Exchange in the Energy - Fossil Fuels business sector, based on the Refinitiv
Business Classification (TRBC).15 From each subsector, daily stock price, trading volume
and market capitalization data are collected for the largest companies. Specifically, we
collect information about 40 companies from the six relevant industry groups as follows:

• Oil and Gas Exploration and Production

• Oil and Gas Drilling

• Oil Related Services and Equipment

• Oil and Gas Transportation Services

• Oil and Gas Refining and Marketing

• Integrated Oil and Gas

Following the convention in the energy literature (e.g., Kang et al. (2017b); Ewing et al.
(2018)), we distinguish across firms based on being active in the Upstream, Midstream,
and Downstream segments of the oil and gas industry as:

15Alternative classification of companies, using the Global Industry Classification Standard (GICS), is
also performed. This grouping is slightly different based on GICS, and due to the lack of data, only seven-
element company groups can be created. The summary of the corporates is described in Table B.2 in the
Appendix. There is no major difference in the results regardless of the classification standard.
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• Firms in Oil and Gas Exploration and Production & Oil and Gas Drilling� Up-
stream

• Firms in Oil and Gas Transportation Services & Oil Related Services and Equip-

ment�Midstream

• Firms in Oil and Gas Refining and Marketing� Downstream

• Firms with a mix of business, active in upstream, midstream, and downstream ac-

tivities� Integrated Oil and Gas (IOG)

From each of the four different industry segments, we choose the 10 largest European
exchange-listed corporations (as of June 2022) with some further constraints. Specifically,
we require daily continuous stock market coverage from October 24, 2006, until the end
of the sample period or until the liquidation (delisting) of the company. The start of the
sample period is restricted by our data access with an intent to provide a current picture
of the industry including all major players as of 2022. GALP was listed on October 24,
2006, while ROSN went public in July of the same year. The finalized sample period is
from October 24, 2006, to June 30, 2022. The sample is restricted to liquid stocks, defined
as stocks where the number of zero daily volatility exceeds 20% of the observations. The
start of the sample is two years of the financialization of the energy market (see Irwin and
Sanders (2011)) so it is unlikely to affect our analysis.
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Table IV.1
Summary of the sample firms by industry segments of Upstream, Midstream, Down-
stream and IOG, based on the TRBC industry classification

Ticker Company Name Exchange Industry group Capitalization
Integrated Oil and Gas
SHEL Shell UK Integrated Oil and Gas 205 631
TTEF TotalEnergies France Integrated Oil and Gas 141 241
EQNR Equinor Norway Integrated Oil and Gas 113 235
GAZP Gazprom Russia Integrated Oil and Gas 103 229
ROSN Rosneft Russia Integrated Oil and Gas 58 363
ENI Eni Italy Integrated Oil and Gas 50 832
LKOH Lukoil Russia Integrated Oil and Gas 41 347
SIBN Gazprom Neft Russia Integrated Oil and Gas 28 593
SNGS Surgutneftegaz Russia Integrated Oil and Gas 11 618
TATN Tatneft Russia Integrated Oil and Gas 12 702
Sum 766 789

Upstream
NVTK Novatek Russia Oil & Gas Exploration and Production 40 117
LUNE Orron Energy Sweden Oil & Gas Exploration and Production 12 906
HBR Harbour Energy UK Oil & Gas Exploration and Production 4 106
DNO DNO Norway Oil & Gas Exploration and Production 1 680
TLW Tullow Oil UK Oil & Gas Exploration and Production 901
MAUP Maurel and Prom France Oil & Gas Exploration and Production 1 002
SQZ Serica UK Oil & Gas Exploration and Production 801
CNE Capricorn Energy UK Oil & Gas Exploration and Production 743
TETY Tethys Oil Sweden Oil & Gas Exploration and Production 256
PHARP Pharos Energy UK Oil & Gas Exploration and Production 124
Sum 62 637

Midstream
TENR Tenaris Italy Oil Related Services and Equipment 18 588
SRG Snam Italy Oil & Gas Transportation Services 18 135
ENAG Enagas Spain Oil & Gas Transportation Services 5 620
VOPA Vopak Netherlands Oil & Gas Transportation Services 3 306
VLLP Vallourec France Oil Related Services and Equipment 2 965
SUBC Subsea 7 Norway Oil Related Services and Equipment 2 907
SBMO SBM Offshore Netherlands Oil Related Services and Equipment 2 735
TRNF Transneft Russia Oil & Gas Transportation Services 2 723
EUAV Euronav Belgium Oil & Gas Transportation Services 2 691
FLUX Fluxys Belgium Belgium Oil & Gas Transportation Services 359
Sum 60 028

Downstream
BP BP UK Oil & Gas Refining and Marketing 97 670
NESTE Neste Finland Oil & Gas Refining and Marketing 32 991
REP Repsol Spain Oil & Gas Refining and Marketing 22 689
OMVV OMV Austria Oil & Gas Refining and Marketing 17 660
GALP GE SGPS Portugal Oil & Gas Refining and Marketing 9 485
PKN PKN Orlen Poland Oil & Gas Refining and Marketing 6 723
MOLB MOL Hungary Oil & Gas Refining and Marketing 5 730
ROSNP OMV Petrom Romania Oil & Gas Refining and Marketing 5 319
RUBF Rubis France Oil & Gas Refining and Marketing 2 880
LTS Grupa Lotos Poland Oil & Gas Refining and Marketing 2 832
Sum 203 980

Note: Market capitalization is expressed in million C.

Table IV.1 summarizes our sample of 40 European energy companies with relevant avail-
able data by industry segments, covering 91.7% of the total market capitalization of the
European oil and gas industry. 98.6% of the market capitalization of IOG companies,
60.4% of the Upstream segment, 69.4% of the Midstream segments, and 92.2% of the
Downstream segment.
We complement our daily stock market database with commodity information, including
daily exchange-listed futures information on ICE Europe Brent Crude Oil (Brent), the
Dutch TTF Natural Gas (NG), and the ICE Europe Low Sulphur Gasoil (Gasoil). We also
include equity market information, namely the FTSE All World Index (FTSEALL) daily
returns. These latter assets are considered external in our network analysis.
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We define asset i price volatility as the absolute return Vit = |ln(Pit)− ln(P(it−1))| where
Pit is the daily closing price of asset i on day t. Descriptive statistics of the volatility series
are reported in Table IV.2. Daily volatilities of the series are presented in Figs. B.1 - B.5
in the Appendix. Our choice of volatility measures is motivated byForsberg and Ghysels
(2007), who show that absolute returns are good volatility predictors, as they have good
population performance, low sampling errors and are robust to jumps.16

16In robustness checks, results are also replicated with GARCH(1,1) model (see Figs. B.13 - B.17).
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Table IV.2
Descriptive statistics of realized volatilities of the selected companies and the ex-
ternal assets

Name Mean Median St. dev. Min. Max. Skew. Kurt. Jarque-Bera ADF Obs.
Integrated Oil and Gas
SHEL 0.012 0.008 0.013 0 0.194 3.755 29.301 0.16*** -8.15*** 4 092
TTEF 0.012 0.009 0.013 0 0.182 3.806 27.758 0.14*** -9.23*** 4 092
EQNR 0.013 0.01 0.014 0 0.195 2.674 14.768 0.04*** -8.09*** 4 092
GAZP 0.014 0.01 0.019 0 0.363 6.184 71.857 0.91*** -8.28*** 4 092
ROSN 0.015 0.01 0.02 0 0.451 7.517 112.242 2.19*** -9.16*** 4 092
ENI 0.012 0.008 0.014 0 0.234 4.435 40.979 0.30*** -8.69*** 4 092
LKOH 0.014 0.009 0.018 0 0.258 4.689 39.041 0.27*** -8.22*** 4 092
SIBN 0.013 0.008 0.017 0 0.31 4.842 44.282 0.35*** -7.92*** 4 092
SNGS 0.015 0.01 0.02 0 0.374 5.97 69.215 0.84*** -8.77*** 4 092
TATN 0.017 0.011 0.021 0 0.354 4.898 45.566 0.37*** -8.56*** 4 092

Upstream
NVTK 0.016 0.011 0.019 0 0.302 4.467 39.026 0.27*** -9.04*** 4 092
LUNE 0.018 0.011 0.066 0 4.02 55.455 3371.658 1940*** -3.89** 4 092
HBR 0.024 0.016 0.032 0 0.855 9.026 170.717 5.02*** -10.15*** 4 092
DNO 0.024 0.016 0.028 0 0.612 4.833 61.024 0.65*** -10.03*** 4 092
TLW 0.023 0.016 0.034 0 1.264 14.352 452.31 35.02*** -10.58*** 4 092
MAUP 0.016 0.011 0.018 0 0.306 3.021 22.536 0.09*** -8.84*** 4 092
SQZ 0.024 0.016 0.032 0 0.882 7.995 159.506 4.38*** -13.07*** 4 092
CNE 0.018 0.013 0.02 0 0.346 4.311 39.681 0.28*** -9.86*** 4 092
TETY 0.02 0.014 0.022 0 0.31 3.783 27.717 0.14*** -12.14*** 4 092
PHARP 0.019 0.013 0.023 0 0.423 4.348 42.201 0.32*** -9.16*** 4 092

Midstream
TENR 0.016 0.012 0.017 0 0.241 3.192 20.142 0.08*** -9.28*** 4 092
SRG 0.01 0.007 0.01 0 0.213 4.382 52.184 0.50*** -10.87*** 4 092
ENAG 0.011 0.008 0.011 0 0.16 3.144 22.142 0.09*** -10.86*** 4 092
VOPA 0.012 0.008 0.013 0 0.168 3.301 20.638 0.08*** -11.09*** 4 092
VLLP 0.023 0.016 0.025 0 0.388 3.502 26.156 0.13*** -10.21*** 4 092
SUBC 0.019 0.014 0.02 0 0.237 2.652 13.013 0.03*** -8.50*** 4 092
SBMO 0.016 0.011 0.018 0 0.282 3.915 29.245 0.16*** -10.20*** 4 092
TRNF 0.016 0.01 0.021 0 0.325 4.891 44.008 0.35*** -8.77*** 4 092
EUAV 0.018 0.013 0.018 0 0.165 2.201 7.649 0.01*** -10.19*** 4 092
FLUX 0.009 0.006 0.01 0 0.151 2.807 19.227 0.07*** -12.88*** 4 092

Downstream
BP 0.012 0.008 0.014 0 0.217 3.636 28.442 0.14*** -8.38*** 4 092
NESTE 0.016 0.011 0.016 0 0.213 2.774 14.214 0.04*** -10.28*** 4 092
REP 0.014 0.01 0.015 0 0.171 3.063 16.904 0.06*** -8.15*** 4 092
OMVV 0.015 0.011 0.016 0 0.213 3.517 23.925 0.11*** -9.35*** 4 092
GALP 0.014 0.01 0.016 0 0.221 3.345 22.144 0.09*** -9.20*** 4 092
PKN 0.016 0.012 0.015 0 0.134 1.782 5.6 0.01*** -10.49*** 4 092
MOLB 0.014 0.01 0.015 0 0.162 2.97 15.782 0.05*** -8.24*** 4 092
ROSNP 0.013 0.008 0.016 0 0.162 3.279 17.915 0.06*** -8.92*** 4 092
RUBF 0.011 0.008 0.012 0 0.125 2.729 12.015 0.03*** -9.69*** 4 092
LTS 0.016 0.012 0.016 0 0.17 2.108 8.439 0.02*** -11.11*** 4 092

External assets
Gasoil 0.015 0.01 0.016 0 0.332 4.753 52.546 0.49*** -9.53*** 4 092
FTSEALL 0.007 0.004 0.008 0 0.1 3.712 23.283 0.10*** -7.60*** 4 092
NG 0.021 0.012 0.03 0 0.479 5.183 45.08 0.36*** -9.64*** 4 092
Brent 0.016 0.011 0.018 0 0.309 4.209 41.809 0.31*** -7.58*** 4 092

Note: Jarque-Bera statistics are expressed in millions. The 1%, 5%, and 10% significance
levels are indicated with ***, **, *, respectively.

Two stocks, TLW and LUNE, are outliers in terms of maximum value and return volatility.
In December 2019, the CEO and the director of explorations of TLW left as the company
was facing major problems across its oil and gas exploration fields in Ghana, Uganda,
Kenya, and Guyana. Then almost immediately the Covid-19 pandemic struck. As for
LUNE, the last day of trading in its shares on Nasdaq Stockholm was June 22, 2022,
as it changed its name to Orron Energy after merging its E&P business with Aker BP,
to reflect its new status as a pure-play renewables business. Prior to delisting in 2022,
LUNE’s stock price decreased from 444.1 SEK on June 17 to 10.2 SEK, on June 20,
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erasing almost 98% of the company’s market capitalization.

IV.3.2 The volatility spillover index

To examine spillovers in the volatility of major oil companies’ stock prices and commod-
ity prices, we apply the generalized version of the spillover index, introduced in Diebold
and Yilmaz (2012). The original D-Y model (Diebold and Yilmaz (2009)) is based on a
VAR method (Sims (1980)) with a major focus on the calculation of the Forecast Error
Variance Decomposition (FEVD). Variance decomposition measures how exactly the H
step ahead forecast error variance of a variable i can be attributed to the innovation of
another variable j, thereby creating an intuitive method for measuring the spillover of
volatility.

In this form of the procedure two limitations are encountered, one of which is that the
VAR method uses Cholesky factor identification, so the results depend on the order of
the variables. The second is that only the spillover index for the entire population can be
calculated, not between constituent pairs. These shortcomings are eliminated in Diebold
and Yilmaz (2012) by using the generalized VAR framework (e.g., Koop et al. (1996)),
where the FEVDs are invariant to the ordering of the variables, avoiding the ordering
of the variables in the VAR model. This method allows correlated shocks assuming the
normality of error distribution. Thus, the shocks to each variable are not orthogonal.
Therefore, the sum of the contributions to the forecast error variance is not necessarily or
equal to one. Given the goal is to assess the magnitude of the volatility spillovers rather
than identifying the causal effects of structural shocks, this appears to be the preferred
choice in the present context (Diebold and Yilmaz (2023)).

Under the generalized VAR framework, we consider a covariance-stationary VAR (p)
model with N -variable i.e., Yt =

∑p
t=1 ψiYt−i + et, where et ∼ i.i.d(0,Σ) is a N × 1

vector of residuals. The moving average representation of the VAR model takes the form
of Yt =

∑∞
j=0 ψiAjet−j whereAj is anN×N is a coefficient matrix. Aj follows recursive

pattern as Aj = ψ1Aj−1 + ψ2Aj−2 + ... + ψpAj−p, A0 is an identity matrix and Aj = 0

for j < 0. Diebold and Yilmaz (2012) apply a generalized VAR framework to calculate
the H-step-ahead generalized forecast error decompositions as follows:

φij(H) =
σ−1ii

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iA

′
hΣei)

(IV.1)

where Σ is the (forecasted) variance matrix of et error vector, σii is the standard deviation
of the error term of equation i and ei is a vector with element i being 1, and the rest is 0.
This provides a φ(H) matrix with dimension N × N , φ(H) = [φij(H)]i,j=1,...,N , where
all of elements j represents the contribution for the forecast error variance of variable i.

The values in the diagonal reflect the contribution of the shocks to variable i to their
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own forecast error variance, and those outside the diagonal show the cross contribution of
the other j variables to variable i. The sum of the elements in each row of the variance
decomposition table is not equal to one thanks to the usage of generalized VAR, thus
normalization is required for each entry of the variance decomposition table by its row
sum as follows:

φ̄ij(H) =
φij(H)∑N
j=1 φij(H)

(IV.2)

so that the decomposition including shocks in each market equals to unity, i.e.,∑N
j=1 φ̄ij(H) = 1 and total decomposition of all variables sums to N ,

i.e.,
∑N

ij=1 φ̄ij(H) = N The total spillover index is computed as follows:

TS(H) =

∑N
ij=1,i 6=j φ̄ij(H)

N
· 100 (IV.3)

The total spillover index explains the spillovers from all the assets to the total FEVD.
Similarly, directional spillovers which measure the volatility spillover received by asset i
from the universe of markets j is calculated as follows:

DSi←j(H) =

∑N
j=1,i 6=j φ̄ij(H)

N
· 100 (IV.4)

and

DSi→j(H) =

∑N
j=1,i 6=j φ̄ji(H)

N
· 100 (IV.5)

Finally, the net spillovers from one variable to another for a set of variables are calculated
by taking the difference of Eq. IV.4 and IV.5 as

NSi(H) = DSi→j(H)−DSi←j(H) (IV.6)

IV.4 Empirical results

IV.4.1 Static, full sample interconnectedness analysis

We start the analysis of the volatility transmission across European energy companies,
oil and gas commodity futures, and a global equity index by investigating their spillover
effects. Table IV.3 presents key volatility spillover results for our Energy firms universe,
based on the full sample estimation. For brevity, Table IV.3 is only a subset of Table B.1
in the Appendix. Diebold and Yılmaz (2014) report a 78.3% spillover index in their in-
vestigation of the financial system, which they consider as very high. In our case the total
volatility spillover index is also high, reaching 76.1%, which indicates high interconnect-
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edness among all assets. Our spillover index is higher than that shown by Antonakakis
et al. (2018) who study a handful of the world’s largest oil and gas companies from 2001
to 2016 and find 69.8% for the D-Y spillover index. In our sample, the largest pair-
wise volatility spillovers (colored by magenta) can be detected between Brent→Gasoil
(11.9%), HBR→SRG (11.9%) and HBR→CNE (10.7%).

Table IV.3
The strongest pairwise spillovers

· · · LUNE HBR · · · TLW · · · CNE · · · SRG · · · FLUX Gasoil FTSEALL · · · Brent From
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

LUNE · · · 97.3 0.2 · · · 0.2 · · · 0.1 · · · 0.0 · · · 0.0 0.0 0.0 · · · 0.0 2.7
HBR · · · 1.5 47.2 · · · 8.5 · · · 2.9 · · · 0.4 · · · 0.1 1.2 0.2 · · · 2.1 52.8
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

TLW · · · 1.5 9.4 · · · 54.4 · · · 1.9 · · · 0.3 · · · 0.1 1.0 0.2 · · · 1.6 45.6
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

CNE · · · 2.2 10.7 · · · 6.9 · · · 20.8 · · · 0.5 · · · 0.1 1.1 0.5 · · · 1.9 79.2
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

SRG · · · 3.4 11.9 · · · 5.7 · · · 3.5 · · · 9.8 · · · 0.3 1.3 0.5 · · · 2.2 90.2
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

FLUX · · · 2.1 5.0 · · · 4.2 · · · 2.5 · · · 0.8 · · · 16.9 1.2 0.4 · · · 13.9 83.1
Gasoil · · · 2.3 7.7 · · · 5.6 · · · 1.5 · · · 0.3 · · · 0.1 17.8 0.5 · · · 11.9 82.2
FTSEALL · · · 3.7 5.6 · · · 4.1 · · · 3.3 · · · 0.6 · · · 0.1 1.6 3.1 · · · 2.4 96.9
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

Brent · · · 2.6 9.8 · · · 5.9 · · · 2.1 · · · 0.4 · · · 0.1 9.0 0.5 · · · 17.5 82.5
...

. . .
...

...
. . .

...
. . .

...
. . .

...
. . .

...
...

...
. . .

...
...

To · · · 121.2 230.2 · · · 170.4 · · · 90.9 · · · 18.5 · · · 5.7 49.4 20.6 · · · 68.4 76.1

Net · · · 118.5 177.4 · · · 124.8 · · · 11.7 · · · -71.7 · · · -77.4 -32.8 -76.3 · · · -14.1

Note: This table is a subset of the whole spillover matrix which is represented in
Table B.1. TS(10) = 76.1

A participant is either a net volatility transmitter (positive values in the Net row) or re-
ceiver (negative values in the Net row), based on the difference between emitted and
taken volatilities. The net spillover indices indicate that FLUX (-77.4%) is the largest
volatility receiver, followed by FTSEALL (-76.3%). Similarly, we find that Gasoil and
Brent are net volatility receivers (with -32.8%, -14.1% values, respectively), suggesting
that these commodity volatilities are impacted by the oil and gas companies’ volatilities.
Antonakakis et al. (2018) and Dai and Zhu (2022) who also find that energy commodities
are net volatility recipients. On the other hand, NG is net positive (26.0%) in volatility
transmission, which underlines the importance of involving this asset in the investigation.

Furthermore, all Downstream companies are net volatility receivers while Upstream com-
panies are net transmitters (except for PHARP). Wu et al. (2021) also find that the Down-
stream segment is affected the most and the Upstream segment contributes the most to
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the volatility spillover of the energy system. Although, IOG companies tend to be volatil-
ity receivers; four Russian companies are net transmitters. Midstream companies tend
to be both volatility takers and emitters. The strongest volatility transmitters are all part
of the Upstream segment, namely HBR, TLW and LUNE (177.4%, 124.8% and 118.5%
respectively).
Using the connectedness table, it is also possible to construct a matrix containing the pair-
wise net directional connectedness of all pairs. Fig. IV.1 provides a visual representation
of these relations in an informative network graph. An arrow from variable yi to variable
yj denotes a positive net directional connectedness (in other words, variable yi explains
more to variable yj than the reverse). The companies are grouped and color-coded by
sector. External assets are represented in one circle; however, they do not belong together
thus they are colored differently. The colors of the arrows indicate the industry segment of
the transmitter participant. Only those edges with the uppermost 5% magnitude of the net
spillover are shown. Thicker arrows indicate connections from the top 1%, the strongest
pairwise spillover connections.

Fig. IV.1. Static, full-sample volatility interconnectedness network

Note: An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow indicates the industry segment of the asset that originates from. Thinner lines represent the
strongest 5% of connections, while thicker lines show the uppermost 1% of connections. For the
figure, we use Lag=3 and H=10 model inputs. TS(10) = 76.1

In Fig. IV.1, the blue colored arrows dominate, indicating that Upstream companies are
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the primary volatility transmitters in the system. Of the possible 114 arrows, 88 are com-
ing from this group which is 77.2% of all edges. This is followed by the Midstream group
with 19.3% then the IOG companies with 1.8%. Natural Gas and Brent both have one
outgoing edge which means 0.9% each. Gasoil and FTSEALL have no outgoing edges,
nor the whole Downstream sector. The distribution on the receiving side is more even, the
Midstream sector takes 34 arrows which are 29.8% of the possible edges, then it is fol-
lowed by Downstream companies (29.8%), IOG sector (20.2%) and the Upstream firms
(7.9%). FTSEALL takes 6.1%, Gasoil takes 4.4% while Brent is responsible for 2.6% of
the incoming edges. Natural Gas does not receive any arrow.
There are a few underlying reasons why the Upstream segment is likely the primary source
of volatility emission. Companies in this segment are associated with the beginning of the
production cycle and are likely to have the strongest connection with oil supply shocks.
In this sense, the segment is directly linked to OPEC decisions (see Behrouzifar et al.
(2019)). This is in line with the findings of King et al. (2012) who point out that many
upstream companies are state-owned and publicly traded firms in this sector must coexist
with the related political decisions. They also highlight that in addition to the sector’s
dependence on the political decision-making process in oil-exporting nations, the world
supply of oil is occasionally reduced by war, terrorism, and guerrilla activity that are the
result of political instability or conflict.
Despite the large number of connectedness articles, the deeper structure of the networks
and the top nodes have been investigated by far fewer. Neither Wu et al. (2021) nor Dai
and Zhu (2022) highlight the top nodes in their network analysis, hereby we extend their
approach. To find the main drivers of the network, we use the net (out-in) and total con-
nections. Table IV.4 identifies the most vulnerable points of the network, by showing
the participants with the most edges. The first four columns provide the aggregated rela-
tionships, with subsequent columns representing the nodes having the most incoming and
outgoing edges separately.

Table IV.4
European energy market participants with most edges in the network

Top 5 Sum Top 5 Incoming Top 5 Outgoing Top 5 Net
Node Total In Out Node In Node Out Node Net
HBR 29 0 29 FTSEALL 7 HBR 29 HBR 29
TLW 23 0 23 FLUX 6 TLW 23 TLW 23
DNO 18 0 18 SRG 6 DNO 18 DNO 18
VLLP 18 1 17 ENAG 6 VLLP 18 VLLP 17
LUNE 16 0 16 SHEL 5 LUNE 16 LUNE 16

The participants with the most outgoing and net edges comprise of the same set of com-
panies, HBR, TLW, DNO, VLLP, and LUNE in this order. Of these, only VLLP is from
the Midstream segment while the remainder belong to the Upstream segment. Tables IV.3
and B.1 indicate that FLUX, FTSEALL, and SRG are the strongest volatility receivers,
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considering the spillover index. These nodes also have the highest number of incoming
edges (although in a different order, FTSEALL, FLUX, and SRG). They are followed by
ENAG and SHEL. The three companies, FLUX, SRG and ENAG, are from the Midstream
segment, while SHEL is from the IOG segment.
Table IV.4 and Fig. IV.1 provide three insights. First, there are no such assets, which
are volatility receivers and emitters at the same time. Second, the Upstream industry
contributes the most to the volatility spillover, with a number of firms (e.g., LUNE, HBR,
DNO and LTW) in this group being strong volatility transmitters by having numerous
net edges. Third, there is no such industry or external asset on the recipient side, as the
incoming edges are more evenly distributed.

IV.4.2 Dynamic, rolling-window-based interconnectedness analysis

While all industries tend to shift over time, this is especially true for the energy industry
which has experienced significant changes in recent years with technological innovations
and the adaptation of new alternative resources. In addition, the energy sector is sensi-
tive to external demand and supply shocks. To address the dynamics of the European
energy market, we investigate the changing connectedness in the network by adopting a
rolling-window approach. For the entire sample period with 4 092 observations, the total
volatility index is recursively estimated 769 times over time, with each window being 250
days Fig. IV.2 presents the total volatility spillover index over the sample period based
on 250-day rolling windows and a 10-day-ahead forecast horizon.17 It is interesting to
note that even though the static total spillover index is estimated to be 76.04% when we
examine this index over time, we see that it is mainly above this value and fluctuates
between about 73% and 93%. This is another indication that a time-varying approach
provides significantly more information for energy market stakeholders, compared to the
static analysis.
The investigation horizon contains three periods that the Euro Area Business Cycle Dating
Committee considers to be crises.18 These are the Global Financial Crisis (GFC), the
European Sovereign Debt Crisis (ESDC) and the Covid-19 pandemic (C19). Fig. IV.2
below shows the time-series trend in the system, with crisis periods marked with pink,
blue, and yellow shading respectively.

17As a robustness check, alternative rolling window sizes (500-day and 750-day), forecast horizons (20
and 30-day ahead) and confidence levels (90% and 99%) are also explored. The results are very similar in
characteristics and available upon request from the authors.

18The data is available at https://eabcn.org/dc/chronology-euro-area-business-
cycles
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Fig. IV.2. Total volatility spillover [TS(10)] over the observation horizon

Note: The total volatility (100%) is indicated on the left axis. The shaded areas represent various
crises periods, namely the GFC: January 1, 2008 - July 1, 2009 (pink area), the ESDC: July 1,
2011 - January 1, 2013 (blue area), and the C19: September 1, 2019 - July 1, 2020 (yellow area).
In creating the figure, we used Lag=3 and H=10 as model parameters with a window size of 250
days.

Consistent with Bouri (2015) and Kang et al. (2017a)who study volatility spillover during
the GFC, we find that the volatility spillover increases during turbulent periods. However,
the spillover effect did not fade out immediately after the end of the GFC but persisted
until mid-2010. A plausible explanation for the persistence is the April 2010 Deepwater
Horizon oil spill in the Gulf of Mexico that was caused by a BP oil rig.

The second phase of high spillover of about 85% is observed during the period between
mid-2011 to 2014 before they collapsed to below 75% at the end of 2014. These spillovers
reflect the uncertainty in the energy market due to the 2011 Arab Spring, the Libyan
political unrest, the turbulence in Bahrain, Egypt, and Yemen, as well as the Syrian Civil
War in the post-2011 period. Additionally, these events overlap with the ESDC, which
increased uncertainty in the PIIGS country Figs. B.6 - B.10 show the heightened volatility
index values for companies from these countries.

The third phase of increased spillover was evident from 2015 when oil prices hovered
around $50. It is noteworthy that before the oil price declined from mid-2014 to 215,
volatility spillovers reached a local minimum. Fantazzini (2016) suggests that there was
a negative bubble in 2014 - 2015, which decreased oil price beyond the level justified by
economic fundamentals, and which might explain the low volatility spillovers.

The Covid-19 pandemic paralyzed real economic activity around the world. Oil prices
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experienced unprecedented decline because of plummeting demand due to reduced eco-
nomic activity, limited international travel, and implementation of lockdowns. By June
30, 2022, there were over 600 million confirmed Covid-19 cases and 6.5 million con-
firmed deaths globally. Despite the decline in oil prices, the high spillover index persisted.
There are a few publications on volatility spillovers in the oil industry during the Covid-
19 pandemic (e.g., Ghorbel and Jeribi (2021); Mensi et al. (2022); Shahzad et al. (2021))
which all show similar results.

In 2022, Russia started an offensive against Ukraine. The eight Russian companies
(GAZP, ROSN, LKOH, SIBN, SNGS, TATN, NVTK, and TRNF) within the observed
universe accounted for 26.66% of the total market capitalization. The connectedness in-
dex is particularly sensitive to these companies. On February 24, 2022, following the start
of a full-scale invasion of Ukraine by Russia, the Moscow Exchange (MOEX) suspended
trading and foreign clients were banned from selling any securities. On March 23, 2022
it was announced that trading of 33 Russian Ruble securities would resume on March 24
for residents of Russia, but that foreign investors remained restricted to repo and deriva-
tive deals. Between February 22, 2022, and June 30, 2022, the MOEX index dropped to
2204.85 from 3084.74. Although Western sanctions further sank the Russian stock mar-
ket, revenues collected through the oil and gas industries, which accounted for about 40%
of the Russian government state budget, remained largely the same (Sturm and Menzel
(2022)).

IV.4.3 Spillover effects in crisis periods

Fig. IV.2 indicates that during turbulent periods, the spillover effect increases. The impact
of crises on the energy market is well documented in the empirical literature, although it
is less common to compare different turbulent periods. Several studies (e.g., Wu et al.
(2021)) examine tranquil and turbulent periods, but they focus on the large global energy
companies. We provide a more a comprehensive analysis of European energy compa-
nies using a network approach based on the D-Y index that is capable of identifying the
vulnerable points of the system by displaying the most significant net edges.

To provide additional insights into different market turbulences, we perform a static
spillover analysis on three separate turbulent periods, namely the GFC, ESDC, and C19.
Figs. VI.1a - IV.3c show that the strongest net volatility transmitters differ across the sub-
sample periods, and different underlying effects move the market during these turbulent
periods.
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(a) Global Financial Crisis (b) European Sovereign Debt Crisis

(c) Covid-19 Pandemic

Fig. IV.3. Network model of volatility spillover in European oil and gas industry in dif-
ferent sub-periods

Note: An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow denotes the asset from which it originates. Thinner lines represent the strongest 5% of
connections, while thicker lines show the top 1% strongest connections. For the figure, we use
Lag=3 and H=10 model inputs. The three crisis periods: the Global Financial Crisis (GFC) from
January 1, 2009 to July 1, 2009; the European Sovereign Debt Crises (ESDC) from July 1, 2011
to January 1, 2013; and the Covid-19 pandemic (C19) from September 1, 2019 to July 1, 2020.

The IOG segment becomes a significant volatility emitter during the GFC. This effect can
be connected to Russian companies as 36% of the significant edges originate from the six
Russian IOG companies. This ratio increases to 52% if NVTK (Upstream) and TRNF
(Midstream) are also considered. Political anxieties following the conflict with Georgia
and the sharp decline in the price of Urals heavy crude oil (Kuboniwa (2014)) contributed
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to the 2008 - 2009 subprime crisis in Russia, resulting in the 2008 Russian market crash,
wiping out more than $1 trillion in value.

During the Eurozone crisis, the Upstream companies’ volatility emission significantly
declined and only one Downstream company has been identified as volatility emitters,
NESTE. In NESTE’s 2012 Annual financial report, the company notes serious intermit-
tent production problems in the main facility and the confounding effects of the escalating
Eurozone crisis and the deepening crisis between Iran and the West.19 While crude oil
prices peaked in early spring at $125/bbl amid concerns about a deepening crisis between
Iran and the West, the Eurozone recession fears pushed priced back to $90. Midstream
companies have also overexpanded their investments in recent years, from 2006 - 2012
investing the double to adapt to the new productions, to build new pipelines for shale
productions and to transport Natural Gas Liquids (NGLs). In 2012, it was estimated
that another $250 billion in capital investment will be required in the next 20 years in
the industry putting extreme pressure on Midstream companies and their investors. This
put extreme pressure on Midstream companies and their investors in view of the demand
decline due to ESDC and the increase in supply from US shale oil.20

In the C19 period, 89% of the edges originated from three nodes, name HBR, TLW and
NG. Global gas demand slumped in Q1 2020 with the implementation of C19 lockdowns.
The pandemic hit an already declining gas demand due to historically mild temperatures
over the first few months of the year. In February 2020, the TTF month-ahead fell to a
10-year low and in the second quarter, the economic stress pushed prices further down
into unchartered territories. With record low prices, even small price movements had a
relatively high impact on volatility. The demand slump for NG had an indirect effect
on the volatility of HBR and TLW as they have high exposure to gas exploration and
extraction.

IV.4.4 Distribution of imported and emitted volatility over time

Previously, in the static plot, it was highlighted that volatility import is approximately
evenly scattered between the four sets of companies and the external assets receive way
less. Fig. IV.4a shows that this statement is persistent in time. It shows the distribution
of the most powerful linkages, as seen in the network plot of Fig. IV.1. The same rolling
window method is utilized here.

19Source: NESTE 2012 Annual report, https://www.neste.com/
sites/default/files/attachments/corporate/investors/agm/
review by the board of directors 2012.pdf

20Source: Deloitte, 2012 Deloitte Oil & Gas Conference A new world of opportunity,
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-
and-Resources/dttl-ER-The-rise-of-the-midstream.pdf
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(a) Distribution of imported volatility from the various energy sectors and commodities,
over times

(b) Distribution of emitted volatility from the various energy sectors and commodities, over
time

Fig. IV.4. Distribution of imported and emitted volatility over time

Note: Panel (a) displays the distribution of imported volatility over time, while Panel (b) shows
the distribution of emitted volatility over time. For both figures, in the model input, we use Lag=3
and H=10, with a window size of 250 days and we display the strongest 5% of edges.

In Fig. IV.4b the persistent presence of blue shaded area and purple shaded area imply
consistent volatility emission from the Upstream segment and the Midstream segment,
respectively. In addition, various idiosyncratic shocks can be identified. For example,
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the top section of the graph (with red spikes) shows that the IOG segment becomes a
significant volatility importer three times during our sample period. All these cases can
be connected to Russian companies. The first spike is identical to the results of Fig. VI.1a
during the GFC. The third occasion is the larger Russo-Ukrainian War starting in February
2022.

The steep devaluation of the Russian Ruble that started in the second half of 2014 led to
the financial crisis in Russia from 2014 to 2016 (Viktorov and Abramov (2020)). Investors
sold off their Russian assets, which further decreased the value of the Ruble and raised
concerns of a possible financial disaster. At least two significant causes contributed to
the loss of trust in the Russian economy. First is the decrease in oil prices, a significant
export for Russia, in 2014 by about 50%. Second is the implementation of international
economic sanctions on Russia in response to its annexation of Crimea and the war in
Donbas (Frye (2019)).

There are five different idiosyncratic volatility spillover periods driven by Natural gas.
According to Growitsch et al. (2015), the volatility of TTF increased during the final
quarter of 2007, but it decreased from the first quarter of 2008 to the third quarter of
2009. The change is probably, at least in part, explained by the decline in crude oil
prices. The price of gas in continental Europe is frequently index-linked to the price of
crude oil (Zhang and Ji (2018)). Brent Crude Oil peaked on July 11, 2008 and reached
its local minimum on December 24, 2008. TTF behaves very similarly, with a longer
price-decreasing period, it reached the local minimum on September 3, 2009.

Two significant events in 2011 were particularly noteworthy in terms of natural gas supply
and consumption. The supply side has been impacted by the revolutions against powerful
regimes in the Middle East and in countries of North Africa. These two regions are im-
portant natural gas providers to European companies (Del Sarto (2016)). On the demand
side, the Fukushima nuclear accident that followed the tsunami that hit Japan on March
11, 2011, had a large impact on the energy discussion in the European Union and the
region’s projected demand for natural gas (Hayashi and Hughes (2013)). In reaction to
widespread protests against nuclear power, politicians started researching alternatives for
this electricity generation, with gas acting as an essential safety net.

The third spillover shock connected to natural gas is related to the Crimea annexation
period. As a form of political pressure, Russia announced two consecutive price increases
for retail gas in Ukraine through Gazprom in April 2014. As a result of the lack of
advance payments, tensions increased and on June 16, 2014, Russia cut off the gas supply
to Ukraine. An interim deal was struck at the end of March 2015 following several months
of negotiations and the assistance of the European Union (Reuters (2015)).

The natural gas market instability was already evident during the Covid-19 pandemic,
driven by an initial decline in demand and rapid price rise in the summer of 2021 (Fulwood
(2022)). When Russia’s aggression against Ukraine in the first few months of 2022 raised
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concerns about the safety of Europe’s gas supply and the unpredictability of gas prices on
the continent, the situation deteriorated further. In the first quarter of 2022, the EU spent
a projected C78 billion on gas imports, C27 billion of which came from Russia. EU’s
net gas imports had increased by 10% over this time, while imports of liquefied natural
gas (LNG) had increased by 72% year on year (European Commission (2020), European
Commission (2020)).

During 2006 - 2022, two discernible Brent-related volatility spillover spikes occurred,
the first of which happened in 2017. OPEC and non-OPEC members decided to execute a
nine-month production cut on May 25, 2017. Russia, a major non-OPEC oil producer, and
OPEC agreed to renew their oil supply curbs through the end of 2018 (Bloomberg (2017)).
The spillover became apparent once more in late 2021, this time due to the Omicron form
of the Covid-19 virus. The revelation that other European nations are imposing travel
restrictions on the UK as it manages a growing wave of the highly transmissible virus
added new pressure to demand and spurred a sell-off. The front-month futures price for
Brent fell by 12% on November 26 after the World Health Organization classified the
SARS-CoV-2 Omicron as a variant of concern. A little more than a month later, oil prices
rose on hopes that the omicron virus version would be milder, calming worries about the
demand forecast (Reuters (2022b)).

IV.5 Conclusions

This study examines the co-movements and spillovers in volatility between the stock
prices of key European oil and gas companies and the prices of oil and gas commodi-
ties in the period from October 24 to June 30, 2022. To the best of our knowledge, this
is the first empirical study that examines volatility co-movements and spillovers utilizing
company-level data from 40 oil and gas companies clustered to distinct segments, in a
network setting.

The results of this study offer fresh and distinctive perspectives on this dynamic and con-
tinuously evolving sector, as it moves from relying primarily on traditional continental oil
to shale oil production and natural gas. We show that the Upstream companies are the ma-
jor volatility transmitters during our sample period. During the European Sovereign Debt
Crisis (ESDC) and the Covid-19 pandemic, the volatility transmission mechanisms were
altered. During the ESDC, the volatility emission from the Upstream segment declined
even as the Midstream segment came under stress conditions. More importantly, during
the Global Financial Crisis and recently with the Ukraine invasion, the IOG companies
have become major volatility transmitters. This latter effect is alarming because the large
IOG companies traditionally were volatility absorbers and system stability providers.

For investors seeking to diversify across the energy sector, it is critical to understand the
companies’ vulnerability of companies within the system and to external factors. Our
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results provide new insights into the key European energy sector network, their overall
network risk, and the time-varying network fragility due to external shocks. We believe
that the unique insights into the various crisis situations during our sample period offer
interesting scenario analysis and information for regulators and policymakers to ensure
crisis preparedness. Specifically, the overreliance on traditional oil and gas companies,
highlighted by the dominance of the Upstream companies’ volatility transmission stresses
the pressing need for energy diversification. Europe’s ongoing energy crisis management
should consider diversification along the supply chain at least as long as alternatives or
renewable energy sources are not yet available in large volume to replace the oil and gas
energy source.
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CHAPTER

VOLATILITY SPILLOVER ON EUROPEAN EQUITY MARKETS:
DESTABILIZING ENERGY RISK IS THE NEW NORMAL V
Chapter V is based on the work of Huszár et al. (2023b). Minor modifications are made

to align with the dissertation format.

V.1 Introduction

Oil and natural gas resources are critical for major manufacturing processes and ser-
vices. This economic and sometimes political importance of energy markets has moti-
vated a growing energy finance literature in recent decades (Hamilton (1983); Herrera
et al. (2011); Kilian and Park (2009); Mensi et al. (2021)). The analysis of the impact of
energy prices on economic activity is rather complex as it cannot be considered in isola-
tion without also considering feedback from economic activity and growth. On the one
hand, low energy prices can fuel production, manufacturing, and investment, which in
turn increases demand and eventually energy prices. On the other hand, while in general
high economic growth is associated with high energy demand, energy prices increase is
inevitable due to low short-term elasticity of supply, potentially resulting in a slowdown
in growth. This co-integrated relation between the economy and the energy market has
been documented in prior studies (e.g., Zhu et al. (2011)).

In the new millennium, the complexity and volatility of the energy market increased.
First, in 2004, with the financialization of the commodity market speculators have gained
access to the market (Ding et al. (2021)). More recently, additional sources of volatility
have emerged from the pandemic, growing political uncertainty (e.g., Russo-Ukraine war)
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and growing cybersecurity threats of oil and gas and utility companies.21 Overall, recent
studies have recognized energy market risk as a new source of systemic risk attracting
much academic, as well as policy attention.

The first strand of finance-energy market studies primarily examine the influence of en-
ergy commodity prices on equity returns (Andreasson et al. (2016); Dutta et al. (2020);
Olson et al. (2014)). Their focus varies from the US market, major oil producing coun-
tries, key global equity exchanges, and specific regions or countries, such as BRICS and
China. Kling (1985), Jones and Kaul (1996), Sadorsky (1999) and Sadorsky (2001) show
that a rise in oil price leads to a fall in US stock returns, while Sadorsky (2001) finds a pos-
itive relation between oil and Canadian equity prices. There is also evidence of oil prices
negatively affecting the equity markets in the Gulf countries (GCC), which is somewhat
trivial given the large contribution of oil export to the GDP (e.g., Arouri et al. (2011b);
Hammoudeh et al. (2004)).

Aloui et al. (2011) find that oil price shocks negatively affect stock markets in various
countries, including the USA, during the Global Financial Crisis. However, there is vari-
ation across oil importing and exporting countries, with oil exporters naturally benefiting
from oil price increase (e.g., Ramos and Veiga (2013)). Kang and Ratti (2015) document
time varying impact of oil shocks on stock returns in the USA. Lin et al. (2014) report
mixed results from China where oil price increase is often positively associated with mar-
ket returns. More recently, Castro et al. (2023) reports consistent evidence of time varying
impact of oil price movement on a small sample of European equity markets.

Besides examining return correlation and lead-lag relations, an increasing number of stud-
ies investigate the volatility interconnectedness across the commodity markets (including
oil) and the equity market. A number of studies examine the US market (e.g., Arouri et al.
(2011a); Phan et al. (2016)) and major oil producing countries Arouri et al. (2011b). More
recently, Dai and Zhu (2022) provide insights into volatility spillover and the dynamic
connectedness of WTI crude oil futures, natural gas futures, in Chinese context. Again,
the lack of European coverage is rather evident, as only a few studies examine European
equites or European markets. Zhang et al. (2020) study the return and volatility spillover
of natural gas, crude oil, and electricity utility stock indices in North America and Europe
and show that compared to natural gas, crude oil has a greater volatility spillover on elec-
tricity utility stock indices. Castro et al. (2023) also examine the oil price influence on
European equity markets and find time varying impact of oil price movements.

Addressing the time varying interconnectedness of equity end energy markets Mensi
et al. (2017a) provide an in-depth analysis using variational mode decomposition (VMD)
method and static and time-varying symmetric and asymmetric copula functions. The

21According to Statista there were 21 attacks on Oil and Gas companies in 2021. A
comprehensive list of ransomware attacks on oil and gas, and energy companies is avail-
able on: https://www.oilandgasiq.com/digital-transformation/articles/5-big-
cyber-security-attacks-in-oil-and-gas.
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authors document evidence of tail dependence and show that the stock market’s, using
European, US, and Canadian equity indices (S&P500, STOXX600, DJPI and TSX) re-
spond to oil price (WTI) change differently in down-markets and in the cross-section the
responses also vary because of the country’s energy import dependence. The authors sug-
gest that there is increased connectedness because more investors make decisions not only
based on fundamental information in stock markets, but also on prevailing information in
the oil markets. Ewing and Malik (2010) also report time varying effects, and compute
volatility persistence by incorporating endogenously determined structural breaks into a
GARCH model, while Salisu and Fasanya (2013) document structural breaks in oil prices
in 1990 and 2008.

Interesting, to our knowledge, there are no comprehensive European market study that an-
alyzes contemporaneously a large number of European equity markets in relation to crude
oil and natural gas prices, despite the growing European Energy Crisis (IMF (2022a)).
The European Economic Area (EEA), with its ambitious net zero emission targets, has
been at the forefront of climate change initiatives for years, albeit with limited success.
In 2022, the European Parliament (European Parliament (2022)) agreed not to veto the
designation of nuclear and gas energy sources as green, as part of its efforts to encourage
energy diversification. Due to growing opposition for nuclear energy from the public in
Germany and France (Reuters (2023)), gas as a less ”dirty” alternative than oil has been
pushed forward across Europe.

Overall European gas demand has been gradually increasing from 1971 to 2017, with de-
clining production in all countries with the exception of Norway (IOGP (2018)), exposing
countries to increasing volatile gas prices, which resulted in the adaptation of emergency
energy regulations in EU in 2022 (European Council (2022)).

This study aims to examine the economic spillover effect of crude oil and natural gas in
Europe. While most energy finance studies focus on oil, we consider the examination of
the role of gas increasingly important because of the increasing reliance on this form of
energy in EU countries. Specifically, we examine the implications of price change and
volatility of energy commodities on equity markets across Europe from March 24, 2003,
to December 31, 2022, covering several political and economic turmoil events (e.g., the
2008 Georgian-Russian war, Crimea Annexation, and the ongoing Russian-Ukrainian war
(Council of Europe (2008); Council of Europe (2023)). In the cross-section, we include all
current and past (EEA) countries, except for a few countries (e.g., Slovakia, Luxembourg,
Iceland, Malta) because of data limitations. Our final sample, comprising 24 European
economies, provides comprehensive coverage for the EEA.

First, in panel regression setting, we examine the equity market performances of the sam-
ple countries, using MSCI index daily returns. We find that crude oil and natural gas
prices systematically influence equity markets. We also examine MSCI index volatility in
panel regressions. The results show that oil and gas are major volatility contributors and
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have been increasingly so over the years. More importantly, we find that countries with
weak or depreciating domestic currencies are more sensitive to energy shocks. In the final
section, we deploy Diebold and Yılmaz (2014), Diebold and Yilmaz (2023) spillover in-
dex (D-Y index hereafter) to gain more insights into the spillover effect of energy prices in
a closed network of European equity markets, accounting for only volatility transmission
and source of volatility within the network.

We provide network analysis for the 2004 EU enlargement, 2005-2008 US Mortgage
market run-up to the 2008 Global Financial Crisis, 2009-2012 European Sovereign Debt
Crisis, and other subperiods such as, 2013-2015, 2016-2019, 2020, 2021, and 2022 to
provide insights into the impacts of network changes. Across the eight subperiod analysis,
we find significant differences. During our sample period of 20 years, the primary sources
of volatility were initially from economic or political uncertainty. Generally, the key
sources of volatility in the European equity markets arise from a specific country, or group
of countries, e.g., from Greece during the sovereign debt crisis, from Central and Eastern
European countries (CEEC) after the 2004 EU extension, and from Norway during the
2008 oil rout (Jung and Park (2011)).22 We also note that the volatility spillover effect of
oil and gas is potentially an acute issue to consider.

Overall, our study provides three unique contributions by extending the work of Mensi et
al. (2017), in several directions. Using a comprehensive sample of European equity in-
dices, we document heterogeneous implications of oil price and gas price shocks not only
over time but also across markets. Acknowledging the inelasticity of countries’ energy
import dependence during our sample period, we show that the cross-sectional variation in
the impact of energy shocks on equity market can be related to domestic currency weak-
ness and volatility. Last, we also provide unique pair-wise interconnectedness insights
into the European equity market network by deploying the D-Y spillover index (Diebold
and Yılmaz (2014)) in subsample analyses, allowing for time variation in our parameter
estimates, given the well-known structural breaks in the European economy and oil and
natural gas prices. Our results might be also relevant for the understanding of the sensitiv-
ity of emerging economies to energy market shocks with weak and/or volatilize domestic
currencies. For example, the growing costs of energy has been shown to play a role in the
built-up of the economic crisis of Sri Lanka and the 2022 country default (IMF (2019b)).

The rest of the paper is structured as follows. Section V.2 presents the data and the hy-
potheses development. Section V.3 the first part of the empirical analysis, discusses panel
regression analysis of EEA countries domestic equity index returns and volatility. Section
V.4, the second part of the empirical analysis, presents our closed networkanalysis using
the D-Y spillover index, providing insights about pairwise connections in the network in

22There are many oil routs during the last 100 years of history. We specifically refer here to the 2008 oil
rout when oil prices declined from $150 to 40 in acourse of 6 months or so.https://capital.com/
crude-oil-industry-history-market-trends-trading.
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subsections. Last, V.5 concludes.

V.2 Data and Empirical Hypotheses Development

V.2.1 Data and Summary Statistics

In this study, we examine the performance of the European Economic Area (EEA) econo-
mies from 3/24/2003 to 12/31/2022.23 We collect daily MSCI country equity index data
from Refinitiv where available for all EU member states and collaborator countries (e.g.,
Norway, Switzerland), and the former EU member state, the UK. Since MSCI does not
provide equity index information for Cyprus, Latvia, Luxemburg, Malta, and Slovakia,
these countries are dropped from our analysis, resulting in a sample of 24 countries, cov-
ering just about 500 million population out of the 513 million in the entire EEA, or 97.4%
of the population based on 2022 Eurostat numbers.

In addition to extensive cross-sectional coverage, we also have extensive time-series cov-
erage, spanning almost 20 years, covering the EU enlargement with CEEC in 2004, the
buildup of the US mortgage bubble from 2005 to 2008, the 2008 Global Financial Crisis
(GFC) and the 2010 European Sovereign Debt Crisis (ESDC). The sample period also
includes the onset of the Covid-19 pandemic in 2020, the recovery in 2021, and the start
of Russia’s war on Ukraine in 2022.

Our cross-country time-series panel data is unbalanced because of data limitations for
some of the newer countries (e.g., countries formed from the former Yugoslavia) and
smaller countries. In 2004, only Hungary and Poland, from the CEEC region, had contin-
uous daily coverage from MSCI. We extend our coverage as data becomes available and
include Bulgaria, Croatia, Romania, and Slovenia from 2008, Estonia from 2010, Czech
Republic from 2013, and Lithuania from 2014, as data becomes available from MSCI. We
also include daily domestic currency to EUR exchange rates from the European Central
Bank (ECB), measured in the number of domestic currency equivalent to a EUR.

We complement our panel data of daily MSCI index value for 24 European countries
with annual value for energy production and energy consumption from Eurostat (see
C.1 in the Appendix). From the Eurostat data, for each country, we calculate country-
specific energy (total energy, crude oil, natural gas) dependencies by the formula of:
1− (energyproduction/energyconsumption). At the time of our data collection (April
2023), Eurostat had only country specific energy production and consumption data up to
2021 (Eurostat (2022)). The 2022 energy dependence numbers (Eurostat (2022)) were
extrapolated using the last 5 years of data, from 2017 to 2021, capturing the shift towards

23Our historical data coverage is limited because of our data access (we could not extend our coverage
further back in time) and data availability as some of the smaller European countries do not have designated
MSCI equity indices.
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green alternatives.24 Unfortunately, the energy dependence information is only available
annually and the variable is rather sticky, and because of the low time series variation
during the sample period, the country fixed effect effectively already capture the cross-
country effect at least during our sample period.
Last, we collect daily commodity price information. Like Wang and Wang (2019), Corbet
et al. (2020) and others, we use daily futures prices for commodities, oil, and gas. Daily
exchange listed futures price data are collected for ICE Europe Brent Crude Oil (Brent)
and the Dutch TTF Natural Gas (Natural Gas) contracts. Additionally, to control for the
arrival of new information from different geographic market information, we also include
daily Asia Pacific and the US equity indices data from MSCI.
Overall, our final data contains daily energy commodity information for Brent oil prices
and TTF gas price in the form of futures prices, daily MSCI index data for all 24 EEA
countries are from Refinitiv Eikon. The currency rates and country energy dependence
information are from ECB and Eurostat. Variable definitions and summary statistics are
presented in Table V.1. Ret1d and Ret5d are the key return measures based on each
country’s MSCI index value, calculated as the aggregate change. APlag1d, APlag5d,
USlag1d and USlag5d are the previous 1-day and 5-day Asian Pacific and US market
index returns, which are likely to influence the European market.

24In case of the UK, Eurostat has stopped data coverage for the country in 2019 with Brexit, thus we
extrapolate the 2020 - 2022 energy dependence numbers the previous 5 years of data, using a rolling window
approach.
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Table V.1
Summary Statistics for the Pooled Sample

Variables Observations Mean Std. Dev. 25th perc Median 75th perc Min Max
cntrcd 110 740 12.799 6.925 7 13 19 1 24
Ret1d 110 740 0 0.017 -0.007 0 0.008 -0.271 0.261
Ret5d 110 740 0.001 0.037 -0.016 0.003 0.02 -0.377 0.424
Lag1dret 110 740 0 0.017 -0.007 0 0.008 -0.271 0.261
Lag5dret 110 740 0.001 0.037 -0.016 0.003 0.02 -0.377 0.424
APlag1dRet 110 740 0 0.011 -0.005 0.001 0.006 -0.086 0.093
APlag5dRet 110 740 0.001 0.025 -0.012 0.003 0.016 -0.178 0.169
USlag1dRet 110 740 0 0.012 -0.004 0 0.006 -0.121 0.117
USlag5dRet 110 740 0.002 0.024 -0.009 0.003 0.014 -0.184 0.182
Brentlag1dRet 110 740 0 0.023 -0.01 0.001 0.011 -0.244 0.21
Brentlag5dRet 110 740 0.002 0.052 -0.024 0.004 0.029 -0.347 0.514
TTF lag5dRet 102 343 0.001 0.04 -0.012 0 0.012 -0.32 1
TTF lag5dRet 102 377 0.005 0.09 -0.032 -0.002 0.031 -0.484 1.216
Engdep 110 740 0.435 0.401 0.313 0.507 0.699 -1 0.912
TTFvol5d 102 257 0.064 0.073 0.023 0.043 0.077 0 1.103
Brentvol5d 110 620 0.044 0.034 0.024 0.036 0.055 0.002 0.5
LogFXprice 110 740 0.842 1.423 0 0 1.577 -0.423 6.065
FXlag5dRet 110 740 0 0.006 0 0 0 -0.094 0.099
FXlag1dRet 110 740 0 0.006 0 0 0 -0.094 0.099

(a) Summary Statistics for the Pooled Sample
Note: The sample statistics are based on 24 EEA countries from March 24, 2003 to De-
cember 30, 2022. Cntrcd is a country indicator used here to show that the sample covers
24 unique countries. Ret1d and Ret5d are future 1-day and 5-day returns on the coun-
try’s equity market, measured by the change in the country’s MSCI Index. Lag1dRet and
Lag5dRet are the country’s own lagged equity market returns. APlag1dRet, APlag5dRet,
USlag1dRet and USlag5dRet are the lagged 1-day and 5-day MSCI index returns in Asia
Pacific and in the USA, respectively. Brentlag1dRet, Brentlag5dRet, TTF lag1dRet, and
TTF lag5dRet are the lagged 1-day and 5-day price changes in Brent oil contract and TTF
gas contracts, respectively. Engdep is the country’s energy dependence, or energy shortfall,
measured as 1–energyproduction/energyconsumption. TTFvol5d and Brentvol5d are
the 5-day extreme price volatility for gas and oil, measured as the difference between the last
5-day maximum price and minimum price, divided by the initial price, or the price 5 days ago.
LogFXprice, is the natural logarithm of the forex rate, the number of domestic currency is
needed to buy 1 EUR. FXlag1dRet and FXlag5dRet are the lagged 1-day and 5-day change
in the forex rates for a country.a

aWe also use interaction variables of the oil price change and the gas price change variables (e.g.,
brent1dlagret, brent5dlagret, ttf1dlagret, ttf5dlagret) are interacted with the country total energy
dependence (Engdep) variable

81



Observations Mean Std. Dev. Min Max Skewness Kurtosis
Core EU countries
Austria 4 957 0 0.019 -0.153 0.143 -0.125 10.538
Belgium 4 957 0 0.015 -0.180 0.142 -0.743 18.209
Germany 4 957 0 0.015 -0.140 0.123 -0.027 11.313
Denmark 4 957 0.001 0.014 -0.126 0.113 -0.157 9.727
Finland 4 957 0 0.016 -0.115 0.123 -0.068 9.064
France 4 957 0 0.015 -0.138 0.126 -0.01 12.154
Netherlands 4 957 0 0.014 -0.114 0.111 -0.044 10.816
Sweden 4 957 0 0.017 -0.138 0.151 0.104 9.781

PIIGS countries
Spain 4 957 0 0.016 -0.158 0.174 -0.029 13.382
Greece 4 957 0 0.024 -0.222 0.187 -0.163 10.908
Ireland 4 957 0 0.018 -0.140 0.136 -0.330 9.989
Italy 4 957 0 0.017 -0.186 0.131 -0.330 12.458
Portugal 4 957 0 0.015 -0.129 0.125 -0.112 10.439

Countries joined EU after 2004
Bulgaria 3 756 0 0.016 -0.167 0.12 -1 15.169
Czech Republic 2 609 0 0.013 -0.123 0.077 -0.738 11.902
Croatia 3 756 0 0.013 -0.211 0.261 0.830 81.962
Estonia 3 157 0 0.013 -0.123 0.138 0.064 15.662
Hungary 4 957 0 0.022 -0.184 0.225 0.028 12.856
Lithuania 2 273 0 0.010 -0.136 0.081 -1.326 28.257
Poland 4 957 0 0.019 -0.162 0.153 -0.197 9.360
Romania 3 756 0 0.018 -0.271 0.134 -1.168 24.183
Slovenia 3 756 0 0.013 -0.119 0.099 -0.652 11.125

Ex-EU regions
United Kingdom 4 957 0 0.014 -0.132 0.13 -0.149 15.195
Norway 4 957 0 0.019 -0.133 0.166 -0.244 10.099
United States 4 957 0 0.012 -0.121 0.117 -0.283 16.260
Asia Pacific 4957 0 0.011 -0.086 0.093 -0.259 9.309

Commodities
Brent 4 957 0 0.023 -0.244 0.21 -0.202 13.030
TTF 4 668 0.001 0.040 -0.320 0.614 2.877 39.431

(b) Detailed summary statistics of the daily MSCI index returns by countries and the daily
price changes in the commodity futures

Note: The panel is an unbalanced panel with shorter time coverage for the Central and Eastern
European Countries (CEEC) because of data limitations.

Table V.1 shows that generally, the MSCI equity market indices are well behaved, with
some extreme outliers primarily from the eastern EU states. The 1-day and 5-day market
returns, Ret1d and Ret5d, with mean zero values, have rather wide ranges from -27% to
26%, and -37% to 42%, respectively, suggesting some extreme movement in some mar-
kets. For more insights about the distribution of the return variables, Table V.1b provides
summary statistics results by countries. It is also worth mentioning the extremely large
price swings in gas (TTF) in 2022 after the start of the Russian conflict, when gas prices
increased over 120% in five days temporarily.

V.2.2 Empirical Hypothesis Development

Empirically, the relation between energy prices (proxied by oil and natural gas prices)
and economic growth (proxied by stock market performance) are intertwined. Economic
growth and precautionary demand pressures drive energy prices up, given the relatively
low elasticity of oil and gas supply where production adjustment is a slow process. On the
other hand, crude oil and natural gas prices can impact the market and the economy in at
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least three ways, namely (1) inflation, (2) consumer spending, and (3) market uncertainty.
First, higher oil prices can lead to inflation, as the costs of production and transportation
increase, and these costs are passed on to consumers. While traditionally higher prices
are endogenous and driven by demand, supply shocks due to collusion of producers can
also impact prices, as is the case with OPEC interventions in the energy market. Sec-
ond, higher energy prices and higher volatility, especially when combined with market
uncertainty (e.g., Russian-Ukrainian conflict), can lead to reduced consumer spending as
people spend more on energy bills and petrol and increase their precautionary savings.
Also, higher oil prices can dampen consumption because of higher production costs,
lower return on investment, and lower disposable income. Third, crude oil and natural
gas prices can induce market volatility, where rising oil prices, signaling recessionary
outlook, may trigger mass selloffs on the equity market. Overall, energy price shocks can
affect the equity markets by influencing investors’ outlook, companies’ investment poli-
cies and thereby have a significant impact on the economy and the financial well-being of
individuals and businesses.
While the energy risk spillover to equity markets is rather intuitive, it has only been tested
empirically in a few studies. Given, the ongoing energy market turbulence as a result
of the Russia-Ukraine conflict and rising tensions in the Middle East, understanding the
energy risk spillover to European economies is of interest to academics, investors and also
policymakers. We specifically examine equity market returns and equity market volatility
relation with oil and gas price and volatility trends to test four empirical hypotheses.25

Empirical Hypothesis 1: Energy prices (oil and gas) influence equity markets across

Europe. We have a baseline model with the following specification for Hypothesis 1:

Retc,t+1 = α + β ·∆Enert−5,t +
l∑

j=0

γ ·
l∑

j=0

K + εc,t+1 (V.1)

The dependent variables are the 1-day or 5-day future MSCI market index cumulative
returns (in decimal) for a sample of 24 European countries from March 24, 2003, to De-
cember 31, 2022. ∆Ener, the change in energy prices, is proxied by changes in Brent and
TTF during the previous 5 days. β is the loading on the energy price change. The control
vector (K) includes country specific controls, such as the lagged market performance,
currency levels, currency movements, and the lagged change in the US and Asian market
equity indices. α is the intercept term, γ is a coefficient array for the control variables and
ε is the error term.
Hypothesis 1suggests that energy prices impact market performance. The alternative hy-
pothesis is that energy prices are influenced by the market, or that energy prices are irrele-
vant in the short term because energy price production and consumption can be forecasted
with reasonably high accuracy, especially in the traditional crude oil and natural gas seg-

25Appendix C.1 provides a short specification about the two-way fixed effect panel regression.
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ment. The degree of market sensitivity may change over time, depending on the country’s
energy exposure and country development as suggested by Mensi et al. (2017a).

While predicting stock market performance and stock market returns may not be of out-
most importance for regulators and politicians, equity market volatility tends to make
investors jittery and may discourage local and foreign investment. Thus, in Hypothesis
2, we examine the equity market volatility in relation to energy price changes, overall, in
Europe. We are concerned with the overall and time-series effect of energy price volatility
because of the heightened geopolitical risk from Russia.

Empirical Hypothesis 2: Heightened energy price (oil and natural gas) volatility is asso-

ciated with higher equity market volatility across Europe.

We test the volatility implications with a similar model as V.1 but we replace the depen-
dent variable with a 5-day market volatility measure:

V olc,t+5 = α + β ·∆Enert−5,t +
l∑

j=0

Θ ·
l∑

j=0

K + εc,t+5 (V.2)

In equation V.2, the dependent variable is the 5-day volatility in the MSCI index calculated
as the difference between the maximum and minimum values during the 5-day period,
scaled by the last day return. Specifically, the V olc,t+5 = (maxMSCIIndext,t+5–

MinMSCIindext,t+5)/MSCIIndext. The explanatory variables are the same as with
Hypothesis 1 and Θ is a coefficient array for the control variables.

Last, with Hypothesis 3, we are concerned with the less developed European economies,
who coincidentally are highly exposed in terms of energy import dependence. In this
hypothesis, we consider cross-sectional country differences and distinguish across Euro
and non-Euro countries and consider energy price volatility in conjunction with exchange
rate stability.

Empirical Hypothesis 3: Energy prices (oil and natural gas) influence equity markets

volatility more in countries with weakening domestic currencies, since oil and gas con-

tracts are primarily settled in USD or EUR.

We test Hypothesis 3, with the following specification.

V olc,t+5 = α+β ·∆Enert−5+δ ·Int+γ ·∆Enert−5 ·Int+
l∑

j=0

Θ ·
l∑

j=0

K+εc,t+5 (V.3)

The dependent variable as before with Hypothesis 2, is the equity market volatility. The
explanatory variables as before energy prices, and energy price volatilities. The additional
new variables in equation V.3 are the country exchange rate stability which we capture
with two measures. One is the country exchange rate relative to Euro (Int), using the
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logFXprice and the second is the changes in the domestic currency (DOC), measured in
change in the number of local currencies needed to buy 1 EUR. δ is the coefficient array
for the Int.
Our FXprice measures the number of local currencies equivalent of 1 EUR. To address
the skewness of the measure (e.g., that one EUR is less than one GBP, but it is about
400 HUF), we use the natural logarithm of FXPrice in the regression analysis. More
importantly, we also include a currency “weakness” measure which captures the change
in the number of local currency equivalent to one Euro during the previous week.
In the next section, Section V.3, we test our three empirical hypotheses in a panel regres-
sion setting, with 2-way fixed effect and allowing for the clustering of standard errors
consistent with the literature to provide overall evidence about the influence of energy
prices on equity markets. In Section V.4, we aim to provide a more in-depth insights into
the pairwise connections in the network of European equity markets and energy markets,
adopting the D-Y spillover index method. In a recent review article, Diebold and Yilmaz
(2023) explain that the reasons for the popularity of the Diebold-Yilmaz connectedness
measurement is its flexibility in adaptation. Its methodology is simple and attractive,
combining traditional econometric modeling with modern network and Big Data think-
ing. The measurement relies on variance decompositions, with the insight that a variance
decomposition can be viewed as a network. Considering our sample as a closed network,
ignoring external factors, with the D-Y spillover index we can visualize and summarize
pairwise connections, providing insight about potential system fragility concerns, by al-
lowing us the identification of critical nodes.
In network analysis, tranquil and crisis periods are often distinguished because connect-
edness of asset classes and markets are different during turbulent times (Acemoglu et al.
(2015a)). To allow for the flexibility of time variant parameter estimates with identify
ex post regimes shifts in Europe, linked to the changes in EU country compositions, the
global financial crisis period, as well as the recent Covid-19 pandemic, and Ukraine inva-
sion. With the use of subperiods, we effectively allow for structural breaks in our analysis,
thereby addressing the potential time variant parameter concerns with our D-Y approach.

V.3 Empirical Analysis of Energy Risk in European
Economies

In this empirical section in 3 parts, we test equity market implications of crude oil and nat-
ural gas price movements, specifically price changes and volatility of Brent and TTF. In
sub-sections V.3.1 and V.3.2, using a comprehensive panel data set of 24 European coun-
tries from 2004 to 2022, and examine MSCI Index returns and volatility in relation with
energy price changes (i.e., returns) and energy price shocks (extreme 5-day volatility).
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V.3.1 European Market Indices Return Analysis in Relation with Oil
and Natural Gas Returns

In Table V.2, we start our regression analysis by examining the impact of MSCI market
returns for 24 European countries. To investigate whether oil and gas prices have an in-
fluence on equity markets, we estimate Models 1A-3A with 1-day future returns on the
MSCI equity index, and Models 1B-3B with 5-day future returns.We find that the coeffi-
cients on the lagged 1- and 5-day oil price returns (Brentlag1dRet and Brentlag5dRet)
are insignificant, except for a positive and significant coefficient on Brentlag5dRet in
Models 2A and 2B, indicating a short-term market rally following oil price increases.
However, the gas price change variables (TTF lag1dRet and TTF lag5dRet) are in-
significant in both specifications in which they are included (Models 3A and 3B).
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Table V.2
MSCI Country Index Return Regression Analysis

(Model 1A) (Model 2A) (Model 3A) (Model 1B) (Model 2B) (Model 3B)
Variables Ret1d Ret1d Ret1d Ret5d Ret5d Ret5d
Lag1DRet -0.076*** -0.074*** -0.273*** -0.036 -0.035 -0.005

(-3.35) (-3.29) (-14.20) (-1.04) (-1.01) (-0.14)

Lag5DRet 0.281*** -0.046**
-30.5 (-2.49)

APlag1dRet -0.170*** -0.166*** -0.100*** -0.044 -0.042 -0.058
(-5.60) (-5.54) (-3.62) (-0.63) (-0.61) (-0.78)

APlag5dRet -0.011 -0.018 -0.175*** -0.143*** -0.146*** -0.125***
(-0.62) (-0.98) (-9.31) (-3.63) (-3.69) (-2.95)

USlag1dRet 0.214*** 0.222*** 0.291*** -0.107 -0.104 -0.121
-6.17 -6.43 -8.62 (-1.34) (-1.30) (-1.46)

USlag5dRet 0.206*** 0.194*** 0.064*** 0.134*** 0.129*** 0.149***
-9.38 -9.11 -4.30 -2.93 -2.93 -3.16

Brentlag1dRet -0.003 -0.024* -0.007 0.033 0.023 0.026
(-0.28) (-2.01) (-0.60) -1.03 -0.70 -0.73

Brentlag5dRet 0.023*** 0.009* 0.010 0.016
-3.79 -1.74 -0.68 -1.020

TTFlag1dRet 0 -0.010
(-0.02) (-0.51)

TTFlag5dRet 0.001 -0.009
-0.21 (-1.26)

Constant 0.001** 0.001** -0.016*** 0.012*** 0.012*** 0.021
-2.32 -2.45 (-3.28) -8.85 -8.91 -1.24

Observations 110 740 110 740 102 292 110 740 110 740 102 292
R-squared 0.116 0.12 0.304 0.026 0.026 0.025

Note: The dependent variable is the future 1-day MSCI index return in Models 1A-3A and the
future 5-day MSCI index returns in Models 1B-3B, respectively. The explanatory variables are
defined in Table V.1. The sample period is from March 24, 2003, to December 30, 2022, covering
24 EEA countries (see the complete list of countries in Table V.1b). The panel is an unbalanced
panel with shorter time coverage for the Central and Eastern European Countries (CEEC) be-
cause of data limitations. The coefficient estimates with the corresponding robust t-statistics (in
parentheses) are reported from panel regression, with time and country fixed effects, with clus-
tered standard errors at time and country dimensions. ***, **, and *, indicate the statistical
significance at the 1 percent, 5 percent, and 10 percent levels.

In Table V.3, we further explore the relationship between MSCI index returns and oil
prices in a subsample analysis. We find some evidence that the price of gas became more
relevant to equity markets after 2013. Specifically, in the subsample analysis of 2003
- 2012, the coefficient estimate on Brentlag5dRet remains significant and positive in
Table V.3 Model 1A, consistent with the results in Table V.2. However, this significance
disappears in the later part of the sample period. On the other hand, the coefficient on the
TTF lag5dRet variable is significant in the after-2013 subsample in Model 2B.
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Table V.3
MSCI Country Index Regression Analysis, Subsample Results

(Model 1A) (Model 2A) (Model 3A) (Model 1B) (Model 2B) (Model 3B)
Variables Ret1d Ret1d Ret1d Ret5d Ret5d Ret5d

Before 2013 After 2013 After 2020 Before 2013 After 2013 After 2020

Lag1DRet -0.286*** -0.263*** -0.285*** -0.032 0.024 0.110
(-11.27) (-10.88) (-8.50) (-0.66) -0.47 -1.08

Lag5DRet 0.292*** 0.267*** 0.294*** -0.053 -0.045* 0.034
-27.59 -21.71 -15.80 (-1.58) (-1.97) -0.76

APlag1dRet -0.090** -0.087*** -0.153** -0.058 -0.062 -0.145
(-2.26) (-2.95) (-2.76) (-0.52) (-0.73) (-0.88)

APlag5dRet -0.221*** -0.129*** -0.151*** -0.166** -0.070 -0.202**
(-8.83) (-6.88) (-5.45) (-2.51) (-1.51) (-2.19)

USlag1dRet 0.400*** 0.180*** 0.178*** -0.143 -0.098 -0.152
-8.30 -5.04 -3.56 (-1.13) (-0.92) (-0.95)

USlag5dRet 0.078*** 0.046** 0.037 0.207** 0.094* 0.121
-3.43 -2.62 -1.39 -2.61 -1.80 -1.45

Brentlag1dRet -0.021 0.002 0.003 0.064 0.006 0.028
(-0.90) -0.15 -0.13 -1.04 -0.13 -0.36

Brentlag5dRet 0.019* 0.005 0.011 0.004 0.024 0.040
-1.86 -0.90 -1.06 -0.13 -1.34 -1.43

TTFlag1dRet -0.010 0.004 0.003 -0.008 -0.009 -0.012
(-1.05) -0.58 -0.46 (-0.26) (-0.41) (-0.42)

TTFlag5dRet 0.005 -0.001 -0.002 0.020 -0.019** -0.017
-1.24 (-0.44) (-0.55) -1.36 (-2.17) (-1.58)

Constant -0.009 0 0 -0.006 0.003** 0.003
(-0.98) (-0.38) -0.19 (-0.21) -2.42 -0.88

Observations 40 030 62 262 18 792 40 030 62 262 18 792
R-squared 0.338 0.277 0.324 0.039 0.016 0.026

Note: The dependent variable is the future 1-day MSCI index return in Models 1A-3A and the
future 5-day MSCI index returns in Models 1B-3B, respectively. The explanatory variables are
defined in V.1. The sample period is from March 24, 2003, to December 30, 2022, covering 24 EEA
countries (see the complete list of countries in Table V.1b). The panel is an unbalanced panel with
shorter time coverage for the Central and Eastern European Countries (CEEC) because of data
limitations. The coefficient estimates with the corresponding robust t-statistics (in parentheses) are
reported from panel regression, with time and country fixed effects, with clustered standard errors
at time and country dimensions. ***, **, and *, indicate the statistical significance at the 1 percent,
5 percent, and 10 percent levels.

Overall, results from Tables V.2 and V.3 provide some weak evidence that crude oil and
natural gas prices are relevant for the equity market performance in Europe during the
2003-2022 sample period, providing support for our first and second hypotheses. One
potential explanation for the weak and insignificant results is that we also include lagged
US and Asian market information using an MSCI Asian ex-Japan index and the MSCI
US index, to control for new economic information released the previous day. Moreover,
predicting returns is not the primary objective of this paper. Rather, we aim to demonstrate
the economic and political importance of energy risk from an equity market perspective.
Therefore, in the next sections, we will focus on equity market volatility instead of returns.
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V.3.2 Analysis of the Relation Between European Market Indices Vo-
latility and Oil and Natural Gas Volatility

Table V.4 examines the relationship between equity market volatility and crude oil and
natural gas returns, as well as oil and gas price volatility. In Table V.4 Panel V.4a , the
dependent variable is the future 5-day MSCI index volatility with the key explanatory
variables: the lagged 5-day volatilities in oil and gas prices. In the spirit of Corwin and
Schultz (2012), and measure volatility as the difference of the maximum and minimum
prices (or index values) during a 5-day window scaled by the relevant lagged 5-day com-
modity price or index value. Our findings show that, on average, oil price increases tend
to be positive news for the equity market and reduce market volatility. However, oil price
volatility tends to spill over to equity market volatility and has a significant positive rela-
tion with equity market volatility across all model specifications in Table V.4.
Consistent with previous results, we do not find that natural gas prices influence equity
market volatility. Nevertheless, we report a significant positive coefficient on the 5-day
gas price volatility measures (TTFvol5d), indicating a significant positive relation with
equity market volatility. Thus, while the level of natural gas prices does not matter for the
equity market, the uncertainty in gas prices does.
Specifically interpreting the results from Models 1A through 3A, we find that a 10%
increase in the 5-day oil volatility is associated with about 1.1% increase in the country
stock market index volatility in the EEA on average from 2003 to 2022. This increase
in market risk linked to energy price volatility is mitigated when the volatility increase
in oil is associated with an increase in oil price level. These results are economically
nonnegligible given that the average equity market index volatility is 2.28%. In Models
2A and 3B, we also find that volatility emanating from natural gas prices further increases
market volatility, albeit on a smaller scale. With these results we provide support for
our second Hypothesis that the energy price volatility is transmitted to equity markets in
Europe.
In Table V.4, Panels V.4b and V.4c, we further examine the influence of oil and gas price
volatility on equity market indices in Europe and find that the effect of oil price volatility
decreases over time and the natural gas price volatility is mostly transient in our sample,
like. Table V.4 Panel V.4b shows that the coefficient on the oil price volatility measure is
economically larger and significant than in Panel V.4a, indicating that stronger effect at the
10-day market volatility. Lastly, Table V.4 Panel V.4c shows that the coefficients on the oil
price volatility measure are insignificant in Models 3C-3D in recent years, indicating that
the oil price impact is short term. The results with the 5-day natural gas price volatility
are strongest at the 5-day window, by and large insignificant in at the 10-day (in Table V.4
Panel V.4b) and suggest reversal, decline in market volatility in 20-days.
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Table V.4
MSCI Country Index Volatility Analysis with Crude Oil and Natural Gas Price Volatility

(Model 1A) (Model 2A) (Model 3A) (Model 3B) (Model 3C) (Model 3D)
Variables mscivol5d mscivol5d mscivol5d mscivol5d mscivol5d mscivol5d

Before 2013 After 2013 After 2020

Lag1DRet -0.030 -0.034 -0.032 -0.041 -0.012 -0.011
(-1.60) (-1.64) (-1.70) (-1.43) (-0.53) (-0.24)

Lag5DRet -0.070*** -0.074*** -0.068*** -0.055*** -0.074*** -0.068***
(-5.95) (-5.95) (-5.67) (-3.55) (-4.69) (-3.14)

APlag1dRet 0.008 -0.003 0.005 0.009 0.006 -0.001
(-0.20) (-0.08) (0.13) (0.15) (0.16) (-0.01)

APlag5dRet -0.002 -0.019 -0.001 -0.022 0.021 0.013
(-0.08) (-0.83) (-0.04) (-0.68) (0.88) (0.29)

USlag1dRet 0.004 -0.010 0.002 -0.004 0.012 0.018
(-0.09) (-0.23) (0.04) (-0.07) (0.22) (0.22)

USlag5dRet -0.051** -0.068** -0.049** -0.067* -0.041 -0.070
(-2.34) (-2.75) (-2.18) (-1.84) (-1.58) (-1.71)

Brentvol5d 0.106*** 0.108*** 0.207*** 0.079*** 0.103***
(8.12) (7.85) (7.61) (5.29) (5.14)

Brentlag1dRet -0.015 -0.015 -0.030 -0.011 -0.024
(-0.91) (-0.89) (-0.86) (-0.54) (-0.68)

Brentlag5dRet -0.033*** -0.036*** -0.043** -0.031*** -0.040***
(-4.47) (-4.52) (-2.71) (-3.78) (-3.05)

TTFvol5d 0.028*** 0.021*** 0.035*** 0.015** 0.025***
(5.36) (3.93) (3.58) (2.25) (3.22)

TTFlag1dRet 0 0.002 0 0.004 0.007
(0.05) (0.28) (-0.01) (0.37) (0.62)

TTFlag5dRet -0.005 0.001 -0.009 0.004 0.004
(-1.43) (0.16) (-1.18) (0.92) (0.78)

Constant 0.021*** 0.019*** 0.015*** 0.011*** 0.024*** 0.029***
(12.40) (14.20) (9.80) (6.55) (26.23) (12.83)

Observations 110 596 102 232 102 232 40 004 62 228 18 768
R-squared 0.286 0.271 0.291 0.301 0.226 0.24

(a) Analysis of 5-day Future Market Volatility in Relation with Oil and Gas Prices
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(1) (2) (3) (4) (5) (6)
Variables mscivol10d mscivol10d mscivol10d mscivol10d mscivol10d mscivol10d

Before 2013 After 2013 After 2020

Lag1DRet -0.025 -0.030 -0.026 -0.026 -0.015 -0.030
(-0.89) (-0.93) (-0.89) (-0.68) (0.40) (-0.36)

Lag5DRet -0.098*** -0.106*** -0.098*** -0.070*** -0.120*** -0.147***
(-6.20) (-6.17) (-5.96) (-2.99) (-5.79) (-4.07)

APlag1dRet 0.031 0.019 0.032 0.054 0.022 0.045
(0.50) (0.26) (0.49) (0.56) (0.39) (0.38)

APlag5dRet 0.000 -0.019 0.006 -0.019 0.019 -0.009
(0.00) (-0.55) (0.17) (-0.37) (0.59) (-0.14)

USlag1dRet 0.006 -0.014 0.005 0.026 0.002 0.009
(0.09) (-0.19) (0.07) (0.27) (0.02) (0.06)

USlag5dRet -0.088** -0.116*** -0.092** -0.093 -0.098** -0.126
(-2.52) (-2.97) (-2.50) (-1.70) (-2.17) (-1.71)

Brentvol5d 0.161*** 0.167*** 0.410*** 0.089*** 0.113***
(8.51) (8.24) (9.97) (5.00) (4.77)

Brentlag1dRet -0.024 -0.027 -0.061 -0.018 -0.037
(-1.10) (-1.12) (-1.17) (-0.80) (-0.93)

Brentlag5dRet -0.042*** -0.043*** -0.065** -0.027** -0.033*
(-3.73) (-3.56) (-2.60) (-2.42) (-1.84)

TTFvol5d 0.025*** 0.016** 0.030** 0.008 0.019*
(3.60) (2.18) (2.33) (0.92) (1.94)

TTFlag1dRet 0.004 0.007 0.004 0.007 0.011
(0.30) (0.56) (0.19) (0.52) (0.60)

TTFlag5dRet -0.011* -0.003 -0.012 -0.001 -0.005
(-1.78) (-0.45) (-1.17) (-0.13) (-0.52)

Constant 0.037*** 0.034*** 0.028*** 0.018*** 0.042*** 0.058***
(14.57) (15.92) (11.71) (7.25) (28.16) (15.24)

Observations 110 596 102 232 102 232 40 004 62 228 18 768
R-squared 0.327 0.311 0.329 0.346 0.266 0.252

(b) Analysis of 10-day Future Market Volatility in Relation with Oil and Gas Prices
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(1) (2) (3) (4) (5) (6)
Variables mscivol20d mscivol20d mscivol20d mscivol20d mscivol20d mscivol20d

Before 2013 After 2013 After 2020

Lag1DRet -0.007 -0.007 -0.006 -0.009 0.003 -0.007
(-0.17) (-0.16) (-0.15) (-0.13) (0.07) (-0.08)

Lag5DRet -0.093*** -0.099*** -0.096*** -0.140*** -0.053* -0.065
(-4.23) (-4.24) (-4.20) (-3.86) (-1.89) (-1.56)

APlag1dRet 0.021 0.017 0.024 0.036 0.035 0.060
(0.25) (0.19) (0.27) (0.26) (0.52) (0.41)

APlag5dRet -0.082* -0.102** -0.090* -0.067 -0.121** -0.204**
(-1.85) (-2.09) (-1.86) (-0.89) (-2.78) (-2.37)

USlag1dRet -0.014 -0.018 -0.012 -0.001 -0.000 0.000
(-0.16) (-0.20) (-0.13) (-0.00) (-0.00) (0.00)

USlag5dRet -0.020 -0.028 -0.018 -0.022 -0.016 -0.062
(-0.41) (-0.55) (-0.35) (-0.26) (-0.26) (-0.60)

Brentvol5d 0.112*** 0.121*** 0.426*** 0.027 0.019
(5.08) (5.18) (6.98) (1.51) (0.76)

Brentlag1dRet -0.006 -0.006 -0.029 -0.006 -0.034
(-0.21) (-0.19) (-0.35) (-0.27) (-0.82)

Brentlag5dRet -0.012 -0.012 -0.014 -0.002 0.020
(-0.87) (-0.79) (-0.36) (-0.15) (0.97)

TTFvol5d -0.018** -0.025** -0.024 -0.028*** -0.035***
(-2.08) (-2.73) (-1.22) (-2.94) (-2.98)

TTFlag1dRet -0.002 -0.000 0.003 -0.002 -0.002
(-0.13) (-0.01) (0.08) (-0.17) (-0.14)

TTFlag5dRet -0.008 -0.004 0.015 -0.009 -0.018*
(-1.24) (-0.59) (0.92) (-1.22) (-1.82)

Constant 0.045*** 0.046*** 0.041*** 0.029*** 0.054*** 0.088***
(14.93) (15.75) (13.27) (7.94) (29.95) (13.94)

Observations 110 596 102 232 102 232 40 004 62 228 18 768
R-squared 0.291 0.285 0.290 0.303 0.221 0.169

(c) Analysis of 20-day Future Market Volatility in Relation with Oil and Gas Prices
Note: The dependent variable is the future 5-day MSCI index return volatility (10-day and 20-day
in Panels V.4b, and V.4c, respectively) in Panel V.4a in Models 1A-3A for the full sample, with model
3A specification replicated in Models 3B through 3D with various subsamples. The explanatory
variables are defined in Table V.1. The sample is from March 24, 2003, to December 31, 2012,
in Models 1A through 3B, from January 1, 2013, to December 31, 2019, in Models 3C, and from
January 1, 2020, to December 31, 2022, in Models 3D. The cross-sectional coverage is the same
as in Tables V.1 and V.2, 24 EEA countries. The coefficient estimates with the corresponding
robust t-statistics (in parentheses) are reported from panel regression, with time and country fixed
effects, with clustered standard errors at time and country dimensions. ***, **, and *, indicate the
statistical significance at the 1 percent, 5 percent, and 10 percent levels.
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In Table V.5, we consider market development and test the impact of energy price volatil-
ity in conjunction with market development, using the local domestic currency trend as a
proxy. Depreciating currencies (relative to EUR) tend to indicate economic weakness or
uncertainty, making such countries more likely to be “hit harder” by energy price shocks.
We use the 5-day change in the domestic currency exchange rate and interact it with
the 5-day gas price volatility and oil price volatility measures. Our findings show that in
countries with depreciating local currencies, crude oil price volatility and natural gas price
volatility are associated with a larger market volatility impact. Moreover, the subsample
analyses in Models 3B through 3D highlight that market volatility sensitivity is increasing
over time, especially in vulnerable countries with weak domestic currencies.
Let’s consider a country where the currency value declined by 5% in the last 5 days. The
direct effect of the currency devaluation is about -0.005 (= 0.102·0.05), indicating a 0.5%
decline in the market volatility. For illustration, assuming again 10% increase in oil and
gas prices and volatility. Based on Model 3A results, the country equity index volatility
increases with 10% oil and gas price volatility by 1.07% and 0.21% respectively. Looking
at the interaction variable with currency devaluation, the effect of oil price volatility and
gas price volatility are magnified and outweighs the volatility reduction effect from the
currency devaluation, noted above. Interpreting the oil price volatility and currency de-
valuation interaction, we estimate 0.852% (= 0.05 ·0.1 ·1.704) increase in volatility while
from the TTF price volatility and currency devaluation interaction, we estimate 0.292%
(= 0.05 · 0.1 · 0.584), with a combined effect of 1.144%.
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Table V.5
MSCI Country Index Volatility Regression Analysis with Oil and Gas Price Volatility and
FX

(Model 1A) (Model 2A) (Model 3A) (Model 3B) (Model 3C) (Model 3D)
Variables mscivol5d mscivol5d mscivol5d mscivol5d mscivol5d mscivol5d

Before 2013 After 2013 After 2020

Lag1DRet -0.031 -0.034 -0.033* -0.04 -0.013 -0.015
(-1.62) (-1.66) (-1.73) (-1.39) (-0.60) (-0.34)

Lag5DRet -0.067*** -0.071*** -0.065*** -0.053*** -0.070*** -0.060**
(-5.37) (-5.28) (-5.09) (-3.22) (-4.11) (-2.75)

APlag1Ret 0.007 -0.004 0.005 0.009 0.004 -0.003
(0.19) (-0.10) (0.11) -0.15 (0.12) (-0.05)

AP5dLagRet -0.002 -0.02 -0.002 -0.022 0.021 0.014
(-0.12) (-0.86) (-0.08) (-0.69) (0.93) (0.32)

USlag1dRet 0.005 -0.01 0.003 -0.004 0.014 0.02
(0.12) (-0.23) (0.06) (-0.06) (0.26) (0.25)

USlag5dRet -0.050** -0.069** -0.049** -0.068* -0.041 -0.074*
(-2.32) (-2.78) (-2.18) (-1.85) (-1.61) (-1.83)

Brentvol5d 0.105*** 0.107*** 0.206*** 0.077*** 0.100***
(8.17) (7.89) (7.63) (5.36) (5.1)

FXlag5d·Brentvol 2.033*** 1.704*** 0.126 2.574*** 2.555***
(3.96) (3.9) (0.11) (4.64) (4.21)

FXlag1dsret -0.03 -0.036 -0.039 0.001 -0.081* -0.165**
(-0.51) (-0.59) (-0.63) (0.01) (-1.94) (-2.23)

FXlag5dsret -0.069* 0.007 -0.102** 0.067 -0.168*** -0.269***
(-1.86) (0.21) (-2.43) (1.01) (-2.99) (-3.27)

LogFXprice -0.003 -0.002 -0.003 0.006 0.004 0.046*
(-0.81) (-0.68) (-0.95) (0.51) (0.76) (1.72)

Brentlag1dret -0.015 -0.016 -0.03 -0.012 -0.026
(-0.93) (-0.90) (-0.86) (-0.58) (-0.74)

Brentlag5dret -0.031*** -0.035*** -0.043** -0.029*** -0.038***
(-4.35) (-4.44) (-2.71) (-3.64) (-2.92)

TTFvol5d 0.027*** 0.021*** 0.036*** 0.014** 0.024***
(5.34) (3.91) (3.61) (2.19) (3.12)

FXlag5d×TTFvol 0.727*** 0.584** -0.640* 0.723*** 0.865***

(2.95) (2.43) (-1.79) (2.89) (3.32)
TTFlag1dret 0 0.002 0 0.004 0.007

(0.06) (0.29) (-0.01) (0.39) (0.66)
TTFlag5dret -0.006 0 -0.009 0.003 0.003

(-1.57) (0.04) (-1.19) (0.74) (0.62)
Constant 0.023*** 0.021*** 0.018*** 0.007 0.021*** -0.012

(8.58) (7.29) (6.44) (0.76) (4.22) (-0.51)

Observations 110 596 102 232 102 232 40 004 62 228 18 768
R-squared 0.286 0.271 0.291 0.301 0.229 0.246

Note: The dependent variable is the future 5-day MSCI index return volatility in Models 1A-
3A for the full sample, with model 3A specification replicated in Models 3B through 3D with
subsamples, as in Table V.4. The explanatory variables are defined in Table V.1. In addition,
we include exchange rate measure, LogFXprice, and lagged 1-day and 5-sday exchange rate
changes and interaction variables of the lagged 5-day exchange rate changes with the oil and
natural gas price volatility measures. The sample is from March 24, 2003, to December 31, 2012,
in Models 1 A through 3B, from January 1, 2013, to December 31, 2019, in Models 3 C, and
from January 1, 2020, to December 31, 2022, in Models 3D. The coefficient estimates with the
corresponding robust t-statistics (in parentheses) are reported from panel regression, with time
and country fixed effects, with clustered standard errors at time and country dimensions. ***, **,
and *, indicate the statistical significance at the 1 percent, 5 percent, and 10 percent levels.
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With Tables V.3 - V.5, we show that while increases in crude oil and natural gas prices
tend to reduce market volatility, oil and gas price volatility have a spillover effect and a
significant positive relationship with equity market volatility. We find that the uncertainty
in natural gas prices, rather than their level, is the driving force behind equity market
volatility and this potential volatility transmission is more relevant in countries with cur-
rencies weakening relative to the Euro. These findings have important policy implications,
particularly for countries vulnerable to energy price shocks.

In the next sub-section, we take a closer look at “our” network participants, the 24 Euro-
pean Economies in the EEA, and examine their equity markets in conjunction with energy
shocks in a closed network setting, with the D-Y spillover index method.

V.4 Application of the Diebold-Yilmaz Spillover Index for
European Markets

In Section V.4.1, we briefly discuss our application of Diebold-Yilmaz Spillover index
method for a closed network analysis of all EEA countries MSCI indices. Where in the
closed network in addition to the domestic country equity indices, we also include oil and
natural gas prices, and aggregate equity market proxies for the US and Asia. In Section
V.4.2, we present network analysis results of spillovers for 8 sub-periods from January
2004 to December 2022.

For the network analysis, we adopt the generalized version of the D-Y spillover index
(Diebold and Yilmaz (2012) ), based on a VAR method (Sims (1980)) with a major focus
on the calculation of the Forecast Error Variance Decomposition (FEVD). The FEVDs are
invariant to the ordering of the variables, which avoid the ordering of the variables in the
VAR model. Given the goal is to assess the magnitude of the volatility spillovers rather
than identifying the causal effects of structural shocks, this appears to be the preferred
choice in the present context (Diebold and Yilmaz (2023)).

V.4.1 Application of the Diebold-Yilmaz Spillover Index for Euro-
pean Markets

Under the generalized VAR framework, we consider a covariance-stationary VAR (p)
model with N -variable i.e., Yt =

∑p
t=1 ψiYt−i + et, where et ∼ i.i.d(0,Σ) is a N × 1

vector of residuals. The moving average representation of the VAR model takes the form
of Yt =

∑∞
j=0 ψiAjet−j whereAj is anN×N is a coefficient matrix. Aj follows recursive

pattern as Aj = ψ1Aj−1 + ψ2Aj−2 + ... + ψpAj−p, A0 is an identity matrix and Aj = 0

for j < 0. Diebold and Yilmaz (2012) apply a generalized VAR framework to calculate
the H-step-ahead generalized forecast error decompositions as follows:
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φij(H) =
σ−1ii

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iA

′
hΣei)

(V.4)

where σii is the i-th element on the principal diagonal of Σ. Since the sum of each row of
φij(H) is not equal to 1, each element of the matrix is normalized as follows:

φ̄ij(H) =
φij(H)∑N
j=1 φij(H)

(V.5)

so that the decomposition including shocks in each market equals to unity, i.e.,∑N
j=1 φ̄ij(H) = 1 and total decomposition of all variables sums to N ,

i.e.,
∑N

ij=1 φ̄ij(H) = N The total spillover (TS) index is computed as follows:

TS(H) =

∑N
ij=1,i 6=j φ̄ij(H)

N
· 100 (V.6)

The directional spillover measure at the asset level, capturing volatility spillover received
by asset i, from the market with j assets, is defined as follows:

DSi←j(H) =

∑N
j=1,i 6=j φ̄ij(H)

N
· 100 (V.7)

and similarly,

DSi→j(H) =

∑N
j=1,i 6=j φ̄ji(H)

N
· 100 (V.8)

Last, the net spillovers (NS) from one node to another for a set of variables are calculated
by subtracting Eq. V.7 from V.8 as follows:

NSi(H) = DSi→j(H)−DSi←j(H) (V.9)

We use the H step variation in the absolute changes in log prices as suggested by Forsberg
and Ghysels (2007) to proxy for realized volatility.26 We calculate the price change in
asset iVit at time t as Vit = |ln(Pit)− ln(P(it−1))|.
While we focus on examining, the volatility transmission of domestic equity indices
across Europe in relation with energy prices, we do acknowledge that equity indices are
likely to react to earlier information from the US and Asian markets, and therefore, we
also include MSCI aggregate US and Asian Pacific indices in our closed network analysis
as and regressions, to mitigate omitted variable bias. Table V.6 presents key volatility
spillover results of our equity index universe, for the year 2004. This year is of particu-
lar interest because on May 1st, 2004, the European Union welcomed 10 new countries.

26Our choice of volatility measures is motivated by Forsberg and Ghysels (2007), who show that absolute
returns are good volatility predictors, as they have good population performance, low sampling errors and
are robust to jumps.
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Unfortunately, a number of the new extension EU countries have limited data coverage
in the beginning of the sample because on only Hungarian and the Polish MSCI indices
are available from 2004. In addition, there were no observations for the natural gas (i.e.,
TTF) which started trading in 2005.
Diebold and Yılmaz (2014), in their seminal paper, investigating the interconnectedness
of the financial system, report a total spillover index of 78.3%, which is comparable to our
78.8% in 2004, implying a very strong interconnectedness in the network. A network par-
ticipant is either a net volatility transmitter (positive values in Net row) or receiver (nega-
tive values in Net row), based on the difference between emitted and absorbed volatilities.
According to the net spillover indices, the US equity market return is the largest volatility
receiver (-56.5%). Similarly, the Asian aggregate index (i.e., APAC in the graph) is a
volatility receiver, while Norway is a volatility transmitter. Brent has the strongest net
positive effect (118.2%), suggesting that its volatility heavily impacts the domestic equity
markets.
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V.4.2 Network representation of the Diebold-Yilmaz Spillover Index

Using the connectedness table, it is also possible to construct a matrix containing the pair-
wise net directional connectedness of all pairs. Fig. V.1 provides a visual representation
of these relations in an informative network graph. An arrow from variable yi to variable
yj denotes a positive net directional connectedness (in other words, variable yi explains
more of variable yj than the reverse). The assets are grouped and color-coded as follows:

• Red: Core EU countries

• Blue: PIIGS countries

• Green: Countries joined the EU after 2004

• Purple: Ex-EU countries and regions

• Grey: Brent crude oil benchmark (Brent)27

27TTF is represented with orange, however, it started trading in 2005 thus not represented in the 2004
plot.
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Fig. V.1. Static volatility interconnectedness network during the period of 1/1/2004 and
12/31/2004

Note:An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow indicates the group of countries or the asset from which it originates from. Thinner lines
represent the strongest 5% of connections, while thicker lines show the uppermost 1% of connec-
tions. For the figure, we use Lag = 3 and H = 10 model inputs. The figure is prepared using the
Diebold and Yılmaz (2014) spillover index method.

The colors of the arrows indicate the group of the transmitter participant. Only those edges
in the uppermost 5% considering the magnitude of the net spillover, are shown. Thicker
arrows represent connections in the top 1%, which are the strongest pairwise spillover
connections. In Figure V.1, the grey-colored arrows dominate, which indicate that Brent
is the primary volatility transmitter in the system in 2004. Out of the total 23 arrows, 14
are from this asset accounting for 61% of all edges. There are a few underlying reasons
behind the high spillover ratio of Brent.

Bildirici and Bakirtas (2014) point out that demand for oil increased dramatically for
rapidly developing countries such as China and India, which led to a rise in oil prices
globally. Since 2003, the production of the Russian Yukos, a main Integrated Oil and Gas
company, has been inconsistent because of legal challenges. This led to concerns about
a potential supply shortage (and indeed Yukos went bankrupt in 2006) (Hanson (2005)).
In addition, geopolitical tensions, and armed conflicts, such as the Iraq War and terrorist
attacks in the Middle East, also had an impact on the Brent benchmark price (Choi and
Hammoudeh (2010)).
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In the next section, we partition our estimation time frame into seven additional subsets,
depicted in Figure. V.2. We progressively introduce new network elements as data be-
comes accessible. Specifically, in the period 2005-2008 (refer to Table C.3), we integrate
TTF, and in the period 2009-2012 (refer to Table C.4), we incorporate more countries,
particularly CEEC and the Baltics, thus expanding our network, particularly the non-core
EU group in the model (refer to Tables C.5 and C.6). To gain a better understanding of
specific disturbances such as the onset of the Covid-19 pandemic in 2020 (refer to Table
C.7), the recovery in Europe in 2021 (refer to Table C.8), and the commencement of the
Russo-Ukrainian conflict in 2022 (refer to Table C.9), we examine the years 2020, 2021,
and 2022, one by one.
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(a) 2005 - 2008 (b) 2009 - 2012

(c) 2013 - 2015 (d) 2016 - 2019
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(e) 2020 (f) 2021

(g) 2022

Fig. V.2. Static volatility interconnectedness network during various periods

Note: An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow indicates the industry sector of the asset from which it originates from. Thinner lines repre-
sent the strongest 5% of connections, while thicker lines show the uppermost 1% of connections.
For the figure, we use Lag=3 and H=10 model inputs. The figure is prepared using the Diebold
and Yılmaz (2014) spillover index method.

Several studies (Liow (2015), Balli et al. (2015), Gamba-Santamaria et al. (2017)) find
that the total volatility spillover increases during crisis periods. Our GFC and ESDC sub-
periods (2005 - 2008 and 2009 - 2012) show a total spillover increase of 85.47% and
85.65%, which is consistent with the earlier studies. Between 2005 and 2008 (Fig V.2a),
Norway was the main volatility emitter, accounting for 57% of the total possible arrows.
Park and Ratti (2008) highlight that the volatility of Norwegian stocks is particularly sen-

103



sitive to negative and positive oil price shocks. Between July 2008 and December 2008,
Brent price fell from 146 USD/Bbl to 36 USD/Bbl which greatly affected the volatility of
the Norwegian price index.

Although Norway remained an important volatility emitter (13%), its dominance declined
during 2009-2012, as Hungary (26%) and Poland (18%) emerged as major transmitters
(Fig V.2b). A reason for the new volatility source from CEE countries is the lower stock
market resilience against GFC shocks in CEEC compared to the eurozone economies as
suggested by Mihaljek (2010). Austria (12.8%) is also a major volatility emitter during
this period, likely due to the changes in political leadership and concerns over corruption,
creating a climate of uncertainty and unpredictability.

Fernández-Rodrı́guez et al. (2015) and Mensi et al. (2018) report increased volatility
spillover not just during the time of the GFC but also during the ESDC which affected
Portugal, Italy, Ireland, Greece, and Spain (PIIGS). These countries were economically
weaker and more vulnerable to financial instability than other countries in the Eurozone.
Among the PIIGS countries, Greece was the closest to default, but it was bailed out.
Although the European Sovereign Debt Crisis happened from 2009 to 2013, its effect
reached the stock market later and hit Greece the most. From 2013 to 2015, Greece was
the largest volatility emitter, accounting for 44% of the outgoing edges.

In June 2015, the Greek Government imposed capital controls which restricted the amount
of money that could be withdrawn from banks and led to a significant decrease in liq-
uidity and an increase in uncertainty in the financial markets (NPR (2015), Kosmidou
et al. (2020)). Additionally, in January 2015, the far-leftist Syriza party won the election
in Greece. The actions of the new government, which included renegotiating Greece’s
debt and opposing austerity measures, created uncertainty and concern among investors,
further fueling volatility in the stock market (BBC (2015)). Italy faced similar political
uncertainty during 2013 - 2015 when it could not form a strong government (Chiaramonte
et al. (2018)). It was the second largest volatility transmitter during this time, accounting
for 21% of the connections (Fig V.2c).

In the 2016 - 2019 period (Fig V.2d), Greece remained the most dominant volatility trans-
mitter (54%), with TTF prices also in second place. One of the main reasons for the
TTF price volatility was the oversupply of natural gas in the global market, particularly
in the USA, putting downward pressure on prices. From 2016 to 2019, US natural gas
production increased by 13% due to the shale gas revolution (EIA (2022), Middleton et al.
(2017)). The expansion of the liquified natural gas (LNG) trade also contributed to the
oversupply of natural gas worldwide, as LNG trade increased by 35% during this pe-
riod (BP (2022)). Furthermore, tensions between Russia and Ukraine, two major natural
gas producers, had led to supply disruption and price volatility (Zhiznin and Timokhov
(2019)). It is noteworthy, that TTF mainly provides volatility towards the NEW coun-
tries which are heavily reliant on natural gas imports from Russia and are therefore more

104



vulnerable to fluctuations in gas prices.

The rapid spread of Covid-19 had greatly increased uncertainty in both the financial
and commodity markets, especially the energy market (Lin and Su (2021), Zhang et al.
(2020)). Fig V.2e shows that all the arrows originate from Brent (57%) and TTF (43%).
In the first half of the year, the pandemic led to a decrease in demand for oil and gas due
to lockdowns and reduced economic activity. This decrease in demand caused a surplus
in the market, which led to lower prices. In response to the decrease in demand, pro-
ducers reduced their production levels, which ameliorated the oversupply (ACER (2022),
Reuters (2022a)). Both Brent and TTF have a U-shaped price graph. As economies began
to reopen and activities started to pick up, the production cuts led to a tightening of the
market and higher prices. Besides these common factors, the price war between Saudi
Arabia and Russia over oil production levels led to a significant increase in oil supply
and further contributed to the oversupply and lower prices (Iglesias and Rivera-Alonso
(2022)). In reaction, OPEC+ decided to cut production in May 2020 which helped stabi-
lize the market and support higher prices in the second half of 2020 (Enerdata (2020)).

In 2021, as seen in Fig V.2f, the main sources of volatility transmission were still TTF
(39%) and Brent (35%). Natural gas demand was driven by cold weather conditions
which swept across Europe, in early 2021, leading to a surge in demand for natural gas
for heating purposes. This increase in demand led to a supply shortage and contributed
to higher prices and volatility (IEA (2021)). The global LNG market continued to ex-
perience imbalances in supply and demand, which affected TTF prices. The Covid-19
pandemic disrupted the LNG market with production and delivery delays, leading to sup-
ply shortages (Chai et al. (2021)). Furthermore, there were concerns about the possible
disruptions of natural gas supplies from Russia, a large part of which were transported
through Ukraine to Europe (Reuters (2022c)). The pandemic had less of an impact on
Brent prices in 2021 compared to 2020, but it continued to affect the market. Variants
of the virus and vaccination rollouts in different regions caused uncertainty in the de-
mand for oil, which affected prices (CNBC (2022b)). In April 2021, OPEC+ decided
to gradually increase production in response to the improving market conditions, which
put downward pressure on prices. However, in July 2021, OPEC+ decided to maintain
current production levels, which supported prices (Reuters (2021)).

In 2022, the unexpected Russian invasion of Ukraine created much uncertainty about
unrestricted access to fossil commodities, especially to natural gas. The war in the first
few months of 2022 raised concerns about the safety of Europe’s gas supply and the
unpredictability of gas prices. In the first quarter of 2022, the EU spent a projected C78
billion on natural gas imports, C27 billions of which came from Russia. The EU’s net gas
imports increased by 10% over this time, while imports of liquefied natural gas increased
by 72% year on year (European Commission (2020), European Commission (2022)).

At their peak in August 2022, European gas prices topped 345 euros/MWh because (1)
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Russia weaponized its natural gas exports in response to punitive EU sanctions, and (2)
sky-high temperatures over the summer, drove up demand. Following that, however, un-
seasonably warm weather through winter in much of northwest Europe reduced demand
for heating and allowed the continent to replenish its gas inventory. By the end of 2022,
TTF price reverted to pre-war levels (CNBC (2022a)). This extreme hike and drop within
a year made TTF the main volatility transmitter (59%) in 2022 (Fig V.2g). Besides TTF,
Hungary (28%) and Poland (13%) are net volatility emitters. Silva et al. (2023) point out
that from the European countries, Hungary and Poland have the largest trade exposure
with countries at war (3.6% and 3.2% respectively). Our results are in line with Yousaf
et al. (2022) and Silva et al. (2023) who claim that the equity markets of Hungary and
Poland are the most sensitive to the Russia-Ukraine war.

V.5 Conclusion

In this study, we investigate the spillover effects of energy prices. Specifically, we ex-
amine the volatility spillover of crude oil and natural gas prices, on equity markets in
24 European Economic Area (EEA) countries to contribute to ongoing policy debates
about Europe’s energy stability. Our sample period from March 24, 2003, to December
31, 2022, covering about 20 years, includes several political and economic crises across
Europe and globally.

In panel regression analyses, we examine oil and gas prices’ influence on equity market
returns and equity market volatility. Our results show that oil and gas prices have a weak
impact on the equity markets in the sample countries. On the other hand, we do find
that price volatility of crude oil and natural gas are major contributors to volatility in
the equity markets, particularly in countries with relatively underdeveloped exchanges or
weak domestic currencies. We also employ the D-Y spillover index method to perform
network analysis for the 20-year sample period, with 5 shorter subsample analysis to
provide focused analysis of specific crisis events.

We find significant differences in the sources of volatility across the subperiods, with the
primary sources of volatility initially stemming from economic or political uncertainty.
We also identify countries or groups of countries, such as Greece during the sovereign
debt crisis, Central and Eastern European countries (CEEC) after the 2004 EU extension,
and Norway during the 2008 oil rout, as key sources of volatility in the European equity
markets. Interestingly, oil and gas price shocks have become direct primary volatility
providers since 2019, with increasing volatility risk arising from natural gas, a green-
labeled energy source, despite the ongoing efforts of diversification.

Overall, our study provides several unique contributions. First, we are the first to deploy
the D-Y spillover index in the EEA context, providing insights into the interconnectedness
of European economies in response to economic, political, and energy shocks. Second,
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we include natural gas (TTF) in addition to oil in our network model, acknowledging
Europe’s increasing gas dependency. Lastly, we provide a comprehensive panel regression
analysis of crude oil and natural gas price shocks to equity markets before focusing on
a closed network model, addressing potential omitted variable biases and allowing for
external factors.
Our findings have policy implications for managing the risks associated with energy price
volatility in the European equity markets. Our results suggest that policymakers should
consider the potential impact of energy shocks on countries with relatively underdevel-
oped exchanges or weak domestic currencies. Additionally, our study highlights the need
for diversification across different energy mixes to mitigate the risks associated with en-
ergy price volatility, particularly in light of Europe’s increasing gas dependency. Finally,
our study underscores the importance of currency risk management for energy import de-
pendent small economies in general. While our analysis highlighted the vulnerability of
CEEC countries especially during recent years, our results can also partially explain the
severity of the economic crisis of Sri Lanka and the subsequent country default in 2022
(IMF (2019b)), where the weak domestic currency was a major impediment to energy
stability because of the high cost of USD denominated oil imports.
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CHAPTER

DISCUSSION OF FUTURE RESEARCH OPPORTUNITIES ON
CLIMATE RISK IMPICATIONS FOR PORTFOLIO MANAGEMENTVI

My research (the second and the third papers in the thesis) has been providing one of the
first insights about climate risk, and the importance of climate risk resilience at the firm
and country level in Europe. One of many potential future research topics, an extension
of my work, is the management of the risk of energy reliance in firms of different sectors,
especially given the mounting ESG pressure from climate advocates and policymakers.

With heightened concerns about climate change and sustainability, stakeholders closely
scrutinize firms’ energy consumption practices. Energy reliance exposes firms to various
risks, including supply chain disruptions, regulatory uncertainties, reputational harm, and,
in conclusion, volatile prices. To address these risks, firms must implement strategies
encompassing energy efficiency measures, diversification of energy sources, investment
in renewables, and transparent reporting. Integrating ESG considerations into systemic
risk management is crucial for aligning energy strategies with sustainability goals.

There is a need for more advanced models for climate risk assessment at the firm, country,
region, and global levels, boiling down environmental and biodiversity violations into net
present value (or expected loss). There are various ways to approach climate risk and
resilience at the firm level at the most straightforward level: (1) with hedging, (2) forward-
looking with proactively discounting costs from future sustainability policy violations.
The second approach is inherently difficult and expensive, and companies worldwide face
pushback from investors and even from state governments to refocus on shareholder value
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maximization (Reuters (2023)).

My work is closely related to the first approach and can be extended to formal optimiza-
tion decisions, specifically minimizing climate risk with the constraint of maintaining
long-run returns to ensure investor retention. Consistent with the modern portfolio the-
ory (MPT) proposed by Markowitz (1952) and the Capital Asset Pricing Model (CAPM)
proposed by Treynor (1961) and further developed by Lintner (1975), Mossin (1966) and
Sharpe (1964). While in MPT the investors’ objective function is maximizing return given
the risk (total risk), in the CAPM the idiosyncratic firm risks are neglected and only the
systematic risk or market risk is considered. CAPM is the most regarded equilibrium
asset pricing model in finance where the expected return of an asset (a specific asset) is
the expected risk-free rate of return + risk compensation, where risk compensation is a
function of the asset’s exposure to systematic risk. The formalized concept is:

E(Ri,t)−Rft = βi(MRPt), (VI.1)

where the left side of the formula is the excess return on the asset, and the right side is the
beta of the asset, the exposure to systematic risk, proxied by the market risk, and MRP is
the market risk premium. While in the theoretical model the ”Market” contains all traded
and non-traded assets because of the limitation on information access, we use the S&P500
portfolio as the market portfolio and calculate the MRP as the historical average annual
excess return (i.e., the return on the market portfolio minus the annualized yield on the
10-year US Treasury) generally. Beta is calculated as the last 3 or 5-year historical asset i
return covariance with the market return divided by the market portfolio return variance.

In CAPM, some of the key assumptions that all investors have homogeneous expecta-
tions, they are rational, and that all firm-specific risks can be diversified away; therefore
investors should receive return compensation only for non-diversifiable market risk. Us-
ing this logic the investors’ risk preference would determine their market exposure. The
often overlooked issues are: market risk cannot be measured because we have only an
incomplete market risk proxy; and thus empirically testing CAPM is rather problematic
(see the critic in Roll (1977) for details, and in the later work of Roll and Ross (1994)).
Also, the risk compensation in empirical tests tends to be too low, suggesting that perhaps
we do not have the right risk measure, or we overlooked a risk measure such as climate
risk.

With the advancement of information technology and access to data Eugene Fama (later
received Nobel prize for his work on asset pricing) and Kenneth French in a series of
papers explored cross-sectional return patterns in US stocks. To improve upon ex-post
return explanation (which was rather limited with the CAPM model), Fama and French
proposed a 3-factor model Fama and French (1992)), which in addition to the market risk
factors (similar to CAPM), includes two additional factors: the size factor (SMB, Small
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Minus Big), and the value factor (HML, High Minus Low). The size factor accounts for
the observed outperformance of small-cap stocks over large-cap stocks, while the value
factor captures the tendency of stocks with high book-to-market ratios to outperform those
with low ratios.

PortfRett −Rft = βp(MRPt) + sp(SMBt) + hp(HMLt) + ept (VI.2)

The authors claimed that with these 3 factors they are able to explain 96% variation in
diversified stock portfolios. Unlike the CAPM, which is an equilibrium model based
on theoretical assumptions about investor behavior and market conditions, the Fama and
French models are empirical models derived from observed market data. The factors are
also only applicable to diversified portfolios and not relevant to understand individual
stock return expectations, only at best factor related surprises. More importantly, while
Fama and French factors are often referred to as risk factors, they are rather stylized
factors, results of one of the first machine learning exercise analyzing 50+ years of stock
return data from the US.

In 2015 Fama and French (Fama and French (2015)) expanded their original model and
introduced an additional two new factors, still ignoring the Momentum Factor (Carhart
(1997)) and Liquidity factor (Pástor and Stambaugh (2003)) which were shown to sig-
nificantly improve the 3-factor models. The momentum factor created as a difference of
returns on portfolio of stocks performing well in the last period and portfolio of stocks
performing badly, so called winner minus loser portfolio. The liquidity factor aims to
capture the illiquidity premium popularized by Amihud (2002), that stocks with higher
liquidity (i.e., those that are easier to buy and sell without affecting the price) tend to have
lower returns than less liquid stocks. Liquidity is a critical consideration for investors be-
cause it affects the cost of trading and the risk associated with holding an asset, especially
during periods of market stress when liquidity can dry up.

The Fama and French (2015) updated 5-factor asset pricing model suggested the inclusion
of new profitability (RMW , Robust Minus Weak) and investment (CMA, Conservative
Minus Aggressive) factors. The profitability factor captures the tendency of firms with
high operating profitability to outperform those with low profitability. The investment fac-
tor reflects that firms with conservative investment policies tend to outperform those with
aggressive investment policies. This expansion aimed to address additional anomalies
that were not explained by the original 3-factor model, providing a more comprehensive
framework for understanding stock returns.

Empirical asset pricing studies or anomaly studies tend to put significant emphasis on liq-
uidity and more importantly on momentum and various versions of the Fama and French
Factor models used, most frequently the original 3 factors with Momentum factor (Carhart
(1997)) or with including a liquidity factor, see Eq. VI.3 and VI.4 respectively.
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PortfRett−Rft = βp(MRPt) + sp(SMBt) + hp(HMLt) + up(UMDt) + ept (VI.3)

PortfRett −Rft = βp(MRPt) + sp(SMBt)

+hp(HMLt) + up(UMDt) + lp(liqt) + ept
(VI.4)

Professional asset managers and academics tend to embrace the newer and newer models,
and keep adding factors. Skočir and Lončarski (2018) recently published an eight factor
asset pricing model extending on the 5-factor Fama and French model with the above
noted momentum and liquidity factors and a newly introduced default risk factors. With
machine learning, the opportunities for new factor discoveries are limitless. Each factor
brings additional explanatory power, but also introduces complexity and the potential for
overfitting. As the field of asset pricing continues to evolve, researchers and practitioners
must balance the trade-off between model complexity and explanatory power, ensuring
that models remain robust and applicable across different market conditions and time
periods. The Fama and French models, while foundational and highly influential, are part
of an ongoing dialogue in finance aimed at improving our understanding of what drives
asset returns.

Despite their empirical success, both the 3-factor and 5-factor models are not without
criticism. Some argue that the factors may be capturing behavioral biases or other market
inefficiencies rather than true risk factors. Additionally, the models’ reliance on histor-
ical data means they may be less and less relevant in the future with the 4th industrial-
technological revolution and the emergence of climate risk, and the need to reevaluate
energy and IT dependence. Thus, perhaps it is time to go back to the drawing board and
revisit CAPM, or the market risk, and perhaps consider creating a more representative
market portfolio (instead of overreliance on the US-dominated S&P500 portfolio) and
introduce a climate risk measure.

In future work, leveraging on the empirical work from my thesis, I want to formalize
new investment objective functions for individuals and asset managers, to aid sustainable
investment and self-reliance of citizens by creating and managing portfolios which are
climate-reliant. Recent theoretical works are also considering reevaluating asset pricing
theories where some section of the market, the so-called green investors, may be consid-
ered irrational in the traditional sense or perhaps more forward-looking. And other im-
portant consideration is the integration of climate risk measures into existing asset pricing
models. The inclusion of climate risk factors aims to account for the financial impact of
climate change on asset returns.

Tentatively, we could consider a climate risk factor in addition to the market factor, with
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time-varying correlation and importance. Again, we could try to go back to the equi-
librium setting and consider the decomposition of global market risk into an observable
market risk (proxied by equity portfolio) and a portfolio of non-traded assets that capture
the climate risk component:

PortfRett −Rft = βp(MRPt) + ki(ClimateRisk) (VI.5)

One of the major shortcomings in risk management globally is assuming fixed (time-
independent) correlation of asset classes, which resulted in the 2008 Global Financial
Crisis. A realistic setting, or model, would consider market risk in conjunction with
climate risk, where each of these risks would likely magnify the other under adverse
scenarios, thus it could be valuable to incorporate dynamic correlation structures in risk
management models. Recognizing that correlations between asset classes can change over
time, especially during periods of market stress, is crucial for accurately assessing risk.
This dynamic approach would better capture the co-movements of assets under different
market conditions, providing a more realistic measure of portfolio risk.

A revision of a factor model or the CAPM could provide valuable insights into expected
returns amid changing investor preferences. However, effective risk management requires
a deeper understanding of the risk implications associated with climate change and sus-
tainability. Current models, such as the Fama-French 3, 5, or 7-factor models, fail to
address these concerns adequately.

Returning to the basics of CAPM is crucial because, as an equilibrium model, CAPM
offers insights into both expected returns and asset or portfolio volatility. According
to CAPM, portfolio variance can be derived from systematic risk exposure and market
portfolio variance. Thus, if we can construct a market portfolio that accurately captures
climate risk exposure, we can return to using CAPM.

However, the complexity arises from investors’ exposure to both market and climate risks.
The critical challenge lies in identifying the appropriate market and climate risk port-
folios. My forthcoming research aims to explore various measures of climate risk and
develop a climate risk portfolio or factor that can be integrated into a market factor.

From my point of view, the expected return is not the key importance, I am keen on
understanding the connection between climate risk and market risk and their mutual im-
plications on portfolio risk management. There are already approaches to try to adopt
a new market portfolios, for example, MSCI has already developed a climate resilience
market portfolio (MSCI (2024)), which could perhaps allow the creation of orthogonal-
ized market risk and climate risk measures.

According to the CAPM, the expected return of a portfolio is composed of the beta-
weighted expected return on the market portfolio, an epsilon, and an alpha. This frame-
work also implies that the portfolio variance can be expressed as:

112



σ2
p = β2

pσ
2
M + σ2(ep) (VI.6)

where σp is the portfolio volatility, βp is the measurement portfolio’s volatility relative
to the entire market, σM is the market portfolio volatility, while portfolio’s idiosyncratic
risk is denoted by σ2(ep). Prior research (e.g. Fu (2009), Goyal and Santa-Clara (2003))
indicates that idiosyncratic volatility possesses return predictability, suggesting a system-
atic risk component within idiosyncratic volatility. Consequently, in a simplified model,
we can separate the portfolio’s idiosyncratic risk into climate risk and residual portfolio
risk. The climate risk component is expected to depend on the portfolio composition,
exposure to nontradable energy and climate risk natural resources and exposure to certain
geographic regions.
Fig. VI.1 provides schematic plots for the portfolio variance depending on market risk
volatility and climate risk volatility. In this scenario, the portfolio variance is calculated
as:

σ2
p =

β2
pσ

2
M + σ2

c , if σ2
M is smaller than 20%,

β2
pσ

2
M + σ2

c + 5%, if σ2
M is equal or larger than 20%

(VI.7)

where, as previously, σp is the volatility of the portfolio, βp measures the portfolio’s
volatility relative to the overall market, σM is the volatility of the market, while σc is
the climate volatility.
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(a) β= 0.6 (b) β= 1.2

Fig. VI.1. Portfolio variance depending on market risk volatility and climate risk volatility

When market risk exceeds a certain point, (20% in this model), the resulting jump in
portfolio variance can be attributed to several interconnected financial factors. Market
perception and sentiment play a significant role; as climate risk becomes more prominent,
investors may perceive it as an immediate threat, leading to increased uncertainty and
volatility. Regulatory changes also come into play, as higher climate risks might trigger
stricter policies aimed at mitigating climate impacts. Such regulations can increase oper-
ational costs, reduce profitability, or even threaten the viability of businesses in high-risk
sectors like energy and manufacturing. Sectoral shifts occur as capital moves away from
vulnerable industries towards more resilient or sustainable ones, creating volatility from
sudden, widespread reallocation. Supply chain disruptions become more frequent and se-
vere with significant climate risks, leading to volatile earnings as companies grapple with
damaged infrastructure, disrupted transportation, and production schedules. Additionally,
the costs of insuring assets and managing risks rise with increased climate risk, affecting
profitability and cash flows and contributing to greater stock price variability. Transition
risks are also critical; the shift to a low-carbon economy requires significant changes in
technology, policy, and consumer behavior, creating financial instability for companies
slow to adapt and high upfront costs for proactive ones. These dynamics collectively
amplify market volatility, reflecting higher portfolio variance. Understanding these fac-
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tors enables investors and risk managers to develop strategies to mitigate such risks, such
as diversifying portfolios to include climate-resilient assets and engaging in active risk
management practices to hedge against climate-related uncertainties.

In future work, I aim to formally measure climate risk with a climate risk beta, where I
examine firms’ sensitivity to climate risk exposure. By establishing a climate risk beta,
I can quantify how much a firm’s value is influenced by climate-related factors, provid-
ing a valuable tool for investors to assess potential risks. Climate risk factors may be
more readily available now using for example carbon credit information or return spread
on within industry portfolio stocks with minimum external energy reliance versus highly
external energy-reliant firms, adopting external finance theory into the energy market con-
text. Moreover, understanding the implications of climate risk on various asset classes,
such as bonds, real estate, and commodities, is essential. Each asset class may react
differently to climate-related events and policy changes. Research should focus on how
climate risk can affect the returns and volatilities of these asset classes, thereby enhancing
portfolio diversification strategies.

Additionally, I aim to also connect to the exploding ESG rating literature and test the
climate risk relevance of various European rating agencies. Specifically, I intend to ex-
amine whether a reduction in climate risk, proxied by improvements in ESG ratings,
can effectively mitigate climate risks in climate-sensitive industries in Europe. This ap-
proach could offer a robust framework for integrating climate risk into traditional financial
models, thus bridging the gap between environmental sustainability and financial perfor-
mance. Another area of extension could be the development of sector-specific guidelines
for managing climate risk. Different industries face unique challenges and opportunities
related to climate change; therefore, tailored strategies are essential. For example, the
energy sector might focus more on transitioning to renewable sources, while the manu-
facturing sector could emphasize improving energy efficiency and reducing emissions.

By conducting detailed case studies and empirical analyses across various sectors, my
research can provide actionable insights and practical recommendations for firms to en-
hance their climate resilience. This sectoral approach would also help policymakers de-
sign targeted regulations that support sustainable practices without stifling innovation and
growth. Furthermore, investigating the role of corporate governance in driving effective
climate risk management could provide additional insights. Strong governance frame-
works may be critical in ensuring that firms adhere to climate risk mitigation strategies
and integrate climate considerations into their decision-making processes. Additionally,
assessing the impact of corporate social responsibility (CSR) initiatives on climate risk
management could reveal how proactive CSR strategies influence firm performance and
investor perceptions. This examination can highlight the importance of CSR in enhancing
a firm’s climate resilience and attractiveness to investors.

Lastly, examining how different jurisdictions and regulatory frameworks impact climate
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risk management practices is crucial. The effectiveness of climate risk measures can vary
significantly across countries due to differences in regulations, market structures, and
economic conditions. Future research should consider these factors to provide a compre-
hensive understanding of climate risk management in a global context. In particular, ana-
lyzing how international climate agreements and local regulations influence corporate be-
havior can offer insights into the effectiveness of policy interventions. Such analysis can
inform recommendations for policymakers on designing more impactful climate policies
and encourage international collaboration on climate risk management. Moreover, under-
standing the challenges and opportunities faced by firms operating in diverse regulatory
environments can help in developing best practices for global climate risk management.
This approach can ensure that firms are well-equipped to navigate the complexities of
varying regulations and successfully manage their climate risks across different regions.
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CHAPTER

SUMMARY, REFLECTION AND CONCLUSION VII

In summary, systemic risk, typically associated with system breakdowns resulting from
global events or extreme incidents, remains a complex and elusive phenomenon in fi-
nancial markets. It manifests through simultaneous declines in the prices of most or all
entities in the system during large-scale collapses. Heightened systemic risk and poten-
tial global crises are exacerbated because of the interconnectedness of modern businesses
and financial institutions. While there are numerous approaches suggested by BIS, IMF
and national policymakers to strengthen the financial system and the resilience to crisis
triggers, preparedness seems to be lacking in terms of addressing the unexpected such as
the 2015–2016 stock market selloff, the Covid-19 pandemic, and energy crisis due to the
start of Russia’s war on Ukraine.

Overall, today, we still have numerous open questions related to systemic risk, the sources
of systemic risks, and their relation with systematic risk. While with the first source of
systemic risk, identified during the Global Financial Crisis, we have made some head-
ways to identify the sources as key financial institutions, systemically important financial
Institutions (SIFIs), and we still have no clear understanding of the source of systemic
risks, and therefore, we are still in search for the right measurements. Various approaches
have been used to measure systemic risk, including the widely known CBOE Volatility
Index (VIX), which gauges market risk and fear. However, debates persist about the accu-
racy of VIX, its forward-looking nature, and its impact on realized market volatility. This
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ongoing uncertainty underscores the need for developing more sophisticated and reliable
tools for assessing systemic risk. Enhanced understanding and measurement of these
risks are crucial for better preparation and mitigation strategies in future crises. More
recently, with the emergence of new source of systemic risk, arising from climate risk, or
energy instability, financial professional, researchers and regulators face new challenges.
These challenges also open up new opportunities, revisiting well-accepted asset pricing
theories where the ex post profit maximization in conjunction with risk management was
rather well defined under specific financial constraints. Today, with the emergence of
environmental-conscious and sustainability investors, impact investing and climate re-
silience call for setting new guidelines and objective functions for investors and portfolio
managers globally.
In my research, I familiarized the reader with systemic risk definition, provided a thorough
discussion of the economics, financial and social implications of unmanaged systemic risk
and presented three case studies (journal articles) with in-depth insights into the different
facets of systemic risk. Specifically, I focused on network approach in assessing systemic
risk within closed networks, to introduce the intricate and interconnected nature of mod-
ern financial systems. Throughout this dissertation, I have presented both the theoretical
and empirical aspects of systemic risk, including its vague definition, various models on a
high level and two methodological frameworks (Toda and Yamamoto (1995); Diebold and
Yilmaz (2012)) in detail. By analyzing historical events, such as the global financial crisis
of 2008, the European Sovereign Debt Crisis, the Covid-19 pandemic, and the Russian-
Ukranian war, I have provided insights into the potential consequences of systemic risk
and the need for effective risk management strategies.
This thesis contributes to the existing literature in ten points:

1. Chapter III employs the Toda and Yamamoto (1995) causality test to analyze a
comprehensive network of sovereign yield curves over an extended time frame.

2. Chapter III analyzes a large dataset of sovereign yield curves from 12 countries over
23 years, using the Level, Slope, and Curvature factors as modeled by Diebold and
Li (2006).

3. Chapter III offers unique insights by delving into the intricate structure of the
sovereign yield curves network, revealing the following: (1) global crises result
in denser networks compared to local crises; (2) US latent factors play a pivotal
role in the network, although their influence varies over time; (3) the cointegrated
relationship between Canada and the US leads to Canada’s co-driving role within
the network during crisis periods.

4. Chapter III extends previous research on sovereign yield curve studies by examin-
ing the dynamics of key participants’ dominance in the network and linking these
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dynamics to monetary policy decisions.

5. Chapter IV provides the first comprehensive analysis of volatility transmission dy-
namics across all major European oil and natural gas companies, encompassing
over 90% of the European energy sector’s total market capitalization over nearly 20
years.

6. Chapter IV adopts a full network approach, offering a broader view of volatility
transmission across all major European energy companies.

7. Chapter IV differentiates Upstream, Downstream, Midstream, and Integrated Oil
and Gas (IOG) segments along the production line to pinpoint the mechanisms be-
hind idiosyncratic volatility spillovers in European energy companies.

8. Chapter V applies the Diebold and Yilmaz (2012) spillover index in the context of
the European Economic Area (EEA) to understand how European economies are
interconnected and respond to economic, political, and energy shocks.

9. Chapter V includes natural gas (i.e., TTF) in addition to oil in the network model,
given Europe’s increasing gas dependency.

10. Chapter V goes beyond existing applications of the Diebold and Yılmaz Index by
offering a comprehensive panel regression analysis on the effects of crude oil and
natural gas price shocks on equity markets.

One key finding of this research is that systemic risk is not confined to individual institu-
tions or sectors; it encompasses the entire financial system. As a tiny slice of the topic, I
have introduced two fields, the sovereign bond market and the energy market. Failures or
disruptions in any system can quickly spread and have far-reaching consequences, affect-
ing the stability of economies and the well-being of individuals. As such, the importance
of identifying, monitoring, and mitigating systemic risk cannot be overstated. Another
crucial aspect highlighted in this thesis is the role of interconnectedness and complexity in
amplifying systemic risk. The increasing interdependencies among financial institutions,
markets, and instruments have created a web of relationships that can transmit shocks
and vulnerabilities across borders and sectors. Therefore, a holistic approach to risk man-
agement is essential, which considers the interconnections and dependencies within the
system. Furthermore, the advancement of technology and the increasing reliance on com-
plex financial instruments pose new challenges for systemic risk management. The rapid
growth of digitalization, fintech, and cryptocurrencies has introduced novel sources of
risk that require continuous monitoring and adaptation of regulatory frameworks. Ulti-
mately, tackling systemic risk requires a multi-faceted and collaborative effort involving
regulators, financial institutions, policymakers, and other stakeholders.
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Enhancing transparency, promoting information sharing, and fostering international co-
operation are crucial steps toward creating a resilient and robust financial system. In
this thesis work, with a collection of articles, I have provided new insights about various
facets of systemic risk in Europe and in a global context. With the last two articles, I
have been emphasizing the evolving market features, whether the manifestation of the
climate risk demands continuous vigilance and increasing proactive measures. I believe
that with better understanding the complexities and interconnectedness of the financial
system, stakeholders and policymakers could work together to build a more resilient and
stable global economy.
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Barunı́k, J., Křehlı́k, T., 2018. Measuring the frequency dynamics of financial connected-
ness and systemic risk. Journal of Financial Econometrics 16, 271–296.

Basel Committee, 2011. Global systemically important banks: assessment methodology
and the additional loss absorbency requirement. Basel: Basel Committee on Banking
Supervision .

Basher, S.A., Sadorsky, P., 2006. Oil price risk and emerging stock markets. Global
Finance Journal 17, 224–251.

Batten, J.A., Choudhury, T., Kinateder, H., Wagner, N.F., 2022. Volatility impacts on the
European banking sector: GFC and COVID-19. Annals of Operations Research , 1–26.

Baumöhl, E., Bouri, E., Shahzad, S.J.H., Vỳrost, T., et al., 2022. Measuring systemic
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Fernández-Rodrı́guez, F., Gómez-Puig, M., Sosvilla-Rivero, S., 2015. Volatility
spillovers in EMU sovereign bond markets. International Review of Economics &
Finance 39, 337–352.
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Vỳrost, T., Lyócsa, Š., Baumöhl, E., 2015. Granger causality stock market networks:
Temporal proximity and preferential attachment. Physica A: Statistical Mechanics and
its Applications 427, 262–276.

Wang, X., Wang, Y., 2019. Volatility spillovers between crude oil and Chinese sectoral
equity markets: Evidence from a frequency dynamics perspective. Energy Economics
80, 995–1009.

Wang, Y., Wu, C., Yang, L., 2013. Oil price shocks and stock market activities: Evidence
from oil-importing and oil-exporting countries. Journal of Comparative Economics 41,
1220–1239.

Wilms, I., Croux, C., 2016. Forecasting using sparse cointegration. International Journal
of Forecasting 32, 1256–1267.

Wooldridge, J.M., 2010. Econometric analysis of cross section and panel data. MIT press.

Wu, F., Zhang, D., Ji, Q., 2021. Systemic risk and financial contagion across top global
energy companies. Energy Economics 97, 105221.
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APPENDIX

A Supplementary material for Chapter III

A.1 Explanatory Tables

Table A.1
Summary table of the network-related literature
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Antonakakis and Vergos (2013) VAR based D-Y 10YYSGY node E N D - - - -

Gómez-Puig and Sosvilla-Rivero (2013) Granger 10YYSGY node E N D - - - -

Gómez-Puig and Sosvilla-Rivero (2016) Granger 10YYSGY node G, E N D - - - -

Claeys and Vašı́ček (2014) FAVAR based D-Y 10YYSGY node G, E N D - - - -

Fernández-Rodrı́guez et al. (2015) VAR based D-Y 10YYSGY node E N S, D - - - -

Fernández-Rodrı́guez et al. (2016) VAR based D-Y 10YYSGY node E N S, D - - - -

Reboredo and Ugolini (2015) CoVAR 10YY node E N D - - - -

Bernal et al. (2016) CoVAR 10YYSGY node - - - - - - -

De Santis and Zimic (2018) SVAR based D-Y 10YY node E N S, D Y Y - -

Chatziantoniou and Gabauer (2021) TPT-VAR 10YY node E N D - - - -

Hamill et al. (2021) VAR based D-Y BI node G, E N S Y Y - -

Benlagha and Hemrit (2022) VAR based D-Y 2YY, 30YY node - - - - - - -

Berardi and Plazzi (2022) VAR based D-Y YCC node - - - - - - -

Sowmya et al. (2016) VAR based D-Y D-LYCF factor G, E N D - - - -

Umar et al. (2021c) VAR based D-Y D-LYCF factor G, E, C N D - - - -

Cavaca and Meurer (2021) VECM based D-Y D-LYCF factor - - - - - - -

Gabauer et al. (2022) TVP-VAR D-LYCF factor G N D - - - -

Umar et al. (2022) VAR based D-Y D-LYCF factor - - - - - - -

Note: The following abbreviations are used in the table: 10YYSGY: 10-year yield
spreads over the corresponding German yield; BI: Bond indices; 2YY: 2-year yields;
10YY: 10-year yields; 30YY: 30-year yields; YCC: Yield curve components, D-LYCF:
Diebold-Li yield curve factors; E: European Sovereign Debt Crisis; G: Global Financial
Crisis; C: Covid-19 Pandemic; N: No; Y: Yes; S: Static model; D: Dynamic model
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Table A.2
Country yield series and corresponding
Bloomberg tickers

Yield series Ticker

AUD Australian Sovereign F127
CAD Canada Sovereign F101
CHF Swiss Sovereign F256
EUR German Sovereign F910
EUR Spain Sovereign F902
EUR France Sovereign F915
GBP United Kingdom F110
EUR Italy Sovereign F905
JPY Japan Sovereign F105
KRW Korean Sovereign F054
EUR Netherlands Sovereign F920
USD USA Sovereign F082

Table A.3
Start and end dates of crisis periods

Dotcom Bubble

Start date 03/10/2000
Event NASDAQ Composite stock market index peaked at 5,048.62
End date 12/02/2001
Event Enron declares bankruptcy

Global Financial Crisis

Start date 09/15/2008
Event Bankruptcy of Lehman Brothers
End date 07/21/2010
Event Dodd-Frank Act being enacted

European Debt Crisis

Start date 11/21/2010
Event Ireland requests for IMF - EU bailout
End date 07/21/2010

Event
Ireland manages to regain complete lending access
to financial markets

Covid-19 Pandemic

Start date 01/20/2020

Event
WHO declares the coronavirus outbreak a
Public Health Emergency of International Concern

End date 12/31/2021
Event End of our study period
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Table A.4
Descriptive statistics of country yield curve nodes

Node Average St. dev Minimum Maximum ρ(1) ρ(10)

Australia
1 year 3.65 1.94 -0.05 7.39 0.999 0.994
5 years 4.02 1.90 0.24 7.30 0.999 0.994
10 years 4.36 1.74 0.61 7.43 0.999 0.993
30 years 4.78 1.46 1.17 7.67 0.999 0.099
Canada
1 year 2.21 1.67 0.12 6.43 0.999 0.994
5 years 2.87 1.68 0.28 6.70 0.999 0.994
10 years 3.38 1.62 0.45 6.78 0.999 0.994
30 years 3.64 1.42 0.71 6.25 0.999 0.994
Switzerland
1 year 0.54 1.28 -1.09 3.83 0.999 0.994
5 years 1.04 1.41 -1.11 3.97 1.000 0.996
10 years 1.55 1.43 -0.97 4.20 1.000 0.995
30 years 2.07 1.56 -0.70 4.95 1.000 0.994
Germany
1 year 1.37 1.87 -0.99 5.24 1.000 0.996
5 years 1.93 1.97 -1.01 5.39 0.999 0.996
10 years 2.52 1.92 -0.87 5.75 1.000 0.996
30 years 3.16 1.88 -0.47 6.48 1.000 0.994
Spain
1 year 1.80 1.77 -0.80 6.44 1.000 0.990
5 years 2.75 1.85 -0.45 7.65 0.999 0.992
10 years 3.54 1.80 -0.01 7.67 0.999 0.992
30 years 4.37 1.57 0.85 7.85 0.999 0.990
France
1 year 1.42 1.84 -0.87 5.30 0.999 0.996
5 years 2.11 1.88 -0.78 5.40 0.999 0.995
10 years 2.82 1.84 -0.44 5.92 1.000 0.995
30 years 3.57 1.66 0.24 6.51 1.000 0.993
Great Britain
1 year 2.32 2.25 -0.17 6.62 1.000 0.995
5 years 2.84 1.97 -0.11 6.52 0.999 0.995
10 years 3.25 1.67 0.11 5.92 1.000 0.994
30 years 3.47 1.26 0.53 5.06 1.000 0.991
Italy
1 year 1.88 1.70 -0.59 8.17 0.999 0.989
5 years 2.93 1.65 -0.10 7.76 0.999 0.989
10 years 3.76 1.52 0.49 7.35 0.999 0.990
30 years 4.59 1.32 1.50 7.37 0.999 0.988
Japan
1 year 0.08 0.24 -0.35 0.84 0.999 0.989
5 years 0.43 0.48 -0.39 1.72 0.999 0.987
10 years 0.97 0.70 -0.28 2.58 0.999 0.991
30 years 1.84 0.81 0.04 3.31 0.999 0.990
South Korea
1 year 3.18 2.28 0.35 13.51 0.999 0.978
5 years 4.30 2.22 0.79 14.34 0.999 0.976
10 years 5.05 2.11 1.44 15.12 0.996 0.972
30 years 6.06 3.01 1.71 18.56 0.996 0.976
The Netherlands
1 year 1.41 1.87 -0.94 5.31 0.995 0.996
5 years 2.07 1.95 -0.85 5.52 0.996 0.996
10 years 2.71 1.92 -0.63 5.91 1.000 0.995
30 years 3.21 1.87 -0.39 7.56 1.000 0.994
USA
1 year 1.95 1.94 0.04 7.07 1.000 0.996
5 years 2.79 1.63 0.20 6.95 0.999 0.993
10 years 3.46 1.44 0.50 6.92 0.999 0.991
30 years 4.10 1.23 1.08 6.67 0.999 0.988

Note: ρ(t) denotes sample autocorrelation at displacement t.
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Table A.5
Results of unit-root tests

Country AUS CAN CHE DEU ESP FRA
value P value P value P value P value P value P

Level -3.84 0.02** -3.52 0.04** -3.16 0.10* -3.06 0.13 -1.63 0.74 -2.94 0.18
Slope -2.81 0.24 -2.06 0.55 -2.91 0.19 -2.37 0.42 -2.12 0.53 -2.21 0.49
Curvature -4.08 0.01*** -3.01 0.15 -3.26 0.08* -3.05 0.13 -3.80 0.02** -2.97 0.17
Country GBR ITA JPN KOR NLD USA

value P value P value P value P value P value P
Level -2.25 0.47 -1.91 0.61 -3.91 0.01*** -5.61 0.01*** -3.06 0.13 -4.71 0.01***
Slope -1.84 0.64 -2.70 0.28 -4.98 0.01*** -2.88 0.20 -2.20 0.49 -2.06 0.55
Curvature -1.84 0.65 -4.16 0.01*** -3.49 0.04** -3.19 0.09* -3.38 0.06* -2.06 0.55

(a) ADF test results

Country AUS CAN CHE DEU ESP FRA
value P value P value P value P value P value P

Level 42.25 0.01 47.24 0.01 47.59 0.01 47.03 0.01 26.92 0.01 44.16 0.01
Slope 2.58 0.01 5.55 0.01 18.27 0.01 6.84 0.01 5.38 0.01 4.24 0.01
Curvature 25.23 0.01 9.07 0.01 2.50 0.01 4.45 0.01 13.02 0.01 9.08 0.01
Country GBR ITA JPN KOR NLD USA

value P value P value P value P value P value P
Level 37.28 0.01 27.33 0.01 40.71 0.01 40.11 0.01 46.48 0.01 43.70 0.01
Slope 12.42 0.01 7.46 0.01 42.11 0.01 8.49 0.01 5.97 0.01 4.04 0.01
Curvature 24.43 0.01 10.23 0.01 22.73 0.01 6.71 0.01 4.04 0.01 6.11 0.01

(b) KPSS test results

Country AUS CAN CHE DEU ESP FRA
value P value P value P value P value P value P

Level -17.73 0.01*** -17.65 0.01*** -17.95 0.01*** -18.79 0.01*** -18.26 0.01*** -17.29 0.01***
Slope -16.75 0.01*** -15.80 0.01*** -17.44 0.01*** -17.42 0.01*** -17.68 0.01*** -16.12 0.01***
Curvature -4.10 0.01*** -17.59 0.01*** -17.68 0.01*** -18.45 0.01*** -18.55 0.01*** -18.34 0.01***
Country GBR ITA JPN KOR NLD USA

value P value P value P value P value P value P
Level -18.08 0.01*** -18.30 0.01*** -17.39 0.01*** -5.22 0.01*** -18.56 0.01*** -4.70 0.01***
Slope -16.09 0.01*** -15.68 0.01*** -4.93 0.01*** -16.82 0.01*** -16.75 0.01*** -16.42 0.01***
Curvature -17.91 0.01*** -4.14 0.01*** -18.07 0.01*** -19.20 0.01*** -18.86 0.01*** -18.83 0.01***

(c) ADF(1) test results

Country AUS CAN CHE DEU ESP FRA
value P value P value P value P value P value P

Level 0.06 0.1*** 0.05 0.1*** 0.03 0.1*** 0.08 0.1*** 0.12 0.1*** 0.09 0.1***
Slope 0.04 0.1*** 0.18 0.1*** 0.03 0.1*** 0.08 0.1*** 0.09 0.1*** 0.09 0.1***
Curvature 0.03 0.1*** 0.05 0.1*** 0.06 0.1*** 0.04 0.1*** 0.03 0.1*** 0.03 0.1***
Country GBR ITA JPN KOR NLD USA

value P value P value P value P value P value P
Level 0.09 0.1*** 0.11 0.1*** 0.15 0.1*** 0.21 0.1*** 0.09 0.1*** 0.05 0.1 ***
Slope 0.32 0.1*** 0.10 0.1*** 0.09 0.1*** 0.04 0.1*** 0.09 0.1*** 0.15 0.1***
Curvature 0.10 0.1*** 0.02 0.1*** 0.12 0.1*** 0.02 0.1*** 0.03 0.1*** 0.06 0.1 ***

(d) KPSS(1) test results
Notes: Rejection of null hypothesis at 1%, 5%, and 10% levels are denoted by
***, **, and * respectively.

The null hypothesis (H0) of the ADF test says, the time series has a unit root, so it is
non-stationary. This implies that the series follows a random walk or a trend. As per the
alternative hypothesis (Ha), the series does not have unit root, meaning it is stationary.
Therefore the series is mean-reverting and has a constant variance over time. On the
contrary, the H0 of the KPSS says, that the time series is stationary around a deterministic
trend, while Ha claims that the time series has a unit root, meaning it is non-stationary.
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Table A.6
Average connection count by types and grouped by countries during the
six subperiods - 750 days long window size

Whole Period DCB CALM1 GFC ESDC CALM2 C19

Australia
Level 1.3 0.7 1.2 1.6 1.1 1.7 0.9
Slope 1.2 0.1 0.5 3.6 1.4 1.2 0.8
Curvature 1.1 1.2 1.1 1.5 0.4 1.0 2.0
Cross Connections 8.1 5.0 6.3 11.2 9.1 8.8 8.0
All connections 11.8 6.9 9.0 18.0 12.0 12.8 11.7
Canada
Level 0.7 0.9 0.7 0.4 0.4 0.5 1.8
Slope 1.1 2.4 1.2 2.0 0.9 0.8 1.0
Curvature 1.2 1.2 1.3 1.9 1.2 1.0 0.9
Cross Connections 6.8 4.8 6.7 10.7 8.6 5.6 5.6
All connections 9.8 9.4 10 15.1 11.0 7.8 9.3
Switzerland
Level 0.8 0.6 0.6 2.8 0.6 0.3 1.7
Slope 0.9 0.2 0.9 2.2 1.0 0.4 1.5
Curvature 1.3 1.1 0.8 1.7 1.3 1.3 3.1
Cross Connections 7.4 2.4 5.0 15.1 6.8 6.6 11.8
All connections 10.5 4.4 7.2 21.8 9.8 8.7 18.1
Germany
Level 0.8 0.2 0.4 2.3 0.9 0.4 1.8
Slope 1.0 1.2 0.8 2.5 1.9 0.6 1.0
Curvature 0.7 0.1 0.6 2.0 0.4 0.5 0.7
Cross Connections 5.8 1.9 4.4 17.1 7.4 3.4 6.8
All connections 8.3 3.4 6.1 24.0 10.7 4.8 10.3
Spain
Level 0.8 0.6 0.2 2.3 1.7 0.5 1.3
Slope 0.9 0.9 0.5 1.8 1.6 0.9 1.4
Curvature 1.1 0.4 0.5 1.9 1.1 0.9 3.3
Cross Connections 5.8 3.5 2.8 11.3 8.2 5.1 10.5
All connections 8.6 5.5 4.0 17.4 12.5 7.4 16.4
France
Level 0.8 0.3 0.4 1.9 1.0 0.6 1.3
Slope 0.9 1.0 0.7 1.2 1.8 0.8 1.2
Curvature 1.0 0.9 0.8 1.1 1.2 0.9 1.5
Cross Connections 5.8 4.2 3.6 8.3 8.8 5.5 8.5
All connections 8.5 6.5 5.5 12.4 12.8 7.8 12.5
Great Britain
Level 0.5 0 0.3 1.0 0.7 0.5 0.4
Slope 0.8 0.4 0.4 2.4 1.4 0.5 1.0
Curvature 0.9 0.7 1.0 1.3 0.7 0.8 1.0
Cross Connections 4.7 3.9 3.9 8.6 5.9 3.9 5.4
All connections 6.9 4.9 5.5 13.4 8.7 5.8 7.8
Italy
Level 0.7 0.3 0.3 2.4 1.3 0.5 0.6
Slope 0.9 1.3 0.6 1.6 1.6 1 0.5
Curvature 0.9 0.4 0.9 1.5 0.9 0.7 0.8
Cross Connections 6.9 2.6 3.3 12.0 12.6 7.2 7.8
All connections 9.4 4.6 5.0 17.5 16.4 9.4 9.7
Japan
Level 0.7 0.2 0.4 0.9 0.6 1.0 1.4
Slope 0.7 1.2 0.8 0.6 0.7 0.7 0.4
Curvature 0.5 0.4 0.3 0.9 0.6 0.5 1.2
Cross Connections 4.9 3.9 4.0 3.8 4.4 5.3 7.6
All connections 6.9 5.7 5.4 6.2 6.3 7.5 10.6
South Korea
Level 0.8 1.7 0.6 1.3 0.8 0.6 1.9
Slope 1.0 1.9 0.6 2.3 1.3 0.6 1.9
Curvature 1.3 0.4 0.7 3.5 0.8 1.1 2.5
Cross Connections 6.7 6.7 4.6 16.7 7.1 4.8 10.1
All connections 9.8 10.8 6.4 23.9 10.1 7.1 16.4
The Netherlands
Level 0.6 0.0 0.4 1.6 0.5 0.4 1.2
Slope 0.7 0.1 0.5 1.6 1.1 0.5 1.0
Curvature 1.0 0.3 0.6 1.3 1.8 0.8 1.2
Cross Connections 4.5 2.2 3.0 9.0 5.5 3.8 6.8
All connections 6.8 2.6 4.4 13.4 8.9 5.6 10.2
USA
Level 1.3 1.5 1.1 3.5 0.9 1 1.2
Slope 1.0 2.0 1.1 1.7 1.9 0.6 0.7
Curvature 1.6 3.4 1.6 3.4 0.6 1.2 1.6
Cross Connections 6.7 6.0 6.2 15.6 5.6 4.5 8.9
All connections 10.6 12.9 10.0 24.1 9.0 7.2 12.4
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Table A.7
Net connections through different subperiods, aggregated by countries

DCB CALM1 GFC ESDC CALM2 C19
County Net County Net County Net County Net County Net County Net

KOR 32 USA 48 USA 37 USA 41 USA 42 USA 45
USA 19 CAN 24 CAN 22 KOR 16 CAN 38 CAN 43
CAN 18 KOR 24 FRA 8 ITA 12 DEU 11 ITA 26
FRA 7 CHE 5 DEU 7 NLD 8 ITA 11 DEU 2
GBR 4 DEU 4 KOR 5 CAN 6 NLD 10 FRA 1
ITA 1 FRA 3 NLD -1 FRA 6 FRA 8 JPN 0
JPN 0 ITA 3 ESP -2 DEU 3 ESP 7 ESP -1
ESP -2 NLD 2 GBR -2 GBR 2 KOR -1 GBR -11
DEU -5 ESP -2 ITA -3 ESP -1 CHE -2 NLD -13
CHE -19 GBR -4 AUS -16 CHE -4 GBR -4 CHE -19
AUS -24 JPN -49 CHE -20 JPN -40 JPN -48 KOR -31
NLD -31 AUS -58 JPN -35 AUS -49 AUS -72 AUS -42

A.2 Robostness Checks

A.2.1 Comparing Granger causality and Toda-Yamamoto causality

In the network-related literature (CoVaR, D-Y), it is common to corroborate the results
with a Granger causality model. Zhang (2017), Malik and Umar (2019) and Umar et al.
(2021d) compare their Diebold-Yilmaz total spillover index to a Granger causality-based
network connectedness. Comparing connection numbers is convenient for us because the
T-Y model is a modified Granger causality test. We run the two models with the same
parameters (the confidence level is 1%, the lag selection is based on AIC and the window
size is 750). The sum of connections for the two models for each day is shown in Fig.
A.1.
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Fig. A.1. Summarized connection numbers during the study period, estimated by dynamic
Toda-Yamamoto model and dynamic Granger causality model

Notes: Window size of 750 days and a lag determined by the AIC. The green area denotes the
Dotcom Bubble, the red-shaded shows the Global Financial Crisis, the blue field represents the
European Sovereign Debt Crisis, and the yellow covers the Covid-19 period. The orange line
indicates the number of significant connections resulting from the Granger causality model, while
the violet one represents the number of significant connections resulting from the T-Y causality
model.

When evidence of a cointegrating relation is shown, the Granger representation theorem
(Granger (1969), Granger (1988)) suggests causation at least in one direction. We demon-
strate how strongly cointegrated our time series are; thus, many spurious connections are
to be expected when applying the Granger causality method. By using the T-Y causality
test we obtain approximately one-quarter of the connections resulting from the Granger
approach.
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A.2.2 Explanatory tables and plots for the robustness checks

Table A.8
Average total connection count by types during the sub-periods

Whole period DCB CALM1 GFC ESDC CALM2 C19

L+S+C 24.0 31.3 19.7 39.3 19.8 23.1 27.7
Cross connections 55.9 57.5 47.0 84.7 55.0 52.0 72.6
All connections 79.9 88.7 66.7 124.0 74.7 75.1 100.4

(a) Average total connection count by types during the six sub-periods - 500 days long
window size

Whole period DCB CALM1 GFC ESDC CALM2 C19

L+S+C 32.4 34.2 24.3 67.4 35.1 25.9 44.9
Cross connections 75.5 43.4 54.3 139.7 93.1 65.9 100.3
All connections 108.0 77.6 78.6 207.1 128.2 91.8 145.3

(b) Average total connection count by types during the six sub-periods - 750 days long
window size

Whole period CALM1 GFC ESDC CALM2 C19

L+S+C 38.6 26.3 81.4 53.5 30.0 45.0
Cross connections 88.1 56.9 178.4 123.5 72.3 107.6
All connections 126.8 83.1 259.7 177.0 102.4 152.6

(c) Average total connection count by types during the five sub-periods - 1000 days long
window size
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(a) 500 days long rolling window (b) 1000 days long rolling window

Fig. A.2. Summarized connection ratios during the study period, estimated by dynamic
Toda-Yamamoto model

Notes: Window sizes of 500 and 1000 days, lag determined by the AIC. The green area denotes
the Dotcom Bubble, the red-shaded shows the Global Financial Crisis, the blue field represents
the European Sovereign Debt Crisis, and the yellow covers the Covid-19 period. The purple line
indicates the ratio of total significant connections, the cyan represents the summarized edges in
the three subnetworks, and the gray line is the time series of the cross-connection ratios, compared
to the maximum number of possible edges.
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Fig. A.3. Time series of USA Level Slope and Curvature factor net connections, estimated
by dynamic Toda-Yamamoto model

Notes: Window size of 750 days and a lag determined by the AIC, smoothed by cubic spline
method. The green area denotes the Dotcom Bubble, the red-shaded shows the Global Financial
Crisis, the blue field represents the European Sovereign Debt Crisis, and the yellow one covers the
Covid-19 period. The red line indicates the number of significant net Level connections, the blue
line represents the number of significant net Slope connections and the green line stands for the
number of significant net Curvature connections.
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B Supplementary material for Chapter IV

B.1 Realized volatilities

Fig. B.1. Realized volatilities of the firms within Integrated Oil and Gas sector

Fig. B.2. Realized volatilities of the firms within the upstream sector
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Fig. B.3. Realized volatilities of the firms within the downstream sector

Fig. B.4. Realized volatilities of the firms within midstream sector
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Fig. B.5. Realized volatilities of Gasoil, FTSEALL, Natural Gas and Brent

B.2 Volatility sillover

Fig. B.6. Net Spillover of the firms within the Integrated Oil and Gas sector

164



Fig. B.7. Net Spillover of the firms within the upstream sector

Fig. B.8. Net Spillover of the firms within the downstream sector
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Fig. B.9. Net Spillover of the firms within the midstream sector

Fig. B.10. Net Spillover of Gasoil, FTSEALL, Natural Gas and Brent

166



Ta
bl

e
B

.1
Vo

la
til

ity
sp

ill
ov

er
in

de
x

of
th

e
co

rp
or

at
io

ns
an

d
ex

te
rn

al
as

se
ts

SHEL

TTEF

EQNR

GAZP

ROSN

ENI

LKOH

SIBN

SNGS

TATN

NVTK

LUNE

HBR

DNO

TLW

MAUP

SQZ

CNE

TETY

PHARP

BP

NESTE

REP

OMVV

GALP

PKN

MOLB

ROSNP

RUBF

LTS

TENR

SRG

ENAG

VOPA

VLLP

SUBC

SBMO

TRNF

EUAV

FLUX

Gasoil

FTSEALL

NG

Brent

From

SH
E

L
7.

1
3.

5
2.

4
0.

7
0.

9
3.

3
0.

9
0.

7
0.

8
1.

1
0.

9
4.

3
9.

3
4.

6
6.

9
2.

6
1.

1
3.

4
2

2.
4

4.
6

1.
1

3.
6

2.
5

2.
9

0.
8

0.
8

0.
7

0.
7

0.
9

3.
9

0.
5

0.
5

0.
6

4.
4

3.
6

2.
6

0.
5

1.
2

0.
1

1.
6

0.
6

0.
6

2.
2

92
.9

T
T

E
F

3.
3

6.
5

2.
4

1.
1

1.
5

4.
2

1.
3

1
1.

3
1.

8
1.

4
3.

5
7.

3
4.

8
5.

6
2.

5
1.

1
3.

1
1.

9
2

3.
5

1.
3

4.
3

2.
9

3
1

1
0.

8
0.

7
1

4.
1

0.
6

0.
7

0.
6

4.
3

3.
5

2.
8

0.
9

1.
2

0.
1

1.
1

0.
7

0.
5

1.
7

93
.5

E
Q

N
R

2.
3

2.
2

9.
2

1.
2

1.
6

2.
1

1.
1

1
1.

4
1.

8
1.

5
4.

4
7.

5
5.

9
4.

8
2.

8
1.

7
2.

7
2.

4
1.

5
2.

3
1.

2
2.

6
2.

3
2.

6
1

0.
8

0.
7

0.
6

0.
9

3.
6

0.
4

0.
4

0.
8

4.
6

5.
7

2.
8

1.
2

1.
5

0.
1

1.
5

0.
5

0.
8

2
90

.8
G

A
Z

P
0.

5
0.

7
1

19
.1

9.
7

0.
7

6.
7

4.
5

7.
1

7.
8

6.
1

1.
9

1.
3

2.
6

0.
9

1.
1

0.
8

1
1.

5
0.

6
0.

6
0.

8
0.

9
1.

5
1.

1
0.

8
0.

7
0.

9
0.

3
0.

8
1.

8
0.

1
0.

2
0.

5
1.

8
2

1.
4

5.
5

1.
1

0.
1

0.
3

0.
4

0.
6

0.
4

80
.9

R
O

SN
0.

6
0.

8
1.

2
8.

1
18

.4
0.

8
6.

9
4.

6
7.

7
8.

5
6.

2
1.

3
2.

1
2.

5
1.

2
1

0.
7

1.
4

1.
4

0.
7

0.
7

0.
6

0.
9

1.
5

1
0.

6
0.

6
0.

8
0.

3
0.

7
1.

6
0.

2
0.

2
0.

4
1.

9
2.

1
1.

2
5.

9
0.

9
0.

1
0.

4
0.

4
0.

4
0.

7
81

.6
E

N
I

3
3.

9
2.

2
1.

1
1.

4
8.

1
1

0.
8

1.
1

1.
7

1.
2

3.
2

8.
3

4.
5

5.
3

2.
7

1.
2

3.
1

1.
9

2
3

1.
3

4.
3

2.
7

3
1

0.
8

0.
7

0.
7

1
4.

6
0.

8
0.

7
0.

6
4.

5
3.

3
3

0.
9

1.
4

0.
1

1.
1

0.
7

0.
5

1.
8

91
.9

L
K

O
H

0.
8

0.
9

1.
2

7.
3

9.
2

0.
9

13
.7

4.
5

7.
4

8
5.

7
2

2.
5

3.
2

1.
8

1.
2

0.
8

1.
6

1.
4

0.
7

0.
9

0.
7

1
1.

7
1.

2
0.

6
0.

7
0.

9
0.

4
0.

7
1.

9
0.

2
0.

3
0.

5
2.

1
2.

1
1.

4
4.

8
0.

9
0.

1
0.

6
0.

5
0.

4
1

86
.3

SI
B

N
0.

6
0.

7
1.

2
6.

9
8.

2
0.

8
5.

8
16

.4
6.

6
7.

4
5.

5
2.

7
1.

9
2.

8
1.

1
1.

1
0.

8
1.

4
1.

4
0.

7
0.

7
0.

7
0.

8
1.

7
1.

1
0.

8
0.

9
1.

3
0.

3
1

1.
9

0.
2

0.
3

0.
6

1.
6

2.
3

1.
4

5
1.

1
0.

1
0.

5
0.

5
0.

5
0.

9
83

.6
SN

G
S

0.
5

0.
7

0.
9

6.
2

8.
4

0.
7

5.
8

3.
9

21
7.

4
5.

5
7.

3
1.

2
2.

5
1.

5
0.

9
1

1.
2

1.
2

0.
8

0.
6

0.
7

0.
8

1.
2

1
0.

6
0.

6
0.

7
0.

3
0.

7
1.

5
0.

2
0.

3
0.

4
1.

3
1.

7
1.

2
5

0.
9

0.
1

0.
3

0.
4

0.
5

0.
5

79
TA

T
N

0.
7

0.
9

1.
2

5.
9

7.
7

1
5.

8
3.

8
6.

6
20

.8
5.

8
1.

7
2.

2
3.

3
1.

6
1.

1
1.

1
1.

1
1.

6
0.

8
0.

7
0.

7
1

1.
7

1.
2

0.
8

0.
8

0.
9

0.
3

0.
7

2
0.

2
0.

3
0.

5
1.

9
2.

4
1.

4
4.

9
1

0.
1

0.
4

0.
4

0.
5

0.
9

79
.2

N
V

T
K

0.
6

0.
7

1
6.

3
7.

6
0.

7
5.

2
3.

7
6.

4
7.

4
22

.2
1.

4
1.

8
2.

6
1.

2
1.

1
0.

9
1.

3
1.

5
0.

8
0.

6
0.

8
1

1.
9

1.
2

1
0.

7
0.

8
0.

4
0.

9
1.

8
0.

2
0.

3
0.

5
1.

9
2.

2
1.

4
4.

5
1.

2
0.

1
0.

4
0.

4
0.

7
0.

7
77

.8
L

U
N

E
0.

1
0.

1
0.

1
0.

1
0

0.
1

0
0

0
0

0.
1

97
.3

0.
2

0.
2

0.
1

0.
1

0
0.

1
0.

1
0.

1
0.

1
0.

1
0.

1
0.

1
0.

1
0.

1
0

0
0

0.
1

0.
1

0
0

0
0.

1
0.

1
0.

1
0

0.
1

0
0

0
0.

1
0

2.
7

H
B

R
1.

3
1.

1
1.

4
0.

2
0.

4
1.

4
0.

4
0.

2
0.

2
0.

4
0.

2
1.

5
47

.6
3.

6
8.

4
1.

6
1

2.
9

1
2.

1
1.

4
0.

4
1.

4
1

1.
4

0.
5

0.
4

0.
3

0.
4

0.
6

2
0.

4
0.

3
0.

2
4.

2
2.

1
1.

4
0.

2
0.

8
0.

1
1.

2
0.

2
0.

5
2.

1
52

.4
D

N
O

1
1.

1
1.

7
0.

9
1.

1
1.

2
0.

8
0.

7
1.

1
1.

1
1

2.
8

5.
4

41
.5

4
1.

7
1.

8
2.

2
2.

1
1.

2
1.

1
0.

8
1.

5
1.

2
1.

7
0.

8
0.

6
0.

5
0.

3
0.

9
2.

2
0.

3
0.

3
0.

5
2.

6
2.

9
1.

8
1.

1
1.

3
0.

1
1

0.
4

0.
6

1.
4

58
.5

T
LW

1.
1

1
1

0.
2

0.
3

1
0.

3
0.

2
0.

3
0.

3
0.

2
1.

5
9.

5
3.

2
54

.7
1.

4
0.

8
1.

9
0.

9
1.

6
1.

2
0.

5
1.

3
0.

8
1.

1
0.

4
0.

3
0.

2
0.

3
0.

5
1.

6
0.

3
0.

2
0.

2
2.

8
1.

7
1.

1
0.

2
0.

6
0.

1
1.

1
0.

2
0.

5
1.

7
45

.3
M

A
U

P
1.

7
1.

6
1.

9
1

1
1.

8
0.

8
0.

6
0.

9
1

0.
9

2.
7

7.
1

4.
3

5.
1

20
.9

2.
3

2.
1

2
2.

1
1.

9
1.

3
2.

9
1.

6
2.

5
1.

3
0.

6
0.

6
0.

6
1.

2
3.

2
0.

4
0.

4
0.

7
6.

2
3.

2
2.

7
0.

8
1.

9
0.

1
1.

4
0.

5
1.

1
1.

6
79

.2
SQ

Z
0.

4
0.

3
0.

5
0.

5
0.

4
0.

3
0.

3
0.

2
0.

5
0.

6
0.

6
0.

5
1.

7
1.

5
1.

4
0.

7
74

0.
7

0.
9

0.
9

0.
5

0.
6

0.
6

0.
5

0.
7

0.
7

0.
3

0.
1

0.
2

0.
7

0.
8

0.
2

0.
2

0.
4

1.
3

1
0.

8
0.

6
0.

8
0.

1
0.

4
0.

1
0.

9
0.

4
26

C
N

E
1.

7
1.

6
1.

7
0.

9
1.

4
1.

7
1

0.
7

1.
1

1.
2

1
2.

3
10

.9
5.

2
6.

9
2

1.
5

21
.2

2
2.

2
1.

8
1

2
1.

6
2

0.
8

0.
8

0.
7

0.
4

0.
9

3
0.

5
0.

4
0.

5
3.

9
2.

9
2.

5
0.

8
1.

4
0.

1
1.

1
0.

5
0.

8
1.

9
78

.8
T

E
T

Y
1.

1
1

1.
4

1
1

1
0.

7
0.

7
1

1.
3

1.
2

2.
8

3.
1

4.
7

2.
8

1.
8

2.
4

1.
9

40
1.

3
1.

1
1.

1
1.

4
1.

5
1.

7
1.

3
0.

7
0.

6
0.

5
1.

3
2.

2
0.

4
0.

3
0.

7
2.

3
2.

3
1.

7
1.

5
1.

6
0.

1
1

0.
3

1.
4

1.
1

60
.1

PH
A

R
P

1.
6

1.
4

1.
1

0.
4

0.
7

1.
4

0.
6

0.
5

0.
7

0.
7

0.
7

2.
5

9.
5

4.
2

7.
2

1.
9

2
2.

8
1.

3
30

.8
1.

7
0.

7
1.

7
1.

3
1.

7
1

0.
7

0.
5

0.
6

1
2.

4
0.

6
0.

4
0.

4
3.

3
2.

1
1.

7
0.

5
1.

1
0.

1
1.

5
0.

4
0.

9
2.

1
69

.2
B

P
4.

3
3.

4
2.

4
0.

8
1.

1
3.

1
1

0.
8

1
1.

2
1.

1
3.

2
8.

9
3.

9
6.

7
2.

6
1.

6
3.

4
2

2.
3

9.
7

1
3.

7
2.

4
3

0.
8

0.
8

0.
7

0.
7

1
3.

7
0.

5
0.

5
0.

5
4.

4
3.

3
2.

4
0.

6
1.

1
0.

1
1.

4
0.

6
0.

8
1.

9
90

.3
N

E
ST

E
1.

3
1.

5
1.

5
1.

4
1.

5
1.

5
1

0.
9

1.
4

1.
7

1.
7

7.
3

3.
7

3.
9

3.
4

2.
1

2.
1

2.
2

2.
2

1.
6

1.
5

20
.5

2.
3

2.
1

2.
1

1.
6

0.
8

0.
6

0.
7

1.
7

3
0.

7
0.

6
0.

8
4.

1
2.

7
2.

5
1.

1
2.

2
0.

2
0.

9
0.

6
1.

5
1.

2
79

.5
R

E
P

2.
8

3.
4

2.
2

0.
8

1
3.

7
0.

8
0.

5
0.

8
1.

2
1.

1
2

7.
4

4
5.

6
3.

3
1.

6
2.

6
1.

7
2.

1
3

1.
3

12
2.

5
3.

4
1.

2
0.

8
0.

6
0.

7
1.

3
4

0.
6

0.
8

0.
6

5.
3

3.
3

3.
1

0.
6

1.
6

0.
1

1.
4

0.
7

0.
8

1.
7

88
O

M
V

V
2

2.
3

1.
9

1.
5

1.
8

2.
3

1.
6

1.
3

1.
5

2.
2

2
2.

6
6.

3
4.

4
5.

2
2.

3
1.

1
2.

6
2.

2
1.

8
2

1.
5

2.
9

14
2.

6
1.

3
1.

2
1

0.
8

1.
4

3.
7

0.
5

0.
6

0.
7

4.
3

3.
5

2.
3

1.
3

1.
4

0.
1

1.
2

0.
7

0.
8

1.
7

86
G

A
L

P
2

2.
2

2.
2

1
1.

2
2.

4
0.

9
0.

7
1.

1
1.

4
1.

2
3.

9
6.

6
4.

6
5.

1
2.

8
2.

1
2.

6
1.

9
1.

9
2.

2
1.

4
3.

4
2.

4
13

.4
1.

3
0.

9
0.

8
0.

7
1.

3
4.

2
0.

5
0.

6
0.

7
4.

6
3.

4
3.

2
1.

2
1.

6
0.

1
1.

2
0.

6
1

1.
6

86
.6

PK
N

1.
1

1.
2

1.
3

1.
6

1.
5

1.
2

1
1.

1
1.

6
1.

9
1.

8
3

3.
8

4.
3

2.
5

2.
1

3
1.

7
3.

1
1.

8
1.

2
1.

6
2

2
2.

1
18

.9
1.

4
0.

9
0.

8
5.

7
3.

1
0.

5
0.

6
0.

9
4.

3
2.

7
1.

9
1.

5
2

0.
2

1.
2

0.
5

2.
1

1.
3

81
.1

M
O

L
B

1.
1

1.
3

1.
6

2.
2

2.
5

1.
3

1.
6

1.
9

2.
2

2.
3

2.
5

2
3.

6
5.

2
2.

7
2

2.
8

2.
1

3.
2

1.
5

1.
3

1.
4

2.
1

2.
5

2.
2

2.
1

16
1.

9
0.

7
1.

8
3.

4
0.

5
0.

7
1

3.
1

3
2.

2
2.

4
2.

2
0.

2
1

0.
8

1.
1

1.
3

84
R

O
SN

P
1

1
1.

6
2.

7
2.

5
1.

2
1.

9
1.

8
2.

1
2

2.
1

2.
4

3.
9

5.
3

1.
9

2.
1

1.
3

2.
2

2.
6

1.
4

1.
3

1.
1

1.
8

2.
2

1.
8

1.
4

1.
6

21
.5

0.
7

1.
4

3.
4

0.
3

0.
5

0.
9

2.
9

3
2.

4
2.

8
2.

1
0.

2
0.

9
0.

7
1.

2
1.

2
78

.6
R

U
B

F
1.

6
1.

8
1.

8
0.

9
1.

2
1.

8
1

0.
8

1.
1

1.
2

1.
4

5.
3

7.
7

4.
1

5.
3

2.
3

2.
1

2.
7

2.
3

2.
4

1.
8

1.
5

2.
4

2.
3

2.
3

1.
5

0.
9

0.
8

12
.4

1.
8

2.
9

0.
9

0.
9

0.
9

4.
6

2.
8

2.
3

0.
9

1.
9

0.
3

1.
8

0.
7

1.
2

1.
8

87
.6

LT
S

1
1.

2
1.

1
1.

2
1.

2
1.

2
0.

8
1.

2
1.

3
1.

6
1.

5
2.

8
4.

2
3.

8
3.

4
1.

5
2.

9
2

2.
5

1.
8

1.
2

1.
7

2
1.

9
1.

9
5.

9
1

0.
7

0.
7

23
.5

2.
5

0.
7

0.
7

0.
8

4.
1

2.
5

1.
7

1.
2

2
0.

2
1.

1
0.

4
2.

3
1.

3
76

.5
T

E
N

R
2

2.
1

2
1.

3
1.

2
2.

6
0.

9
0.

8
1.

1
1.

4
1

3.
6

7
4.

3
4.

9
2.

7
1.

6
2.

7
2

1.
9

2.
1

1.
4

2.
9

2.
2

3
1.

2
0.

7
1

0.
5

1.
1

14
.4

0.
4

0.
5

0.
7

7
3.

8
3

1
1.

7
0.

1
1.

2
0.

6
1

1.
6

85
.6

SR
G

1.
5

1.
8

1.
7

0.
6

0.
9

3.
1

0.
7

0.
5

0.
9

1.
2

0.
9

3.
5

12
.2

4.
5

5.
5

1.
7

2.
3

3.
5

1.
9

2.
6

1.
7

1.
8

2.
6

1.
8

2.
1

1.
4

0.
8

0.
5

1.
2

1.
9

2.
6

10
.2

1.
8

0.
7

3.
9

2.
2

2.
9

0.
7

2.
1

0.
3

1.
4

0.
5

1.
5

2.
3

89
.8

E
N

A
G

1.
4

1.
8

1.
6

1.
4

1.
6

2.
4

1.
1

1
1.

7
1.

5
1.

6
3.

5
7.

6
4.

3
3.

9
1.

9
2.

7
3

2.
4

1.
9

1.
7

1.
5

3.
2

1.
9

2.
7

1.
4

1
1.

1
1

2.
1

3.
5

1.
6

10
.3

1
4

2.
5

3.
1

1.
5

2.
2

0.
2

1
0.

8
1.

2
1.

5
89

.7
V

O
PA

1.
3

1.
4

1.
8

1.
6

1.
6

1.
6

1.
2

1.
3

1.
6

2.
1

1.
6

4.
7

4.
4

4.
6

2.
9

2.
8

2.
7

2.
1

3
1.

6
1.

3
1.

5
2.

2
1.

7
2.

1
1.

5
0.

9
0.

8
0.

8
1.

6
3.

2
0.

5
0.

7
15

.6
4

3.
7

2.
8

1.
8

2.
4

0.
2

1.
4

0.
7

1.
2

1.
7

84
.4

V
L

L
P

1.
1

1.
2

1.
5

0.
8

0.
8

1.
4

0.
5

0.
4

0.
7

0.
9

0.
8

1.
7

7.
4

3.
4

5
2.

9
1.

6
1.

8
1.

2
1.

5
1.

2
0.

9
2.

2
1.

3
1.

8
1.

1
0.

5
0.

4
0.

5
1.

1
3.

8
0.

3
0.

3
0.

5
36

.4
2.

9
2.

1
0.

6
1.

4
0.

1
0.

9
0.

3
1.

7
1.

1
63

.6
SU

B
C

1.
6

1.
8

2.
9

1.
3

1.
6

1.
6

1.
2

0.
9

1.
3

1.
9

1.
4

3.
3

5.
8

5.
3

4.
8

2.
5

1.
5

2.
4

1.
9

1.
5

1.
6

1.
2

2.
1

2.
2

2.
2

1.
2

1
0.

9
0.

5
1

3.
7

0.
4

0.
5

0.
9

4.
9

19
.5

2.
9

1.
4

1.
4

0.
1

1.
2

0.
6

0.
9

1.
8

80
.5

SB
M

O
1.

5
1.

8
1.

8
1.

1
1.

3
1.

9
0.

9
0.

8
1.

4
1.

5
1.

2
3.

1
5.

2
4.

1
3.

7
2.

4
2

2.
9

1.
8

1.
6

1.
5

1.
4

2.
6

1.
6

2.
7

1.
2

0.
7

0.
7

0.
5

1
3.

6
0.

5
0.

6
0.

9
4.

2
4.

1
23

.7
1.

1
2

0.
2

0.
7

0.
5

0.
9

1.
2

76
.3

T
R

N
F

0.
4

0.
5

1
5.

8
7.

3
0.

6
4.

4
3.

3
5.

8
6.

4
4.

7
1.

4
1.

2
2.

6
1

0.
9

1.
2

0.
9

2.
3

0.
6

0.
5

0.
7

0.
8

1.
2

1.
1

0.
7

0.
6

1
0.

2
0.

8
1.

7
0.

1
0.

2
0.

5
1.

3
2.

1
1.

1
30

.2
1.

2
0

0.
3

0.
4

0.
6

0.
5

69
.8

E
U

AV
1.

1
1

1.
5

1.
3

1.
1

1.
2

0.
7

0.
7

1.
2

1.
4

1.
5

2
4.

1
4

2.
9

2.
4

3.
4

2
2.

4
1.

3
1.

2
1.

9
2.

3
1.

6
1.

9
1.

6
0.

9
0.

6
0.

6
1.

9
2.

6
0.

6
0.

6
1

3.
8

2.
5

2.
6

1.
3

28
.6

0.
1

0.
9

0.
5

2.
2

1.
3

71
.4

FL
U

X
1

1
1.

3
1

1.
1

1.
1

0.
8

1
1.

5
1.

3
1.

4
2.

2
5

4.
2

3.
7

2.
1

4.
6

2.
5

2.
8

2
1.

5
1.

5
2.

2
1.

7
2

2.
1

1
1

0.
6

2.
4

2.
3

0.
9

0.
9

1
4

2.
1

3
1.

2
2.

4
18

1.
3

0.
4

3.
8

1.
3

82
G

as
oi

l
1.

8
1.

1
1.

8
0.

6
0.

7
1.

3
0.

6
0.

5
0.

7
0.

8
0.

7
2.

3
7.

9
4.

3
5.

5
2.

5
1.

6
1.

5
2

1.
9

1.
8

0.
9

1.
9

1.
5

1.
9

1.
1

0.
7

0.
6

0.
7

1
2.

6
0.

3
0.

3
0.

9
4

2.
8

1.
6

1
1.

2
0.

1
19

0.
5

1.
5

12
.4

81
FT

SE
A

L
L

1.
9

2.
5

1.
8

1.
9

2.
3

2.
7

1.
8

1.
6

2.
1

2.
3

2.
2

3.
8

5.
6

5.
2

4
2.

6
1.

4
3.

3
2.

1
2

2
1.

8
3.

3
2.

5
2.

6
1.

2
1.

4
1.

3
0.

8
1.

2
4.

3
0.

6
0.

9
1

4.
1

4
2.

9
1.

5
2

0.
1

1.
6

3.
1

0.
5

2.
4

96
.9

N
G

0.
5

0.
4

0.
8

0.
8

0.
6

0.
5

0.
4

0.
4

0.
9

0.
9

0.
9

2.
5

2.
7

3.
4

1.
9

1.
5

2.
1

1.
2

1.
8

1.
1

0.
7

1
1

0.
8

1
1.

2
0.

4
0.

3
0.

4
1.

3
1.

4
0.

3
0.

3
0.

5
2.

7
1.

4
1.

1
1

1.
2

0.
2

1
0.

2
54

.8
1.

1
45

.2
B

re
nt

1.
9

1.
4

2
0.

6
0.

7
1.

6
0.

8
0.

5
0.

8
0.

9
0.

8
2.

6
10

4.
7

5.
7

2.
2

1.
5

2.
1

1.
6

2
1.

8
0.

8
1.

9
1.

5
1.

9
0.

8
0.

7
0.

7
0.

6
0.

8
2.

7
0.

4
0.

4
0.

7
3.

8
3.

2
2

0.
8

1.
2

0.
1

9.
4

0.
5

1.
2

17
.9

82
.1

To
59

.8
62

.8
66

.3
84

.2
10

0.
6

68
.2

72
.8

56
.9

88
10

0.
7

82
.6

12
4.

7
23

4.
9

16
8.

2
16

4.
7

83
.2

73
.5

91
.6

81
66

.5
64

.8
46

.6
87

.6
74

.7
82

50
.5

33
.3

31
.3

23
.8

52
.9

11
7.

7
19

20
.9

27
.5

15
0.

2
11

6.
4

89
.2

72
.8

62
.5

5.
3

51
.3

20
.8

43
.6

70
.1

76
N

et
-3

3.
1

-3
0.

7
-2

4.
5

3.
3

19
-2

3.
7

-1
3.

5
-2

6.
7

9
21

.5
4.

8
12

2.
1

18
2.

5
10

9.
7

11
9.

5
4.

1
47

.6
12

.8
21

-2
.7

-2
5.

5
-3

2.
8

-0
.4

-1
1.

3
-4

.6
-3

0.
6

-5
0.

7
-4

7.
3

-6
3.

9
-2

3.
6

32
-7

0.
8

-6
8.

8
-5

6.
9

86
.6

35
.9

12
.9

3.
1

-8
.9

-7
6.

7
-2

9.
7

-7
6.

1
-1

.7
-1

2

167



B.3 Robustness Tests

B.3.1 GICS Classification

Table B.2
Summary of the sample firms by industry segments of Upstream, Midstream, Down-
stream and IOG, based on the GICS industry classification

Ticker Company Name Exchange Industry group Capitalization
Integrated Oil and Gas
SHEL Shell UK Integrated Oil and Gas 205 631
TTEF TotalEnergies France Integrated Oil and Gas 141 241
EQNR Equinor Norway Integrated Oil and Gas 113 235
GAZP Gazprom Russia Integrated Oil and Gas 103 229
BP BP Russia Integrated Oil and Gas 97 670
ROSN Rosneft Russia Integrated Oil and Gas 58 363
ENI Eni Italy Integrated Oil and Gas 50 832
NVTK Novatek Russia Integrated Oil and Gas 40 117
Sum 759 486

Upstream
TATN Tatneft Russia Oil & Gas Exploration and Production 40 117
HBR Harbour Energy UK Oil & Gas Exploration and Production 4 106
DNO DNO Norway Oil & Gas Exploration and Production 1 680
MAUP Maurel and Prom France Oil & Gas Exploration and Production 1 002
TLW Tullow Oil UK Oil & Gas Exploration and Production 901
SQZ Serica UK Oil & Gas Exploration and Production 801
CNE Capricorn Energy UK Oil & Gas Exploration and Production 743
Sum 21 935

Midstream
VOPA Vopak Netherlands Oil & Gas Transportation Services 3 306
TRNF Transneft Russia Oil & Gas Transportation Services 2 723
EUAV Euronav Belgium Oil & Gas Transportation Services 2 691
TRMDa Torm Denmark Oil & Gas Transportation Services 1 105
EXMR Exmar Belgium Oil & Gas Transportation Services 558
FLUX Fluxys Belgium Belgium Oil & Gas Transportation Services 359
CCORb Concordia Sweden Oil & Gas Transportation Services 25
Sum 10 767

Downstream
NESTE Neste Finland Oil & Gas Refining and Marketing 32 991
PKN PKN Orlen Poland Oil & Gas Refining and Marketing 6 723
VBKG Verbio VB Germany Oil & Gas Refining and Marketing 2 935
MORr Motor Oil Hellas Greece Oil & Gas Refining and Marketing 1 972
HEPr HELLENiQ Greece Oil & Gas Refining and Marketing 1 895
CE2G CorpEnergies Germany Oil & Gas Refining and Marketing 1 101
ESSF Esso Societe France Oil & Gas Refining and Marketing 784
Sum 48 401

Note: Market capitalization is expressed in million C.

168



Fig. B.11. Static, full-sample volatility interconnectedness network [According to GICS
classification]

Note: An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow indicates the industry segment of the asset that originates from. Thinner lines represent the
strongest 5% of connections, while thicker lines show the uppermost 1% of connections. For the
figure, we use Lag=3 and H=10 model inputs.
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(a) Distribution of imported volatility from the various energy sectors and commodities,
over times

(b) Distribution of emitted volatility from the various energy sectors and commodities, over
time

Fig. B.12. Distribution of imported and emitted volatility over time

Note: Panel (a) displays the distribution of imported volatility over time, while Panel (b) shows
the distribution of emitted volatility over time. For both figures, in the model input, we use Lag=3
and H=10, with a window size of 250 days and we display the strongest 5% of edges. [According
to GICS classification]
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B.3.2 Conditional Volatility

The volatility of each asset is calculated based on the variance equation of a GARCH(1,1)
model. The variance equation models the conditional variance (σ2) of the series as a
function of past squared residuals and past conditional variances:

σ2
t = ω + αε2t−1 + βσ2

t−1 (B.1)

where σ2
t is the conditional variance of the series at time t, ω is the constant term, αε2t−1

is the ARCH term, representing the effect of past squared residuals (ε2t−1) on the currenct
conditional variance. Finally βσ2

t−1 is the GARCH term, representing the effect of past
conditional variances (σ2

t−1) on the current conditional varaince.
The GARCH(1,1) model is widely used for asset volatility assumption due to its sim-
plicity, flexibility, and ability to capture volatility clustering. It effectively models the
persistence of volatility using few parameters, ensuring mean reversion and adaptability
to various financial data. The model’s ease of implementation and support for heavy-
tailed residuals make it a robust choice for forecasting asset volatility across different
asset classes.
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Fig. B.13. Realized volatilities of the firms within Integrated Oil and Gas sector

Fig. B.14. Conditional volatilities of the firms within the upstream sector
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Fig. B.15. Conditional volatilities of the firms within the downstream sector

Fig. B.16. Conditional volatilities of the firms within midstream sector
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Fig. B.17. Conditional volatilities of Gasoil, FTSEALL, Natural Gas and Brent

Fig. B.18. Static, full-sample volatility interconnectedness network, based on conditional
volatilities

Note: An arrow between two nodes indicates the direction of the spillover, and the color of the
arrow indicates the industry segment of the asset that originates from. Thinner lines represent the
strongest 5% of connections, while thicker lines show the uppermost 1% of connections. For the
figure, we use Lag=3 and H=10 model inputs.
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(a) Distribution of imported volatility from the various energy sectors and commodities,
over times

(b) Distribution of emitted volatility from the various energy sectors and commodities, over
time

Fig. B.19. Distribution of imported and emitted volatility over time, based on conditional
volatilites

Note: Panel (a) displays the distribution of imported volatility over time, while Panel (b) shows
the distribution of emitted volatility over time. For both figures, in the model input, we use Lag=3
and H=10, with a window size of 250 days and we display the strongest 5% of edges.
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C Supplementary material for Chapter V

C.1 The two-way fixed effect panel regression model

The conventional two-way fixed effect panel regression (Allison (2009); Angrist and Pis-
chke (2009); Baltagi and Baltagi (2008); Wooldridge (2010)) is well-known and often
used in economic and social science research. It is called ”two-way” because it includes
fixed effects for two different dimensions: one for the cross-sectional dimension and one
for the time dimension. The specification of a two-way fixed effect panel regression model
is as follows:

Yit = α + βXit + γi + λt + εit (C.1)

where Yit is the dependent variable for entity i at time t. Xit is a vector of independent
variables for entity i at time t. α is the intercept term and β is a vector of coefficients for
the independent variables. γi is fixed effect for the cross-sectional dimension. λt is the
fixed effect for the time dimension. εit is the error term, which captures any remaining
variation not explained by the independent variables and fixed effects. The fixed effects
γi and λt control for unobserved factors that vary across entities and time periods, respec-
tively, allowing you to focus on the relationship between the independent variables and
the dependent variable while accounting for these potential confounding factors.
The standard assumptions of ordinary least squares (OLS) regression, such as independent
and identically distributed (iid) errors and homoskedasticity, often do not hold in panel
regression, particularly in finance research. Petersen (2008) extensively discussed various
fixed effect models and the treatment of standard errors in his seminal paper. Fixed effects
(FE) models are favored in finance studies as they absorb non-invariant firm and time
dimensions, thereby addressing the issue of omitted variable bias (OVB) due to the lack
of confounders.
Petersen (2008) also delves into the handling of standard errors in fixed effect models.
He introduced two-way fixed effect and time and cross-section standard error clustering
solutions. However, despite their effectiveness in addressing certain issues, these methods
can be computationally inefficient for large datasets.
Given the computational challenges associated with the conventional xtreg panel regres-
sion model, especially when dealing with large dimensions typical in finance studies,
researchers often seek more computationally efficient approaches. In finance studies, it’s
common to encounter datasets with thousands of cross-sections and tens of thousands of
time series observations. Correia et al. (2016) introduce a feasible estimator that over-
comes these challenges by leveraging the properties of within-group variation in the data.
By exploiting the structure of the fixed effects, the proposed estimator provides consistent
estimates of the model parameters without requiring the full enumeration of fixed effects.
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C.2 Explanatory Tables

Table C.1
Countries’ energy dependence from Eurostat

2005 2007 2009 2011 2013 2015 2017 2019 2021
European Union 29 441 984 28 904 772 27 982 895 28 570 736 28 877 544 27 517 445 26 789 746 25 859 096 25 020 138
Belgium 579 188 602 174 604 422 635 369 599 887 431 246 608 210 635 731 727 241
Bulgaria 445 601 415 730 406 303 512 485 446 676 503 770 491 010 489 470 507 772
Czechia 1 391 402 1 423 187 1 322 336 1 355 677 1 269 171 1 195 468 1 145 589 1 113 694 1 020 576
Denmark 1 312 269 1 136 416 1 004 452 864 758 702 705 676 515 654 635 522 975 400 756
Germany 5 768 694 5 800 693 5 399 614 5 239 374 5 189 841 5 046 999 4 838 166 4 407 692 4 310 906
Estonia 169 148 197 369 158 913 212 502 226 300 204 724 248 355 213 034 184 532
Ireland 71 190 59 407 60 017 72 111 97 476 82 200 204 428 174 056 127 004
Greece 434 493 427 049 424 130 405 246 392 122 357 121 313 613 266 661 217 419
Spain 1 256 081 1 261 678 1 277 587 1 345 647 1 459 332 1 428 453 1 421 929 1 451 635 1 518 628
France 5 685 445 5 590 974 5 433 094 5 759 308 5 802 396 5 895 199 5 503 485 5 615 633 5 476 689
Croatia 199 489 205 592 207 561 193 371 186 630 184 822 176 876 163 298 165 593
Italy 1 264 753 1 303 627 1 323 951 1 336 320 1 539 344 1 511 354 1 535 160 1 545 339 1 535 543
Cyprus 2 136 3 076 3 785 4 243 4 799 5 483 6 058 8 724 9 955
Latvia 77 913 75 437 87 813 86 883 89 743 97 900 108 322 118 412 113 546
Lithuania 173 570 170 056 184 601 66 101 70 305 77 865 86 994 85 456 93 606
Luxembourg 4 464 4 931 4 657 4 745 5 541 6 304 7 673 9 842 13 119
Hungary 454 536 449 230 483 891 487 116 473 017 464 929 466 816 451 619 445 976
Malta 22 33 39 267 394 657 1 279 1 515 1 876
Netherlands 2 614 558 2 521 135 2 633 830 2 779 749 2 920 374 2 018 864 1 734 147 1 385 831 1 114 326
Austria 414 002 458 506 490 043 479 044 518 914 511 965 529 022 519 843 525 929
Poland 3 262 611 3 003 429 2 800 783 2 838 897 2 961 677 2 836 955 2 686 474 2 601 790 2 516 569
Portugal 151 341 194 253 206 226 231 592 240 845 247 354 244 496 274 324 291 051
Romania 1 168 617 1 160 468 1 180 135 1 151 073 1 080 553 1 104 248 1 067 236 1 027 018 961 808
Slovenia 156 193 155 108 151 836 156 730 147 183 138 887 148 671 141 578 137 403
Slovakia 269 699 242 599 243 256 258 309 268 480 267 711 266 691 290 563 291 065
Finland 698 852 675 947 680 272 701 872 740 518 720 680 763 482 793 360 816 450
Sweden 1 415 718 1 366 665 1 209 348 1 391 947 1 443 322 1 499 772 1 530 929 1 550 003 1 494 801
Iceland 99 832 161 307 198 086 217 676 221 156 206 326 205 999 223 022 217 400
Norway 9 694 217 9 003 668 9 087 873 8 385 555 8 218 518 8 693 198 9 006 763 8 193 266 8 974 852
Bosnia and Herzegovina 182 853 193 599 226 292 218 680
Montenegro 24 824 22 204 23 001 30 192 31 875 29 536 26 127 30 796 31 357
Moldova 23 292 25 098 27 488 32 211 27 949 31 885
North Macedonia 68 328 64 974 67 310 73 512 59 653 53 205 48 820 48 554 36 712
Albania 47 390 43 962 52 358 62 098 85 161 86 809 68 761 72 698 76 319
Serbia 428 554 438 821 426 877 467 619 476 060 450 606 439 428 427 846 426 489
Türkiye 991 342 1 149 739 1 239 077 1 290 186 1 218 006 1 317 145 1 526 771 1 889 653 1 934 628
Ukraine 3 304 612 3 440 055 3 230 319 3 437 633 3 515 399 2 695 985 2 465 619 2 526 927
Kosovo 58 512 59 704 77 253 75 159 75 047 75 536 75 066 77 419 81 079
Georgia 59 824 55 201 55 837 45 726 52 236

(a) Primary energy production of the Europe Area countries, expressed in Terajoules
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2005 2007 2009 2011 2013 2015 2017 2019 2021
European Union 67 147 546 66 851 646 62 749 054 63 350 375 61 920 891 60 631 978 62 417 175 61 055 997 59 522 315
Belgium 2 482 289 2 412 352 2 371 597 2 371 864 2 364 939 2 247 483 2 362 538 2 348 224 2 377 861
Bulgaria 840 747 852 038 735 663 803 867 715 325 782 138 792 802 788 972 807 862
Czechia 1 906 457 1 945 516 1 793 745 1 826 187 1 818 996 1 760 635 1 819 704 1 797 660 1 790 561
Denmark 829 881 869 964 813 720 793 139 764 818 722 786 748 134 727 251 712 150
Germany 14 506 226 14 212 470 13 461 498 13 429 731 13 848 764 13 317 913 13 481 140 12 901 432 12 388 065
Estonia 230 073 266 898 185 739 241 593 246 477 203 114 247 563 205 835 192 909
Ireland 647 557 674 495 636 029 580 866 561 914 596 333 613 112 627 489 598 829
Greece 1 300 382 1 304 425 1 270 250 1 152 931 1 007 712 1 008 531 1 021 350 986 165 900 603
Spain 6 048 639 6 149 541 5 453 044 5 422 192 5 055 083 5 146 110 5 462 007 5 310 128 4 965 936
France 11 604 059 11 332 443 10 951 285 11 073 581 11 134 624 10 887 503 10 700 436 10 526 034 10 125 030
Croatia 411 391 425 302 400 415 387 723 358 206 356 065 371 865 367 983 364 016
Italy 7 931 685 7 854 749 7 225 238 7 167 457 6 631 521 6 520 088 6 678 476 6 507 655 6 433 486
Cyprus 106 699 115 784 119 180 113 611 92 256 96 295 107 748 109 949 100 879
Latvia 192 134 204 558 188 817 183 261 186 981 183 357 190 545 194 589 191 773
Lithuania 376 094 402 094 366 332 307 570 293 771 300 794 322 124 326 661 332 769
Luxembourg 201 050 194 037 182 904 191 322 181 710 174 934 181 305 190 323 176 950
Hungary 1 193 668 1 155 422 1 081 884 1 091 190 1 001 479 1 055 209 1 116 052 1 118 105 1 146 393
Malta 39 173 40 138 37 447 39 210 36 916 31 730 34 537 37 735 33 451
Netherlands 3 504 432 3 464 444 3 372 272 3 372 831 3 311 915 3 202 985 3 316 418 3 187 813 3 112 889
Austria 1 439 387 1 427 621 1 366 251 1 415 987 1 428 422 1 411 862 1 457 266 1 455 532 1 428 591
Poland 3 876 204 4 067 978 3 946 302 4 256 511 4 123 883 4 013 819 4 405 581 4 441 020 4 588 530
Portugal 1 148 770 1 096 857 1 054 216 995 194 937 709 987 621 1 031 756 1 000 880 902 003
Romania 1 619 718 1 666 553 1 456 660 1 496 838 1 334 244 1 334 457 1 404 026 1 390 235 1 435 953
Slovenia 316 649 318 451 295 733 303 244 283 985 272 121 288 982 281 530 274 023
Slovakia 782 887 743 416 698 785 719 935 701 563 680 977 722 131 712 758 744 951
Finland 1 458 823 1 566 532 1 407 366 1 483 552 1 407 657 1 367 522 1 434 183 1 432 282 1 411 602
Sweden 2 152 472 2 087 569 1 876 683 2 128 988 2 090 019 1 969 596 2 105 393 2 081 757 1 984 251
Iceland 141 239 205 801 244 426 248 583 253 979 243 813 249 661 265 301 253 273
Norway 1 241 963 1 179 839 1 280 972 1 193 982 1 334 407 1 106 604 1 287 241 1 231 664 1 244 150
United Kingdom 9 831 792 9 368 150 8 543 324 8 281 389 8 315 314 7 999 863 7 807 237 7 646 247
Bosnia and Herzegovina 258 873 282 796 302 718 308 738
Montenegro 43 571 47 891 40 383 47 468 41 657 42 658 43 422 46 567 45 757
Moldova 108 244 107 189 108 956 119 344 118 900 125 973
North Macedonia 122 375 129 803 117 955 130 727 116 504 111 414 115 693 119 824 112 142
Albania 94 232 86 103 90 907 94 007 99 030 92 034 99 456 98 589 96 200
Serbia 671 871 695 062 637 666 683 501 625 526 620 006 659 356 645 496 679 868
Türkiye 3 570 350 4 246 387 4 175 121 4 724 478 4 773 447 5 541 699 6 298 842 6 285 362 6 773 154
Ukraine 5 912 973 5 849 682 4 809 161 5 311 525 4 872 732 3 898 453 3 758 402 3 753 109
Kosovo 81 630 85 790 102 943 106 377 96 814 105 691 107 541 111 742 120 914
Georgia 177 860 199 358 208 989 217 916 225 472

(b) Gross inland energy consumption of the Europe Area countries, expressed in Terajoules
Note: Source: https://ec.europa.eu/eurostat/databrowser/view/
nrg bal c/default/table?lang=en, [Accessed March 15, 2023]
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