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1 INTRODUCTION

With less than 3.2 million of people, good geographical and climate location, with plenty
and variety of natural potentials and resources, Bosnia and Herzegovina (B&H) has all
pre conditions for wealthy of their residences. Still the macroeconomics parameters
shows otherwise: the country is listed on the 121% place at the World Bank’s list in 2022
with 7.6 thousand of USD of Gross domestic product (GDP) per capita. To compare, all
B&H border countries have higher GDP per capita rank: Croatia (72), Serbia (107), and
Montenegro (102) (World Bank, 2023). !

In the long-run, a one way of increasing countries global competitiveness is by having
more people with tertiary degree. B&H has relatively cheap higher education (HE) with
39 higher education institutions (HEI), and among them eight public universities.
Nevertheless, the number of HEI enrolled students’ precipitous decreases. Country-level
enrollment statistics have been available since 2007 and the number of enrolled students
is at the lowest level ever observed. One approach to the achieving the goal of having
more highly educated people is to tackle the student’s HE churn in the country. B&H has
no statistical reports, data, or estimation of student’s HE attrition. Country does not have
research of the reasons of leaving the HE, or research that explains the enrollment
decrease. Also, there is no information of students’ trajectories in years after their
withdrawal from HEI. One of the reasons of lack the churn information may be the wide
administrative and governmental division of the country, with 13 Ministries of
educations, each with they own education jurisdiction and education programs, and lack
of common database for all public universities. In this research we estimated the student’s
churn at the sample of 37.6 thousand of students within 12 years of data collected at one
of the eight public universities in the country. We employed machine learning (ML)
models to predict student’s leave at earliest stage. Our model correctly predicts 86 of 100
dropouts. The purpose is to propose and deploy a model of early HE churn detection in
public universities, and set up a base of country’s HE’s dropout research.

A brief description of the repercussions of the education system and the level of higher

educated citizens to the countries development are provided in the introductory part of

! To compare, Hungary is ranged as 73.
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the research. The multidimensional consequences of low level of HE country’s population
are considered for the country, individuals, and society. Then the problem statement in
the Bosnian and Herzegovina's HE environment is given, describing the aims, objectives,
results, research questions, and its uniqueness. Education in the long-term for a small
country, such as B&H, where the rate of HE citizens is low, can be a one of the important

lever of development.
1.1  General overview

The education system of any country has one of the greatest impact on the country's
development, progress, and global competitiveness. The level of population education in
a country correlates with the factors of development at the state level and at an individual
level. Studies have shown that the level of education of citizens has a positive effect on
the GDP and tax revenues (Alliance for Excellent Education, 2003e). A strong positive
correlation between the growth of GDP per capita and education expenditure was found
in developing countries (Appiah, 2017). The same effect of HEIs to the economic growth
was confirmed in the EU countries (Pastor et. al. 2018), as well in the particular cases,
like in Romania, where the research of the effect of skilled workforce on country’s GDP
also found a positive correlation (Teodorescu, 2018).

At the state level, the more citizens are educated, the more new jobs are created. This
increases consumption of real estate and automobiles, impacts quality of life, and the
production sophistication, too. The country's tax revenues grow and the government can
spend more money on HE, creating more educated citizens. The increase in the education
level among a country's citizens reduces the crime rates. The economic burden of one
prisoner per year is equivalent to the cost of two to four students (before tertiary
education) (US Department of Education, Policy and Program Studies Service, 2016).
Better educated people tend to take preventive measures to decrease their health risks and
invest in private insurance, resulting in fewer costs being covered by government health
insurance. Another important aspect of the population's education is mortality rates,
which were, according to AEE, 2.5 times higher among poor and people with less than
12 years of schooling, than to highly educated in the US (Alliance for Excellent
Education, 2011 and 2003b)

The lack of a highly educated workforce has a negative impact on global, national
competitiveness and local investment since the gap between high-skilled and low-skilled
workers continues to widen as the labor market changes. Studies show that university
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graduates earn higher salaries than ungraduated and find jobs more easily. The
unemployment rate in the US in 2015 was 21.4 percent for dropouts and 6.0 percent for
university graduate students, while this difference was smaller in 2017 (10.4 percent for
all dropouts and 5.8 percent for university dropouts), the trend is still present (De Brey et
al.,2021).

Among the various significant factors that indirectly influence the education level of
citizens, the university student outflow is considered an important factor in the education
system by European Commission and United Nations (UN), too. The 2030 Agenda for
Sustainable Development UN identifies education as one of the most important factors
for a sustainable economy. The European Strategy for Smart, Sustainable and Inclusive
Growth 2020 also set a target that at least 40 percent of adults aged 30 - 34 should have
a tertiary degree. According to EU Commission, increasing completion rates and reducing
dropout rates is the key strategy to achieve this goal (European Commission, 2015).
Dropout, attrition, or churn in higher education occurs when students leave the HEI
without obtaining their degree or continuing their education elsewhere. The more
comprehensive, operative definition of churn is given in chapter 5.1.

Dropout has far-reaching consequences for the country, the universities, as well as for
individuals. At the university level, dropout represents the loss of HE resources and
opportunity costs, and when high, it can be an indicator of inefficiency in the education
system (OECD, 2021). Some countries penalize universities with high dropout rates as
part of their assessment of high education (Schnepf, 2014).

At the individual level, in the literature, dropout is portrayed as a waste of time and
resources.” Income disparities are the second differentiator between churned and non-
churned university students. Comparing earnings across Europe, dropouts earn, on
average, 8 percent more than those who never entered higher education but 25 percent
less than university graduates (Berlingieri and Bolz, 2020). According to OECD 2022
report, the full-time workers with bachelor degree have 44 percent (OECD countries
average), 38 percent (EU22 average) higher salaries than full-time workers with high
school degree. The salary advantages grow with age: for people aged 45 - 54, the
difference is 75 percent comparing to their peers with high school diploma (OECD, 2022).

2 In the age of the wide availability of accessible online courses for self-study, dropout is still seen as a

negative phenomenon. There are proven successful cases of university dropouts, but they are still rare.
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Appropriate solutions to reduce dropout rates consist of policies, strategies, and standards
to identify, classify, and respond to negative trends. But first, policymakers need to
understand the reasons for dropouts. According to the European Commission's main
report on student dropout and completion in European HE, the effectiveness of the tools
used by policymakers has not been studied comprehensively and in sufficient detail
(Vossensteyn et al., 2015).

One of the ways to tackle university dropout is by using machine learning (ML) models
to prevent attrition. With the advent of ML, numerous predictive models have been
developed to identify and classify student retention, success, graduation timing, learning

paths, dropout, etc.
1.2 Problem statement

The problem that this thesis addresses is identification of students who are at risk of
dropping out of their HE, by employing the ML models, to prevent it on time. At the
beginning of research the significant gap in the information base was found: In B&H are
no reports of dropouts at the HE level, no estimates of university dropouts, or a warning
system for students at risk of leaving at publicly funded HE institutions. There are also
no reports of the reasons for leaving the HEI, or for those who continues their education
somewhere else.

Not solving the addressed problem may make the current unenviable situation worse.
According to The Global Competitiveness Report 2019, B&H is in first place of 141
country by brain drain on the scale 1 — 7, reaching the 1.76 score, where 1 means that all
highly educated people leaving the country, and 7 represents the value when they all are
staying in the country, (Schwab, 2019). In B&H, the share of people with vocational and
HE (college, university, masters, doctoral degrees) in the labor force is only 15.3 percent,
while this share in the working-age population is even lower, 9.6 percent by last available
data for 2019, (Mijovi¢ et al., 2019).

In the last eleven years, the total number of students at HE institutions in B&H decreased
by more than 40 percent, Figure 1.° The consequences of inaction and ignoring high HEI

student’s churn and decrease of enrolled students have been widely visible in the last

3 This can be the cause of the visa liberalization process for B&H citizens in some West European countries
(Germany, for instance). The adults and young people are leaving the country for a job abroad. There is
also a broad range of scholarship opportunities abroad for Bosnian youth, which goes hand in hand with
more than a decade of a negative annual increase in population and causes the decrease of freshmen at
Bosnian universities.
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decade in B&H. Due to a significantly less number of students, universities are forced to
reduce the offer of study programs, HE staff, and their budgets causing the long-term
negative consequences for the country, as well as for HE institutions. Future freshmen
can face higher tuition fees, limited diversity offer of study programs, and lack of quality

HE staff. In the long run the B&H may suffer from lack of educated professionals, too.
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Figure 1 — Enrolled students in all years of study, 2007/08—2022/23 academic year, in
B&H (in thousands)

*Data refer to students at universities, schools of higher education, and religious HE. Including students at
the bachelor level (first cycle) who study according to the old program and students who study according
to Bologna compliant program (first cycle and integrated I and II cycle).

Source for 2021 and 2022: BHAS, Demography and Social Statistics, Higher education in the school year
2021/2022, First release, No.2, Sarajevo, page 2, Table 1. The previous data are from BHAS, B&H in
figures 2007-2020.

This research contributes to the enrichment of the field of Education Data Mining (EDM)
in the domain of the specificity of the dataset (binary features, missing data, lack of
variables) on which we train the variety of ML models and implementing the SHapley
Additive exPlanations (SHAP) and Permutation importance (PI). Dataset is obtained from
UNIBL, with dominantly categorical and very modest amount of socioeconomics,
academics and secondary school variables, and significant amount of missing data. The
research brings additional benefits by providing country related dropout data and reasons
for churn, for the first time at one university in B&H.

Identified stakeholders of this research are students, the University management, the
Ministry of Higher Education, and the public. The highest impact of the research results

is for the UNIBL management, since University loss significant amount of money due to
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students churn, each year. The results are also part of broad research which is going to
spread on the five* public universities in the country.

Since this is the first HEI attrition research in B&H and is limited to only one public
university, the need for additional research is inevitable. The model has to be enriched
with important missing variables, which have been confirmed by other researchers to play
an important role in prediction. Also, it is necessary to expand the time frame of the

collected data to observe the trends that affect the prediction in the longer run.
1.3 Research aim, objectives and results

Despite a decrease of more than 40 percent in the number of HE students in the country,
there is no information about HEI student’s attrition or prevention strategies. The main
goal of this thesis is to identify students who are at risk of dropping out at UNIBL in
challenging dataset. Through the following list of objectives, it is briefly explained how
the thesis aim will be achieved:

— Conducted desk-research of national and UNIBL rules, and laws valid between
2007 and 2018 school year, related to HE study — to understand the enrollment,
study and drop out process, to apply it in a code stage of research.

— Data collection at UNIBL: obtaining the data set of University student’s study
data between 2007 and 2018 school year, to model the attrition.

— Data collection among students who dropped out: interviews and surveys, to set
the most precise dropout definition, and to better understand attrition.

— Transformation and preprocessing of data using a Python Jupyter and Google
Coo-laboratory, to prepare it for modeling.

— Appling the variety of ML prediction models, to find the best one for churn
prediction at UNIBL.

Results:

— Model that identifies at risk students at UNIBL in the early stage of education:
prior to enrollment, in enrollment week, and before their sophomore year of study.

— The list of variables with the highest impact on the churn in the current data sets
by all models with passing of time.

— The first comprehensive dropout estimation for UNIBL within 12 observed years.

4 Data for University of Sarajevo, University of East Sarajevo, University of Zenica, University of Dzemal
Bijedi¢ are collected and being processed. Obtaining the data of the University of Mostar is still ongoing.

22



— The first research of reasons for leaving the HE in the country.
— Recommendations to the UNIBL database Center to improve the data collection

process regarding the dropping out.

By implementing the Early Warning System (EWS) to support students at risk of attrition,
the UNIBL has the highest benefits in this research. Beside the implementation stage, the
University’s management has to establish steps that follow after the identification of at
risk students. In that manner, as the second largest university in the country, the UNIBL
wi