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1

1 Dissertation summary

1.1 Research background and basic concepts

1.1.1 Introduction: Decision theory

Decision making, choosing from a number of alternatives according to different crite-

ria, is a common part of human life. We make the majority of these choices without

modelling or calculations, based on different habits or heuristics. However, the most

important, high-profile decisions are usually handled with a wide range of modelling

tools, especially in the case of companies or governments.

As decisions are present everywhere in our life, decision making theory is a large

and interdisciplinary field, which contains approaches from the classical utility based

ones (Fishburn, 1970) to the ones focusing on the psychological features (Kahneman,

2011). Naturally, here we do not aim to summarize the diverse literature of this field.

Our research focuses on multicriteria decision making (MCDM) problems (Ishizaka

and Nemery, 2013), especially methods connected to pairwise comparisons. The aim

of MCDM is to select the best, the best few, or to provide a whole ranking of a fi-

nite set of alternatives based on a finite number of (usually conflicting) quantitative

and/or qualitative criteria.

One of the most popular MCDM methodologies is the Analytic Hierarchy Pro-

cess (AHP), proposed by Saaty (1977, 1980). It is based on a hierarchical system of

criteria, subcriteria, etc., while uses pairwise comparison matrices (PCMs) to eval-

uate the alternatives according to each criterion separately and to determine the

importance weights of the criteria as well. An element of a (multiplicative, ratio

scale) PCM shows how many times the alternative (criterion) corresponding to the

given row of the PCM is better/stronger/larger/more important than the alternative

(criterion) corresponding to the given column of the matrix.

Besides decision modelling, pairwise comparisons are used in many other areas as

well, e.g., preference measurement, ranking, sports, and psychometrics (Thurstone,

1927; Davidson and Farquhar, 1976; Csató, 2021). These types of comparisons are

placed into a matrix in the case of a PCM. The main idea behind this process is
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that the decision makers cannot provide their preferences accurately for a complex

problem; however, they can estimate their real preferences well between a pair of

alternatives according to a single criterion.

The focus of our research is the case when some of the comparisons are missing,

thus, we have to deal with a not complete data set, an incomplete pairwise com-

parison matrix (IPCM). Although we apply the decision modelling point of view

throughout the dissertation, as both pairwise comparisons and missing data are

common in many different research fields, our results can be useful in a much wider

range.

Next, Sections 1.1.2 and 1.1.3 detail the research background in a more focused

way, as well as contain the necessary definitions connected to pairwise comparison

matrices and their graph representations. Section 1.2 lists the publications included

in the Ph.D. thesis, while Section 1.3 presents the frame of our research and the

connections between the different studies. Section 1.4 details the exact contributions

to the articles, Section 1.5 provides a short overview of the included studies, whereas

Section 1.6 discusses several future research directions. Finally, Chapters 2, 3, 4,

and 5 present the four original studies of the dissertation.

1.1.2 Research background: Incomplete pairwise comparison matrices

There can be many reasons behind the incompleteness of a pairwise comparison

matrix. Some data may have been lost, certain comparisons can be simply impos-

sible, or the decision maker might have no time or willingness to provide all the

comparisons, which is a lingering task.

Harker (1987) was among the first to propose IPCMs in order to reduce the num-

ber of questions asked from the decision maker in the Analytic Hierarchy Process.

It is especially useful in the case of group decision making, when the choice should

be made based on the preferences of several decision makers, and all of them have

to fill in all PCMs.

If we are dealing with incomplete data, the result—i.e., the ranking of the alter-

natives calculated from the IPCM—is heavily dependent on the number of known

elements and their arrangement. The latter one, the structure of the comparisons

can be suitably handled by the representing graph of the IPCM (Gass, 1998). In
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the representing graph, the vertices correspond to the alternatives (criteria), while

there is an edge between two vertices if and only if the comparison between the

appropriate two alternatives (criteria) is known.

Although the literature of IPCMs is relatively limited compared to other areas

connected to pairwise comparisons, there are many recent studies on theoretical

results (Zhou et al., 2018; Kułakowski and Talaga, 2020; Szybowski et al., 2020;

Ágoston and Csató, 2022), as well as applications (Bozóki et al., 2016).

A large portion of our research is centered around recommended filling in patterns

for incomplete pairwise comparison matrices. What kind of designs of comparisons

ensure that the computed results are close to the ones that would be calculated

from the complete PCM? This and similar questions can be answered using graph

theoretical properties of the representing graphs. The results are not just important

from a theoretical point of view, but they can be easily applied in the practice of

multicriteria decision making problems as well.

1.1.3 Pairwise comparisons: Basic concepts

In this section, the most important concepts connected to (incomplete) pairwise

comparison matrices and their graph representations are defined formally, in order

to make it easier to follow the later parts of the dissertation. Most of the definitions

listed here are also included in the four original studies of the thesis.

From now on, let us denote the number of criteria (alternatives) in a multicriteria

decision making problem by n.

Definition 1 (Pairwise comparison matrix (PCM)) The n × n matrix A =

[aij] is called a pairwise comparison matrix if it is positive (aij > 0 for all i and j)

and reciprocal (1/aij = aji for all i and j).

When a decision maker fills in a PCM, there are usually some kind of inconsis-

tency among the elements of the matrix. It can occur that alternative A is 2 times

better than alternative B, and alternative B is 3 times better than alternative C,

but alternative A is not (2 × 3 =)6 times better than alternative C.

Definition 2 (Consistent PCM) A PCM is said to be consistent if aik = aijajk

for all i, j, k. If a PCM is not consistent, then it is called inconsistent.
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There are several ways to measure the level of inconsistency (Brunelli, 2018;

Kułakowski and Talaga, 2020), however, in practice the most often applied metric

is still Saaty’s Consistency Ratio (CR) (Saaty, 1977).

Definition 3 (Consistency Ratio (CR)) The CR of an n×n PCM A is defined

as follows:

CR = CI

RI
, (1)

where CI stands for Consistency Index, that is:

CI = λmax − n

n − 1 , (2)

where λmax is the principal eigenvalue of matrix A, and RI is the Random Index,

which is the average CI obtained from a sufficiently large set of randomly generated

PCMs of size n.

To determine the ranking of the alternatives, we need a weight (priority) vector

calculation technique. The elements of the computed vector show the performance of

the given alternatives. In the case of consistent PCMs, all of these techniques provide

the same vector, however, for inconsistent matrices the result can be different.

Probably the two most commonly used techniques to calculate a weight vector

are the logarithmic least squares (LLSM) (Crawford and Williams, 1985) and the

eigenvector (EV) (Saaty, 1977) methods.

Definition 4 (Logarithmic Least Squares Method (LLSM)) Let A be an n×

n PCM. The positive weight vector w of A determined by the LLSM is the optimal

solution of the following problem:

min
w

n∑
i=1

n∑
j=1

(
ln(aij) − ln

(
wi

wj

))2

, (3)

where wi is the ith coordinate of w.

Definition 5 (Eigenvector (EV) Method) Let A be an n×n PCM. The positive

weight vector w of A determined by the EV method is defined as follows:

A · w = λmax · w, (4)
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where λmax is the principal eigenvalue of matrix A.

The solutions of (3) and (4) are only unique up to scalar multiplication, thus,

the sum of the components (the weights) are usually normalized to one.

Most of our research focuses on the representing graphs of incomplete pairwise

comparison matrices.

Definition 6 (Incomplete pairwise comparison matrix (IPCM)) An n × n

matrix A = [aij] is an incomplete pairwise comparison matrix (IPCM) if:

• aij ∈ R+ ∪ {∗} ∀ 1 ≤ i, j ≤ n and

◦ aji = 1/aij if aij ∈ R+,

◦ aji = ∗ if aij = ∗,

where ∗ denotes the missing elements, and R+ is the set of positive real numbers.

Definition 7 (Representing graph) An incomplete pairwise comparison matrix

A can be represented by an undirected graph G = (V, E), where:

• the vertices V = {1, 2, . . . , n} correspond to the alternatives,

• while the edge set E represents the known elements of A outside the main

diagonal:

eij ∈ E ⇐⇒ aij ̸= ∗ and i ̸= j.

Definition 8 (Path) A path is a finite (or infinite) sequence of edges which joins

a sequence of vertices such that all vertices (and therefore all edges) are distinct.

Both the logarithmic least squares and eigenvector weight calculation methods

can be used for incomplete pairwise comparison matrices as well. In the case of

LLSM, optimization problem (3) is only applied to the known elements of the ma-

trix, while for the EV method, the priority vector is calculated from the complete

matrix where all missing comparisons are replaced by variables such that the Con-

sistency Ratio (CR) is minimized (this technique is sometimes denoted as the CREV

method). Both approaches provide a unique weight vector if and only if the repre-

senting graph of the IPCM is connected (Bozóki et al., 2010).
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Definition 9 (Connected graph) In an undirected graph, two vertices u and v

are called connected if the graph contains a path from u to v. A graph is said to be

connected if every pair of vertices in the graph is connected.

The smallest connected graphs are the so-called spanning trees, which contain

n − 1 edges for n vertices, and play a special role in our research.

Definition 10 (Spanning tree) Let G = (V, E) be a connected graph. G′ =

(V, E ′) is a spanning tree of G if E ′ ⊆ E is a minimal set of edges that connects all

vertices of G.

Probably the two most important graph properties that we examine in our studies

are related to the regularity and the diameter of the representing graph.

Definition 11 (k-regularity) A graph is called k-regular if every vertex has k

neighbours, which means that the degree of every vertex is k.

Definition 12 (The diameter of a graph) The diameter (denoted by d) of a graph

G is the length of the longest shortest path between any two vertices:

d = max
u,v∈V (G)

ℓ(u, v),

where V (G) denotes the set of vertices of G and ℓ(., .) is the graph distance between

two vertices, namely the length of the shortest path between them.

We will use the concepts defined in this section throughout the dissertation.

1.2 List of publications included in the Ph.D. thesis

All of the research we present here have been developed as academic journal articles.

The exact contributions of the given studies are detailed in Section 1.4, while a

summary of each publication can be found in Section 1.5. We compiled the following

studies in the dissertation without re-editing, and present them in the form as they

were—or are planned to be—published.
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I. Szádoczki, Zs., Bozóki, S., and Tekile, H. A. (2022). Filling in pattern

designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with

minimal diameter. Omega, 107:102557.

https://doi.org/10.1016/j.omega.2021.102557.

II. Szádoczki, Zs., Bozóki, S., Juhász, P., Kadenko, S. V., and Tsyganok,

V. (2023). Incomplete pairwise comparison matrices based on graphs with average

degree approximately 3. Annals of Operations Research, 326(2):783-807.

https://doi.org/10.1007/s10479-022-04819-9.

III. Szádoczki, Zs., and Bozóki, S. (2023). Optimal sequences for pairwise

comparisons: the graph of graphs approach. Working paper.

https://doi.org/10.48550/arXiv.2205.08673.

IV. Temesi, J., Szádoczki, Zs. and Bozóki, S. (2024). Incomplete pairwise

comparison matrices: Ranking top women tennis players. Journal of the Operational

Research Society, 75(1):145-157. https://doi.org/10.1080/01605682.2023.2180447.

1.3 Research frame

Our dissertation belongs to the same academic research group as Bozóki (2006),

Csató (2015), Ábele-Nagy (2019), and Poesz (2022). As mentioned before, the main

questions and studied problems are focused around the topic of the graph theoretic

properties of representing graphs of incomplete pairwise comparison matrices. The

relation of research questions, publications, and results of the studies included in

the Ph.D. thesis can be seen in Figure 1.

Studies I., II., and III. are natural (and in some sense linear) continuations of each

other. From a methodological point of view, all of them rely on different simulations.

Study IV. uses the same tools from the literature of multicriteria decision making and

graph theory as the previous publications, however, it focuses on the ranking aspect

of pairwise comparisons instead of the question of the optimal filling in designs.

https://doi.org/10.1016/j.omega.2021.102557
https://doi.org/10.1007/s10479-022-04819-9
https://doi.org/10.48550/arXiv.2205.08673
https://doi.org/10.1080/01605682.2023.2180447
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Research Question 1: Which filling in
patterns do we recommend for IPCMs?

Study I.
The proposal of IPCMs for which

the representing graph is reg-
ular with minimal diameter

Omega (D1)

Research Question 2: What do we recommend
if there is additional ordinal information?

Study II.
The comparison of some

specific designs with addi-
tional ordinal information

ANOR (Q1)

Research Question 3: What are
the exact optimal patterns from all

the possible ones for smaller matrices?

Study III.
Optimal filling in patterns
and sequences of IPCMs

Working paper
(Under review)

Research Question 4: How can we
use the formerly applied graph theoretic
tools on IPCMs derived from real data?

Study IV.
Ranking top women tennis players

JORS (Q1)

Main results

1. List of recommended graphs

2. Validation with simulations

Main results

1. Ordinal information on the
best two alternatives is preferred
to knowing the best and the
worst ones

2. Some designs outperform the
best-worst model without addi-
tional information

3. Validation with simulations

Main results

1. The optimal graphs for a
given number of alternatives and
comparisons up to six alterna-
tives

2. The application of the graph
of graphs approach

Main results

1. Different (sub)rankings of top
women tennis players

2. The analysis of the represent-
ing graph and the nontransitive
triads

Figure 1: The flow chart of research questions, publications, and main results
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All research presented in this Ph.D. thesis started with a conjecture that the

diameter (the longest shortest path) of the representing graph of incomplete pairwise

comparison matrices can be important to get a reliable and good estimation of

the decision maker’s preferences. This conjecture came from the master thesis of

one of the co-authors of Study I. (Tekile, 2017). It showed an example where the

graph generated from the table tennis players’ matches included a long shortest path

between two vertices (players), and the calculated result appeared to be misleading

because of that.

We carried out an extensive literature review on the filling designs of incomplete

pairwise comparison matrices, and found that some sense of regularity of the repre-

senting graph was detected as an important property (Wang and Takahashi, 1998;

Kułakowski et al., 2019), but the diameter was almost entirely missing from the

relevant papers.

In Study I., we proposed regular graphs with minimal diameter as a new design

of filling in patterns for incomplete pairwise comparison matrices, created a list of

proposed graphs and validated our recommendations by simulations. These results

led to numerous new research questions.

First, in Study II., we dealt with the most common cases with a few number of

alternatives in more detail, as well as focused on the inclusion of additional a priori

ordinal information that is often used in multicriteria decision making methods, such

as the best-worst method (Rezaei, 2015). It turned out that a Ukrainian research

group found the importance of the diameter of the representing graph more or less

at the same time, independently from us (Kadenko and Tsyganok, 2020). Thus, we

continued the research together in Study II. We were able to compare some popular

designs with our proposals, and the usefulness of additional ordinal information was

also evaluated.

In the case of Study III., we continued to examine small matrices (with at most

six alternatives), which are the most common in multicriteria decision making prob-

lems. One of the most important limitations of Study II. was that in some instances

the examined designs used a different number of comparisons, thus, the effect of

the filling structure and the effect of the number of known comparisons were insep-

arable. Based on that, in Study III., all possible filling in patterns for incomplete
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pairwise comparison matrices have been compared with a given number of com-

parisons, thus, it was possible to select the best one among them. According to

Gyarmati et al. (2023), our results seem to be more general and not specific for the

domain of pairwise comparison matrices.

As mentioned before, Study IV. uses the same tools as the other included papers,

however, it focuses on the ranking aspect of incomplete pairwise comparisons as top

women tennis players are ranked with this method. We revisited a former research

of Bozóki et al. (2016) with a similar real-world database, however, we extended the

results with a deeper analysis of the graph representation of the matches between

the players, as well as the detailed investigation of nontransitive triads.

All of the above-mentioned studies opened up several further research questions

that will be detailed in Section 1.6.

1.4 Results and contributions

In this section, we list the main results of the included studies, as well as highlight

which of them are individual and joint (inseparable) findings.

Besides extending some previous results of other studies, we also would like to

emphasize that the papers of this Ph.D. thesis opened up totally new avenues of

research directions as well.

Results and contributions of Study I.

Study I. deals with filling in patterns for incomplete pairwise comparison matrices.

We draw attention to the diameter of the representing graph as an important prop-

erty to select a filling pattern of comparisons that estimates the preferences of the

decision maker well. We also confirm that regularity of the representing graph is an

important property. The proposed graphs are determined and provided in several

different formats, while the usefulness of the recommended graphs is demonstrated

via simulations.

Individual contributions:

• Implementation of the validating simulations in Scilab;
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• Implementation of graph searching methods in Wolfram Mathematica and

Python;

• Creating the systematic list of recommended graphs in several formats (adja-

cency matrix, edge list, graph, and ‘Graph6’ format);

• Creating the (more than 100 pages long) online Appendix;

• Implementing LaTeX codes to create illustrative figures.

Joint (inseparable) results with our co-authors (Sándor Bozóki and Haile-

mariam Abebe Tekile):

• Extensive literature review connected to the filling designs for incomplete pair-

wise comparison matrices and the degree/diameter graph theoretical problem;

• Searching for the representing graphs with the proposed properties;

• Finding a motivational example to show the importance of the diameter;

• Running the simulations;

• Editing and writing the article.

Results and contributions of Study II.

Study II. compares some well-known and often applied filling designs for incomplete

pairwise comparison matrices to benchmark designs and several models proposed by

us up until 10 alternatives. The additional a priori ordinal information of models

has a crucial role in this research. With the help of the benchmark methods, we

are able not just to compare different designs, but also to evaluate the usefulness of

these additional information.

It turns out that the ordinal information about the best and second best alter-

natives is preferred compared to the often applied best and worst ones. However,

some of the designs were able to outperform all the examined models with additional

information, among which the design of 2 edge-disjoint spanning trees proved to be

the best.

https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf
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All of the results are equally joint (inseparable) with our co-authors (Sándor

Bozóki, Patrik Juhász, Sergii V. Kadenko, and Vitaliy Tsyganok).

Results and contributions of Study III.

Study III. determines the filling patterns (representing graphs) for incomplete pair-

wise comparison matrices that provide the closest (LLSM) weight vectors to the

ones calculated from the complete matrix for a given number of alternatives and a

given number of comparisons up to six alternatives. The proposed filling patterns

are in that sense optimal for a given number of comparisons. Moreover, in many

cases the optimal graphs are ‘reachable’ from each other, i.e., adding exactly one

comparison to an optimal case with e comparisons results in the optimal pattern

with e + 1 comparisons creating optimal filling in sequences for pairwise comparison

matrices. These sequences can be especially useful when the number of questions

answered by the decision maker is uncertain (e.g., in online questionnaires).

The results are presented in different formats in order to make them instantly

applicable in practice. We are also the first ones to apply the graph of graphs concept

to visualize our results in this field of research.

Individual contributions:

• Implementation of the methods that determine all the possible representing

graphs in Wolfram Mathematica;

• Implementation of the simulations in Scilab, with which we can determine the

optimal cases;

• Implementing LaTeX codes to create visualizations (creating the graphs of

graphs).

Joint (inseparable) results with our co-author (Sándor Bozóki):

• Literature review connected to the filling sequences for pairwise comparison

matrices and the graph of graphs concept;

• Running the simulations;

• Editing and writing the article.
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Results and contributions of Study IV.

Study IV. demonstrates that incomplete pairwise comparison matrices can be used

to create a ranking based on a large real database. We create all-time rankings of

top women tennis players. Our methodology is similar to Bozóki et al. (2016), who

created rankings of men tennis players. However, we dive deeper into the properties

of the representing graph of the data, and study the ordinally nontransitive triads

and the submatrices of the pairwise comparisons as well. We find that the results

are robust to the application of different methods (LLSM, EV, Bradley–Terry) and

modifications, which might be caused by the structure of the representing graph.

We apply tests to the number of nontransitive triads, and also demonstrate that

the rankings determined based on different submatrices are well-interpretable, and

some of them can determine the ranking of some players in the overall order.

Individual contributions:

• Calculating the rankings of top women tennis players based on different meth-

ods and submatrices;

• Implementing R, Scilab, and Wolfram Mathematica codes to apply different

methods and tests to the data;

• Implementing LaTeX codes to create illustrative figures.

Joint (inseparable) results with our co-authors (József Temesi and Sándor

Bozóki):

• Extensive literature review connected to ranking in sports, nontransitive tri-

ads, and ranking with incomplete pairwise comparisons;

• Editing and writing the article.

1.5 Overview of the studies

In this section, we summarize the compiled studies on the topic of preference mod-

elling with the tools of multicriteria decision making from a graph theoretic point
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of view. It is important to emphasize the previous point that, besides the interest-

ing theoretical findings and new research questions, all of the studies provide useful

results for practitioners, decision analysts as well.

1.5.1 Study I. Filling in pattern designs for incomplete pairwise com-

parison matrices: (Quasi-)regular graphs with minimal diameter

Study I. (Szádoczki et al., 2022) served as the basis and inspiration for most of the

later research included in the dissertation. Our goal was to propose a new approach

of filling in patterns for incomplete pairwise comparison matrices that shows which

comparisons should be made. We heavily relied on the graph representations of

these matrices (Gass, 1998), and their graph theoretical properties.

We had the following crucial assumptions applied in this article:

• it can be chosen which comparisons should be made (they are not given);

• there is no prior information available on the items that should be compared,

we can handle them in a symmetric way and focus on unlabelled graphs (the

isomorphic graphs are considered to be equivalent);

• the whole set of comparisons should be determined before the start of the

decision making process (the questions are not adaptive, they do not depend

on the previous answers).

As mentioned before, we had a conjecture based on a previous result (Tekile,

2017) that the diameter of the representing graph can be an important property to

find a filling in pattern that estimates the results of the complete matrix well.

The diameter measures the longest shortest path in a graph. With the mini-

mization of this metric, we can ensure that there is not a pair of alternatives that

can only be compared through a long indirect path. In that case, the small errors

along this path could sum up causing a significant error in the results.

After an extensive literature review, we found that although some sense of reg-

ularity of the representing graph was proposed in several designs (McCormick and

Bachus, 1952; McCormick and Roberts, 1952; Wang and Takahashi, 1998), the di-

ameter was not studied broadly.
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The regularity of the representing graph is also important as it provides some

kind of symmetry to the comparisons, all the alternatives are compared to the same

number of items, and there is no pivotal element in the system of comparisons.

It is also true that the regularity definitions used by former designs were rather

restrictive. We used a more general concept, and provided a more systematic list

of graphs in the online Appendix of the study, which can serve as a ‘recipe’ for

practitioners to determine which comparisons should be asked from the decision

maker in a given problem. Editing the online Appendix and creating the systematic

list of recommended graphs in several formats—that are key parts of our results—

were among our individual contributions to this study.

To find the interesting graphs for our research, the three parameters were the

number of vertices (alternatives) n, the level of regularity k, and the diameter of the

given pattern d.

It is important to mention that k-regular graphs with n vertices do not exist if

both k and n are odd, thus, we defined k-quasi-regular graphs, where one vertex has

degree k + 1, while all the other vertices have k neighbours.

We aimed to keep the number of comparisons (and so parameter k) as low as

possible, and minimize the diameter at the same time. From a mathematical point

of view, we were looking for the minimal d for a given (n, k) pair.

It turned out that this problem has a strong relation to the degree/diameter

problem (see, for instance, Miller and Širáň (2013)), which looks for the largest n

for a given (k, d) pair.

Based on the known results of this field and the characteristics of multicriteria

decision making problems, it turned out that the parameter values of k = 3, 4, 5 and

d = 2, 3 can be interesting for us (d = 1 means a complete PCM), while the number

of alternatives were examined between 5 and 24. It is true that finding graphs and

running simulations would become difficult above 24 vertices. However, in practical

problems the number of alternatives is usually much below 24, and the largest 5-

regular graph with diameter 2 has 24 vertices, thus, it is a natural theoretical bound

as well. At the same time the problem is not too relevant below five alternatives.

Although some graphs were known from the degree/diameter literature, as men-

tioned before, most of them had to be determined by us. We used several different

https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf
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methods, for smaller cases the enumeration of all the graphs and the selection of the

ones with minimal diameter, while for larger cases different graph extending tech-

niques, graph products, integer linear programming, and so on. This was a long,

time-consuming process, the same idea rarely worked twice, and we determined 34

types of graph instances for different parameter combinations. As for our individual

contributions, the majority of the graph instances were found by different graph

searching methods implemented in Wolfram Mathematica and Python by us.

After the finding of the graphs, we had to validate that these designs provide

better results, namely, closer weight vectors to the ones calculated from the complete

matrix than other filling patterns. In order to test this, we used simulations, where

the CREV and the incomplete LLSM weight calculation techniques were used, while

the closeness measures were the Euclidean and Chebyshev (maximum absolute) dis-

tances. We determined the means and standard deviations of the distances between

the weight vectors calculated from a given design and the complete matrix for all

combinations of the parameters. The implementation of these simulations in Scilab

was another key individual contribution of ours to this study.

We generated 1000 random, consistent PCMs for every parameter combination,

and perturbed those using three different levels of perturbation (inconsistency) to

get inconsistent matrices. The weight vectors were determined from these matrices

using only the elements included in the examined patterns.

The following designs were compared in our simulations (all of the graphs were

connected):

• (i) k-(quasi-)regular graphs with minimal diameter;

• (ii) Random connected graphs with the same number of edges as our recom-

mendations;

• (iii) k-(quasi-)regular graphs, but not of minimal diameter;

• (iv) Randomly generated, minimal diameter, but not regular graphs;

• (v) Modified star graphs with the same number of edges (and minimal diam-

eter).
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The simulations confirmed that our recommendations outperformed all other de-

signs in the case of almost all examined parameter combinations, for both measures,

both weight calculation techniques, and every level of inconsistency. It was also val-

idated that both properties—regularity and the minimal diameter—are necessary.

The latter was also highlighted with a motivational example, where a regular graph

had a long diameter, which resulted in large distances in the weight vectors from

the complete case.

As mentioned before, the results of this study can be instantly applied in practical

problems, while it also generated many further research questions, some of which

later on have been addressed in Studies II. and III.

1.5.2 Study II. Incomplete pairwise comparison matrices based on graphs

with average degree approximately 3

It occurs in many different multicriteria decision making methods, such as the

SMART (simple multi-attribute rating technique) (Edwards, 1977), the Swing (von

Winterfeldt and Edwards, 1986), and their generalizations, that some additional or-

dinal information—usually the best, the worst or both alternatives—are used. One

could argue that if the best alternative is already known, then we do not need the

given methods. However, the explanation lies in the multicriteria nature of the

problems. For a simple example, we can imagine that it is easy to determine which

is the cheapest car from a set of alternatives, but to determine which car should we

buy based on a number of other criteria, is a much more difficult task.

Accordingly, we continued our research started in Study I., and resolved the

assumption that no prior information is available. We were particularly interested

in the additional information used by the best-worst method (Rezaei, 2015), which

generated an extensive literature in the past few years (Mi et al., 2019). The study

(Szádoczki et al., 2023) also focuses on the smaller matrices (with at most 10 alter-

natives), which are more common in MCDM problems.

We applied a similar simulation-based approach as in Study I. with three differ-

ent levels of inconsistency, however, several aspects of the methods were improved.

Instead of the matrix-wise solution, we used element-wise perturbations, and also

improved the handling of different scales. The elements of the consistent PCMs were
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randomly generated from the interval [1/9, 9], and we used uniformly distributed er-

rors for the perturbation. However, the new elements were uniformly distributed

not on the original scale, but around the original value on the scale presented in

Figure 2. The reasoning behind this is as follows. If a decision maker is hesitant

whether item A is 2 or 3 times as good as item B, then that is the same problem

as if the decision maker would be hesitant whether B is 1/2 or 1/3 as good as A.

Thus, we used a scale where the distance between 1/9 and 1 is the same as between

1 and 9.

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1 2 3 4 5 6 7 8 9

Figure 2: The scale on which the perturbed elements are uniformly distributed
around the original value

The list of applied measures was also extended in the simulations. The following

types of metrics were included:

• distances (Euclidean, Chebyshev, and Manhattan);

• rank correlations (Kendall’s tau and Spearman’s rho);

• and compatibility (similarity) indices (Garuti’s compatibility index (Garuti,

2017), cosine similarity index (Kou et al., 2021), and Dice similarity index

(Ye, 2012)).

We used a sample of 10 000 PCMs for the simulations, and aimed to keep

the number of comparisons relatively low, thus, the following designs (represent-

ing graphs) were compared:

• (i) Best-worst graph;

• (ii) TOP2 graph;

• (iii) Best-random graph;

• (iv) Random-random graph;
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• (v) 3-(quasi-)regular graph with minimal diameter;

• (vi) Union of two random edge-disjoint spanning trees;

• (vii) Random 2-edge-connected graph.

The first four designs are based on the same graph representation (the union of

two star graphs) with different additional ordinal information. Thus, there are two

pivotal elements, which are different in these models, and all of the other alternatives

are only compared to them. We were interested in these kinds of structures because

of the best-worst method, where every alternative is compared to the best and the

worst items. This method also assumes that it is always possible to determine

the best and the worst elements, however, this implies that it is always possible

to determine the ranking of the alternatives according to one criterion (i.e., if we

remove the former best and worst, we can determine the new best and worst again).

Thus, it can make sense to test other pairs of highlighted alternatives.

In TOP2, the pivotal elements are the best and the second best alternatives, for

the Best-random graph they are the best and a randomly chosen element, while for

the Random-random case both of them are chosen randomly. This way we were

able to evaluate these additional information as well, whether comparing to those

elements provide weight vectors closer to the one calculated from the complete case.

The TOP2 design was proposed by us, as usually if there are more comparisons for

a given alternative, then its weight is estimated more accurately, and probably the

most important items are the two best ones.

The 3-(quasi-)regular graph design was also proposed by us in Study I., but it

does not use any additional ordinal information. Nor do the Union of two random

edge-disjoint spanning trees and the Random 2-edge-connected graphs. The latter

two are generalizations of the union of two star graphs, as a star graph is a cer-

tain type of spanning tree, and a 2-edge connected graph is a graph that remains

connected after deleting an edge, which also holds for the union of two star graphs.

According to the results of the simulations, basically every measure that we

used provided the same findings, thus, the outcomes do not heavily depend on the

used metrics. It turned out that the TOP2 graph is preferred to the Best-worst
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one, which means that if we have an opportunity in this kind of problems to ask for

additional ordinal information, on average it is better to ask the two best alternatives

compared to the popular best and worst ones. However, some of the designs that

do not use any additional information outperformed all the models using the union

of two star graphs. For smaller cases, this is true for the 3-(quasi-)regular graphs,

and for basically all examined cases, this is observed for the Union of two random

edge-disjoint spanning trees.

Nonetheless, it is important to keep in mind one of the most important limi-

tations of this research. That is, some of these designs use a different number of

comparisons in certain cases, which does not make it possible to separate the effect

of the filling pattern from the effect of the number of comparisons. We tried to

resolve this problem in Study III.

1.5.3 Study III. Optimal sequences for pairwise comparisons: the graph

of graphs approach

In Study III. (Szádoczki and Bozóki, 2022), we aimed to elaborate on the smallest

cases that most commonly occur in MCDM problems, and also address the limitation

of Study II. that the number of comparisons were different, thus, in some cases it

was difficult to draw strong conclusions.

We were able to automize our simulations—which is one of our key individual

contributions to this study—in order to examine larger samples and check all the

possible patterns of comparisons (representing graphs) instead of some special de-

signs as before, only analyzing the structures with the same number of comparisons

(edges) this time, up to six alternatives (vertices). At the same time, we also went

back to our original assumption that no prior information is available about the

elements, as the labelling of graphs results in even more possibilities.

As measures, the Euclidean distance and the Kendall’s tau metrics were used,

with a sample size of 1 million matrices for a given number of alternatives (n) and a

given number of comparisons (edges – e), which resulted in certain margins of error

and significance levels for the different means.

It turned out that basically always the same representing graph provided the

closest weight vector to the complete case for a given (n, e) pair according to the
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Euclidean distance and Kendall’s tau, and the results neither depended on the level

of inconsistency nor on the weight calculation technique. Thus, in that sense we were

able to determine the optimal filling in patterns for a given number of alternatives

(up until six) and a given number of comparisons, which is a key contribution of

this study to the literature.

Furthermore, we also found that many optimal cases are reachable from each

other, namely, if we add an additional comparison to the optimal pattern with

e comparisons, it results in the optimal case with e + 1 comparisons. This way,

we can determine optimal filling in sequences for pairwise comparison matrices,

which can be especially useful in the case of group decision making based on online

questionnaires, where the number of comparisons provided by the decision makers

is uncertain. If we follow an optimal filling in sequence, then we can ensure that

the preferences of the decision makers are estimated on average as well as possible

whenever they stop making further comparisons.

After that, we conducted a literature review in order to find out what kind of

visualization can be used to present our results. Based on that, we applied the

graph of graphs approach (see, for instance, Lovász (1977)), where there is a large

graph and its vertices are also graphs, in our case the representing graphs of filling

patterns. There is an edge between two small graphs if and only if they are reachable

from each other, we can get one of them from the other one by adding (or deleting)

exactly one comparison (edge). Applying and creating the illustrative figures (the

graphs of graphs) in LaTeX is a crucial part of this study, that is also an individual

contribution of ours.

As an example, the graph of graphs on five vertices can be seen in Figure 3. The

number of comparisons (edges) are denoted on the left side of the chart, while the

optimal graphs and partial optimal sequences are highlighted with blue color and

boldness. It is important to note that the pattern of results is similar for different

number of alternatives as well.

Among the spanning trees (in the first row), the star graph proved to be optimal

for all cases examined, and it is expected that this structure retains its optimality

for larger cases. Regular and quasi-regular graphs were also optimal, moreover,

regularity was important in an even more general way, namely, the degrees of the
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e = 4

e = 5

e = 6

e = 7

e = 8

e = 9

e = 10

Figure 3: The graph of graphs for n = 5, optimal graphs are highlighted by blue
and bold



1.5 Overview of the studies 23

vertices were always as close to each other as possible in the optimal graphs. The

bipartiteness of the graphs also turned out to be important, i.e., the vertices were

divisible to two independent sets A and B, and all edges were between a vertex from

A and one from B.

As one can see in Figure 3, there is not a total optimal filling in sequence for the

PCM in this case, however, we can determine a path that contains as many optimal

cases as possible, and all the other graphs are close to optimal as well.

Similarly to Study I., our results were presented in different formats that make

it possible for practitioners to instantly apply them in multicriteria decision making

problems. Moreover, some of our findings can be used to determine the minimal

number of questions to be asked from the decision makers in the case of a given

problem, if we would like to have a threshold for the metrics examined. Based on our

recent results (Gyarmati et al., 2023), which largely rely on Study III., the findings

(the proposed graphs and sequences) also seem to be more general, not specific for

PCMs, but optimal in the case of other pairwise comparison-based models as well.

1.5.4 Study IV. Incomplete pairwise comparison matrices: Ranking top

women tennis players

Study IV. (Temesi et al., 2024) applies the same graph theoretical tools as the

previously presented articles on a real database, while in some sense continues the

research started by Bozóki et al. (2016).

Our aim was to create all-time rankings of top women tennis players based on

an incomplete pairwise comparison matrix derived from their Win/Loss ratios. The

alternatives were those players who were at some time between 1973 (the foundation

of the Women’s Tennis Association (WTA)) and 2022 number one in the official

ranking of the WTA. We found 28 such players, and there were, of course, missing

elements in our data, as some of them never played with each other during their

career.

In order to apply the weight calculation techniques (besides checking whether

the representing graph is connected), we had to make several technical adjustments

in the data, in which we followed Bozóki et al. (2016).

If only one of the players won all the matches in a pair, then there should have
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been a 0 in the denominator of the given Win/Loss ratio. In this case, we used

the number of wins and added 2 to it as the value in the matrix. After that, we

also modified all the values by a power, in order to account for the fact that some

pairs only played a few games against each other, while others clashed in several

tournaments. The point of this modification was that if a pair had more matches

with each other, than their comparison was considered to be more reliable.

We used both the eigenvector and the LLSM weight calculation methods with

different parameters in the aforementioned adjustments, as well as applied another

ranking technique as a benchmark, the Bradley–Terry model (Bradley and Terry,

1952). The rankings turned out to be similar to each other, the calculated Spearman

rank correlations were convincingly high (0.860 was the smallest value) and robust

to the modifications as well.

The first two places were occupied by Serena Williams and Steffi Graf, respec-

tively, according to all methods. They were followed by Navratilova, Hingis, Cli-

jsters, and Henin with slight modifications. Somewhat surprisingly, the main differ-

ence between the results of the Bradley–Terry model and the IPCM-based models

was that some of the earliest players (Goolagong, Evert, and Austin) performed

better according to the Bradley–Terry method.

Besides demonstrating that the MCDM methods connected to IPCMs can be

applied to create rankings based on large real data sets, the goal of this research

was also to thoroughly investigate the structure of the pairwise comparisons. We

focused on several submatrices of the data as well as the case when the players

entered to the data set one by one.

We found that it is possible to determine relatively large subsets of players with

their most active career in the same time period, so that their results against each

other practically determine their positions in the overall ranking. Entering players

one by one to the data set showed that there are usually only small changes due to

an entry, and every player affects the most those ones against whom she played the

most.

Looking into the properties of the representing graph, it turned out that if we

eliminate the four earliest players (Goolagong, Evert, Navratilova and Austin) along

with the most recent world number one (Swiatek), then we get a graph, for which
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the different connectivity measures are really strong. The diameter (longest shortest

path) of this modified graph is only 2, and it also can be interpreted as a union of two

star graphs centered around the Williams sisters (i.e., they played with everyone else)

complemented with further edges. This kind of structure and the strong connectivity

might be the reason behind the robustness of the rankings.

We also analyzed the ordinally nontransitive triads in the data set. In sports, it

can happen that A won against B in the majority of their matches, and generally

B was successful against C as well. We would expect that A also beat C, however,

in reality A lost against C in most occasions.

These kind of triads also have a significant literature, Kendall and Babington

Smith (1940) determined the distribution of them for low number of elements and

proposed a significance test, which was later extended by several researchers. Con-

nected to PCMs and decision making problems, Iida (2009) investigated different

tests and indices connected to the question.

In order to perform the necessary chi-square nontransitivity test, we had to

modify the originally used IPCM, as it can be applied only on complete data without

ties. The adjusted matrix contained W/L set ratios instead of match ratios for every

pair. When we had ties even for the set ratios, the original LLSM ranking was used

as a reference to make a precedence relation. If two players have never played against

each other during their career (no edge exists between the two vertices), then we

used the same LLSM ranking to determine the winner of the pair.

Applying these adjustments, we were able to construct a directed graph, on which

the test itself is based on. The number of ordinally nontransitive triads turned out

to be insignificant in our database, which can also explain the robustness of the

rankings.

It needs to be highlighted that all the calculations and implementations (in R,

Scilab, and Wolfram Mathematica) required to determine the different rankings and

apply the tests of nontransitive triads are our individual contributions.

Our results can be interesting not only for tennis experts and fans, but also pro-

vide empirical evidence that the method of incomplete pairwise comparison matrices

is appropriate for producing well-understandable rankings, as well as connect the

research of representing graphs to a large real-world database and sports.
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1.6 Directions for future research

Conducting the analysis connected to the four original studies of the thesis, we found

numerous further questions as well as totally new directions for future research, and

also started to work on some of them.

There are some natural continuations of the studies connected to filling in pat-

terns and sequences for incomplete pairwise comparison matrices (Studies I., II.,

and III.), such as looking for larger cases. However, one could argue that it would

be more important to use a wider range of methodology instead of simulations.

We could tackle this problem from at least two different directions. Empirical

pairwise comparison matrices can be quite different from simulated ones, thus, it

would be interesting to investigate some real-world PCMs as well, which have been

used in the literature earlier (Bozóki et al., 2013). We can test which patterns are

optimal in this case for given number of comparisons, as the order of filling in is also

saved, and it was different for the decision makers.

On the other hand, it would be nice to prove formal propositions about the

optimal graphs as well. Based on some recent research (Gyarmati et al., 2023),

the results seem to be more general, but we could not characterize the optimal

representing graphs yet. A key factor in this can be the fact that we focused on

the closeness to the calculated weight vectors, which are the results of different

optimization problems themselves. However, if we would focus on the matrices

instead of the weight vectors, that could make the formal proofs much easier to

conduct.

It is also possible to look into the graph of graphs of the labelled representing

graphs. Which ordinal information is the best for the optimal designs of Study III.?

Do these structures remain optimal if we can get some additional information? All

of these issues can be interesting not just from a decision making point of view, but

it could be used in sports as well. Which teams (players) should play against each

other if we have some prior information about their strengths?

The concept of graph of graphs also raises some further research questions that

can be connected to sports. What happens if, instead of direct paths in the graph

of graphs, we are analyzing inclusion relations, i.e., we can make more than one
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comparisons in one step? A neat example can be the case of sports tournaments,

where in every round all team (player) should play with another one, which leads

to the graph of regular graphs.

In connection with Study IV., there are several possibilities to extend the data

set, or create different rankings for different surfaces, which would be interesting for

tennis experts and fans, but probably would not give extra methodological benefits.

However, we see the calculations and tests about ordinally nontransitive triads as

another important research direction. Currently, we had to modify the data to carry

out a nontransitivity test. It would be interesting to extend these kinds of tests to

incomplete data, incomplete pairwise comparison matrices as well, and we do believe

that the key to this also resides in the tools of graph theory.

Of course, other areas connected to pairwise comparison matrices and graphs

that have not been mentioned in the dissertation can be interesting too, such as the

case of the Pareto efficient weight vectors (Blanquero et al., 2006; Ábele-Nagy and

Bozóki, 2016; Ábele-Nagy et al., 2018; Fernandes and Furtado, 2022).

Consequently, that there are many different directions of research based on the

studies included in the thesis. In our opinion, the collaboration with the Ukrainian

research group also supports the relevance of these results. We have already started

to work on some of these research questions, while we are still keen on to begin other

ones.
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Abstract

Pairwise comparisons have become popular in the theory and practice of

preference modelling and quantification. In case of incomplete data, the ar-

rangements of known comparisons are crucial for the quality of results. We

focus on decision problems where the set of pairwise comparisons can be cho-

sen and it is designed completely before the decision making process, without

any further prior information. The objective of this paper is to provide rec-

ommendations for filling patterns of incomplete pairwise comparison matrices

based on their graph representation. The proposed graphs are regular and

quasi-regular ones with minimal diameter (longest shortest path). Regularity

means that each item is compared to others for the same number of times,

resulting in a kind of symmetry. A graph on an odd number of vertices is

called quasi-regular, if the degree of every vertex is the same odd number,

except for one vertex whose degree is larger by one. We draw attention to the

diameter, which is missing from the relevant literature, in order to remain the

closest to direct comparisons. If the diameter of the graph of comparisons is

as low as possible (among the graphs of the same number of edges), we can

decrease the cumulated errors that are caused by the intermediate compar-

isons of a long path between two items. Contributions of this paper include

a list containing (quasi-)regular graphs with diameter 2 and 3 up until 24

https://doi.org/10.1016/j.omega.2021.102557
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vertices. Extensive numerical tests show that the recommended graphs in-

deed lead to better weight vectors compared to various other graphs with the

same number of edges. It is also revealed by examples that neither regularity

nor small diameter is sufficient on its own, both properties are needed. Both

theorists and practitioners can utilize the results, given in several formats in

the appendix: plotted graph, adjacency matrix, list of edges, ‘Graph6’ code.

Keywords: pairwise comparison, incomplete pairwise comparison matrix, graph,

diameter, regular graph

2.1 Introduction

Pairwise comparisons form the basis of preference measurement, ranking, psycho-
metrics and decision modelling (Davidson and Farquhar, 1976; Thurstone, 1927;
Zahedi, 1986). Multicriteria Decision Making is indeed an important tool both at
an individual and at an organizational level. We can think about different kind of
ranking of alternatives or weighting of criteria, like tenders, selection among schools
or job offers, selection among the implementation of different projects in an enter-
prise, etc.

One of the most commonly used techniques in connection with Multicriteria
Decision Making is the method of the pairwise comparison matrices. One can apply
this technique both for determining the weights of the different criteria and for the
rating of the alternatives according to a criterion. Usually we denote the number
of criteria or alternatives by n, which means the pairwise comparison matrix is an
n × n matrix, often denoted by A. In this case the ij-th element of the A matrix,
aij shows how many times the i-th item is larger/better than the j-th element.

Formally, matrix A is called a pairwise comparison matrix (PCM) if it is positive
(aij > 0 for ∀ i and j) and reciprocal (1/aij = aji for ∀ i and j) (Saaty, 1980), which
also indicates that aii = 1 for ∀ i.

Dealing with incomplete data gets more and more attention in the literature.
When some elements of a PCM are missing we call it an incomplete PCM. There
could be many different reasons why these elements are absent, some data could
have been lost or the comparisons are simply not possible (for instance in sports
(Bozóki et al., 2016)).

The most interesting case for us is when the decision makers do not have time,
willingness or the possibility to make all the n(n − 1)/2 comparisons.

In this article we would like to study which comparisons should be made, or
more precisely what patterns of comparisons are recommended in order to get good



2.1 Introduction 37

approximation of the decision makers’ preferences calculated from the whole set of
comparisons. The graph representation of the pairwise comparisons is a natural and
convenient tool to examine our question, thus we will use this throughout the paper.

In many cases the set of comparisons can be adaptive, i.e., the next questions
depend on the answers to the previous ones as in, e.g., Ciomek et al. (2017); Fedrizzi
and Giove (2013); Glickman and Jensen (2005). However, we assume in the paper
that the whole set of comparisons is designed completely before the decision making
process, and we do not have any further prior information about the items to be
compared. Thus the ‘confidence level’ of every single comparison is the same in
our problems, the probability of their ‘errors’ is identical. For instance the (pre-
)compilation of questionnaires in connection with decision making problems can be
named as an indeed common practical example that satisfies these conditions.

There are already known special structures proposed for incomplete pairwise
comparison matrices in the literature, which include:

(i) spanning tree, in particular if one row/column is filled in completely (its
associated graph is the star graph)

(ii) two rows/columns are filled in completely (its associated graph is the union
of two star graphs) (Rezaei, 2015)

(iii) a method of 2-cyclic designs, the union of two edge-disjoint n-cycles, has
been also recommended to select 2n paired comparisons from n number of objects
(Miyake et al., 2003)

(iv) more or less regular graphs, for example the regularity of the comparisons’
graph appears in the designs of McCormick and Bachus (1952) and McCormick and
Roberts (1952).

Regularity results in a kind of symmetry that is also desirable in case of sport
competitions (Csató, 2013), where the number of matches played equals for every
player or team, at least in the first phase (before the knockout stages). This also
appears in other sport tournaments, where they use the so-called Swiss system,
in which besides a lot of other requirements, every player or team plays the same
number of matches (if possible) (Ólafsson, 1990; Biró et al., 2017; Kujansuu et al.,
1999). Thus the resulting representing graph of the comparisons is regular (Csató,
2017).

A special type and extension of regular graphs is considered by Wang and Taka-
hashi (1998). They proposed the (quasi-)strongly regular designs based on (quasi-
)strongly regular graphs in order to select pairs to be compared within incomplete
information. A graph is called strongly regular with parameters (n, k, λ, µ), if each of
the n vertices has degree k, and (i) for any pair of adjacent vertices u and v, the num-
ber of vertices adjacent to both u and v is λ; (ii) for any pair of not adjacent vertices



2.1 Introduction 38

u and v, the number of vertices adjacent to both u and v is µ. Since these properties
are rather restrictive, a linear algebraic generalization, the so called quasi-strongly
regular graphs are also taken into consideration. By simulation, they showed that
both designs give better results (based on a logarithmic distance function defined
on the weight vectors) than other random designs of the same cardinality.

Kułakowski et al. (2019) create an incompleteness index based on the number of
missing pairwise comparisons and their arrangements. Using different kind of Monte
Carlo simulations they conclude that inconsistency and incompleteness both have
crucial effect on sensitivity, and the regularity of the PCM also has a huge effect
both on the quantitative and the qualitative results.

Note that the first three examples above lack regularity. Regularity means that
each item is compared to others for the same number of times (if the cardinality of
the items to compare is odd, one of the degrees can be smaller or greater – in our
analysis, greater – by one), resulting in a kind of symmetry, as we mentioned earlier.
Despite the fact that regularity has been recognized as an important property in
connection with the representing graph of the comparisons, the above-mentioned
examples do not examine it as generally as we do, their definitions on regularity is
more restrictive and their instances are less systematic.

Diameter, the other key concept of the paper besides regularity, shows how far
items can be from each other in the sense that how many comparisons are needed in
order to have an indirect comparison between them. The well known telephone game
or effect (Ribeiro et al., 2019), also known as The Whisper Game (Chatburn, 2013)
shows small errors are cumulated along a sufficiently long series. If a message passes
through a line of people, in a whisper, the original and the final versions differ a lot,
despite the neighboring versions are usually quite similar. A classical example for the
non-transitivity of indifference (Fishburn, 1970) is the addition of very small portions
of sugar to the same cup of coffee. No one can distinguish between two consecutive
steps, however, if this sequence is long enough, the indifference disappears (Luce,
1956).

In the set of connected graphs, diameter can be considered as a measure of
closeness, or a stronger type of connectedness. It is not properly studied in the
literature, however, for instance in Pananjady et al. (2020) the estimation of the
matrix of comparison probabilities is investigated for several graph structures and
some research questions, e.g., on a possible relation of the graph’s diameter and
the worst-case approximation error, are raised. One of our notable findings is to
determine the diameter of the representing graph as a crucial property for filling in
pattern designs of incomplete PCMs.

Note that regular graphs can have large diameter, e.g., a cycle on n vertices
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is 2-regular and has diameter d = ⌊n/2⌋. The star graph, mentioned among the
examples, has minimal diameter 2, but it is far from being regular. Our aim is
to find the graphs, among (quasi-)regular ones, with minimal diameter. We are
especially interested in the smallest nontrivial values of the diameter, namely d = 2
and d = 3. Intuition suggests, and it is confirmed by the graphs found, that for a
fixed n, higher regularity, i.e., more edges, makes the diameter smaller.

The rest of the paper is structured as follows. Basic mathematical concepts
are introduced in Section 2.2. Later on we assume that we know the number n of
alternatives or criteria, it is also a key assumption through our paper that the graph
representing the MCDM problem is k-(quasi-)regular and we also know (or with the
help of the other inputs we can determine) the diameter d of the graph. In Section 2.3
(which is complemented by Appendix A (online)) we provide a systematic collection
of suggested incomplete pairwise comparisons’ patterns with the help of the above-
mentioned inputs and all/some graphs for the examined cases. We would like to
emphasize that this list is a major contribution of our paper. Section 2.4 presents a
motivational example showing that the diameter of a regular graph can be large and
the result can be very sensitive to the errors of the matrix elements. A wide range
of numerical simulations, using the distances of the weights computed with different
filling in patterns respect to the weights calculated from the complete PCMs, is also
provided in order to validate our recommendations. Finally, Section 2.5 concludes
and provides further research questions closely connected to the discussed topic.
Results of Sections 2.3 and 2.4 are given in more details in the appendices. B (online)
includes the recommended graphs themselves. For practitioners, this list might serve
as a ‘recipe’ in designing questionnaires based on pairwise comparisons. Appendix D
(online) includes the results of the comparisons of weight vectors calculated from
the different graphs.

2.2 Basic concepts of the graph representation

The graph representation of paired comparisons has already been used in the 1940s
(Kendall and Babington Smith, 1940). Of course after the widespread application
of PCMs and incomplete PCMs it has become a common method in the literature,
see for instance Blanquero et al. (2006), Csató (2015) or Gass (1998).

Usually in these articles the authors use directed graphs for the representation,
because they distinguish the preferred item from the less preferred one in every
pair. In our approach the only important thing is whether there exists a comparison
between the two elements. This means that we use undirected graphs, where the
vertices denote the criteria or the alternatives. There is an edge between two vertices
if and only if the decision makers made their comparison for the two respective items

https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=2
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=8
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=74
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(the appropriate element of the PCM is known). In order to understand the concepts
so far, there is a small example below:

Example 1 Let us assume that there are 4 criteria (n = 4) and our decision maker
already answered some questions, denoted their locations in the matrix by • and their
reciprocal values by ◦, which lead to the following incomplete PCM:

A =


1 • •
◦ 1 •
◦ 1 •

◦ ◦ 1


This incomplete PCM is represented by the graph in Figure 4.

Figure 4: Graph representation example

As we can see there is no edge between the first and the fourth vertices, where the
PCM has missing values and there is no edge between the second and third vertices,
where the situation is the same. There is an edge between every other pair, where
we have no missing values in the PCM.

It is important to emphasize that as the known elements of the PCM determine
the representing graph, it is also true in the other way around. Thus, the graph in
Figure 4 shows which comparisons are known in the PCM. This is the key property
that we use in this paper, as we present the representing graphs that show the filling
in patterns, the comparisons that should be made. We assume that the representing
graphs are connected and k-(quasi-)regular through our paper, thus we need some
definitions to make these concepts clear.

Definition 13 (Connected graph) In an undirected graph, two vertices u and v

are called connected if the graph contains a path from u to v. A graph is said to be
connected if every pair of vertices in the graph is connected.
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Definition 14 (k-regular graph) A graph is called k-regular if every vertex has
k neighbours, which means that the degree of every vertex is k.

Definition 15 (k-quasi-regular graph) A graph is called k-quasi-regular if ex-
actly one vertex has degree k + 1, and all the other vertices have degree k.

The k-regularity basically means that the vertices are not distinguished, there is
no particular vertex as, for example, in the case of the star graph, thus we would like
to avoid the cases when the elimination of relatively few vertices would lead to the
disintegration of the whole comparison system (Tekile, 2017). Besides regularity, the
connectedness of the representing graph is indeed important, because to approximate
the decision makers’ preferences well, we need to have at least indirect comparisons
between the different criteria, otherwise we cannot say anything about the relation
between certain elements (Bozóki et al., 2010).

However, it is also notable that we would like to avoid the cases when two
items are compared only indirectly through a very long path, because this could
aggregate the small, tolerable errors of the different comparisons and we could end
up with an intolerably large error in the relation between the two elements. Such an
example was found in Tekile (2017), where the graph generated from the table tennis
players’ matches included a long shortest path between two vertices (players), and
the calculated result appeared to be misleading. The diameter of the representing
graph is a very suitable mathematical tool to measure this problem:

Definition 16 (The diameter of a graph) The diameter (denoted by d) of a graph
G is the length of the longest shortest path between any two vertices:

d = max
u,v∈V (G)

ℓ(u, v),

where V (G) denotes the set of vertices of G and ℓ(., .) is the graph distance between
two vertices, namely the length of the shortest path between them.

We also define here the twisted product, a graph construction method that is used
by us extensively to find the proposed graphs:

Definition 17 (Twisted product of two graphs) (Bermond et al. (1982))
Let G = (V, E) and G′ = (V ′, E ′) be two undirected graphs, where V and V ′ are

the vertex sets, while E and E ′ are the edge sets of the respective graphs. Let −→
E

denote the set of arcs in an arbitrary orientation of G. For each arc (i, j) ∈
−→
E , let

π(i,j) be a one to one mapping from V ′ to itself. The twisted product of graphs G and
G′, denoted by G ∗ G′ is defined as follows: its vertex set is the Cartesian product
V × V ′, and there is an edge between vertices (i, i′) and (j, j′) if either [i = j and
(i′, j′) ∈ E ′] or [(i, j) ∈

−→
E and j′ = π(i,j)(i′)].
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Note that the twisted product with π =identity results in the Cartesian product.
Briefly from now on we will examine graphs representing MCDM problems de-

fined by the following inputs: (n, k, d), where n is the number of vertices (criteria),
k shows the level of regularity of the graph and d is the diameter of the graph.

2.3 (Quasi-)regular graphs with minimal diameter

In this section, we present one of the most important findings of the paper, the
examined (quasi-)regular graphs themselves. First of all, it is a key step to deter-
mine which cases are interesting for us considering our inputs. It is important to
emphasize that we deal with unlabelled graphs, because we are trying to find out
what kind of patterns are needed in the comparisons for different instances. Thus if
we exchange the ‘names’ of two criteria (for instance ‘1’ and ‘2’ in Example 1) the
pattern would be the same.

Then we can consider the regularity parameter k. The k = 1 case is possible
only when n is even, but they are not connected except for n = 2, so this is not
interesting for us. When k = 2 there is only one connected graph for every n, namely
the cycle, for which d = ⌊n/2⌋ as already mentioned in the introduction.

The larger regularity parameters could be interesting, but of course we need a
reasonable upper bound for the number of criteria, n, which is also an indirect upper
bound for k. In our research we examined the n = 5, 6, . . . , 24 cases, because on the
one hand for larger n parameters, some computations become very difficult, and on
the other hand the largest 5-regular graph with diameter 2 contains 24 vertices, so
this is a nice theoretical bound, as well. It is also true that in the majority of the
fields of application it is sufficient to examine the number of alternatives (vertices)
up until 24.

The smaller the d parameter is, the more stable or trustworthy our system of
comparisons is. This means that in an optimal case we would like to minimize this
parameter, while the number of the criteria (n) is always a fixed exogenous parameter
in our MCDM problems. As we mentioned above, k is crucial to avoid the cases
when some criteria (vertices) would be too important in the system, however it also
shows us how many comparisons have to be made, because every vertex has a degree
of k, which means the number of edges is nk/2. Thus if our decision makers would
like to spend the shortest time with the creation of the PCM, we should choose a
small k parameter. But, of course, as usually happens in these situations, there is
a trade off between the parameters, because for many criteria (large n) the smaller
regularity (k) will cause a bigger diameter (d), namely, a more fragile system of
comparisons.

In this paper we would like to provide a list of graphs which shows the patterns
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of the comparisons that have to be made in case of different parameters. We used
computational and constructing methods to determine the graph(s) with the small-
est diameter (d parameter) for a given (n, k) pair. With the help of these results it
was easy to determine which k is the smallest that is needed to reach a given d for
a given n. We found that, with the chosen upper bound of n (24) the interesting
values for the regularity are k = 3, 4, 5, while the interesting values for the diameter
of the graph are d = 2, 3. Of course d = 1 would mean a complete graph that is not
reachable for many (n, k) pairs, and it represents a complete PCM, thus it is not
interesting for us. For a general MCDM problem probably instead of k, it would give
more information if we considered an indicator that shows how far we are from the
‘extreme’ case, when the decision makers have to make all the comparisons. This
would mean n(n−1)/2 comparisons instead of our nk/2 in case of regular graphs or
(nk + 1)/2 in case of quasi-regular graphs, therefore the completion ratio is defined
as follows:

c =


nk/2

n(n−1)/2 if n or k is even

(nk+1)/2
n(n−1)/2 if n and k are odd

that we will calculate for every instance.
Here we will present the graphs with the smallest diameter for a given (n, k) pair,

it is important to emphasize that it is recommended to read this section together
with Appendix A, as a large part of our list (Tables 2, A1a, A1b, A2, A3, A4a,
and A4b) takes place there, because of the length of the tables. The finding for the
different graphs in our list consisted of several methods, sources and layers:

1. As a starting reference point, we checked the built in graphs in Wolfram Math-
ematica (Wolfram Research, 2021), which are even complete catalogues in case
of small number of vertices, thus we selected the ones with minimal diameter
among them.

2. For smaller and middle-sized graphs, when Mathematica’s built in examples
cover only a sample of the cases, we used nauty and Traces (McKay and
Piperno, 2014) and IGraph/M (Horvát, 2020) to generate all the possible
(quasi-)regular graphs and select the needed ones.

3. Our results contain many well known graphs as well, like the Petersen graph
(Holton and Sheehan, 1993), that we collected from different kind of articles
indicated in the respective tables as ‘Source’. We also collected further in-
formation, like uniqueness, about those graphs that we got with the help of
Mathematica and are well known cases. We cite these information as ‘See also’
in our tables.

https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=2
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=2
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=3
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=4
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=5
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=6
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=7
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4. For larger graphs we were not able to generate all the possible regular cases,
thus we used several construction techniques such as the twisted product,
integer linear programming or merging and extending methods with the help
of some already known graphs. Many of these cases were challenging and
time-consuming to find, the same idea rarely worked twice.

5. It is also important that as k-quasi-regularity was defined by us, all of the
quasi-regular graphs are our findings (or at least we are the first to use them
in this kind of context), but we do not denote this separately in the tables.

Table 1 presents a table of tables that provides an overview of our list of graphs.

k
n 3 4 5

n = 5, . . . , 10 Table 2
n = 11, . . . , 15 Table A1a Table A2
n = 16, . . . , 20 Table A1b Table A4a
n = 21, . . . , 24 Table A3 Table A4b

Table 1: The summary of our list of graphs: the different sets of graphs based on
the regularity level k and the number of vertices n can be found in the indicated
tables. Lightgray denotes d = 2 and gray denotes d = 3.

Table 2 shows the cases when k = 3 and d = 2 is the minimal value of the
parameter. It is important to note that k = 3 is only possible when n is even, but
when it is odd, we examine 3-quasi-regular graphs, where all vertices have degree 3
except one where it has 4, because these are the closest to 3-regularity.

We can see that with k = 3 the minimal diameter can be 2 until we have 10
vertices. Of course for n ≤ 3 the 3-regularity is not possible, and for n = 4 the
diameter is 1, because this is a complete graph, that is why we skip those in the
table. It is also notable that the completion ratio (c) even reaches 1/3 when we have
10 vertices (it is obviously decreasing in n). We should emphasize the fact that there
are only a few graphs for every (n, k) pair with the minimal diameter. Some of them
are bipartite graphs, which have special spectral properties (Csató, 2015, Lemma 4,
Theorem 2, Proposition 3), and they also indicate that there are two groups which
are always compared through the other ones.

If we go on to larger graphs (n > 10), then we will find that the smallest reachable
diameter changes to d = 3, but it is also true that at first we have so many graphs
that satisfy these properties. However, as we examine the n = 18 or the n = 20
cases, we can see that there is only one graph that fulfils our assumptions (Pratt,

https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=2
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=4
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=3
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=6
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=5
https://ars.els-cdn.com/content/image/1-s2.0-S0305048321001663-mmc1.pdf#page=7
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k=3 Graph Further information

n=5
• c = 8/10 = 0.8

• Unique graph

n=6
3-prism graph

(C3 × K2)

• c = 9/15 = 0.6

• 2 graphs

• Source: Pratt (1996)

• The other solution is the
bipartite graph K3,3

n=7
• c = 11/21 ≈ 0.524

• 4 graphs

n=8

Wagner graph

• c = 12/28 ≈ 0.429

• 2 graphs

• See also: Maharry and
Robertson (2016)

• The other solution is the
X8 graph (Bermond et al.,
1982)

n=9
• c = 14/36 ≈ 0.389

• 2 graphs

n=10

Petersen graph

• c = 15/45 ≈ 0.333

• Unique graph

• See also: Hoffman and Sin-
gleton (1960)

Table 2: k = 3-(quasi-)regular graphs on n vertices with minimal diameter d = 2
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1996). The results in case of larger graphs, with 3-regularity and 3 as the minimal
diameter can be found in Tables A1a and A1b in Appendix A.

As we can see the completion ratio is still decreasing in n and on larger graphs
it can be taken below 0.2. It is also true that we do not need to answer for more
than 30 questions for an MCDM problem even with 20 criteria, which can be indeed
useful.

If we go on to larger graphs, the minimal diameter would change to d = 4,
however, in this paper we only consider the graphs with d ≤ 3, so we discussed
the interesting cases for k = 3. The former results mean that, if we would like to
examine the graphs where k = 4, it is obvious that the minimal diameter would be
2 until n = 10, but it is not so important to make so many comparisons because this
property can be reached with k = 3, as well. Thus for k = 4 the interesting cases
start above 10 vertices, and the question is if we can reach a smaller diameter (a more
stable system of comparisons) with the rise of the answered questions. We found
that with k = 4 we can get 2 as the minimal diameter until n = 15, but for larger
values of n, it will be 3 again, which can be also reached by k = 3, thus we would not
recommend these combinations of parameters. The results for (11 ≤ n ≤ 15, k = 4)
are shown in Table A2. It is also important to note that k = 4 is possible in case of
both odd and even values of n, thus now we do not have to pay special attention to
this.

As we can see, the completion ratio is increasing in k, so we cannot get so small c

values as in Table A1a, however the system of comparisons will be more stable even
on many vertices, because the smallest diameter is 2 here. It is also interesting that,
for larger graphs and regularity levels, the number of connected graphs increases
very rapidly. For instance, when we have 15 vertices, there are 805 491 connected
4-regular graphs (that means 805 491 possible filling patterns of the PCM), and only
one has 2 as its diameter. Our results and methodology has a strong relationship
with the so-called degree/diameter problem that is well known in the literature of
mathematics (Elspas (1964), Dinneen and Hafner (1994), Loz and Širáň (2008)),
but they are looking for the largest possible n for a given diameter and a given
level of maximum degree. Several construction techniques have been proposed for
graphs in connection with the degree/diameter problem (Storwick, 1970; Bermond
et al., 1982; Branković et al., 1998), and one can also find extended tables with the
known results (Comellas and Gómez, 1994). For an indeed extensive summary of the
problem, see Miller and Širáň (2013). The scientific results in this field support our
findings, too, because for (k = 3, d = 2) the largest n is 10, while for (k = 3, d = 3)
it is 20. In the case of (k = 4, d = 2) the largest n is 15, but for (k = 4, d = 3) it is
proven that the largest graph is much above our bound, while the optimal number
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of the vertices in this case is still an open question.
As we mentioned earlier, there is no point in finding 4-regular graphs when

16 ≤ n ≤ 20, thus Table A3 contains the 4-regular graphs for 21 ≤ n ≤ 24 for
which the diameter is 3. When the tables contain ‘≥ . . . graphs’, that means we
have not checked all the possible cases with minimal diameter, but in connection
with decision making problems, it is enough to see that there is one pattern that
satisfies the needed properties.

Finally, we can increase the regularity level to 5 in order to find out if we are
able to get 2 as the smallest diameter for larger graphs. The answer is yes, actually
it is also proven that d = 2 is reachable for 5-regular graphs until 24 vertices, but
of course we are interested in the specific graphs that could help us determine the
adequate comparison patterns. Our results can be found in Tables A4a and A4b.
The k = 5 parameter is only possible when n is even again, so when it is odd, we
let one vertex to have 6 as its degree.

The 5-quasi-regular graph on 21 vertices has been found by us as a twisted
product K3 ∗ X7, where X7 is a graph with diameter 2 on 7 vertices, in which
all vertices have degree 3, except one, where it has 2. The 5-regular graph on 22
vertices has been found by Pratt (2020) with the help of the following integer linear
programming problem:
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Let N = {1, . . . , 22} be the nodes, and let P = {i ∈ N, j ∈ N : i < j} be the set
of node pairs. For (i, j) ∈ P , let binary decision variable Xi,j indicate whether
(i, j) is an edge. For (i, j) ∈ P and k ∈ N \ {i, j}, let binary decision variable
Yi,j,k indicate whether k is a common neighbor of i and j. For (i, j) ∈ P let
binary decision variable SLACKi,j be a slack variable.

min
∑

(i,j)∈P

SLACKi,j

(5)∑
(i,j)∈P :k∈{i,j}

Xi,j = 5 for k ∈ N

(6)

Xi,j +
∑

k∈N\{i,j}
Yi,j,k + SLACKi,j ≥ 1 for (i, j) ∈ P

(7)

Yi,j,k ≤ [i < k]Xi,k + [k < i]Xk,i for (i, j) ∈ P and k ∈ N \ {i, j}
(8)

Yi,j,k ≤ [j < k]Xj,k + [k < j]Xk,j for (i, j) ∈ P and k ∈ N \ {i, j}
(9)

Constraint (2) enforces 5-regularity. Constraint (3) enforces diameter 2. Con-
straints (4) and (5) enforce that Yi,j,k = 1 implies k is a neighbor of i and j,
respectively. A desired graph exists if and only if the integer linear program has
a solution with SLACKi,j = 0 for ∀ (i, j) ∈ P .

The authors of this paper are still looking for a 5-quasi-regular graph on 23
vertices with diameter 2, but managed to find a graph, which has 23 vertices, and
its diameter is 2, but it has one more edge than it should, namely three vertices
have degree 6 and all the others have 5.

As we can see in Tables A4a and A4b there are higher completion ratios again,
and for instance when we have 24 vertices, the decision makers should make 60
comparisons, which in certain situations can be too many. One can also note that
in this table we report that there are some graphs with the needed properties, but
never indicate the number of them. The reason behind this is simple: the very
high number of the potential connected 5-regular graphs (for instance in the case of
n = 24 there are roughly 2 · 1022 possibilities).

This means that we have examined all the cases that we previously called inter-
esting. According to our results, if we use the (n, k, d) parameters, then for smaller
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MCDM problems the k = 3 is enough to get 2 as the diameter of the representing
graph, which leads to a small completion ratio and a stable system of the compar-
isons. In larger problems, when we have more alternatives or criteria, we can choose
if we use k = 3, when the completion ratio is smaller, but our approximation can
be unstable, or choose higher level of regularity (and completion ratio) with more
reliable results. We also showed examples and graphs with the needed properties
for the different cases, which can help anyone in a MCDM problem to decide which
comparisons have to be made. One can find the summary of our results in Table 3,
which shows how many graphs we know for given (n, k, d) parameters. It is also
true that if there is a graph for (n, k, d) in the table, then, on the one hand, no
graph exists with the parameters (n, k, d − 1), and, on the other hand, graphs for
(n, k, D), where D > d, are not counted, and the corresponding cells are left empty.
We omitted the cases when k = 4 and n ≤ 10, because the minimal diameter is
the same as it was in the case of k = 3. There is the same reasoning behind the
emptiness of the table when k = 5 and n ≤ 15. We have not included the cases
when k = 4 and 16 ≤ n ≤ 20, because d = 3 can be achieved by 3-regular graphs,
but for d = 2 at least 5-regularity is needed. We also not included the k = 3 and
n ≥ 20 cases, because we were examining graphs with d = 2 and 3 only.
All the graphs in Tables 2, A1a, A1b, A2, A3, A4a, and A4b are given in several
forms in Appendix B: graph, adjacency matrix (that directly shows which compar-
isons should be made, which PCM elements are required), list of edges and ‘Graph6’
format. The list of edges also present the needed comparisons, for instance the graph
on 5 vertices in Figure B1 in Appendix B (see it also in Table 2) shows that the
decision maker should fill in the following elements of the PCM: a12, a13, a14, a15,
a23, a24, a35 and a45. Upon request the other graphs of each family are available
from the authors in these and other forms, as well.
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k
n 3 4 5
5 1
6 2
7 4
8 2
9 2

10 1
11 134 37
12 34 26
13 353 10
14 34 1
15 290 1
16 14 ≥ 3
17 51 ≥ 1
18 1 ≥ 1
19 4 ≥ 1
20 1 ≥ 1
21 ≥ 3 ≥ 1
22 ≥ 1 ≥ 1
23 ≥ 1 ?
24 ≥ 1 ≥ 1

Table 3: The summary of the results: the number of k-(quasi-)regular graphs on n
nodes with diameter d. Lightgray denotes d = 2 and gray denotes d = 3, ‘≥’ means
that there are at least as many graphs as indicated, but we could not check all the
possible cases.

2.4 Numerical example and simulations

The regularity of the representing graphs has been extensively studied in connection
with incomplete pairwise comparisons’ designs, while the diameter has only been
investigated partially in the literature, as it was mentioned in the introduction. We
would like to present what kind of problems can occur even with regular graphs, if
we do not take into account the diameter, through a motivational example.

A wide range of simulations has also been performed in order to validate our
recommendations, the applied methodology and the gained results are discussed in
many details below. We would like to emphasize that, in this section we rely on the
framework of the pairwise comparison matrices, though, our recommendations can
be adopted in many other fields, as well.
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2.4.1 Simulation methodology

It is important to see if the filling in pattern designs recommended by us are truly
useful, thus we applied extensive simulations to have a better understanding of
the problem. As for the calculation techniques of the weights derived from the
PCMs, we used the well-known Logarithmic Least Squares Method (LLSM) and
the Eigenvector Method based on the CR-minimal completion (CREV) (Bozóki
et al., 2010). We applied two metrics to determine the differences from the weights
calculated from the complete PCMs, that is the Euclidean distance (deuc) and the
maximum absolute distance (dmax, also known as Chebyshev distance), given by the
following formulas:

deuc(u, v) =
√√√√ n∑

i=1
(ui − vi)2

dmax(u, v) = max
i∈1,...,n

|ui − vi|,

where u denotes the weight vector calculated from a certain filling in design, while
v is the weight vector calculated from the complete PCM. u and v are normalized
by ∑n

i=1 ui = 1 and ∑n
i=1 vi = 1, respectively, while vi and ui denote the ith element

of the appropriate vectors.
The process of the simulation for a given (n, k) pair consisted of the following

steps:

1. We generated random n × n complete and consistent pairwise comparison
matrices. The elements of these matrices were given as aij = wi/wj, where
wi ∈ [1, 9] is a uniformly distributed random real number for ∀i.

2. Then we perturbed the elements of our consistent matrices three different ways,
to get inconsistent PCMs with three distinguishable inconsistency levels. We
call these levels weak, modest and strong given with the following formulas:

bij = max
(1

2 , aij + ∆
)

∆ ∈ [−1, 1] (weak)

bij = max
(1

2 , aij + ∆
)

∆ ∈ [−2, 2] (modest)

bij = max
(1

3 , aij + ∆
)

∆ ∈ [−3, 3] (strong)

Where bij is the element of the perturbed matrix, aij is the element of the
consistent matrix, aij ≥ 1, and ∆ is uniformly distributed in the given ranges.
The motivation behind this structure is the following, we can get perturbed
data even from an ordinal point of view, when bij < 1. However, in order to
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get meaningful results, we should use a different scale for the range of (0, 1)
compared to the range of (1, 9] in connection with PCMs, as Figure 5 suggests.
That is why the maximum function and the lower bounds (1/2, 1/2 and 1/3,
respectively) appear in the definition. These element-wise perturbation meth-
ods correlate with the well known Consistency Ratio (CR), as it is shown in
Figure 6. We tested several combinations of parameters, and found that these,
more or less balanced perturbations around 1, result in the most relevant levels
of inconsistency.

Figure 5: The scaling on different ranges

5 6 7 8 9 10
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Number of alternatives/criteria (n)
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The average value of CR

Strong
Modest
Weak

Figure 6: The connections between CR and our element-wise perturbations. Each
point shows the average CR of 1000 randomly generated perturbed pairwise com-
parison matrices.

3. We deleted the respective elements of the matrices in order to get the filling in
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pattern that we were examining, and applied the LLSM and the CREV tech-
niques to get the weights. We always computed the certain designs’ distances
from the weights that we calculated from the complete inconsistent matrices.
We used 1000 PCMs for every level of inconsistency and applied the following
filling in patterns to compare them with each other:

(i) Our recommendations: k-(quasi-)regular graphs of minimal diameter, de-
tailed in Section 2.3 and Appendix A

(ii) Random connected graphs with the same number of edges as our recom-
mendation (1000 graphs per inconsistency level per simulation)

(iii) Connected k-(quasi-)regular graphs, but not of minimal diameter (1000
graphs per simulation)

(iv) Randomly generated, connected, of minimal diameter, but not regular
graphs with the same number of edges (1000 graphs per simulation)

(v) Minimal diameter, modified/extended star graphs with the same number
of edges (1000 graphs per inconsistency level per simulation)

4. Finally, we saved the mean and standard deviation of the distances for the
different weight calculation methods and filling in designs.

We restricted the connected k-(quasi-)regular graphs to the Hamiltonian ones
during the generation. With this we excluded the k-(quasi-)regular graphs with the
largest diameters as well. This was also interesting, because all of our recommenda-
tions in Section 2.3 and Appendix A are Hamiltonian except the Petersen graph and
the Tietze graph, but these two are well-known exceptions (Robinson and Wormald,
1994; Gould, 2003).

In case of (iv), we basically generated random connected graphs and selected the
ones with minimal diameter (the same diameter as our recommendation), until we
had 1000 such graphs, at least in the cases where we have found so many instances
in a reasonably long time.

As for (v), when the diameter of our recommendation was 2, then we generated a
random star graph, and complemented it with the needed number of random edges.
While in case of diameter 3, we did the same, but at the end, we deleted one edge
from the star and replaced it with another one, so that the diameter of the graph
became 3.

It is important to note that we considered only the graph presented in Section 2.3
and Appendix A for a given (n, k) pair in (i), and not all the k-(quasi-)regular graphs
with minimal diameter. This is due to the fact that in many cases we were able to
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find one graph with the needed properties, but could not find all of them or even
could not determine the exact number of such graphs.

Before the results of the simulations, we show a motivational example, in which
we compare two different filling in pattern designs similarly as in the case of the
simulations. This numerical instance shows that it is also important to take into
account the minimal diameter property, and not just regularity.

2.4.2 Motivational example

Let us demonstrate the simulation process, as well as the importance of the diameter,
when we have 10 alternatives, and we examine only two different filling in structures.

We generate 1000 n × n consistent PCMs with elements aij = wi/wj, where
wi, wj ∈ [1, 9] are uniformly distributed random real numbers. Then we perturb all
of the elements of these PCMs three different ways as described in Equations weak,
modest and strong.

We would like to compare the differences of the calculated weights from the ones
that we get from these complete perturbed PCMs, when we consider the two filling
in patterns represented by the graphs in Figure 7. The filling structures related
to these graphs can be seen in Table 4, which means that we delete all the other
elements, when we compute the weights according to the given pattern.

(a) An alternative 3-regular graph (b) Our recommendation: the Petersen graph

Figure 7: The graph representation of two 3-regular designs

As for the two representing graphs, the Petersen graph has minimal diameter
among 3-regular graphs on 10 vertices, its diameter is 2, while the Alternative 3-
regular graph’s diameter is 5. As one can see there are common elements of the
two filling in patterns, as for instance the bridge-edge between vertices 1 and 6 (a16,
bridge set (Csató and Tóth, 2020)), which connects the two symmetric components
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1 2 3 4 5 6 7 8 9 10

1 1 b12 b14 b16

2 1
b12

1 b23 b25

3 1
b23

1 b34 b35

4 1
b14

1
b34

1 b45

5 1
b25

1
b35

1
b45

1

6 1
b16

1 b67 b69

7 1
b67

1 b78 b710

8 1
b78

1 b89 b810

9 1
b69

1
b89

1 b910

10 1
b710

1
b810

1
b910

1

1 2 3 4 5 6 7 8 9 10

1 1 b13 b14 b16

2 1 b24 b25 b27

3 1
b13

1 b35 b38

4 1
b14

1
b24

1 b49

5 1
b25

1
b35

1 b510

6 1
b16

1 b67 b610

7 1
b27

1
b67

1 b78

8 1
b38

1
b78

1 b89

9 1
b49

1
b89

1 b910

10 1
b510

1
b610

1
b910

1

Table 4: The known elements of the given PCM in case of the two different filling in
patterns represented by the graphs in Figure 7. The design related to the Alternative
graph can be seen to the left, while the filling structure of the Petersen graph is shown
in the PCM to the right.

of the Alternative graph. It is also worth to mention that the special structure of
this graph (also highlighted by the two separate parts of the related PCM in Table 4)
ensures that the weights of 1 and 6 are always determined exactly by b16.

Table 5 summarizes the mean (denoted by M) and the standard deviation (σ)
of distances (deuc and dmax) of the weights calculated from the two filling patterns
respect to the complete case for the three inconsistency (perturbation) levels (Weak,
Modest and Strong).

Weak LLSM
deuc M

CREV
deuc M

LLSM
dmax M

CREV
dmax M

LLSM
deuc σ

CREV
deuc σ

LLSM
dmax σ

CREV
dmax σ

Petersen 0.0424 0.0422 0.0275 0.0274 0.0285 0.0283 0.0193 0.0191
Alternative 0.0605 0.0604 0.0370 0.0369 0.0468 0.0467 0.0286 0.0285

Modest
Petersen 0.0673 0.0669 0.0450 0.0445 0.0378 0.0376 0.0278 0.0274
Alternative 0.0956 0.0956 0.0604 0.0602 0.0610 0.0611 0.0400 0.0399

Strong
Petersen 0.0967 0.0952 0.0665 0.0652 0.0527 0.0519 0.0402 0.0390
Alternative 0.1318 0.1314 0.0881 0.0877 0.0825 0.0826 0.0590 0.0592

Table 5: The average distances and their standard deviation for the different designs.
The following notations are used: M-mean, σ-standard deviation, ‘Weak’, ‘Modest’ and

‘Strong’ refer to the level of perturbation.

One can see that there are significant contrasts between the outcomes of the
examined filling in patterns. In case of both the Euclidean and maximum absolute
(Chebyshev) metrics, the distances of the weights computed from the Alternative
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graph respect to the ones we got from the complete PCM are approximately 1.5
times larger, than the same for the Petersen graph, however both the relative and
absolute differences are smaller in case of the absolute maximum distance. The
same results are true when we consider the standard deviation of the distances.
This means that the Petersen graph tends to provide small errors and a consistent
performance (small standard deviation) depending on the perturbations, compared
to the filling pattern represented by the Alternative graph.

We think that this example can give a deeper understanding of the simulation
method. Besides that, the main message of this sub-section is that, one should
consider the diameter of the graph as an important parameter in these designs,
because even among regular graphs, there can be large differences.

2.4.3 Simulation results

The results of the simulations seem to mainly depend on the value of k, and barely
on n, as well as the patterns of the outcomes seem to be the same for every case.

The tables for all parameters (n, k, d) calculated are available in Appendix D,
while we have chosen to visualize only the following representative examples: (n =
16, k = 3, d = 3), (n = 11, k = 4, d = 2) and (n = 24, k = 5, d = 2). The first
one is the largest 3-regular case, where we could apply (iv), and it is the only one
that can be found in the main text due to the length of the figures. The second
one is the smallest 4-regular, and the last one is the largest 5-regular case that
we examined. The results of the simulations for them are shown in Figures 8, C1
and C2, respectively, and it is also recommended to read this section together with
Appendix C, as the latter two cases are presented there. The figures show the mean
of the different metrics (M) and the standard deviation (σ) as well. We refer to the
different levels of the perturbation as ‘Weak’, ‘Modest’ and ‘Strong’, as before.

It is clear from the outcomes of the simulations that the stronger perturbation
causes larger distances, and the higher regularity level leads to smaller differences.
As one can see, our recommendations have the smallest means and standard devia-
tions among the different designs in case of both metrics and both weight calculation
methods for every (n, k) pair, which suggests that the results are not solely depen-
dent on the used techniques and parameters. The smallest mean shows that the
k-(quasi-)regular graphs with minimal diameter provide the closest weights to the
complete PCM on an average level. On the other hand, the smallest standard devi-
ation also implies that our recommendations are commonly not connected to huge
errors, and that these filling in pattern designs perform at a very consistent level
regarding the deviations from the results of the complete PCMs. It is also true that
the randomly generated minimal diameter graphs (denoted by (iv)) tend to have
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Figure 8: The results of the simulation for (n = 16, k = 3, d = 3)
The following notations are used: M–mean, σ–standard deviation, deuc–Euclidean

distance, dmax–maximum absolute distance, ‘Weak’, ‘Modest’ and ‘Strong’ refer to the
level of perturbation. See Table D13 in Appendix D for numerical details.
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smaller means and standard deviations compared to the simple random graphs.
Again, this suggests that, the diameter of the representing graph is relevant. The
k-(quasi-)regular graphs (denoted by (iii)) always have the second smallest means
and standard deviations in their distances, thus the already known fact, that reg-
ularity is a key property, confirmed here as well. It is also important to note that
we have excluded the k-(quasi-)regular cases with the largest diameters, because
of the Hamiltonian construction as we mentioned earlier, thus we expect random
(quasi-)regular graphs to have a bit even ‘worse’ results compared to our recommen-
dations. The case of the modified star graphs (denoted by (v)) is interesting. In case
of k = 3, they always have smaller means and standard deviations compared to the
simple random graphs, but for k = 4 they always have larger means, and in some
cases even their standard deviations are higher. For k = 5 the modified star graphs
tend to have the largest means and standard deviations among the examined de-
signs. This also suggests that considering only the diameter is not sufficient in these
problems. Finally, we would like to emphasize that these patterns and findings, are
the very same for all studied (n, k) pairs, especially regarding the dominance of the
k-(quasi-)regular graphs, thus our recommendations seem to perform indeed well in
the framework of pairwise comparison matrices.

2.5 Conclusions and further research

2.5.1 Summary

The main contribution of the paper is a systematic collection of recommended filling
patterns of incomplete pairwise comparisons’ using the graph representation of the
PCMs. The proposed (quasi)-regular graphs with minimal diameter have not only
pure graph theoretical relevance, but their importance in multicriteria decision mak-
ing is also demonstrated via the comparisons to other incomplete filling in patterns
of the same cardinality.

Graphs are included in several formats in Appendix B, which can show practi-
tioners the comparisons that should be made, i.e. the PCM elements to be filled in.
We presented our results using the number n of criteria or alternatives, regularity
level k and diameter d of the representing graph as parameters. We identified the
diameter, that was missing from the relevant literature of decision theory and pref-
erence modelling, as an important parameter in these problems. It has been shown
that relatively small diameters d = 2, 3 can be achieved with relatively small com-
pletion ratios, and examples has been provided for every case up until 24 vertices.

We also validated our recommendations with the help of numerical simulations.
1000 perturbed PCMs were used in case of 3 different inconsistency (perturbation)
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levels to compare several filling in patterns with the proposed ones for every ex-
amined parameter combinations (all in all 34). The recommended filling structures
provided the closest weight vectors to the complete case on average, with the small-
est standard deviation, according to 2 distances (Euclidean and Chebyshev), in case
of both the incomplete LLSM and Eigenvector weight calculation techniques (for de-
tailed results of all parameter combinations, see Appendix D). Examples also show
that neither regularity nor small diameter is sufficient on its own, both of these
properties are needed.

2.5.2 Limitations and further research

Simulations show that the proposed (quasi)-regular graphs with minimal diameter
are better, in the sense of the metrics we considered, than e.g., the random ones,
or the ones having only one of the two properties, regularity and minimal diameter,
instead of both. However, it certainly does not mean that other, yet undiscovered
or unidentified structures could not be even better.

The investigation of the robustness of the results, namely what is ‘between’ the
different regularity levels (when the degrees of different vertices are not the same),
could be the topic of a further research, as well as the cases with larger minimal
diameters. Similarly, what is between diameters d + 1 and d, in particular 2 and 1
(i.e. the complete graph)? According to Tables 2, A2, A4a and A4b, diameter 2 is
achieved at relatively low completion ratios, especially for larger n parameters, so
the game of having better weight vectors by adding more comparisons is continuing
rather than ending at d = 2, as the values in Tables D2–D7, D18–D22 and D27–D35
show.

It is also an interesting problem to concentrate directly on the completion ratio
as a parameter instead of the regularity of the representing graph. If the (n, c) pair
is given (and (n − 1)c, the average degree is not necessarily integer), then which
comparisons should be made?

Our approach definitely has a strong connection with other metrics based on
the lengths of shortest paths (e.g. their average) as well as centrality measures
(Chebotarev and Gubanov, 2020). When there are several graphs with the needed
properties, we can reduce their number based on some chosen centrality measures.
We would like to deal with these questions in our future works.

Group decision making (Oliva et al., 2019) is a potential application area of our
results, as we may assume that the individual preferences can be colorful enough, so
we cannot suppose any prior information. In other words: we treat the items to be
compared in a symmetric way, therefore our recommended graphs can be applied.

Although our results were presented within the framework of pairwise compari-
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son matrices, they are applicable in a wider range. A lot of other models based on
pairwise comparisons can utilize our findings. For example ranking of sport play-
ers or teams based on their matches leads to the problem of tournament design:
which pairs should play against each other (without the use of prior knowledge or
estimation of their strength)?

Acknowledgments

The authors thank the valuable comments and suggestions of the anonymous
Reviewers. The comments of János Fülöp, László Csató, Gabriele Oliva, Michele
Fedrizzi, Matteo Brunelli and Konrad Kułakowski are greatly acknowledged. Special
thanks to Robert W. Pratt for his help in finding a 5-regular graph on 22 vertices
and searching for a 5-quasi-regular graph on 23 vertices, with diameter two. The
research of S. Bozóki and Zs. Szádoczki was supported by the Hungarian National
Research, Development and Innovation Office (NKFIH) under Grant NKFIA ED
18-2-2018-0006. Zs. Szádoczki was supported by the ÚNKP-21-3-II-CORVINUS-19
New National Excellence Program of the Ministry for Innovation and Technology
from the source of the National Research, Development and Innovation Fund.

Supplementary material

Supplementary material associated with this article can be found, in the online
version, at https://doi.org/10.1016/j.omega.2021.102557.

References

Bermond, J., Delorme, C., and Farhi, G. (1982). Large graphs with given degree and
diameter III. In Bollobás, B., editor, Graph Theory, volume 62 of North-Holland
Mathematics Studies, pages 23–31. North-Holland. https://doi.org/10.1016/S030
4-0208(08)73544-8.

Biró, P., Fleiner, T., and Palincza, R. P. (2017). Designing chess pairing mecha-
nisms. In Frank, A., Recski, A., and Wiener, G., editors, Proceedings of the 10th
Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications,
pages 77–86. http://real.mtak.hu/80729/7/jXaio4T11ygd57-77-86.pdf.

Blanquero, R., Carrizosa, E., and Conde, E. (2006). Inferring efficient weights from
pairwise comparison matrices. Mathematical Methods of Operations Research,
64(2):271–284. https://doi.org/10.1007/s00186-006-0077-1.

https://doi.org/10.1016/j.omega.2021.102557
https://doi.org/10.1016/S0304-0208(08)73544-8
https://doi.org/10.1016/S0304-0208(08)73544-8
http://real.mtak.hu/80729/7/jXaio4T11ygd57-77-86.pdf
https://doi.org/10.1007/s00186-006-0077-1


REFERENCES 61

Bozóki, S., Csató, L., and Temesi, J. (2016). An application of incomplete pairwise
comparison matrices for ranking top tennis players. European Journal of Opera-
tional Research, 248(1):211–218. https://doi.org/10.1016/j.ejor.2015.06.069.

Bozóki, S., Fülöp, J., and Rónyai, L. (2010). On optimal completion of incomplete
pairwise comparison matrices. Mathematical and Computer Modelling, 52(1):318–
333. https://doi.org/10.1016/j.mcm.2010.02.047.

Branković, L., Miller, M., Plesník, J., Ryan, J., and Širaň, J. (1998). Large graphs
with small degree and diameter: A voltage assignment approach. The Australasian
Journal of Combinatorics, 18:65–76. https://ajc.maths.uq.edu.au/pdf/18/ocr-a
jc-v18-p65.pdf.

Chatburn, R. (2013). The whisper game. Respiratory Care, 58(11):paper 157.
http://rc.rcjournal.com/content/respcare/58/11/e157.full.pdf.

Chebotarev, P. and Gubanov, D. (2020). How to choose the most appropriate
centrality measure? https://arxiv.org/abs/2003.01052.

Ciomek, K., Kadziński, M., and Tervonen, T. (2017). Heuristics for selecting pair-
wise elicitation questions in multiple criteria choice problems. European Journal
of Operational Research, 262(2):693–707. https://doi.org/10.1016/j.ejor.2017.04
.021.

Comellas, F. and Gómez, J. (1994). New large graphs with given degree and diam-
eter. https://arxiv.org/abs/math/9411218.

Csató, L. (2013). Ranking by pairwise comparisons for Swiss-system tournaments.
Central European Journal of Operations Research, 21(4):783–803. https://doi.or
g/10.1007/s10100-012-0261-8.

Csató, L. (2015). A graph interpretation of the least squares ranking method. Social
Choice and Welfare, 44(1):51–69. https://doi.org/10.1007/s00355-014-0820-0.

Csató, L. (2017). On the ranking of a Swiss system chess team tournament. Annals of
Operations Research, 254(1-2):17–36. https://doi.org/10.1007/s10479-017-2440-4.

Csató, L. and Tóth, Cs. (2020). University rankings from the revealed preferences
of the applicants. European Journal of Operational Research, 286(1):309–320.
https://doi.org/10.1016/j.ejor.2020.03.008.

Davidson, R. and Farquhar, P. (1976). A bibliography on the method of paired
comparisons. Biometrics, 32(2):241–252. https://www.jstor.org/stable/2529495.

https://doi.org/10.1016/j.ejor.2015.06.069
https://doi.org/10.1016/j.mcm.2010.02.047
https://ajc.maths.uq.edu.au/pdf/18/ocr-ajc-v18-p65.pdf
https://ajc.maths.uq.edu.au/pdf/18/ocr-ajc-v18-p65.pdf
http://rc.rcjournal.com/content/respcare/58/11/e157.full.pdf
https://arxiv.org/abs/2003.01052
https://doi.org/10.1016/j.ejor.2017.04.021
https://doi.org/10.1016/j.ejor.2017.04.021
https://arxiv.org/abs/math/9411218
https://doi.org/10.1007/s10100-012-0261-8
https://doi.org/10.1007/s10100-012-0261-8
https://doi.org/10.1007/s00355-014-0820-0
https://doi.org/10.1007/s10479-017-2440-4
https://doi.org/10.1016/j.ejor.2020.03.008
https://www.jstor.org/stable/2529495


REFERENCES 62

Dinneen, M. J. and Hafner, P. R. (1994). New results for the degree/diameter
problem. Networks, 24(7):359–367. https://doi.org/10.1002/net.3230240702.

Elspas, B. (1964). Topological constraints on interconnection-limited logic. Pro-
ceedings. 5th Annual IEEE Symposium on Switching Circuit Theory and Logical
Design, Princeton, New Jersey, USA, pages 133–137. https://doi.org/10.1109/
SWCT.1964.27.

Fedrizzi, M. and Giove, S. (2013). Optimal sequencing in incomplete pairwise com-
parisons for large dimensional problems. International Journal of General Sys-
tems, 42(4):366–375. https://doi.org/10.1080/03081079.2012.755523.

Fishburn, P. (1970). Intransitive indifference in preference theory: A survey. Oper-
ations Research, 18(2):207–228. https://www.jstor.org/stable/168680.

Gass, S. (1998). Tournaments, transitivity and pairwise comparison matrices. Jour-
nal of the Operational Research Society, 49(6):616–624. https://www.tandfonlin
e.com/doi/abs/10.1057/palgrave.jors.2600572.

Glickman, M. E. and Jensen, S. T. (2005). Adaptive paired comparison design.
Journal of Statistical Planning and Inference, 127(1-2):279–293. https://doi.org/
10.1016/j.jspi.2003.09.022.

Gould, R. J. (2003). Advances on the Hamiltonian problem – A Survey. Graphs and
Combinatorics, 19:7–52. https://doi.org/10.1007/s00373-002-0492-x.

Hoffman, A. J. and Singleton, R. R. (1960). On Moore graphs with diameters 2 and
3. IBM Journal of Research and Development, 4:497–504. https://doi.org/10.114
7/rd.45.0497.

Holton, D. A. and Sheehan, J. (1993). The Petersen Graph. Australian Mathematical
Society Lecture Series. Cambridge University Press. https://doi.org/10.1017/CB
O9780511662058.

Horvát, S. (2020). IGraph/M. An immediately usable version of this software is
accessible from its GitHub repository. https://doi.org/10.5281/zenodo.3739056.

Kendall, M. G. and Babington Smith, B. (1940). On the method of paired compar-
isons. Biometrika, 31(3/4):324–345. https://doi.org/10.2307/2332613.

Kujansuu, E., Lindberg, T., and Mäkinen, E. (1999). The stable roommates problem
and chess tournament pairings. Divulgaciones Matemáticas, 7(1):19–28. https:
//www.emis.de/journals/DM/v71/art3.pdf.

https://doi.org/10.1002/net.3230240702
https://doi.org/10.1109/SWCT.1964.27
https://doi.org/10.1109/SWCT.1964.27
https://doi.org/10.1080/03081079.2012.755523
https://www.jstor.org/stable/168680
https://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2600572
https://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2600572
https://doi.org/10.1016/j.jspi.2003.09.022
https://doi.org/10.1016/j.jspi.2003.09.022
https://doi.org/10.1007/s00373-002-0492-x
https://doi.org/10.1147/rd.45.0497
https://doi.org/10.1147/rd.45.0497
https://doi.org/10.1017/CBO9780511662058
https://doi.org/10.1017/CBO9780511662058
https://doi.org/10.5281/zenodo.3739056
https://doi.org/10.2307/2332613
https://www.emis.de/journals/DM/v71/art3.pdf
https://www.emis.de/journals/DM/v71/art3.pdf


REFERENCES 63

Kułakowski, K., Szybowski, J., and Prusak, A. (2019). Towards quantification of
incompleteness in the pairwise comparisons methods. International Journal of
Approximate Reasoning, 115:221–234. https://doi.org/10.1016/j.ijar.2019.10.002.

Loz, E. and Širáň, J. (2008). New record graphs in the degree-diameter problem.
The Australasian Journal of Combinatorics, 41:63–80. http://ajc.maths.uq.edu.a
u/pdf/41/ajc_v41_p063.pdf.

Luce, R. (1956). Semiorders and a theory of utility. Econometrica, 24(2):178–191.
https://www.jstor.org/stable/pdf/1905751.pdf.

Maharry, J. and Robertson, N. (2016). The structure of graphs not topologically
containing the Wagner graph. Journal of Combinatorial Theory, Series B, 121:398
– 420. https://doi.org/10.1016/j.jctb.2016.07.011.

McCormick, E. and Bachus, J. (1952). Paired comparison ratings: 1. The effect
on ratings of reductions in the number of pairs. Journal of Applied Psychology,
36(3):123–127. https://doi.org/10.1037/h0054842.

McCormick, E. and Roberts, W. (1952). Paired comparison ratings: 2. The reliabil-
ity of ratings based on partial pairings. Journal of Applied Psychology, 36(3):188–
192. https://doi.org/10.1037/h0055956.

McKay, B. D. and Piperno, A. (2014). Practical graph isomorphism, II. Journal of
Symbolic Computation, 60(0):94–112. https://doi.org/10.1016/j.jsc.2013.09.003.

Miller, M. and Širáň, J. (2013). Moore graphs and beyond: A survey of the de-
gree/diameter problem. Electronic Journal of Combinatorics, 20(2):1–92. https:
//doi.org/10.37236/35.

Miyake, C., Harima, S., Osawa, K., and Shinohara, M. (2003). 2-cyclic design
in AHP. Journal of the Operations Research Society of Japan, 46(4):429–447.
https://doi.org/10.15807/jorsj.46.429.

Ólafsson, S. (1990). Weighted matching in chess tournaments. Journal of the Oper-
ational Research Society, 41(1):17–24. https://doi.org/10.2307/2582935.

Oliva, G., Scala, A., Setola, R., and Dell’Olmo, P. (2019). Opinion-based optimal
group formation. Omega, 89:164–176. https://doi.org/10.1016/j.omega.2018.10.
008.

https://doi.org/10.1016/j.ijar.2019.10.002
http://ajc.maths.uq.edu.au/pdf/41/ajc_v41_p063.pdf
http://ajc.maths.uq.edu.au/pdf/41/ajc_v41_p063.pdf
https://www.jstor.org/stable/pdf/1905751.pdf
https://doi.org/10.1016/j.jctb.2016.07.011
https://doi.org/10.1037/h0054842
https://doi.org/10.1037/h0055956
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.37236/35
https://doi.org/10.37236/35
https://doi.org/10.15807/jorsj.46.429
https://doi.org/10.2307/2582935
https://doi.org/10.1016/j.omega.2018.10.008
https://doi.org/10.1016/j.omega.2018.10.008


REFERENCES 64

Pananjady, A., Mao, C., Muthukumar, V., Wainwright, M., and Courtade, T.
(2020). Worst-case versus average-case design for estimation from partial pair-
wise comparisons. Annals of Statistics, 48(2):1072–1097. https://doi.org/10.121
4/19-AOS1838.

Pratt, R. W. (1996). The complete catalog of 3-regular, diameter-3 planar graphs.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.9058&rep=rep1&t
ype=pdf.

Pratt, R. W. (2020). Personal communication. https://math.stackexchange.com/q
uestions/3745954/how-to-construct-a-5-regular-graph-with-diameter-2-on-22-v
ertices.

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53:49–
57. https://doi.org/10.1016/j.omega.2014.11.009.

Ribeiro, M., Gligoric, K., and West, R. (2019). Message distortion in information
cascades. In Proceedings of The World Wide Web Conference - WWW’19, page
681–692. http://doi.org/10.1145/3308558.3313531.

Robinson, R. W. and Wormald, N. C. (1994). Almost all regular graphs are Hamil-
tonian. Random Structures & Algorithms, 5(2):363–374. https://doi.org/10.100
2/rsa.3240050209.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York.

Storwick, R. M. (1970). Improved construction techniques for (d, k) graphs. IEEE
Transactions on Computers, C-19(12):1214–1216. https://doi.org/10.1109/T-C.1
970.222861.

Tekile, H. A. (2017). Incomplete pairwise comparison matrices in multi-criteria
decision making and ranking. Master’s thesis, Central European University. https:
//mathematics.ceu.edu/sites/mathematics.ceu.hu/files/attachment/basicpage/
29/thesishailemariam.pdf.

Thurstone, L. (1927). A law of comparative judgment. Psychological Review,
34(4):273–286. https://doi.org/10.1037/h0070288.

Wang, K. and Takahashi, I. (1998). How to select paired comparisons in AHP of
incomplete information – strongly regular graph design. Journal of the Operations
Research Society of Japan, 41(2):311–328. https://doi.org/10.15807/jorsj.41.311.

Wolfram Research, I. (2021). Mathematica, Version 12.3. Champaign, IL, 2021.
https://www.wolfram.com/mathematica.

https://doi.org/10.1214/19-AOS1838
https://doi.org/10.1214/19-AOS1838
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.9058&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.9058&rep=rep1&type=pdf
https://math.stackexchange.com/questions/3745954/how-to-construct-a-5-regular-graph-with-diameter-2-on-22-vertices
https://math.stackexchange.com/questions/3745954/how-to-construct-a-5-regular-graph-with-diameter-2-on-22-vertices
https://math.stackexchange.com/questions/3745954/how-to-construct-a-5-regular-graph-with-diameter-2-on-22-vertices
https://doi.org/10.1016/j.omega.2014.11.009
http://doi.org/10.1145/3308558.3313531
https://doi.org/10.1002/rsa.3240050209
https://doi.org/10.1002/rsa.3240050209
https://doi.org/10.1109/T-C.1970.222861
https://doi.org/10.1109/T-C.1970.222861
https://mathematics.ceu.edu/sites/mathematics.ceu.hu/files/attachment/basicpage/29/thesishailemariam.pdf
https://mathematics.ceu.edu/sites/mathematics.ceu.hu/files/attachment/basicpage/29/thesishailemariam.pdf
https://mathematics.ceu.edu/sites/mathematics.ceu.hu/files/attachment/basicpage/29/thesishailemariam.pdf
https://doi.org/10.1037/h0070288
https://doi.org/10.15807/jorsj.41.311
https://www.wolfram.com/mathematica


REFERENCES 65

Zahedi, F. (1986). The analytic hierarchy process: A survey of the method and its
applications. Interfaces, 16(4):96–108. https://doi.org/10.1287/inte.16.4.96.

https://doi.org/10.1287/inte.16.4.96


66

3 Study II. Incomplete pairwise comparison ma-
trices based on graphs with average degree ap-
proximately 3

Authors: Zsombor Szádoczki, Sándor Bozóki, Patrik Juhász, Sergii V. Kadenko,
Vitaliy Tsyganok

Published in Annals of Operations Research, 326(2): 783-807. (2023)

https://doi.org/10.1007/s10479-022-04819-9

Abstract

A crucial, both from theoretical and practical points of view, problem
in preference modelling is the number of questions to ask from the decision
maker. We focus on incomplete pairwise comparison matrices based on graphs
whose average degree is approximately 3 (or a bit more), i.e., each item is com-
pared to three others in average. In the range of matrix sizes we considered,
n = 5, 6, 7, 8, 9, 10, this requires from 1.4n to 1.8n edges, resulting in comple-
tion ratios between 33% (n = 10) and 80% (n = 5). We analyze several types
of union of two spanning trees (three of them building on additional ordinal
information on the ranking), 2-edge-connected random graphs and 3-(quasi-
)regular graphs with minimal diameter (the length of the maximal shortest
path between any two vertices). The weight vectors are calculated from the
natural extensions, to the incomplete case, of the two most popular weighting
methods, the eigenvector method and the logarithmic least squares. These
weight vectors are compared to the ones calculated from the complete matrix,
and their distances (Euclidean, Chebyshev and Manhattan), rank correlations
(Kendall and Spearman) and similarity (Garuti, cosine and dice indices) are
computed in order to have cardinal, ordinal and proximity views during the
comparisons. Surprisingly enough, only the union of two star graphs centered
at the best and the second best items perform well among the graphs using
additional ordinal information on the ranking. The union of two edge-disjoint
spanning trees is almost always the best among the analyzed graphs.

Keywords: Pairwise comparison, Incomplete pairwise comparison matrix, Graph of
comparisons, Filling in pattern
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3.1 Introduction

Given n items (in multi-attribute decision making, typically criteria, alternatives,
voting powers of decision makers, subjective probabilities, levels of performance
with respect to a fixed criterion etc.), the structure of pairwise comparisons is often
represented by graphs (Gass, 1998). The minimally sufficient number of comparisons
in order to have a connected system of preferences is n − 1, and the pairs of items
compared can be associated to the edges of a spanning tree on n nodes. This system
has no redundance at all, and the calculated weight vector is highly sensitive to the
change of any comparison. Observe that the average degree in a spanning tree is
(2n − 2)/n = 2 − 2/n, i.e., every item is compared to (almost) 2 other items in
average. We would like to keep the number of comparisons low, namely around the
average degree 3 or a bit more, and compare the weight vectors calculated from
several such graphs to determine the best filling in pattern that provides the closest
weights to the ones computed from the complete matrix.

In our research predetermined graphs are used, thus we assume that the set of
comparisons can be chosen, and the whole questionnaire should be prepared a priori.

Some of the examined models also use additional ordinal information, thus the
evaluation of this information is a main contribution of our study as well.

Our aim is to gain as much information from the decision maker’s revealed pref-
erences as possible. We would like to find out if there is better ordinal information
than the one usually used by multi-attribute decision making models, and whether
we can find better solutions even without additional ordinal information. The pa-
per deals with specified numbers of comparisons, however, the key question remains
valid for all incomplete pairwise comparison matrices.

The remainder of this paper is organized as follows. Section 3.2 provides a brief
summary of the related literature and research gaps. The used methodology is de-
tailed in Section 3.3, where besides the method of pairwise comparisons, as well as
the relevant graph theoretical concepts (Section 3.3.1), the applied simulation pro-
cess to compare the different models is also included (Section 3.3.2). The analyzed
models and the associated filling in patterns are presented in Section 3.4, while Sec-
tion 3.5 shows the obtained results. Finally, Section 3.6 concludes and raises some
further research questions.

3.2 Literature review

The main goal of multi-attribute decision making (MADM) is to determine the best
or the best few, perhaps the complete ranking of the discrete number of alternatives
based on a finite number of (usually conflicting) qualitative and/or quantitative
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criteria (Triantaphyllou, 2000a).
It is not uncommon that the MADM models use some part of the ordinal in-

formation of the ranking of items from the decision maker at the beginning of the
process as well, namely the best, the worst or both alternatives. The most popular
such methodologies are the SMART (simple multi-attribute rating technique) (Ed-
wards, 1977), the Swing method (von Winterfeldt and Edwards, 1986), the SMARTS
(SMART using Swings) and the SMARTER (SMART Exploiting Ranks) (Edwards
and Barron, 1994; Mustajoki et al., 2005), and last but not least the best-worst
method (Rezaei, 2015). The latter one generated an indeed large literature in the
last few years (Mi et al., 2019), with theoretical extensions and studies (Liang et al.,
2020; Mohammadi and Rezaei, 2020) as well as real applications (Rezaei et al.,
2016). However, the significance of the ordinal information used by these models
has barely been studied.

One of the most fundamental concepts of MADM is the method of the pairwise
comparisons (Thurstone, 1927). It is also the cornerstone of the indeed popular and
widely used methodology of the Analytic Hierarchy Process (AHP) (Saaty, 1977),
where these comparisons form a pairwise comparison matrix (PCM).

The incomplete case of PCMs was originally proposed by (Harker, 1987) to reduce
the number of questions in the AHP, especially in group decision making. Since
that besides their application for different problems (Bozóki et al., 2016), many
aspects of incomplete PCMs has been examined in detail from the inconsistency
measures (Szybowski et al., 2020) and their thresholds (Ágoston and Csató, 2022)
to different optimal completions (Zhou et al., 2018; Fedrizzi and Giove, 2007). As
answering all the questions is time-consuming, there were several proposal to solve
this problem (Triantaphyllou, 2000b). Based on Revilla and Ochoa (2017) if we ask
the respondents, they clearly prefer shorter (with a maximum length of 20 minutes)
questionnaires and surveys, while longer questionnaires result in lower data quality
as well (Deutskens et al., 2004). These time spans more or less correspond to the
number of questions included in our models. We focus on a similar problem as the
reduction of comparisons, however, we assume that the whole questionnaire has to be
prepared before the decision making process and we cannot ask the decision makers
to modify some answers, thus our approach is in some sense similar to Amenta et al.
(2021). There are only a few research dealing with the question that which pattern
of comparisons should we use in a given problem (Szádoczki et al., 2022), and to our
knowledge, none of them regards additional ordinal information as well, thus this
paper would like to fill in this research gap. The comparison of different priority
vectors has an important role in our study, which has been also used in the different
optimizations of aggregation of group preferences (Duleba et al., 2021) and in several
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weight calculation problems (Kou and Lin, 2014).

3.3 Methodology

3.3.1 Pairwise comparisons and their graph representation

The pairwise comparison matrix technique can be applied in decision problems both
to determine the weights of the different criteria and to evaluate the alternatives
according to a criterion.

Definition 18 (Pairwise comparison matrix (PCM)) Let us denote the num-
ber of criteria (alternatives) in a decision problem by n. The n × n matrix A = [aij]
is called a pairwise comparison matrix, if it is positive (aij > 0 for ∀ i and j) and
reciprocal (1/aij = aji for ∀ i and j).

The general element of a PCM aij shows how many times item i is better/larg-
er/stronger/more important than item j.

There are several techniques to calculate a weight vector from a PCM that shows
the importance of compared items. Probably the two most commonly used methods
are the logarithmic least squares (LLSM) (Crawford and Williams, 1985) and the
eigenvector (Saaty, 1977) techniques, given by the following formulas respectively:

n∑
i=1

n∑
j=1

(
ln(aij) − ln

(
wi

wj

))2

→ min (10)

A · w = λmax · w (11)

Where w denotes the weight vector with the general element wi, A is an n ×
n PCM and λmax is the maximal eigenvalue of A. As we are studying graphs
in our research, we should also mention that the combinatorial weight calculation
method (Tsyganok, 2000), which is based on the weight vectors gained from different
spanning trees provides the same solution as the LLSM if we use the geometric mean
(Lundy et al., 2017). The comparison of this method with other weight calculation
techniques can be found in Tsyganok (2010).

Another important aspect of PCMs is their inconsistency.

Definition 19 (Consistent PCM) A PCM is said to be consistent if and only
if aik = aijajk ∀i, j, k. If a PCM is not consistent, then it is called inconsistent.

Of course, there are different levels of inconsistency and several inconsistency
indices have been proposed to measure this problem (Brunelli et al., 2013), which
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satisfy different properties (Brunelli, 2017). However, the most popular one is prob-
ably still the Consistency Ratio (CR) (Saaty, 1977). In order to define the CR, we
need the Consistency Index (CI), which is given as

CI = λmax − n

n − 1 (12)

Where λmax is the largest eigenvalue of the PCM. The Consistency Ratio can be
calculated as

CR = CI

RI
(13)

Where RI is the Random Index, which is the average CI obtained from a large
enough set of randomly generated matrices of size n.

In case of incomplete data, namely when some elements of the PCM are missing,
we are talking about an incomplete PCM. The absence of these elements can be
caused by several different reasons: the loss of data, some comparisons are simply
not possible (Bozóki et al., 2016) or the decision maker does not have time, possibility
or willingness to fill in all the n(n−1)/2 comparisons (it is sufficient to focus only on
the elements above the principal diagonal of the matrix because of the reciprocity).

In our research the most important case is the latter one, as we examine different
kinds of filling in patterns of incomplete PCMs, thus we assume that the set of
pairwise comparisons to be made can be chosen.

The weight calculation techniques can be extended to the incomplete case, but
the results depend on both the number of known comparisons and their position-
ing. We assume that it is possible to find a pattern of pairwise comparisons, that
minimizes experts’ efforts and accumulated estimation errors, while ensuring esti-
mation stability. In order to compare the effect of different arrangements of known
elements (filling in patterns), we use the graph representation of the PCM (Gass,
1998). The representing graph is an undirected graph, where the vertices denote the
criteria/alternatives, and there is an edge between any two vertices if and only if
the comparison has been made for the two respective items (the associated element
of the PCM is known).

There are several different attributes that are studied in connection with decision
making problems, among which regularity of comparisons (in some sense) is, indeed,
an important one (Wang and Takahashi, 1998; Kułakowski et al., 2019). If we use
the graph representation of the PCM, the most common definition of regularity that
we use in this paper, can be seen below.
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Definition 20 (k-regularity) A graph is called k-regular if every vertex has k

neighbours, which means that the degree of every vertex is k.

In decision problems regularity ensures a certain level of symmetry, it means
that every item is compared to the same number of elements. This kind of property
is also required in the design of some sport tournaments (Csató, 2017).

As k-regularity is not possible, when both the number of vertices (n) and the
level of regularity (k) are odd, Szádoczki et al. (2022) defined the graphs that are
the closest to k-regularity in this case, as follows.

Definition 21 (k-quasi-regularity) A graph is called k-quasi-regular if exactly
one vertex has degree k + 1, and all the other vertices have degree k.

In case of indirect relations, when there is no direct comparison between two
elements, the small errors of the intermediate comparisons can add up (Szádoczki
et al., 2020). The diameter of the representing graph can measure this problem
indeed naturally.

Definition 22 (Diameter of a graph) The d diameter of a graph G is the length
of the longest shortest path between any two vertices:

d = max
u,v∈V (G)

ℓ(u, v), (14)

where V (G) denotes the set of vertices of G and ℓ(., .) is the graph distance between
two vertices, namely the length of the shortest path between them (in our case the
length of every edge is one).

The diameter also seems to be a crucial property in case of the weight calculation
method based on spanning trees (Kadenko and Tsyganok, 2020).

It is important to note that the solution of the weight calculation problem is
unique in case of incomplete PCMs if and only if the representing graph is connected,
thus there are at least indirect comparisons between the pairs of items (Bozóki et al.,
2010).

Definition 23 (Connected graph) In an undirected graph, two vertices u and
v are called connected if the graph contains a path from u to v. A graph is said to
be connected if every pair of vertices in the graph is connected.

It is worth to examine some of the so-called stronger kind of connectedness mea-
surements as well regarding the representing graph of a PCM. From these indicators
the following property has special importance in our study.
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Definition 24 (k-edge-connectivity) A graph G is called k-edge-connected if
it remains connected whenever fewer than k edges are removed from G. Formally:
let G = (V, E) be an undirected graph, where V is the vertex set, while E is the
edge set of G. If G′ = (V, E \ H) is connected for ∀H ⊆ E, where |H| < k, then G

is k-edge-connected. The edge connectivity of G is the maximum value k such that
G is k-edge-connected.

3.3.2 The simulation process

We apply extended numerical experiments to compare different filling in models of
pairwise comparisons. In our simulations, the weight vectors are calculated using
the natural extension of the two most popular weighting techniques, the eigenvector
method and LLSM, to the incomplete PCM case. The former one is based on the
CR-minimal completion (CREV), and its principal right eigenvector (Bozóki et al.,
2010, Sections 3 and 5). The LLSM’s optimization problem includes the known
elements of the matrix, the optimal solution can be calculated by solving a system
of linear equations (Bozóki et al., 2010, Sections 4), furthermore, it can also be
written as the geometric mean of weight vectors calculated from all spanning trees
(Bozóki and Tsyganok, 2019). As we mentioned, in both of the CREV and the
LLSM models the optimal solution is unique if and only if the graph of comparisons
is connected. We compare the weight vectors obtained based on different filling in
models to the ones calculated from the complete PCMs. As for the measurements
of comparison, we use three types of metrics:

• distances, as the most commonly used cardinal measures, which are represented
by the Euclidean distance (deuc), the Chebyshev distance (dcheb), and the Man-
hattan distance (dman),

• rank correlation coefficients, as the basic ordinal indicators, namely the Kendall
rank correlation (Kendall’s τ), and the Spearman rank correlation coefficient
(Spearman’s ρ),

• and last but not least, the so called compatibility (or similarity) indices, which are
argued in the literature to be the most important measures to compare priority
vectors (Garuti, 2017). In our analysis we include Garuti’s compatibility index
(G index) (Garuti, 2020), the cosine similarity index (C index) (Kou et al., 2021),
and the dice similarity index (D index) (Ye, 2012).

The above-mentioned indicators are given by the following formulas, respectively:

deuc(u, v) =
√√√√ n∑

i=1
(ui − vi)2 (15)
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dcheb(u, v) = max
i∈1,...,n

|ui − vi| (16)

dman(u, v) =
n∑

i=1
|ui − vi| (17)

τ(u, v) = nc(u, v) − nd(u, v)
n(n − 1)/2 (18)

ρ(u, v) = 1 − 6∑n
i=1 R(ui) − R(vi)

n(n2 − 1) (19)

G(u, v) = 1
2

n∑
i=1

(
min(ui, vi)
max(ui, vi)

(ui + vi)
)

(20)

C(u, v) =
∑n

i=1 uivi√∑n
i=1(ui)2

√∑n
i=1(vi)2

(21)

D(u, v) = 2∑n
i=1 uivi∑n

i=1(ui)2 +∑n
i=1(vi)2 (22)

where u denotes the weight vector gained from a certain filling in pattern and v

is the weight vector calculated from the complete matrix. u and v are normalized
by ∑n

i=1 ui = 1 and ∑n
i=1 vi = 1, respectively, and vi and ui denote the ith element

of the appropriate vectors. nc(u, v) denotes the number of concordant pairs and
nd(u, v) the number of discordant pairs of the examined vectors, while R(.) shows
the rank of the given element within the appropriate vector. The range of the
Kendall’s τ and Spearman’s ρ is [−1, 1], and considering the notation above, the
higher value indicates a better performance of the given filling in pattern. In case
of the compatibility indices (G, C, and D) the range corresponds to [0, 1], and
similarly, the higher value is the better. On the other hand, here the distances can
be interpreted as errors, thus their smaller level is preferred. This way we use the
most commonly applied categories of closeness measures in case of priority vectors,
and also include several of them to see if the results depend on the given category
or may even on the specific metric.

Our simulations are in a sense similar to the ones in Szádoczki et al. (2022),
but (besides using other filling patterns and other metrics) we apply elementwise
perturbations instead of their matrixwise solution, and the handling of scales is
improved in our case.

The process of the simulation for a given n consisted of the following steps:

1. We generated n random weights (the general weight is denoted by wi), where
wi ∈ [1, 9] is a uniformly distributed random real number for ∀i ∈ 1, 2, . . . , n.
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We calculated random n × n complete and consistent PCMs, where the ele-
ments of the matrices were given as follows:

aij = wi/wj (23)

2. Then we used three different special perturbations of the elements of the con-
sistent matrices to get inconsistent PCMs with three well-distinguishable in-
consistency levels. We denote these levels by weak, modest and strong given
with the following formulas:

âweak
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈ [−1, 1] (24)

âmodest
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈

[
−3

2 ,
3
2

]
(25)

âstrong
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈ [−2, 2] (26)

Where âweak
ij , âmodest

ij and âstrong
ij are the elements of the perturbed matrices,

aij is the element of the consistent matrix, aij ≥ 1 (thus we only perturb
the elements above one and keep the reciprocity of the matrices), and ∆ij is
uniformly distributed in the given ranges. This perturbation is able to provide
ordinal differences as well (when âij < 1). However, we account for the contrast
that can be examined above and below 1, thus our perturbed data is uniformly
distributed around the original element on the scale presented by Figure 9. Our
perturbation method aims to ensure 3 different and meaningful inconsistency
levels and it is, indeed, correlated with the Consistency Ratio (CR), as it is
shown in Figure 10. We tested several combinations of parameters, and found
that they resulted in the most relevant levels of CR.
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Figure 9: The ratio scale 1/9, . . . , 9 and the perturbation of elements
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Figure 10: The relation between CR and our element-wise perturbation. Each point
shows the average CR of 1000 randomly generated perturbed PCMs.

3. We deleted the respective elements of the matrices in order to get the filling
in pattern that we were examining, and applied the LLSM and the CREV
techniques to get the weights. In case of the models that use ordinal informa-
tion, we always chose the needed element according to the examined weight
calculation method, based on the complete, perturbed PCM (thus we assume
that the decision maker can provide accurate ordinal data). The certain mod-
els’ distances, rank correlations and compatibility indices were computed with
respect to the weights that were calculated from the complete inconsistent
matrices. The compared filling in patterns were the ones presented in great
detail in Section 3.4, which are represented by the following graphs:

(i) Best-worst graph
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(ii) TOP2 graph

(iii) Best-random graph

(iv) Random-random graph

(v) 3-(quasi-)regular graph with minimal diameter

(vi) Union of two random edge-disjoint spanning trees

(vii) Random 2-edge-connected graph

4. We repeated steps 1-3 for 10000 times for every level of inconsistency (thus
altogether we examined 30000 PCMs for a given n). Finally, we saved the
mean of the applied metrics for the different weight calculation methods and
filling in patterns.

In case of (vi) and (vii) we randomly generated 10000 graphs satisfying the
required properties and used them in the simulations. As for (v), when there were
more graphs, which met the requirements, we randomly chose one of them at every
iteration.

It worth to include a small theoretical analysis of the simulations to see how they
work in general.

Remark 1 The distribution of the elements of PCMs in the simulation is inde-
pendent of n. This property holds for both consistent and perturbed PCM cases.

The reason behind this is as follows. If we analyze our simulation process, we
can see that at first the elements of a given matrix are generated independently
from n, and then they are placed into the n × n PCM. The histograms of the
matrix elements above 1 in the different perturbation cases, based on large samples
containing 1 million elements each are presented in Figure 11.
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Figure 11: The histograms of the ≥ 1 elements of PCMs in case of different pertur-
bations based on a sample of 1 million elements.

It can be seen that the higher the level of perturbation (inconsistency), the higher
the chance to have large (extreme) matrix elements.

It also makes sense to consider the average of the maximal elements of the an-
alyzed PCMs and the average number of ordinal perturbations (when the ordinal
preference between two items is changed due to perturbation). These details are
presented in Tables 6 and 7, respectively, for our specific simulations.

As one can see, the higher the number of alternatives (criteria), the higher the
average maximal element in the matrices. However, this is the case only because
in a larger matrix we have a larger sample of elements, thus the maximum has a
higher probability to be an extreme element. Naturally, the stronger perturbation
also results in larger maximal element (as it is also suggested by the histograms). As
for the ordinal perturbations, we can see that the average number of them for all n

in case of the weak perturbation level is slightly below 20% (≈19%) of the possible
comparisons, while it is slightly above 25% (≈27%) for the strong level.
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Size (n) 5 6 7 8 9 10
Perfectly consis-
tent

3.96 4.35 4.67 4.94 5.18 5.38

Weak perturba-
tion

4.21 4.60 4.93 5.19 5.46 5.67

Modest pertur-
bation

4.45 4.85 5.20 5.47 5.71 5.95

Strong perturba-
tion

4.74 5.14 5.49 5.80 6.05 6.25

Table 6: The summary of the mean of largest elements in the PCMs based on the
simulations

Size (n) 5 6 7 8 9 10
Weak perturba-
tion

1.94 2.90 4.02 5.32 6.90 8.68

Modest pertur-
bation

2.50 3.64 5.03 6.72 8.62 10.75

Strong perturba-
tion

2.79 4.21 5.77 7.70 9.96 12.46

Possible com-
parisons

10 15 21 28 36 45

Table 7: The average number of ordinal perturbations in the simulations

3.4 Filling in patterns

As we mentioned earlier we would like to keep the number of comparisons low
in the analyzed models, the average degree of the representing graphs should be
approximately 3. All in all we chose to examine seven different filling in patterns,
from which the first three use additional ordinal information of the ranking as well.
These models (and their associated graphs) are as follows.

(i) Best-worst graph
(ii) TOP2 graph
(iii) Best-random graph
(iv) Random-random graph
(v) 3-(quasi-)regular graph with minimal diameter
(vi) Union of two random edge-disjoint spanning trees
(vii) Random 2-edge-connected graph

The detailed description of these models can be found below.
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(i) Best-worst graph The name of the model comes from the popular best-worst
method (Rezaei, 2015), where only the best and the worst items are compared to all
the others. We use exactly this filling in pattern, where only two rows and columns
are completed (the ones associated with the best and the worst items), and the
related graph is the union of two star graphs, which results in 2n − 3 comparisons.
We examine this case, because it is widely used and fits perfectly within the outline of
our paper. It is important to note that this model utilizes some additional ordinal
information, however, we also examine the same graph representation with other
ordinal data, namely when not the best and the worst elements are the highlighted
ones.

(ii) TOP2 graph Intuitively in general, the more comparisons are made in con-
nection with one particular item, the more accurate our estimation of its weight
becomes. In most of the cases the first few places of the ranking are much more
important for the decision maker, than the last few. The TOP2 model suggests to
compare all the items only to the best and the second best elements. One could
argue that in the best-worst case, it is easier for the decision maker to choose the
best and the worst elements compared to the best and the second best ones. How-
ever, if we assume that it is always possible for the decision maker to find the best
and the worst elements, then we can remove those as the first step and find the
new best and worst items, thus we can determine the best and the second best as
well. The advantages of the models that use ordinal information are emphasized
in the multicriteria nature of the problems (Rezaei, 2015). The associated graph of
this pattern is the aforementioned union of two star graphs, of course with different
highlighted vertices than before.

(iii) Best-random graph It also makes sense to investigate, whether it is really
necessary to ask the decision maker to provide additional ordinal information, beside
just naming the best item. Thus, we consider the Best-random model, in which the
elements are compared only to the best one and a randomly chosen other item. The
associated graph is still the union of two star graphs, however in this case we use
less ordinal information.

(iv) Random-random graph As a benchmark for the previous models, we also
examine the case, when no additional ordinal information is included, and the two
highlighted vertices are both chosen randomly. This is the last case, when the
associated graph is the union of two star graphs, for which an example on 6 nodes
is shown in Figure 12.
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21 3

54 6

Figure 12: The union of two star graphs on n = 6 vertices, which is the associated
graph of the (i) Best-worst, (ii) TOP2, (iii) Best-random, and (iv) Random-random
models. Here the highlighted vertices are 2 and 5.

(v) 3-(quasi-)regular graph with minimal diameter This filling in pattern
was suggested by Szádoczki et al. (2022). No additional ordinal information is
needed, and the cardinality of the model fits into the examined cases. The (quasi-
)regularity results in some kind of symmetry, while the minimal diameter ensures
that the comparisons are close enough to the direct ones (the shortest path between
any two vertices is not so long). The number of comparisons for these graphs is
3n/2 in case of even number of vertices (regularity) and 3n/2 + 1/2 in case of odd
number of vertices (quasi-regularity). Two examples on n = 5 and n = 6 vertices
can be seen in Figure 13.

5

1

4

23

2

3 1

5

6 4

Figure 13: Two examples for 3-(quasi-)regular graphs with minimal diameters (d =
2). The left one is the only 3-quasi-regular graph with minimal diameter on n = 5
vertices, while the right one is one of the two 3-regular graphs with minimal diameter
on n = 6 vertices.

(vi) Union of two random edge-disjoint spanning trees Graph based deci-
sion making has a special interest in spanning trees as they are the minimal units
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from which we can calculate weight vectors. The star graph is a special spanning
tree as well, thus the union of two random spanning trees of a graph can be seen as a
generalization of the union of two star graphs. For the sake of simplicity the model
examines only random edge-disjoint spanning trees. This way the gained union con-
tains 2n − 2 edges (comparisons). An example of two edge-disjoint spanning trees
on n = 5 vertices can be seen in Figure 14.
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Figure 14: Two edge-disjoint spanning trees on n = 5 vertices, which, when unified,
form the 3-quasi-regular graph with minimal diameter on 5 vertices that can be seen
in Figure 13.

(vii) Random 2-edge-connected graph 2-edge-connected graphs remain con-
nected if we remove any one of their edges. As the union of two star graphs satisfies
this property, this can be considered (according to the number of graphs) an even
more common generalization of the union of two star graphs based on this con-
nectedness measurement. As there are many 2-edge-connected graphs with different
cardinalities, the model contains only the graphs with 2n − 3 or 2n − 2 edges. An
example that does not fit into any of the previously listed filling in patterns, a
2-edge-connected graph with 2n − 3 edges, is presented in Figure 15.
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21 3

54 6

Figure 15: A 2-edge-connected graph on n = 6 vertices with 2n − 3 edges that does
not satisfy the properties of any other examined model.

The numbers of possible non-isomorphic graphs for the different filling in patterns
are presented in Table 8.

Size
(n)

(i)-(ii)-
(iii)-(iv)

(v) (vi) (vii)

5 1 1 2 4
6 1 2 7 21
7 1 4 95 164
8 1 2 1064 1788
9 1 2 17100 26158
10 1 1 327732 478657

Table 8: The number of non-isomorphic graphs for the different cases. We use
the former notation of the models: (i) Best-worst graph, (ii) TOP2 graph, (iii)
Best-random graph, (iv) Random-random graph, (v) 3-(quasi-)regular graph with
minimal diameter, (vi) Union of two random edge-disjoint spanning trees, (vii) Ran-
dom 2-edge-connected graph.

As one can see the number of graphs for the union of two edge-disjoint spanning
trees (vi) and the 2-edge-connected case with 2n−3 or 2n−2 edges (vii) are, in a way,
outliers from this point of view. In order to count the number of those graphs, we
used Wolfram Mathematica (Wolfram Research, 2021), nauty and Traces (McKay
and Piperno, 2014), and IGraph/M (Horvát, 2020). The union of two star graphs (i-
ii-iii-iv) is on the other end of the spectrum, where there is only one non-isomorphic
graph for every n.

The discussed filling in patterns and the associated numbers of comparisons are
summarized in Table 9.



3.5 Simulation results 83

Size
(n)

Complete (i)-(ii)-
(iii)-(iv)

(v) (vi) (vii)

Number of edges
n(n−1)/2 2n − 3 3n/2 2n−2 2n−3 or

(+1/2 for odd
n)

2n − 2

5 10 7 8 8 7-8
6 15 9 9 10 9-10
7 21 11 11 12 11-12
8 28 13 12 14 13-14
9 36 15 14 16 15-16
10 45 17 15 18 17-18

Table 9: The summary of the cardinality of the graphs’ edges (the number of com-
parisons). We use the former notation of the models: (i) Best-worst graph, (ii) TOP2
graph, (iii) Best-random graph, (iv) Random-random graph, (v) 3-(quasi-)regular
graph with minimal diameter, (vi) Union of two random edge-disjoint spanning
trees, (vii) Random 2-edge-connected graph. The third row shows the formula for
the number of comparisons for the different patterns.

The cardinality of the different graphs, namely the required number of compar-
isons is, indeed, similar. The inclusion of models, which utilize additional ordinal
data (i-ii-iii), makes it possible to evaluate this information as well, which is an
important contribution of our paper.

3.5 Simulation results

The results of the simulations are presented in four types of figures (all of them are
sorted by n):

1. Figures 16, 17, 18, 19, 20 and 21 show the Euclidean distances (y axis) and
Kendall’s taus (x axis),

2. Figures 22, 23, 24, 25, 26 and 27 show the cosine similarity indices (y axis)
and Garuti’s compatibility indices (x axis),

3. Figures A1, A2, A3, A4, A5 and A6 show the Chebyshev distances (y axis)
and Spearman’s rhos (x axis),

4. finally, Figures A7, A8, A9, A10, A11, and A12 show the Manhattan distances
(y axis) and dice similarity indices (x axis) for the different models in case of
the given perturbation level and the given weight calculation technique.

https://static-content.springer.com/esm/art%3A10.1007%2Fs10479-022-04819-9/MediaObjects/10479_2022_4819_MOESM1_ESM.pdf#page=1
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https://static-content.springer.com/esm/art%3A10.1007%2Fs10479-022-04819-9/MediaObjects/10479_2022_4819_MOESM1_ESM.pdf#page=3
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It is important to note that for the distances the smaller value, and in case of the
rank correlation coefficients and compatibility indices the higher level indicates the
better performance. Thus for the first, third and fourth types of figures (Figures 16,
17, 18, 19, 20, 21, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, and A12) models
closer to the bottom right corner are the preferred ones. In case of the second type
of figures (Figures 22, 23, 24, 25, 26 and 27) the upper right corner provides the best
results. The third and fourth types of figures can be found in the online Appendix A,
mainly because we found that the metrics coming from the same category (distances,
rank correlations, compatibility indices) tend to provide similar results. Now, let us
analyze the results of the first type of figures in more detail.
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Figure 16: The results of the simulation for n = 5. The following notations are used: deuc–
Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and
‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed from
10000 pairwise comparison matrices.

Naturally, the outcomes suggest that the higher level of perturbation, namely the
higher inconsistency leads to higher distances and lower rank correlation coefficients.

Despite of the used additional ordinal information the (i) Best-worst and (iii)
Best-random filling patterns were performing according to both the distance and
rank correlation measurements more or less the same as the (iv) Random-random
case, which is based on an identical graph without any further information. This
would suggest that the additional ordinal information does not provide significant
improvement.

The outcomes for the (ii) TOP2 model are much better regarding both of our
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Figure 17: The results of the simulation for n = 6. The following notations are used: deuc–
Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and
‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed from
10000 pairwise comparison matrices.
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Figure 18: The results of the simulation for n = 7. The following notations are used: deuc–
Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and
‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed from
10000 pairwise comparison matrices.
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Figure 19: The results of the simulation for n = 8. The following notations are used: deuc–
Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and
‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed from
10000 pairwise comparison matrices.
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Figure 20: The results of the simulation for n = 9. The following notations are used: deuc–
Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Modest’ and
‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed from
10000 pairwise comparison matrices.
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Figure 21: The results of the simulation for n = 10. The following notations are used:
deuc–Euclidean distance, Kendall’s τ–Kendall rank correlation coefficient, ‘Weak’, ‘Mod-
est’ and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean
computed from 10000 pairwise comparison matrices.

distance and rank correlation indicators, and it convincingly outperformed the union
of two star graphs with other centers (i-iii-iv). However, surprisingly enough the (vi)
Union of two random edge-disjoint spanning trees provided the best weight vectors,
basically, in every case according to all distances and rank correlations, without any
additional ordinal information. Thus, according to our simulations, this filling in
pattern results in weight vectors and rankings, closest to the ones, computed from
the complete PCMs for all the used weight calculation methods and inconsistency
levels. It is important to note that this filling in pattern usually contains one more
edge than most other patterns, however, the results are still quite convincing.

As for the (v) 3-quasi-regular graphs with minimal diameter, it performs well in
case of smaller problems, but starts to decline as n grows. However, it still outper-
forms most of the models that use additional information. It is also true that for
larger number of vertices this case uses the smallest number of edges (comparisons),
which can also contribute to the aforementioned trend.

The (vii) Random 2-edge-connected graph always performs worse than (vi), but
better, than (i), (iii) and (iv) and it also has a slight edge advantage, thus it seems
to be the medium method.

Now let us focus on the second type of figures (Figures 22, 23, 24, 25, 26 and
27).
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Figure 22: The results of the simulation for n = 5. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.
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Figure 23: The results of the simulation for n = 6. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.
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Figure 24: The results of the simulation for n = 7. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.
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Figure 25: The results of the simulation for n = 8. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.
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Figure 26: The results of the simulation for n = 9. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.
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Figure 27: The results of the simulation for n = 10. The following notations are used:
G index–Garuti’s compatibility index, C index–Cosine similarity index, ‘Weak’, ‘Modest’
and ‘Strong’ refers to the level of perturbation. Every subfigure shows the mean computed
from 10000 pairwise comparison matrices.



3.6 Conclusions and future research 91

The results provided by the compatibility indices are similar to the previous
ones, the main difference is that the models using additional ordinal information
tend to perform better compared to the distances and rank correlations, especially
for larger problems (n parameters). The most remarkable change is that the (ii)
TOP2 model performs even better, and in many cases it provides the best values
among the examined patterns. Also, the decreasing performance of the (v) 3-quasi-
regular graphs seem to be even stronger for these metrics. However, the (vi) Union
of two random edge-disjoint spanning trees model still outperforms all of the other
models using additional information as well, except for the (ii) TOP2 model in some
cases.

All in all we can conclude that the (vi) Union of two random edge-disjoint span-
ning trees model provided the best results without additional ordinal information. It
is also shown that the best-second best ordinal information is indeed more valuable,
than the best-worst or only the best case.

3.6 Conclusions and future research

We compared the weight vectors calculated from incomplete pairwise comparisons,
such that the underlying graphs have approximately the same number of edges for
each matrix size n = 5, 6, 7, 8, 9, 10. Based on the simulations we found that the pre-
sumed advantage of additional ordinal information on the ranking is realized only
for the union of two star graphs, centered at the best and the second best items
((ii), TOP2). However, the union of two random edge-disjoint spanning trees (vi)
outperforms all the other graphs according to both distance and rank correlation
measures for every examined parameters, and only fell to second place in a few num-
ber of cases according to similarity indices, when the TOP2 model was the first one.
This basically means that if there is an opportunity in a decision making problem to
gain additional ordinal information, then the best and second best alternatives are
preferred to the best and the worst ones. Also, the union of edge-disjoint spanning
trees can result in as good as, or even better weight vectors than the ones calcu-
lated with additional information. In our view, these results of the paper are major
contributions for AHP (and MADM) practitioners.

It is to be further investigated how the differences in the measures we applied, the
Euclidean distance, Chebyshev distance, Manhattan distance, Kendall’s tau, Spear-
man’s rho, Garuti’s compatibility index, cosine similarity index and dice similarity
index (in Figures 8-13, 14-19, A1-A6 and A7-A12) can be interpreted in practical
decision making.

Can better graphs be found among the ones having the same number of edges?
A future research can investigate the different cardinalities of comparisons once
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the matrix size is fixed: how much can the result be improved by filling in more
elements? Empirical (experimental) PCMs have been tested from this point of view
without an emphasis on the graphs’ structure (Bozóki et al., 2013).

We considered some of the most intuitively-understandable closeness measures.
Although there are infinitely many ways of measuring weight vectors’ similarity, it is
not at all trivial which ones coincide with the subjective measures of most decision
makers.

More dense graphs are subject to investigation, in particular, for larger dimen-
sionalities (n). Does the same type/family of graphs (e.g. union of random edge-
disjoint spanning trees) perform the best for incomplete PCMs of low, middle and
high density? Can the graphs be constructed layer by layer?

Our analysis covers predetermined graphs only. We assumed that the whole
questionnaire should be prepared a priori. However, one would expect that adaptive
patterns could perform better compared to static ones. Once the decision maker
provides some matrix elements, the remainder of the graph itself can be optimized
in a dynamic way in order to maximize the expected information content of further
responses.
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Abstract

In preference modelling, it is essential to determine the number of questions
and their arrangements to ask from the decision maker. We focus on in-
complete pairwise comparison matrices, and provide the optimal filling in
patterns, which result in the closest (LLSM) weight vectors on average to
the complete case for at most six alternatives and for all possible number of
comparisons, when the underlying representing graph is connected. These re-
sults are obtained by extensive numerical simulations with large sample sizes.
Many optimal filling structures resulted in optimal filling in sequences, one
optimal case can be reached by adding a comparison to a previous one, which
are presented on GRAPH of graphs. The star graph is revealed to be optimal
among spanning trees, while the optimal graphs are always close to bipartite
ones. Regular graphs also correspond to optimal cases, furthermore regular-
ity is important for all optimal graphs, as the degrees of different vertices
are always as close to each other as possible. Besides applying optimal fill-
ing structures in given decision making problems, practitioners can utilize the
optimal filling sequences in the cases, when the decision maker can abandon
the problem at any period of the process (e.g., in online questionnaires).

Keywords: Decision support systems, Pairwise comparison, Incomplete pairwise
comparison matrix, Filling in sequence, GRAPH of graphs

4.1 Introduction

The concept of pairwise comparisons (Thurstone, 1927) is fundamental both in
preference modelling and Multicriteria Decision Making (MCDM) (Triantaphyllou,
2000). These comparisons are frequently placed into so-called pairwise compari-
son matrices (PCMs), which are the basis of the Analytic Hierarchy Process (AHP)
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(Saaty, 1977, 1980). Incompleteness (the absence of some comparisons) occurs quite
often in practical problems (Bozóki et al., 2016), as well as in theoretical questions
(Fedrizzi and Giove, 2007; Bozóki et al., 2010; Csató and Rónyai, 2016; Kułakowski
and Talaga, 2020). In connection with decision making problems, one major source
of missing data is the lack of willingness or time of the decision maker, as complet-
ing all comparisons – especially in the case of many different levels, criteria, and
alternatives – can be exhausting and lingering (Szádoczki et al., 2022; Fedrizzi and
Giove, 2013).

We would like to underline that the aim of our research is not to encourage
decision makers to make less comparisons or decision analysts to ask fewer ques-
tions. However, we would like to provide the sequence of questions for the analysts,
which ensures that whenever the decision maker stops answering the questions, the
calculated preferences are in some sense the closest to the decision makers real pref-
erences.

The arrangement of comparisons, which has a crucial effect on the results, is
often represented by graphs (Gass, 1998). In this paper, we are the first to provide
the optimal filling in patterns of incomplete pairwise comparison matrices, which
on average produce the (both cardinally and ordinally) closest weight vectors to the
complete case, for at most six alternatives (criteria) (n) for all possible given number
of comparisons (e), when the respective graph is connected. These optimal patterns
for the examined (n, e) pairs are significant findings of this paper themselves, however
they result in (partial) optimal filling in sequences, which can be instrumental in
the case of such problems (e.g., online questionnaires), where the decision makers
can abandon the problem at any period of the process to always be as close to the
decision makers preferences as possible.

These kind of problems are often present in the case of large-scale group de-
cision making (Chao et al., 2021; Duleba et al., 2012; Li et al., 2022), or when
several different experts’ comparisons should be evaluated from different fields as
well (Francis-Oliviero et al., 2021).

In the analysis of filling in sequences, the focus of the paper, but also in structural
analysis of graphs and graph sequences in general, GRAPH of graphs is a convenient
and efficient tool for research and visualization, too. NODEs of a GRAPH are
graphs, and there is an EDGE between two NODEs (=graphs) if the associated
graphs are in a specified relation, e.g., they can be drawn from each other by adding
or deleting an edge. Depending on the specification of the relation, several GRAPHs
of graphs have been investigated, see for instance Lovász (1977). Another remarkable
GRAPH of graphs is the Petersen family of seven graphs, including the Petersen
graph itself (Hashimoto and Nikkuni, 2013). The GRAPH of graphs by Mesbahi
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(2002) is motivated by the evolution of graphs in a dynamic system.
It is worth noting that the term ‘neighbouring graphs’ in Lovász (1977) is used

synonymously for ‘there is an EDGE between two graphs’. Analogously, ‘reachable’
in Mesbahi (2002) means that there is a PATH between two graphs. We use the
concept of GRAPH of graphs to visualize our findings throughout the paper.

The rest of the paper is organized as follows. Section 4.2 presents the fundamen-
tal concepts and definitions regarding PCMs and their graph representation. The
methodology of the applied simulations and the related probability theoretical rea-
soning are detailed in Section 4.3, while Section 4.4 contains the results, the optimal
filling in sequences for the examined cases. Finally, Section 4.5 concludes and raises
research questions for the future.

4.2 Basic concepts: PCMs and their graph representation

Pairwise comparisons are the core of ranking, sports competitions, as well as many
statistics and decision making techniques (Davidson and Farquhar, 1976; Csató,
2021). We focus on pairwise comparison matrices (PCMs) which are used in the
Analytic Hierarchy Process (AHP) MCDM methodology to evaluate alternatives
according to a criterion, as well as to determine the importance of the different
criteria. However, our results can be beneficial in a wider range.

Definition 25 (Pairwise comparison matrix (PCM)) Let us denote the num-
ber of criteria (alternatives) in a decision problem by n. The n × n matrix A = [aij]
is called a pairwise comparison matrix, if it is positive (aij > 0 for all i and j) and
reciprocal (1/aij = aji for all i and j).

The element aij of a PCM shows how many times item i is better/stronger/more
important than item j. However, when a decision maker fills in all n(n − 1)/2
elements (the elements above the principal diagonal, because of the reciprocity)
there can be some kind of contradiction, a certain inconsistency in the PCM.

Definition 26 (Consistent PCM) A PCM is said to be consistent if aik = aijajk

for all i, j, k. If a PCM is not consistent, then it is called inconsistent.

Naturally, there are several degrees of inconsistency, which leads to the deeply
analyzed problem of different inconsistency indices (Brunelli, 2018), their properties
(Brunelli, 2017), and the appropriate recommended thresholds (Amenta et al., 2020).
Although, many measures have been proposed, the most widely used one is probably
still Saaty’s Consistency Ratio (CR) (Saaty, 1977).
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Definition 27 (Consistency Ratio (CR)) The CR of an n×n PCM A is defined
as follows:

CR = CI

RI
, (27)

where CI stands for Consistency Index, that is:

CI = λmax − n

n − 1 , (28)

where λmax is the principal eigenvalue of the matrix A, and RI is the Random Index,
which is the average CI obtained from a sufficiently large set of randomly generated
PCMs of size n.

Probably the two most commonly used techniques to calculate a weight vector
(prioritization vector) from a PCM that shows the importance of compared items,
are the logarithmic least squares (LLSM) (Crawford and Williams, 1985) and the
eigenvector (EV) (Saaty, 1977) methods.

Definition 28 (Logarithmic Least Squares Method (LLSM)) Let A be an n×
n PCM. The weight vector w of A determined by the LLSM is given as follows:

min
w

n∑
i=1

n∑
j=1

(
ln(aij) − ln

(
wi

wj

))2

, (29)

where wi is the ith coordinate of w.

Definition 29 (Eigenvector (EV) Method) Let A be an n×n PCM. The weight
vector w of A determined by the EV method is defined as follows:

A · w = λmax · w, (30)

where the componentwise positive principal eigenvector w is unique up to a scalar
multiplication.

These two methods are shown to be indeed similar in their results, however
LLSM has significantly lower computational time (Dong et al., 2008).

In several situations some comparisons are absent, which may happen because
the decision makers do not have time, willingness or possibility to make all of them,
data has been lost, the direct comparison is simply impossible (for instance in sports
(Bozóki et al., 2016)), etc. When a PCM has missing elements, it is said to be an
incomplete PCM (IPCM).

The LLSM and EV weight calculation methods can be generalized to the in-
complete case as well, when the LLSM’s optimization problem (Equation 29) in-
cludes only the known elements of the matrix, while the EV method is based on
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the CR-minimal completion (CREV) of the PCM and its principal right eigenvector
(Shiraishi et al., 1998; Shiraishi and Obata, 2002).

In this paper we analyze different kinds of filling in structures of IPCMs, thus
we assume that the set of pairwise comparisons to be made can be chosen. We also
heavily rely on the graph representation of IPCMs (Gass, 1998).

Definition 30 (Representing graph of an IPCM) An IPCM A is represented
by the undirected graph G = (V, E), where the V vertex set of G corresponds to the
alternatives (criteria) of A, and there is an edge in the edge set E of G if and only
if the appropriate element of A is known.

We assume that no prior information is available about the items to be com-
pared, thus in the examined filling in patterns we do not distinguish between the
isomorphic representing graphs. The optimal solutions of both above-mentioned
weight calculation techniques for IPCMs (LLSM and CREV) are unique if and only
if the representing graph is connected (Bozóki et al., 2010).

Definition 31 (Connected graph) In an undirected graph, two vertices u and v

are called connected if the graph contains a path from u to v. A graph is said to be
connected if every pair of vertices in the graph is connected.

The smallest connected systems are associated with spanning trees, which con-
tain n − 1 edges for n vertices.

Definition 32 (Spanning tree) Let G = (V, E) be a connected graph. G′ =
(V, E ′) is a spanning tree of G if E ′ ⊆ E is a minimal set of edges that connect
all vertices of G.

An IPCM represented by a spanning tree always can be complemented to a con-
sistent PCM, however, the results based on such an IPCM are usually extremely
unreliable. The special importance of spanning trees is emphasized by the combi-
natorial weight calculation method (Tsyganok, 2010), which is built on the weight
vectors obtained from all different spanning trees. This technique provides the same
prioritization vector as the LLSM, if we use the geometric mean, both for PCMs
(Lundy et al., 2017) and IPCMs (Bozóki and Tsyganok, 2019).

The results obtained by any weight calculation methods for IPCMs is strongly
dependent on the number of known comparisons, namely the number of edges of
the representing graph (e), and the arrangements of these known elements. Sev-
eral properties have been examined in connection with the positioning of the known
items, among which (some sense of) regularity of comparisons seems to be an espe-
cially important one (Szádoczki et al., 2020; Wang and Takahashi, 1998; Kułakowski
et al., 2019), which can be also described by the representing graph.
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Definition 33 (k-regularity) A graph is called k-regular if every vertex has k

neighbours, which means that the degree of every vertex is k.

When both the number of vertices (n) and the level of regularity (k) are odd,
k-regularity is not possible. However, the graphs that are the closest to k-regularity
in this case are called k-quasi-regular graphs (Szádoczki et al., 2022).

Definition 34 (k-quasi-regularity) A graph is called k-quasi-regular if exactly
one vertex has degree k + 1, and all the other vertices have degree k.

In decision making the (quasi-)regularity of the representing graph ensures a
certain level of symmetry, as every item is compared to the (approximately) same
number of elements. This kind of property is also required in other fields, for in-
stance, in the design of some sport tournaments (Csató, 2017).

We have only focused on multiplicative PCMs in the above definitions in this
section, however, one can make the appropriate transformations to get an additive
or a reciprocal (fuzzy) PCM from those (Brunelli, 2014). Thus, we would like to
emphasize that all of our findings in the sections below are true for those types of
matrices as well.

4.3 Methodology

Our aim is to find the filling structures that provide the closest results to the com-
plete case for a given (n, e) pair, number of alternatives (criteria) and comparisons.
As it is assumed that we do not have any prior information, and so, the differ-
ent items are not distinguished, we used Wolfram Mathematica (Wolfram Research,
2021), nauty and Traces (McKay and Piperno, 2014), and IGraph/M (Horvát, 2020)
to generate every non-isomorphic (representing) graph for the examined (n, e) pairs.
Our extensive numerical simulations are based on the filling patterns related to these
graphs. The used methods are similar to Szádoczki et al. (2023), however they only
focus on some special cases based on smaller samples and even compare representing
graphs with different number of edges (comparisons), while we in the current paper
compare all the possible filling structures for a given (n, e) pair with a more general
approach.

In order to measure the differences between the weight vectors, we apply com-
monly used cardinal and ordinal indicators, the Euclidean distance (deuc) and the
Kendall rank correlation coefficient (Kendall’s τ), respectively, which are defined as
follows.

deuc(u, v) =
√√√√ n∑

i=1
(ui − vi)2 (31)



4.3 Methodology 104

τ(u, v) = nc(u, v) − nd(u, v)
n(n − 1)/2 (32)

where u denotes the weight vector obtained from a certain filling structure and v

is the weight vector computed from the complete PCM. u and v are normalized by∑n
i=1 ui = 1, and ∑n

i=1 vi = 1, respectively, and vi and ui denote the ith element
of the appropriate vectors. nc(u, v) and nd(u, v) are the number of concordant and
discordant pairs of the examined vectors, respectively. The range of the Kendall’s
τ is [−1, 1], and considering the notation in Equation 32, a higher value indicates
a better performance of the given filling pattern. However, in this case (Equation
31) the Euclidean distance can be interpreted as an error, thus its smaller level is
preferred. It is also worth mentioning that besides these, Szádoczki et al. (2023)
used many different kinds of measures for the special cases examined by them, and
all of those provided similar results.

An instrumental part of our methodology is to determine the sample size needed
in the simulations, which is based on a certain form of Chebyshev’s inequality
(Steliga and Szynal, 2010; Saw et al., 1984) that leads to the weak law of large
numbers.

Proposition 1 (Weak law of large numbers) Let (ξk) be independent and iden-
tically distributed random variables with finite standard deviation (σ), and let E(.)
denote the expected value operator. Then Equation 33 follows for all ε > 0:

P

(∣∣∣∣∣
∑n

k=1 ξk

n
− E (ξ1)

∣∣∣∣∣ > ε

)
≤ σ2

nε2 −−−→
n→∞

0, (33)

where the last part of the expression means that the limit of the probability is 0 as n

goes to infinity.

The α = σ2/nε2 notation defines the significance level of our results, while ε is the
margin of error. We estimated the standard deviations of the Euclidean distances
and the Kendall’s τ measures for the different filling structures in our simulation
and used an upper bound on it. Based on this method we applied a sample size of
one million elements for every (representing) graph, which results in (as an upper
bound as well)

• α = 0.01 and ε = 0.0005 for the computed Euclidean distances,

• and α = 0.05 and ε = 0.001 for the calculated Kendall’s τ measures.

As we mentioned earlier, the result of the EV weight calculation technique is
similar to the LLSM, but its computational time is larger. This pattern is even
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stronger in the case of incompleteness (for CREV and incomplete LLSM, see for
instance Csató (2013)), thus due to the large sample sizes, in our simulations we
mainly focus on the LLSM weight calculation technique. The results of the CREV
method were computed for smaller cases (n ≤ 5) with a sample size of 500 000 as
well, however, the ranking of filling patterns were always the same, and the indicators
were almost always closer to the LLSM outcomes than the margin of error, thus we
decided not to present them in much detail.

The process of the simulation for a given (n, e) pair consisted of the following
steps:

1. n random weights (in general they are denoted by wi) were generated, where
wi ∈ [1, 9] is a uniformly distributed random real number for all i ∈ 1, 2, . . . , n.
We calculated random n × n complete and consistent PCMs, where the ele-
ments of the matrices were given by Equation 34.

aij = wi/wj (34)

2. Then three different perturbations of the items of consistent PCMs were used
to get inconsistent matrices with three well-distinguishable inconsistency lev-
els. These levels are denoted by weak, modest and strong given by Equations
35, 36 and 37.

âweak
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈ [−1, 1] (35)

âmodest
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈

[
−3

2 ,
3
2

]
(36)

âstrong
ij =

aij + ∆ij : aij + ∆ij ≥ 1
1

1−∆ij−(aij−1) : aij + ∆ij < 1
∆ij ∈ [−2, 2] (37)

Where âweak
ij , âmodest

ij and âstrong
ij are the elements of the perturbed PCMs, aij

is the element of the consistent PCM, aij ≥ 1 (we only perturb the elements
above one and keep the reciprocity of the matrices), and ∆ij is uniformly dis-
tributed in the given ranges. This perturbation method is able to produce
ordinal differences as well (when âij < 1). It is important to mention that we
account for the contrast that can be examined above and below 1, thus our
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perturbed data is uniformly distributed around the original element on the
scale presented by Figure 28, which also contains two examples. Our pertur-
bation method aims to provide three different and meaningful inconsistency
levels and it is, indeed, correlated with the Consistency Ratio (CR), as it is
shown in Figure 29. We tested several combinations of parameters, and found
that these resulted in the most relevant levels of CR.

Figure 28: The ratio scale 1/9, . . . , 9 and the perturbation of elements according to
(35)–(37).
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Figure 29: The relation between CR and our element-wise perturbation via Box
plots. Each Box plot is based on 1000 randomly generated perturbed PCMs.

3. We deleted the respective elements of the matrices in order to get the filling
structure that we were examining, and applied the LLSM (and CREV in the
case of n ≤ 5) technique(s) to obtain the weights. The certain models’ Eu-
clidean distances and Kendall’s τ measures were computed with respect to the
weights that were calculated from the complete inconsistent matrices. The
analyzed filling in patterns included all of those that can be represented by
connected non-isomorphic graphs with parameters (n, e).
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Figure 30: The histograms of the ≥ 1 elements of PCMs in case of different pertur-
bations based on a sample of 1 million elements (with a 0.1 bin width).

4. We repeated steps 1-3 for 1 000 000 times for every level of inconsistency
(thus altogether we examined 3 000 000 PCMs for a given (n, e) pair). Finally,
we saved the mean of Euclidean distances and Kendall’s τ measures for the
different filling in patterns.

Remark 2 The distribution of the elements of complete PCMs is independent of n.
This property holds for both consistent and perturbed complete PCM cases.

The reason behind this is that, in the simulations at first the elements of a
given matrix are generated independently from n, and then they are placed into
the n × n PCM. The histograms of the complete PCM elements above 1 in the
different perturbation cases, based on samples containing 1 million elements each,
are presented in Figure 30 (with a 0.1 bin width).

According to the histograms, a higher level of perturbation (inconsistency) leads
to a higher chance to have large (extreme) matrix elements.
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4.4 Results

We would like to emphasize that all of the results (and graph recommendations)
presented in this section are under the following crucial assumptions.

1. We can choose the comparisons that should be made (they are not given a
priori).

2. An ‘optimal’ graph is the one that provides the closest LLSM weight vector
on average to the one calculated from the complete matrix according to the
measures presented in Section 4.3.

3. There is not any prior information about the items that should be compared,
thus we can handle them in a symmetric way. This also means that the
‘reliableness’ of every comparison is assumed to be the same.

Naturally, if one or more of the assumptions above do not hold – for instance compar-
ing to another benchmark instead of the complete PCM (e.g., the closest complete
consistent PCM) – that could lead to other outcomes.

It is important to note that the interesting cases for our research start above
three alternatives (n), as in the case of n = 2 and n = 3 there is always one non-
isomorphic (representing) graph for every relevant pair of (n, e) as it is shown in
Figure 31.

n = 2, e = 1 n = 3, e = 2 n = 3, e = 3

Figure 31: The connected non-isomorphic representing graphs for n ≤ 3.

The n = 4 case also contains only a few possibilities, but it can be interesting
in a decision problem, when there are several criteria and four alternatives, and it
helps to understand the results for larger examples as well. Figure 32 presents the
connected representing graphs for n = 4 as a GRAPH of graphs. The value of e

is shown in every row of the GRAPH, in which an EDGE between two NODEs
(=graphs) denotes that we can obtain one graph from the other one by adding
(or deleting) exactly one edge. The GRAPH of graphs in Figure 32 is a 4-partite
GRAPH with a further specific property, namely, that EDGEs go between levels k

and k + 1 only (k = 1, 2, 3). Note that if all EDGEs would be oriented ‘downwards’
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(i.e., the addition of an edge in the graph of comparisons), a partially ordered
set of graphs (of comparisons) would be resulted in. We denote the graph that
provided the weight vectors with the smallest average Euclidean distance and the
largest average Kendall’s τ respect to the vectors calculated from the complete case
by green background color for every e. If two optimal graphs are connected with
an EDGE, then it is a partial optimal sequence, and the respective EDGE is also
denoted by green. It is important to note that the relevant values for e (the number
of comparisons) are between n−1 (spanning trees) and n(n−1)/2 (complete graphs
representing complete PCMs).

e = 3

e = 4

e = 5

e = 6

Figure 32: The GRAPH of graphs for n = 4, the optimal graph for a given e is
highlighted by green, EDGEs between optimal graphs are colored green.

Among the spanning trees the star graph provided the smallest errors (Euclidean
distances) and the largest Kendall’s τ measures. This is not connected to the optimal
graph with four edges, which is the 2-regular cycle. However, from this point on the
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optimal graphs result in an optimal filling sequence. This is not surprising, as for
e = 5 and e = 6 there is only one possible non-isomorphic representing graph, but
this example probably helps to understand the following cases. Tables 10 and 11
present the results provided by the graphs with (n = 4, e = 3) and (n = 4, e = 4)
respectively, in the case of the different perturbation levels. The name of the optimal
graph, and the best values in every column are highlighted with green background
color.

graph Weak Modest Strong
deuc Kendall’s τ deuc Kendall’s τ deuc Kendall’s τ

Star graph 0.0918 0.7306 0.1293 0.6639 0.1620 0.6164
Line graph 0.0967 0.7194 0.1361 0.6501 0.1701 0.6020

Table 10: The average Euclidean distances and Kendall’s τ measures for the graphs
with (n = 4, e = 3) in the case of the different perturbation levels.

graph Weak Modest Strong
deuc Kendall’s τ deuc Kendall’s τ deuc Kendall’s τ

Not regular graph 0.0650 0.8027 0.0920 0.7496 0.1156 0.7111
2-regular graph 0.0543 0.8216 0.0771 0.7705 0.0970 0.7328

Table 11: The average Euclidean distances and Kendall’s τ measures for the graphs
with (n = 4, e = 4) in the case of the different perturbation levels.

Based on Tables 10 and 11, one can observe that for a given (n, e) pair, the same
graphs provided the best results on average for the examined measures for every
perturbation level. There are indeed significant differences between the examined
graphs (the margin of error is 0.0005 for the Euclidean distances and 0.001 for the
Kendall’s τ measures). It is also easy to see that a stronger perturbation results in
higher errors, while an additional edge leads to smaller distances and higher ordinal
correlations. Figure 33 presents the relation between the number of comparisons (e)
and the analyzed cardinal (deuc) and ordinal (Kendall’s τ) measures, which can help
practitioners to determine the minimal sufficient number of comparisons in a given
problem. Note that Figure 33 shows the results for the optimal graphs for every e,
thus one optimal value is not necessarily reachable from the previous one, only in
the case of partial optimal sequences.

If we know in advance that the decision maker is willing to provide exactly
e = n − 1 = 3 comparisons, then, according to Figure 32, we recommend the star
graph, i.e., filling in one (e.g. the first) row/column of the pairwise comparison
matrix, namely elements a12, a13 and a14 (in any order), also summarized in Table
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12. It is worth noting that in this case Assumption 3 has a special importance as
all items are compared to one (pivotal) item.

1 2 3 4
1 #1’ #2’ #3’
2
3
4

Table 12: Filling in sequence for n = 4, e = 3. Orders with ’ are interchangeable.

If we assume that the decision maker is willing to provide more than three
comparisons, the optimal filling in sequence is {a12, a23, a34, a14} (the first four com-
parisons can be made in any order), followed by a13 and finally a24, also summarized
in Table 13.

1 2 3 4
1 #1’ #5 #4’
2 #2’ #6
3 #3’
4

Table 13: Filling in sequence for n = 4, e > 3. Orders with ’ are interchangeable.
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Figure 33: The relation between the number of comparisons (e), the errors (Eu-
clidean distances) and Kendall’s τ measures of optimal graphs for n = 4.

For larger number of alternatives (criteria, n), the possible number of connected
graphs increases quickly, thus it is even more relevant to determine the optimal filling
structure. In the case of n = 5, there are 21 connected graphs altogether. Their
7-partite GRAPH of graphs can be seen in Figure 34, using the same notations as
before.
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e = 4

e = 5

e = 6

e = 7

e = 8

e = 9

e = 10

Figure 34: The GRAPH of graphs for n = 5, optimal graphs are highlighted by
green.
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One can see many similarities with the previous outcomes. The star graph
resulted in the smallest Euclidean distance and the largest Kendall’s τ measure
among the spanning trees, once again. It is not connected to the optimal graph
with e = 5, which is the 2-regular cycle, as before. The next optimal graph with
e = 6 is not connected to the cycle, as well, however, from that point on there is a
partial optimal sequence to the complete filling of the represented PCM. Somewhat
surprisingly, the graphs providing the smallest Euclidean distances resulted in the
largest Kendall’s τ for every single case, except for e = 8. However, in that case the
difference between the Kendall’s τ measures for the two possible graphs is within
the margin of error, thus we highlighted the graph that is better according to the
Euclidean distance, which is better in both indicators if we consider the CREV
weight calculation technique. It is worth mentioning that this graph is the 3-quasi-
regular graph on n = 5.

Figure 35 shows the relation between the number of comparisons (e) and the
analyzed measures for n = 5 in the case of optimal graphs. One optimal value is not
necessarily reachable from the previous one, as before. Minimal thresholds could be
determined for the number of comparisons based on this figure for certain decision
problems.

If we know in advance that the decision maker is willing to provide exactly
e = n − 1 = 4 comparisons, then, according to Figure 34, we recommend the star
graph (with special attention to Assumption 3), i.e., filling in one (e.g. the first)
row/column of the pairwise comparison matrix, namely elements a12, a13, a14 and
a15, also summarized in Table 14.

1 2 3 4 5
1 #1’ #2’ #3’ #4’
2
3
4
5

Table 14: Filling in sequence for n = 5, e = 4. Orders with ’ are interchangeable.

In the case the decision maker is willing to provide exactly e = n = 5 compar-
isons, then we should make the comparisons along an n-cycle, e.g., {a12, a23, a34, a45

and a15} (the five comparisons can be made in any order), also summarized in Table
15.

When we can assume that the decision maker is willing to provide more than five
comparisons, the optimal filling in sequence is {a14, a15, a24, a25, a34, a35} (the first
six comparisons can be made in any order), followed by a12, a13, a45, and finally a23,

also summarized in Table 16.
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1 2 3 4 5
1 #1’ #5’
2 #2’
3 #3’
4 #4’
5

Table 15: Filling in sequence for n = 5, e = 5. Orders with ’ are interchangeable.

1 2 3 4 5
1 #7 #8 #1’ #2’
2 #10 #3’ #4’
3 #5’ #6’
4 #9
5

Table 16: Filling in sequence for n = 5, e > 5. Orders with ’ are interchangeable.
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Figure 35: The relation between the number of comparisons (e), the errors (Eu-
clidean distances) and Kendall’s τ measures of optimal graphs for n = 5.

Finally, for n = 6, there are 112 possible connected (representing) graphs. Figure
36 shows the 11-partite GRAPH of graphs for this case, however, in order to keep it
visible, we only denote the possible graphs with a vertex, and present the optimal
cases in detail in Figure 37. For e = 12 and e = 13 the results are close to each
other, and some of the differences of the Kendall’s τ measures are also smaller, than
the margin of error. Here the best graph according to the Euclidean distance and
the Kendall’s τ are different as well. However, we highlighted the graphs which were
at least second according to at least one indicator by a lighter green color. These
highlighted graphs for a given e practically provide the same results. As there is
always a unique optimal graph according to the Euclidean distance, we denoted
those with an E. We have not highlighted the EDGEs by green color on this part of
the GRAPH of graphs, because of the similar results (ties). In Figure 37 for e = 12
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and 13 the graphs that provided the best results according to the Euclidean distance
are presented.

If we know in advance that the decision maker is willing to provide exactly
e = n − 1 = 5 comparisons, then, according to Figure 36, we recommend the star
graph (with special attention to Assumption 3), i.e., filling in one (e.g. the first)
row/column of the pairwise comparison matrix, namely elements a12, a13, a14, a15

and a16, also summarized in Table 17.

1 2 3 4 5 6
1 #1’ #2’ #3’ #4’ #5’
2
3
4
5
6

Table 17: Filling in sequence for n = 6, e = 5. Orders with ’ are interchangeable.

If the decision maker is willing to provide more than five comparisons, the rec-
ommended filling in sequence is {a14, a15, a24, a26, a35, a36} (the first six comparisons
can be made in any order), followed by a25, a34, a16, a12, a46, a23, a45, a56, and finally
a13, also summarized in Table 18.

1 2 3 4 5 6
1 #10 #15 #1’ #2’ #9
2 #12 #3’ #7 #4’
3 #8 #5’ #6’
4 #13 #11
5 #14
6

Table 18: Filling in sequence for n = 6, e > 5. Orders with ’ are interchangeable.

Since there is no path along all the optimal graphs, the filling in sequence above
includes as many as possible. The remaining EDGEs are colored with orange in
Figure 36, and we should note that the other included graphs are as close to optimal
ones as possible.

One can observe many similarities with the earlier outcomes in connection with
the concrete graphs, and the pattern of optimal graphs as well. Among the spanning
trees, the star graph provided the best results according to both measures again.
For e = 6 the 2-regular cycle turned out to be the optimal case, just as earlier. The
optimal graphs with e = 5, 6 and 7 are not connected, but from that point on we
can determine an optimal filling in sequence to the complete graph (if we consider
all the light green cases optimal).
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e = 5

e = 6

e = 7

e = 8

e = 9

e = 10

e = 11

Ee = 12

Ee = 13

e = 14

e = 15

Figure 36: The GRAPH of graphs for n = 6, optimal graphs (=NODEs) are colored
green, EDGEs between optimal graphs are colored green, too.
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n = 6, e = 5 n = 6, e = 6 n = 6, e = 7

n = 6, e = 8 n = 6, e = 9 n = 6, e = 10 n = 6, e = 11

n = 6, e = 12 n = 6, e = 13 n = 6, e = 14 n = 6, e = 15

Figure 37: The optimal graphs related to the green NODEs in Figure 36. The
second row shows a partial optimal filling sequence corresponding to the one in
Figure 36, these graphs can be reached from each other. The additional comparisons
are highlighted in every step.
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Moreover, for e = 9 the optimal graph is the single bipartite 3-regular graph on
six vertices, while for e = 12 the highlighted graph, which provided the best results
according to the Euclidean distance and the second best according to the Kendall’s
τ , is the only 4-regular graph on six vertices. Based on the simulations, we can make
several important remarks.

Remark 3 The star graph provided the best results according to both measures for
all examined (n, e = n − 1) cases. Thus we can say that it is an optimal structure,
intuitively it keeps this property for larger cases (n), as well.

Remark 4 For the (n, e = k ·n/2) examples, the optimal graph is always a k-regular
graph. Furthermore, k-quasi-regular graphs are optimal as well. One can say that
regularity is indeed important in a more general way, as in all of the examined
instances, the degree of different vertices (the number of comparisons) are as close
as possible.

Remark 5 The optimal graphs are always bipartite graphs, or the closest ones to
that.

The analyzed indicators for optimal graphs in the case of different number of
comparisons (e) can be seen in Figure 38 for n = 6. Again, it can serve as a guide
for practitioners.

6 8 10 12 14
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0.15

Number of comparisons (e)
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Errors of optimal graphs for n = 6

6 8 10 12 14

0.6

0.8

1

Number of comparisons (e)

K
en

da
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Kendall’s τ of optimal graphs for n = 6
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Figure 38: The relation between the number of comparisons (e), the errors (Eu-
clidean distances) and Kendall’s τ measures of optimal graphs for n = 6.

All of our simulation results provided optimal filling structures (representing
graphs) for the examined (n, e) pairs, as well as (partial) optimal filling sequences.
The outcomes show indeed similar patterns for different parameters, and can support
both applications and theoretical studies.

Finally, it is worth mentioning that although a practical MCDM problem usually
has several hierarchical levels, – thus many PCMs have to be filled in and the overall
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number of comparisons is high, – the size of the matrices usually do not exceed 6×6
(Ábele-Nagy et al., 2018). Furthermore, based on our research Gyarmati et al. (2023)
found that the exact same graphs are optimal in the case of fundamentally different
models as well, which are based on paired comparisons, i.e., the Bradley–Terry and
Thurstone models. These findings suggest that our results are rather general and
not model-specific.

4.5 Conclusion and further research

In this paper we analyzed all possible filling structures of incomplete pairwise com-
parison matrices when there is no prior information available for the compared items,
in the case of at most six alternatives (criteria). The study heavily relied on the
representing graphs of pairwise comparisons as well as on extensive numerical sim-
ulations with large samples. We compared the weight vectors (calculated by the
incomplete LLSM) related to the certain filling patterns and compared them based
on their Euclidean distance and Kendall’s τ measure with the weights obtained from
the complete case.

We found that there is a strong connection between the examined cardinal and
ordinal indicators, thus we could determine the best filling structure for a given num-
ber of alternatives and comparisons, which is a significant finding itself. However,
one of the main contributions of the paper is that many of these optimal graphs re-
sulted in optimal filling in sequences as first in the literature illustrated by different
paths in the examined GRAPHs of graphs.

The filling structure represented by a star graph turned out to be optimal among
the graphs (filling patterns) with the same cardinality (spanning trees). Regular
graphs also seem to provide optimal solutions, and regularity is a common property
of the optimal cases in a more general sense.

Both theorists and practitioners can utilize our findings not just to apply the op-
timal filling structure in their problems, but also to use the optimal filling sequences
in decision making problems where the decision maker can abandon the problem
at any period of the process. Furthermore, our results on the difference between
the optimal patterns and the complete case for different number of comparisons can
serve as a guide to determine the minimal sufficient number of comparisons for a
given problem.

A future research can investigate the certain comparisons that decrease the errors
the most during the filling in process. When should we stop to ask even more
questions from the decision maker? Do the last few comparisons provide significant
information? How does this problem relate to the representing graph?

Empirical PCMs may differ from simulated ones, and many collections of those
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matrices (even with the complete filling in order) are available (Bozóki et al., 2013),
thus in a future research it is important to test our findings on empirical matrices
as well.

Naturally larger cases, other weight calculation methods and different distance
measures can be further investigated as well. Are the findings remain true for a large
number of alternatives? How much are they dependent on the used techniques and
measures? What can we say when some prior information, for instance, the best
or the worst alternatives, perhaps both, are known (Rezaei, 2015; Mustajoki et al.,
2005; Edwards and Barron, 1994; von Winterfeldt and Edwards, 1986)?

Our results can be useful in other areas as well, for instance, in designing sport
tournaments. If we would like to plan the different rounds, we should make a number
of comparisons simultaneously. This leads to the general question: besides optimal
direct sequences, how does the optimal graphs include each other (indirectly)?
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Abstract

The method of pairwise comparisons is frequently applied for ranking pur-
poses. This paper aims to rank top women tennis players based on their
win/lose ratios. Incomplete pairwise comparison matrices (PCMs) were con-
structed from data obtained from the WTA (Women’s Tennis Association)
homepage. The database contains head-to-head results from the period be-
tween 1973 and 2022 for 28 players who had the position No. 1 in the offi-
cial rankings of WTA. The weight vector was calculated from the incomplete
PCM with the logarithmic least squares method and the eigenvector method.
The results are not surprising: Serena Williams, Steffi Graf, and Martina
Navratilova stand in the first three positions, and Martina Hingis, Kim Cli-
jsters, and Justine Henin follow them. We also tested the frequently used
probability-based Bradley-Terry method and found high rank-correlation val-
ues. Using graph representations, the results gave us a deeper insight into the
properties of incomplete PCMs. Special attention was given to the nontran-
sitive triads. A data modification was necessary to remove ties in order to
apply the commonly used tests. The results indicate that ordinally nontran-
sitive triads are not significant in the data we analysed.

Keywords: Multi-criteria, Sports, Decision analysis, Graphs

5.1 Introduction

In a wide range of individual (chess, fencing, tennis, boxing) and team sports (bas-
ketball, football, ice hockey), the title will be awarded based on pairwise match
results. Various traditional systems are available for conducting these types of com-
petitions. We do not aim to correct any of them (a theoretical approach can be
found in Csató (2021)). Instead, we are interested in a historical ranking: who is
the best player in the long run? Collecting results from certain databases about
the wins and losses of players against each other to generate a pairwise comparison

https://doi.org/10.1080/01605682.2023.2180447
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matrix seems to be a natural choice. If the pool of selected players contains pairs
who have not had matches against each other, then the matrix is incomplete. These
matrices play a special role in our research agenda, and applications are crucial to
demonstrating our results empirically.

Several studies analysed sports results; ours focused on tennis competitions.
Statistical analysis of performance data in tennis can be done for various purposes.
Some articles use the data for forecasting certain results of sporting events (Ko-
valchik, 2016). Lisi and Zanella (2017), for instance, estimate the probability of
winning with a logistic regression model. Their example is the analysis of the Grand
Slam championships’ results in 2013. A special approach for creating reliable fore-
casts applies Elo-model (Elo, 1978). Williams et al. (2021) confirm the good fitness
of the model for Wimbledon 2018 results, especially for top women players. Gu and
Saaty (2019) apply descriptive indicators (e.g., age, right- or left-handedness, rank-
ing position) and performance indicators (e.g., number of aces, winning or losing
service games, winning or saving break-points). Their Analytic Network Process
model is based on factor analysis of the key indicators; it was tested on the results
of the US Open 2015. They reported very good fitness with the real results (85%)
compared to usual forecasts (70%). Ramón et al. (2012) used similar data, but they
applied Data Envelopment Analysis to rank tennis players.

Another application area of sports data is team or player ranking. Langville and
Meyer (2012) collected the key ideas and methods of ranking and rating with excel-
lent historical notes and examples (not only sports applications). Their observation
is that ‘ranking methods . . . are largely based on matrix analysis or optimization. . .

Of course, there are plenty of ranking methods from other specialties such as statis-
tics, game theory, economics, etc.’ (p.2.) They describe Keener’s rating method
(Keener, 1993) as a demonstrative example of using the Perron-Frobenius the-
ory, mentioning Wei (1952), Kendall (1955) and Saaty (1987) as early and inno-
vative users of the concept. Langville and Meyer (2006) dedicated a whole book
to the PageRank method (Brin and Page, 1998). Dingle et al. (2013) published a
PageRank-based tennis ranking, and Dahl (2012) introduced a parametric method
based on linear algebra considering the importance of the matches. The method
uses pairwise comparisons and was developed for single-elimination tournaments.

Probability-based approaches form another class of models. In the papers of
Baker and McHale (2014, 2017) the paired comparisons models are formulated so,
that each player being compared is associated with a strength parameter given by a
function of the ratio of the strength parameters of the two players in question. The
Bradley-Terry (BT) model (Bradley and Terry, 1952) assumes a logistic distribution
for that function, and the Thurstone-Mosteller (TM) model (Thurstone, 1927) uses



5.2 Pairwise comparison matrices 128

a normal distribution. Baker and McHale used Grand Slam data from more than
four decades to estimate the power value of tennis players with the probabilistic
dynamic model of paired comparisons. As it will be shown in Section 5.3, their
final rankings for women players gave similar results to ours, while the rankings
for men players show the same pattern as the results of Wang et al. (2021). Here,
the authors applied a two-stage ranking method to minimize ordinal violation for
pairwise comparisons to rank the male tennis players.

Orbán-Mihálykó et al. (2019) applied WTA Head-to-Head results (as we also do
in this paper) to rank women tennis players using the Thurstone model to estimate
parameters with the maximum likelihood method. Their ranking is similar to ours,
too.

Our paper discusses the main properties of incomplete pairwise comparison ma-
trices in Section 5.2 and describes the database used in Subsection 5.3.1. Ranking
results are presented from different angles using the original PCM and its submatri-
ces in Subsection 5.3.2. The properties of the graph representation are demonstrated
next in Subsection 5.3.3. Finally, we draw some conclusions in Section 5.4.

5.2 Pairwise comparison matrices

We briefly summarise some definitions and theorems that we will use during the
analysis. We introduce most of the concepts here in a more general way, not specif-
ically for our application. Later on, we will adopt the same notations.

Let P1, P2, . . . , Pn denote the examined items to be compared (alternatives, cri-
teria, voting powers, or, as in our case, players).

Definition 35 An n × n P = [pij] matrix is called a pairwise comparison matrix
(PCM), if it satisfies the following properties:

1. pij > 0, i, j = 1, 2, . . . , n (positivity)

2. pji = 1/pij, i, j = 1, 2, . . . , n (reciprocity)

3. from 1 and 2 follows that pii = 1, i = 1, 2, . . . , n.

The general element of the matrix, pij shows how many times alternative Pi

is better/larger/stronger than alternative Pj. From a practical point of view, the
inconsistency of the matrix is crucial.

Definition 36 A PCM is called consistent if the following holds for any three al-
ternatives (triads):

4. pik = pij · pjk i, j, k = 1, 2, . . . , n (cardinal transitivity).
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If there exists a triad, where this equality does not hold, then the PCM is said to be
inconsistent.

Moreover, a triad is called ordinally nontransitive, if the order of its alternatives
determined by the appropriate matrix elements is circular. For instance, if pik > 1,
pkj > 1 and pij < 1, namely alternative Pi is better than alternative Pk, while Pk is
better than Pj, however, Pj is also better than Pi. In our application and sports in
general, the ordinally nontransitive triads can be interpreted well, and they occur
quite often. There can be huge differences in the inconsistency of different PCMs.
Measuring this problem has an extended literature (Brunelli, 2018), and there is an
ongoing debate about the needed properties of the inconsistency metrics (Brunelli
and Fedrizzi, 2015). In real applications, however, the CR (Consistency Ratio)
inconsistency index recommended by Saaty (1977), remains the most popular. Here,
the CR < 0.1 acceptance rule is usually used.

Definition 37 The CR inconsistency index of an n × n P PCM is defined as
follows:

CR = CI

RI
,

where CI (Consistency Index) can be calculated as:

CI = λmax − n

n − 1 ,

where λmax is the principal eigenvalue of matrix P , while RI (Random Index) is the
average CI calculated from a randomly generated sample of n × n PCMs.

Based on different methods, a weight vector can be calculated from a PCM,
which determines the ranking (goodness, importance) of the alternatives. The two
most commonly used techniques are the eigenvector method (EV) (Saaty, 1977) and
the logarithmic least squares method (LLSM) (Crawford and Williams, 1985), which
are defined by the following formulas:

• EV: P w = λmax · w

• LLSM: ∑n
i=1

∑n
j=1 (ln pij − ln (wi/wj))2 → minw,

where w denotes the computed weight vector with the general element wi (i =
1, . . . , n), and λmax is the principal eigenvalue of matrix P , as before. If a PCM is
consistent, then its elements can be written as pij = wi/wj, which means that for
such a matrix every weight calculation method results in the same weight vector. It
is common in the literature to estimate an inconsistent PCM with a consistent one
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based on different techniques (Anholcer and Fülöp, 2019). The difference between
the priority vectors of the two presented weight calculation techniques also depends
on the inconsistency (Kułakowski et al., 2022). Illustrative examples can be found
in Brunelli (2014), as well as in Bozóki et al. (2009).

PCMs can contain some missing elements. There are several reasons for this,
including: the inability to make some comparisons (as in our case), some data may
have been lost, or the time constraints of the decision maker. In these cases, we are
dealing with incomplete PCMs (IPCMs). The above-mentioned weight calculation
techniques can be easily generalised for IPCMs, as well. The eigenvector method is
based on the CR minimal completion (Shiraishi et al., 1998), while in case of the
LLSM we only use the known elements of the matrix in the optimization problem
(Bozóki et al., 2010). Inconsistency indices and their respective thresholds have also
been generalised for the incomplete case (Ágoston and Csató, 2022).

IPCMs are easier to understand if we focus on the graph representation instead
of the matrix (Gass, 1998).

Definition 38 A G = (V, E) undirected graph, where V is the vertex set and E is
the edge set of the graph, is called the representing graph of IPCM P , if V corre-
sponds to the alternatives of P , and an edge is in E if and only if the appropriate
element in P is known.

With the help of graph representation, many results connected to pairwise com-
parisons can be easily formulated.

Theorem 1 (Bozóki et al. (2010)) The EV and LLSM techniques generalized to
IPCMs have a unique solution, if and only if the representing graph of the IPCM is
connected.

A graph is called connected if there is a path between any two vertices in the
graph. If there are two elements for which we cannot find a path, then we cannot
determine the relation between their weights (importance) uniquely. However, it is
worth investigating some of the stricter variants of connectedness for our problem.

Definition 39 (a) A G = (V, E) graph is called k-edge-connected, if it remains
connected whenever fewer than k edges are removed from the graph, i.e., G′ =
(V, E \ H) is connected, where H ⊆ E and |H| < k. The edge connectivity of
G is the maximal k, for which G is k-edge-connected.

(b) A G = (V, E) graph is called k-vertex-connected, if it remains connected when-
ever fewer than k vertices are removed from the graph, i.e., G′ = (V \ L, E)
is connected, where L ⊆ V and |L| < k. The vertex connectivity of G is the
maximal k, for which G is k-vertex-connected.
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It is also worth considering the confidence level of the weights between two ele-
ments for which there is only a long, indirect path that includes many comparisons.
A natural measure for this problem is the diameter of the graph (Szádoczki et al.,
2022).

Definition 40 The diameter (d) of a graph G = (V, E) is the longest shortest path
between any two vertices of the graph:

d = max
u,v∈V

ℓ(u, v),

where ℓ(., .) is the graph distance, namely the shortest path between two vertices (in
our case the weight of every edge is 1).

Examples of the application of the graph representation can be found for instance
in Gass (1998), Bozóki and Tsyganok (2019), and Szádoczki et al. (2022).

5.3 Data and results

5.3.1 Database of top women tennis players

The basics of professional tennis have not changed a lot since 1972 when the As-
sociation of Tennis Professionals (ATP) was established for protecting the interests
of men players, and since 1973 when the Women’s Tennis Association (WTA) was
founded. The tournament system and the ranking system had their origins in the
1970s. Ranking the players is important because the seeding system is based on
the ranking positions, ensuring enjoyable and spectacular competitions. The official
ranking systems have special rules in order to play a relevant role in the adminis-
tration of the tournaments.

ATP and WTA have databases containing the results of all official tournaments,
there are search options by tournaments and by players on the homepage of both
associations1. The H2H (Head-to-Head) statistics are also available: one can be
informed about the match results of any two ranked players. The webpages report
the recent ranking lists according to the official point systems2. These points are
informative if we wish to see a kind of power ranking based on the strength of the
given tournaments over a certain time frame. However, it is always debated, who
the ‘best’ player is for a longer period, or how we can create a historical ranking.
The selection of the players to be ranked is also controversial. Previously (Bozóki
et al., 2016), the rankings were generated of those men players who have ever been

1https://www.atptour.com/, https://www.wtatennis.com
2https://www.atptour.com/en/rankings/singles, https://www.wtatennis.com/rankings/singles

https://www.atptour.com/
https://www.wtatennis.com
https://www.atptour.com/en/rankings/singles
https://www.wtatennis.com/rankings/singles
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first on the official ATP lists. We followed the same approach for the women players
collecting the No. 1 players from the WTA rankings3 from 1973 to mid-August of
2022. We have found 28 players; their names and the length of their professional
careers can be seen in Figure 39.
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Figure 39: WTA top tennis players and the length of their professional careers.

The chart shows that Navratilova and the Williams sisters have the longest
career paths (although others also have careers close to 20 years). We can also see,
for instance, that Clijsters retired and resumed two times during our time. There
were 11 active players at the beginning of 2022 including the Williams sisters.

We use the database to support our methodology to provide a historical ranking
of the selected players. Instead of building a point system from the tournament
characteristics and the advancement of a player at a given tournament, we will
determine the position of a player using the match results against each other. Let
us say that player Pi is ‘better’ than Pj if the number of her wins over Pj is greater
than her losses (there is no tie in tennis), and it is measured by the win/lose (Wij/Lij)
ratio. We can construct a matrix with the names of the players in the rows and
columns, where the elements are the W/L ratios. The row player is better than the
column player if the corresponding ratio is larger than 1, and they are equal if the
W/L ratio is 1. If the reciprocal values will measure how much ‘worse’ Pi than Pj,
then all of the ratios form a paired comparison matrix (PCM).

Let P1, P2, . . . , Pn denote the players. Our data can be described as follows:
3https://en.wikipedia.org/wiki/List_of_WTA_number_1_ranked_tennis_players

https://en.wikipedia.org/wiki/List_of_WTA_number_1_ranked_tennis_players


5.3 Data and results 133



zij (i, j = 1, . . . , n, i ̸= j) : the number of matches played between

Pi and Pj (zij = zji);

xij (i > j) : the number of matches between Pi and Pj ,

where the winner was Pi;

yij = zij − xij (i > j) : the number of matches between Pi and Pj ,

where Pi was the loser.

(38)

In the incomplete P = [pij], i, j = 1, . . . , n pairwise comparison matrix, pij

denote the Wij/Lij ratio between Pi and Pj:


pij = xij/yij, if i, j = 1, . . . , n, i > j and xij ̸= 0, yij ̸= 0;

pji = yij/xij = 1/pij, if i, j = 1, . . . , n, i < j and xij ̸= 0, zij ̸= 0;

pii = 1 (i = 1, . . . , n);

(39)

pij and pji are missing otherwise.
Similarly to Bozóki et al. (2016), we had to make data corrections to avoid the

case of 0 as a denominator in Wij/Lij ratios:

pij = xij + 2, if i > j, yij = 0 and zij ̸= 0 (i, j = 1, . . . , n). (40)

The interpretation of the pij > 0 element is that the ith player is pij times better
than the jth player.

The WTA webpage H2H section includes all results of the players. The W/L

ratios are in Table 19. As can be seen from Table 19, the range of the zij elements
is large: therefore the range of the values of pij is large as well. We have used the
following transformation to extract the range:

tij = p
zij/K
ij , if zij < K, and tij = pij otherwise,

K = maxi,j zi,j,
(41)

where the transforming factor is the ratio of the number of matches played
between the given two players and the maximum of the number of matches played
between any two players. This can also solve the problem that the same W/L ratio
based on a few matches is considered to be less reliable compared to the ratio coming
from a large number of games, so we transform the ratios based on a small sample
in a way that they will be closer to one. Note that if all players have the same
number of matches, transformation 41 results in tij = pij. If the parameter K is
set to a smaller value, it can be interpreted as a threshold from where we do not
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distinguish between the confidence of the ratios based on the number of matches.
Now the initial matrix of the calculations will be matrix T with elements tij. This
matrix is obviously incomplete because it is easy to find players with disjoint career
intervals in Figure 39.

The graph representation of Table 19 is the network in Figure 40. The vertices

of the undirected graph represent the players. The edges show that the connected

players played at least one match against each other. An important property of the

graph representation in Figure 40 is that it is connected. According to Theorem 1,

the estimated weight vector gives a unique solution.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Evert

Goolagong

Navratilova

Austin

Graf

Sanchez

Seles

Capriati

Davenport

Mauresmo

Hingis

V.Williams

S.Williams

Clijsters

Henin

Jankovic

Safina

Sharapova

Ivanovic

Kerber

Azarenka

Wozniacki

Halep

Pliskova

Barty

Muguruza

Osaka
Swiatek

Figure 40: Graph representation of top WTA players’ IPCM.

On first glance it appears that the players at the beginning and at the end of the

50-year-long period are strictly separated; however, we can find players who ‘connect’

them, like Sharapova or the Williams sisters. Navratilova could be one of them, but

she met only 8 players of the other 27: calculating career path statisticians do not

distinguish between individual and double competitions, and the latter extended her
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professional career longer than the average.

5.3.2 Ranking results

The weight vector of the women players’ incomplete PCM calculated with the loga-

rithmic least squares method gives the ranking in the first column in Table 20. The

result is not surprising: Serena Williams, Graf, and Navratilova top the list, followed

by Hingis, Clijsters, and Henin. The new generation is represented by Barty in the

8th place. The second column of the table demonstrates that the W/L rates prove

to be a good proxy of our ranking. The Spearman rank correlation value is 0.962.

LLSM W/L LLSMK=30 EV BT

S. Williams 1 1 1 1 1
Graf 2 2 2 2 2

Navratilova 3 6 3 3 4
Hingis 4 7 4 4 7

Clijsters 5 5 5 5 6
Henin 6 4 6 6 3

V. Williams 7 8 7 7 9
Barty 8 3 8 8 10

Davenport 9 9 10 9 8
Evert 10 10 9 10 5
Seles 11 16 11 11 12

Osaka 12 14 12 13 16
Sharapova 13 11 13 12 13
Pliskova 14 12 14 14 20
Halep 15 15 15 15 19

Swiatek 16 13 16 16 17
Azarenka 17 17 17 17 18
Muguruza 18 19 18 18 21
Mauresmo 19 18 19 20 14

Kerber 20 20 20 19 22
Wozniacki 21 22 21 21 24

Safina 22 25 23 22 25
Austin 23 21 22 23 11
Ivanovic 24 24 24 24 27
Capriati 25 26 25 25 23
Jankovic 26 27 26 26 28
Sanchez 27 28 28 27 26

Goolagong 28 23 27 28 15

Table 20: Ranking results.
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Since the value of the parameter K is an outlier (K = 80), a ranking was gener-

ated with an average value, K = 30, as can be seen in column 3. There are minor

changes in the positions of the players: Evert and Davenport changed positions in

the 9th and 10th places; Safina and Austin in the 22nd and 23rd positions; Sanchez

and Goolagong changed the last two positions. The Spearman rank correlation value

is 0.998. The situation was similar to other transformation factors. The fourth col-

umn of the table contains the ranking calculated with the eigenvector method. Two

rank reversals can be found: Osaka and Sharapova, and Mauresmo and Kerber. The

Spearman rank correlation is 0.999.

We also applied the well-known, probability-based Bradley-Terry model (Bradley

and Terry, 1952) to our data to create a ranking, and compare this approach to

ours. This method assumes that there are latent random variables with logistic

distribution behind the performance of the players. In the traditional model we

are estimating the expected values of these random variables and based on those

we can rank the objects (the larger the better). Usually, the maximum likelihood

estimation method is used to determine the parameters (expected values), for which

there exists a unique solution if and only if the directed graph of the comparisons

is strongly connected (Ford Jr, 1957). This assumption is more stringent than the

uniqueness of the PCM-based method. It basically means that even that graph

should be connected, for which we delete those edges from the graph of Figure 40

where only one of the players has won all the games. This means 40 of the 192

edges in our data, however, this graph is still connected. We calculated the results

of the Bradley-Terry model to compare our method to one of the most commonly

used probability-based ranking methods as well. Column 5 of the table contains

the ranking calculated with the maximum likelihood method of the Bradley-Terry

model. As one can see, the BT-model provides a similar ranking, and the Spearman

rank correlation is 0.860. The main difference is that the ranks of the earlier players

(Goolagong, Evert, Austin, and Henin) are significantly better.

Our calculations with the WTA players are in line with the top ATP players in

Bozóki et al. (2016). Both data systems are robust in that respect that the rank-

ings which have been calculated from the incomplete PCMs are not sensitive to

reasonable corrections, and the choice of the estimation method does not make a
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significant impact on the results. The rankings are similar to other orders deter-

mined by commonly used ranking models, like the Bradley-Terry method. Empirical

evidence suggests that our methodology can be recommended for the given ranking

exercise.

The next step of our calculations was to analyse the submatrices of the initial

matrix. What happens if elements (players) were dropped or involved? How do

subrankings behave? PCM1 column of Table 21 shows a ranking without the first

nine players in the overall ranking. Seles, Sharapova, and Evert have the first three

positions; Osaka, Kerber, and Muguruza lost several positions; the last positions

did not change significantly. PCM2 is a ranking without the last nine players of

the overall ranking. Serena Williams and Graf saved the first two positions, but

the ranking behind them is very different from the original one. The position of

Seles is very interesting: in PCM1, she is first, but in PCM2, she is last! The

explanation of the changes is simple and plausible. Both the number of matches

and the composition of matches changed. Some players benefitted from the modified

structure (those players were missing with whom they had the poorest W/L ratios),

and others became victims of the changes (their best W/L ratios disappeared).

Some indirect impacts have also vanished. The most prominent example of this

phenomenon is Monica Seles. The rankings are not independent of the incoming

and outgoing elements – as was expected.

PCM3 is the ranking of the four most influential stars of the seventies. They

follow each other under the overall ranking: it looks like their results inside of

PCM3 follow the pattern outside of the block. Since everybody played against

everybody here, a simple preference order can be calculated based on the winner-

loser relationship as a binary relation. The order is Navratilova ≻ Evert ≻ Austin

∼ Goolagong. PCM4 is a ranking of 12 players from the next era. From the first

six places, Hingis is the only one, who lost position, and Wozniacki is the other

one, who lost position at the end of the ranking. PCM4 gives evidence that it

is possible to select a relatively large number of players with their most active

career in the same time period, so that their results practically determine their

positions with minor changes compared to the overall ranking. PCM3 and PCM4 are

complete submatrices of matrix T , therefore the usual CR inconsistency indices can
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be calculated, too. The CR values are below 0.02 supporting our hypothesis about

the robustness of the data. Furthermore, PCM4 includes 20.50% of all matches in

the matrix T .

Finally, in PCM5 there is a ranking of 19 players selected randomly from our

pool of women players. The Williams sisters, Evert, Seles, Kerber, Azarenka, Safina,

Jankovic, and Swiatek were not included. The first five players follow each other in

the same order as they did in the overall ranking. The reason is likely the fact that

their performance against Evert and the Williams sisters follows the same pattern

not influencing the ranking based on their match results against each other. Due to

the elimination of their results against the leaving players, Sharapova and Austin

are in a better position. We have had the same experience with other random sets

of players.
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PCM1 PCM2 PCM3 PCM4 PCM5
S. Williams - 1 - 1 -

Graf - 2 - - 1
Navratilova - 8 1 - 2

Hingis - 9 - 6 3
Clijsters - 10 - 2 4
Henin - 12 - 3 5

V. Williams - 5 - 4 -
Barty - 3 - - 10

Davenport - 7 - 5 6
Evert 3 18 2 - -
Seles 1 19 - - -

Osaka 12 6 - - 15
Sharapova 2 15 - 7 8
Pliskova 6 4 - - 13
Halep 7 11 - - 14

Swiatek 8 13 - - -
Azarenka 5 16 - - -
Muguruza 14 14 - - 16
Mauresmo 4 17 - 8 11

Kerber 15 - - - -
Wozniacki 11 - - 11 12

Safina 9 - - 9 -
Austin 18 - 3 - 7
Ivanovic 10 - - 10 18
Capriati 13 - - - 17
Jankovic 17 - - 12 -
Sanchez 16 - - - 19

Goolagong 19 - 4 - 9

Table 21: Ranking results from various submatrices of matrix T .

There are two key conclusions from these calculations. Changes in the set of

players changed the rankings – as we expected. However, these changes did not

blow over the original rankings entirely, the new positions could be explained with

the new patterns of the modified PCM.

We also examined the rankings, when we added additional elements (tennis play-

ers) to the set of players one by one. The first subset that we analysed includes the

players who were active at the beginning of 2022 (11 players). Then we stepped

backward in time and included the next player, who finished her professional career

the latest (in case of a tie between two players, we chose the one who started her

career later). We included the elements one by one until we get the whole ranking of
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all 28 players. In this way, we generated 18 different rankings, which can be seen in

Figure 41, as well as the changes caused by the entry of a given player (the entering

players are shown at the bottom of the chart). It is important to note that there

are exactly as many rank reversals due to the inclusion of a given player, as many

lines cross each other between the inclusion and the former player’s involvement.
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Figure 41: The differences in the rankings of women tennis players when they enter
the ranking one by one.

We can see that the ranking is robust, the inclusion of a player usually does not

affect the results too much, and only one or two rank reversals occur. In the rare

cases when a player’s rank is changed by a significant number it is since she barely

played with the other players who are in the ranking so far (for instance Austin),

and her comparison to the newly involved element (Evert, and then Goolagong) is

more reliable. This can be seen, when the ranking of Navratilova undergoes a lot of

change in the first few steps as she only played a single game with the so far included

players. Of course, a player may also win (or lose) many times against a currently

entered element (for instance Hingis against Seles or Sanchez and Venus Williams
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against Ivanovic). It is worth mentioning that the entry of a player usually has a

larger impact on the players with whom she has played a lot. The beginning and

the end of the ranking both seem to be robust. We can see more rank reversals in

the middle, as we involve more and more elements. However, it still looks like there

are clusters here, and the ranking of the players only changes within those groups.

5.3.3 Graph representations

Using graph representations gave us the possibility to have a deeper insight into the

properties of incomplete pairwise comparison matrices. The representing graph of

the women players can be seen in Figure 40, while its connectivity indicators are

described in Table 22

W T A W T Amod

Number of vertices (players) 28 23
Number of edges (players compared) 192 170

Minimal vertex degree 3 9
Maximal vertex degree 22 22

Diameter 4 2
Average shortest path 1.66 1.33

Edge connectivity 3 9
Vertex connectivity 3 8

Table 22: Properties of the representing graph for WTA players.

We can find one player (Goolagong), who had competitions with only three

other players, as it is indicated by the minimal vertex degree. On the contrary, the

Williams sisters had matches with 22 other players. The maximal vertex degree be-

longs to them. Erasing either any 2 edges or vertices we can get a connected graph.

The longest shortest path (diameter) is 4, and it can be determined between play-

ers far from each other in time: Goolagong and Osaka/Muguruza/Barty/Swiatek

respectively or between Evert and Swiatek.

Figure 42 illustrates the degree of vertices. That distribution is used in network

theory (Albert et al., 2000) for analysing various types of systems. In our case, the

average shortest path has a small value, and the degrees are distributed relatively

orderly around the average. The clustering value is 0.79 (that means certain groups
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of players have results from the same group). These properties indicate that our

network is a small-world type one (Watts and Strogatz, 1998).
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Figure 42: Distribution of the degree of vertices.

Another feature of the representing graph for WTA players is that by erasing the

Williams sisters, represented by the vertices with maximal vertex degree, the con-

nectivity properties practically do not change. However, erasing the critical triads

of Evert, Navratilova, and Graf, or Evert, Navratilova, and Austin, the connectivity

of the graph will be lost. On the other hand, erasing four players of the earliest

period (Goolagong, Evert, Navratilova, Austin) and the most recent world number

one (Swiatek), the remaining graph will have much stronger connectivity indicators,

as can be seen in the second column of Table 22 (W T Amod). Rankings generated

from these reduced graphs (submatrices) almost follow the positions in the overall

ranking, suggesting that these strong relations can specify them.

It is another fact that the modified, strongly connected graph is the union of two

star graphs, complemented with a few edges. The centres are the Williams sisters

– meaning they played directly with all other players. Similar representing graphs

can be obtained by applying the popular best-worst method (Rezaei, 2015). That

structure can also be responsible for the robustness of our ranking results.

Another line of our research referred to the ordinally nontransitive triads. There

are many sports competitions where W/L > 1 for A and B, and the same is true for

B and C: A is better than B, and B is better than C. We can expect that A will be
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better than C; however, from the results, we get W/L < 1. In preference ordering

that triad is called contradictory (Kwiesielewicz and van Uden, 2004). A suitable

example of an ordinally nontransitive triad is Henin, Davenport, and Venus Williams

in our database. We chose the positive reciprocal multiplicative PCM approach for

ranking tennis players because the estimation methods are functional in the case of

ordinal or cardinal nontransitivity. However, in the course of discussing the ranking

results, it is important to know more about the ordinally nontransitive triads of the

PCM, since their presence signals a kind of contradiction. Representing graphs are

directed in the analysis of ordinal nontransitivity: an edge leads from one player to

the next if the latter player lost more matches.

Kendall and Babington Smith (1940) gave the distribution of ordinally non-

transitive triads in the case of a low number of elements (n ≤ 7) and proposed a

significance test. Alway (1962) extended the distribution for 8 ≤ n ≤ 10; others

analysed cases with larger numbers of elements. Moran (1947) proved that the dis-

tribution of the nontransitive triads goes to the normal distribution if the number

of elements goes to infinity, but the convergence is slow. Knezek et al. (1998) in-

vestigated the chi-square distribution used by Kendall and Babington Smith (1940)

earlier, and they found it satisfactory for more than 15 elements. Jensen and Hicks

(1993) proposed a consistency coefficient and a nonparametric test for ordinal PCMs,

while Iida (2009) discussed the nontransitivity tests for decision-making problems

by applying them to binary PCMs without ties. It is crucial to note that all of

the above-mentioned tests worked for complete PCMs without ties. In the case of

ties, Kułakowski (2018) determined the maximal number of contradictory triads for

any number of elements and proposed an index related to that number (without a

statistical test). He extended the definition of contradictory triads to those cases

when there are only one or two equalities between the elements of the triads. That

kind of inconsistency analysis could not be interpreted properly in our case; we are

looking for strictly inconsistent triads. That is why we did not follow the approaches

of Iida or Kułakowski, and decided to hark back to the case without ties and to use

the known tests.

The modified databases contain W/L set ratios for each pair. In the case of

having ties even for the set ratios, the original LLSM ranking was the reference to
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make a precedence relation. The nontransitivity tests need complete matrices. If two

players have not played with each other for any reason (no edge was found between

the two vertices), then we used the same reference ranking to determine a ‘winner’. A

complete directed graph was created this way. Table 23 includes information about

the original incomplete PCM in the first, and about its completed and tie-corrected

version in the second column.

W T A W T Acomplete

Density 192/378 378/378
Number of ties 20 0

Number of ordinally nontransitive triads 83 315
Possible maximal number of ordinally nontransitive triads 910 910

Table 23: Basic data for nontransitivity analysis.

Regarding the case before correction, we can see that the PCM has a density of

around 50% (half of the elements are known), and the ratio of ties is about 10%.

We have got the number of nontransitive triads from the incomplete matrices here,

therefore it is not comparable with the possible maximal number of nontransitive

triads obtained from the complete matrix. The second column of Table 23 informs

us about the case after eliminating ties and completing the matrix. The chi-squared

test value is ∼202, the corresponding p-value is practically 0: the number of ordinally

nontransitive triads is not significant in our database.

5.4 Conclusion

Our results provide empirical evidence that the method of incomplete pairwise com-

parison matrices is appropriate for producing well-understood rankings. Our study

was based on the match results of players against each other. Calculations with the

whole databases and their subsets clarified that WTA data were robust enough to

state that although the rankings have been changed, the differences can be explained

via the analysis of the data matrices, and they are logically consistent. Our histor-

ical rankings alone may be of interest to tennis experts, but they are also relevant

from a decision theory perspective.

One of the novelties of our approach was the analysis of representing graphs. We
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aimed to contribute to a deeper description of the properties of incomplete pairwise

comparison matrices. Graph representations can open new avenues in this regard.

We consider further research on ordinally nontransitive triads to be particularly

important.

Our work is based on Head-to-Head statistics of the players without taking some

considerations into account, which seems to limit the validity of our rankings. They

are listed and commented on here with the aim of either explaining why we chose

an overall and unified approach or opening new tracks with fine-tuning of the data.

Tennis fans and experts can say that: ‘It is not fair to give the same weight to the

matches of any player from the very early and very late periods of their professional

career.’ Having details about the professional career of each player it is possible to

introduce correction factors. But there are at least two reasons to drop the idea.

It would not be easy to determine those early and late stages, and even if we can

do it, the value of the correction parameter would include a strong subjective factor

in the analysis. On the other hand, we can easily find players with exceptionally

good early results (e.g., Austin, Seles, Osaka), and some players retired without

a declining period (e.g., Henin). That kind of time-dependent adjustment of data

would bring a very controversial factor to the ranking results.

‘Different surfaces need another sort of treatment.’ The weighting of surfaces

would introduce a subjective factor, again. Revaluation of individual results would

lead to endless debates. Yes, a viable solution would be to make separate rankings

for different surfaces: who is the top player on clay court, and who is the most

successful on grass? Data are available, but we did not undertake that job, because

it would not give extra methodological benefits.

‘Match ratios can be used, but set ratios would reflect better to power differ-

entiation.’ Data are available to calculate W/L ratios from sets. We have made

some calculations in the case of both men and women players. Rankings were not

significantly different from the original ones, so we dropped that artificial approach.

‘Ranking is restricted to the No. 1 WTA players – their performance against

other players might change that ranking.’ For instance, selecting the top 20 players

from every year between 1973 and 2022 is possible, as data are available. We have

not done the job of ranking them (or more players). It is worth mentioning that
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historical rankings of different player populations show very strong similarity (as

is referred to in the introductory section of this paper). Another remark is that

top tennis is surprisingly endogenous, the best players meet each other frequently.

Even in our small sample, we can see that the ratio of ‘number of matches in our

database/number of matches in the entire career’ is the smallest for Swiatek (∼6%),

and the largest for Serena Williams (∼25%).

Acknowledgements

The authors thank the valuable comments and suggestions of the anonymous

Reviewers. The comments of László Csató and András London are greatly acknowl-

edged. This research has been supported in part by the TKP2021-NKTA-01 NRDIO

grant.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ágoston, K. Cs. and Csató, L. (2022). Inconsistency thresholds for incomplete

pairwise comparison matrices. Omega, 108:102576. https://doi.org/10.1016/j.om

ega.2021.102576.

Albert, R., Jeong, H., and Barabási, A. L. (2000). Error and attack tolerance of

complex networks. Nature, 406(6794):378–382. https://doi.org/10.1038/350190

19.

Alway, G. G. (1962). The distribution of the number of circular triads in paired

comparisons. Biometrika, 49(1-2):265–269. https://doi.org/10.1093/biomet/49.

1-2.265.

Anholcer, M. and Fülöp, J. (2019). Deriving priorities from inconsistent PCM using

network algorithms. Annals of Operations Research, 274(1):57–74. https://doi.or

g/10.1007/s10479-018-2888-x.

https://doi.org/10.1016/j.omega.2021.102576
https://doi.org/10.1016/j.omega.2021.102576
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1093/biomet/49.1-2.265
https://doi.org/10.1093/biomet/49.1-2.265
https://doi.org/10.1007/s10479-018-2888-x
https://doi.org/10.1007/s10479-018-2888-x


REFERENCES 148

Baker, R. D. and McHale, I. G. (2014). A dynamic paired comparisons model:

Who is the greatest tennis player? European Journal of Operational Research,

236(2):677–684. https://doi.org/10.1016/j.ejor.2013.12.028.

Baker, R. D. and McHale, I. G. (2017). An empirical Bayes model for time-varying

paired comparisons ratings: Who is the greatest women’s tennis player? European

Journal of Operational Research, 258(1):328–333. https://doi.org/10.1016/j.ejor

.2016.08.043.

Bozóki, S., Csató, L., and Temesi, J. (2016). An application of incomplete pairwise

comparison matrices for ranking top tennis players. European Journal of Opera-

tional Research, 248(1):211–218. https://doi.org/10.1016/j.ejor.2015.06.069.

Bozóki, S., Fülöp, J., and Rónyai, L. (2009). Incomplete pairwise comparison ma-

trices in multi-attribute decision making. In 2009 IEEE International Confer-

ence on Industrial Engineering and Engineering Management, pages 2256–2260.

https://doi.org/10.1109/IEEM.2009.5373064.

Bozóki, S., Fülöp, J., and Rónyai, L. (2010). On optimal completion of incomplete

pairwise comparison matrices. Mathematical and Computer Modelling, 52(1):318–

333. https://doi.org/10.1016/j.mcm.2010.02.047.

Bozóki, S. and Tsyganok, V. (2019). The (logarithmic) least squares optimality of

the arithmetic (geometric) mean of weight vectors calculated from all spanning

trees for incomplete additive (multiplicative) pairwise comparison matrices. In-

ternational Journal of General Systems, 48(3-4):362–381. https://www.tandfonl

ine.com/doi/abs/10.1080/03081079.2019.1585432.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs:

I. The method of paired comparisons. Biometrika, 39(3/4):324–345. https://doi.

org/10.2307/2334029.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual Web search

engine. Computer Networks and ISDN Systems, 30(1):107–117. Proceedings of

the Seventh International World Wide Web Conference. https://doi.org/10.101

6/S0169-7552(98)00110-X.

https://doi.org/10.1016/j.ejor.2013.12.028
https://doi.org/10.1016/j.ejor.2016.08.043
https://doi.org/10.1016/j.ejor.2016.08.043
https://doi.org/10.1016/j.ejor.2015.06.069
https://doi.org/10.1109/IEEM.2009.5373064
https://doi.org/10.1016/j.mcm.2010.02.047
https://www.tandfonline.com/doi/abs/10.1080/03081079.2019.1585432
https://www.tandfonline.com/doi/abs/10.1080/03081079.2019.1585432
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X


REFERENCES 149

Brunelli, M. (2014). Introduction to the Analytic Hierarchy Process. Springer. https:

//doi.org/10.1007/978-3-319-12502-2.

Brunelli, M. (2018). A survey of inconsistency indices for pairwise comparisons.

International Journal of General Systems, 47(8):751–771. https://doi.org/10.108

0/03081079.2018.1523156.

Brunelli, M. and Fedrizzi, M. (2015). Axiomatic properties of inconsistency indices

for pairwise comparisons. Journal of the Operational Research Society, 66(1):1–15.

https://doi.org/10.1057/jors.2013.135.

Crawford, G. and Williams, C. (1985). A note on the analysis of subjective judgment

matrices. Journal of Mathematical Psychology, 29(4):387–405. https://doi.org/

10.1016/0022-2496(85)90002-1.

Csató, L. (2021). Tournament Design: How Operations Research Can Improve

Sports Rules. Palgrave Pivots in Sports Economics, Palgrave Macmillan. https:

//doi.org/10.1007/978-3-030-59844-0.

Dahl, G. (2012). A matrix-based ranking method with application to tennis. Linear

Algebra and its Applications, 437(1):26–36. https://doi.org/10.1016/j.laa.2012.0

2.002.

Dingle, N., Knottenbelt, W., and Spanias, D. (2013). On the (Page) ranking of

professional tennis players. In Tribastone, M. and Gilmore, S., editors, Computer

Performance Engineering, pages 237–247. Springer Berlin Heidelberg. https://do

i.org/10.1007/978-3-642-36781-6_17.

Elo, A. E. (1978). The rating of chessplayers, past and present. Arco Pub. https:

//www.gwern.net/docs/statistics/comparison/1978-elo-theratingofchessplayers

pastandpresent.pdf.

Ford Jr, L. R. (1957). Solution of a ranking problem from binary comparisons. The

American Mathematical Monthly, 64(8P2):28–33. https://doi.org/10.2307/2308

513.

https://doi.org/10.1007/978-3-319-12502-2
https://doi.org/10.1007/978-3-319-12502-2
https://doi.org/10.1080/03081079.2018.1523156
https://doi.org/10.1080/03081079.2018.1523156
https://doi.org/10.1057/jors.2013.135
https://doi.org/10.1016/0022-2496(85)90002-1
https://doi.org/10.1016/0022-2496(85)90002-1
https://doi.org/10.1007/978-3-030-59844-0
https://doi.org/10.1007/978-3-030-59844-0
https://doi.org/10.1016/j.laa.2012.02.002
https://doi.org/10.1016/j.laa.2012.02.002
https://doi.org/10.1007/978-3-642-36781-6_17
https://doi.org/10.1007/978-3-642-36781-6_17
https://www.gwern.net/docs/statistics/comparison/1978-elo-theratingofchessplayerspastandpresent.pdf
https://www.gwern.net/docs/statistics/comparison/1978-elo-theratingofchessplayerspastandpresent.pdf
https://www.gwern.net/docs/statistics/comparison/1978-elo-theratingofchessplayerspastandpresent.pdf
https://doi.org/10.2307/2308513
https://doi.org/10.2307/2308513


REFERENCES 150

Gass, S. (1998). Tournaments, transitivity and pairwise comparison matrices. Jour-

nal of the Operational Research Society, 49(6):616–624. https://www.tandfonlin

e.com/doi/abs/10.1057/palgrave.jors.2600572.

Gu, W. and Saaty, T. L. (2019). Predicting the outcome of a tennis tournament:

Based on both data and judgments. Journal of Systems Science and Systems

Engineering, 28(3):317–343. https://doi.org/10.1007/s11518-018-5395-3.

Iida, Y. (2009). The number of circular triads in a pairwise comparison matrix and

a consistency test in the AHP. Journal of the Operations Research Society of

Japan, 52(2):174–185. https://doi.org/10.15807/jorsj.52.174.

Jensen, R. E. and Hicks, T. E. (1993). Ordinal data AHP analysis: A proposed

coefficient of consistency and a nonparametric test. Mathematical and Computer

Modelling, 17(4):135–150. https://doi.org/10.1016/0895-7177(93)90182-X.

Keener, J. P. (1993). The Perron–Frobenius theorem and the ranking of football

teams. SIAM Review, 35(1):80–93. https://doi.org/10.1137/1035004.

Kendall, M. G. (1955). Further contributions to the theory of paired comparisons.

Biometrics, 11(1):43–62. http://www.jstor.org/stable/3001479.

Kendall, M. G. and Babington Smith, B. (1940). On the method of paired compar-

isons. Biometrika, 31(3/4):324–345. https://doi.org/10.2307/2332613.

Knezek, G., Wallace, S., and Dunn-Rankin, P. (1998). Accuracy of Kendall’s chi-

square approximation to circular triad distributions. Psychometrika, 63(1):23–34.

https://doi.org/10.1007/BF02295434.

Kovalchik, S. A. (2016). Searching for the GOAT of tennis win prediction. Journal

of Quantitative Analysis in Sports, 12(3):127–138. https://doi.org/10.1515/jqas

-2015-0059.

Kułakowski, K. (2018). Inconsistency in the ordinal pairwise comparisons method

with and without ties. European Journal of Operational Research, 270(1):314–327.

https://doi.org/10.1016/j.ejor.2018.03.024.

https://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2600572
https://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2600572
https://doi.org/10.1007/s11518-018-5395-3
https://doi.org/10.15807/jorsj.52.174
https://doi.org/10.1016/0895-7177(93)90182-X
https://doi.org/10.1137/1035004
http://www.jstor.org/stable/3001479
https://doi.org/10.2307/2332613
https://doi.org/10.1007/BF02295434
https://doi.org/10.1515/jqas-2015-0059
https://doi.org/10.1515/jqas-2015-0059
https://doi.org/10.1016/j.ejor.2018.03.024


REFERENCES 151

Kułakowski, K., Mazurek, J., and Strada, M. (2022). On the similarity between

ranking vectors in the pairwise comparison method. Journal of the Operational

Research Society, 73(9):2080–2089. https://doi.org/10.1080/01605682.2021.1947

754.

Kwiesielewicz, M. and van Uden, E. (2004). Inconsistent and contradictory judge-

ments in pairwise comparison method in the AHP. Computers & Operations

Research, 31(5):713–719. https://doi.org/10.1016/S0305-0548(03)00022-4.

Langville, A. N. and Meyer, C. D. (2006). Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton University Press. http://www.jsto

r.org/stable/j.ctt7t8z9.

Langville, A. N. and Meyer, C. D. (2012). Who’s #1?: The Science of Rating and

Ranking. Princeton University Press. http://www.jstor.org/stable/j.ctt7rwdt.

Lisi, F. and Zanella, G. (2017). Tennis betting: can statistics beat bookmakers?

Electronic Journal of Applied Statistical Analysis, 10(3):790–808. http://siba-ese

.unisalento.it/index.php/ejasa/article/view/16516.

Moran, P. A. P. (1947). On the method of paired comparisons. Biometrika, 34(3-

4):363–365. https://pubmed.ncbi.nlm.nih.gov/18918706/.

Orbán-Mihálykó, E., Mihálykó, Cs., and Koltay, L. (2019). A generalization of the

Thurstone method for multiple choice and incomplete paired comparisons. Central

European Journal of Operations Research, 27(1):133–159. https://doi.org/10.100

7/s10100-017-0495-6.

Ramón, N., Ruiz, J. L., and Sirvent, I. (2012). Common sets of weights as summaries

of DEA profiles of weights: With an application to the ranking of professional

tennis players. Expert Systems with Applications, 39(5):4882–4889. https://doi.

org/10.1016/j.eswa.2011.10.004.

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53:49–

57. https://doi.org/10.1016/j.omega.2014.11.009.

https://doi.org/10.1080/01605682.2021.1947754
https://doi.org/10.1080/01605682.2021.1947754
https://doi.org/10.1016/S0305-0548(03)00022-4
http://www.jstor.org/stable/j.ctt7t8z9
http://www.jstor.org/stable/j.ctt7t8z9
http://www.jstor.org/stable/j.ctt7rwdt
http://siba-ese.unisalento.it/index.php/ejasa/article/view/16516
http://siba-ese.unisalento.it/index.php/ejasa/article/view/16516
https://pubmed.ncbi.nlm.nih.gov/18918706/
https://doi.org/10.1007/s10100-017-0495-6
https://doi.org/10.1007/s10100-017-0495-6
https://doi.org/10.1016/j.eswa.2011.10.004
https://doi.org/10.1016/j.eswa.2011.10.004
https://doi.org/10.1016/j.omega.2014.11.009


REFERENCES 152

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal

of Mathematical Psychology, 15(3):234–281. https://doi.org/10.1016/0022-249

6(77)90033-5.

Saaty, T. L. (1987). Rank according to Perron: A new insight. Mathematics Maga-

zine, 60(4):211–213. https://doi.org/10.1080/0025570X.1987.11977304.

Shiraishi, S., Obata, T., and M., D. (1998). Properties of a positive reciprocal

matrix and their application to AHP. Journal of the Operations Research Society

of Japan, 41(3):404–414. https://doi.org/10.15807/jorsj.41.404.

Szádoczki, Zs., Bozóki, S., and Tekile, H. A. (2022). Filling in pattern designs for

incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal

diameter. Omega, 107:102557. https://doi.org/10.1016/j.omega.2021.102557.

Thurstone, L. (1927). A law of comparative judgment. Psychological Review,

34(4):273–286. https://doi.org/10.1037/h0070288.

Wang, H., Peng, Y., and Kou, G. (2021). A two-stage ranking method to minimize

ordinal violation for pairwise comparisons. Applied Soft Computing, 106:107287.

https://doi.org/10.1016/j.asoc.2021.107287.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ net-

works. Nature, 393(6684):440–442. https://doi.org/10.1038/30918.

Wei, T. H. (1952). Algebraic foundations of ranking theory. PhD thesis, University

of Cambridge. https://www.repository.cam.ac.uk/handle/1810/250988.

Williams, L. V., Liu, C., Dixon, L., and Gerrard, H. (2021). How well do Elo-based

ratings predict professional tennis matches? Journal of Quantitative Analysis in

Sports, 17(2):91–105. https://doi.org/10.1515/jqas-2019-0110.

https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1016/0022-2496(77)90033-5
https://doi.org/10.1080/0025570X.1987.11977304
https://doi.org/10.15807/jorsj.41.404
https://doi.org/10.1016/j.omega.2021.102557
https://doi.org/10.1037/h0070288
https://doi.org/10.1016/j.asoc.2021.107287
https://doi.org/10.1038/30918
https://www.repository.cam.ac.uk/handle/1810/250988
https://doi.org/10.1515/jqas-2019-0110

	Dissertation summary
	Research background and basic concepts
	Introduction: Decision theory
	Research background: Incomplete pairwise comparison matrices
	Pairwise comparisons: Basic concepts

	List of publications included in the Ph.D. thesis
	Research frame
	Results and contributions
	Overview of the studies
	Study I. Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter
	Study II. Incomplete pairwise comparison matrices based on graphs with average degree approximately 3
	Study III. Optimal sequences for pairwise comparisons: the graph of graphs approach
	Study IV. Incomplete pairwise comparison matrices: Ranking top women tennis players

	Directions for future research
	References
	List of publications

	Study I. Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter
	Introduction
	Basic concepts of the graph representation
	(Quasi-)regular graphs with minimal diameter
	Numerical example and simulations
	Simulation methodology
	Motivational example
	Simulation results

	Conclusions and further research
	Summary
	Limitations and further research

	References

	Study II. Incomplete pairwise comparison matrices based on graphs with average degree approximately 3
	Introduction
	Literature review
	Methodology
	Pairwise comparisons and their graph representation
	The simulation process

	Filling in patterns
	Simulation results
	Conclusions and future research
	References

	Study III. Optimal sequences for pairwise comparisons: the graph of graphs approach
	Introduction
	Basic concepts: PCMs and their graph representation
	Methodology
	Results
	Conclusion and further research
	References

	Study IV. Incomplete pairwise comparison matrices: Ranking top women tennis players
	Introduction
	Pairwise comparison matrices
	Data and results
	Database of top women tennis players
	Ranking results
	Graph representations

	Conclusion
	References


