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1 Chapter 1. Motivation

It is somewhat surprising in hindsight that network analysis of financial systems has
become widely recognized as a critical regulatory issue only after the 2008 Global Fi-
nancial Crisis (GFC). Pairwise and group connections among financial institutions (FIs)
can both stabilize or destabilize the system. While on the one hand, FIs’ interconnec-
tivity aids flexibility to investment and financing in the economy, on the other hand,
these connections may contribute to risk propagation during crisis periods. Furthermore,
high connectedness (e.g., strong liquidity dependency) between FIs promotes the sudden
transformation of the network architecture (Elliott et al., 2014; Acemoglu et al., 2015).

Pairwise and groupwise spillovers in the financial network play a crucial role in sys-
temic risk assessment. Furthermore, the strength of connections is non-constant, and
significantly varies over time, sharply increasing during crisis periods, as documented in
a GFC study (Diebold and Yılmaz, 2014). In the network the FIs’ connections are es-
pecially critical with the liquidity provider or strong network participants because many
smaller institutions rely on the large institutions for financing, which is especially criti-
cal during turbulent times. For this reason, the regulators need to monitor and analyze
the structural changes in financial networks and identify the systematically important
financial institutions (SIFIs).

Motivated by the GFC, the financial network literature exploded, with studies at-
tempting to better understand or model the connections between FIs in the US and
globally. Acemoglu et al. (2015) and Elliott et al. (2014) derived financial system con-
nectedness from the crossholdings of shares, debt, or obligations, and investments. These
linkages can enhance diversification, but such linkages can also lead to cascading defaults
and failures in a system. Consequently, identifying and monitoring financial linkages is es-
sential for understanding system vulnerability as a result of large-scale contagions during
turmoil.

Besides that, Acemoglu et al. (2015) showed that the connectedness of the financial
network enhances stability in the system until the magnitude and the number of shocks
hitting the network remain low. However, if the level of financial distress exceeds a certain
threshold, the structure of the financial network dictates the extent of contagion. In other
words, higher financial connectedness makes the network more sensitive and more prone
to contagion of shocks. Thus, not only the analysis of SIFIs but the inclusion of the whole
system is necessary. Institutions on the periphery may move to the center of the financial
network owing to a significant shock that restructures the linkages.

The thesis focuses on this important topic from various angles to answer the following
questions:

• How can machine learning techniques help to improve financial network studies, the
analysis of high dimensional time series?

• How can structural changes in financial networks efficiently examined using event
analysis framework?
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2 Chapter 2. Methods

2.1 Diebold-Yilmaz framework

Networks based on time series are often represented in graphs, where the nodes (which
represent time series) and edges (linkages between the series) are graphically displayed.
One type of network is the weighted network, which allows for weights on the edges to
represent stronger or weaker linkages between the nodes (time series). Direct networks
allow for asymmetric linkages. In the econometrics and finance literature Diebold and
Yilmaz (2009) were the first to show in a seminal paper that the forecast error variance
decomposition (FEVD) of an estimated Vector autoregressive (VAR) model of the network
can be interpreted as a weighted directed graph. Diebold and Yilmaz (2009), Diebold
and Yilmaz (2012), and Diebold and Yılmaz (2014) suggest a unified framework (DY
framework) for measuring linkages or spillovers between the time series. The framework
is extremely popular in recent years, the three seminal papers citation is more than 2200
just in 2023.

The most important merits of the DY framework are the following (Demirer et al.,
2018):

1. The method does not require additional restrictions beyond those imposed for
VAR(p) model estimation and identification.

2. It provides both the direction and magnitude of the measures. The estimated net-
work will be directed.

3. The VAR(p) estimation step, impulse response functions (IRF) and FEVDs are
commonly used in economics and econometrics. The estimated networks are easily
interpretable.

4. The framework allows one to track spillovers between the time series at all levels
of the network, from pairwise connections (micro level) to system-wide connections
(macro level).

5. It allows for static and dynamic usage, which is relevant in financial applications
where events can cause abrupt changes in the network.

6. It’s a generalization of the Granger-causality based networks.

The framework is based on the concept that, for every time series of the network, we
can calculate the forecast error variance based on the estimated VAR(p) model coefficient
and covariance matrix. This variance is related to its own and other time series shocks.
Due to the VAR(p) model identification, the shares of own and other time series’ shocks
can be calculated. In the last step of the process, the forecast error variance decompo-
sitions can be summarized in a spillover table, which we refer to hereafter as the DY
spillover table.

In the next few paragraph I present a framework in details. The first step of the
framework is to specify and estimate a stationary VAR(p) model for the J time series of
the network based on the following equation:

Yt =

p∑
i=1

βiYt−i + ϵt (1)
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where Yt is a J × 1 vector of the time series, βi is an J × J autoregressive coefficient
matrix, and lastly ϵt is an J × 1 vector of error terms. It has a zero mean with a Σ
covariance matrix. No intercept is included in Eq. (1), without loss of generality, I
assume, that all the J time series are mean centered. The VAR(p) process is assumed to
be stable and stationary, while the covariance matrix Σ is needed to be positive definite
(Lütkepohl, 2013).

To estimate the DY framework’s most important element, the DY spillover table, I
need to estimate the coefficient matrices β1, β2, ... βp and the error covariance matrix Σ
efficiently. The βi coefficient matrices reveal the temporal dependence between the time
series and Σ reveals the contemporaneous linkages among them (Han et al., 2015; Davis
et al., 2016).

The starting point for the DY framework (Diebold and Yilmaz, 2012) is to transform
the time series of the VAR(p) in Eq. (1) into its vector moving average (VMA) represen-
tation using the Wold representation theorem (Diebold and Yilmaz, 2012; Gabauer et al.,
2020) to get Eq. (2):

Yt =
∞∑
i=0

Aiϵt−i (2)

where Ai is an J ×J moving average coefficient matrix. Based on the Wold’s theorem
Ai is given by the following recursion Ai =

∑p
j=1 βjAi−j where Aj = 0 for j < 0 and A0

is an identity matrix.

As Diebold and Yilmaz (2012) emphasized, the calculated moving average coefficients
and the estimated error covariance matrix (or its nonlinear transformations such as im-
pulse response functions or forecast error variance) are the keys to understand the dy-
namics of the time series network.

Forecast error variance (FEV) allows me to calculate the fraction of the H step-ahead
error variance in forecasting Yi (Yi(H)) that is due to shocks to other time series such as
Yj (Diebold and Yilmaz, 2012), to which I will hereafter refer as a spillover between Yi and
Yj. Generally, in the DY framework, the FEVD of the VAR(p) model gives the measures
of spillovers between the time series. Unfortunately, the calculation of the FEV requires
orthogonal innovations. However, the VAR innovations are generally contemporaneously
correlated (Diebold and Yilmaz, 2012; Diebold and Yılmaz, 2014; Basu and Michailidis,
2015).

There are two widely used approaches in the early DY framework-related papers for
obtaining the variance decomposition. The first method uses the Cholesky factor or-
thogonalization of the covariance matrix Σ which generates orthogonalised innovations.
The weakness of this decomposition is that its results order dependent FEVDs (Diebold
and Yilmaz, 2012; Fengler and Gisler, 2015). The other approach uses the generalized
VAR framework, which was introduced in the seminal papers by Koop et al. (1996) and
Pesaran and Shin (1998). This framework allows correlated shocks. As a result, this
second method produces an order-independent FEVD. Applying the second method is
more widespread in empirical DY network studies.

The following equation shows the calculation of the generalized FEVD:

θgij(H) =
σ−1jj

∑H−1
h=0 (e

′
iAhΣej)

2∑H−1
h=0 (e

′
iAhΣA′hej)

(3)

Where σjj is the j-th diagonal element of the error term’s covariance matrix Σ, Ah is
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the moving average coefficient matrix multiplying the h-lagged shock vector in the Wold’s
moving average representation (Eq. (2)) and ei is a selection vector.

The numerator in Eq. (4) of θ̃gij(H) represents the contribution of shocks in variable
Yj to the H-step FEVD of time series Yi. The denominator is the forecast error variance of
the time series Yj. Unfortunately, the sum of the network time series’ contribution to the
forecast error variance is not necessarily one because, generally, FEVD of the shock terms
are not orthogonalized (Diebold and Yilmaz, 2012). Normalization is therefore required,
which I calculate in the following way:

θ̃gij(H) =
θgij(H)

ΣJ
k=1θ

g
ik(H)

. (4)

The generalized FEVD is used to construct the several systemic/network connected-
ness measures of the DY framework (Diebold and Yilmaz, 2012; Diebold and Yılmaz,
2014). Firstly, the sum of directional spillovers to time series Yi from all other time series
(FROM spillover index Sg

i←•) is defined with the following equation:

Sg
i←•(H) =

∑J
k=1,k ̸=i θ̃

g
ik(H)∑J

k=1 θ̃
g
ik(H)

∗ 100%. =
J∑

k=1,k ̸=i

θ̃gik(H) ∗ 100%. (5)

Second, I am interested in the sum of the shocks transmitted by time series Yi tO
other time series (TO spillover index Sg

•←i):

Sg
•←i(H) =

J∑
k=1,k ̸=i

θ̃gki(H) ∗ 100%. (6)

The third relevant measure is the NET spillover index (Sg
i , Eq. (7)), which calculates

the difference between the gross transmitted (TO) and received (FROM) shocks from all
other time series:

Sg
i (H) = Sg

•←i(H)− Sg
i←•(H) (7)

Finally, at the macro level of the network analysis, the system-wide spillover index
(SUM spillover index Sg

total) offers information about the average influence one time series
has on all other time series, regardless of the direction on the following way:

Sg
total(H) =

1

J

J∑
i,k=1,i ̸=k

θ̃gik(H) (8)

In other words, the total spillover index is the sum of all the off-diagonal elements
of the generalized FEVD matrix relative to the number of time series considered in the
VAR(p) model (Diebold and Yilmaz, 2012; Gabauer et al., 2020).

2.2 Example for Diebold-Yilmaz framework

To illustrate the Diebold-Yilmaz framework, I calculate the spillover table and the
FROM, TO, NET, and SUM spillover indices from a low-dimension system (for five time
series). I consider that that data-generating process (DGP) is a VAR(1) model, and the
coefficient matrix (B) is sparse, with one dominant time series:
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B =


0.40 0 0.08 0 0
0 0.40 0.07 0 0
0 0 0.40 0 0
0 0 0.08 0.40 0
0 0 0.09 0 0.40

 (9)

The diagonal elements in the coefficient matrix refer to the autoregressive dependence
within the time series. Based on the third column of the matrix, the third time series
leads to the other ones.

To illustrate the role of the covariance matrix (Σ) in the Diebold-Yilmaz framework,
I consider two different structures. In the first case, both the covariance matrix is the
identity matrix:

Σ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (10)

In the second case, I consider a is a Toeplitz-type structure with a ρ = 0.3 parameter:

Σ =


1.00 0.20 0.04 0.01 0.00
0.20 1.00 0.20 0.04 0.01
0.04 0.20 1.00 0.20 0.04
0.01 0.04 0.20 1.00 0.20
0.00 0.01 0.04 0.20 1.00

 (11)

In this case, the covariance matrix is dense, and the entries exponentially decrease in
the distance from the diagonal.

Based on the coefficient and covariance matrix, I calculate the theoretical spillover
table and the spillover indices by applying the Eqs. (1-8). The following Diebold-Yilmaz
spillover table (Table 1) represents the first system where the B is sparse with one domi-
nant time series, and the Σ is the identity matrix:
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Table 1: Diebold-Yilmaz spillover table for sparse coefficient matrix B and
sparse covariance matrix Σ

TS1 TS2 TS3 TS4 TS5 FROM
TS1 98.96 0.00 1.04 0.00 0.00 1.04
TS2 0.0 99.20 0.80 0.00 0.00 0.80
TS3 0.00 0.00 100.00 0.00 0.00 0.00
TS4 0.00 0.00 1.04 98.96 0.00 1.04
TS5 0.00 0.00 1.31 0.00 98.69 1.31
TO 0.00 0.00 4.20 0.00 0.00 4.20
NET -1.04 -0.80 4.20 -1.04 -1.31 0

Note: The coefficient matrix (B) is sparse with one dominant time series, and the co-
variance matrix (Σ) is the identity matrix.

The spillover table shows that the third time series transmits the shocks to the other
parts of the system (TO = 4.2), and it doesn’t receive any shock (FROM = 0). It plays
a dominant role in a system as a shock transmitter. There are no connections between
the other time series of the network. The total spillover index is very low (SUM = 4.2/5
= 0.8%) due to the sparse coefficient and covariance matrix. In the second case, when
the coefficient matrix is the same, but the covariance matrix is dense, the Diebold-Yilmaz
spillover table is the following:

Table 2: Diebold-Yilmaz spillover table for sparse coefficient matrix B and
dense covariance matrix Σ

TS1 TS2 TS3 TS4 TS5 FROM
TS1 94.42 4.09 1.43 0.06 0.00 5.58
TS2 3.63 90.65 5.49 0.22 0.01 9.35
TS3 0.15 3.69 92.32 3.69 0.15 7.68
TS4 0.01 0.23 5.85 90.30 3.61 9.70
TS5 0.00 0.08 1.72 4.12 94.08 5.92
TO 3.79 8.09 14.48 8.10 3.77 38.24
NET -1.80 -1.25 6.80 -1.61 -2.15 0

Note: The coefficient matrix (B) is sparse with one dominant time series, and the co-
variance matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3.

The third time series dominated the others in this case, too, but the FROM spillover
value is not equal to zero (FROM = 7.68) due to the non-diagonal covariance matrix.
Besides the connections between the other part of the network, all the time series has pos-
itive TO and FROM values. Regarding these network characteristics, the total spillover
is higher than in the earlier case (SUM = 38.24/5 = 7.6%).

Most of the articles represent the network with graphs (besides the spillover table) to
interpret the connections between the time series and the key participants of the network
more easier. In the following two graphs (Fig. 1), I illustrate the two networks with sparse
and dense covariance matrices:
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Figure 1: Theoretical Diebold-Yilmaz networks for sparse and dense Σ

Notes: First (Second) DGP-based network is in the left (right) chart. The coefficient matrix
(B) in both cases is sparse with one dominant time series, the covariance matrix (Σ) is the
identity matrix in the first case, and a Toeplitz-type matrix with ρ = 0.3 in the second case.
Nodes represent the time series. Node sizes show the SUM values. The green (red) slice of
the pie charts represents the share of the FROM (TO) spillover indices of the time series.
Edge directions mark the net spillover indices; their thickness represents the magnitudes. All
of the edges are shown on the charts. Nodes with green letters represents time series where
FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%.

To get a relevant conclusion from these figures, it is essential to clarify the inter-
pretation of the graphs. These graphs encompass a wealth of information. The nodes
represent the times series. The pie charts’ colors around the nodes represent the pro-
portion of shocks transmitted (TO spillover value marked with red color) and received
(FROM spillover value marked with green color) by the time series. The last informa-
tion related to the nodes is the SUM value, which is indicated by the size of the nodes.
The edges represent the NET spillover indices of the time series, and their thickness
represents their magnitudes. As in the 5-node network, there are just 10 NET pairwise
connections; I present all of them. Nodes with green letters represent time series where
FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. These graphs aim to identify the
key participants of the system (both big shock transmitters and receivers). The SUM
indicator measures the centrality of a given time series in the system, regardless of the
direction of the shock transmission. Nodes with red (green) letters represent the biggest
shock transmitters (receivers).

In the first graph, it’s clearly visible the dominance and the shock transmitting role
the third time series. The lack of connections between the other time series shows the
sparsity of the coefficient and the inverse covariance matrices. In contrast to this, the
network on the second graph is dense due to the nonlinear relationship between the B
and Σ matrices and the Diebold-Yilmaz spillover table, and the dense structure of the
covariance matrix.

These examples with the spillover tables and the network graphs illustrate the non-
linear relationship between the B and Σ and Θ and the role of the coefficient and the
covariance matrix in the Diebold-Yilmaz framework.
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2.3 VAR estimation for high-dimension time series

Estimating high dimensional VAR models poses practical challenges to researchers:
On one hand, a problem of dimensionality is caused by incorporating a huge number of
time series and modeling higher-order autoregressive processes (Kock and Callot, 2015;
Davis et al., 2016; Basu et al., 2019). Second, the temporal dependence structure in the
sparse VAR model gives rise to some theoretical challenges (Basu and Michailidis, 2015).
It is a challenging issue to determine which variables and (their) lags are relevant when
the sample size is moderate (relative to dimensionality and lag number) (Nicholson et al.,
2017; Hecq et al., 2023).

The heavy parameterization is a serious drawback of the traditional VAR estimation,
and this limits its applicability for economics and financial high-dimension time series
modeling (Hecq et al., 2023). The existing data lack adequate information for efficient pa-
rameter estimation using standard ordinary least squares (OLS) and maximum likelihood
methods. This leads to noisy parameter estimates, potential instability in predictions,
and challenges in providing clear interpretations of temporal dependence. Besides that, if
T < J2p, equation- by-equation least squares is not even feasible (Basu and Michailidis,
2015; Kock and Callot, 2015). Addressing the estimation of VAR model parameters is
essential for effectively modeling high-dimensional time series data.

Recent advances in high-dimensional time series modeling have established that es-
timating a VAR model with relatively few samples is possible even when least squares
estimation is not appropriate (Kock and Callot, 2015; Basu and Michailidis, 2015; Davis
et al., 2016). It needs to impose a special structure on the coefficient matrix to estimate
it consistently. It is generally believed that, for most economic and financial applications
(Fan et al., 2011b; Giannone et al., 2021), the true model of the system of time series is
sparse, only a small, unknown subset of the variables have significantly non-zero coeffi-
cients, and all the other variables have negligible (or even exactly zero) coefficients (Kock
and Callot, 2015; Demirer et al., 2018; Hecq et al., 2023). Therefore, it is preferable to fit
a sparse VAR model, with many AR parameters set to zero to more accurately approx-
imate the sparse data generating process. An additional advantage of sparse models is
that they allow for an ultra-high dimensionality of time series (Fan et al., 2011a, 2014).

The two most common methods to address the high-dimension problem are to apply
pure shrinkage (L2-penalization) or to estimate with pure selection (L1-penalization).

The most prominent algorithm among penalized estimators is the LASSO (least ab-
solute shrinkage and selection operator), blending the two core concepts; it shrinks and
selects together. The LASSO approach was proposed by Tibshirani (1996). Theoreti-
cal aspects of this method have been thoroughly examined since the publication of the
seminal paper; see the following references from machine learning literature Zou (2006),
Meinshausen and Bühlmann (2006), Bickel et al. (2009).

The LASSO method incorporates a penalty based on the absolute value of the param-
eters into the objective function of least squares as the estimation problem in Eq. (12)
shows:

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

|βij|
]

(12)

The L1 penalty serves a dual purpose. Initially, by incorporating this penalty into the
objective function, it enables the estimation of β even when the number of coefficients in
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the VAR model surpasses the time series length. Subsequently, it induces sparsity in the
estimated autoregressive parameters B by enforcing some elements of β exactly equal to
zero. The value of the penalty clearly determines the amount of this selection: the larger
of the regularization parameter λ, the sparser the coefficient matrix (B). The concept
behind the LASSO estimation is to shrink the OLS estimated parameters (elements of B
matrix) towards zero to reduce variance (Kock and Callot, 2015; Demirer et al., 2018).

As Eq. (12) shows, LASSO penalizes all parameters equally. If it were feasible to assign
a higher penalty to the truly zero parameters (βij, which are zeros in the data generating
parameters) compared to the non-zero ones, one would expect a better estimation and
forecast performance. Zou (2006) improved the LASSO regression by introducing an
additional weight parameter. The adaptive LASSO method is a two-step algorithm that
uses a first-step estimator result (usually the Ridge) to weight the lagged time series. If
the first-step estimator classifies one of the estimated parameters as zero βij = 0, it is not
included in the second step of the estimation. This concept results in a smaller size of
the problem in the second phase. It also has sparse solutions and an even more efficient
estimation algorithm than the original LASSO. Shortly, it generalizes the popular LASSO
method.

The following equation shows the adaptive LASSO estimation problem:

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

wij|βij|
]

(13)

where (wij =
1

|βridge
ij |

) is the adaptive penalty term.

A nice feature of the adaptive LASSO is what Fan and Li (2001) call the oracle
property, which means that the adaptive LASSO correctly identifies the zero components
of the coefficient matrix with probability tending to 1 (setting all zero parameters in
the data generating process exactly equal to zero through the estimation (Zou, 2006)).
This property of the algorithm is true both in cross-section regression and high-dimension
VAR(p) settings (Kock and Callot, 2015).

Compared to linear regression (cross-sectional regression), analysis of high-dimension
VAR models requires critical consideration from a specific point. Since the response vari-
able is multivariate in the VAR systems, choosing the loss function in the estimation step
(sum of squared residuals or negative log-likelihood) is challenging (Basu and Michailidis,
2015). In a multivariate VAR setting, the applied loss function plays a critical role as
it influences the regularized VAR model parameter estimation and accuracy, even if the
multivariate time series have Gaussian errors1. This phenomenon becomes more serious
when the multivariate error process has highly correlated components (Basu and Michai-
lidis, 2015). The reason is that the negative log-likelihood function considers the inverse
covariance matrix of the error term, but the OLS (based on the sum of squared residuals)
estimation is not. This distinction will generally lead to different estimations of high-
dimensional VAR models unless the unknown covariance matrix equals of the identity
matrix2 (Davis et al., 2016; Basu and Michailidis, 2015).

In estimating the LASSO-VAR method, a standard, and most common approach is
to apply the uni-variate OLS regression estimation separately on each response variable

1which is a common assumption in econometrics
2or a scalar multiple of identity matrix
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(Kock and Callot, 2015)). This essentially involves restructuring the VAR model into
a linear regression model, where the current values of the time series are regarded as
the response variable, and lagged values are considered as the explanatory variables.
After that, researchers apply penalized estimation equation-by-equation separately, often
with different tuning parameters for different equations (Lee and Liu, 2012; Basu and
Michailidis, 2015; Kock and Callot, 2015; Davis et al., 2016; Deshpande et al., 2019).
Hereafter I refer this estimation as a row-wise LASSO (RW LASSO), and the adaptive
version of this estimation as an adaptive row-wise LASSO (ARW LASSO)3.

Although simple and popular, this estimation strategy ignores the joint information
among the response variables. It does not consider the dependence between the time series
(the contemporaneous correlation), which may lead to poor predictive performance under
certain circumstances. A research of Lee and Liu (2012) points out that the correlation
between error terms of the VAR model has a significant impact on the estimated param-
eters in a penalized regression. Disregarding the serial correlation in the regularization
step can be dangerous because the theoretical risk bounds of the estimation depend on
the degree of contemporaneous cross-correlation between the time series (Song and Bickel,
2011; Basu and Michailidis, 2015).

2.4 Adaptive Joint LASSO

In order to achieve more efficient estimation, I propose an extended penalized max-
imum likelihood method for VAR estimation. To develop a better estimator for B and
Ω, I consider incorporating the inverse covariance matrix of the error term (Ω) in the
estimation process, and regularize both the coefficient and the inverse covariance matrix,
following Rothman et al. (2010), Lee and Liu (2012) and Barbaglia et al. (2020). Unlike
previous studies, I estimate the model with adaptive-LASSO, minimizing the following
weighted negative log-likelihood function:

(B̂, Ω̂) = argmin
B,Ω

[
1

2J
trace

[
((Y −XB)Ω(Y −XB))′

]
− 1

2
log |Ω|

+λ

p∑
s=1

J∑
i,k=1

ws,ik|βs,ik|+ γ
J∑

i=k

wik|ωik|
] (14)

where λ and γ are the two hyperparameters of the method.
I apply the adaptive version of LASSO for two reasons. Firstly, as Kock and Callot

(2015) stands, only the row-wise adaptive LASSO has an oracle property for the high-
dimension VAR models. Second, as Lee and Liu (2012) pointed out, the adaptive version
of the multivariate regression with covariance estimation (MRCE) approach has better
parameter estimation accuracy for cross-sectional data.

I take the weights of the adaptive LASSO as a reciprocate of the L2 estimator, where
the ridge estimator is based on the following minimization:

3Eq. (12) is related to row-wise Lass, and Eq. (14) to the adaptive row-wise LASSO estimation
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(B̂, Ω̂) = argmin
B,Ω

[
1

2J
trace

[
(Y −XB)Ω(Y −XB)′

]
− 1

2
log |Ω|

+λ2

p∑
s=1

J∑
i,k=1

β2
s,ik + γ2

J∑
i=k

ω2
ik

] (15)

I refer to my new algorithm as the adaptive joint LASSO (AJ LASSO) method. The
essence of the model is the maximum likelihood estimation with joint penalization on
both B and Ω matrices. The adaptive joint LASSO extends the MRCE method (Roth-
man et al., 2010) and penalized maximum likelihood LASSO method (Barbaglia et al.,
2020) with the adaptive estimation step. It has two substantial advantages compared
to the commonly used adaptive row-wise LASSO method. Firstly, it incorporates the
inverse covariance matrix (Ω) into the coefficient matrix (B) estimation. Based on the
earlier results of the MRCE literature (Rothman et al., 2010; Lee and Liu, 2012) this
feature of the estimation can be important if the inverse covariance matrix has a dense
or band structure (Ω ̸= IJ). Second, besides the coefficient matrix (B) regularization,
this approach penalizes the elements of the inverse covariance matrix (Ω) too4. It can be
effective if the inverse covariance matrix is sparse (Ω = IJ). Besides these advantages,
I highlight that the Diebold-Yilmaz spillover table depends on both B and Ω, and the
strength of my method is that it jointly estimates these matrices. Mention the disadvan-
tages of my model as well, it uses only just one-one hyperparameter for the coefficient and
inverse covariance matrix estimation, while the row-wise LASSO optimizes the selection
equation-by-equation. If some time series dominate the system the row-wise LASSO can
be a better choice for the estimation of B.

2.5 Moving Block Bootstrap method

By constructing bootstrap confidence intervals for spillover measures on macro (total
spillover index) and micro levels (net pairwise spillover indices) of the estimated network,
I can distinguish significant spillover changes from others. As a result, we can evaluate
the magnitude and statistical significance of the shocks. Following Buse et al. (2022) and
Greenwood-Nimmo and Tarassow (2022), a bootstrap-based analysis is taken to explore
the uncertainty of the estimated spillover measures. The choice of the bootstrap method
needs to reflect the dependency structure inherent in the analyzed time series.

Various bootstrapping techniques have been designed in the last two decades to pre-
serve the asymptotically valid inference for VAR estimation (Lahiri and Lahiri, 2003).
The most common methods in the VAR context are recursive-design wild bootstrap,
fixed-design wild bootstrap, and pairwise bootstrap (Brüggemann et al. (2016)). In my
analysis, I apply the residual-based moving-block bootstrap (MBB) method developed by
(Brüggemann et al., 2016). Both Buse et al. (2022) and Greenwood-Nimmo and Tarassow
(2022) applied this method in the DY framework due to its desirable features. First, it
doesn’t require knowledge about the distribution of the DY spillover indices, it is suit-
able for small samples, and third, it remains valid under conditional heteroscedasticity
(Greenwood-Nimmo and Tarassow, 2022). For the validity of the residual moving-block
bootstrap algorithm, I refer to Brüggemann et al. (2016).

4row-wise LASSO and adaptive row-wise LASSO only penalize B
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The logic behind the MBB approach is to simulate s = 1, 2, . . . , S bootstrap samples of
the residuals from the estimated VAR model and re-estimate the model on the bootstrap
sample too. After re-estimating the VAR model for every bootstrap sample (MBB-VAR),
I calculate the DY spillover indices, and the resulting bootstrap spillover metrics (SUM,
FROM, TO, and NET indices) can be used for inference. For the VAR estimation, I apply
the adaptive joint LASSO algorithm.

The MBB-VAR method efficiency depends on the sample size and bootstrap sample.
We can estimate the confidence intervals more accurately if the sample size and the
bootstrap sample are higher. Through my empirical analysis, I conducted 1000 bootstrap
samples. I use 68% confidence interval for the network snapshots, and 95% when I analyze
the structural changes in the total spillover index.
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3 Chapter 3. Thesis contibution

3.1 Research method innovations

Regularisation in the estimation step of the VAR model may be useful for high-
dimension time series modeling. In Chapter 5 of my thesis, I extend the commonly
used row-wise LASSO method. I propose a new regularization method that is useful in
the DY framework, as it is able to shrink and select the essential coefficients of the VAR
and simultaneously account for possible sparsity in the distribution of the VAR model
errors. In Chapter 5.2, I perform an extensive Monte Carlo simulation study I to present
my proposed estimator’s statistical properties. I compare my new approach with the most
widely used VAR model estimation methods (OLS, RW LASSO, ARW LASSO).

To illustrate the results of the Monte Carlo simulation study, I illustrate the results
on Figure 2. The figure represents the relative MAEE (mean absolute estimation error)
accuracy for my method in B, Ω, and Θ estimation for the selected DGPs.

Figure 2: Summary of relative estimation accuracy of the AJ LASSO algo-
rithm compared to the better RW LASSO for different coefficient (B) and
inverse covariance (Ω) matrices

Notes: Red, green, and blue boxplots represent the relative estimation accuracy of the AJ
LASSO algorithm compared to the better RW LASSO for the coefficient (B), inverse covariance
(Ω), and DY spillover (Θ) matrices. The estimation error is measured by MAEE. The cases on
the x-axes are the following: sparse B and band Ω; sparse B and sparse Ω; sparse B and dense
Ω; dense B and band Ω; dense B and dense Ω. T , J , and ρ are varies through the cases.

The main findings are the following observations:

1. Based on Figure 2, in all the five cases (sparse and dense B; band, sparse and dense
Ω), the AJ LASSO estimator outperforms RW LASSO estimators significantly in
both B, Ω and Θ estimation.

2. For the basic setup (sparse coefficient B and band inverse covariance Ω matrices),
simulation results indicate that in highly correlated systems, the relative perfor-
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mance of the AJ LASSO method performs remarkably well, especially for the coef-
ficient matrix (B) estimation.

3. The accuracy gain is sensitive to the covariance structure, in case of sparse Ω – the
common assumption in theoretical econometrics – setting it is the highest (between
75-90% for Θ estimation). The results demonstrate that the new method efficiently
accounts for the characteristics of the sparse Ω in the estimation via the jointly
penalized (regularization on both B and Ω) objective function.

4. The relative accuracy is high in the case of the dense Ω settings, too (compared
to the basic band Ω set), especially for the estimation of coefficient matrix (B).
Incorporating dense Ω into the B estimation process is the critical point of the new
method efficiency. The superior accuracy for the DY spillover matrix estimation
(Θ) is still present with dense Ω.

5. In both sparse and dense Ω cases, the gain is also significant in the low-dimension
systems (J = 10). That means the new method can be useful for DY network
analysis in low-dimension systems too.

6. The accuracy gain of the AJ LASSO method is smaller for dense B but still signif-
icant. The smallest gains of the new estimator relative to the others are obtained
for the dense B and band Ω case.

7. Even when AJ LASSO is only marginally superior (dense B), there are still benefits
because the number of extreme outliers where the error is more than 20% in the
estimation is significantly lower than for the other methods.

8. In general, the advantage in the estimation accuracy becomes much greater in
shorter time series. Relative estimation accuracy is sensitive to the dimension of
the system, the highest in high-dimension settings.

Based on these results, AJ LASSO can be useful for high-dimension VAR system (and
DY network) modeling. In Chapter 6 of my thesis, I use my proposed method to estimate
a VAR model for the DY volatility and illiquidity network.
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Combining the DY framework for network modeling with event study methodology
may be useful at turbulent times. In Chapter 6.1.3 of my thesis, I extend the original
Diebold-Yilmaz framework with an event study tool to provide more insights into the
contagion channels appearing in the networks during structural changes.

I introduce a formal test to compare the distribution of the FROM, TO, NET, and
SUM (Eqs. (5-8)) spillover indices over time. I integrate the bootstrap algorithm into the
DY framework’s estimation step to determine whether the DY spillover indices’ empirical
distribution on different periods is equal. The gain of this method is that we can use it
not just for analyzing the significant structural changes in the network on a macro level
(total spillover index) but on a micro level (pairwise spillover indices) too. Combining the
residual-based MBB Brüggemann et al. (2016) method with the DY framework (MBB-
based DY framework), I can investigate how the observed shocks transform the financial
networks. By interpreting the system as a network, I can monitor the network on a daily
basis and analyze structural changes with the combined method.

To illustrate my bootstrap method’s usability in structural shock analysis, I estimate
the Diebold-Yilmaz framework on two networks and estimate the significant differences
with the Moving Block Bootstrap Method. Let’s consider a low-dimension system (J=5)
where the data-generating process is the same as the second case in Chapter 1. The
coefficient matrix B is sparse, with one dominant time series (Eq. (9)), and the covariance
matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3 (Eq. (11)). To analyze the structural
change in a network, I add a shock to the system. The following coefficient matrix (B)
represents the data-generating process after the shock5:

B =


0.40 0.12 0.08 0 0
0 0.40 0.07 0 0
0 0.12 0.40 0 0
0 0.11 0.08 0.40 0
0 0.13 0.09 0 0.40

 (16)

The NET values changed for every time series in the following way: -5.31, 15.35 -0.79,
-4.11, - 5.25. These numbers illustrate the change in the network. During the structural
change, the shock-transmitting role of the second time series increased. Besides that, the
shock-receiving role strengthened for the first, fourth, and fifth time series. To illustrate
a structural change more clearly, I show this change in a Fig. 3, which is similar to Fig.
1, but more complex.

5the covariance matrix is the same after the shock
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Figure 3: Structural change in the Diebold-Yilmaz network

Notes: The network before the shock (after the shock) is in the upper left (right) chart. In
the first case, the coefficient matrix (B) is sparse with one dominant time series (TS1). In
the second case, it’s also sparse with two dominant time series (TS1, TS2). The covariance
matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3 in both cases. The bottom chart shows
their difference at 32% significance levels. Nodes represent the time series. Top panels: Node
sizes shows the SUM values. The green (red) slice of the pie charts represents the share of
the FROM (TO) spillover indices of the time series. Edge directions mark the net spillover
indices; their thickness represents the magnitudes. All of the edges are shown on the charts.
Bottom panel: Green (red borders represent a significant decrease (increase) of the node’s
net spillover index. Smaller (Larger) sizes than the average size represent a significant decrease
(increase) in SUM values. Nodes: Nodes in the upper charts with green letters represent time
series where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart, green
letters represent time series where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information
of the Diebold-Yilmaz network is calculated from a T = 1000, adaptive joint LASSO-VAR(2)
estimation.

To get a relevant conclusion from these snapshots, it is important to clarify the inter-
pretation of the network graphs. These graphs encompass a wealth of information. At
this case, each snapshot figure combines three different charts. The top two are obtained
from the original time series-based VAR estimations, while the bottom one displays the
Moving Block Bootstrap-based significant differences between the first and second day
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at 32% levels. Nodes represent the time series. The pie charts’ colors around the nodes
represent the proportion of shocks transmitted (TO spillover value marked with red color)
and received (FROM spillover value marked with green color) by the time series. The
last information related to the nodes is the SUM value, which is indicated by the size of
the nodes. On both charts in the top panel, the edges represent the NET spillover indices
of the time series, and their thickness represents their magnitudes. As in the 5-node net-
work, there are 10 NET pairwise connections, and I present all of them. Nodes with green
letters represent time series where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%.
The node sizes and the edge thickness are rescaled based on the first and second periods;
the biggest node size in the bottom charts represents the maximum SUM value in the two
periods, and the smaller one represents the minimum SUM value. The thickest edge in
the bottom charts represents the maximum NET value, and the least thicker represents
the minimum NET value.

The bottom graphs indicate the significant differences between the SUM, FROM, TO,
and NET measures shown by the charts of the two periods at the top. In this graph, only
the significantly changed edges are displayed. Their direction and thickness indicate the
direction and magnitude of the impact that the structural change generated during the
periods. Here, the red (green) color of the node borders represents if there was a significant
change based on the MBB method in the transmitted (received) shocks. That means the
border color is red (green) if the net spillover index increased (decreased) between the
selected days. If the node’s size is above (below) the average size, a significant increase
(decrease) happens in the SUM spillover value. Nodes with green letters represent time
series where the FROM/SUM ratio increased more than 10%, and reds where TO/SUM
increased more than 10%. The SUM indicator roughly translates to the centrality of a
given time series in the system.

These snapshots aim to identify the key participants of the system (both big shock
transmitters and receivers) and analyze how these roles change during specified days.
Besides that, I can separate the significant and insignificant changes in the network with
the Moving Block Bootstrap method. The SUM indicator measures the centrality of a
given time series in the system, regardless of the direction of the shock transmission. Nodes
with red (green) letters represent the biggest shock transmitters (receivers). Increased size
in the top panel marks the elevated role of the time series in the system, while the smaller
size means a less important participant in the network. I interpret the significant changes
in the transmitter role with significant red pie slice growth on the top panel (red border
on the bottom). Similarly, the receiver role changes significantly with significant green
pie slice growth on the top panel (green border on the bottom panel).

Figure 3 illustrates the structural change in the network. The upper charts show the
increased total spillover in the system: the edges are thicker, especially that are related
to the second time series. Besides that, the node sizes are higher for most of the time
series. The node of the second time series shows the changed role of this network’s
participant. However, the two upper charts only show the increased total spillover and
whose role changed in the system. Based on these graphs, we can’t decide which change
was significant and which was not. The bottom part of the figure solves this problem. This
chart illustrates that the shock-transmitting role significantly increased for the second time
series, and for the other four participants in the system became more shock-transmitting
due to the structural change.
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3.2 Conceptual innovations

To address the gap in the empirical literature, in Chapter 6.2, I present a character-
ization of the illiquidity connectedness of a US financial network with my proposed AJ
LASSO method in the Diebold-Yilmaz framework. I investigate the significant similari-
ties and differences between the volatility and illiquidity network on the macro and micro
levels with the combined MBB-based DY framework.

The empirical results suggest that illiquidity total spillover indices are also relevant in
analyzing systemic risk as they behave differently than total volatility connectedness. On
the macro level, both indices react to shocks in the financial system, but even in tranquil
periods, the dynamics might vary. Furthermore, if I analyze the pairwise connections
between FIs periodically, dominant illiquidity shock transmitters and receivers appear
in the system. I show that the volatility and illiquidity network differs not just on the
macro level (total spillover index) but on the micro (pairwise net spillover indices) level
too. I conclud that micro and macro-level illiquidity spillover indices display important
information for the financial network.

In Chapter 6.3 of my thesis, I consider the critical financial events of the GFC, as
Diebold and Yılmaz (2014), with the analytical purpose of testing the performance of
my new event study framework. Applying the MBB-based DY framework, I analyze the
volatility and liquidity shocks, focusing on four key events of the GFC. Besides that, I
provide daily snapshots of the financial network to illustrate that illiquidity spillovers act
as contagion channels during turmoil time.

In my empirical analysis, I show that event study analysis tools like visualization,
dynamic measures, and the new formal statistical test help to identify key events, FIs,
and contagion channels in the financial system. Furthermore, I find that on both macro
and micro level analysis, the illiquidity networks of FIs during the GFC display relevant
information. I show that while volatility networks do not always react to financial turmoil,
troubled FIs become the main shock transmitters in illiquidity networks. Illiquidity con-
nections act as financial linkages described by Acemoglu et al. (2015); thus, they indicate
the spread of contagion in the system during turmoil. Severe financial shocks temporarily
altered the illiquidity network, and dominant shock transmitters appeared in the system.
My empirical results are in line with Gai and Kapadia (2010) findings, too. I find that the
impact of a shock depends on which node of the network it hits. I conclude that the DY
framework with the MBB approach is a powerful tool for regulators to identify potential
failure cascades and SIFIs. Through event study analysis, they can observe shocks that
lead to significant changes in the financial network.

The analysis in Chapter 6 of my thesis contributes to the empirical network analysis
literature at three related points. First, as far as I know, I am the first to compare the
volatility and illiquidity network with the MBB-based DY framework. Second, I am the
first who apply the MBB-based DY framework to analyze the effect of key events in the
network. An important limitation of the original DY framework is the absence of a formal
statistic to test whether the changes in the spillover matrix are significant. Lastly, I show
that DY illiquidity spillover better tracks the dominant shock transmitters in the system
and signals during financial turmoil than volatility spillover both in the macro and micro
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level of the network. My empirical results strengthen the findings of Gai and Kapadia
(2010) and Acemoglu et al. (2015), because I found that the impact of a shock depends on
which node of the network it hits, and the network transformation’s persistence depends
on the shock size.
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networks and logoptimal portfolios. in Mastering R for Quantitative Finance, Chapeter
10, 227-256, ISBN 139781783552078
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