
Doctoral School of Economics,
Business and Informatics

Thesis Synopsis

Gábor Kondor

One-sided matching markets in balanced clustering approach

Ph.D. Dissertation

Advisor:

Ágnes Vidovics-Dancs Ph.D.

Associate Professor

Budapest, 2022

Department of Finance

Thesis Synopsis

Gábor Kondor

One-sided matching markets in balanced clustering approach

Ph.D. Dissertation

Advisor:

Ágnes Vidovics-Dancs Ph.D.

Associate Professor

© Gábor Kondor

Contents

1 Research and topic selection background 3

2 Methods used in the dissertation 8

2.1 Defining m-dimensional matching problems and proof by reduction 8

2.2 Constructing new heuristic approaches . 9

2.2.1 Equalizer methods eq1-6 . 9

2.2.2 Fuzzy c-means with equi-sized clusters (eqFCMv2) 11

2.2.3 Algorithm LCW with swaps of size three (LCWv2, LCWv3 és LCWv4) . 12

2.3 Simulations to compare heuristic approaches 15

2.3.1 Simulations of the equalizer methods 17

2.3.2 Optimality points for large student sizes 18

2.4 Constructing possible roommate assignments for small k and m 19

3 Main results 22

3.1 NP-hardness of m-dimensional matching problems 22

3.2 m-roommates problem, and its benefits and drawbacks compared to the

stable roommates problem . 26

3.3 Results of comparing the equalizer methods 28

3.4 Experiments on real data . 30

3.5 Results of simulations with small k and m 32

3.5.1 Asymmetry of minimizing and maximizing problems 35

3.6 Results for larger instances of the m-roommates problem 37

3.6.1 Edmonds’ algorithm as a benchmark 37

3.6.2 Results for groups of size at least three 38

4 Bibliography 41

1

5 Publications 45

2

Chapter 1

Research and topic selection

background

Economics study how markets allocate resources. On matching markets, there is no or

there is only partially a price system which determines allocations. In this case, the

matching formed is determined by the mechanisms that govern the market. (Nobel Prize,

2012b)

The foundations of the theory of matching markets were established by Gale and

Shapley (1962)1, who proposed the concept of stability to solve the matching problem.

According to this, in case of pairs, the task is to create a matching such that there are no

two people in different pairs who would prefer each other to their actual partner. One of

the basic models of one-sided matching markets is the stable roommates problem defined

by Gale and Shapley (1962), in which students have strict preference order on the others

and the goal is to form a stable matching, if it exists.

An important application of one-sided matching markets is the kidney paired donation

(see Biró (2006)). In this case market participants are donor-recipient pairs, that is

a pair of a patient with renal disease and a willing live donor who are incompatible

with each other, and thus, the renal transplantation cannot be executed. The aim is to

match donor-recipient pairs, such that renal transplantation between the pairs are viable

- unfortunately, because of some medical tests taken later it might turn out that any of

1Later, the theory served as a base for several applications, for example the assignment of new doctors
to hospitals, students to schools, and human organs for transplant to recipients. In 2012, the Nobel
Memorial Prize in Economic Sciences was awarded to Alvin E. Roth and Lloyd Shapley for for the theory
of stable allocations and the practice of market design (Nobel Prize, 2012a).

3

the matched pairs is actually incompatible, and the transplantation in that pair cannot

be carried out.

Morrill (2010) suggested an alternative approach, the Pareto efficiency, to solve one-

sided matching problems. He claims that stability ignores the key physical constraint that

roommates require a room and, therefore, it is too restrictive. Since once a roommate

assignment is formed, two students in different rooms cannot in a unilateral manner

push their roommate out of the room, and thus, the new pair cannot be created. It is

especially important in case of kidney exchange where after an assignment has been made,

subsequent tests may determine that a patient and donor are incompatible.

The approaches mentioned so far aim to create matching of pairs, however, there are

applications in which larger groups are considered. For example, some kidney exchange

programs allow for groups of three (Biró, 2006), and in case of roommates there are often

rooms of 3 or 4 places. The version of roommates problem in which three students have

to be assigned to a room is called 3-dimensional roommates problem (3D-SR). According

to our knowledge, with the exception of 2-stable matching of Arkin et al. (2009), all of

the 3-dimensional approaches lead to NP-complete problems. It means that for these

problems, from a complexity theory perspective, there is no efficient way to determine

the solution, and so, in practice for instances of larger sizes we are not able to solve the

problems. Also, we note that we know of only one related approach in the literature

(the result of Lam and Plaxton (2019) for complete cyclic lists) which considers higher

dimensions.

For kidney exchanges, Segev et al. (2005) studies an approach, also applied in practice,

which is analogous to a weighted matching problem (Biró, 2006). The authors, based on

simulations, claim that their method applied on the country level performs better than

the "first accept" scheme used by some centers and regions.

Our goals in the dissertation are the following:

• Extend the weighted matching approach in the context of one-sided matching to

problems of arbitrary group sizes. In particular, we would like to introduce a frame-

work in which we can study both minimization and maximization goals for the

problem.

• Derive complexity results for the defined problems, that is investigate whether the

problems can be solved efficiently from a theoretical point of view.

4

• Examine the practical tractability and properties of the problem through extensive

simulations and evaluating the results of heuristics from the literature and algo-

rithms defined by us.

We utilize the m-dimensional matching problem to extend the weighted matching

problem to arbitrary group size of m. This views the task of creating groups as a graph

partitioning problem, which also results in a Pareto efficient solution. In the dissertation,

we focus on a special version of this, in which participants are represented by points in

an Euclidean space and their relations are described by the Euclidean distances between

them. The aim is to create groups of size m, such that, depending on the goal, the sum

of squared distances within groups is either minimal or maximal.

We treat the problem described in the Euclidean space as matching roommates, or

alternatively, assigning students to rooms in a college and hence, call it m-roommates

problem2,3. Dimensions of the Euclidean space represent the characteristics of students

and the Euclidean distances indicate whether the students would be good roommates to

each other. The aim is to assign students of a college to rooms of equal sizes, such that

it is the best for the students.

For the goal of assignment we consider two vastly different approaches based on differ-

ent views. In the first, we assume creating groups with similar students is desirable. This

approach is supported by the possibly better connections between people with similar in-

terests and characteristics. In this case we consider a minimization problem and we form

homogeneous groups, or clusters. In the second approach, emphasizing the role of diver-

sity which is becoming more and more important nowadays, we wish to assign roommates

with varying characteristics as much as possible. In this case we face a maximization

problem in order to create heterogeneous groups.

A cluster is a group of similar elements. This means that, strictly speaking, in our

case we may call only the minimization versions of the m-dimensional matching and m-

roommates problems as balanced clustering problems, that is a problem in which the aim

is to create groups of equal sizes with similar elements. However, there are approaches

2Note that the m-roommates problem might look similar to the stable roommates problem of Gale
and Shapley (1962), but in our case doesn’t involve preference orders and the goal is not to create stable
matchings.

3We called the same problem k-roommates problem in my conference lecture Kondor (2018) and
my thesis submitted to the Scientific Students’ Associations Conference (TDK, Tudományos Diákköri
Konferencia). However, to be consistent with problems with the broader literature we changed the
parameter in the name to m to denote the uniform size of groups.

5

in the literature (see, e.g. the k-partitioning problem considered by Feo and Khellaf

(1990) and Feo et al. (1992)) where the distances between the elements are interpreted

as similarity scores, and hence, clustering is achieved trough maximization. Because of

this, and also for the sake of simplicity, in the dissertation we treat the notion clustering

in a more flexible way, and we look at clusters as groups formed with the aim of solving

a well-defined optimization goal be it either minimization or maximization. According

to this, we refer to the problems of creating groups of equal sizes as balanced clustering

problems in the dissertation.

In Chapter 2 we review the applications related to balanced clustering.

In Chapter 3 we first illustrate the complexity of the m-roommates problem by cal-

culating the number of possible roommate assignments. Then, we give an introduction

to the theory and definitions of computational complexity and review the complexity of

related grouping problems. Finally, we extend the existing complexity results in general

dimension.

In Chapter 4 we review the stable roommates problem, its various versions for 3-

dimensional matching and the complexity of these approaches. Then, we give a formal

definition of the m-roommates problem and discuss the benefits and drawbacks of this

model compared to the stable roommates problem.

In Chapter 5 we present algorithms, which provide feasible solutions, have polynomial

running times and provide some kind of guarantees for the suboptimality of the solution.

Two kind of approaches are considered, approximation methods and cone optimization.

In Chapter 6 we review the most important heuristic approaches in the literature

and we also construct new methods. We consider two groups of algorithms. In the

first one we review algorithms related to conventional cluster analysis which are not

guaranteed to provide clusters of equal sizes. For being able to apply these to the m-

roommates problem we introduce 6 heuristics to make the clusters balanced, which are

tested in Chapter 7. In the second group of methods we review methods which provide

balanced clusters by default. Some of these share the property that they try to improve

the solution by swapping elements in different groups. We contribute to this group by

reviewing the possibility of larger swaps, and we introduce three heuristics which try to

make improvements by swaps of three elements. These are also tested in Chapter 7.

In Chapter 7 we investigate the problem in a broad framework through multiple steps.

6

In the literature, usually only one version of the optimization problem is considered, either

the minimization or the maximization, and only a smaller set of heuristics is tested. In

the dissertation we take a joint view, and we include a broad set of algorithms which we

set on smaller instances, on real data, and on instances of large sizes.

In Chapter 8 we conclude.

7

Chapter 2

Methods used in the dissertation

2.1 Defining m-dimensional matching problems and proof

by reduction

In Chapter 3 of the dissertation we extend the existing general dimension hardness results

of creating balanced groups. For this, we use balanced MSSC as a starting point. Accord-

ing to Huygen’s theorem1 the squared distances of points in a cluster from the centroid of

the cluster is equal to the squared distances of the points from each other divided by two

times the cardinality of the cluster. In a simple manner, formally for clusters C1, . . . , Ck

of equal size m

k∑
s=1

∑
xi∈Cs

∥∥∥xi −
(1

m

∑
xj∈Cs

xj

)∥∥∥2

=
1

2m

k∑
s=1

∑
xi,xj∈Cs

∥xi − xj∥2.

Based on this, we can reformulate the problem so that in the objective function we use Eu-

clidean distances between the points. To generalize the problem, we replace the Euclidean

distance by a distance measure based on the ℓp norm, and besides the minimization ver-

sion of the problem we also consider the maximization version. We formally define these

problems by Optimization problem 2.1.1.

Optimization problem 2.1.1 pMin-mDM (pMax-mDM).

Input: C = {x1, . . . , xn} ⊂ Rd m, p and k = n/m positive integers.

Output: A partition of C into disjoint sets C1, . . . , Ck, such that |Ci| = m, 1 ≤ i ≤ k and

1Huygen’s theorem was proved by Edwards and Cavalli-Sforza (1965) first (Novick, 2009).

8

the objective function

k∑
s=1

∑
xi∈Cs

∑
xj∈Cs

∥xi − xj∥pp

is minimized (maximized).

To show the NP-hardness of the optimization problem we show that the decision

version of it is NP-complete (Ausiello et al., 2003). For this, a reduction from another NP-

complete decision problem is used. The idea behind this proof technique is the following.

Given an NP-complete decision problem A, if we would like to prove that another decision

problem B is NP-complete, we have to show the following to things. First, that B is in

NP. Second, we have to show that there is a polynomial-time reduction from any instance

of A to an instance of B. In this way, if we were able to solve B then we could also solve

A. However, we know that A is NP-complete, and thus, B is at least as hard as A.

2.2 Constructing new heuristic approaches

In the dissertation we discuss the practical tractability of the m-roommates problem. To

this aim, we compare a variety of heuristic approaches in Chapter 7 in terms of solving the

problem. We also contribute to this set of methods with some own heuristics constructed

to find a feasible solution, which we describe in the followings.

2.2.1 Equalizer methods eq1-6

Neither of agglomerative hierarchical clustering with a suitable cut (cluster, see Dr.

Kovács et al. (2011)), k-means++ algorithm (kmeans, see Arthur and Vassilvitskii (2007)),

or fuzzy c-means clustering with equi-sized clusters (eqFCM, see Höppner and Klawonn

(2008)) guarantees that the produced clusters are balanced. Hence, we construct six

heuristic approaches to equalize the groups. All of these in Step 0 check whether the

number of clusters equals k. If not, then from the largest cluster it chooses the element

being furthest from the center of the cluster and creates a new group having one point

from it. This step is iterated until no empty clusters left. After this, the methods of the

equalizer algorithms are the following:

1. Equalizer method 1 (eq1)

9

It equalizes the groups one after another starting with the largest cluster. For a

given cluster it moves as many elements out of the cluster as needed to meet the

desired cardinality. In each step the point closest to the center of another cluster

is reassigned to that cluster. After the group size of m is reached we block the

given cluster so that elements won’t get back to it and then we consider the next

largest cluster. We iterate this method until the clusters are balanced. This process

requires at most k(k−1)(m−1)/2 steps. The pseudocode of the method is described

by Algorithm 2.1.2

Equalizer method 1 (eq1)

Input C = {C1, . . . , Ck} non-empty clusters with cluster centers c =

{c1, . . . , ck}, where ci =
1

|Ci|
∑

xj∈Ci
xj is the center of cluster Ci, and m

as the desired size of balanced clusters

(1) i← argmax
i
{|Ci| : Ci ∈ C} [index of the largest cluster]

(2) while (|Ci| > m)

j, l ← argmin
j,l

{d(xj, cl) : xj ∈ Ci, cl ∈ c, l ̸= i}

Ci ← Ci\xj, Cl ← Cl ∪ {xj}, updating cl

end

(3) C\Ci, c\ci, i← argmax
i
{|Ci| : Ci ∈ C} [updating sets and indexes]

(4) if (|Ci| > m)

goto Step (2)

end

Algorithm 2.1: Equalizer method 1 (eq1)

2. Equalizer method 2 (eq2)

Makes the excess ‘flow down’ starting from the largest cluster until the clusters

become balanced. In each step it moves one element of a given cluster over to

another cluster based on the distances from the centers of the other clusters. Once

2The pseudocode of the other equalizer methods are not shown, as those can be derived from this one
with small modifications.

10

a point is reassigned we block the given cluster and move to the next largest one.

We iterate this process as long as there are clusters with more than the desired

number of elements. If there isn’t any and the clusters are not balanced we make

available all the clusters again and restart the process from the largest cluster. The

required number of steps is at most k(k − 1)(m− 1)/2.

3. Equalizer method 3 (eq3)

It equalizes the clusters starting from the smallest one in a way similar to that

of eq1. We move as many elements into a given cluster as it is needed to reach

the balanced cluster size. The reassignment is done based on the distance of the

given cluster’s center and the points in other clusters with at least two elements. We

always move the point closest to the cluster center and after the given cluster misses

no more elements we block it. The algorithm terminates after at most (k−1)(m−1)

steps.

4. Equalizer method 4 (eq4)

Makes the excess flow down starting from the smallest cluster. In each step the

distances of the center of the cluster being equalized and the points in other clusters

with at least two elements are considered. We reassign the point with the smallest

distance, then we block the cluster and move to the next smallest cluster. We

iterate this process as long as there are clusters with fewer elements than needed.

If there isn’t any and the clusters are not balanced we make all of the clusters

available again and restart the process. The algorithm terminates after at most

(k − 1) ((m− 2)k/2 + 1) step.

5. Equalizer method 5 (eq5)

Combines methods eq1 and eq3 with alternating between the largest and smallest

clusters. The algorithm terminates after a finite number of steps.

6. Equalizer method 6 (eq6)

Combines methods eq2 and eq4 with alternating between the largest and smallest

clusters. The algorithm terminates after a finite number of steps.

2.2.2 Fuzzy c-means with equi-sized clusters (eqFCMv2)

The fuzzy c-means clustering with equi-sized clusters (c denotes the number of clusters,

see Höppner and Klawonn (2008)) returns a membership matrix U = [uij] ⊂ Rc×n which

11

determines for each point xj, 1 ≤ j ≤ n the degree of belongingness into each cluster

i, 1 ≤ i ≤ c. Based on this, we can construct an assignment with equal number of points

in each cluster.

Through the process we consider the values uij, 1 ≤ i ≤ c, 1 ≤ j ≤ n in ascending

order. For a given value uij we assign point xj to cluster i if it has fewer elements than the

desired uniform cluster size. Otherwise, we move on to the next uij value. We continue

this process until every element is assigned to a cluster.

2.2.3 Algorithm LCW with swaps of size three (LCWv2, LCWv3 és

LCWv4)

Algorithm LCW (see Weitz and Lakshminarayanan (1996)) tries to find a feasible solution

for the optimization problem with starting from a randomized initial assignment and

making improvements in the objective function through swaps of elements in different

groups. If it can no longer make any improvement the algorithm halts. However, from

the perspective of the optimization problem the solution found by LCW is not necessarily

optimal. It might be the case swapping more than two elements, with elements coming

from different groups, can still make an improvement. In the dissertation, we consider

extending the LCW method with swaps of size three or even greater.

The LCW method iterates through the points and in each step it considers a given

point and evaluates how much the value of objective function would improve if we were

to swap this element with another one from a different group. This implies (k − 1)m

comparison in each step and if the value of the objective function can be improved the

corresponding swap is executed. If we were to apply the method of LCW and we consid-

ered a swap of size s then we would have to compare(
k − 1

s− 1

)
ms−1Ds

values in each step, where Ds = sDs−1+(−1)s, D0 = 1 is a recursive function which gives

the number of permutations of order s without a fixpoint, i.e. a reassignment where no

elements remains assigned to the initial group (D5 = 44, D6 = 265, D7 = 1854; see Király

and Tóth (2011)). The number of possibilities quickly becomes huge.

Because of the argument above, we consider only swaps of size three in addition to

the swaps of pairs. We do this in three different ways, thus, we construct three different

12

heuristic. The first one (LCWv2), described by Algorithm 2.2, first runs LCW, and then

tries to make an improvement focusing only on swaps of size three.

LCW Algorithm, version 2 - swaps of size three (LCWv2)

(1) Initializing an arbitrary X = [xip] feasible solution, where

xip = 1, if i = (p− 1) ∗ S + 1, (p− 1) ∗ S + 2, . . . , (p− 1) ∗ S + S and

p = 1, 2, . . . , G, and 0 otherwise.

(2) R← DX, where D = [dij] is the distance matrix of the elements.

Flag ← false [used to indicate if there was a swap]

i← 0

(3) We check if we can make an improvement by swapping i with an item

from another group.

i← i+ 1

if (i ≤ N)

t← group of element i, for which xit = 1

k ← argmax
j∈J

wj, where wj = (riq − rit) + (rjt − rjq)− 2dij and

J = {j|xjq = 1, 1 ≤ q ≤ G, q ̸= t}

if (wk > 0)

xkq ← 0, xkt ← 1, xiq ← 1, xit ← 0 [swap the items]

R← DX [update matrix R]

Flag ← true [we indicate a swap has been made]

end if

goto Step (3)

end if

(4) If there has been a swap in the latest iteration, we iterate through all of

the points again.

if (Flag == true)

Flag ← false, i← 0

goto Step (3)

end if

13

(5) We check if we can make an improvement by swapping i and two other

items coming from different groups.

i← i+ 1

if (i ≤ N)

t← group of element i, for which xit = 1

(k1, k2)← argmax
(j1,j2)∈J ·J

W (j1, j2), where

W (j1, j2) = riq2+rj1r+rj2q1−(rit+rj1q1+rj2q2+dij1+dij2+dj1j2)

és

J · J = {(j1, j2) | xj1q1 = 1, 1 ≤ q1 ≤ G, q1 ̸= t,

xj2q2 = 1, 1 ≤ q2 ≤ G, q2 ̸= t, q1 ̸= q2}

if (W (k1, k2) > 0)

[swap the three items]

xk1q1 ← 0, xk1t ← 1, xk2q2 ← 0, xk2q1 ← 1, xiq2 ← 1, xit ← 0

R← DX [update matrix R]

Flag ← true [indicate a swap has been made]

end if

goto Step (5)

end if

(6) We check if there has been a swap in the latest iteration, and if not, the

algorithm terminates.

if (Flag == false)

stop [cannot make further improvements]

else

Flag ← false, i← 0

goto Step (5)

end if

Algorithm 2.2: LCW Algorithm, version 2 - swaps of size three (LCWv2)

The second version of the extended LCW algorithm (LCWv3) is a repeated run of LCWv2

until no improvement can be made with either swap of pairs or swap of three items.

14

Finally, in the third version (LCWv4) in case of each point we consider improvements

by both swaps of pairs and swaps of three items. From the available improvements we

choose the one with the highest value. In case of ties we prefer a swap of size two. The

algorithms terminates if no improvement can be made by a swap of pair or swap of size

three.

2.3 Simulations to compare heuristic approaches

In Chapter 7 of the dissertation we use simulations to investigate the practical tractability

of the problem. We generate samples of students, run a selected set of algorithms on the

samples and compare the results of the algorithms. We divide the algorithms into three

subsets and present them in Table 2.3.

In the analysis we assume 3 attributes for the students and each attribute is randomly

generated according to discrete uniform distribution on the interval [0, 10]. We used

MATLAB for the implementations and simulations, and the analysis was made on a

personal computer with Core i5-8600K 3.60GHz processor and 16,0 GB RAM.

Constructive methods

cluster Agglomerative hierarchical clustering with suitable cut, which uses

squared Euclidean distances and Ward method (for details see Dr.

Kovács et al. (2011))

eq1-6 Heuristic methods which equalize the clusters based on the dis-

tances of items and cluster centers

Methods which alternate computing cluster centers and assignments

kmeans k-means++ method, which alternates computing cluster centers

and assigning the points to the cluster center closest to them

(Arthur and Vassilvitskii, 2007)

eqFCM Fuzzy c-means method with equi-sized clusters, which alternates

computing prototypes and belongingness degrees (Höppner and

Klawonn, 2008)

15

eqFCMv2 After running eqFCM we assign the points to clusters in an ascending

order of the belongingness degrees

MalinenFranti An alternating approach based on kmeans, where the assignment

step usis the Hungarian method (Malinen and Fränti, 2014)

JittaKlami A probabilistic clustering method, which alternates assigning points

and estimating cluster parameters (Jitta and Klami, 2018)

Heuristics which apply local search

LCW Starts from an arbitrary solution and tries to make improvements

by swapping pairs (Weitz and Lakshminarayanan, 1996)

LCWv2-4 These methods try to make improvements by swapping pairs and

groups of size three in different ways

TLCW The LCW method with greedy construction and tabu memory, where

after finding a local optimum we make the best non-improving

change and restart the search (Gallego et al., 2013)

SO Method TLCW with strategic oscillation, where the search is allowed

to take not feasible solutions too (Gallego et al., 2013)

Costaetal Applies LIMA-VNS method, which, after choosing a feasible solu-

tion by random swaps from an increasing neighbourhood, restarts

the LCW method (Costa et al., 2017)

Table 2.3: Summary table of the heuristic approaches included in the analysis.

When we combine any of the equalizer methods with an algorithm which might not

provide balanced clusters we indicate this by combining their names, e.g. cluster_eq3.

As the equalizer methods are able to create balanced clusters on their own, we include

them in the analysis as individual methods too.

For some methods, if it can be done through straightforward changes, we include both

minimization and maximization versions of the algorithms. For example, in case of LCW

we consider LCWmin and LCWmax algorithms. Similarly, we do the same for the extensions

16

of LCW, TLCW, SO, and Costaetal. Furthemore, we also consider running the methods that

apply swaps of size three with using the results of other heuristics as initial solutions in

them to see if we can further improve the value of the objective function.

2.3.1 Simulations of the equalizer methods

We use Monte-Carlo (MC) simulations to compare equalizer methods eq1-eq6. The com-

parison is always done in case of a fixed initial clustering method which might be either

cluster, kmeans, or eqFCM.

In each scenario, we generate a random sample of students, we apply the base clustering

method, for the resulting clusters we run all of the equalizer methods (eq1-eq6), and then

we evaluate their results compared to each other. After this, we compare the methods

using different measures. In each MC simulation we generate 10000 samples, thus, the

measures reflect the aggregated results of the scenarios. To assess the stability of the

measures we repeat this process 100 times and calculate the following statistics of the

measures: median, minimum, maximum, 25% and 75% percentiles.

To be able to tell in a given scenario the relative performance of the equalizer methods,

we introduce the relative points. Let c1, c2, . . . , c6 denote the cost returned by equalizer

methods eq1, eq2, ..., eq6, respectively. Let

crange = max{c1, . . . , c6} −min{c1, . . . , c6}

denote the range of the costs. Given this, the relative point

pi =

∑

1≤j≤6
j ̸=i

cj−ci
crange

, if crange > 0,

0, otherwise

shows the relative performance of the ith method compared to the other ones. Scaling

with the range is recommended because the difference of minimum and maximum costs

might vary a lot.

We introduce the following approaches to compare the methods:

p0 : Number of times when the algorithm returned the best solution (ties included),

divided by the number of repetitions.

p1 : We give points from 6 to 1 for the algorithms based on their performance, and

take the mean of the points over the iterations. The best method gains 6 point, the worst

17

gets 1. In case of ties the methods gain the average of points they would gain without

ties. E.g. in case of a tie of two methods at the first place they both receive 5.5 points.

p2 : Average of pi relative points.

T : Average of running times.

To display the statistics of the 100 run on the figures we use candle-like shapes. These

illustrate the maximum (upper horizontal line), the 75% percentile (upper edge of the box

in the middle), the median (yellow horizontal line), the 75% percentile (bottom edge of

the box in the middle), and the minimum (bottom horizontal line) as shown on Figure 2.1.

Figure 2.1: Illustration of the candle-like shape used to display the statistics of the equal-
izer methods.

2.3.2 Optimality points for large student sizes

We compare the heuristics that apply local searches in case of samples with n = 600

students for different m room sizes too. In this case, with the exception of m = 2, we are

most probably not able to find the optimal solution. Thus, we introduce the optimality

point, which allows us to evaluate the performance of either minimization or maximization

methods compared to each other, and to do a comparison for both minimization and

maximization methods in the same framework.

Definition 2.3.1 Let M denote the number of student samples. Let xmax
i and xmin

i be the

minimum and maximum of objective function values of the heuristics, respectively, in case

of the ith sample. Let’s assume that xmax
i > xmin

i ∀i. Finally, let xalg
i denote the objective

function value of an arbitrary algorithm ‘alg’ for the ith sample. Then, the optimality

point palg of algorithm ‘alg’ is defined as

palg =
1

M

M∑
i=1

xalg
i − xmin

i

xmax
i − xmin

i

.

The idea behind the optimality point is to be able to compare the results on the same

scale for different numbers and sizes of groups, as palg ∈ [0, 1] always holds.

18

2.4 Constructing possible roommate assignments for

small k and m

For small instances of the m-roommates problem we can determine the optimal solutions

of problems 2Min-mDM and 2Max-mDM, so it can be used to evaluate the results of

the algorithms. We find the optimums by constructing all of the possible roommate

assignments, compute their costs according to the objective function, and search for the

minimum and maximum values.

To construct the possible roommate assignments, we assign number from 1 to n to the

students and we use a recursive algorithm to create the rooms step-by-step. We introduce

the following definitions and notions before we give the pseudocode of the algorithm.

Definition 2.4.1 Let k > 1 be the number of rooms, m > 1 be the (equal) size of the

rooms, and thus, n = k ·m be the number of students. Let S = {1, . . . , n} denote the set

of students. Let R ⊂ S, |R| = m be an assigned room (i.e. a set of students assigned to

a room) and R = {R|R ⊂ S, |R| = m} be the set of possible assignments of a room. For

given k and m we define the set of r-assignments (0 ≤ r ≤ k) as

Pr =
{
(R1, . . . , Rr, s1, . . . , sl) |

0 ≤ r ≤ k; ∅ ≠ Ri ∈ R ∀i; Ri ∩Rj = ∅ ∀i, j, i ̸= j;

0 ≤ l ≤ n; l = n− r ·m; si ∈ S ∀i; si ̸∈ Rj ∀i, j;

si ̸= sj ∀i, j, i ̸= j; (∪ri=1Ri) ∪
(
∪li=1{si}

)
= S

}
.

This is a set of partial assignments, where the number of rooms to which we have assigned

m students is r. Hence, P0 has only one element which represents the state when no

student is assigned to any room. Also, Pk is the set of possible complete assignments with

elements where all of the students are assigned to a room.

Definition 2.4.2 Let k > 1 be the number of rooms, m > 1 be the (equal) size of the

rooms, and thus, n = k · m be the number of students. Let D ∈ Rn×n be the matrix of

squared Euclidean distances of the students. Let 0 ≤ r ≤ k be the number of rooms already

assigned, and according to this, let P = (R1, . . . , Rr, s1, . . . , sl) ∈ Pr be an r-assignment.

Let d : Pr → R+
0 be the cost of assignment function, which, for a given r-assignment,

19

gives the distances of students within the rooms which are already assigned:

d(P) =
r∑

m=1

∑
i,j∈Rm,

i<j

Dij.

Also, let D = {(P, d(P)) |P ∈ Pr, 0 ≤ r ≤ k} be the set of all possible assignment-cost

pairs, and let 2D denote the set of subsets of D. Finally, let h : Pr×R+
0 → 2D be a ‘set of

rooms’-assignment (or rooms-assignment for short), where for an r-assignment P ∈ Pr

h (P, d(P)) =
{
(P ′, d(P ′))

∣∣ (P ′, d(P ′)) ∈ D,

P ′ =
(
R1, . . . , Rr, Rr+1, s

′
1, . . . , s

′
l−m

)
∈ Pr+1,

min{s1, . . . , sl} ∈ Rr+1

}
.

Algorithm 2.4 presents the pseudocode of the recursive method, which constructs

every possible roommate assignment, computes their costs, and finds the minimum and

maximum of the values.

Recursive method to construct the possible roommate assignments

(1) Initializing variables.

C = ∅ [global variable: set of the costs]

Cmax = NaN,Cmin = NaN [global variables: extreme values of C]

r = 0 [assigned rooms]

(2) Running the kroomcases(r, P, d(P)) recursive function.

if (r < k)

H ← h
(
P, d(P)

)
[generating r + 1-assignments]

for
(
P ′, d(P ′)

)
in H

kroomcases(r + 1, P ′, d(P ′))

end for

else [updating the set of costs and extreme values]

C ← C ∪ d(P)

if (isnan(Cmax)) or (Cmax < d(P))

Cmax← d(P)

end if

if (isnan(Cmin)) or (Cmin > d(P))

Cmin← d(P)

20

end if

end if

Algorithm 2.4: Recursive method to construct the possible roommate assignments, com-
pute their costs and determine the minimum and maximum of the costs

Figure 2.2 illustrates the logic of Algorithm 2.4 for n = 9 students and m = 3 room-

mates.

Proposition 2.4.3 Algorithm 2.4 constructs all of the possible roommate assignments,

and it constructs all of them exactly once.

1, 2, 3, 4, 5, 6, 7, 8, 9

{1, 2, 3}, 4, 5, 6, 7, 8, 9

{1, 2, 4}, 3, 5, 6, 7, 8, 9

{1, 2, 5}, 3, 4, 6, 7, 8, 9

...

{1, 8, 9}, 2, 3, 4, 5, 6, 7

{1, 2, 3}, {4, 5, 6}, 7, 8, 9

{1, 2, 3}, {4, 5, 7}, 6, 8, 9

{1, 2, 3}, {4, 5, 8}, 6, 7, 9
...

{1, 2, 3}, {4, 8, 9}, 5, 6, 7

...

GG

??

//

��

==

//

!!

��

Figure 2.2: Illustrating the recursive steps of Algorithm kroomcases for constructing all
of the possible roommate assignments for n = 9 students and m = 3 roommates.

21

Chapter 3

Main results

3.1 NP-hardness of m-dimensional matching problems

In the followings we extend the existing general dimension hardness results of creating

balanced groups. We show explicitly that if the size m of the groups is at least 3, then

the balanced MSSC problem is NP-hard for various distance measures, and for both

minimization and maximization of the objective function. With this result we also give

an alternative proof for the NP-hardness of the optimization problem corresponding to the

decision problem mDM defined by Feo and Khellaf (1990). For this optimization problem

from now on we refer to as maximally weighted m-dimensional matching (Max-mDM)

and we consider it with m ≥ 2. Furthermore, we prove that the minimization version of

the previous problem, referred to as minimally weighted m-dimensional matching (Min-

mDM) is also NP-hard for m ≥ 3. The importance of the latter is given by that it

can be viewed as the generalization of the balanced MSSC problem, in which arbitrary

distances may be considered between the points. Problems Max-mDM and Min-mDM

are referred to as m-dimensional matching problems. Our results are also presented in

the working paper Kondor (2022a). The source of tables which summarize the hardness

results of m-dimensional matching problems is Kondor (2022b).

Note that balanced MSSC is equivalent to the 2Min-mDM problem. In what follows,

we prove the NP-hardness of pMin-mDM and pMax-mDM for m ≥ 3 and different

values of p.

Theorem 3.1.1 (Kondor (2022a)) pMin-mDM is NP-hard for integers m ≥ 3 and

p ≥ 1.

22

Proof. We show that the decision version of the optimization problem is NP-complete.

The formal definition of the problem is as follows.

Decision problem 3.1.2 pMin-mDM decision problem.

Instance: C = {x1, . . . , xn} ⊂ Rd, m and p positive integers, such that k = n/m and

W ∈ Q+.

Question: Is there a partition of C into disjoint sets C1, . . . , Ck, such that |Ci| = m, 1 ≤

i ≤ k and
k∑

s=1

∑
xi∈Cs

∑
xj∈Cs

∥xi − xj∥pp ≤ W

holds?

The problem is in NP. The rest of the proof follows the steps of Pyatkin et al. (2017).

The reduction is done from the decision problem m-dimensional matching without edge

weights which is given by Definition 3.1.3. This problem was shown to be NP-complete

by Feo and Khellaf (1990) as a part of their NP-hardness proof of Max-mDM.

Decision problem 3.1.3 m-dimensional matching without edge weights (mDM-{0, 1})

decision problem.

Instance: A graph G = (V,E) with |V | = km,m ≥ 3, k, l positive integers.

Question: Is there a partition of V into disjoint sets V1, . . . , Vk such that |Vi| = m, 1 ≤

i ≤ k and the number of edges that have both endpoints in the same set Vi is greater than

l?

For the reduction, consider an arbitrary instance of mDM-{0, 1} with |V | = km and

|E| = q. Fix the value of p to be a positive integer, make d = q and W = 4q(m − 1) −

4(l+1). Denote by C ∈ {0, 1}km×d the incidence matrix of G, i.e. rit = 1 if vertex vi ∈ V

is incident to edge et, and xit = 0 otherwise. The rows of C may be considered as points

in Rd and each balanced partition of these points corresponds to a balanced partition of

V .

Let Ast =
∑

i:xi∈Cs

∑
j:xj∈Cs

|xit − xjt|p be the contribution into the objective function

of subset Cs with respect to coordinate t. This allows to rewrite the objective function of

pMin-mDM as
d∑

t=1

k∑
s=1

Ast.

23

Given two points xi and xj whose t-th coordinate is 1 only two cases can happen

with respect to the partitioning: the points are either 1) in the same subset Cs1 , or 2)

partitioned into different subsets Cs1 and Cs2 . Denote by At =
∑k

s=1Ast the contribution

of the t-th coordinate into the objective function and let A(1)
t and A

(2)
t denote its value in

the two respective cases. Thus, the contribution in the first case is

A
(1)
t = As1t = 2|1− 1|p + 4(m− 2)|1− 0|p =

= 4(m− 2),

while in the second case it is

A
(2)
t = As1t + As2t = 4(m− 1)|1|p = 4(m− 1).

Finally, denote by b the number of edges whose both endpoints are in the same subset.

Given this notation the value of the objective function can be expressed as a function of

b, that is

A(b) = (q − b)A
(2)
t + bA

(1)
t = 4q(m− 1)− 4b.

A(b) is decreasing in b, which implies that A(b) ≤ W if and only if b ≥ l + 1. □

Similarly, Theorem 3.1.4 states the NP-hardness of pMax-mDM.

Theorem 3.1.4 (Kondor (2022a)) pMax-mDM is NP-hard for integers m ≥ 3 and

p ≥ 2.

Proof. We follow the steps of the proof of Theorem 3.1.1 with the following changes. In

the decision version of the optimization problem pMax-mDM the value of the objective

function has to be greater than or equal to W .

The value of p has to be chosen such that p ≥ 2 is also satisfied, and the target value

of the objective function is defined as W = 4q(m − 1) + (l + 1)(2p+1 − 4). When we

consider the incidence matrix of G we use a modified matrix in this case. In each column

of R replace one of the 1’s with −1 and keep the other one unchanged. This implies that

A
(1)
t = 2p+1 + 4(m− 2),

A
(2)
t = 4(m− 1), and

A(b) = 4q(m− 1) + b(2p+1 − 4).

24

Given p ≥ 2, A(b) is increasing in b, which means A(b) ≥ W if and only if b ≥ l + 1. □

From the NP-hardness of 2Min-mDM for any m ≥ 3 an explicit NP-hardness result

of balanced MSSC immediately follows.

Corollary 3.1.5 (Kondor (2022a)) Balanced MSSC is NP-hard for any integer m ≥ 3.

Moreover, as for any p the optimization problem pMin-mDM is a special case of

Min-mDM, Theorem 3.1.1 also implies the NP-hardness of the general problem.

Corollary 3.1.6 (Kondor (2022a)) Min-mDM is NP-hard for any integer m ≥ 3.

The complexity results of m-dimensional matching problems are summarized by Ta-

ble 3.1 and Table 3.2. In Table 3.2 we use the following numbered notation: (1) Bertoni

et al. (2012), (2) Lin et al. (2016), (3) Kel’manov and Pyatkin (2016), (4) Pyatkin et al.

(2017), (5) Kondor (2022a). Problems denoted by question marks are open problems

according to our knowledge.

Maximal weighted m-dimensional matching (Max-mDM)

general

case

pMax-mDM

p = 1 p ≥ 2

m = 2 polynomial (Edmonds, 1965)

m ≥ 3NP-hard (Feo and Khellaf, 1990) ? NP-hard (Kondor, 2022a)

Algorithm 3.1: Complexity results of maximal weighted m-dimensional matching problem
and its special cases. m denotes the group size, p denotes the parameter of the ℓp norm.
Source: Kondor (2022b).

Minimal weighted m-dimensional matching (Min-mDM)

general

case

pMin-mDM

p = 1 p = 2 p ≥ 3

m = 2 polynomial (Edmonds, 1965)

m = 3 NP-hard (5)NP-hard (5) NP-hard (4) NP-hard (5)

3 < m < n/2 NP-hard (5)

m = n/2

d = 1 ? ? polynomial (1) ?

d = 2 ? ? polynomial (2) ?

d arbitraryNP-hard (5)NP-hard (5) NP-hard (3) NP-hard (5)

Algorithm 3.2: Complexity results of minimal weighted m-dimensional matching problem
and its special cases. m denotes the group size, d denotes the dimesion of the Euclidean
space, and p denotes the parameter of the ℓp norm. Source: Kondor (2022b).

25

3.2 m-roommates problem, and its benefits and draw-

backs compared to the stable roommates problem

The formal definition of the m-roommates problem is the following. Let n be the number

of students in a college, and let m be the uniform size of rooms in the college. For the

sake of simplicity, let k = n/m be an integer, where k is the number of rooms. Let

C1, . . . , Ck denote the rooms. Let’s assume that the compatibility of two students can be

described by certain attributes in the following way. Let d be the number of attributes,

and let’s assume that these can be expressed by real numbers1. Hence, every student

can be represented by a point in the Euclidean space Rd. Let x1, . . . , xn ∈ Rd denote the

students and let D ∈ Rd×d be the distance matrix of the students. Let xi ∈ Cs denote

that student i is assigned to room s.

We assume that the compatibility of students xi and xj is defined by their Euclidean

distance dij = ∥xi − xj∥. For the good roommate assignment we take two different

approaches. To create homogeneous groups we consider the minimization problem

min
k∑

s=1

∑
xi,xj∈Cs

d2ij, (2Min-mDM)

s.t. |Cs| = m ∀s.

To create an assignment with heterogeneous groups we use the following maximization

problem:

max
k∑

s=1

∑
xi,xj∈Cs

d2ij, (2Max-mDM)

s.t. |Cs| = m ∀s.

The uniform objective functions guarantee that we can use a cohesive framework to in-

vestigate both the minimization and maximization versions of the problem.

From a theoretical aspect one of the most important differences of stable roommates

and m-roommates problems is, while the former one provides a stable solution, the latter

defines a Pareto efficient solution concept. Thus, the solution for the latter is not neces-

sarily stable, but in some situations it might be a better model to describe the real-life

1Here we allow for arbitrary real numbers, but in the analysis we will use a restriction of integers from
the interval [0, 10].

26

problem (see Morrill (2010)).

For stable roommates, in case of pairs the set of solutions might be empty, and in case

of weak preferences it is NP-complete to decide whether a weakly stable solution exists

or not. The approaches in higher dimensions, with one exception, are related to groups

of three, and again, with one exception, all of them defines an NP-complete problem.

On the other hand, for the m-roommates problem, being an optimization problem,

the set of solutions is always non-empty. Furthermore, for pairs, that is in case of m = 2,

we can always find an optimal solution in polynomial time using Edmonds’ algorithm

(Edmonds, 1965). However, for groups of at least three the problem becomes intractable

in general dimension. Based on Theorems 3.1.1 and 3.1.4 we know problems 2Max-mDM

and 2Min-mDM are NP-hard. According to this, for larger instances of the problem we

are not able to find the optimal solution even if we know that it always exists for every

cluster size (Kondor, 2022b).

From a practical point of view a benefit of the m-roommates problem - and other

metric approaches - over the stables roommates problem is that giving a preference order

is not required in this case. It might be a more realistic approach in cases where some

students have no preference order over the others at all. It might be the case when new

students arrive to the college with no information about the others.

Another benefit of the model also comes from removing preferences. In case of prefer-

ence orders there is no measurable difference between the items of the preference list. If

for students x, y and z we have y ≻x z (x prefers y to z) we don’t know how much more

y is liked by x to z. On the other hand, distances give additional information and might

be used to create better assignments.

One drawback of the m-roommates model is students now have symmetric views on

each other, while in case of the stable roommates problem they could have asymmetric

preferences.

Another shortcoming of the approach is the inability to express individual preferences.

For example, there might be two or more students who already know each other and would

like to be assigned to the same room. To be able to incorporate it into model we should

use a more general approach, for example the m-dimensional matching, where arbitrary

edge weights can be used between the vertices. Using this approach we can also define

edge weights for the minimization problem which will result in two students always being

27

assigned to different rooms. This is a property neither of the previously discussed models

could achieve. However, discussion of the general model is not a subject of the dissertation,

but might be an interesting topic for further research.

3.3 Results of comparing the equalizer methods

The results of the equalizer methods for parameters k = 3 and m = 3 are shown by

Figures 3.1, 3.2, and 3.3.

As for the running times of the algorithms (measure T) method eq3 proved to be the

best. eq5 is slightly behind, which is followed by eq1 and eq4. Methods eq2 and eq6

produced the worst times. Based on the hight of candles the order is stable.

Figure 3.1: Results of the equalizer methods (eq1-eq6). Agglomerative hierarchical clus-
tering, k = 3,m = 3.

According to the ratio of the number of times the procedure found the best result and

28

the total number of scenarios (measure p0) methods eq3 and eq4 seems to be the best

in all cases, which are followed with a larger lag by eq6. Note that for eqFCM the actual

order might be different because of the overlapping candles.

Measures p1 and p2 are very similar to p0, which makes the evaluation easy. In each

cases eq3 and eq4 are the best.

We executed the analysis for k = 5 groups and d = 10 dimensions too, and the results

were mostly the same. As a result of the above analysis we consider eq4 to be the best

which is mediocre considering its running time, but superior according to all of the other

measures. We also include eq3 in some upcoming analysis for its favourable running time.

Figure 3.2: Results of the equalizer methods (eq1-eq6). k-means++ clustering, k =
3,m = 3.

29

Figure 3.3: Results of the equalizer methods (eq1-eq6). Fuzzy c-means clusterin, k =
3,m = 3.

3.4 Experiments on real data

We compared the heuristics on real datasets ‘Iris’ and ‘Seeds’ too, which are frequently

used in the literature (see Malinen and Fränti (2014); Costa et al. (2017); Rujeerapaiboon

et al. (2019)). These are real-world datasets which contain the data of clusters with

equal size. These are used in the literature in case of the minimization problem and the

minimal objective function value is known for them. Hence, we also use these to compare

the minimum searching algorithms.

For the analysis we run the algorithms on the data, measure the running times and

evaluate the objective function values. The results are shown on Figures 3.4 and 3.5.

Running times and objective function values are shown on the labels and the algorithms

are sorted according to these.

30

Figure 3.4: Results of minimum searching algorithms for dataset Iris. k = 3,m = 50.
Description of labels: objective function value - running time (s) - name of the algorithm.

Figure 3.5: Results of minimum searching algorithms for dataset Seeds. k = 3,m = 70.
Description of labels: objective function value - running time (s) - name of the algorithm.

Most of the methods are able to find the optimum, however there are significant differ-

ences in running times coming from the construction of the methods. More sophisticated

approaches require more time before they halt, but probably perform better in general.

Algorithms related to traditional cluster analysis are amongst the fastest heuristics which

31

might be good in case of larger problem instances but the poor performance is not promis-

ing.

3.5 Results of simulations with small k and m

In this step of the analysis, we compare the heuristics on simulated datasets for small

values of k and m. In this case we can generate all of the possible roommate assignments,

we can find the minimum and the maximum values, and we can evaluate the algorithms

against these optimums. We generate random samples, where the dimension is d = 3,

that is students have 3 attributes.

Figure 3.6: Histogram of roommate assignment costs, and the results of minimum and
maximum searching algorithms. Simulated instance, k = 3,m = 3, 280 possible roommate
assignments, the running time of generating assignments and searching of optimums was
0.1541 s. Skewness: -0.5339. Description of labels: objective function value - running
time - name of the algorithm.

Figure 3.6 illustrates the histogram of the possible roommate assignment costs for

a generated sample of students with k = 3 and m = 3. Also, it shows the minimum

32

Figure 3.7: Histogram of roommate assignment costs, and the results of minimum and
maximum searching algorithms. Simulated instance, k = 5,m = 3, 1.40e+06 possible
roommate assignments, the running time of generating assignments and searching of op-
timums was 62.06 s. Skewness: -0.2814. Description of labels: objective function value -
running time - name of the algorithm.

and maximum of the costs, and the objective function values and running times of the

algorithms. Similarly, Figure 3.7 shows the case of k = 5 and m = 3 (with 1.40e+06

possible roommate assignments).

Table 3.3 shows the results of a simulation made on a sample of 200 problem instances

(for the minimizing problem it shows only the best performing heuristics), with k = 5

and m = 3. Columns ‘Distance’ show the average distance from the optimum, columns

‘Running time’ show the average running time, and columns ‘# best result’ show the

number of cases where the algorithm found the optimum. Standard deviations are shown

in brackets under the values. The rows of the table are sorted by the last column.

In terms of running times we can see that there are differences in the orders of mag-

nitude. LCW algorithms (both minimizing and maximizing) are worth mentioning because

with very low running times they can find the optimum in a significant number of cases.

33

Distance Running
time

best
results

LCWmax 6,96 0,0004 78
(9,03) (0,0001)

LCWv2max 5,64 0,0010 85
(7,71) (0,0002)

LCWv3max 5,31 0,0017 90
(7,65) (0,0004)

LCWv4max 4,91 0,0015 97
(7,52) (0,0003)

TLCWmax 3,76 0,0014 109
(5,73) (0,0002)

Costaetalmax 0,53 0,0023 180
(1,85) (0,0006)

SOmax 0,20 0,0143 191
(0,92) (0,0022)

Distance Running
time

best
results

LCWmin 21,89 0,0004 106
(32,92) (0,0001)

TLCWmin 15,54 0,0014 112
(25,38) (0,0003)

LCWv2min 7,95 0,0020 141
(16,88) (0,0006)

LCWv3min 4,62 0,0034 161
(11,85) (0,0009)

LCWv4min 5,06 0,0029 162
(13,98) (0,0005)

SOmin 4,47 0,0126 168
(13,60) (0,0035)

Costaetalmin 0,63 0,0029 190
(3,02) (0,0009)

Table 3.3: The results of maximum (top) and minimum (bottom) searching algorithms:
average distances from the optimum (and standard deviations), average running times
(and standard deviations), and the number of cases where the algorithm found the opti-
mum. k = 5,m = 3, 200 simulated instances.

34

From the set of maximum searching algorithms the more sophisticated methods, SOmax

and Costaetalmax, perform better in finding the optimum. However, note that the run-

ning time of SOmax is one order of magnitude larger than the second best Costaetalmax’s

running time. Amongst the heuristics with swaps of size three LCWv4max has the best

results.

Regarding the minimum searching algorithms, again, the more sophisticated methods

perform better than the others. The constructive methods, heuristics related to cluster

analysis, and algorithms JittaKlami and MalinenFranti did not show good results (they

found the optimum in less than 30% of the cases), and thus, not displayed in the table.

From the algorithms which apply swaps of size three LCWv3min performs better in terms

of average distances, but according to the number of best results LCWv4min is slightly

ahead. In terms of running times LCWv4min is the definite winner.

In the next step of the analysis we will consider only the local search methods, and

from the three versions of methods that apply swaps of size three we will only keep LCWv4,

which overall seemed to be better than the other two versions.

3.5.1 Asymmetry of minimizing and maximizing problems

We make a note about an interesting feature about the problem. For the illustration we use

Figure 3.8, which shows the histogram of possible roommate assignment costs in case of

parameters k = 2,m = 15. Note that the left tail of the distribution is very thin compared

to the right tail. In such a case we say that the distribution is left-skewed, which is also

proved by the calculated skewness value -0.9044. This emphasizes the possible asymmetry

of the minimizing and maximizing problems.

We also note that, for all of the cases we investigated (with various pairs of parameters

k = 3,m = 3; k = 3,m = 4; k = 4,m = 3; k = 5,m = 3) for all of the 200 instances we

generated the skewness of the roommate assignments’ costs were negative.

35

Figure 3.8: Histogram of roommate assignment costs, and the results of minimum and
maximum searching algorithms. Simulated instance, k = 2,m = 15, 7.76e+07 possible
roommate assignments, the running time of generating assignments and searching of op-
timums was 54 m 6 s. Skewness: −0.9044. Description of labels: objective function value
- running time - name of the algorithm.

36

3.6 Results for larger instances of the m-roommates

problem

3.6.1 Edmonds’ algorithm as a benchmark

Figure 3.9: Results of maximum and minimum searching heuristics, including Edmonds’
algorithm. m = 2, k = 300, 100 simulated instances.

37

In case of pairs we can determine the optimal solution in polynomial time. Hence, in

this case we can compare the results of the heuristic approaches to the actual optimum.

Figure 3.9 shows the results for 100 simulated instances for groups of size m = 2 and

k = 300 rooms. In the set of algorithms we also include a minimum and a maximum

searching method which are based on Edmonds’ algorithm2. These are called Edmondsmin

and Edmondsmax, respectively.

Based on the results it seems the heuristic approaches can get relatively close to the

optimum. However, not even the more sophisticated methods can entirely decrease the

distance between the result of the LCW methods and the optimums. We note that in case

of the maximum searching methods LCWv4 seems to be relevant on its own too, however,

in case of the minimum searching methods it performs worse than heuristics TLCminLCWv4

and CostaetalminLCWv4. Also, we highlight that applying LCWv4 to the result of another

approach it significantly improves the solution in the most cases.

3.6.2 Results for groups of size at least three

Figure 3.10 shows the results for 100 simulated instances for groups of size m = 5 and

k = 120 rooms. Regarding the optimality point, we see results close to each other on both

sub-figures. Note that LCWv4max is redundant as method TLCWmax performs better in terms

of both optimality point and runnin time. However, in the minimizing case LCWv4min is

relevant on its own based on it has better result than Costaetalmin and SOmin. For

both minimizing and maximizing cases we can say that LCWv4 improves significantly the

objective function values of other heuristics’ results.

Finally, note that in case of minimization running the algorithms take significantly

longer than in case of maximization. For Costaetal, we may reject at any significance

level the hypothesis H0 that the average of differences of minimizing and maximizing

running times is zero, according to one-sample t-test. This property holds for the other

methods too, so this emphasizes the asymmetry of minimization and maximization prob-

lems.

2The source of the MATLAB codes are available online, see Saunders (2022).

38

Figure 3.10: Results of maximum and minimum searching heuristics. m = 5, k = 120,
100 simulated instances.

Figure 3.11 shows the results for 100 simulated instances for groups of size m = 60 and

k = 10 rooms. In case of the maximum searching methods practically speaking returned

the same optimum in all of the cases - for LCWv4 the difference of 1e-8 is probably caused

by a numerical precision error. Thus, in such cases method LCWmax might be sufficient to

find a feasible solution.

39

In case of the minimum searching methods we may notice that the range of the opti-

mality points is larger than in case of larger number of groups. We note that LCWv4min

is again, performs well in improving the results of other approaches. We also note that

LCWv4min seems to have better results than TLCWminLCWv4, though, they relation might

not be stable.

Figure 3.11: Results of maximum and minimum searching heuristics. m = 60, k = 10,
100 simulated instances.

40

Chapter 4

Bibliography

Arkin, E. M., Bae, S. W., Efrat, A., Okamoto, K., Mitchell, J. S. B. and Polishchuk, V.

(2009). Geometric stable roommates. Information Processing Letters, 109(4):219–224.

DOI: 10.1016/j.ipl.2008.10.003.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA ’07, pages 1027–1035. ISBN 978-0-898716-24-5.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A. and Protasi,

M. (2003). Complexity and approximation: Combinatorial optimization problems and

their approximability properties. Springer-Verlag Berlin Heidelberg 1999. ISBN: 978-3-

642-63581-6. DOI: 10.1007/978-3-642-58412-1.

Bertoni, A., Goldwurm, M., Lin, J. and Saccà, F. (2012). Size constrained distance clus-

tering: separation properties and some complexity results. Fundamenta Informaticae,

115(1):125–139. DOI: 10.3233/FI-2012-644.

Biró, P. (2006). Stabil párosítási modellek és ezeken alapuló központi párosító

programok. Szigma, 37(3-4):153–175. https://journals.lib.pte.hu/index.php/

szigma/article/view/1096.

Costa, L. R., Aloise, D. and Mladenović, N. (2017). Less is more: basic variable neigh-

borhood search heuristic for balanced minimum sum-of-squares clustering. Information

Sciences, 415-416:247–253. DOI: 10.1016/j.ins.2017.06.019.

41

https://doi.org/10.1016/j.ipl.2008.10.003
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.3233/FI-2012-644
https://journals.lib.pte.hu/index.php/szigma/article/view/1096
https://journals.lib.pte.hu/index.php/szigma/article/view/1096
https://doi.org/10.1016/j.ins.2017.06.019

Edmonds, J. (1965). Maximum matching and a polyhedron with 0, 1-vertices. Jour-

nal of Research of the National Bureau of Standards, 69B(1-2):125–130. DOI:

10.6028/jres.069b.013.

Edwards, A. W. F. and Cavalli-Sforza, L. L. (1965). A method for cluster analysis.

Biometrics, 21(2):362–375. DOI: 10.2307/2528096.

Feo, T. A. and Khellaf, M. (1990). A class of bounded approximation algorithms for

graph partitioning. Networks, 20(2):181–195. DOI: 10.1002/net.3230200205.

Feo, T. A., Goldschmidt, O. and Khellaf, M. (1992). One-half approximation algorithms

for the k-partition problem. Operations Research, 40:S170–S173. https://www.jstor.

org/stable/3840846.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The

American Mathematical Monthly, 69(1):9–15. DOI: 10.2307/2312726.

Gallego, M., Laguna, M., Marti, R. and Duarte, A. (2013). Tabu search with strategic

oscillation for the maximally diverse grouping problem. Journal of the Operational

Research Society, 64(5):724–734. DOI: 10.1057/jors.2012.66.

Höppner, F. and Klawonn, F. (2008). Clustering with size constraints. In Computational

Intelligence Paradigms, volume 137 of Studies in Computational Intelligence, pages

167–180. ISBN 978-3-540-79473-8. DOI: 10.1007/978-3-540-79474-5_8.

Jitta, A. and Klami, A. (2018). On controlling the size of clusters in probabilistic clus-

tering. In Thirty-Second AAAI Conference on Artificial Intelligence, volume 32, pages

3350–3357. Palo Alto, CA: AAAI Press. https://ojs.aaai.org/index.php/AAAI/

article/view/11793.

Kel’manov, A. V. and Pyatkin, A. V. E. (2016). On the complexity of some quadratic Eu-

clidean 2-clustering problems. Computational Mathematics and Mathematical Physics,

56:491–497. DOI: 10.1134/S096554251603009X.

Király, B. and Tóth, L. (2011). Kombinatorika jegyzet és feladatgyűjtemény. Pécsi

Tudományegyetem.

42

https://doi.org/10.6028/jres.069b.013
https://doi.org/10.2307/2528096
https://doi.org/10.1002/net.3230200205
https://www.jstor.org/stable/3840846
https://www.jstor.org/stable/3840846
https://doi.org/10.2307/2312726
https://doi.org/10.1057/jors.2012.66
https://doi.org/10.1007/978-3-540-79474-5_8
https://ojs.aaai.org/index.php/AAAI/article/view/11793
https://ojs.aaai.org/index.php/AAAI/article/view/11793
https://doi.org/10.1134/S096554251603009X

Kondor, G. (2018). k-szobatárs probléma metrikus térben – klaszterezés egyenlő elem-

számú és kisméretű csoportokkal. In Tavaszi Szél 2018 Konferencia = Spring Wind

2018: Konferenciakötet II., pages 549–563. ISBN: 9786155586316.

Kondor, G. (2022a). NP-hardness of m-dimensional matching problems. Műhelytanul-

mány.

Kondor, G. (2022b). Egyoldali párosítási piacok nehézségi eredményei magasabb dimen-

zióban. Közgazdasági Szemle. Megjelenés alatt.

Dr. Kovács, E., Szüle, B., Fliszár, V. and Vékás, P. (2011). Pénzügyi adatok statisztikai

elemzése: Egyetemi tankönyv. Tanszék Kft., Budapest.

Lam, C.-K. and Plaxton, C. G. (2019). On the existence of three-dimensional stable

matchings with cyclic preferences. In Fotakis, D. and Markakis, E., editors, Algorithmic

Game Theory, SAGT 2019. Lecture Notes in Computer Science, vol 11801. Springer,

Cham. DOI: 10.1007/978-3-030-30473-7_22.

Lin, J., Bertoni, A. and Goldwurm, M. (2016). Exact algorithms for size con-

strained 2-clustering in the plane. Theoretical Computer Science, 629:80–95. DOI:

10.1016/j.tcs.2015.10.005.

Malinen, M. I. and Fränti, P. (2014). Balanced k-means for clustering. In Joint IAPR

International Workshops on Statistical Techniques in Pattern Recognition (SPR) and

Structural and Syntactic Pattern Recognition (SSPR), S+SSPR 2014, pages 32–41.

Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-662-44415-3_4.

Morrill, T. (2010). The roommates problem revisited. Journal of Economic Theory, 145

(5):1739–1756. DOI: 10.1016/j.jet.2010.02.003.

Nobel Prize. (2012a). Press release. NobelPrize.org. https://www.nobelprize.org/

prizes/economic-sciences/2012/press-release/.

Nobel Prize. (2012b). Scientific background. NobelPrize.org. https://www.nobelprize.

org/uploads/2018/06/advanced-economicsciences2012.pdf.

Novick, B. (2009). Norm statistics and the complexity of clustering problems. Discrete

Applied Mathematics, 157(8):1831–1839. DOI: 10.1016/j.dam.2009.01.003.

43

https://doi.org/10.1007/978-3-030-30473-7_22
https://doi.org/10.1016/j.tcs.2015.10.005
https://doi.org/10.1007/978-3-662-44415-3_4
https://doi.org/10.1016/j.jet.2010.02.003
https://www.nobelprize.org/prizes/economic-sciences/2012/press-release/
https://www.nobelprize.org/prizes/economic-sciences/2012/press-release/
https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2012.pdf
https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2012.pdf
https://doi.org/10.1016/j.dam.2009.01.003

Pyatkin, A., Aloise, D. and Mladenović, N. (2017). NP-hardness of balanced

minimum sum-of-squares clustering. Pattern Recognition Letters, 97:44–45. DOI:

10.1016/j.patrec.2017.05.033.

Rujeerapaiboon, N., Schindler, K., Kuhn, D. and Wiesemann, W. (2019). Size matters:

Cardinality-constrained clustering and outlier detection via conic optimization. SIAM

Journal on Optimization, 29(2):1211–1239. DOI: 10.1137/17M1150670.

Saunders, D. (2022). Weighted maximum matching in general graphs. MATLAB

Central File Exchange. Letöltve: 2022. február 22. https://www.mathworks.com/

matlabcentral/fileexchange/42827-weighted-maximum-matching-in-general-

graphs.

Segev, D. L., Gentry, S. E., Warren, D. S., Reeb, B. and Montgomery, R. A. (2005).

Kidney paired donation and optimizing the use of live donor organs. Journal of the

American Medical Association, 293(15):1883–1890. DOI: 10.1001/jama.293.15.1883.

Weitz, R. R. and Lakshminarayanan, S. (1996). On a heuristic for the final exam

scheduling problem. Journal of the Operational Research Society, 47(4):599–600. DOI:

10.1057/jors.1996.72.

44

https://doi.org/10.1016/j.patrec.2017.05.033
https://doi.org/10.1137/17M1150670
https://www.mathworks.com/matlabcentral/fileexchange/42827-weighted-maximum-matching-in-general-graphs
https://www.mathworks.com/matlabcentral/fileexchange/42827-weighted-maximum-matching-in-general-graphs
https://www.mathworks.com/matlabcentral/fileexchange/42827-weighted-maximum-matching-in-general-graphs
https://doi.org/10.1001/jama.293.15.1883
https://doi.org/10.1057/jors.1996.72

Chapter 5

Publications

Journal articles

• Bihary, Zsolt ; Csóka, Péter ; Kondor, Gábor (2018). A részvénytartás spek-

trális kockázata hosszú távon. Közgazdasági Szemle, 65 : 7-8 pp. 687-700. DOI:

10.18414/KSZ.2018.7-8.687

• Csóka, Péter ; Kondor, Gábor (2019). Delegációk igazságos kiválasztása társadalmi

választások elméletével. Közgazdasági Szemle, 66 : 7-8 pp. 771-787.

DOI: 10.18414/KSZ.2019.7-8.771

• Csóka, Péter ; Kondor, Gábor (2020). Csődszabályok pénzügyi hálózatokban. Al-

kalmazott Matematikai Lapok, 37 : 2 pp. 233-245. 10.37070/AML.2020.37.2.08

• Kovács-Szamosi, Rita ; Kondor, Gábor ; Varga, József (2021). Derivatív-ügyletek

az iszlám bankrendszerben. Köz-Gazdaság, 16 : 4 pp. 203-221.

DOI: 10.14267/RETP2021.04.12

• Kondor, Gábor (2022). Egyoldali párosítási piacok nehézségi eredményei magasabb

dimenzióban. Közgazdasági Szemle. In press.

Woring papers

• Kondor, Gábor (2022). NP-hardness of m-dimensional matching problems.

45

	Research and topic selection background
	Methods used in the dissertation
	Defining m-dimensional matching problems and proof by reduction
	Constructing new heuristic approaches
	Equalizer methods eq1-6
	Fuzzy c-means with equi-sized clusters (eqFCMv2)
	Algorithm LCW with swaps of size three (LCWv2, LCWv3 és LCWv4)

	Simulations to compare heuristic approaches
	Simulations of the equalizer methods
	Optimality points for large student sizes

	Constructing possible roommate assignments for small k and m

	Main results
	NP-hardness of m-dimensional matching problems
	m-roommates problem, and its benefits and drawbacks compared to the stable roommates problem
	Results of comparing the equalizer methods
	Experiments on real data
	Results of simulations with small k and m
	Asymmetry of minimizing and maximizing problems

	Results for larger instances of the m-roommates problem
	Edmonds' algorithm as a benchmark
	Results for groups of size at least three

	Bibliography
	Publications

