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Chapter 1

Research literature and the

justi�cation of the topic

A decision problem arises whenever we have to choose between multiple alter-

natives. The goal can be to choose the best alternative, or to give a ranking

of the possible alternatives. Sometimes the problem can be simpli�ed to

a decision with only one criterion, for example a company might want to

only consider pro�t in a particular decision. In these cases we have a single-

criterion decision problem, in other words, we have to minimize or maximize

an objective function, which can be solved with the traditional tools of op-

erations research. But often even a criterion seemingly as simple as pro�t

may not be simpli�ed to a single criterion, as there can be many in�uencing

factors. If such a simpli�cation is not possible, we are facing a multi-criteria

decision problem.

In everyday decisions we do not utilize extensive methodology to make a

small decision, because the time and possibly the resource demand would be

too high. In these situations we decide swiftly based on established patterns

and heuristics. When facing bigger and more important decisions though,

it may be worthwhile to use such a well-founded methodology, which lets

us analyze and evaluate the problem in smaller parts. For this though, one
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needs more powerful tools than everyday heuristics.

The �eld of Multi-Criteria Decision Making (MCDM) independently of

the exact method used is about modeling the preferences of the decision

maker. In such complex problems the decision maker is generally not able

to accurately take so many criteria into consideration, and directly and pre-

cisely determine the importance of criteria, to in the end have a decision that

most accurately re�ects his own subjective preferences. We are able to aid

the decision maker in this by using decision making tools, hence this �eld

is also called Multi-Criteria Decision Aid (MCDA, which sometimes stands

for Multi-Criteria Decision Analysis). MCDM is not just about aiding a

single decision maker in one decision, it is also about for example group deci-

sions, decisions in a stochastic environment and ranking in other situations.

Furthermore, there is a substantial overlapping of themes with the �elds of

voting theory and social choice.

The evaluations of alternatives or the weights of criteria are often not

available as exact numerical values, only the estimates of their ratios can be

obtained directly. For example a decision maker can rarely provide accurate

information about how much weight does a criterion carry in his decision.

The ratios of the weights of criteria can generally be better estimated by the

decision maker. In this case, the question the decision maker has to answer is

how many times is a criterion more important than an other one. Hence, the

comparisons are cardinal, the answers to the question are numerical values.

From these ratios in the case of n elements to be compared, an n×n pairwise

comparison matrix (PCM) can be constructed. If cardinal transitivity holds

for a PCM, it is called consistent.

Thus, the goal is to determine the weights of criteria using the pairwise

comparisons of criteria, more precisely to determine the estimates of the

weights, which are arranged in a vector, the so called weight vector. The

weight vector is viewed as the �nal estimate of the preferences (of criteria)

of the decision maker. There are many ways to determine the weight vector.
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The Eigenvector Method (EM) is the oldest method to determine the

weight vector. It was introduced by Saaty together with PCMs in his pa-

per from 1977 [19]. The Eigenvector Method determines the right principal

eigenvector as the weight vector.

Pairwise comparison matrices were �rst introduced in conjunction with

The Analytic Hierarchy Process (AHP), proposed by Saaty [19, 20], and it is

still the most frequent �eld of their application to this day. The popularity

of the AHP is thanks to its simplicity, the method of pairwise comparisons,

and to its structure and the possibility to divide criteria into subcriteria.

Pareto-e�ciency or Pareto-optimality (or simply e�ciency) is a core con-

cept of economics. It means a distribution, activity etc. cannot be trivially

improved, or in other words, there can be no improvement in anyone's or

anything's status without worsening the status of somebody or something

else. It is also possible to de�ne the Pareto-e�ciency of a weight vector cor-

responding to a pairwise comparison matrix. A weight vector corresponding

to a PCM is e�cient, if it is not possible to improve the approximation of a

matrix element by changing the elements of the weight vector without wors-

ening the approximation of an other element of the matrix. Pareto-e�ciency

is a natural requirement. However, Blanquero, Carrizosa and Conde showed,

that the principal right eigenvector, which is the weight vector of the Eigen-

vector Method is not always e�cient [5, Section 3]. Bozóki [6] also showed,

that e�ciency is also not dependent on the extent of inconsistency. It was

also showed by Blanquero, Carrizosa and Conde, that Pareto-e�ciency is

equivalent to the strong connectivity of a directed graph which can be deter-

mined from the matrix and the corresponding weight vector.

Consider a consistent pairwise comparison matrix, which is modi�ed in

one element and its reciprocal. Thus we get a pairwise comparison matrix

which di�ers from a consistent one in only one element (and its reciprocal),

which is called a simple perturbed PCM. Farkas [12] investigated simple

perturbed PCMs, but not from an e�ciency point of view.
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There are instances when not all pairwise comparisons are available, only

a subset of them. In other instances it is not possible or desired to ask all
(
n
2

)
comparisons of the decision maker. In these cases only some of the elemets

of a PCM will be �lled in, the others will be missing. In this case we have an

incomplete pairwise comparison matrix (IPCM) [14]. The extension of the

Eigenvector Method proposed by Shiraishi, Obata and Daigo [21] to incom-

plete pairwise comparison matrices is one of the most important methods to

determine the weight vector, which also gives a completion which is optimal

according to the CR inconsistency index.

Bozóki, Fülöp and Rónyai [7] have proved that the connectedness of a

graph corresponding to the IPCM is a necessary and su�cient condition for

the unique existence of the (optimal) completion according to the Eigenvector

Method mentioned above. It was also them who proposed a method using

the method of cyclic coordinates [17][page 253�254] to determine the optimal

completion.

It is true in the case of complete PCMs that determining the dominant

eigenvalue and eigenvector (in other words the weight vector according to the

Eigenvector Method) is a slow process. Regarding this problem, Fülöp [13]

proposed a fast algorithm. This method has a similar base to the algorithm

introduced in Chapter 5.2. in the dissertation, but it does not use cyclic

coordinates.



Chapter 2

Applied methods

A more detailed introduction of the methodology of pairwise comparison

matrices is found in the 2nd Chapter of the dissertation. Here only the

de�nitions, theorems, notations and methods necessary to the new results

are introduced. The motivation of the introduction of pairwise comparison

matrices and weight vectors is detailed above.

2.1 Pairwise comparison matrices

De�nition 1. The A = [aij]i,j=1,...,n ∈ Rn×n
+ matrix is a pairwise comparison

matrix (PCM) if

1. aij > 0 and

2. aij = 1/aji,

for all i, j = 1, . . . , n pair of indices.

From the second property it follows, that aii = 1. The set of n×n PCMs

is denoted PCMn.

6
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An A ∈ PCMn PCM can thus be written in the following general form:

A =



1 a12 a13 . . . a1n

a21 1 a23 . . . a2n

a31 a32 1 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . 1


. (2.1)

If cardinal transitivity holds for a PCM, it is called consistent.

De�nition 2. The A ∈ PCMn PCM is consistent if

aikakj = aij (2.2)

for all i, j, k = 1, . . . , n indices.

Thus, in the case of a consistent PCM, if for example criterion A is twice

more important than criterion B, and B is 3 times more important than C,

then A is 6 times more important than C. The set of consistent n×n PCMs

will be denoted PCM∗
n. A PCM is called inconsistent if it is not consistent.

Like mentioned before, there are instances when not all pairwise compar-

isons are available, only a subset of them. In other instances it is not possible

or desired to ask all
(
n
2

)
comparisons of the decision maker. In these cases

only some of the elemets of a PCM will be �lled in, the others will be missing.

In this case we have an incomplete pairwise comparison matrix (IPCM) [14]:

De�nition 3. A is an incomplete pairwise comparison matrix, if it has the

following form:

A =



1 a12 − . . . a1n

1/a12 1 a23 . . . −
− 1/a23 1 . . . a3n
...

...
...

. . .
...

1/a1n − 1/a3n . . . 1


,

where in the positions with dashes are the missing elements, and aij > 0.
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The object in De�nition 3 is not a matrix, thus it cannot be formally

handled that way either. This can be circumvented by writing variables in

place of the missing elements, while taking reciprocal symmetry into account.

This way, the number of variables will be equal to the number o� missing

elements in the upper triangle.

There is a simple graph representation of IPCMs that will be important

in calculating weight vectors. The nodes of the graph correspond to the

criteria, and the edges correspond to the non-missing elements of the matrix,

which are the pairs of criteria which have been compared. Formally:

De�nition 4. The GA(V,E) undirected graph corresponding to the n × n
IPCM A is de�ned as follows:

V = {1, . . . , n},

E = {e(i, j)|aij (and aji) are known, i 6= j}.

As a special case, the graph corresponding to a complete PCM is the

complete graph Kn. For an example of the graph representation see the full

length thesis.

Two of the new results is about simple and double perturbed pairwise

comparison matrices, thus being familiar with the following de�nitions is

necessary.

De�nition 5. A PCMAδ ∈ PCMn is simple perturbed if it can be rearraged

by row and column swaps to the following form:

Aδ =



1 x1δ x2 . . . xn−1
1
x1δ

1 x2
x1

. . . xn−1

x1

1
x2

x1
x2

1 . . . xn−1

x2
...

...
...

. . .
...

1
xn−1

x1
xn−1

x2
xn−1

. . . 1


, (2.3)

where 0 < δ 6= 1 and x1, x2, . . . , xn−1 > 0.
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De�nition 6. A PCMAδ ∈ PCMn is double perturbed if it can be rearraged

by row and column swaps to one of the following forms:

Case 1 (n ≥ 4):

Pγ,δ =



1 δx1 γx2 x3 . . . xn−1

1/(δx1) 1 x2/x1 x3/x1 . . . xn−1/x1

1/(γx2) x1/x2 1 x3/x2 . . . xn−1/x2

1/x3 x1/x3 x2/x3 1 . . . xn−1/x3
...

...
...

...
. . .

...

1/xn−1 x1/xn−1 x2/xn−1 x3/xn−1 . . . 1


, (2.4)

Case 2 (n ≥ 4):

Rγ,δ =



1 δx1 x2 x3 x4 . . . xn−1

1/(δx1) 1 x2/x1 x3/x1 x4/x1 . . . xn−1/x1

1/x2 x1/x2 1 γx3/x2 x4/x2 . . . xn−1/x2

1/x3 x1/x3 x2/(γx3) 1 x4/x3 . . . xn−1/x3

1/x4 x1/x4 x2/x4 x3/x4 1 . . . xn−1/x4
...

...
...

...
...

. . .
...

1/xn−1 x1/xn−1 x2/xn−1 x3/xn−1 x4/xn−1 . . . 1


,

(2.5)

Here x1, . . . , xn−1 > 0 and 0 < δ, γ 6= 1.

Case 2 had to be separated into two separate subcases 2.A (n = 4) and

2.B (n ≥ 5) due to algebraic issues.

2.2 Methods for determining the weight vector

The weight vector can be determined from a pairwise comparison matrix by

several methods, of which the dissertation details several. Understanding

the new results requires familiarity with two of them. The �rst one is the

Eigenvector Method [19], which is the oldest, and one of the most popular
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methods to determine the weight vector. The second one is the Logarithmic

Least Squares Method [9, 10, 11, 18], which is also popular and has many

useful properties.

2.2.1 Eigenvector Method

Because a PCM is positive, following from the Perron�Frobenius theorem it

has a unique largest real eigenvalue (called the principal eigenvalue), and the

elements of the corresponding eigenvector can be chosen as positive values.

From now on, the principal eigenvalue will be denoted λmax. The Eigenvector

Method determines the right principal eigenvector (corresponding to λmax) as

the weight vector, which will be denoted wEM . Thus, for wEM , the following

holds:

AwEM = λmaxw
EM . (2.6)

The degree of inconsistency of a PCM can be measured by inconsistency

indices. Many such indices can be found in the literature. However, the

oldest one, and at the same time one of the most popular ones is the CR

(Consistency Ratio) inconsistency index, which is also introduced by Saaty

[19], and is as old as the AHP, and it is also closely connected to the Eigen-

vector Method.

Because for the principal eigenvalue of a PCM λmax ≥ n holds, and this

relation is true with equality if and only if the PCM is consistent, the value

of λmax can be used to de�ne an inconsistency index. However, the value

of λmax is dependent on the dimension of the PCM (which is the number of

criteria), namely n. Because of this, some kind of normalization is needed.

This is the reason for the form of the �rst value to be calculated, the CI

(Consistency Index):

CI =
λmax − n
n− 1

.

However, CI is still not adequate to compare PCMs of di�erent size,

because the average CI value for larger (randomly generated) matrices is
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larger. Therefore, even this value has to be further normalized to get the

CR index. For this, CR is calculated for a multitude of n × n PCMs. The

average of these is called RI-nek (Random Index), which is dependent on n.

Thus, RI will be a real number for each n, which can be recorded in a table

(see for example [22, Table 1]).

To extend the Eigenvector Method to incomplete pairwise comparison

matrices, based on the idea of Shiraishi, Obata and Daigo [21], the comple-

tion which gives the lowest CR inconsistency is used to calculate the weight

vector by the eigenvector method. Because we consider the weight vector

corresponding to an exact completion, this method has the good property of

not only providing a weight vector, but a completion as well.

Because the CR index is a linear transformation of the principal eigen-

value, their minimization is equivalent. Formally, in case of the IPCM A(x)

the following problem is to be solved:

min
x>0

λmax(A(x)). (2.7)

The eigenvector corresponding to the minimal λmax in (2.7) will be the weight

vector provided by the eigenvector method for the incomplete case. Vector

x, where the minimum is attained, will provide the optimal completion.

However, problem (2.7) does not always have a unique solution, as the

connectedness of the graph is a necessary condition. Bozóki, Fülöp and

Rónyai [7] have proved, that it is also a su�cient condition.

2.2.2 Logarithmic Least Squares Method

The so called Least Squares Method (LSM) [8] minimizes the distance of

the ratios of the weight vector from the matrix elements in quadratic norm,

which is intuitive, but su�ers from several problems. The modi�cation of

the LSM is the ogarithmic Least Squares Method (LLSM), which compares

the logarithms of the ratios of the matrix elements with the logarithms of

the ratios of the weight vector [9, 10, 11, 18]. Formally the LLSM gives that
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w = (w1, w2, . . . , wn)
> vector as weight vector which is the solution to the

following optimization problem:

min
n∑
i=1

n∑
j=1

(
log aij − log

wi
wj

)2

(2.8)

n∑
i=1

wi = 1

wi > 0, i = 1, . . . , n.

Unlike the LSM, in the LLSM there is always a unique solution: the

solution of problem (2.8) is the vector consisting of the geometric mean of

the rows of the matrix [9]:

wi = n

√√√√ n∏
j=1

aij, i = 1, . . . , n,

with an appropriate normalization.

The LLSM is extended, as expected, by considering the (2.8) objective

function only for those elements which are not missing. This way we arrive

at the Incomplete Logarithmic Least Squares Method (ILLSM). Thus,

min
n∑

i,j=1
aij is given

(
log aij − log

wi
wj

)2

(2.9)

n∑
i=1

wi = 1

wi > 0, i = 1, . . . , n.

The condition aij being given is equivalent to that in the corresponding graph

GA(V,E), (i, j) ∈ E.
Bozóki, Fülöp and Rónyai have also proved for the ILLSM that the prob-

lem (2.9) has a unique solution if and only if the corresponding graph is

connected [7]. It was also shown by Bozóki, Fülöp and Rónyai [7], that the

ILLSM can be solved by solving a linear equation system.
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2.3 Pareto-e�ciency

Pareto-e�ciency or Pareto-optimality (or simply e�ciency) is a core con-

cept of economics. It means a distribution, activity etc. cannot be trivially

improved, or in other words, there can be no improvement in anyone's or

anything's status without worsening the status of somebody or something

else. In the context of PCMs and weight vectors, we can also introduce the

de�nition of e�ciency.

Let A = [aij]i,j=1,...,n ∈ PCMn and w = (w1, w2, . . . , wn)
> be a positive

weight vector (thus S = Rn
++, which is the positive orthant), and n be the

number of criteria. Let the objective functions be fij(w) :=
∣∣∣aij − wi

wj

∣∣∣ for all
i 6= j, thus there are M = n2 − n objective functions. Hence the following

de�nition:

De�nition 7. A positive w weight vector is e�cient (or Pareto-e�cient),

if there exists no other positive w′ = (w′1, w
′
2, . . . , w

′
n)
> weight vector, such

that ∣∣∣∣aij − w′i
w′j

∣∣∣∣ ≤ ∣∣∣∣aij − wi
wj

∣∣∣∣ for all 1 ≤ i, j ≤ n, and (2.10)∣∣∣∣ak` − w′k
w′`

∣∣∣∣ < ∣∣∣∣ak` − wk
w`

∣∣∣∣ for some 1 ≤ k, ` ≤ n. (2.11)

The above de�nition states that a weight vector corresponding to a PCM

is e�cient, if it is not possible to improve the approximation of a matrix

element by changing the elements of the weight vector without worsening

the approximation of an other element of the matrix.

E�ciency is a naturally required property of a weight vector. However,

Blanquero, Carrizosa and Conde showed, that the principal right eigenvector,

which is the weight vector of the Eigenvector Method is not always e�cient

[5, Section 3]. Bozóki [6] also showed, that e�ciency is also not dependent

on the extent of inconsistency.

Several necessary and su�cient conditions were examined by Blanquero,
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Carrizosa and Conde [5], one of which is of crucial importance here. It uses

a directed graph representation as follows:

De�nition 8. Let A = [aij]i,j=1,...,n ∈ PCMn and w = (w1, w2, . . . , wn)
T

be a positive weight vector. A directed graph G = (V,
−→
E )A,w is defined as

follows: V = {1, 2, . . . , n} and
−→
E =

{
arc(i→ j)

∣∣∣∣wiwj ≥ aij, i 6= j

}
.

It follows from De�nition 8 that if wi/wj = aij, then there is a bidirected

arc between nodes i, j. The result of Blanquero, Carrizosa and Conde using

this representation is as follows:

Theorem 1 ([5, Corollary 10]). Let A ∈ PCMn. A weight vector w is

efficient if and only if G = (V,
−→
E )A,w is a strongly connected digraph, that

is, there exist directed paths from i to j and from j to i for all pairs of nodes

i, j.

2.4 The method of cyclic coordinates

The method of cyclic coordinates [17][pages 253�254.] is used in the two algo-

rithms presented in the 5th Chapter of the dissertation, which is a numerical

optimization method. The essence of the method of cyclic coordinates is

that in a multivariate optimization problem only one variable is considered

changing at a time, while all other variables are �xed on their previously

calculated value. The new value of the actually changing variable will be the

number where its optimum value is (with �xed values of all other variables),

according to the optimization problem. Which variable is considered actu-

ally changing is cyclically changed, thus at �rst it is the �rst variable, then

the second, etc., then after the last variable is reached we jump back and

the next one will be the �rst again, continuing like this until the stopping

condition is reached. The nature of the stopping condition depends on the

problem.
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2.5 Newton's method

Newton's method is a well known extreme value searching algorithm for uni-

and multivariate cases. In the univariate case in the rth iteration, the form

of the algorithm for a general function f(x) is as follows:

x(r+1) = x(r) − f ′(x(r))

f ′′(x(r))
,

where x(r) is the vale of x computed in iteration r.

In the multivariate case, let L(t) be the function which is to be minimized.

The multivariate Newton's method in this case is

t(r+1) = t(r) − γ[HL(t(r))]−1∇L(t(r)),

where HL(t) is the Hessian matrix of L(t), ∇L(t) is its gradient vector and γ
is a step size parameter usual in Newton's method. This step size parameter

can be used in the univariate case as well.

2.6 The Collatz�Wielandt formula

The original theorem is about irreducible matrices (it is stated like that in

the dissertation as well), but in the case of the new results we assume having

a positive matrix, which is a special case of irreducible. Because a PCM is

always positive, the theorem can be applied to it.

Theorem 2 (Collatz�Wielandt). Let A ≥ 0 be a positive (or more generally

an irreducible) n× n matrix.

λmax = max
w>0

min
i=1,...,n

(Aw)i
wi

= (2.12)

= min
w>0

max
i=1,...,n

(Aw)i
wi

. (2.13)



Chapter 3

New results of the dissertation

3.1 The logarithmic least squares method and

the optimal completion

This Proposition can be found in subsection 2.5.2, in the introduction part

of the dissertation.

In case of IPCMs, an optimal completion may be required. The EM

directly provides a completion which is optimal (minimal) for the CR index.

The LLSM however calculates a weight vector without completing the matrix

�rst. It is possible to complete the matrix by writing the appropriate ratios

of the weight vector into the missing positions, but it is not apparent if this

will be optimal.

In case of the EM, if we recalculate a weight vector from the completed

matrix, it will naturally be the same as before. This is the condition the

completion with the LLSM ratios has to satisfy, in order to the resulting

completion to be optimal with regard to the objective function. The following

Proposition is a new result, the statement is from the author, while the proof

is from Sándor Bozóki.

Proposition 1. The Incomplete Logarithmic Least Squares Method (ILLSM)

16
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provides an optimal completion by substituting aij =
wILLSM

i

wILLSM
j

in the missing

positions.

The proof is not presented here due to space limitations, but it can be

found right after the Proposition in the dissertation.

3.2 The Eigenvector Method and Pareto-e�ciency

As mentioned earlier, in the case of the Eigenvector Method, the Pareto-

e�ciency of the weight vector cannot be guaranteed. However, in the case of

the two special cases introduced earlier, which are also important in practical

applications, the e�ciency of the weight vector has been proven.

Theorem 3 ([2, Theorem 3.4]). The principal right eigenvector of a simple

perturbed pairwise comparison matrix is efficient.

A proof using elementary calculations, and a second proof using Theorem

1 can be found in section 4.1 in the dissertation as well as in the [2] article.

Theorem 4 ([3, Theorem 3]). The principal right eigenvector of a double

perturbed pairwise comparison matrix is e�cient.

The quite lengthy proof can be found in its entirety in article [3], as well

as a summary in section 4.2 of the dissertation.

3.3 Computing the eigenvector by cyclic coor-

dinates

In this topic two new algorithms are presented. The �rst one provides an

optimal completion, according to the Eigenvector Method, of incomplete

pairwise comparison matrices, by Newton's method [1]. The second one is

a general method to compute the principal eigenvector and eigenvalue for
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positive matrices [4]. The method of cyclic coordinates [17][pages 253�254.]

is utilized in both cases.

3.3.1 Optimal completion with Newton's method

The details of the new algorithm presented here can be found in section 5.1. of

the dissertation, as well as in article [1]. The goal is to �nd the completion

which corresponds to the minimal eigenvalue, thus our objective function is

the principal eigenvalue which has the missing elements as variables. Utilizing

Newton's method for the cyclic coordinates starts with setting all the missing

elements in the upper triangle of the IPCM to a starting value. Then, by

the method of cyclic coordinates, the missing elements are taken one by one

and treating only the currently chosen missing element as an actual variable,

while �xing all others on their value calculated in the previous step, �nding

the minimum is done with Newton's method.

Unfortunately optimizing λmax directly in the missing elements is a non-

convex problem [7]. In order to guarantee the convergence to a unique global

minimum, the problem has to be rescaled to a convex optimization problem.

As per the idea of Bozóki, Fülöp and Rónyai [7], let xi = eti , i = 1, . . . , d.

Thus for the matrix A(x) = A(x1, . . . , xd), B(t) = A(x). The principal

eigenvalue, λmax(B(t)) is a convex function of t [7]. Harker [15] determined

the �rst and second derivatives of the principal eigenvalue by the matrix el-

ements, and they are only dependent on the position (i, j) of the element.

These derivatives though are given for the original xi, i = 1, . . . , d elements

of the matrix, and not ti. Hence, the derivatives have to be re-scaled as well.

The rescaling can found in the dissertation as well as in article [2]. With

knowledge of these rescaled derivatives, the univariate Newton's method can

be applied with cyclic coordinates (see subsection 5.1.1 of the dissertation),

and also a multivariate Newton's method can be applied instead (see subsec-

tion 5.1.2 of the dissertation).
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3.3.2 Principal eigenvector of positive matrices by cyclic

coordinates

The details of this algorithm can be found in section 5.2 in the dissertation,

as well as in manuscript [4]. An iterative algorithm is given for computing

the principal eigenvector and eigenvalue of positive matrices. This method

works in very general cases, but one application is the calculation of the

Eigenvector Method for pairwise comparison matrices.

The algorithm uses form (2.13) to approxiamte λmax, but this is an arbi-

trary choice: the algorithm can be easily adapted to use form (2.12). Later

however, both forms will be used to give the stopping condition.

The method of cyclic coordinates will be used in this case as well. The

variables are the elements of the right principal eigenvector, w: w1, . . . , wn.

As discussed earlier, cyclic coordinates considers only one variable as a proper

variable in each step. Let the index of this variable be denoted by k, thus

in every step wk will be the actual variable, while the values of all other

variables are �xed at their values calculated in the previous step.

Thus, as described earlier, in each step we are looking for the value of wk
for which the following is true:

wk = argmin
wk

max
i=1,...,n

(Aw)i
wi

. (3.1)

Because all other wj, j 6= k values are �xed, for all i (3.1) is only dependent

on wk. Thus the following notation can be introduced:

fi(wk) =
(Aw)i
wi

, i = 1, . . . , n. (3.2)

Therefore, what we are searching for is the wk > 0 value, for which wk =

argminwk
maxi=1,...,n fi(wk), or in other words where the maximum function

of fi has the minimum point. The fi(wk) value will be the approximation

(upper bound) of λmax. It can be shown, that the fi functions for i 6= k are

linear, while for i = k, fk(wk) is a hyperbolic function. It can also be shown,
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that it is su�cient to calculate only the intersection points of fk with each

fi, i 6= k. Because of the strict monotonic descent of fk, the value of wk > 0

which satis�es (3.1), will be the smallest wk, which is in the intersection of

the hyperbolic and a linear function. The intersection point itself can be

calculated by the quadratic formula.

An opportunity for faster running arises if we consider that the calculation

of all intersection points is unnecessary. Those linear functions that have no

common points with the maximum of the linear functions can be ignored.

The stopping condition is when the estimation of the expression

minw>0maxi=1,...,n
(Aw)i
wi

in the Collatz�Wielandt formula (the minimum point

of the maximum function), and the estimation of the expression

maxw>0mini=1,...,n
(Aw)i
wi

(the maximum point of the minimum function) are

closer to each other than a prede�ned threshold, the algorithm stops.

For starting values, any positive vector is acceptable. A possible sim-

ple starting value is 1 for all variables, w(0)
i = 1, i = 1, . . . , n. In case of

PCMs though, the principal eigenvector (the weight vector of the eigenvec-

tor method) is close to the row-wise geometric mean (the weight vector for

the logarithmic least squares method) [16]. Therefore, the starting values in

this case should be

w
(0)
i =

n∏
j=1

n
√
aij. (3.3)

This starting value set can also be used in case of general positive matrices.

The algorithm presented above is a new method for calculating the princi-

pal eigenvector and eigenvalue, which is tailored for speed on large matrices,

and its simplicity comes from the method of cyclic coordinates and the arith-

metically simple calculations.
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