DOI: 10.14267/phd.2015051

DOKTORI (PhD) ÉRTEKEZÉS

A BURGONYA S VÍRUS (*POTATO VIRUS S*, PVS) MOLEKULÁRIS JELLEMZÉSE

PÁJTLI ÉVA

Témavezető:

DR. PALKOVICS LÁSZLÓ

Budapest 2015

A doktori iskola

megnevezése:	Kertészettudományi Doktori Iskola			
tudományága:	Növénytermesztési és kertészeti tudományok			
vezetője:	Dr. Tóth Magdolna			
	egyetemi tanár, D.Sc.			
	BUDAPESTI CORVINUS EGYETEM, Kertészettudományi			
	Kar, Gyümölcstermő Növények Tanszék			
Témavezető:	Dr. Pakovics László			
	egyetemi tanár, D.Sc.			
	BUDAPESTI CORVINUS EGYETEM, Kertészettudományi			
	Kar, Növénykórtani Tanszék			

A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, az értekezés nyilvános vitára bocsátható.

.....

.....

Az iskolavezető jóváhagyása

A témavezető jóváhagyása

A Budapesti Corvinus Egyetem Elettudományi Területi Doktori Tanácsának 2015. október 13-ki határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki:

<u>BÍRÁLÓ BIZOTTSÁG</u>:

Elnöke

Horváth József, MHAS

Tagjai

Gáborjányi Richard, DSc Almási Asztéria, PhD Gergely László, PhD Kruppa József, PhD

Opponensek

Takács András Péter, PhD Deák Tamás, PhD

Titkár

Radácsi Péter, PhD

Tartalomjegyzék

Á	brák jeg	yzéke	. 6
Ta	áblázato	ok jegyzéke	.7
M	lelléklet	ek jegyzéke	. 8
Je	elölések	és rövidítések jegyzéke	.9
1.	Beve	ezetés	11
2.	Célk	itűzés	12
3.	Irod	almi áttekintés	13
	3.1	A PVS rendszertani besorolása	13
	3.2	A PVS jelentősége és elterjedése a világon	13
	3.3	Tünetek a természetes gazdanövényeken	14
	3.4	A PVS tesztnövényei	15
	3.5	A PVS természetes terjedési módjai	17
	3.6	A Betaflexiviridae család és a Carlavirus nemzetség általános jellemzése	18
	3.7	A PVS általános jellemzése	19
	3.8	Az andesi és közönséges törzs jellemzése	23
	3.9	PVS izolátumok változékonysága, jellemzése	24
	3.10	Rekombináció	26
	3.11	Vírusevolúció	27
	3.12	Konzervált domén adatbázis (CDD)	28
4.	Anyo	ag és módszer	30
	4.1	Vizsgálatok helye és ideje	30
	4.2	Vizsgálatok anyaga	30
	4.2.1	Begyűjtött vírusizolátumok	30
	4.2.2	Baktérium törzsek	30
	4.2.3	Plazmidok	31
	4.2.4	Oligonukleotid indítószekvenciák (primerek)	31
	4.2.5	Vegyszerek, enzimek, kitek	31
	4.3	Vizsgálatok módszere	34
			4

	4.3.1	Mechanikai átvitel	
	4.3.2	Össznukleinsav-kivonás levélszövetből	
	4.3.3	RT-PCR	
	4.3.4	Gélelektroforézis	35
	4.3.5	Gélből izolálás és PCR-termék tisztítás	35
	4.3.6	A PCR-termékek klónozása	35
	4.3.7	A plazmid tisztítása és az inzert ellenőrzése	
	4.3.8	Klónok tisztítása szekvenálásra	
	4.3.9	Bioinformatikai vizsgálatokhoz felhasznált programok	39
5.	Ere	dmények	40
	5.1	A begyűjtött PVS izolátumok molekuláris jellemzése	40
	5.1.1	A CP régió molekuláris jellemzése	40
	5.1.2	A teljes genomok molekuláris jellemzése	
	5.1.3	Az ORF1 régió jellemzése	49
	5.1.4	ORF2 régió jellemzése	51
	5.1.5	ORF3 régió jellemzése	52
	5.1.6	ORF4 régió jellemzése	53
	5.1.7	ORF5 régió jellemzése	54
	5.1.8	ORF6 régió jellemzése	55
	5.2	Rekombinációs vizsgálatok	57
	5.3	A PVS összehasonlítása a Carlavirus nemzetség tagjaival	63
	5.4	A begyűjtött PVS izolátumok NCBI azonosítói	65
6.	Ere	dmények megvitatása és következtetések	66
	6.1	A begyűjtött PVS izolátumok molekuláris jellemzése	66
	6.1.1	A CP régió alapján végzett molekuláris jellemzés	66
	6.1.2	A teljes genom vizsgálat alapján végzett molekuláris jellemzés	67
	6.2	Rekombinációs vizsgálatok	74
	6.3	Új tudományos eredmények	75
7.	Össz	zefoglalás	76
8.	Sun	ımary	77
<i>9</i> .	Iroa	lalomjegyzék	
10		Г-11 {L1-4-L	01
). <i>N</i>	Тепектетек	

Abrák jegyzéke

1. ábra Potato virus S okozta tünetek LBR4106 burgonyán	15
2. ábra Potato virus S által indukált (A) klorotikus lokális léziók Chenopodium quinoa levélen és (B) C.	
amaranticolor levélen	16
3. ábra A Potato virus S elektronmikroszkópos képe	19
4. ábra A burgonya S vírus genomtérképe, a kódolt fehérjék elhelyezkedése a genomon és transzlációjul	k 22
5. ábra A Nested PCR sematikus ábrája	40
6. ábra Saját PVS izolátumok köpenyfehérje génjének nukleinsav szintű páronkénti összehasonlítása	43
7. ábra Saját PVS izolátumok köpenyfehérjének aminosav szintű páronkénti összehasonlítása	44
8. ábra Saját PVS izolátumok köpenyfehérje génjének nukleinsav szintű filogenetikai törzsfája	45
9. ábra PVS izolátumok köpenyfehérje génjének filogenetikai törzsfája	46
10. ábra A teljes Potato virus S (PVS) genomot lefedő szakaszok	47
11. ábra PVS teljes genomok filogenetikai törzsfája (UPGMA)	49
12. ábra A 223K fehérje aminosav összetétele a 89.249 izolátumon bemutatva	50
13. ábra CDD találatok a 223K fehérjén 09.369 izolátumon bemutatva	51
14. ábra CDD találatok a 25K fehérjén a Bonita izolátumon bemutatva	52
15. ábra CDD találatok a 12K fehérjén az Ewa izolátumon bemutatva	53
16. ábra Detektált konzervált domén elhelyezkedése a 7K fehérjén a Valery izolátumon bemutatva	54
17. ábra Detektált konzervált domének elhelyezkedése a CP fehérjén a Valery izolátumon bemutatva	55
18. ábra A 11K fehérje aminosav összetétele a 89.249 izolátumon bemutatva	56
19. ábra Detektált konzervált domén elhelyezkedése a 11K fehérjén a Valery izolátumon bemutatva	56
20. ábra Rekombinációs események a PVS izolátumokban	57
21. ábra Rekombinációs esemény 1 törzsfái	60
22. ábra Rekombinációs esemény 2 törzsfái	60
23. ábra Rekombinációs esemény 3 törzsfái	61
24. ábra Rekombinációs esemény 4 törzsfái	61
25. ábra Rekombinációs esemény 5 törzsfái	62
26. ábra Rekombinációs esemény 6 törzsfái	62
27. ábra A Carlavirus nemzetség tagjainak, teljes genomra vonatkozó rokonsági viszonyait tükröző törz	sfa 64
28. ábra A TFGESTG motívumot kódoló carlavírus szekvenciák	70
29. ábra A PVS cink-ujj motívuma és a mag lokalizációs szignál	73

Táblázatok jegyzéke

1. táblázat A begyűjtött PVS izolátumok jellemzői	. 30
2. táblázat A teljes genom vizsgálatokhoz tervezett primerek	. 32
3. táblázat A teljes genom vizsgálatokhoz tervezett szekvenáló primerek	. 33
4. táblázat A köpenyfehérje vizsgálatokhoz tervezett primerek	. 33
5. táblázat A teljes genom vizsgálatokhoz használt PCR-ek paraméterei	. 37
6. táblázat A köpenyfehérje vizsgálatához használt PCR-ek paraméterei	. 37
7. táblázat A teljes genomelemzéshez használt PVS izolátumok jellemzői	. 48
8. táblázat Rekombinációs események szórás értékei módszerenként	. 58
9. táblázat A begyűjtött PVS izolátumok köpenyfehérje szekvenciáinak NCBI azonosítói	. 65
10. táblázat A begyűjtött PVS izolátumok teljes genom szekvenciáinak NCBI azonosítói	. 65
11. táblázat A PVS izolátumok fajbesorolásához szükséges régiók legalacsonyabb azonosság értékei	. 67
12. táblázat A PVS 89.249 izolátum és a carlavírusok között vizsgált régiók legmagasabb azonossági érték	tei
	. 68

Mellékletek jegyzéke

1. melléklet A köpenyfehérje elemzéshez felhasznált PVS izolátumok adatai az NCBI adatbázisból	91
2. melléklet A Carlavirus nemzetség jellemzéséhez felhasznál izolátumok adatai az NCBI adatbázisból	94
3. melléklet A teljes PVS genomok páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	95
4. melléklet PVS ORF 1 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	96
5. melléklet PVS ORF1 régió filogenetikai törzsfája (UPGMA)	96
6. melléklet PVS 223K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	97
7. melléklet PVS 223K fehérje filogenetikai törzsfája (UPGMA)	97
8. melléklet PVS ORF2 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	98
9. melléklet PVS ORF2 régió filogenetikai törzsfája (UPGMA)	98
10. melléklet PVS 25K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	99
11. melléklet PVS 25K fehérje filogenetikai törzsfája (UPGMA)	99
12. melléklet PVS ORF3 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	100
13. melléklet PVS ORF3 régió filogenetikai törzsfája (UPGMA)	100
14. melléklet PVS 12K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	101
15. melléklet PVS 12K fehérje filogenetikai törzsfája (UPGMA)	101
16. melléklet PVS ORF4 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	102
17. melléklet PVS ORF4 régió filogenetikai törzsfája (UPGMA)	102
18. melléklet PVS 7K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	103
19. melléklet PVS 7K fehérje filogenetikai törzsfája (UPGMA)	103
20. melléklet PVS ORF5 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	104
21. melléklet PVS ORF5 régió filogenetikai törzsfája (UPGMA)	104
22. melléklet PVS CP fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	105
23. melléklet PVS CP fehérje filogenetikai törzsfája (UPGMA)	105
24. melléklet PVS ORF6 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)	106
25. melléklet PVS ORF6 régió filogenetikai törzsfája (UPGMA)	106
26. melléklet PVS 11K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)	107
27. melléklet PVS 11K fehérje filogenetikai törzsfája (UPGMA)	107
28. melléklet A 223K fehérje konzervált domén analízisének összefoglaló táblázata	108
29. melléklet A 25K fehérje konzervált domén analízisének összefoglaló táblázata	112
30. melléklet A 12K fehérje konzervált domén analízisének összefoglaló táblázata	113
31. melléklet A 7K fehérje konzervált domén analízisének összefoglaló táblázata	114
32. melléklet A CP fehérje konzervált domén analízisének összefoglaló táblázata	115
33. melléklet A 11K fehérje konzervált domén analízisének összefoglaló táblázata	116

Jelölések és rövidítések jegyzéke

aa	aminosav (amino acid)
AAA	ATP-ázok különböző sejtszintű aktivitással (ATPases associated with
	various cellular activities)
BBScV	feketeáfonya perzselés vírus (Blueberry scorch virus)
bp	bázispár
CAD	kaszpáz-aktivált DN-áz (caspase-activated DNase)
CVB	krizantém B vírus (Chrysanthemum virus B)
CDD	konzervált domén adatbázis (Conserved Domain Database)
cDNS	komplementer DNS, RNS-ről másolt DNS
CIDE_N	sejt halál-indukáló effektor, N-terminális (cell death-inducing effector,
	N-terminal)
СР	köpenyfehérje (coat protein)
DAS-ELISA	kettősellenanyag-szendvics-ELISA (double antibody sandwich ELISA)
DFF	DNS fragmentációs faktor (DNA fragmentation factor)
DNS	dezoxiribonukleinsav
dNTP	dezoxiribonukleotid
ELISA	enzimhez kötött ellenanyag vizsgálat (enzyme-linked immunosorbent
	assay)
for	forward
ICAD	kaszpáz-aktivált DN-áz inhibitora (inhibitor of caspase-activated DNase)
kb	kilobázis
kDa	kilodalton
NABP	nukleinsav-kötő fehérje (nucleic acid binding protein)
NCBI	National Center for Biotechnology Information
NLS	mag lokalizációs szignál (nuclear localization signal)
nt	nukleotid
ORF	nyílt leolvasási keret (Open Reading Frame)
OTU	petefészekrák (Ovarian tumor)
PCR	polimeráz láncreakció (Polymerase Chain Reaction)
PVP	burgonya P vírus (<i>Potato vírus P</i>)
PVS	burgonya S virus (<i>Potato virus S</i>)
PVSA	burgonya S virus andesi törzs (Andean strain)
PVS ^{-CS}	burgonya S vírus Chenopodium quinoa-n szisztemizálódó törzs
PVS ⁰	burgonya S vírus közönséges törzs (Ordinary strain)
RdRp	RNS-függő RNS-polimeráz (RNA-dependent RNA polymerase)
rev	reverz
RNS	ribonukleinsav
RT	reverz transzkripció
RT-PCR	reverz transzkripciós-polimeráz láncreakció

édesburgonya klorotikus foltosság vírus (Sweet potato chlorotic fleck
virus)
hajtűhurok szupresszor (Suppressor of Stem-Loop)
egyszálú RNS (single-stranded RNA)
transzkripciós faktor
hármas gén blokk (triple gene block)
unit
Unweighted Pair Group Method with Arithmetic mean - csoportátlag
nem-transzlálódó régió (untranslated region)

Nukleotidok rövidítései:

A	adenin
С	citozin
G	guanin
Т	timin

Aminosavak rövidítései:

ein
,

1. Bevezetés

A burgonya (*Solanum tuberosum* L.) az egyik legnagyobb területen termesztett élelmiszernövény a világon, számos országban az alapvető élelmezési cikkek közé tartozik. A betakarított termésmennyiséget figyelembe véve a 4. helyet foglalja el a búza, a rizs és a kukorica után az élelmiszernövények között (Ábrahám, 2009). Magyarországon a burgonya termesztése nagy hagyományokkal rendelkezik, a hazai burgonya fajtanemesítés központja Keszthely, ahol kiváló magyar fajtákat állítanak elő.

A burgonyát számos fitopatogén vírus fertőzheti. Az 1950-es években hazánk területére külföldi fajtákkal érkezett burgonya Y vírus dohány érnekrózis törzs az akkoriban használatos burgonya fajtáink gazdaságos termesztését lehetetlenné tette (Horváth, 2009). Wolf és Horváth szerint Magyarországon a burgonya levélsodródás vírus (*Potato leafroll virus*) és a burgonya Y vírus (*Potato virus Y*) okoz leggyakrabban járványt. A két vírus gazdasági jelentősége a termésmennyiség csökkenésének előidézésében, illetve a szaporítóanyag előállítás során a vetőgumó minőségleromlásában nyilvánul meg (Wolf és Horváth, 2002). A vírusok elleni védekezés lehetséges módjai közé tartozik a rezisztens fajták használata. Magyarországon a kereskedelmi forgalomban kapható burgonyafajták vírusfertőzéssel szembeni rezisztenciája, illetve toleranciája -a legtöbb fajta esetében- a következő vírusokra terjed ki: burgonya Y vírus, burgonya levélsodródás vírus, burgonya X vírus (*Potato virus X*), burgonya A vírus (*Potato virus A*) (Ábrahám, 2009).

A burgonya S vírus (*Potato virus S*, PVS) a *Carlavirus* nemzetség tagja (Matthews, 1979), mely az egyik legkevésbé vizsgált növényi víruscsoportok közé tartozik. Wetter szerint a PVS az egész világon az egyik legelterjedtebb a burgonyát fertőző vírusok közül (Wetter, 1971). A vírus fő gazdanövénye a burgonya, napjainkban már az összes burgonyatermesztő országban elterjedt (de Bruyn Ouboter, 1952; de Bokx, 1970). A PVS közönséges törzse nagyon sok burgonyafajtán nem okoz látható tüneteket, illetve egyes fajtákon csak nagyon enyhe tünetek jelennek meg (Vaughan és van Slogteren, 1956). A vírus jelenlétének gazdasági jelentőségét az adja, hogy 10-20%-kal csökkenti a termésmennyiséget (Wetter, 1971). Emiatt a vírus terjedésének megállítása, illetve a vírusmentes szaporítóanyag előállítása kardinális kutatási téma lehet a jövő burgonyatermesztésében.

2. Célkitűzés

Kutatócsoportunk 2009-2013-ban lehetőséget kapott, hogy konzorciumi tagként részt vegyen a "Burgonya termesztéstechnológiák és márkavédjegyek kifejlesztése" című (NKTH-TECH-09-A3-2009-0210) pályázatban, mely kapcsán szakmai és anyagi segítséget kaptunk többek között a burgonya S vírus molekuláris vizsgálatához.

A munka során célul tűztük ki egy megbízható PVS diagnosztikai módszer kidolgozását, mellyel még alacsony koncentráció esetén is kimutatható a vírus. A módszer felhasználásával szeretnénk meghatározni a begyűjtött izolátumok köpenyfehérje gén nukleotidsorrendjét. A szekvenciák segítségével a saját izolátumainkat összehasonlítjuk a világ más részéről származó izolátumokkal, hogy rokonsági viszonyaikat feltérképezhessük.

Továbbá célul tűztük ki, hogy kidolgozunk egy olyan eljárást, mellyel meghatározhatjuk a PVS teljes genomjának szekvenciáját. A módszer felhasználásával meghatározzuk néhány saját PVS izolátum teljes örökítőanyagának nukleotidsorrendjét. A szekvenciaadatokat összevetjük a nemzetközi adatbázisban szereplő más PVS izolátumokéval és más rokon fajokéval, hogy származásukról ismereteket gyűjthessünk. Az esetleges intermolekuláris átrendeződések azonosításának céljából rekombinációs vizsgálatokat végzünk. A konzervált domén vizsgálattal szeretnénk új információkat szolgáltatni a PVS gének lehetséges funkcióiról.

3. Irodalmi áttekintés

3.1 A PVS rendszertani besorolása

A PVS a *Tymovirales* rend *Betaflexiviridae* családjának tagja, azon belül pedig a *Carlavirus* nemzetséghez tartozik (Carstens, 2010). A PVS izolátumokat napjainkban két törzsbe sorolják. A közönséges törzs (PVS ordinary strain, PVS^O) világszerte elterjedt és tagjai mechanikailag terjednek, látens tüneteket okoznak, míg az andesi törzs (Andean strain, PVS^A) tagjai súlyosabb tüneteket okoznak és levéltetűvel is átvihetők (Foster, 1991; Foster és Mills, 1992a; Matoušek és mtsai., 2000).

3.2 A PVS jelentősége és elterjedése a világon

A burgonya S vírus jelenlétéről először Hollandiában számoltak be 1951-ben (de Bruyn Ouboter, 1952). A vírus első leírása óta eltelt időben a világ számos pontján születtek publikációk, melyek a PVS jelenlétéről tudósítanak. Rozendaal és Brust (1955) kimutatták, hogy a vírus gyakorlatilag minden európai burgonyatermesztő területen jelen van, valamint az Amerikai Egyesült Államokban, Wisconsinban is megtalálták. Kaliforniában Gold és Oswald (1955), Oregonban pedig Vaughan és van Slogteren (1956) azonosították a vírust.

1959-ben új-zélandi kutatók arról számoltak be, hogy PVS-t izoláltak 'Aucklander Short Top', 'Arran Banner' és 'Dakota' termesztett burgonyafajtákból (Thomson, 1959). Yarwood és Gold (1955) szerint a PVS *Cyamopsis tetragonoloba* növényen lokális léziót okoz. Ennek ellenére az Új-Zélandon végzett kísérletekben a PVS izolátum nem okozott ilyen tüneteket ezen a tesztnövényen. Ez az eredmény már az 1950-es évek végén okot adott arra, hogy a kutatók azt feltételezzék, a vírusnak több törzse is létezhet.

Horváth vizsgálatai során hat, Magyarországon jelentős fajtát tesztelt több éven keresztül, többek között a PVS jelenlétére. A szerológiai vizsgálatok alapján 1961-ben a vizsgált mintákban a 'Somogyi Kifli' 32,5%-os, a 'Gülbaba' 69,5%-os, a 'Kisvárdai Rózsa' 39%-os, a 'Mindenes' 59%-os, a 'Somogyi Korai' 48,5%-os, a 'Somogyi Sárga' 35,5%-os PVS fertőzöttségű volt (Horváth, 1967).

Japánban kiterjedt vizsgálatokat folytattak burgonyanövényekkel, és megállapították, hogy sok más burgonyavírussal együtt a PVS is megtalálható a mintákban. Ezek a vírusok évről évre átkerülnek az újabb szaporítóanyagba, ezáltal folyamatosan csökkentve a termésmennyiséget. A növekvő veszteségek miatt olyan anyanövények előállítását tűzték ki célul, amelyek vírusmentesek. Emiatt 11 burgonyafajtát vizsgáltak meg ELISA, RT-PCR és microarray módszerrel. A vizsgált fajtákból 9 esetében mutatták ki a

PVS-t. A PVS-nél nagyobb mennyiségben csak a *Potato virus M* fordult elő, ezt a vírust az összes vizsgált fajtában megtalálták. A PVS-t tekintve 6 fajta tünetmentes volt, a maradék 5 fajtán pedig levélfoltosságot figyeltek meg (Maoka és mtsai., 2010).

Salari és munkatársai (2011) Iránban 240 burgonyamintát vizsgáltak meg, melyeket 2005 és 2008 között gyűjtöttek különböző iráni tartományokból. A 240 mintából 44-ben fordult elő PVS, ez 18,2%-os előfordulási gyakoriságnak felel meg. A vizsgálatok - melyek során DAS-ELISA tesztet végeztek - kimutatták 12 PVS izolátum előfordulását.

Ezen kívül még számos országban jelentek meg publikációk a PVS jelenlétével kapcsolatban pl.: Szíriában (Chikh Ali és mtsai., 2008), Tasmániában és Ausztráliában (Lambert és mtsai., 2012), Brazíliában (Duarte és mtsai., 2012), Kínában (Song és mtsai., 2013), Kolumbiában (Gil és mtsai., 2013). 2014-ben Irakban is kimutatták a PVS jelenlétét. Az iraki izolátumok mindegyike a kisebb gazdasági jelentőségű közönséges törzshöz tartozik és levéltetűvel nem átvihető (Barbar, 2014).

3.3 Tünetek a természetes gazdanövényeken

A PVS természetes gazdanövényköre a közönséges burgonya (*Solanum tuberosum* L.) (de Bruyn Ouboter, 1952), a vad burgonyafajok, mint *S. brevidens, S. chacoense, S. dulcamara, S. spegazzini, Geranium dissectum* (Valkonen és mtsai., 1992) és a pepino (*Solanum muricatum*) (Dolby és Jones, 1988), ezen kívül a *Lycopersicon* nemzetség egyes fajaiban is megtalálható a kórokozó (Horváth, 1972). A vírus jelenléte a burgonya legtöbb fajtáján tünetmentes, de egyes fajtákon előfordulhatnak szimptómák: klorózis, mozaik, levéldefomáció, érnekrózis és bronzfoltosság (1. ábra) (Macarthur, 1956; Dolby és Jones, 1987; Lin, 2012; Song és mtsai., 2013). A vírus andesi törzse erősebb tüneteket indukál: korai elöregedés, lombhullás, nekrotikus léziók, hajtásgörbülés és torzulás alakul ki a fertőzött növényeken (Slack, 1983). 1973-ban Peruban is izoláltak PVS-t különböző burgonyafajtákból, a fertőzött növények enyhe mozaikos tüneteket, sárgulást és bronzos elszíneződést mutattak az alsóbb leveleken (Hinostroza-Orihuela, 1973). A PVS komplex fertőzés esetén szinergista hatást fejt ki. PVX-szel komplexen erős mozaikfoltokat figyeltek meg (Manzer és mtsai., 1978).

 ábra Potato virus S okozta tünetek LBR4106 burgonyán: (A) nekrotikus léziók, levél deformáció, balra az egészséges levél; (B) egészséges növény balra, fertőzött növény jobbra; (C) egészséges virág balra, fertőzött virág nekrotikus foltokkal jobbra; (D) nekrotikus léziók a levélen (Lin, 2012 nyomán)

3.4 A PVS tesztnövényei

De Bokx (1970) 15 család 98 faját vizsgálta, mint a PVS lehetséges tesztnövénye. A növényeket mechanikai úton fertőzték hat vírusizolátummal. Mindössze három család (*Amaranthaceae, Chenopodiaceae* és *Solanaceae*) fajai bizonyultak fogékonynak. Kísérleteikben a *Chenopodiaceae* fajokon (*Chenopodium ambrosioides, C. hybridum, C. murale, C. opulifolium, C. polyspermum, C. rubrum, C. urbicum*) lokális léziót okozott a vírus. Lengyel kutatók az inokulációt követő 6-8. napon *Solanum demissum* és 5. napon *Phaseolus vulgaris* 'Red Kidney' növényeken lokális léziókat figyeltek meg (Kowalska és Waś, 1976; Kowalska 1977). A PVS tesztnövényeinek nagy része a *Solanaceae* családból kerül ki: *Nicotiana debney, N. tabacum, N. clevelandii, N. glutinosa, Datura metel* és *Physalis floridana. N. debneyi* növényen mozaikot és a levélér-besüppedést okoz, míg *N.*

DOI: 10.14267/phd.2015051

tabacum fajon fajtától függ a megjelenése. 'White burley' illetve 'Samsun N' fajtán mozaikot okoz, azonban 'Turkish' fajtán nem jelennek meg tünetek. *N. glutinosa* fajon mozaikfoltok megjelenése figyelhető meg a fertőzés hatására. *N. clevelandii, D. metel* és *P. floridana* fajon tünetmentes marad a fertőzés, vagy nem sikerült a kísérletek során a vírust visszaizolálni (de Bokx, 1970). A *Chenopodiaceae* család tagjai közül *C. amaranticolor*-on nekrotikus lokális léziót, *C. quinoa*-n és *C. album*-on klorotikus lokális léziót (2. ábra) indukál a vírus jelenléte (Salari és mtsai., 2011; Lin, 2012). A PVS *N. plumbaginifolia* növényen tűszúrásszerű lokális léziókat okoz (Fletcher, 1996).

2. ábra Potato virus S által indukált (A) klorotikus lokális léziók Chenopodium quinoa levélen és
(B) C. amaranticolor levélen (Lin, 2012 nyomán)

Horváth vizsgálataiban számos paradicsomfajt vizsgált: Lycopersicon glandulosum, L. hirsutum, L. humboldtii, L. peruvianum, L. pimpinellifolium, L. pyriforme, L. racemiflorum, L. racemigerum, L. esculentum cv. Red Cherry. A növényeket mechanikai úton inokulálták PVS izolátummal. Az eredmények szerint csak a L. glandulosum, L. hirsutum, L. peruvianum növényfajok voltak fogékonyak, de ezeken a növényeken is tünetmentes maradt a fertőzés. A vírus jelenlétét Chenopodium album tesztnövényre történt visszaizolálás, illetve szerológiai tesztek segítségével mutatták ki. Ezenfelül Horváth szerint a vírus maggal nem terjedt át a következő nemzedékbe (Horváth, 1972).

A PVS két törzsének elkülönítése kezdetben a *Chenopodium quinoa*-n okozott tünetek alapján történt. Az andesi törzs ezen a tesztnövényen szisztemikus tüneteket okoz, míg a közönséges törzs nem. Hiruki vizsgálatai során két PVS izolátumot használt fel. A tesztnövény a *C. quinoa* volt, az egyik izolátum a tesztnövényen 14 nappal az inokulálást követően lokális léziók megjelenését indukálta, míg a másik izolátum esetében ezek a tünetek nem voltak megfigyelhetők (Hiruki, 1975).

A kutatók további megfigyelései szerint a vírus andesi törzse *Cyamopsis tetragonoloba* növényen nem okoz tünetet, de a közönséges törzs nekrotikus léziókat indukál

(Slack, 1983). Fletcher szerint viszont ezen a növényfajon mindkét törzs nekrotikus lokális léziókat okoz. *Lycopersicon* fajokon is végeztek kísérletet, és *L. esculentum* fajtákon az andesi törzs szisztemikus foltosságot okozott (Fletcher, 1996).

3.5 A PVS természetes terjedési módjai

A PVS mechanikai úton átvihető, vegetatív szaporítóanyag útján nagy távolságokra terjed (Bagnall és mtsai., 1956; Horváth, 1964; Vulić és Hunnius, 1967; de Bokx, 1970; Bode és Weidemann, 1971; Lin és mtsai., 2009). A maggal való terjedési vizsgálatok mind negatívak voltak (Horváth, 1972; Goth és Webb, 1975). A PVS ún. andesi törzse levéltetűvel átvihető nem perzisztens módon, míg a vírus közönséges törzsére ez nem igazán jellemző. A tanulmányok azt mutatják, hogy a vírus nem igényli a helper komponens jelenlétét a levéltetűvel történő átvitelhez, mint ahogy ez jellemző a Potyvirus nemzetség tagjaira (Khalil és Shalla, 1982; Slack, 1983). További vizsgálatok során azt figyelték meg, hogy az andesi törzs mechanikai úton és levéltetvekkel is könnyebben terjed, mint a közönséges törzs (Rose, 1983; Slack, 1983; Wardrop és mtsai., 1989). Bode és Weidemann (1971) kísérleteikben megállapították, hogy egyes PVS izolátumok Myzus persicae vektorral 10-40%-os hatékonysággal átvihetők. 1996-ban végeztek kísérleteket abból a célból, hogy megállapítsák, a vírus valóban átvihető levéltetűvel. A tesztnövény C. quinoa volt, melyet két PVS izolátummal inokuláltak. A S. tuberosum 'Record' fajtából származó izolátum szisztemikus foltosságot okozott C. quinoa-n, míg a S. tuberosum 'Maris Court' fajtából származó izolátum ugyanezen a növényen lokális tüneteket indukált. A felhasznált levéltetűfaj a Myzus persicae és Aulacorthum solani volt. A kísérlet során csak a 'Record' fajtából származó izolátumot tudták átvinni (Fletcher, 1996). Kostiw (2003) vizsgálta az összefüggést a táplálkozási idő és a PVS levéltetű átvihetősége között. A Myzus persicae egyedek 7 másodperces táplálkozás után 0%-os, 8-32 perces után pedig 2,9%-os hatékonysággal fertőzték a növényeket. Az Aphis nasturtii esetében 7 másodperc után 4%os, 64 perc után 12,2%-os volt a fertőzési hatékonyság (Kostiw, 2003). A levéltetűfajok közül a lehetséges vírusvektorok a következők lehetnek: Aphis fabae, A. nasturtii és Rhopalosiphum padi (Lin és mtsai., 2009).

Brazíliában Duarte és munkatársai (2012) is végeztek kísérleteket a levéltetűvel történő átvitellel kapcsolatban. *Myzus persicae* és *Aphis gossypii* levéltetűfajokat használtak fel vektorként. Mindkét vizsgált levéltetűfaj esetében sikeres volt a transzmisszió. *C. quinoa* növényről történő átvitellel szintén ugyanerre a növényre a *M. persicae* esetében 46,6%-os átvitelli arányt figyeltek meg, míg burgonyanövényre ez az arány csak 20%-os volt. A

szerzők szerint, amikor burgonyanövényeket használtak inokulumforrásként az átviteli hatékonyság 11,6 és 10% volt *C. quinoa*-ra és *S. tuberosum*-ra. A másik levéltetűfaj, az *Aphis gossypii* alacsonyabb vírusátviteli hatékonyságot mutatott: 13,3 és 3,3% *C. quinoa* és burgonyanövények esetében, amennyiben *C. quinoa* volt az inokulumforrása. Ez a levéltetűfaj burgonyáról burgonyára nem volt képes a vírus átvitelére és *C. quinoa* növényre is csak nagyon alacsony százalékban (3,3%) volt hatékony az átvitel (Duarte és mtsai., 2012).

3.6 A Betaflexiviridae család és a Carlavirus nemzetség általános jellemzése

A *Betaflexiviridae* az International Committee on Taxonomy of Viruses által 2009ben létrehozott, növényi vírusokat tartalmazó család. A *Betaflexiviridae* családba tartozó nemzetségek: *Carlavirus, Citrivirus, Capillovirus, Foveavirus, Trichovirus, Vitivirus*, illetve további 5 vírusfaj tartozik a családba, amelyeket eddig még nem soroltak nemzetségekbe (Carstens, 2010).

Gazdanövénykörüket tekintve a családba tartozó vírusok meglehetősen különböznek egymástól: lágy- és fásszárú, egy- és kétszikű növényfajokat széles körben fertőznek, de az egyes vírusfajok gazdanövényköre limitált. A *Foveavirus*, *Capillovirus*, *Vitivirus* és *Trichovirus* nemzetség tagjai főleg vagy kizárólagosan csak fás növényeket fertőznek meg. A családba tartozó vírusfajok mechanikai inokulációval átvihetők. Sok idetartozó vírusnak nincs ismert gerinctelen állat, illetve gombavektora, de az ismert, hogy egyes trichovírusok atka által terjednek. A víruspartikulumok felhalmozódása a növényi sejten belül a citoplazmában történik. A vírusok többsége viszonylag enyhe tüneteket okoz a gazdanövényein (Adams és mtsai., 2004).

A *Carlavirus* nemzetség névadója a *Carnation latent virus*. A nemzetségen belül több mint 65 fajt tartanak számon, melyek szűk gazdanövénykörrel rendelkeznek, gyakran látens, vagy enyhe tüneteket okoznak (Matthews, 1979; King és mtsai., 2012). A carlavírusok virionjai fonál alakú, 610-700 nm hosszú, 12-15 nm átmérőjű, helikális szimmetriával rendelkeznek (Wetter és Milne, 1981). A genom pozitív, egyszálú RNS, 7,4-8,5 kb nagyságú és 6 nyílt leolvasási keretet (Open Reading Frame, ORF) tartalmaz, amelyek a virális replikázt, a mozgási fehérjéket, a köpenyfehérjét és a nukleinsav-kötő fehérjét kódolják. A carlavírusok köpenyfehérjéje (coat protein, CP) 31-36 kDa nagyságú (Foster és Mills, 1991b). Foster szerint egyes carlavírusok genomjának 3'-végén egy putatív poliadenilációs jel (AATAAA) található (Foster, 1992).

Hasonlóan a többi RNS-vírushoz, a carlavírusok replikációja is a növényi citoplazmában történik, a sejtmagi funkcióktól függetlenül. Ezért is volt váratlan felfedezés, hogy a *Chrysanthemum virus B* (CVB) által kódolt cink-ujj fehérje (nukleinsav-kötő szabályozó fehérje) a sejtmagban transzlokálódik és egyfajta növényi transzkripciós faktorként (TF) viselkedik (Lukhovitskaya és mtsai., 2009). A cikk-ujj motívumot az RCxRCxRxxPx₆₋₈CDxxxC aminosav-szekvenciával azonosították, melyet megelőz a mag lokalizációs szignál (nuclear localization signal, NLS) (Lukhovitskaya és mtsai., 2013). Lukhovitskaya és munkatársai (2014) bizonyították, hogy a CVB cink-ujj fehérjéje közvetlen kölcsönhatásban van a kromatinnal és a növényi promóterekkel, így mint eukarióta TF működik.

Az egyes fajok természetes gazdanövényköre egy vagy néhány növényfajra terjed ki. A legtöbb faj levéltetvekkel átvihető nem perzisztens módon, de a *Cowpea mild mottle virus* esetében a dohányliszteske (*Bemisia tabaci*) a vírus vektora (Badge és mtsai., 1996). A legtöbb faj mechanikai úton átvihető, azonban három, hüvelyes növényt fertőző vírus (*Pea streak virus, Red clover wein mosaic virus* és *Cowpee mild mottle virus*) maggal is terjed. Az egyes vírusok elterjedését a földrajzi előfordulás korlátozhatja, de ezek vegetatív szaporítóanyaggal nagy távolságokra terjedhetnek (Adams és mtsai., 2004).

3.7 A PVS általános jellemzése

A PVS virionok flexibilis, fonál alakúak (3. ábra), a vírusrészecskék 610-710x10-15 nm nagyságúak (de Bokx, 1969; Koenig, 1982; Wetter, 1971; Lin és mtsai., 2009).

3. ábra A Potato virus S elektronmikroszkópos képe (Fletcher, 1996 nyomán)

A víruspartikulumok pozitív egyszálú RNS-t tartalmaznak, mely megközelítőleg 8400 nukleotidból áll (Fletcher, 1996). Egyes vírusoknál, mint a *Potyvirus* nemzetség tagjainál, a genom 5'-végén kovalens kötéssel egy úgynevezett genomhoz kötött fehérje (viral protein genome-linked, VPg) kapcsolódik. Monis és de Zoeten (1990) szerint a PVS nem rendelkezik VPg-vel. A genom az 5'-végen m⁷G^{5'}ppp^{5'}G sapka struktúrával, míg a 3'végen poliadenilált régióval rendelkezik (Foster és Mills, 1990b). A vírusgenom 6 nyílt leolvasási keretet tartalmaz (Mackenzie és mtsai., 1989). Az 5' UTR szakasz szabályozza az utána elhelyezkedő ORF1 transzlációját (Turner és mtsai., 1999). Az ORF1 replikáz funkciójú fehérjét kódol, mely három konzervált domént, a metiltranszferázt (MTR), a helikázt (HEL) és az RNS-függő RNS-polimerázt (RNA-dependent RNA polymerase, RdRp) tartalmazza. A virális metiltranszferáz domén megtalálható számos ssRNS vírusnál, többek között hordei-, tobra-, tobamo-, bromo-, clostero- és calicivírusoknál. Szerepet játszik a sapka struktúra kialakításában, mellyel növeli a vírus RNS stabilitását és a transzláció iniciációjához is elengedhetetlen (Rozanov és mtsai., 1992; Ahola és mtsai., 1997; Kong és mtsai., 1999; Ahola és mtsai., 2000). Gorbalenya és Koonin (1989) szerint minden pozitív szálú RNS-vírus, amely genom mérete meghaladja a 6 kb-t, kódol (putatív) RNS helikázt¹. A helikázok olyan ATP hidrolizáló fehérjék, amelyek az így felszabaduló energiát nukleinsav-duplexek szálszétválasztására használják. A virális RNS helikáz (szupercsalád 1) csoportba tartozó domének helikáz és NTP-áz tulajdonsága már bizonyított (Gomez de Cedrón és mtsai., 1999). Az RdRp minden RNS vírus genomjában megtalálható. Az RdRp katalizálja a komplementer RNS szál szintézisét egy adott RNS templátról, ennek segítségével replikálódnak a negatív szálak, a pozitív szálak és a szubgenomi RNS-ek is (O'Reilly és Kao, 1998). Katalitikus centrumuk számos konzervált aminosav- motívumot tartalmaz, amelyek nagyfokú homológiát mutatnak számos állati és növényi vírus metiltranszferázával, helikázával és polimerázával (Dinant és mtsai., 1993). A PVS replikázán a domének elhelyezkedése, illetve azok jellemzői megfelelnek a Carlavirus nemzetség más tagjainál tapasztaltakkal (Matoušek és mtsai., 2005). Az ORF2, ORF3 és ORF4 alakítja ki a triple gene block-ot (hármas gén blokk, TGB), melynek a sejtről sejtre történő mozgásban van szerepe (Morozov és mtsai., 1989). Az ORF2 által kódolt fehérje, a TGBp1, mely 25 kDa nagyságú és az ORF1-hez hasonlóan tartalmazza az NTP-áz/helikáz domént, mely mindkét fehérjében GXGKS szekvenciájú (Lin és mtsai., 2009). Ez a konzervált G-GKSS/T motívum szintén megtalálható a carla-, potex-, hordei-, és furovírosoknál (Zimmern, 1987; Gorbalenya és mtsai., 1988). Az ORF3 által kódolt fehérje a TGBp2, mely 12 kDa nagyságú és két hidrofób régióval rendelkezik (Lin és mtsai., 2009). Az ORF4 a TGBp3 fehérjét kódolja, mely 7 kDa nagyságú és N-terminális része hidrofób tulajdonságú. A hidrofób régiók az ORF3 és ORF4-ben a kutatások szerint a sejtről sejtre

¹ Kivétel a humán astrovírusok, melyek genomja 7,2 kb és mégsem kódolnak helikázt (Jiang és mtsai., 1993).

történő és a hosszútávú mozgásban vesznek részt (Morozov és mtsai., 1987; Ju és mtsai., 2005; Schepetilnikov és mtsai., 2005). Az ORF5 és ORF6 a köpenyfehérjét, illetve a 11K fehérjét kódolja. Az ORF5-ről 34 kDa nagyságú fehérje transzlálódik és átfedésben van az ORF6-tal, mely a ciszteinben gazdag nukleinsav-kötő fehérjét (nucleic acid binding protein, NABP) kódolja. Ez a fehérje felelős a levéltetűvel történő átvitelért, a géncsendesítés szupresszora és részt vesz a replikációban is (Gramstatt és mtsai., 1990; Foster, 1991; Foster és Mills, 1992a; Chiba és mtsai., 2006). A PVS közeli rokonánál a *Potato virus M*-nél (PVM) géncsendesítés szupresszor aktivitását bizonyították a TGBp2-nek és a köpeny fehérjének is (Kryldakov és mtsai., 2011).

A vírusfehérjék genomiális és két szubgenomiális RNS-ről (2,5 kb; 1,5 kb) transzlálódnak (4. ábra). A szubgenomiális RNS-ek nem tartalmaznak sapka struktúrát 5'-végükön, viszont 3'-végük poliadenilált. A replikáz közvetlenül a genomiális RNS-ről, a TGB a hosszabb szubgenomiális RNS-ről íródik át. A kisebbik szubgenomikus RNS-ről a köpenyfehérje és a 11K fehérje transzlációja történik (Foster és Mills, 1990a; Foster és Mills, 1991a; Foster és Mills, 1992b).

Az ORF2 start kodonja előtt található egy purin-gazdag, kanonikus Shine-Dalgarno szekvencia (AGGAGGT), mely erős riboszóma kötőhely (ribosome binding site, RBS) (Shine és Dalgarno, 1975; Foster és Mills, 1991b). Foster és Mills (1991b) 10-12 nukleotiddal az ORF2 előtt és 25-37 nukleotiddal az ORF5 előtt is azonosítottak RBS-t (ORF2 előtt: AGCTTAGGTAATCAGC, ORF5 előtt: ACCTTTAGGTTC), mely a vírus transzlációjához szükséges. További kutatások szerint a köpenyfehérjét kódoló régiót (ORF5) megelőző 101 nukleotidból álló szakasz transzláció hatékonyságát növelő (viral translational enhancer, VTE) tulajdonsággal rendelkezik. Ez a szakasz tartalmazza az előbbiekben már említett konzervált régiót CCTTTAGGTT, mely a triple gen block 25K kódoló régiója előtt is megtalálható és ez a szekvencia a *Carlavirus* nemzetség más tagjaira is jellemző. A transzlációt szabályozó tulajdonságot deléciós vizsgálatokkal bizonyították, ahol a konzervált régiót érintetlenül hagyták (Turner és mtsai., 1994a; Turner és mtsai., 1994b; Turner és Foster, 1997).

4. ábra A burgonya S vírus genomtérképe, a kódolt fehérjék elhelyezkedése a genomon és transzlációjuk. 223K: metiltranszferáz, helikáz, polimeráz; 25K: NTP-áz, helikáz domén, TGBp1; 12K: TGBp2; 7K: TGBp3; CP: köpenyfehérje; 11K: nukleinsav-kötő fehérje (Lin, 2012 nyomán)

Nagyon sok növényi vírusnemzetség kódol TGB-t, ami konzervált genomrészlet. A TGB fehérjéi a vírusok sejtről sejtre történő, illetve azok hosszú távú mozgásában vesznek részt a növényben. A TGB alapú transzportrendszer 3 fehérje együttműködését jelenti, amelyek a virális genomot szállítják a plazmodezmához, és segítik annak belépését a szomszédos sejtbe (Morozov és Solovyev, 2003). A TGB 3 részlegesen átfedő ORF-ből áll (Morozov és mtsai., 1987), ez a 3 ORF a következő fehérjéket kódolja: TGBp1, TGBp2 és TGBp3 a genomon való elhelyezkedésük szerint számozva (Solovyev és mtsai., 1996). *In vitro* fertőzőképes vírusklónok mutációs vizsgálatai bizonyították, hogy mindhárom TGB fehérje esszenciális a vírus növényen belüli mozgásában a *Barley stripe mosaic virus* esetében (Petty és mtsai., 1990).

Egy PVS izolátum genomjának teljes szekvenciáját Matoušek és munkatársai (2005) határozták meg elsőként. Korábban csak a vírus 3'-vég szekvenciájáról voltak információk (Mackenzie és mtsai., 1989), illetve a PVS genom restrikciós analízisének eredménye volt elérhető (Monis és de Zoeten, 1990). Mackenzie és munkatársai (1989) a PVS 3'-vég 3553 nukleotidból álló szekvenciáját határozták meg. Megállapították, hogy a 33K fehérjét kódoló gén a virális köpenyfehérje kódolásáért felelős. A nukleotidszekvenciából származtatot 70 aminosavból álló szekvencia a PVS köpenyfehérjéjének központi régiójából 59%-os egyezést mutatott a *Potato virus X* analóg régiójával. A részleges 41K nyílt leolvasási keret a PVX és *White clover mosaic virus* virális replikáz C-terminális részével mutatott

homológiát. A vizsgálat további részében a 7K, 12K és 25K nyílt leolvasási kereteket is összehasonlították más vírusok leolvasási kereteivel. Az eredmények szerint ezek az ORFek szignifikáns szekvenciaegyezést mutattak a potexvírusok egyes tagjaival (Mackenzie és mtsai., 1989).

Monis és de Zoeten 1990-ben végzett kísérleteik során a PVS andesi törzsének RNSét jellemezték. Megállapították, hogy a vírus RNS-e poliadenilált, ez a *Potato virus M*-re is jellemző, amely szintén a *Carlavirus* nemzetség tagja (Matthews, 1979). A vizsgálataik során nem detektáltak nagy molekulasúlyú fehérje prekurzort az *in vitro* transzlációs folyamat során. Ez az eredmény azt mutatja, hogy a transzlációs stratégia során a proteolítikus folyamatban nem történik poliprotein szintézis, mint ahogy ez a folyamat jellemző a *Potyvirus* és *Comovirus* nemzetség tagjaira (Goldbach, 1986).

3.8 Az andesi és közönséges törzs jellemzése

Jelenleg két ismert törzse van a PVS-nek: a közönséges törzs (PVS^O, PVS ordinary strain) és az andesi törzs (PVS^A, Andean strain). A PVS^A első leírása 1973-ban történt. A kísérletek során perui burgonyafajtákat vizsgáltak meg, a növények különböző tüneteket mutattak, mint pl.: szisztemikus mozaikfoltok és sárgulás. Az izolátumok Chenopodium quinoa tesztnövényen szisztemikus tüneteket okoztak. A PVS^O törzsre ez nem volt jellemző, mert ebből a törzsből származó izolátumok lokális léziókat indukálnak C. quinoa-n (Hinostroza-Orihuela, 1973). A közönséges törzs mellett az andesi törzs létezését bizonyította egy 1983-ban megjelent publikáció is. Slack Solanum tuberosum 'Red La Soda' fajtában detektált egy olyan PVS izolátumot, mely levéltetűvel átvihető volt és C. quinoa-n a klorotikus lokális léziók kialakítása után szisztemizálódott a növényben (Slack, 1983). A közönséges törzs izolátumai biológiailag különböznek az andesi törzstől a Chenopodium quinoa-n okozott tüneteket tekintve. Rose kísérleteiben is szisztemikus tüneteket figyeltek meg PVS-sel fertőzött Chenopodium fajokon (Rose, 1983). Az andesi törzs elnevezés onnan ered, hogy ezt a típust korábban csak Dél-Amerika Andok régiójában mutatták ki. Az újabb kutatások azonban bebizonyították, hogy a Chenopodium quinoa-t szisztemikusan fertőző típus Európában, az USA-ban és Új-Zélandon is előfordul (Cox és Jones, 2010). Első európai előfordulását Dolby és Jones (1987) írta le holland és nyugatnémet import szaporítóanyagban. 1988-ban szerológiai és tesztnövényes vizsgálatokkal bizonyították, hogy a korábban Pepino latent virus néven azonosított vírus nem más, mint egy pepinót fertőző PVS^A izolátum (Dolby és Jones, 1988). 2014-ben Lin és munkatársai jelentették az andesi törzs kínai jelenlétét (Lin és mtsai., 2014). Az NCBI adatbázisban szerepelnek a

törzsbe tartozó izolátumok szekvencia részletei Indiából is, viszont ezeket jellemző publikációk nem készültek.

Az andesi törzs súlyosabb tünetet okoz a leveleken, mint a közönséges törzs és könnyebben átvihető levéltetvekkel is. A biológiai tulajdonságokban való eltérést a két törzs között a CP N-terminális régió aminosavainak különbségének tulajdonítják, a nukleotid-kötő fehérje 11K és 7K fehérje szekvenciákban (Foster és mtsai., 1990; Foster, 1991; Foster és Mills, 1992a; Matoušek és mtsai., 2000), ezt a feltételezést azonban az újabb kutatások nem támasztják alá (Cox és Jones, 2010). Matoušek kísérleteiben megállapította, hogy a középeurópai PVS izolátumok között vannak olyanok, amelyek szisztemikusan fertőzik a *C. quinoa*-t, de sokkal közelebbi rokonságban vannak a PVS^O törzzsel (Matoušek és mtsai., 2005). Emiatt a kutatók újabb törzs létrehozását ajánlották, a PVS^{O-CS}-t, amely szisztemikus tüneteket okoz *C. quinoa*-n, de ez a törzs ne tartozzon bele az andesi törzsbe (Cox és Jones, 2010).

Egy 2012-ben megjelent publikáció olyan PVS^A izolátumról számol be Brazíliában, amely az eddig leírt PVS^A-tól molekuláris tulajdonságait tekintve különbözik. Az izolátum szekvenciáját összehasonlították a GenBank-ban fellelhető 4 másik izolátummal és a nukleotidszekvencia egyezése 79 és 81% közötti volt, míg a korábban leírt 4 izolátum egymáshoz képest 90 és 97% közötti egyezést mutatott. A teljes genomanalízis bebizonyította, hogy a Brazíliából származó izolátum a PVS^A törzshöz tartozik, de a korábban leírt, ebbe a törzsbe tartozó izolátumoktól különbözik. Ennek valószínűleg az az oka, hogy ez az első PVS^A izolátum Dél-Amerikából, amelynek a teljes nukleotidszekvenciáját meghatározták és ez az izolátum más evolúciós útvonalon fejlődött, mint az európai PVS izolátumok (Duarte és mtsai., 2012).

Az Irakból származó izolátumok mindegyike a szekvenciavizsgálatok alapján, a PVS^O törzsbe tartozik, a *M. persicae* és a *A. nasturtii* nem terjeszti és *C. amaranticolor* növényeken lokális léziót okoznak és nem szisztemizálódnak. Irakban nem azonosítottak a PVS^A törzsbe tartozó izolátumot (Barbar, 2014).

3.9 PVS izolátumok változékonysága, jellemzése

A PVS izolátumok szekvenciavariabilitása a közép-európai izolátumokat tekintve igen nagyfokú, amennyiben a genom 3' végi jellemzőit vesszük figyelembe (Matoušek és mtsai., 2000). Több vizsgálatot is végeztek abból a célból, hogy a *C. quinoa*-t szisztemikusan fertőző közép-európai PVS izolátumok molekuláris jellemzőit megismerjék. Matoušek és munkatársai 2005-ben két PVS izolátum teljes nukleotidszekvenciáját határozták meg. A két

PVS izolátum a Leona és a Vltava szekvenciájának összehasonlítás során 8%-os különbséget találtak az izolátumok között (Matoušek és mtsai., 2005). A PVS^O és PVS^{CS} (*Chenopodium*on szisztemizálódó, CS) törzsek köpenyfehérje előtti és kódoló régióit felhasználva vizsgálták a két törzs közötti hasonlóságot immunocapture RT-PCR módszerrel. A két törzs a köpenyfehérje 5' végi részében különbözött egymástól. Az eredmények alapján megállapították, hogy a CP 17. pozíciójában elhelyezkedő metionin és 34. pozíciójában lévő szerin okozza a CS tulajdonságot a PVS izolátumoknál. A filogenetikai vizsgálatok alapján a PVS^{CS} közelebbi rokonságban áll a PVS^O törzs európai izolátumaival és távolabb helyezkedik el az andesi törzstől (Matoušek és mtsai., 2005). 2009-ben megállapították, hogy a CS tulajdonság összefügg a TGB proteinek tulajdonságaival is. A 25K protein 196. pozíciójában a glicin szerinre és a 12K protein 25. pozíciójában izoleucinről valinra változik (Matoušek és mtsai., 2009).

Chikh Ali és munkatársai (2008) a szíriai PVS izolátumok vizsgálatakor szekvenciájuk alapján két főcsoportba (cluster-O, cluster-A) osztották az adatbázisban elérhető PVS izolátumokat, attól függően, hogy melyik törzsbe tartoznak. A cluster-O csoporton belül két alcsoportba (O1, O2) sorolták a közönséges törzshöz tartozókat. A vizsgált szíriai izolátumok az O1 alcsoportba tartoznak. A tesztnövényes kísérletek alkalmával a szír PVS izolátumokkal fertőzött *C. amaranticolor* növényeken kizárólag lokális tünetek jelentek meg (Chikh Ali és mtsai., 2008).

Lin és munkatársai 2009-ben végeztek kísérleteket PVS izolátumok molekuláris jellemzésének céljából. A vizsgált két PVS izolátum fitoftóra (*Phytophthora infestans*) rezisztens burgonyából származott. A kutatók megfigyelték, hogy ezek a burgonyák fogékonyabbak a PVS fertőzésre. A jelenség megértésének céljából meghatározták a két PVS izolátum teljes szekvenciáját. A két izolátum közötti szekvenciaegyezés 98%-os volt. A korábban leírt PVS izolátumok közül a Leona és Vltava izolátumokkal 91-94%-os egyezést mutatott. Filogenetikai fát készítettek a PVS köpenyfehérje aminosav-szekvenciája alapján, ezek alapján a két izolátum a vírus közönséges törzsébe tartozik, valamint közeli rokonságban állnak egy szíriai izolátummal (Lin és mtsai., 2009).

Iránban folytatott vizsgálatokban tizenkét PVS izolátum teljes köpenyfehérje és 11K gén szekvenciáját határozták meg. A köpenyfehérje 885 nukleotidját és a 11K gén 282 nukleotidból álló szekvenciáját határozták meg. A GenBank-ban megtalálható adatokkal összehasonlították az izolátumokat a vírus köpenyfehérjét tekintve. A vizsgálat eredménye 92,5 és 100% közötti egyezéseket mutatott. A 11K gén nukleotidszekvencia egyezése 93,5 és 100% közötti volt. A filogenetikai analízis egyértelműen jelezte a két ismert PVS törzs

jelenlétét. A köpenyfehérje és 11K fehérje 2 konzervált aminosav blokkja, ami 11 és 8 aminosavból tevődik össze, nem mutatott homológiát, ami a biológiai különbséget igazolhatja a két PVS törzs között. Egyik iráni PVS izolátum sem fertőzte szisztemikusan a *C. quinoa* tesztnövényt (Salari és mtsai., 2011). Ezek az eredmények támogatják Cox és Jones (2010) korábbi elképzelését, miszerint nem a köpenyfehérje és a 11K gén N-terminális részében fellelhető különbségek okozzák a szisztemizálódási képességét a vírusnak a *C. quinoa* tesztnövényen (Salari és mtsai., 2011), mint ahogy azt korábban feltételezték (Foster, 1991; Foster és Mills, 1992a; Matoušek és mtsai., 2000; Matoušek és mtsai., 2005).

Tasmaniában Lambert és munkatársai (2012) 44 PVS-sel fertőzött mintát vizsgáltak. A szekvencia elmézés alapján az összes izolátum a PVS^O és a PVS^{O-CS} törzsbe tartozik, annak ellenére, hogy a biotesztes kísérletek alkalmával rendkívül különböztek egymástól. A szerzők javasolták a PVS^O-szerű és a PVS^A-szerű csoport létrehozását azoknak az izolátumoknak, melyek a fenotípusos tulajdonságaik alapján más törzsbe tartoznak, mint amibe a szekvencia-analízis alapján kerülnének (Lambert és mtsai., 2012).

Lin és munkatársai (2014) a PVS törzs meghatározás tisztázásának céljából, öt amerikai és három chilei izolátum biológiai és genetikai tulajdonságát vizsgálták. Ismét arra jutottak, hogy csupán a fenotípusos tulajdonságok alapján nem lehet meghatározni a törzseket. Elvégeztek egy globális genetikai elemzést az adatbázisban elérhető PVS szekvenciákkal, hogy felmérjék a vírus genetikai változékonyságát és evolúciós fejlődését. A köpenyfehérje régió alapján a PVS^Oklád hat alcsoportot tartalmaz, a PVS^A pedig kettőt. A 11K gén használata az analízis során nem befolyásolta a végeredményt. A köpenyfehérje génnek a 11K génhez képest és a PVS^A-nak a PVS^O-hoz képest nagyobb fokú a nukleotiddiverzitása, tehát sokkal változékonyabbak (Lin és mtsai., 2014).

3.10 Rekombináció

A rekombináció olyan evolúciós folyamat, amely lehetővé teszi új vírus variánsok kialakulását. Számos külső tényező hat a vírusokra, amelyekhez alkalmazkodniuk kell pl.: a klíma- és környezetváltozás. A rekombináció segítségével gyorsabban képesek kialakulni előnyös vírus genotípusok, mint a klonális populációkban, illetve a kialakult káros mutációk könnyebben javíthatók (Drake és Holland, 1999; Elena és Moya, 1999).

A növényi RNS vírusokban bekövetkező rekombinációs események gyakoriságának meghatározására 2005-ben végeztek kutatásokat. Az eredmények szerint, a vizsgált 36 növényi pozitív egyszálú RNS (+ssRNS) vírusfajból 12 esetében tudtak kimutatni rekombinációs eseményt. A vizsgált 14 potyvírus közül 8 faj esetében tudták bizonyítani,

DOI: 10.14267/phd.2015051

hogy történt rekombináció. A genomszekvencia összehasonlítások során a vizsgált szekvenciák több mint 1/3-ában figyeltek meg rekombinációs eseményt, azonban kevésbé gyakori volt a jelenség a filogenetikailag egymástól távol álló törzsek esetében. A kísérletek eredményei azt mutatják, hogy a rekombináció relatív közönséges folyamat némely +ssRNS vírusnál és megfelelően magas gyakorisággal történik ahhoz, hogy az evolúciós változások egyik forrása legyen (Chare és Holmes, 2005). A növényi vírusok között természetes rekombináció létrejöttét számos esetben igazolták pl.: Potyvirus nemzetség (Cervera és mtsai., 1993; Djilani-Khouadja és mtsai., 2010; Galvino-Costa és mtsai., 2011), Luteovirus nemzetség (Gibbs, 1995), Nepovirus nemzetség (Le Gall és mtsai., 1995), Cucumovirus nemzetség (Fraile és mtsai., 1997; Boonham és mtsai., 2005), Potexvirus nemzetség (Sherpa és mtsai, 2007) és Bromovirus nemzetség (Wierzchoslawski és Bujarski, 2006). A Carlavirus nemzetség több tagjánál is megfigyeltek rekombinációs eseményeket. A Lily symtomless virus esetében Singh és munkatársai (2008), a Chrysanthemum virus B esetében Singh és munkatársai (2012) detektáltak rekombinációt az RdRp és CP génekben. Pramesh és Baranwal (2013) pedig Indiában azonosítottak a CP régióban rekombináns Garlic common latent virus izolátumot.

Brazíliában PVS izolátumokkal végeztek rekombinációs vizsgálatokat. Az eredmények azt mutatják, hogy a Vltava izolátum rekombináns és a szülői szekvenciák hordozói a Leona és a D00461, illetve a BB-AND izolátumok. Ez az első olyan közlemény, amely a PVS törzsek rekombinációjáról tudósított. A vizsgálatot végző kutatók attól tartanak, hogy a rekombinációs folyamat olyan új PVS törzsek kialakulását eredményezheti, melyek jobb adaptálódási és versengési képességgel rendelkeznek (Duarte és mtsai., 2012).

3.11 Vírusevolúció

A növényi, állati és bakteriális vírusok között már régóta bizonyított a rokonsági kapcsolat (Holland és mtsai., 1982). Az első tanulmányok után, melyek a növényi és az állati vírusok közti kapcsolatot vizsgálták, gyors fejlődésnek indították a vírusok "makromolekuláris evolúciójával" foglalkozó kutatásokat. Azóta számos olyan motívumot azonosítottak vírusokban, amelyek nagy valószínűséggel fejlettebb szervezetekből származnak (Franssen és mtsai., 1984; Haseloff és mtsai., 1984; Argos és mtsai., 1984; Kamer és Argos, 1984; Blinov és mtsai., 1984; Gorbalenya és mtsai., 1985; Ahlquist és mtsai., 1985).

A pozitív szálú vírusok replikációja és genom expressziója enzim közvetített, ezért konzervált szekvenciamotívum-tömböket tartalmaznak, mégis jellemző rájuk a gyors

mutációs változás. A fehérjék esetében ilyen motívumok közé tartoznak az RNS-függő RNS-polimeráz, a putatív RNS-helikáz, a kimotripszin-szerű és papain-szerű proteázok és a metiltranszferáz. Ezen fehérjék génjeinek konzervált része a vírusok többségében fellehető (Holland és mtsai., 1982; Domingo és mtsai., 1985; Steinhauer és Holland, 1987; Koonin és Gorbalenya, 1989). A vírusgenom felépítése evolúciósan viszonylag stabil a 'magot' képző háztartási géneket tekintve, viszont sokkal rugalmasabb a 'héjat' képező, elsősorban a virion alkatrészeket kódoló gének és a különböző járulékos fehérjék tekintetében. A 'héj' gének keveredését, beleértve a genom reorganizációját és rekombinációt egyes távoli víruscsoportok között tekintik az egyik legfontosabb tényezőnek a vírusevolúcióban (Martin és mtsai., 1990). A konzervált vírusfehérjék többszörös illesztése után létrehozták a filogenetika törzsfákat. Ennek alapja elsősorban az RNS-függő RNS-polimeráz lehetséges törzsfejlődése. Ez az egyetlen, általánosan konzervált fehérje a pozitív szálú RNSvírusokban. Erős korreláció volt megfigyelhető ezen csoportosítás és a többi konzerválódott fehérje kísérleti törzsfejlődése között, valamint az ezeket kódoló gének a vírus genom való elrendeződése között. Ezidáig nem találtak a polimerázokéhoz hasonló összefüggéseket sem a 'héj' géneknél, sem az alapvető expressziós mechanizmusoknál, így lehetséges, hogy egymástól függetlenül fejlődtek ki különböző evolúciós leszármazási vonalakon (Koonin és Dolja, 1993).

3.12 Konzervált domén adatbázis (CDD)

Az NCBI konzervált domén adatbázisa (CDD) nyilvánosan elérhető fehérje annotációs adatbázis. A CCD a fehérje szekvenciákra különböző illesztési modelleket generál a reprezentatív szekvenciarészletekből, ami összhangban van a fehérjék 3D szerkezetével és a domén határokkal. Modellezi a szerkezetileg konzervált szegmensek alapján a domén családokat, mindemellett a konzervált tulajdonságokat is megmutatja (Marchler-Bauer és mtsai., 2015). A CDD jelenlegi verziója a v3.12 46 675 fehérje- és fehérjedomén-modellt tartalmaz, amelyek az alábbi adatbázisokból származnak: Pfam (Finn és mtsai., 2014), SMART (Letunic és mtsai., 2015), COG (Tatusov és mtsai., 2001), PRK (Haft és mtsai., 2013), TIGRFAM (Klimke és mtsai., 2009), NCBI belső adatai (Marchler-Bauer és mtsai., 2003). Az adatbázis keresési szolgáltatása az RPS-BLAST-ot (Reverz Pozíció-Specifikus Blast) alkalmazza. A keresés eredménye a megbízhatósági szint függvényében (specifikus és nem specifikus találat) és a domén modell csoport szerint (szupercsalád, multidomének) többféle lehet. A specifikus találat egy magas megbízhatósági szintű egyezés a vizsgált fehérjeszekvencia és egy konzervált domén között, amely egyben a lekérdezési fehérjeszekvencia kikövetkeztetett funkciójának magas megbízhatósági szintjét is jelenti. Tehát a vizsgált szekvencia ugyanabba a fehérje családba tartozik, mint az eredményként kapott domén modell és funkciójuk is nagy bizonyossággal egyezik. A doménspecifikus küszöbérték az eredményül kapott domén-modellhez viszonyítva futtatott keresési művelet során önmagukat érő találatai közül a leggyengébb E-érték. A nem specifikus találat esetén az RPS-BLAST eléri, vagy éppen meghaladja a statisztikai szignifikáns küszöbértéket (alapértelmezett E-érték küszöbértéke 0,01). A szupercsalád egy doménklaszter, amely specifikus és nem specifikus találatokat is tartalmaz. A szekvenciahasonlóság alapján a szupercsalád klasztereken keresztül következtethetünk a funkcióra, szerkezetre és a származásra. A multidomén fehérjékben különböző domén típusok kombinációt azonosíthatjuk (Marchler-Bauer és mtsai., 2015).

4. Anyag és módszer

4.1 Vizsgálatok helye és ideje

A vizsgálatokat 2009 és 2014 között a Budapesti Corvinus Egyetem Kertészettudományi Kar, Növénykórtani Tanszékének laboratóriumában végeztük.

4.2 Vizsgálatok anyaga

4.2.1 Begyűjtött vírusizolátumok

Munkánk során 22 különböző izolátumot gyűjtöttünk 4 országból (1. táblázat). A minták minden esetben burgonya csúcsi leveléből származtak.

1. táblázat A begyűjtött PVS izolátumok jellemzői (POL-Lengyelország, HUN-Magyarország,

IzolátumSzármazási helyGazdanövényEwaPOLSolanum tuberosum cv. LeonaBonitaHUNSolanum tuberosum cv. Bonita ojo (de) perdizDittaHUNSolanum tuberosum cv. Bonita ojo (de) perdiz

Ewa	POL	Solanum tuberosum cv. Leona
Bonita	HUN	Solanum tuberosum cv. Bonita ojo (de) perdiz
Ditta	HUN	Solanum tuberosum cv. Ditta
FabiloaA	HUN	Solanum tuberosum cv. Fabiola
FabilolaB	HUN	Solanum tuberosum cv. Fabiola
FabiolaC	HUN	Solanum tuberosum cv. Fabiola
Lady Rosetta	HUN	Solanum tuberosum cv. Lady Rosetta
Mayan Twilight	HUN	Solanum tuberosum cv. Mayan Twilight
Papa negra	HUN	Solanum tuberosum cv. Papa negra
Desiré	HUN, Keszthely	Solanum tuberosum cv. Desiré
06.62	HUN, Keszthely	Solanum sp. 06.62 klón
09.369	HUN, Keszthely	Solanum sp. 09.369 klón
09.539	HUN, Keszthely	Solanum sp. 09.539 klón
89.216	HUN, Keszthely	Solanum sp. 89.216 klón
89.217	HUN, Keszthely	Solanum sp. 89.217 klón
89.243	HUN, Keszthely	Solanum sp. 89.243 klón
89.249 (PVS-HU1)	HUN, Keszthely	Solanum sp. 89.249 klón
Boglarka	HUN, Nyírtelek	Solanum tuberosum cv. Boglárka
Kilimanjaro	TAN, Kilimandzsáró	Solanum sp.
Alex	UKR	Solanum tuberosum cv. Finka
Irena	UKR	Solanum tuberosum cv. Finka
Valery	UKR	Solanum tuberosum cv. Finka

4.2.2 Baktérium törzsek

A vizsgálatok során a rekombináns plazmidok klónozásához az általunk készített *Escherichia coli* DH5α, TG90 és JM109-es törzsek kompetens sejtjeit használtuk.

4.2.3 Plazmidok

A tisztított PCR-fragmenteket pGEM-T Easy (Promega) plazmid vektorba ligáltuk, melyet a Bio-Science Kft. szállított.

4.2.4 Oligonukleotid indítószekvenciák (primerek)

Az NCBI adatbázisban található burgonya S vírus nukleinsavszekvenciái alapján terveztük meg a primereket. A felhasznált oligonukleotidok szintézisét az IDT (Bio-Science Kft.) végezte. A primerek nevében a számok az AJ863509 azonosító számú vírusizolátum genomján elfoglalt helyüket jelölik. A teljes genom felszaporításához 6 primerpárt alkalmaztunk (2. táblázat). A hosszabb fragmentek nukleinsavszekvencia meghatározásához szekvenáló primerek használtunk (3. táblázat). A köpenyfehérje gén kimutatásához használt Nested PCR primereket a 4. táblázat foglalja össze.

4.2.5 Vegyszerek, enzimek, kitek

A kísérletek során felhasznált oldatokhoz és táptalajokhoz különböző, kereskedelmi forgalomban kapható vegyszereket használtunk (Duchefa, Merck, Sigma-Aldrich, Reanal, VWR). A reverz transzkriptázt, a DNS-polimerázt, a dezoxiribonukleotidokat (dNTP) a Biocenter Kft. (Thermo Scientific), a GelRed fluoreszcens festéket (Biotium) a Csertex Kft. szállította. Az RNS izoláláshoz a Spectrum[™] Plant Total RNA Kit-et a Sigma-Aldrich Kft.től, a PCR-fragment tisztításhoz, a High Pure Purification Kit-et a Roche (Magyarország) Kft.-től, a szekvencia meghatározásra küldött plazmidok tisztítására, a Quantum Prep Plasmid Miniprep Kit-et a Bio-Rad Magyarország Kft.-től szereztük be.

DOI: 10.14267/phd.2015051

2. táblázat A teljes genom vizsgálatokhoz tervezett primerek

Primer neve	Szekvencia	Olvadási hőmérséklet (Tm)	Szakasz		
	PVS1 régió: termék várható hossza 1602	bázis			
PVS1.for	5'-GATAAACACTCCCGAAAATAATT-3'	49,2 °C	5'UTR		
PVS1579.rev	5'-CCTTCTGTGCACATACTATCCACG-3'	57,3 °C	ORF1		
	PVS2 régió: termék várható hossza 1265	bázis			
PVS1530.for	5'-GCATAGATTTTCAGCGGATCAAGTT-3'	55,8 °C	ORF1		
PVS2776.rev	5'-CCCCTGTGAAGTGCGAGATG-3'	55,8 °C	ORF1		
	PVS3 régió: termék várható hossza 2115	bázis			
PVS2663.for	5'-GATGCCCACCACACACGAGA-3'	59,8 °C	ORF1		
PVS4764.rev	5'-GCTTCCCCAACTGCTTTGAAT-3'	56,2 °C	ORF1		
	PVS4 régió: termék várható hossza 1516	bázis			
PVS4508.for	5'-GATGAGGGCAAGAGAGAGTTCAA-3'	56,5 °C	ORF1		
PVS5995.rev	5'-CATCCATATATTCAATACTACTAAGCTGAT-3'	52,8 °C	ORF2		
	PVS5 régió: termék várható hossza 1308 bázis				
PVS5880.for	5'-GAGCGCATGTCAGAGGAGGAACT-3'	60,9 °C	ORF1		
PVS7161.rev	5'-TTACCTGTGAACCTAAAGGTGYTTCAAC-3'	58 °C	ORF5		
	PVS6 régió: termék várható hossza 1419	bázis			
PVS7094.for	5'-CCGGCTAGTCAATTGCGA-3'	55,2 °C	ORF5		
PolyT2.rev	5'CGGGGATCCTCGAGAAGCTTTTTTTTTTTTTTTTT-3'	60,3 °C	3'UTR		

DOI: 10.14267/phd.2015051

3. táblázat A teljes genom vizsgálatokhoz tervezett szekvenáló primerek

Primer neve	Szekvencia	Olvadási hőmérséklet (Tm)	Szakasz
PVS173.rev	5'-GTAGCAAAACCAGGCGAAGTTATC-3'	56,3 °C	ORF1
PVS3300.for	5'-GCAAGGATCATATTGAGCATTGTAAG-3'	54,4 °C	ORF1
PVS7914.for	5'-CCG TAG AGG GGC TCA TAC G-3'	57 °C	ORF5
PVS8393.rev	5'-TGCGAAACTCTGACTTTGCAC-3'	56,1 °C	3'UTR
M13.for	5'-TTT TTG CAT CAT GAG TTG GAC GAA CTC G-3'	59,6 °C	plazmid
M13.rev	5'-TGT AAA ACG ACG GCC AGT-3'	54,4 °C	plazmid

4. táblázat A köpenyfehérje vizsgálatokhoz tervezett primerek

Primer neve	Szekvencia	Olvadási hőmérséklet (Tm)	Szakasz		
Direkt PCR: termék várható hossza 1847 bázis					
PVS6666.for	5'-ATATTGTGCCCTGATGCCACTTAC-3'	57,3 °C	3'UTR		
PolyT2.rev	5'-CGGGGATCCTCGAGAAGCTTTTTTTTTTTTTTTT-3'	60,3 °C	3'UTR		
Nested PCR: termék várható hossza 1299 bázis					
PVS7094.for	5'-CCGGCTAGTCAATTGCGA-3'	55,2 °C	ORF5		
PVS8393.rev	5'-TGCGAAACTCTGACTTTGCAC-3'	56,1 °C	3'UTR		

4.3 Vizsgálatok módszere

4.3.1 Mechanikai átvitel

A teljes genom vizsgálatokhoz a begyűjtött burgonyanövények levelének présnedvével *N. debney* tesztnövényeket inokuláltuk, hogy a vírusizolátumokat felszaporítsuk. A növényi mintákhoz 1:5 arányban 0,05 M kálium-foszfát-puffert (62,3 g/l Na₂HPO₄·2H₂O; 20,4 g/l KH₂PO₄; pH: 7,2) adtunk és jégben hűtött dörzsmozsárban végzett homogenizálással állítottuk elő az inokulumot. Abrazívumként cellitet (10-40 μm) használtunk, mellyel megszórtuk a dohánynövények 3-3 levelét, majd a levelek felületét mechanikailag inokuláltuk a növényi szövetnedvvel.

4.3.2 Össznukleinsav-kivonás levélszövetből

Az összribonukleinsav-kivonást SpectrumTM Plant Total RNA Kit-tel végeztük, a gyártó utasítása szerint. A teljes genom vizsgálatokhoz a mintákat az inokulációt követő 3. héten, a dohány növények csúcsi leveleiből vettük. A köpenyfehérje vizsgálatok alkalmával közvetlenül a burgonyanövények csúcsi leveléből végeztük a kivonást. A mintákat az extrakció után felhasználásig -70 °C-on tároltuk.

4.3.3 RT-PCR

<u>cDNS szintézis</u>

Az össznukleinsav-kivonatból, mely a vírus RNS-eket is tartalmazta, az antiszenz primerek felhasználásával reverz transzkripció (RT) során állítottuk elő a PVS nukleinsavával komplementer cDNS első szálát.

	- 1	\mathbf{n}	- 1		c . /		•••	,
		11	111	wootor	togatu	voal	ZAINA	om?
л	1	17	uı	VESIEI	почини	reur	<i>u</i> i o e i	EZV.
		~						- 02 -

össznukleinsav	4 µl
100 μM-os antiszenz primer	1 µl
5X RT puffer (250 mM Tris-HCl (pH 8,3, 25°C-on), 375 mM KCl, 15 mM MgCl2, 50 mM DTT)	2 µl
5 mM-os dNTP Mix	1 µl
RevertAid [™] Premium Reverse Transcriptase (200 u/µl)	0,5 µl
RiboLock™ RNase Inhibitor (40 u/µl)	0,25 µl
desztillált víz	1,25 µl

Az össznukleinsavat az antiszenz primer jelenlétében 65 °C-on 5 percig inkubáltuk, majd az elegyet 5 percen keresztül jégen hűtöttük. Ezt követően adtuk hozzá a reakcióelegy

többi komponensét, ezután 30 percen át tartó reverz transzkripció következett 50 °C-on, majd 85 °C-on 5 perc alatt inaktiváltuk az enzimet. A cDNS-t felhasználásig -20 °C-on tároltuk.

<u>PCR</u>

A cDNS szintézist követően a vírusgenomot hat átfedő régióban megsokszoroztuk a PCR optimalizálásával, a 2. táblázatban szereplő antiszenz és szenz primerek segítségével. A teljes genom vizsgálatokhoz használt PCR-ek paramétereit az 5. táblázat, míg a köpenyfehérje vizsgálatához használt PCR-ek paramétereit, mely egy direkt és egy Nested PCR-ből áll, a 6. táblázat szemlélteti. A PCR-t Applied Biosystems GeneAmp PCR System 9700 és Eppendorf Mastercycler Nexus Gradient készülékben végeztük.

A PCR-analízis 50 µl végtérfogatú reakcióelegye:

cDNS	3 µl
10x Taq puffert (750 mM Tris-HCl pH: 8,8;	5 µl
200 mM (NH ₄)SO ₄ ; 0,1 % Tween 20) 25 mM-os MgCl ₂	3 µl
5 mM-os dNTP Mix	2 µl
20-20 µM-os antiszenz és szenz primer	1-1 µl
Taq DNS polimeráz (5 u/µl)	0,5 µl
desztillált víz	34,5 µl

4.3.4 Gélelektroforézis

A PCR-terméket GelRed nukleinsavfestéket tartalmazó 1%-os TBE-agaróz gélben, 1xTBE elektroforézis-puffer (89 mM Tris-HCl; 89 mM bórsav; 2 mM EDTA pH: 8,3) jelenlétében választottuk el, és áteső UV fényben tettük láthatóvá (UVP, BioDoc-ItTM System).

4.3.5 Gélből izolálás és PCR-termék tisztítás

A gélelektroforézissel szétválasztott termékekből a kívánt hosszúságú fragmenteket steril szikével vágtuk ki, hogy a képződött aspecifikus termékeket eltávolítsuk. A gélből izolált PCR-termékeket a High Pure Purification Kittel tisztítottuk a gyártó utasításainak megfelelően.

4.3.6 A PCR-termékek klónozása

A tisztított PCR-terméket ampicillin rezisztenciagént tartalmazó pGEM-T Easy Vektorba kapcsoltuk. A ligálás (az inzert és a plazmid összekapcsolása) egy éjszakán át, 4 °C- on történt.

A 10 µl végtérfogatú reakcióelegy:

tisztított PCR-termék	3 µl
pGEM-T Easy Vektor (25 ng/µl)	1 µl
2x ligáz puffert (60 mM Tris-HCl (pH: 7,8); 20 mM MgCl ₂) 20 mM DTT; 2 mM ATP; 10% PEG)	5 µl
2,5 u T4 DNS ligáz (2,5 u/ μl)	1 µl

A ligálást követően a rekombináns plazmidot *E. coli* DH5α, vagy TG90-es, vagy JM 109-es kompetens sejtekbe juttattuk (transzformálás). A kompetens sejtek előállítását és a hősokkos transzformálást Sambrook és munkatársai (1989) által kidolgozott módszer szerint végeztük. A 10 µl ligátumot 50 µl, 10 percig jégen kiolvasztott kompetens baktériumszuszpenzióval elegyítettük, majd 20 percen keresztül jégen tartottuk. Ezután 1 percen keresztül 42 °C-os száraz blokkos termosztátban inkubáltuk, majd 2 percig jégre helyeztük, utána 300 µl antibiotikum-mentes, folyékony LB táptalaj (10 g/l tripton; 5 g/l élesztőkivonat; 10 g/l NaCl; pH: 7,2) hozzáadását követően 1 órán keresztül rázattuk, 37 °C-on, 200 rpm fordulatszámmal. Ezt követően 100 µl-nyi szuszpenziót ampicillin tartalmú szilárd LB/IPTG+X-Gal táptalajon szélesztés előtt a lemez felszínén 10 µl (100 mM/ml) IPTG-t és 40 µl (20 mg/ml) X-Galt oszlattunk szét).

A kész lemezeket egy éjszakán keresztül 37 °C-on inkubáltuk. A táptalajon csak azok a baktérium sejtek tudtak felszaporodni, melyek ampicillin rezisztenciagént hordoztak. A ligálás sikerességét kék-fehér szelekcióval ellenőriztük. Azok a baktériumkolóniák, melyekben az inzert beépülése megtörtént és így a plazmidban lévő enzim működésképtelenné vált, fehér színűek lettek, míg azok, amelyekben az inzert nem épült be a plazmidba, kék színűek voltak. Ezek után steril fogpiszkáló segítségével, minden lemezről 4-6 db fehér színű telepet oltottunk le. A fogpiszkálóval egy kolóniát leemeltünk, amit egy masterplate-hez érintettünk, majd 2 ml 50 μl/ml ampicillin tartalmú, folyékony LB táptalajt tartalmazó üvegcsőbe tettünk. A lezárt üvegcsövet egy éjszakán át, 37 °C-on rázattuk, 200 rpm fordulatszámmal. Az eredeti kolóniák felszaporítását szolgáló masterplate-et egy éjszakán keresztül, 37 °C-on inkubáltuk.
5. táblázat A teljes genom vizsgálatokhoz használt PCR-ek paraméterei

	Elődenaturálá	is	Denaturálás		Anellálás		Elongáció		Utóelongáció	
	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő
PVS1 régió					50 °C			1,5 perc		
PVS2 régió										
PVS3 régió	04 °C	5 perc	04.90	0,5 perc	56 °C	0.5 mana	72 °C	2 perc	72 °C	7
PVS4 régió	94 °C		94 °C			0,5 perc			/2 °C	/ perc
PVS5 régió					58 °C			1,5 perc		
PVS6 régió					55 °C			1,5 perc		
									,	
40x										

6. táblázat A köpenyfehérje vizsgálatához használt PCR-ek paraméterei

	Elődenaturálás				Anellálás		Elongáció		Utóelongáció		
	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő	Hőmérséklet	Idő	
Direkt PCR	04.90	5	04.90	0.5 mana	50 °C	0.5 marra	72 %	2 perc	72 %	7	
Nested PCR	94 °C	5 perc	94 °C	0,5 perc	55 °C	0,5 perc	72 °C	1,5 perc	/2 °C	/ perc	
									ſ		

35x

4.3.7 A plazmid tisztítása és az inzert ellenőrzése

A sikeres ligálás ellenőrzéséhez kolónia PCR-t végeztük, vagy a plazmidot Sambrook és munkatársai (1989) által kidolgozott módszer szerint izoláltuk. A kolónia PCR primerei és paraméterei szintén a 2. és az 5. táblázatban találhatók. A masterplate-ről steril fogpiszkálóval a megfelelő PCR-elegybe helyeztünk a rekombináns plazmidokat hordozó baktériumokból. Az eredményt gélelektroforézissel értékeltük.

A baktériumkolóniákból a rekombináns plazmidokat alkalikus lízisen alapuló minipreparátum módszerrel (Sambrook és mtsai., 1989) tisztítottuk, a következőképpen: A baktérium sejtkultúrákat az egész éjszakán keresztül tartó, 37 °C-on történő rázatást követően Eppendorf csőbe töltöttük, és 3 perces (szobahőmérsékleten, 13 400 rpm fordulatszámon) centrifugálást követően a felülúszót eltávolítottuk. A pellethez, ami a baktériumsejteket tartalmazza 200 µl "A" oldatot (sejt szuszpendáló oldat: 15 mM Tris-HCl pH: 8,0; 10 mM EDTA; 50 mM glükóz) adtunk, és 5 percig állni hagytuk. A továbbiakban 400 µl "B" oldatot (sejt lizáló oldat: 0,2 M NaOH, 1% SDS) adtunk az elegyhez és kézi rázás útján biztosítottuk az elegy homogenitását. A következő lépésként 300 µl "C" oldatot (semlegesítő oldat: 3 M nátrium-acetát; 11,5% ecetsav) adtunk az Eppendorf cső tartalmához és kézi rázást követően 5 percen keresztül jégen hagytuk, majd 5 perces centrifugálással távolítottuk el a felesleges sejtalkotókat. A centrifugálást követően a felülúszót tiszta Eppendorf csőbe helyeztük, majd 5 perces centrifugálás következett. A felülúszót tiszta csőbe öntöttük, majd 600 µl izopropanolt adtunk az elegyhez, kézi rázással biztosítottuk a DNS kicsapódását, majd újabb 5 perces centrifugálás következett. A felülúszó elöntése után 200 µl "D" oldatot (0,1 M nátrium-acetát pH: 7,0; 50 mM Tris-HCl pH: 8,0) adtunk a pellethez, majd 5 percig állni hagytuk. A kézi rázást követően 400 µl abszolút etanol hozzáadásával ismételten biztosítottuk a nukleinsavak kicsapódását. Újabb 5 perces centrifugálás következett, majd a felülúszót elöntöttük, a pelletet pedig 15 percig vákuum koncentrátorban szárítottuk. A szárítást követően a pelletet 25 µl RNáz TE-ben (10 mM Tris pH: 7,6; 1 mM EDTA; 10 µl (10 mg/ml) RN-áz) oldottuk vissza.

Az inzert beépülésének sikerességét FastDigest *Eco*RI (10 perc, 37 °C inkubálás) enzimmel történő hasítást követően 1%-os TBE agaróz gélen való futtatással ellenőriztük.

4.3.8 Klónok tisztítása szekvenálásra

A szekvenálásra kiválasztott klónokat a masterplate-ről, 3x2 ml 50 µl/ml ampicillin tartalmú, folyékony LB táptalajt tartalmazó üvegcsőbe tettük. A lezárt üvegcsövet egy éjszakán át, 37 °C-on rázattuk, 200 rpm fordulatszámmal. Szekvenciameghatározáshoz a plazmidot

Quantum Prep Plasmid Miniprep Kittel a gyártó utasításainak megfelelően izoláltuk. A tisztított plazmidok koncentrációját NanoDrop 2000c spektrofotométerrel mértük. A tisztított klónok nukleotidszekvenciáját Szegeden BAY-GEN Növénygenomikai, Humán Biotechnológiai és Bioenergiai Intézetben határoztattuk meg.

4.3.9 Bioinformatikai vizsgálatokhoz felhasznált programok

Vizsgálataink során az NCBI-ban megtalálható összes PVS köpenyfehérje-szekvenciát felhasználtuk (1. melléklet) a szekvenciaanalízishez. A *Carlavirus* nemzetség vizsgálatához használt szekvenciák jellemzőit a 2. melléklet tartalmazza.

Szekvenciaanalízis

A szekvenciák összeillesztéséhez és elemzéséhez a CLC Sequence Viewer 7.6, illetve a CLC Main Workbench (QIAGEN, Aarhus) software csomagot használtuk. A Neighbor Joining (NJ), UPGMA (Unweighted Pair Group Method) analíziseket használtuk a filogenetikai törzsfák készítésekor a Jukes-Cantor korrekciós ráta figyelembe vételével (Jukes és Cantor, 1969). A filogenetikai vizsgálatok során a statisztikai megbízhatóságot a program 1000 ismétlést alkalmazó bootstrap analízise biztosította. Hidrofóbicitás értékeket a Kyte és Doolittle képlet alapján számítja program, 9 aminosav ablak szélességgel (Kyte és Doolittle, 1982).

Rekombinációs vizsgálatok

A potenciális rekombinációs események detektálására az RDP4.39 Beta programot használtuk (Martin és mtsai., 2010). A program által használt módszereket (RDP, Chimaera, BootScan, 3Seq, GENECONV, MaxChi, és SiScan) az alapértelmezett paraméterekkel alkalmaztuk (ablak méret = 200 nt, ablak elmozdulásának mérete = 20 nt) 95%-os szignifikanciaszinten (Boni és mtsai., 2007; Gibbs és mtsai., 2000; Martin és Rybicki, 2000; Martin és mtsai., 2005; Maynard Smith, 1992; Padidam és mtsai., 1999; Posada és Crandall; 2001).

Konzervált domén detektálás

A konzervált domén detektálást a CDD v3.13 programmal végeztük, mely a <u>http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi</u> internetes címen elérhető. A CDD a RPS-BLAST-ot (Reverz Pozíciós-Specifikus Blast) használja, melyet az alapbeállításokkal alkalmaztunk (Marchler-Bauer és mtsai., 2015).

5. Eredmények

5.1 A begyűjtött PVS izolátumok molekuláris jellemzése

5.1.1 A CP régió molekuláris jellemzése

A munkánk során 22 PVS izolátumot gyűjtöttünk 4 országból. Az általunk kidolgozott Nested PCR módszer alkalmasnak bizonyult a PVS detektálására (5. ábra). A módszer segítségével felszaporítottuk a köpenyfehérje régiót tartalmazó szakaszt és meghatároztattuk a nukleitidsorrendjüket.

A köpenyfehérjét kódoló ORF5 régió minden izolátumunk esetében 885 nukleotid hosszú a stop kodonnal együtt. A régióról transzlálódó köpenyfehérje 294 aminosavból áll és megközelítőleg 33 kDa nagyságú. A fehérjéknek csak az N-terminális végén az első 38 aminosav változékony, a közepüknél összesen 5 pozícióban figyelhető meg aminosav eltérés, míg a C-terminális végük homológ. Az Ukrajnából gyűjtött izolátumok köpenyfehérje génje teljesen azonos, viszont 10 nukleotidban különböznek az egymással homológ Desirè-től és Lady Rosseta-tól. Az ukrán izolátumokhoz legjobban a 'Papa negra' burgonyafajtából származó izolátum hasonlít legjobban, 98,98% azonossággal, ami 9 nukleotid eltérést jelent. Nukleinsav szinten a legnagyobb eltéréseket a Bonita, a Boglarka és az Afrikából gyűjtött Kilimanjaro izolátumok mutatták. A Bonita 63 nukleotidban tér el a 89.243, a 89.249 és a 09.539 izolátumoktól. Sok nukleotideltérés nem nyilvánul meg aminosav változásban. Így az ukrán izolátumok köpenyfehérjéje homológ a 89.217-vel, a Desirè-vel és a Lady Rosseta-val. A FabiolaA köpenyfehérje aminosav-szekvenciája megegyezik a FabiolaB-ével, míg a Boglarka, a Kilimanjaro és a 09.369 köpenyfehérjéje is teljesen azonos (6. és 7. ábra).

A filogenetikai törzsfán a begyűjtött izolátumaink köpenyfehérje gén alapján két jól elkülönülő csoportot, a Bonita pedig egy külön ágat alkot. A kisebb, 5 izolátumból álló

csoportban közeli rokonságot feltételezünk a 09.369 és a Boglarka között, de ide tartozik még a Ditta és a távolabb elhelyezkedő Ewa. A másik csoportban 3 alcsoportba rendeződnek az izolátumok. A FabiolaA és FabiolaB közeli rokonságot mutat a törzsfán. A másik két csoport közül egyiket a Lady Rossetta-val együtt keszthelyi izolátumok alkotják, míg a másikat az ukránokkal a Papa negra, a Mayan Twilight, a FabiolaC és a 89.216 (8. ábra).

A saját 22 izolátumunkat összehasonlítottuk az NCBI adatbázisban található 107 PVS teljes köpenyfehérje génnel. A CP vizsgálatokhoz felhasznált PVS izolátumok jellemzőit a 3. melléklet tartalmazza. A GU369814 azonosítójú szekvenciai pontatlanul szerepel az adatbázisban, mert a 645. pozícióban található guanin felesleg miatt a leolvasási keret elcsúszik. A hibát javítottuk és a vizsgálatainkhoz az izolátumot így használtuk fel. A fehérje vizsgálatakor a 8. aminosav pozícióban a törzsre jellemző aminosavakat detektáltunk, ez a közönséges törzs esetében treonin, míg az andesi törzs esetében szerin.

A köpenyfehérje génre elkészítettük a filogenetikai törzsfát, melyen a PVS két törzse két jól elkülöníthető csoportot alkot. A PVS^A törzs tagjai esetében a kolumbiai RVC Andean izolátum (JX419379) külön ágon helyezkedik el, a többi izolátum pedig 3 csoportot (PVSA-1, PVSA-2, PVSA-3) képez. A közönséges törzsön belül két külön csoportot (PVSO-1, PVSO-2) és mindegyiken belül két alcsoportot (PVSO-1A, PVSO-1B, PVSO-2A, PVSO-2B) különböztethetünk meg. A PVSO-n belül a koreai U74376, az angol S45593 és az iráni HQ875138 izolátumot nem soroltuk külön csoportba, mert külön ágon helyezkednek el. A közönséges törzsön belül a saját izolátumaink elszórtan helyezkednek el. A Bonita a törzsön belül egy külön ágat képez a törzsfán. A PVSO-1A csoportot ausztrál izolátumok alkotják egy kínai (AJ889246) izolátummal. A csoportban egy saját izolátumunk sem helyezkedik el. PVSO-1B csoportban az Ewa legközelebbi rokonságot egy kínai (AY512653) és két olyan holland izolátummal (GU319953, GU319952) mutat, amelyek a közönséges törzsbe tartoznak, de még is szisztemizálódnak Chenopodium fajokon. A Ditta szintén ebben az alcsoportban helyezkedik el és közeli rokonságot mutat az Egyesült Királyságból és Ausztráliából származó izolátumokkal. A Keszthelyről származó 09.369, a Nyírtelekről gyűjtött Boglarka és a Tanzániában gyűjtött Kilimanjaro izolátumok a PVSO-1B alcsoporton belül egymáshoz közel helyezkednek el a törzsfán. Közvetlen közelükben főleg amerikai izolátumok találhatók és közeli rokonságot feltételezünk még a kínai JX183950 izolátummal. A PVSO-2A alcsoportot 2 iráni (HQ875138, HQ875135), 3 indiai (GU369814, DQ786653, GU256061) és egy az Egyesült Királyságból származó (GU144328) izolátum alkotja. Az izolátumaink többsége a PVSO-2B alcsoportban helyezkedik el. Az alcsoportban külön ágon helyezkedik el, közeli rokonsági viszonyban, a FabiolaA és FabiolaB. A törzsfán is megfigyelhető, hogy a Desirè és a Lady Rosseta köpenyfehérje gén szekvenciája homológ. Hozzájuk közeli rokonságban a 06.62, 89.217, 89.249, 89.234, 09.539 keszthelyi izolátumok állnak. A FabiolaC az iráni HQ875137 izolátumhoz áll legközelebbi rokonságban. A Papa negra és a Mayan Twilight 6 iráni, és 1 szíriai (AB364945) izolátummal mutatnak nagyfokú egyezést (9. ábra).

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Desiré	1		100,00	99,55	99,55	98,87	98,98	98,98	98,98	98,87	98,87	98,87	99,10	98,98	98,87	97,63	97,40	94,69	94,24	94,46	96,95	95,03	93,67
Lady Rosetta	2	0		99,55	99,55	98,87	98,98	98,98	98,98	98,87	98,87	98,87	99,10	98,98	98,87	97,63	97,40	94,69	94,24	94,46	96,95	95,03	93,67
06.62	3	4	4		99,32	98,64	98,76	98,76	98,76	98,42	98,42	98,42	98,64	98,76	98,64	97,18	96,95	94,46	94,01	94,24	96,72	94,80	93,45
89.217	4	4	4	6		98,42	98,53	98,76	98,76	98,42	98,42	98,42	98,64	98,53	98,42	97,18	96,95	94,69	94,01	94,46	96,72	94,58	93,33
Mayan Twilight	5	10	10	12	14		99,89	97,85	97,85	98,87	98,87	98,87	98,64	98,31	98,64	97,40	97,18	94,01	93,56	93,79	96,27	94,35	93,45
Papa negra	6	9	9	11	13	1		97,97	97,97	98,98	98,98	98,98	98,76	98,42	98,76	97,51	97,29	94,12	93,67	93,90	96,38	94,46	93,56
89.243	7	9	9	11	11	19	18		99,77	97,85	97,85	97,85	98,08	97,97	97,85	96,72	96,50	94,12	93,67	93,67	95,93	94,01	92,88
89.249	8	9	9	11	11	19	18	2		97,85	97,85	97,85	98,08	97,97	97,85	96,72	96,50	93,90	93,45	93,45	95,93	94,01	92,88
Alex	9	10	10	14	14	10	9	19	19		100,00	100,00	98,64	98,08	98,64	97,40	97,18	94,24	93,79	94,01	96,50	94,58	93,45
Irena	10	10	10	14	14	10	9	19	19	0		100,00	98,64	98,08	98,64	97,40	97,18	94,24	93,79	94,01	96,50	94,58	93,45
Valery	11	10	10	14	14	10	9	19	19	0	0		98,64	98,08	98,64	97,40	97,18	94,24	93,79	94,01	96,50	94,58	93,45
FabiolaC	12	8	8	12	12	12	11	17	17	12	12	12		98,31	98,64	98,53	98,31	94,46	94,01	94,46	96,95	95,03	93,90
09.539	13	9	9	11	13	15	14	18	18	17	17	17	15		98,08	96,84	96,61	94,01	93,56	93,79	96,16	94,46	92,88
89.216	14	10	10	12	14	12	11	19	19	12	12	12	12	17		97,40	97,18	94,01	93,56	93,79	96,27	94,58	93,56
FabiloaA	15	21	21	25	25	23	22	29	29	23	23	23	13	28	23		99,55	94,12	93,67	94,01	96,50	94,46	93,56
FabilolaB	16	23	23	27	27	25	24	31	31	25	25	25	15	30	25	4		93,90	93,67	93,79	96,27	94,24	93,33
09.369	17	47	47	49	47	53	52	52	54	51	51	51	49	53	53	52	54		98,98	98,98	97,51	95,93	94,01
Boglarka	18	51	51	53	53	57	56	56	58	55	55	55	53	57	57	56	56	9		98,19	97,06	95,48	93,79
Kilimanjaro	19	49	49	51	49	55	54	56	58	53	53	53	49	55	55	53	55	9	16		97,51	95,48	93,79
Ditta	20	27	27	29	29	33	32	36	36	31	31	31	27	34	33	31	33	22	26	22		97,29	96,27
Ewa	21	44	44	46	48	50	49	53	53	48	48	48	44	49	48	49	51	36	40	40	24		94,69
Bonita	22	56	56	58	59	58	57	63	63	58	58	58	54	63	57	57	59	53	55	55	33	47	

6. ábra Saját PVS izolátumok köpenyfehérje génjének nukleinsav szintű páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
89.217	1		100,00	100,00	100,00	100,00	100,00	99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
Alex	2	0		100,00	100,00	100,00	100,00	99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
Desiré	3	0	0		100,00	100,00	100,00	99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
Irena	4	0	0	0		100,00	100,00	99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
Lady Rosetta	5	0	0	0	0		100,00	99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
Valery	6	0	0	0	0	0		99,66	99,66	99,66	99,32	99,66	99,66	99,32	98,98	98,98	99,32	98,98	98,30	97,62	97,62	97,62	96,94
09.539	7	1	1	1	1	1	1		100,00	100,00	99,66	99,32	99,32	98,98	98,98	98,98	99,32	98,64	97,96	97,62	97,62	97,62	96,60
Mayan Twilight	8	1	1	1	1	1	1	0		100,00	99,66	99,32	99,32	98,98	98,98	98,98	99,32	98,64	97,96	97,62	97,62	97,62	96,60
Papa negra	9	1	1	1	1	1	1	0	0		99,66	99,32	99,32	98,98	98,98	98,98	99,32	98,64	97,96	97,62	97,62	97,62	96,60
06.62	10	2	2	2	2	2	2	1	1	1		99,66	98,98	98,64	98,64	98,64	98,98	98,30	97,62	97,28	97,28	97,28	96,26
89.216	11	1	1	1	1	1	1	2	2	2	1		99,32	98,98	98,64	98,64	98,98	98,64	97,96	97,28	97,28	97,28	96,60
89.243	12	1	1	1	1	1	1	2	2	2	3	2		99,66	98,64	98,64	98,98	98,64	97,96	97,28	97,28	97,28	96,60
89.249	13	2	2	2	2	2	2	3	3	3	4	3	1		98,30	98,30	98,64	98,30	97,62	96,94	96,94	96,94	96,26
FabiloaA	14	3	3	3	3	3	3	3	3	3	4	4	4	5		100,00	99,66	98,64	97,62	97,28	97,28	97,28	96,94
FabilolaB	15	3	3	3	3	3	3	3	3	3	4	4	4	5	0		99,66	98,64	97,62	97,28	97,28	97,28	96,94
FabiolaC	16	2	2	2	2	2	2	2	2	2	3	3	3	4	1	1		98,98	97,96	97,62	97,62	97,62	96,94
Ditta	17	3	3	3	3	3	3	4	4	4	5	4	4	5	4	4	3		98,98	98,30	98,30	98,30	97,96
Ewa	18	5	5	5	5	5	5	6	6	6	7	6	6	7	7	7	6	3		98,30	98,30	98,30	96,94
09.369	19	7	7	7	7	7	7	7	7	7	8	8	8	9	8	8	7	5	5		100,00	100,00	96,26
Boglarka	20	7	7	7	7	7	7	7	7	7	8	8	8	9	8	8	7	5	5	0		100,00	96,26
Kilimanjaro	21	7	7	7	7	7	7	7	7	7	8	8	8	9	8	8	7	5	5	0	0		96,26
Bonita	22	9	9	9	9	9	9	10	10	10	11	10	10	11	9	9	9	6	9	11	11	11	-

7. ábra Saját PVS izolátumok köpenyfehérjének aminosav szintű páronkénti összehasonlítása (azonosság %, aminosav különbség db)

8. ábra Saját PVS izolátumok köpenyfehérje génjének nukleinsav szintű filogenetikai törzsfája (UPGMA)

9. ábra PVS izolátumok köpenyfehérje génjének filogenetikai törzsfája (UPGMA), zöld keretben jelölve a saját izolátumok

5.1.2 A teljes genomok molekuláris jellemzése

Három magyar, három ukrán és egy lengyel PVS izolátum teljes genomját hat átfedő régióban (PVS1-PVS6) megsokszoroztuk PCR-technika segítségével (10. ábra). Az ábrán látható hosszúságú fragmentumokat klónoztuk és M13.for, M13.rev, illetve bizonyos esetekben PVS specifikus szekvenáló primerekkel meghatároztattuk bázissorrendjüket. A kapott elektroferogrammokat a CLC Main Workbench programmal jelenítettük meg, majd az NCBI adatbázisban megtalálható szekvenciákkal illesztettük. Az így kapott szekvencia illesztésből összeállítottuk a 7 teljes hosszúságú szekvenciát. Az általunk kidolgozott módszer lehetőséget nyújt a PVS genomok szekvenciájának gyors és egyszerű meghatározására.

 ábra A teljes *Potato virus S* (PVS) genomot lefedő szakaszok (A) 89.249 izolátum hat régióban felszaporított genomjának gélelektroforézis fotója, (B) a PVS teljes genomját lefedő régiók sematikus ábrája

A vizsgált izolátumok mindegyike az Ewa kivételével 8485 nukleotid hosszúságú (Ewa: 8482 nt). Minden vizsgált izolátum genomjának 5'-végén 62 nukleotid hosszú nem transzlálódó régió (5' UTR) helyezkedik el, majd 6 nyílt leolvasási keret következik. Az ORF1 5928 nukleotid (63-5990 nt) hosszú, az Ewa izolátumnál ez a szakasz 5925 nukleotid

hosszúságú (63-5987 nt). Az ORF2 732 nukleotid hosszú és 14 bázisos átfedésben van az ORF1-gyel. Az ORF3 327 nukleotid és 23 nukleotid az átfedés az ORF2-vel, míg az ORF4 a legrövidebb nyílt leolvasási keret 198 nukleotid hosszú és 37 nukleotid átfedésben van az ORF3-mal. Az ORF5-nél két lehetséges start kodont figyeltünk meg. Az első 6969. (Ewa: 6966.), a második pedig 249 nukleotiddal a 3' vég irányába a 7218. (Ewa: 7215.) pozícióban helyezkedik el a genomon. Az ORF6 285 nukleotid hosszú és szintén átfedésben (4 nt) van az előtte lévő szakasszal. Az izolátumok a 3'UTR-t (102 nt) követően poliadenilált véggel rendelkeznek.

A vizsgált 7 saját izolátum teljes genomját összehasonlítottuk az NCBI adatbázisban található teljes genom szekvenciával rendelkező PVS izolátumokkal (7. táblázat). A filogenetikai vizsgálat során a törzsfán az izolátumok két ágon helyezkednek el. A kékkel jelölt csoportban az andesi törzsbe (PVS^A) tartozók, míg a sárgával jelölt csoportban a közönséges törzshöz (PVS^O) tartozó izolátumok találhatók. A két csoport között, a közönséges törzshöz közelebbi rokonságot mutatva, helyezkedik el Vltava izolátum. Ennek az izolátumnak külön PVS^{REC} elnevezésű csoportot alkottunk. PVS^A csoportba tartozó két izolátumnál a filogenetikai fa ágának hosszából arra következtetünk, hogy a rokonság igen távoli a fajon belül. A PVS^O csoporton belül két alcsoport rajzolódik ki. Az 'A' csoportban, melyben a Bonita is megtalálható, a 09.369 közeli rokonságot mutat a két amerikai izolátummal. A 'B' csoportban az ukrán izolátumaink szoros rokonságot mutatnak a lengyel Ewa izolátumunkkal és közös rokonságot feltételezhetünk a 89.249 izolátumunkkal és a Leona őseivel (11. ábra).

7. táblázat A teljes genomelemzéshez használt PVS izolátumok jellemzői (GER-Németország,
CZE-Cseh Köztársaság, USA-Amerikai Egyesült Államok, BRA-Brazília, COL-Kolumbia, CHN-
Kína, AUS-Ausztrália)

NCBI azonosító	Törzs	Izolátum	Származási hely	Gazdanövény
AJ863509	PVS ^O	Leona	GER	Solanum tuberosum cv. Leona
AJ863510	PVS^{A} ?	Vltava	CZE	Solanum tuberosum cv. Vltava
FJ813512	PVS ^O	WaDef-US	USA	Solanum tuberosum cv. Defender
FJ813513	PVS ^O	Id4106-US	USA	Solanum tuberosum clone LBR 4106
JQ647830	PVS ^A	BB-AND	BRA	Solanum tuberosum
JX419379	PVS ^A	RVC Andean	COL	Solanum phureja var. Criolla Colombia
KC430335	PVS ^O	Yunnan YN	CHN	Solanum tuberosum
KP089978	PVS ^O	SW-14	AUS	Solanum tuberosum cv. Royal Blue

11. ábra PVS teljes genomok filogenetikai törzsfája (UPGMA)

A páronkénti összehasonlítás alkalmával az ukrán izolátumok között nagyfokú azonosságot figyeltünk meg (99,81-99,71%), mindössze 16 illetve 25 bázis eltérés van a teljes genomukban. Az Ewa esetében is az ukrán izolátumokkal a legnagyobb az azonosság, melyet a törzsfán is megfigyelhettünk (97,04-96,94%, 251-260 nt eltérés). A 89.249 a legnagyobb azonosságot az Alex-szel (95,56%), a másik két ukrán (95,45%; 95,43%) és a lengyel izolátummal (93,41%) figyeltünk meg, míg a másik két magyar izolátummal (09.369, Bonita) 92, 65%, illetve 92,29% az azonosság. A Bonita és a 09.369 izolátumok között 93,93% az azonosság, mely 515 báziseltérést jelent. Minden általunk vizsgált izolátum esetében a két PVS^A törzsbe tartozó izolátummal tapasztaltuk a legnagyobb különbséget, ami 1825-1787 nukleotid eltérést jelent (78,59-79,04% azonosság). A páronkénti összehasonlítás eredményét a 3. melléklet szemlélteti.

5.1.3 Az ORF1 régió jellemzése

Az ORF1 a leghosszabb nyílt leolvasási keret a PVS genomon, melyről a replikáz fehérje transzlálódik. A vizsgált izolátumok esetében a régióról átíródó fehérje 1975 aminosavból áll és megközelítőleg 223 kDa nagyságú (222,769-223,435 kDa). Ennek a fehérjének kiugróan magas a leucin tartalma, több mint 10%. A második leggyakoribb aminosav az alanin (~7,75%) (12.ábra).

Az Ewa izolátumban egy nukleotid triplet deléció található a 432. nukleotid után, mely sem a többi általunk vizsgált, sem az NCBI-ban található izolátumban nem megfigyelhető. Ez a deléció a replikáz 124. aminosav pozíciójában egy tirozin hiányát eredményezi. A vizsgált izolátumok ebben a régióban mind nukleinsav, mind aminosav szinten nagyon hasonlóak. A PVS^O törzsbe tartozó izolátumok a nukleotid szintű páronkénti összehasonlítása alkalmával legalább 91%-os azonosságot figyeltünk meg, míg a PVS^A törzs tagjaival csupán 77%-osat. A legnagyobb eltérést az izolátumaink között a 89.249 mutat, amelynél az ukrán izolátumokkal 94,5% körüli, viszont a többi izolátumunkkal csupán 92%, vagy az alatti a nukleinsav azonosság. A fehérjét vizsgálva ez az izolátum az Alex-től 90 aminosavban, a 09.369 izolátumtól 127 aminosavban különbözik. Az ukrán izolátumok csupán ebben a régióban különböznek egymástól. Az Alex a Valery-től és az Irena-tól 25-25 bázissal tér el, ami fehérje szinten 10 és 11 aminosav különbséget jelent. A Valery és Irena izolátumok között 16 nukleotid az eltérés, amely 13 aminosav eltérés jelent. Az ukrán lengyel izolátumok esetében megfigyelhető jellemző aminosavmotívumok és (S475I619T688L794N862), melyek szintén közös származásra utalnak. Ezeknél az izolátumoknál a 223K fehérjében az azonosság magasabb fokú az N-terminális véghez közelebb eső részen. Aminosav szinten a páronkénti összehasonlítás magasabb azonossági értékeket eredményezett, már a PVS^A törzs tagjainál is meghaladja a 80%-ot (4. és 6. melléklet). Az ORF1 régió nukleotid szintű filogenetikai törzsfája azonos rokonsági viszonyokat mutat, mint a teljes genom vizsgálatánál tapasztaltunk (5. melléklet). Aminosav szinten viszont a kolumbiai RVC Andean izolátum külön ágon helyezkedik el, a többi izolátum replikázával távoli rokonságot mutatva (7. melléklet).

Az NCBI GenBank konzervált domén adatbázisával (CDD) összevetve a 223K fehérjén 6 domént detektáltunk, melyből 3 specifikus és 3 nem specifikus találat. Ha egy fehérjeszekvencia specifikus találatot ad, akkor magas annak a megbízhatósági szintje, hogy a lekérdezési fehérjeszekvencia a domén-modell által képviselt fehérjecsalád tagja, és az adott domén leírása szerinti funkcióval rendelkezik. A 3 specifikus találat elhelyezkedése a 223K fehérjén a következő: A virális metiltranszferáz (43-352 aa), az OTU-szerű cisztein proteáz (900-994 aa), az AAA (ATP-áz egyéb sejtszintű funkcióval) domén (1171-1285 aa). A 3 nem specifikus találat elhelyezkedése a fehérjén a következő: A virális (szupercsalád 1) RNS helikáz (1181-1423 aa); RNS-függő RNS polimeráz (1766-1854 aa)². Az Alex és a 09.369 izolátumok esetében a helikáz multidoménen még egy AAA (1175-1263 aa) és egy SSL2 (hajtűhurok szupresszor) (1181-1275 aa) domént is detektáltunk (13. ábra és 28. melléklet).

Query seq.	250	500	750	1000	1250	1500 1750 197 1 1 1 1 1 1 1 1 1
Specific hits	Vmethyltransf			οτυ	AAA_22	
Non-specific hits				Pep	AAA_1	RdRP_2
Superfamilies	Vmethyltransf superfamil			OTU sup Peptid	ABC_ATPa	RT_118 RdRP_2 superfamily
Multi-domains					Viral_helicase1	<u> </u>
					AAA	
					SSL2	

13. ábra CDD találatok a 223K fehérjén 09.369 izolátumon bemutatva

5.1.4 ORF2 régió jellemzése

Az ORF2 régió hosszában nincs eltérés az izolátumaink között. Erről a szakaszról egy 243 aminosavat tartalmazó fehérje transzlálódik, mely az irodalom szerint 25 kDa nagyságú, viszont a CLC Main Workbench program minden esetben ~27 kDa molekulatömegűre kalkulálta.

A páronkénti összehasonlítás alkalmával megfigyelhető, hogy az ukrán izolátumok az ORF2-ben homológok és lengyel Ewa izolátummal is nagy az azonosság, nukleotid szinten 99,86%, aminosav szinten pedig 99,59%. Az eltérés csupán egy nukleotid, mely aminosav változást is eredményez, az Ewa 195. aminosav pozíciójában a glutaminsavról glicinre változik. Ez a változás az adatbázisban szereplő izolátumok közül egyiknél sem

² Az Ewa izolátum esetében a deléció miatt a régiók pozíciója egy aminosavval előrébb csúszik.

figyelhető meg. A magyar izolátumok esetében a 89.289 ebben a régióban is az ukrán és a lengyel izolátumokkal egyezik a legnagyobb mértékben, a fehérjét vizsgálva csupán 4 aminosav eltérést tapasztaltunk az ukránokhoz képest. A magyar izolátumok közül a legnagyobb hasonlóságot a Bonita és a 09.369 között figyeltük meg, 29 nukleotid eltéréssel, amiből 7 aminosav eltérés következik. Ebben az esetben az azonosság 96,04% nukleotid és 97,13% aminosav szinten (8. és 10. melléklet). A filogenetikai vizsgálat eredményében lényeges változás az előzőekhez képest, hogy a nukleotid szintű törzsfánál a cseh Vltava a közönséges törzsből az andesi törzsbe tartozó brazil BB-AND izolátum mellé került. Ez a jelenség is rekombinációs eseményre enged következtetni. Aminosav szinten viszont a Vltava még a közönséges törzs izolátumaival mutat közelebbi rokonságot. Az ORF2 filogenetikai törzsfán az RVC Andean egy külön ágat képez, ugyanúgy, mint a 223K esetében, viszont a 223K fehérje esetében már a BB-AND mutat távoli rokonságot a többi PVS izolátummal (9. és 11. melléklet).

A régióban megfigyeltünk törzs specifikus aminosavmotívumokat. A közönséges törzs esetében $D_{170}I_{172}G_{212}$ motívum, míg az andesi törzs esetében az $E_{170}V_{172}S_{212}$ aminosavmotívum a jellemző az ORF2-ben. A törzsekre jellemző konzervált aminosavak lehetőséget nyújtanak egy esetleges törzs specifikus diagnosztikai módszer kidolgozására. A 84. pozícióban elhelyezkedő valin (V₈₄) az ukrán és a lengyel izolátumok sajátsága.

A CDD-vel összevetve a 25K fehérjén a 40-235 aminosav pozícióban virális RNS helikáz (szupercsalád 1) multidomént azonosítottunk az izolátumainkban. A Bonita 25K fehérje C-terminlás szekvenciáján nem specifikus találatként detektáltuk a CIDE_N_ICAD domént (185-235 aa), ez a találat a többi izolátumra nem jellemző (14. ábra és 29. melléklet).

14. ábra CDD találatok a 25K fehérjén a Bonita izolátumon bemutatva

5.1.5 ORF3 régió jellemzése

Az ORF3-ról egy 108 aminosavból álló, megközelítőleg 12 kDa (11,79-11,83 kDa) nagyságú fehérje transzlálódik. A páronkénti összehasonlítás alapján megállapítható, hogy az ukrán izolátumok ebben a régióban homológok, a lengyel izolátum egy bázissal tér el tőlük, ami aminosav szinten is egy eltérést eredményez. A 09.369 izolátum 18 nukleotiddal tér el az ukránoktól, viszont ez nem eredményez változást a fehérjében. A 89.249 izolátum 13 nukleotiddal tér el az ukrán izolátumoktól, ez a fehérjében egy aminosav eltérést eredményez. A régióban rendkívül nagy azonosság figyelhető meg az izolátumok között. Nukleotid szinten a legkisebb azonosságot az RVC Andean és az amerikai Id4106-US izolátumok között figyeltük meg, ami épphogy meghaladja a 80%-ot. Aminosav szinten a szintén az RVC Andean izolátum mutatja a legalacsonyabb azonosságot, a Leona-val 91,74%. A közönséges törzs tagjai között a legnagyobb nukleotid eltérés (30 nt, 90,38% azonosság) a magyar 89.249 és az amerikai Id4106-US között figyelhető meg, ami 3 aminosav eltérést eredményez. A közönséges törzs tagjai között a legnagyobb aminosav eltérést a Bonita és a Leona mutatja (5 aa) (12. és 14. melléklet). Törzsspecifikus aminosavmotívum ebben a régióban is található, a PVS^O törzsre a H₇₃P₉₇, a PVS^A törzsre az Y₇₃Q₉₇ a jellemző.

A nukleotid szintű filogenetikai törzsfán a Vltava egy ágon helyezkedik el a PVS^A törzsbe tartozó izolátumokkal. PVS^O törzs izolátumai esetében az ausztrál SW-14 és a kínai Yunnan YN-nál tapasztalunk közeli rokonságot. Egy másik ágat képezve az ukrán, a lengyel, a Bonita és a 89.249 állnak együtt. A 09.369 izolátum változatlanul az amerikai izolátumokkal feltételez közeli rokonságot a nukleotid szintű törzsfával, viszont fehérje szinten már az ukrán izolátumokkal helyezkedik el egy ágon, melyet a páronkénti összehasonlításnál is tapasztalt homológia is alátámaszt. Az aminosav szintű törzsfánál az RVC Andean ismést külön ágra kerül a többi izolátumtól távol, mint a 223K fehérje esetében is tapasztaltuk (13. és 15. melléklet).

A CDD-vel specifikus találatként növényi vírusokra jellemző mozgási fehérje (3-103 aa) domént azonosítottunk minden saját izolátumban. Az Ewa esetében a program multidoménként valin-tRNS ligázt (4-45 aa) és nem specifikus találatként a katalítikus mag doménjét (4-31 aa) detektálta (15. ábra és 30. melléklet).

Query seq.	1 , MPL	15 TPPPNYTGLHIAAALGVSLAAVVALFTRS	TLPÍVGÓSQHNL	45 60 H HGGRYRDGTKAIDYFI	75 KPÁKLŃSVÉPGNHWYAQPWL	ĽVLĽL VÁL I ČLSÓRHÁPCĆPRĊ	108 NRVHSA
Specific hits				Plant_vir_prot			
Non-specific hits		ValRS_core					
Superfa n ilies		nt_trans superfamily					
			Plant_v	vir_prot supe	~family		
Multi-domains		ValinetRNA_lig	ase				

15. ábra CDD találatok a 12K fehérjén az Ewa izolátumon bemutatva

5.1.6 ORF4 régió jellemzése

15

Az ORF4-ről a legkisebb fehérje transzlálódik, ami 66 aminosavból épül fel és megközelítőleg 7 kDa (7,31-7,33 kDa) nagyságú. A páronkénti összehasonlítás alapján a lengyel és az ukrán izolátumok homológok és a 89.249 izolátummal 98,01%-os azonosságot mutatnak, ami 4 nukleotid eltérést jelent, ez egy aminosav eltérésben nyilvánul meg. A legnagyobb számú aminosav eltérést (10-11 aa) az izolátumaink esetében a Vltava-val figyeltük meg. A saját izolátumaink esetében ez a régió nagyon hasonló, legnagyobb eltérést a Bonita és a 89.249 esetében tapasztaltuk, 10 nukleotid formájában, ami 2 aminosav eltérést eredményez. A Bonita és a 09.369 izolátumok 7K fehérjéje 3 aminosavban különbözik az ukránoktól és a lengyeltől (16. és 18. melléklet). Törzsspecifikus aminosavmotívumot ez a fehérje is tartalmaz, a közönséges törzs estében $R_{51}G_{61}$, ami a PVS^A törzsben $K_{51}R_{61}$.

Az ORF4 filogenetikai törzsfáján a SW-14 a 09.369-el és az amerikai izolátumokkal együtt helyezkedik el. A PVS^A törzsbe tartozó izolátumok két külön ágat képeznek a nukleotid szintű törzsfán, viszont aminosav szinten elhelyezkedésük már közelebbi rokonságot feltételez. A közönséges törzs tagjai két ágon csoportosulnak a 7K törzsfán, amiből külön ágként indul ki a SW-14 izolátum. Az egyik ágon a lengyel és ukrán izolátumokkal a 89.249 található, a másikon az amerikaiakkal, a Leona, a 09.369 és a Bonita helyezkedik el (17. és 19. melléklet).

A konzervált domén vizsgálat esetében 12-65 aminosav helyzetben a 7 kDa köpenyfehérje domént azonosítottuk (16. ábra és 31. melléklet).

16. ábra Detektált konzervált domén elhelyezkedése a 7K fehérjén a Valery izolátumon bemutatva

5.1.7 ORF5 régió jellemzése

Az ORF5 azonosításakor két lehetséges start kodont (AUG1, AUG2) detektáltunk, egymástól 249 nukleotid távolságra. Az AUG1 esetében egy 377 aminosavból álló, megközelítőleg 42 kDa-s (41,66-41,84 kDa) fehérje transzlálódik. A szekvenciák illesztésekor megfigyelhető, hogy a fehérje N-terminális vége változékony, míg a Cterminális vége konzerváltabb. Törzsspecifikus aminosavmotívumot ezen a szakaszon is megfigyeltünk. A közönséges törzsre a $H_3G_{16}S_{47}T_{91}$, míg az andesi törzsre az $N_3S_{16}G_{47}G_{57}S_{91}$ a jellemző. A közönséges törzsbe tartozó SW-14 a 16. pozícióban a glicin helyett arginint tartalmaz. Az AUG2 esetében az előzőnél 83 aminosavval kisebb, 294 aminosavból álló, megközelítőleg 33 kDa (32,68 kDa-32,84 kDa) fehérje íródik át. A páronkénti összehasonlítást az AUG2-t követő szakaszon végeztük. Megállapítottuk, hogy ebben a régióban a homológ ukrán izolátumokra a legnagyobb mértékben a 89.249 hasonlít, 97,85% a nukleotid szintű azonosság, ami 19 bázis eltérést jelent és 2 aminosav eltérésben nyilvánul meg. A saját izolátumaink estében a legkisebb, 93,90%-os azonosság a Bonita és a 09.369 között figyelhető meg. A nukleotid eltérés köztük 58 bázis, ami 12 aminosav eltérést eredményez a fehérjében (20. és 22. melléklet). A nukleinsav és fehérje szintű filogenetikai törzsfa estében is jól elkülönülő csoportot alkotnak a PVS^A törzsbe tartozó izolátumok. Az aminosav szintű törzsfán 3 csoportba tömörülnek a közönséges törzs tagjai, és külön ágon helyezkedik el a Bonita. A 89.249 az ukrán izolátumokkal való hasonlósága a törzsfákon is megfigyelhető. Az Ewa ebben a régióban a legközelebbi rokonságot a Leona-val mutatja. A 09.369 izolátum, ahogy a többi régióban, itt is az amerikai izolátumokhoz áll a legközelebb (21. és 23. melléklet).

Minden izolátumunkon két domént azonosítottunk specifikus találattal. A carlavírus specifikus köpenyfehérje domén (Flexi_CP_N) a 48-99 aminosav pozícióban, míg a flexivírus specifikus köpenyfehérje domén (Flexi_CP) a 108-247 aminosav pozícióban helyezkedik el (17. ábra és 32. melléklet).

17. ábra Detektált konzervált domének elhelyezkedése a CP fehérjén a Valery izolátumon bemutatva

5.1.8 ORF6 régió jellemzése

Az ORF6 egy 94 aminosavból álló, megközelítőleg 11 kDa (10,83-10,74 kDa) nagyságú fehérjét kódol és tartalmaz törzsspecifikus aminosav-motívumokat. A közönséges törzsre a D₄Q₈₁, míg az andesi törzsre az E₄P₈₁ aminosavak a jellemzők. A 11K fehérjének kiugróan magas az arginin tartalma (18. ábra). Ebben a régióban is a 89.249 hasonlít legjobban az egymással homológ ukrán izolátumokra. Köztük a nukleinsav azonosság 98,95%, ami 3 bázis eltérést jelent. Ez az eltérés nem eredményez aminosav változást, így a 89.249 izolátum a 11K fehérje esetében homológ az ukrán izolátumokkal. Az Ewa és a Leona között is ugyanilyen magas a nukleinsav szintű azonosság (98,95%), ebben az esetben viszont ez 2 aminosav változást eredményez. A legnagyobb eltérést a közönséges törzs tagjai közül a Bonita-nál tapasztaltuk. Az amerikai WaDef-US izolátumtól 19 nukleotiddal, míg a 09.369-től 18 nukleotiddal tér el, ami 93,33% illetve 93,68% azonosságot jelent. A 09.369 izolátum ebben a régióban is az amerikai izolátumnal egyezik meg a legnagyobb mértékben (24. és 26. melléklet).

18. ábra A 11K fehérje aminosav összetétele a 89.249 izolátumon bemutatva

A nukleinsav szintű filogenetikai törzsfán a két törzs tagjai jól elkülönülnek. A PVS^A tagjai közül közelebbi rokonság figyelhető meg ebben a régióban a Vltava és a BB-AND izolátumok között. A PVS^O törzsbe tartozók 3 jól elkülönülő csoportot alkotnak, amiből a Bonita külön ágat képez. Az egyik ágon a 09.369 ismét az amerikai izolátumokkal helyezkedi el, a másikon a 89.248 az ukránokkal és az ausztrállal. A harmadik ágon az Ewa és a Leona közeli rokonságára lehet következtetni. Aminosav szinten vizsgálva a törzsfa átrendeződik. Jelentős változás, hogy az RVC Andean közelebbi rokonságot feltételez a közönséges törzs tagjaival, mint az andesi törzsbe tartozókkal. Ezen a törzsfán az Ewa az SW-14 izolátummal mutat közeli rokonságot (25. és 27. melléklet).

A 11K fehérje konzervált domén analízise során a 1-89 aminosav pozícióban minden izolátum esetében azonosítottuk, specifikus találattal a Carla_C4 szupercsaládhoz tartozó a carlavírusokra jellemző putatív nukleinsav-kötő fehérje motívumot (19. ábra és 33. melléklet).

19. ábra Detektált konzervált domén elhelyezkedése a 11K fehérjén a Valery izolátumon bemutatva

5.2 Rekombinációs vizsgálatok

A *Potato virus S* izolátumokkal végzett vizsgálatok alkalmával 6 potenciális rekombinációs eseményt detektáltunk az RDP4.39 Beta programcsomaggal (20. ábra). A rekombináció vizsgálat szórás értékeit a 8. táblázat foglalja össze. A PhylPro és LARD módszerekkel egyik esetben sem kaptunk értékelhető eredményt. Az értékelés során major szülőnek nevezzük azt az izolátumot, melyből a rekombináns izolátum nagyobb része származhat és minor szülőnek azt az izolátumot, melyből a kisebb szekvencia szakasz származhat. A továbbiakban a töréspontok helyzetét a szekvenciák illesztésekor (alignment) elfoglalt pozíciójukkal azonosítjuk be.

D 1 1 1 1 1 1	Deteltálási módszer										
Rekombinacios	RDP	GENECONV	Bootscan	Maxchi	Chimaera	SiSscan	PhylPro	LARD	3Seq		
eseneny szana				P-	érték						
1	2,32E-67	-	4,63E-63	1,99E-27	2,18E-30	3,87E-19	-	-	1,25E-60		
2	6,16E-38	1,53E-37	5,75E-48	2,80E-28	2,24E-25	1,82E-43	-	-	7,03E-29		
3	4,50E-23	5,72E-20	1,69E-23	-	-	1,16E-20	-	-	9,75E-20		
4	2,02E-22	2,04E-22	5,40E-26	1,40E-13	1,11E-13	1,11E-19	-	-	3,85E-17		
5	1,40E-10	-	9,71E-08	3,49E-11	1,08E-10	3,99E-17	-	-	0,01608		
6	2,32E-02	4,58E-03	4,81E-04	-	-	-	-	-	-		

8. táblázat Rekombinációs események szórás értékei módszerenként (RDP4.39 Beta)

Az első lehetséges rekombinációs eseményt (rekombinációs esemény 1) a Vltava izolátumnál figyeltük meg. A rekombinálódó szakasz 6116-8518 nukleotid között tálalható. Ez esetben a közönséges törzsbe tartozó Ewa a major szülő és az andesi törzsbe tartozó BB-AND adja a minor szülői részt. A törzsfán is megfigyelhető, hogy a major szülőtől származó régióban a rekombináns Vltava a Leona és az Ewa közelében a közönséges törzs tagjai között foglal helyet, míg a minor szülő régiót vizsgálva a BB-AND izolátummal az andesi törzset képviselik (21. ábra). A rekombinációs esemény 2-es esetén a 89.249 izolátum a potenciálisan rekombináns, mely genomjának a nagyobb része (2805-8475 nt) feltételezhetően a Valery-ből, míg kisebb része (1-2804 nt és 8476-8627 nt) az Ewa-ból származik. A régiókról készült törzsfa átrendeződése is alátámasztja ezt a feltételezést (22. ábra). A rekombinációs esemény 3-as esetén a lengyel Ewa a rekombináns és genomjának nagy része (2795-8518 nt) a Vltava izolátumból, míg kisebb része (1-2794 nt és 8519-8627 nt) a Valery-ből származik. A rekombinálódó régióban az Ewa az ukrán izolátumokkal közös ágon helyezkedik el a törzsfán. Korábbi vizsgálataink is alátámasztják a lengyel és az ukrán izolátumaink közeli rokonságát (23. ábra). A rekombinációs esemény 4-es alkalmával ismét az Ewa a potenciálisan rekombináns izolátum. Az elemzés eredményeképp a Leona izolátumból származik az 1-5971 és 7231-8627 nukleotid közti szakasz, míg a kisebb rész az 5972-7230 nukleotid közti a Valery-ből. A rekombinálódó szakasz a három TGB fehérjét tartalmazza. Szintén a már említett közeli rokonságra következtetünk, melyet a rekombinációs régiók törzsfája is igazol (24. ábra). A rekombinációs esemény 5-ös esetén mind a három ukrán izolátumot tekintjük rekombinánsnak. A 2761-8150 nukleotid közti régiót a 09.369 izolátumból származtatjuk, míg a 1-2760 és 8151-8627 nukleotid közti szakaszt a Leona-ból. A major régió törzsfáján az ukrán izolátumok még egy külön álló ágat képeznek, a minor régió esetében a Leona is ezen ágon helyezkedik el, a szekvencia szakasz közeli rokonságát prezentálva (25. ábra). A rekombinációs esemény 6-os eredményeképp a Yunnan YN a rekombináns, a WaDef-US izolátumból származtatjuk a 1-4445 és 4878-8627 nukleotid közti régiót, míg az Id4106-US izolátumból a 4446-4877 nukleotid közti régiót.

Az analízis alapján lehetséges, hogy a kínai izolátum két amerikai származású izolátum rekombinálódása folytán keletkezett. A rekombinációs esemény a filogenetikai törzsfákról is leolvasható (26. ábra). Ezt az eseményt a 9 algoritmusból, csupán 3 (RDP, GENECONV, Bootscan) támogatja.

21. ábra Rekombinációs esemény 1 törzsfái (UPGMA) (A) a major szülőtől származó régió törzsfája, (B) a minor szülőtől származó régió törzsfája (pirossal a potenciális rekombinánst, zölddel a potenciális major szülőt és kékkel a potenciális minor szülőt jelöltük, RDP4.39 Beta)

22. ábra Rekombinációs esemény 2 törzsfái (UPGMA) (A) a major szülőtől származó régió törzsfája, (B) a minor szülőtől származó régió törzsfája (pirossal a potenciális rekombinánst, zölddel a potenciális major szülőt és kékkel a potenciális minor szülőt jelöltük, RDP4.39 Beta)

23. ábra Rekombinációs esemény 3 törzsfái (UPGMA) (A) a major szülőtől származó régió törzsfája, (B) a minor szülőtől származó régió törzsfája (pirossal a potenciális rekombinánst, zölddel a potenciális major szülőt és kékkel a potenciális minor szülőt jelöltük, RDP4.39 Beta)

24. ábra Rekombinációs esemény 4 törzsfái (UPGMA) (A) a major szülőtől származó régió törzsfája, (B) a minor szülőtől származó régió törzsfája (pirossal a potenciális rekombinánst, zölddel a potenciális major szülőt és kékkel a potenciális minor szülőt jelöltük, RDP4.39 Beta)

26. ábra Rekombinációs esemény 6 törzsfái (UPGMA) (A) a major szülőtől származó régió törzsfája, (B) a minor szülőtől származó régió törzsfája (pirossal a potenciális rekombinánst, zölddel a potenciális major szülőt és kékkel a potenciális minor szülőt jelöltük, RDP4.39 Beta)

5.3 A PVS összehasonlítása a Carlavirus nemzetség tagjaival

A Potato virus S-t összehasonlítottuk az NCBI adatbázisban teljes genom szekvenciával rendelkező Carlavirus nemzetségbe tartozó másik 34 fajjal. A carlavírusok elmezéséhez felhasznált izolátumok adatait a 3. melléklet tartalmazza. A PVS-t a vizsgálatok során a saját 89.249 jelű izolátum képviseli. A nemzetségbe tartozó fajok esetében is minden fajból egy izolátum szerepel a vizsgálatokban. A nemzetségből számos faj fertőz burgonyát, így nagy az esélye a komplex fertőzésnek, mely lehetőséget nyújt a fajok közti rekombinációra. Elvégeztük a nemzetségbe tartozó fajok között az interspecifikus rekombinációs vizsgálatokat, de nem detektáltunk a PVS-sel kapcsolatos eseményt. A rokonsági viszonyokat tükröző törzsfát Neighbor-Joining módszerrel, cirkuláris kladogram formátumban mutatom be a könnyebb áttekinthetőség érdekében (27. ábra). A nemzetségbe tartozó fajok három külön csoportot (Carla-A, Carla-B, Carla-C) alkotnak a törzsfán. A PVS a sárgával jelölt Carla-A csoportban foglal helyet. A filogenetikai vizsgálatok alapján a legközelebbi rokonságban a szintén burgonyáról származó Potato virus P-vel (PVP) (azonosság: 54,2%) áll. A páronkénti összehasonlítás alapján a teljes genomot tekintve a legnagyobb mértékű azonosságot a Ligustrum necrotic ringspot virus izolátumával figyeltük meg, ami 54,4%. A nemzetség leginkább kutatott faja a *Potato virus M* a Carla-B csoportban helyezkedik el. A PVS a legkisebb mértékű azonosságot a Sweet potato chlorotic fleck virus (SPCFV) izolátumával mutatja (41,72%), mely a 9104 nukleotid nagyságú genomjával egyedülálló a nemzetségben. Az SPCFV a törzsfán, közeli rokonságban a Narcissus symptomless virus és a Nerine latent virus izolátumával a Carla-C csoportban helyezkedik el. A páronkénti összehasonlítást elvégeztük az ORF1, illetve az ORF5 régióra is. Az ORF1 régióban a PVS a PVP-vel az azonosság 54,34%, ami a legmagasabb a szakaszon. A régióról transzlálódó fehérjét vizsgálva a Hydrangea chlorotic mottle virus-sal tapasztaltunk 50,30% azonosságot. А nemzetségbe tartozó fajok legtöbbje konzervált MALTYR aminosavmotívummal kezdődik az N-terminális végen. Az ORF5 régióban a PVS kiemelkedően magas azonosságot (62,01%) figyeltünk meg a Passiflora latent virus-sal, ami a régió fehérjéjét (CP) vizsgálva már 65,76% aminosav azonosságot jelent. A köpenyfehérjét tekintve a PVS a Coleus vein necrosis virus-tól különbözik a leginkább, csupán 30,40% azonossággal.³

³ A *Carlavirus* nemzetség vizsgálata esetében a páronkénti összehasonlítás táblázatait nem mutatom be méretei miatt.

27. ábra A *Carlavirus* nemzetség tagjainak, teljes genomra vonatkozó rokonsági viszonyait tükröző törzsfa (NJ, cirkuláris kladogram)

5.4 A begyűjtött PVS izolátumok NCBI azonosítói

Az NCBI adatbázisba feltöltöttük az általunk gyűjtött PVS izolátumok teljes genom és köpenyfehérje gén szekvenciáit. Az izolátumok NCBI azonosítói a 9. és 10. táblázatban olvashatók. A dolgozatban a nukleotidszekvenciákat nem közöljük.

NCBI azonosító	Izolátum	Származási hely	Gazdanövény
LN794161	Ditta	HUN	Solanum tuberosum cv. Ditta
LN794162	FabiloaA	HUN	Solanum tuberosum cv. Fabiola
LN794163	FabilolaB	HUN	Solanum tuberosum cv. Fabiola
LN794164	FabiolaC	HUN	Solanum tuberosum cv. Fabiola
LN794166	Lady Rosetta	HUN	Solanum tuberosum cv. Lady Rosetta
LN794167	Mayan Twilight	HUN	Solanum tuberosum cv. Mayan Twilight
LN794168	Papa negra	HUN	Solanum tuberosum cv. Papa negra
LN794160	Desiré	HUN, Keszthely	Solanum tuberosum cv. Desiré
HG518655	06.62	HUN, Keszthely	Solanum sp. 06.62 klón
HG518654	09.369	HUN, Keszthely	Solanum sp. 09.369 klón
HG518653	09.539	HUN, Keszthely	Solanum sp. 09.539 klón
HG518652	89.216	HUN, Keszthely	Solanum sp. 89.216 klón
HG518651	89.217	HUN, Keszthely	Solanum sp. 89.217 klón
HG518650	89.243	HUN, Keszthely	Solanum sp. 89.243 klón
HG518649	Boglarka	HUN, Nyírtelek	Solanum tuberosum cv. Boglárka
LN794165	Kilimanjaro	TAN, Kilimandzsáró	Solanum sp.
LN794159	Bonita	HUN	Solanum tuberosum cv. Bonita ojo (de) perdiz

9. táblázat A begyűjtött PVS izolátumok köpenyfehérje szekvenciáinak NCBI azonosítói (POL-Lengyelország, HUN-Magyarország, TAN-Tanzánia, UKR-Ukrajna)

10. táblázat A begyűjtött PVS izolátumok teljes genom szekvenciáinak NCBI azonosítói (POL-Lengyelország, HUN-Magyarország, UKR-Ukrajna)

NCBI azonosító	Izolátum	Származási hely	Gazdanövény
HF571059	89.249 (PVS-HU1)	HUN, Keszthely	Solanum sp. 89.249 klón
LN851191	09.369	HUN, Keszthely	Solanum sp. 09.369 klón
LN851190	Bonita	HUN	Solanum tuberosum cv. Bonita ojo (de) perdiz
LN851189	Alex	UKR	Solanum tuberosum cv. Finka
LN851193	Irena	UKR	Solanum tuberosum cv. Finka
LN851192	Valery	UKR	Solanum tuberosum cv. Finka
LN851194	Ewa	POL	Solanum tuberosum cv. Leona

6. Eredmények megvitatása és következtetések

6.1 A begyűjtött PVS izolátumok molekuláris jellemzése

6.1.1 A CP régió alapján végzett molekuláris jellemzés

A munkánk során 1 lengyel, 1 tanzániai, 3 ukrán és 17 magyar izolátum köpenyfehérje gén szekvenciáját vizsgáltuk. A saját izolátumainkat összehasonlítottuk a világ más részeiről származó vírusizolátumokkal és megállapítottuk, hogy a magyar izolátumok igen változatosak. A CP gén szekvenciaváltozékonyságának nagy része a gén 5'-végének különbségeiből adódik. Az ukrán izolátumok a régióban homológok és közeli rokonságot mutatnak a magyar Papa negra izolátummal. A tanzániai mintánk leginkább a Boglarka-val azonos. A filogenetikai vizsgálat során bizonyítottuk, hogy az általunk gyűjtött PVS izolátumok a közönséges törzshöz tartoznak. Kutatók szerint a közönséges törzs tagjai egyáltalán nem, vagy csak jelentéktelen mértékben terjednek levéltetvekkel (Rose, 1983; Slack, 1983; Wardrop és mtsai., 1989). Erre alapozva azt feltételezzük, hogy a mi izolátumaink is inkább csak mechanikai úton és vegetatív szaporítással terjedhetnek.

Az utóbbi években több publikáció is született, melyek a CP gén alapján csoportosítják az izolátumokat, de legtöbb esetben túl sok csoportot hoznak létre, amelyek a szekvenciainformációk bővülésével nem tarthatók (Chikh Ali és mtsai., 2008; Cox és Jones, 2010; Salari és mtsai., 2011; Gil és mtsai., 2013; Lin és mtsai., 2014). Abban mindegyikkel egyet lehet érteni, hogy a régió alapján a PVS két törzse jól elkülöníthető, mely a törzsfákon egyértelműen kirajzolódik. Lin és munkatársai (2014) a legfrissebb publikációjukban a közönséges törzset 6 csoportra osztották, ezek a csoportok a bővülő adathalmaz miatt a mi vizsgálatainkban már felbomlottak. Helyettük a közönséges törzsön belül két külön csoportot (PVSO-1, PVSO-2) és mindegyiken belül két alcsoportot (PVSO-1A, PVSO-1B, PVSO-2A, PVSO-2B) különböztethetünk meg eredményeink alapján. Az izolátumok csoportokon belüli elhelyezkedése és a biológiai tulajdonságiaik között nem találtunk összefüggést, a földrajzi származásuk is rendkívül változatos. Ezzel összefüggésbe hozható, hogy az 1920-as évek közepétől számos expedíció indult Európából Mexikóba, Guatemalába, Kolumbiába, Peruba, Bolíviába, Chilébe és Argentínába, hogy vad Solanum fajokat gyűjtsenek burgonyanemesítési munkákhoz (Horváth, 1968). A vegetatívan szaporított burgonyával így a vírusok is elterjedhettek a világban.

Megállapítottuk, hogy CP 8. aminosav pozíciójában törzsre jellemző aminosav található, ez a közönséges törzs esetében treonin, míg az andesi törzs esetében szerin. A tulajdonság ismeretében lehetőség adódik törzsspecifikus diagnosztikai eljárás kifejlesztésére. Az általunk fejlesztett Nested PCR-technikát ki lehetne egészíteni egy restrikciós endonuklázos hasítással, így fragmentumhossz alapján azonosítható lenne a törzs.

6.1.2 A teljes genom vizsgálat alapján végzett molekuláris jellemzés

A 3 magyar, 3 ukrán és 1 lengyel PVS izolátum teljes genomszekvenciáját meghatároztuk és megállapítottuk, hogy felépítésük megegyezik a Matoušek és munkatársai (2005) által leírt PVS izolátuméval. A 7 saját izolátum komplett genomja és az NCBI adatbázisban található teljes genomszekvenciák alapján elkészítettük a filogenetikai törzsfát. A két törzs ezen a törzsfán is nagy jól elkülönül, viszont a Vltava, a két csoport között, egy külön ágat képvisel. A Vltava Duarte és munkatársai (2012) szerint a két törzsből származó rekombináns izolátum. Az eredményt a mi vizsgálataink is alátámasztják. Erre alapozva javasoljuk egy új törzs elkülönítését PVS^{REC} elnevezéssel. A vizsgálatok azt mutatják, hogy az ukrán izolátumok, melyek aminosav szinten csak a replikázban különböznek egymástól, közeli rokonságban állnak a lengyel izolátummal is. A lehetséges közös származást a rekombinációs vizsgálat eredményei is támogatják. Meggyőződésünk, hogy a 09.369 magyar izolátum amerikai ősöktől származik, ezt minden régió vizsgálata és a széles körű CP vizsgálat is alátámasztja.

Adams és munkatársai (2004) szerint a *Flexiviridae* családon belül azok tartoznak egy fajhoz, melyeknél legalább 72%-os a nukleinsav azonosság, vagy 80%-os aminosav azonosság van a CP, vagy a replikáz génjeikben. Ennek a feltételnek mind a 7 izolátumunk megfelel, a teljes genomok összehasonlításakor kapott eredmények alapján. A PVS teljes genomok páronkénti összehasonlításának legalacsonyabb értékeit a 11. táblázat szemlélteti. A meghatározott azonossági határértékeket a carlavírusok és az izolátumaink között egyetlen másik faj sem közelíti meg. A 89.249 izolátum és a carlavírusok között vizsgált régiók legmagasabb azonossági értékeit a 12. táblázat szemlélteti. A vizsgálataink alátámasztják Adams és munkatársai (2004) által kidolgozott rendszertani besorolást.

Régió	Izolátumok	Azonosság %
replikáz gén (nt)	Bonita↔BB-AND	77,10
replikáz (aa)	09.369↔RVC Andean	84,20
köpenyfehérje gén (nt)	89.249↔BB-AND	79,32
köpenyfehérje (aa)	Ewa↔BB-AND	93,20

 táblázat A PVS izolátumok fajbesorolásához szükséges régiók legalacsonyal 	ob azonosság
értékei	

12. táblázat A PVS 89.249	izolátum és a car	lavírusok k	özött vizsgált	régiók	legmagas	sabb
	azonossá	igi értékei				

Régió	Izolátumok	Azonosság %
replikáz gén (nt)	Potato virus S 89.249↔Potato virus P	54,34
replikáz (aa)	Potato virus S 89.249↔Hydrangea chlorotic mottle virus	50,30
köpenyfehérje gén (nt)	Potato virus S 89.249↔Passiflora latent virus	62,01
köpenyfehérje (aa)	Potato virus S 89.249↔Passiflora latent virus	65,76

ORF1 régió

Az ORF1 régió által kódolt fehérjén számos fehérje domént detektáltunk az izolátumainkon. Az N-terminális végen specifikus találatként azonosítottuk a metiltranszferáz domén. Kutatók szerint a metiltranszferáz szerepet játszik a sapka struktúra kialakításában, mellyel növeli a vírus RNS stabilitását és a transzláció iniciációjához is elengedhetetlen (Rozanov és mtsai., 1992; Ahola és mtsai., 1997; Kong és mtsai., 1999; Ahola és mtsai., 2000). A *Carlavirus* nemzetség vizsgálatakor számos konzervált aminosav-motívumot detektáltunk a metiltranszferáz doménen, ilyenek például az YLSP, az SHP, vagy a LEN, melyek minden bizonnyal esszenciálisak a carlavírusok számára.

A második specifikus talalálat az OTU-szerű cisztein proteáz. Ebbe a fehérjecsaládba olyan fehérjék tartoznak amelyek homológok a Drosophila fajok petefészekrák (ovarian tumor, OTU) génjével. Tagjai között olyan fehérjék szerepelnek, melyek eukariótából, vírusokból és patogén baktériumból származnak. A konzervált cisztein és hisztidin és esetleg aszparaginsav képviselik a katalitikus aminosavakat a feltételezhetően proteáz funkció során (Makarova és mtsai., 2000). A tapasztalt aminosavszekvencia homológia alapján feltételezzük, hogy a PVS izolátumokban is proteáz aktivitása van a fehérjeszakasznak. Ezt a feltételezést erősíti, hogy a domén közvetlen folytatásaként egy proteáz szerepű carlavírus endopeptidázt detektáltunk. Véleményünk szerint a két domén közösen látja el a funkciót. A carlavírus endopeptidáz családban (Merops peptidáz adatbázisban C23-as család) Lawrence és munkatársai a Blueberry scorch virus (BBScV) 223K fehérjén azonosítottak egy papainszerű proteináz domént. Feltétlezésük szerint az autoproteolízis katalítikus aminosavai a C994H1075, vagy a C895H984 (Lawrence és mtsai., 1995). A PVS genomok és a Carlavirus nemzetség többszörös illesztése során megfigyeltük, hogy a BBScV C994H1075 aminosavai minden carlavírusra változás nélkül jellemző. Ez alapján feltételezzük, hogy ezen aminosavak ebben a pozícióban eszenciálisak a vírusok működéséhez. A BBScV C895H984 aminosavai is konzerváltak a carlavírusok esetében. Van néhány kivétel (Cowpea mild mottle virus, Aconitum latent virus, Potato latent virus, Sweet potato chlorotic fleck virus), melyeknél a nukleinsav változás aminosav változásban is megnyílvánul, mégis funkcióképes marad a vírus. Korábban a BBScV-vel végzett deléciós vizsgálatokkal Lawrence és munkatársai is erre a véleményre juttottak (Lawrence és mtsai., 1995). Ezt figyelembe véve feltételezzük, a PVS esetében a BBScV C₉₉₄H₁₀₇₅ aminosavainak megfelelően, a C₁₀₀₃H₁₀₈₄ (Ewa: C₁₀₀₂H₁₀₈₃) az autoproteolízis katalítikus aminosavai. A doménen a többszörös illesztés alkalmával megfigyeltünk egy glicint (G₁₀₄₀) és egy arginint (R₁₂₂₈)⁴, melyek szintén minden vizsgált carlavírusban fontos funkciót láthatnak el.

A harmadik specifikus találat az AAA 22 domén. Ezt a találatot az ABCtranszporterek fehérje szupercsaládba sorolta a program. Az ABC-transzporterek (ATP-kötő kazetta transzporterek, ATP-binding casette transporters) az egyik legnagyobb és legősibb fehérje szupercsalád tagjai. Képviselői megtalálhatók minden létező taxonban a prokariótáktól az emberig. A nukleotid-kötő domén mutatja a legnagyobb hasonlóságot a család minden tagjánál. Ezek a transzmembrán fehérjék rendkívül sokféle anyag membránon való átjuttatását végezhetik, a sejtmembránon vagy a sejt belső membránjain keresztül (Dean és mtsai., 2001). Az AAA család egy viszonylag új család az ATP-ázok körében. Az AAA motívum erősen kozervált, mely ~230 aminosavból áll, Walker motívumot tartalmaz, ami ATP-áz aktivitású. Az ATP-áz aktivitás mellett számos külnböző sejtszintű funkciójuk lehet, mint a sejtciklus-szabályozás, proteolízis, citoszkeleton szabályozás, vagy a vezikulum közvetített fehérje transzport (Walker és mtsai., 1982; Patel és Latterich, 1998). Szerepük olyan sokféle lehet, hogy Vale (2000) az AAA fehérjékről szóló cikkének a 'AAA Proteins: Lords of the Ring' beszédes címet adta. Az AAA doménnel átfedésben detektáltuk a virális RNS helikáz multidomént, melynek feladata a duplex szálak szétválasztása a vírus RNS replikáció során és valószínűleg a transzlációban is van szerepe (Gorbalenya és Koonin, 1989). Virális RNS helikáz (szupercsalád 1) csoportba tartozók domének helikáz és NTP-áz tevékenysége már bizonyított (Gomez de Cedrón és mtsai., 1999). A multidoménen az Alex és a 09.369 izolátum esetében még egy AAA és egy SSL2 domént azonosítottunk. A Xeroderma pigmentosum, vagy XP, a DNS-javítás autoszomális recesszív módon öröklődő genetikai rendellenessége, amikor a DNS-ben az ultraibolya (UV) fény által okozott károk nem kerülnek javításra. Az élesztő fajokban detektáltak egy domént (RAD25, vagy SSL2), mely nagyfokú homológiát mutat az XP B csoportjának javító génjével, viszont egy hajtű hurok (stem-loop) mutációt tartalmaz, amitől DNS javító funkciója működőképes. Kimutatták, hogy az SSL2 gén jelenléte létfontosságú és a nukleinsav javító mechanizmus mellett, ATP-áz illetve helikáz aktivitása is lehetséges (Park és mtsai., 1992; Gulyas és

⁴ aminosav pozíció a saját PVS izolátumaink alapján

Donahue, 1992). Mivel találat esetében a doménnek van NTP-áz tevékenysége, mellyel az izolátumaink fehérjéje szekvenciahomológiát mutat, kijelenthetjük, hogy a fehérjerégiónak biztosan hasonló szerepe van a PVS replikációjában. Izolátumainkban a virális (szupercsalád 1) RNS helikáz domén N-terminális részén tartalmazza a GAGKS (1181-1185 aa, Ewa: 1180-1184 aa) konzervált motívumot. Ez a konzervált motívum a carlavírusok esetében a GXGKS-sel jellemezhető, ami alátámasztja a kutatók korábbi eredményeit (Zimmern, 1987; Gorbalenya és mtsai., 1988). A doménen elsőként azonosítottunk egy konzervált motívumot, mely minden carlavírusban változatlanul TFGESTG szekvenciájú. Az 28. ábra a motívumot kódoló carlavírus nukleinsav szekvenciák változatosságát szemlélteti, mely változások a fehérjében már nem jelennek meg.

28. ábra A TFGESTG motívumot kódoló carlavírus szekvenciák

Az ORF1-ről transzlálódó fehérje C-terminális végén azonosítottuk az RdRp domént. Az RdRp katalizálja a komplementer RNS szál szintézisét egy adott RNS templátról, ennek segítségével replikálódnak a negatív szálak, a pozitív szálak és a szubgenomi RNS-ek is (O'Reilly és Kao, 1998). Ennek tudatában jelentjük ki, hogy a 223K fehérje C-terminális része látja el a vírus replikáció során az RNS polimeráz funkciót. Vizsgálataink eredménye alapján kijelentjük, hogy az ORF1 egy replikáz funkciójú fehérjét kódol. A PVS replikázán a metiltranszferáz, a helikáz és az RNS-függő RNS-polimeráz domének elhelyezkedése illetve azok jellemzői megfelelnek a *Carlavirus* nemzetség más tagjainál tapasztaltakkal (Matoušek és mtsai., 2005). Azonosítottunk még két proteáz aktivitású domént egymás közvetlen közelében. Úgy gondoljuk, hogy a két domént tartalmazó 187 aminosavból álló szakasz autoproteolízist végez.

ORF2 régió

Az ORF2 által kódolt fehérje, mely 25 kDa nagyságú, hasonlóan az ORF1-hez tartalmazza az NTP-áz/helikáz domént, melyben a konzervált G-GKSS/T motívum megtalálható (Zimmern, 1987; Gorbalenya és mtsai., 1988; Lin és mtsai., 2009). A saját mintáink esetében ez a motívum GAGKS szekvenciájú, ahogy az előző régióban is, és a 25K fehérje N-terminális végéhez közel (47-51 aa) helyezkedik el. A virális RNS helikáz funkciót a konzervált domén vizsgálunk is alátámasztja a 40-235 aminosav pozícióban azonosított multidomén formájában.

A Bonita 25K fehérje C-terminlás szekvenciáján nem specifikus találatként detektáltuk a CIDE_N_ICAD domént (185-235 aa). A CAD nukleáz egy kaszpáz-aktivált DN-áz, illetve DNS fragmentáció faktor, melynek inhibitora az ICAD. Ezeket a fehérjéket összefüggésbe hozzák a kromatin kondenzációval és a DNS fragmentációval az apoptózis során. Az ICAD N-terminális végén található a CIDE_N (sejthalál-indukáló effektor, cell death-inducing effector) domén, mely szabályozó funkciót lát el az apoptózis során (Bayascas és mtsai, 2004). Bár a CDD nem specifikus találatként matematikailag megbízható eredménynek azonosította a CIDE_N_ICAD domént, mi ezt az eredményt nem fogadjuk el, csupán véletlen szekvencia homológiának tartjuk a Bonita esetében.

ORF3 régió

Az ORF3 által kódolt fehérje a TGBp2, mely 12 kDa nagyságú és két hidrofób régióval rendelkezik, ezt a mi vizsgálataink is alátámasztják (Lin és mtsai., 2009). Ezzel a tulajdonsággal a vírusnak lehetősége van a sejtről sejtre való terjedésre. Ezt bizonyítja a CDD vizsgálat eredménye is, miszerint specifikus találatként növényi vírusokra jellemző mozgási fehérje (3-103 aa) domént azonosítottunk minden saját izolátumban. A növényi vírus mozgási fehérje szupercsalád magába foglalja számos ismert növényi vírus mozgási fehérjé t, több különböző ssRNS növényi vírus családból, tartalmazza többek között a *Potexvirus, Hordeivirus* és a *Carlavirus* nemzetség tagjaiét is (Scott és mtsai., 1994).

A fehérje N-terminális végén detektált kisebb domén egy aminoacil-tRNS szintetáz, a valil-tRNS szintetáz mag doménje. Kutatók szerint minden szervezet számára esszenciális

az aminoacil-tRNS szintetáz. Ez az enzim olyan monomer, amely aminoacetilálja a nukleotidok 2'-OH csoportját a t-RNS-ek 3' végén a transzláció során, valamit ismert még ligáz és dinukleotid-kötő tulajdonsága is. A mag domén alapja egy glicinben gazdag, ún. Rossmann-motívum (GxGxxG), amely jellegzetes ATP-kötő motívum (Venkatachalam és mtsai., 1999; Szymański és mtsai., 2000). Bár a jellegzetes Rossmann-motívumot nem tartalmazza a vírusfehérje, mégis úgy gondoljuk, hogy a detektált doménnek lehet hasonló funkciója.

ORF4 régió

Az ORF4 régió a legrövidebb kódoló szakasz a PVS izolátumok genomján, melyről értelemszerűen a legkisebb fehérje, a 7K íródik át. A 7K fehérje az N-terminális végén erősen hidrofób részt tartalmaz, melynek az intercelluláris mozgásban van szerepe (Ju és mtsai., 2005; Morozov és mtsai., 1987, Schepetilnikov és mtsai., 2005). Morozov és munkatársai (1991) szerint ez a hidrofób szegmens szignálként is funkcionál az endoplazmatikus retikulumba való bejutáshoz.

<u>ORF5 régió</u>

Az ORF5 esetében két lehetséges start kodont (AUG1, AUG2) detektáltunk, egymástól 249 nukleotid távolságra. Az AUG1 esetében megközelítőleg 42 kDa-os, míg az AUG2 esetében megközelítőleg 33 kDa-os fehérje íródik át. A két startkodon jelentőségét már potexvírusok esetében vizsgálták. Kutatók szerint CP N-terminális régiója az AUG1 utáni szakasz fontos a TGBp1-gyel együtt a vírus sejtről sejtre mozgásához, viszont ez a rész nélkülözhető a virionképzéskor. A köpenyfehérje alegységek pedig az AUG2 utáni szakaszról transzlálódnak (Verchot-Lubicz és mtsai., 2007; Ozeki és mtsai., 2009). A fehérjének ezen tulajdonságát a konzervált domén vizsgálatunk is támogatja. Az AUG2 utáni fehérjén a carlavírus specifikus köpenyfehérje domént és a flexivírus specifikus köpenyfehérje domént detektáltuk.

A saját izolátumaink is tartalmazzák a konzervált hidrofób aminosav-motívumot (AGFDFFDGLL), mely minden fonál alakú vírusra jellemző (Koonin és Dolja, 1993; Foster és Mills, 1991b).

<u>ORF6 régió</u>

Az irodalmak alapján az ORF6 régió a ciszteinben gazdag nukleinsav-kötő fehérjét (nucleic acid binding protein, NABP) kódolja. Ez a fehérje felelős a levéltetűvel történő átvitelért, a géncsendesítés szupresszálásáért (Gramstatt és mtsai., 1990; Foster és Mills, 1992a; Foster, 1991; Chiba és mtsai., 2006). A konzervált domén vizsgálat alkalmával
specifikus találatként carlavírusokra jellemző putatív nukleinsav-kötő fehérje motívumot azonosítottunk. A carlavírus nukleinsav-kötő fehérjecsalád tartalmazza a potenciális C-4 típusú cink-ujjat, melynek alapja négy konzervált cisztein (Gramstatt és mtsai., 1990). A PVS izolátumainkban a cink-ujj motívum az R<u>C</u>WR<u>C</u>YRVYPPICNSK<u>C</u>DNRT<u>C</u> szekvenciájú és az 54-75 aminosav pozícióban helyezkedik el a fehérjén (29. ábra).

A 11K fehérje valószínűleg a vírus transzkripció szabályozója és bizonyították, hogy a *Chrysanthemum virus B* cink-ujj fehérjéje közvetlen kölcsönhatásban van a kromatinnal és a növényi promóterekkel, így mint eukarióta transzkripciós faktorként (TF) működik (Gramstatt és mtsai., 1990; Lukhovitskaya és mtsai., 2014). A tapasztalt aminosavszekvencia homológa alapján feltételezzük, hogy a PVS esetében ilyen funkciókat lát el a 11K fehérje. Gramstatt és munkatársai (1990) által tervezett cink-ujj modell alapján megterveztük a saját izolátumaink modelljét, melyen Lukhovitskaya és munkatársai (2013) által azonosított mag lokalizációs szignált (nuclear localization signal, NLS) is jelöltük (29. ábra).

<u>3'UTR</u>

Foster és munkatársai (1992) a *Helenium virus S* (HelVS) és a PVM genomjának 3'végén azonosítottak egy putatív poliadenilációs szignált (AATAAA). Ez a motívum az AAGAAA szekvenciával 24 nukleotiddal a 3'-vég előtt a saját izolátumainkban is megtalálható. Ez a hexamer a *Carlavirus* nemzetségben csak a PVS izolátumokra jellemző. Kutatók szerint a *Potato virus X* 3' UTR régióban található egy másik hexamer (ACTTAA), mely az RNS szintézishez nélkülözhetetlen (Batten és mtsai., 2003). Ezt a motívumot az összes közönséges törzsbe tartotó PVS izolátum változatlanul tartalmazza, viszont az andesi törzs tagjainál a GCTTAA a jellemző szekvencia.

6.2 Rekombinációs vizsgálatok

Rekombinációs vizsgálataink azt bizonyítják, hogy az PVS genomjára jellemzőek az intermolekuláris átrendeződések. A PVS izolátumokkal végzett vizsgálatok alkalmával 6 potenciális rekombinációs eseményt detektáltunk, melyek közül 5 eddig még nem került leírásra a nemzetközi irodalomban. A begyűjtött izolátumaink mindegyike részt vesz az általunk kimutatott lehetséges rekombinációs eseményekben. Az első lehetséges rekombinációs eseményt (rekombinációs esemény 1), miszerint a Vltava izolátum rekombináns és két törzsből származnak a szülői szekvenciák, már Duarte és munkatársai (2012) is megfigyelték. Ebben az esetben a Vltava az andesi törzsből tartalmazza azokat a régiókat, melyek a levéltetű átvihetőségért és a súlyosabb tünetek kialakulásáért felesősek. A közönséges törzsből a replikáz gént és a TGBp1 gén 5'-végét tartalmazza. Ez az esemény gyakorlati szempontból is fontos, mert ez bizonyíték arra, hogy az eredetileg levéltetűvel nem terjedő és enyhébb tüneteket okozó közönséges törzs tagjai képesek lehetnek a jobb adaptálódási és versengési képességgel rendelkező andesi törzs tulajdonságait átvenni.

A <u>rekombinációs esemény 3</u>-as esetén a lengyel Ewa izolátum nagy része a Vltava izolátumból, míg kisebb része a Valery-ből származik. Az eredmény alapján lehetséges, hogy a két törzsből származó izolátum szülő szekvenciaként részt vett egy másik közönséges törzshöz tartozó izolátummal való rekombinációs eseményben. A másik három potenciális rekombinációs esemény a közönséges törzs tagjai között történt. A jövőben nagy figyelmet kell fordítani a PVS molekuláris vizsgálatára és a rezisztencianemesítésre, hogy megelőzhessük a veszélyesebb törzsek kialakulását és elterjedését.

6.3 Új tudományos eredmények

- Kidolgoztunk egy Nested PCR-technikán alapuló diagnosztikai módszert, mellyel alacsony víruskoncentráció esetén is megbízhatóan detektálható a PVS. A módszerrel felszaporított szakasz a teljes köpenyfehérje gént tartalmazza.
- A kifejlesztett diagnosztikai módszer segítségével 1 lengyel, 1 tanzániai, 3 ukrán és 17 magyar izolátum köpenyfehérje gén szekvenciáját határoztuk meg és feltártuk rokonsági kapcsolataikat. A szekvenciákat feltöltöttük a nemzetközi adatbankba.
- Kidolgoztunk egy PCR-technikán alapuló eljárást, mellyel 6 átfedő régióban megsokszorozható a PVS teljes genomja, így egyszerűen és gyorsan meghatározható a vírus örökítő anyaga.
- 4. A 3 magyar, 3 ukrán és 1 lengyel PVS izolátum teljes genom szekvenciáját meghatároztuk az általunk kidolgozott módszerrel. A szekvenciákat a nemzetközi adatbázisban közzétettük, ezzel nagymértékben bővítettük az adatbázis PVS teljes genom szekvencia gyűjteményét.
- Az elvégzett konzervált domén vizsgálattal új információkat szolgáltattunk a PVS gének lehetséges funkcióiról.
- 6. Számos olyan aminosav-motívumot azonosítottunk, melyek ismeretében különösebb elemzés nélkül az izolátumok törzsekbe sorolhatók.
- Rekombinációs vizsgálatainkkal bizonyítottuk, hogy az PVS genomjára jellemzőek az intermolekuláris átrendeződések, a vizsgálatok alkalmával 6 potenciális rekombinációs eseményt detektáltunk, melyek közül 5 eddig még nem került leírásra a nemzetközi irodalomban.
- 8. Javaslatot tettünk egy új törzs, a rekombináns törzs létrehozására.

7. Összefoglalás

A publikációk mennyisége és a vírus földrajzi elterjedtsége is azt mutatja, hogy a burgonya S vírus (*Potato virus S*, PVS) világszerte megtalálható, és ismerve azt a tényt, hogy akár önmagában is 20%-os termésveszteséget is okozhat, számítanunk kell rá, hogy előbb vagy utóbb jelentős gondot fog jelenteni a világ burgonyatermesztésében. Emiatt a vírus terjedésének megállítása, illetve a vírusmentes szaporítóanyag előállítása kardinális kutatási téma lehet a jövő burgonyatermesztésében. A burgonya vírusos betegségeivel szembeni sikeres védekezés alapja az adott vírus etiológiájának, szekvenciaadatainak minél szélesebb körű ismerete a megbízható diagnózis és a rezisztenciára nemesítés céljából.

Kutatócsoportunk 2009-2013-ban lehetőséget kapott, hogy konzorciumi tagként részt vegyen a "Burgonya termesztéstechnológiák és márkavédjegyek kifejlesztése" című (NKTH-TECH-09-A3-2009-0210) pályázatban, mely kapcsán szakmai és anyagi segítséget kaptunk többek között a PVS molekuláris vizsgálatához. A munkánk során a CP vizsgálat alkalmával kifejlesztettünk egy Nested PCR-technikán alapuló diagnosztikai eljárást, mellyel alacsony PVS koncentráció esetén is megbízhatóan detektálható a vírus. A kifejlesztett módszer segítségével 1 lengyel, 1 tanzániai, 3 ukrán és 17 magyar izolátum köpenyfehérje gén szekvenciáját határoztuk meg. A saját izolátumainkat összehasonlítottuk a világ más részeiről származó vírusizolátumokkal és megállapítottuk, hogy a magyar izolátumok igen változatosak.

Kidolgoztunk egy PCR-technikán alapuló eljárást, mellyel 6 átfedő régióban megsokszorozható a PVS teljes genomja, így egyszerűen és gyorsan meghatározható a vírus örökítő anyaga. A 3 magyar, 3 ukrán és 1 lengyel PVS izolátum teljes genom szekvenciát meghatároztuk és megállapítottuk, hogy felépítésük megegyezik a kutatók által leírtakkal. Konzervált domén vizsgálattal információkat szolgáltattunk a gének lehetséges funkcióiról. Azonosítottunk számos konzervált aminosavat, melyek alapján különösebb elemzés nélkül az izolátumok törzsekbe sorolhatók.

Rekombinációs vizsgálatainkkal bizonyítottuk, hogy az PVS genomjára jellemzőek az intermolekuláris átrendeződések. A PVS izolátumokkal végzett vizsgálatok alkalmával 6 potenciális rekombinációs eseményt detektáltunk, melyek közül 5 eddig még nem került leírásra a nemzetközi irodalomban. A begyűjtött izolátumok mindegyike részt vesz az általunk kimutatott lehetséges rekombinációs események valamelyikében. A jövőben nagy figyelmet kell fordítani a PVS molekuláris vizsgálatára és a rezisztencianemesítésre, hogy megelőzhessük a veszélyesebb törzsek kialakulását és elterjedését.

8. Summary

Both the number of publications on Potato virus S (PVS) and its geographical distribution show that it is present worldwide; and knowing the fact that it alone may cause a 20% yield loss, it can sooner or later be expected to become a major concern for global potato production. Due to this reason, halting the spread of the virus and the production of virus-free planting material could become cardinal research subjects of potato cultivation in the future. The basis for successful defence against viral diseases of potato is a most extensive knowledge of the specific viral etiology and sequence information that allows for reliable diagnostics and resistance breeding.

Throughout 2009-2013, our research group was given the opportunity to participate as a consortium member in the research project titled "Development of Potato Cultivation Technologies and Trademarks" (NKTH-TECH-09-A3-2009-0210). Within this project, we have received professional and financial support for our work, including the molecular examination of PVS. During our investigation, a nested PCR-based diagnostic procedure was developed which is capable of reliable virus detection even at low PVS concentrations. The coat protein gene sequences of 1 Polish, 1 Tanzanian, 3 Ukrainian and 17 Hungarian Potato virus S (PVS) isolates were identified by using the newly developed method. Our isolates were compared with other viral isolates from other parts of the World, and it was found that the Hungarian isolates are quite diverse.

We have developed a PCR-based method capable of multiplying the full PVS genome in 6 overlapping regions, thus making it simple and fast to identify the viral genetic material. Full genome sequences of 3 Hungarian, 3 Ukrainian and 1 Polish isolates were determined, and their structures were found to match the description of researchers. Conserved domain analysis has provided information on the possible functions of the genes. A number of conserved amino acid residues were identified, based on which the isolates could be classified into strains without any particular analysis.

The results of our recombination experiments have proven that intermolecular rearrangements are characteristic of the PVS genome. Six potential recombination events were detected during the tests conducted with the PVS isolates, of which five have not yet been described in international literature. All of the collected isolates were involved in at least one of the detected possible recombination events. In the future, great attention should be given to the molecular investigation and resistance breeding of PVS isolates in order to prevent the emergence and spread of dangerous strains.

9. Irodalomjegyzék

- Ábrahám É. B. (2009). Fajta és öntözés hatása a burgonya termésmennyiségének és minőségének alakulására mezőségi talajon. Doktori értekezés. Debrecen. 6-10, 34-38.
- Adams M. J., Antoniw J. F., Bar-Joseph M., Brunt A. A., Candresse T., Foster G. D., Martelli G. P., Milne R. G., Fauquet C. M. (2004). The new plant virus family *Flexiviridae* and assessment of molecular criteria for species demarcation. Archives of Virology. 149: 1045-1060.
- 3. Ahlquist P., Strauss E. G., Rice C. M., Strauss J. H., Haseloff J., Zimmern, D. (1985). Sindbis virus proteins nsPl and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. Journal of Virology. 53: 536-542.
- 4. Ahola T., Laakkonen P., Vihinen H., Kääriäinen L. (1997). Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. Journal of Virology. 71(1): 392-397.
- 5. Ahola T., den Boon J.A., Ahlquist P. (2000). Helicase and capping enzyme active site mutations in *brome mosaic virus* protein 1a cause defects in template recruitment, negative-strand RNA synthesis, and viral RNA capping. Journal of Virology. 74(19): 8803-8811.
- 6. Argos P., Kamer G., Nicklin M. J., Wimmer E. (1984). Similarity in gene organization and homology between proteins of animal picomaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research. 12: 7251-7267.
- Badge J., Brunt A., Carson R., Dagless E., Karamagiogli M., Philips S., Seal S., Turner R., Foster G. D. (1996). A carlavirus-specific PCR primer and partial nucleotide sequence provides further evidence for the recognition of *Cowpea mild mottle virus* as a whitefly transmitted carlavirus. European Journal of Plant Pathology. 102: 305-310.
- 8. Bagnall R. H., Larson R. H., Walker J. C. (1956). *Potato viruses M, S* and X in relation to interveinal mosaic of the Irish Cobbler variety. Bulletin, University of Arizona. Agricultural Experiment Station. 198: 1-45.
- 9. Barbar A. N. (2014). Biological, serological and molecular characterization *of Potato virus S* isolated from potato (*Solanum tuberosum* L.). Journal of Kerbala University. 12(3): 239-249.

- Batten J. S., Yoshinari S., Hemenway C. (2003). Potato virus X: a model system for virus replication, movement and gene expression. Molecular Plant Pathology. 4: 125-131.
- Bayascas J. R., Yuste V. J., Solé C., Sánchez-López I., Segura M. F., Perera R., Comella J. X. (2004). Characterization of splice variants of human caspaseactivated DNase with CIDE-N structure and function. Federation of European Biochemical Societies Letters. 566: 234–240.
- 12. Blinov V. M., Gorbalenya A. E., Donchenko A. P. (1984). Sequence similarity between poliovirus cysteine protease P3-7c and cellular serine protease trypsin. Doklady Akademii Nauk SSSR. 279: 502-505.
- 13. Bode O. és Weidemann H. L. (1971). Untersuchungen zur Blattlausübertragbarkeit von Kartoffel-M- und-S-Virus. Potato Research. 14: 119-129.
- 14. Boni M. F., Posada D., Feldman M. W. (2007). An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 176: 1035-1047.
- 15. Boonham N., Walsh K., Preston-Bonnet J., Fraile A., Sacristan S., Malpica J. M., Garcia-Arenal F. (2005). Role of recombination in the evolution of natural populations of *Cucumber mosaic virus*, a tripartite RNA plant virus. Virology. 332: 359-368.
- 16. Carstens E. B. (2010). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Archives of Virology. 155: 133-146.
- 17. Cervera M. T., Riechmann J. L., Martin M. T., Garcia J. A. (1993). 3'-terminal sequence of the plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. Journal of General Virology. 74: 329-334.
- 18. Chare E. R., Holmes E. C. (2005). A phylogenetic survey of recombination frequency in plant RNA viruses. Archives of Virology. 151: 933-946.
- Chiba M., Reed J. C., Prokhnevsky A. I., Chapman E. J., Mawassi M., Koonin E. V., Carrington J. C., Dolja V. V. (2006). Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology. 346: 7-14.
- 20. Chikh Ali M., Maoka T., Natsuaki K. T. (2008). The occurence of potato viruses in Syria and the molecular detection and characterization of Syrian *Potato virus S* isolates. Potato Research. 51: 151-161.
- 21. Cox B. A., Jones R. A. C. (2010). Genetic variability in the coat protein gene of *Potato Virus S* isolates and distinguishing its biologically distinct strains. Archives of Virology. 155: 1163-1169.
- 22. de Bokx J. A. (1969). Particle length of various isolates of Potato virus S. Netherlands Journal of Plant Pathology. 75(1-2): 144-146.
- 23. de Bokx J. A. (1970). Reactions of various plant species to inoculation with potato virus S. Netherlands Journal of Plant Pathology. 76: 70-78.

- 24. de Bruyn Ouboter M. P. (1952). A new potato virus. Proceedings of the Conference on Potato Virus Diseases, Wageningen-Lisse 1951, 83-84.
- 25. Duarte P. S. G., Galvino-Costa S. B., Ribeiro S. R. P., Figueira A. R. (2012). Complete genome sequence of the first Andean strain of *Potato virus S* from Brazil and evidence of recombination between PVS strains. Archives of Virology. 157: 1357-1364.
- 26. Dean M., Rzhetsky A., Allikmets R. (2001). The Human ATP-Binding Cassette (ABC) Transporter Superfamily. Genome Research. 11: 1156-1166.
- 27. Dinant S., Janda M., Kroner P. A., Ahlquist P. (1993). Bromovirus RNA replication and transcription require compatibility between the polymerase- and helicase-like viral RNA synthesis proteins. Journal of Virology. 67(12): 7181-7189.
- 28. Djilani-Khouadja F., Tribodet M., Kerlan C., Fakhfakh H. (2010). Incidence of potato viruses and characterization of *Potato virus Y* variability in late season planted potato crops in Northern Tunisia. European Journal of Plant Pathology. 126: 479-488.
- Dolby C. A., Jones R. A. C. (1987). Occurence of the Andean strain of *potato virus* S in imported potato material and its effects on potato cultivars. Plant Pathology. 36: 381-388.
- 30. Dolby C. A., Jones R. A. C. (1988). The relationship between the Andean strain of *Potato virus S* and *Pepino latent virus*. Annuals of Applied Biology. 112: 231-234.
- Domingo E., Martinez-Salas E., Sobrino F., de la Torre J. C., Portela A., Ortin J., Lopez-Galindez C., Perez-Brena P., Villanueva N., Najera R., VandePol S., Steinhauer D., DePolo N., Holland J. J. (1985). The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance. Gene. 40: 1-8.
- 32. Drake J. W., Holland J. J. (1999). Mutation rates among RNA viruses. Proceedings of the National Academy of Sciences USA. 96: 13910-13913.
- 33. Elena S. F., Moya A. (1999). Rate of deleterious mutation and the distribution of its effects on fitness in *Vesicular stomatitis virus*. Journal of Evolutionary Biology. 12: 1078-1088.
- Finn R.D., Bateman A., Clements J., Coggill P.C., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., Mistry J., Sonnhammer E. L. L., Tate J., Punta M. (2014). Pfam: the protein families database. Nucleic Acids Research. 42: D222-D230.
- 35. Fletcher J. D. (1996). *Potato virus S^A* characteristics of an isolate from New Zealand. New Zealand Journal of Crop and Horticultural Science. 24: 335-339.
- 36. Foster G. D. (1991). Molecular variation between ordinary and Andean strains of *Potato virus S*. Research Virology. 142: 413-416.

- 37. Foster G. D. (1992). The structure and expression of the genome of carlaviruses. Research in Virology. 143: 103-112.
- 38. Foster G. D., Meehan B. M., Mills P. R. (1990). A comparison of the nucleotide sequence homologies between isolates of the Andean and ordinary strains of *Potato virus S* and their relationship to other carlaviruses. Virus Genes. 4: 257-360.
- 39. Foster G. D., Mills P. R. (1990a). Evidence for the role of subgenomic RNAs in the production of potato virus S coat protein during in vitro translation. Journal of General Virology. 71: 1247-1249.
- 40. Foster G. D., Mills P. R. (1990b). Investigation of the 5' terminal structures of genomic and subgenomic RNAs of potato virus S. Virus Genes. 4(4): 359-66.
- 41. Foster G. D., Mills P. R. (1991a). Evidence for subgenomic RNAs in leaves infected with an Andean strain of potato virus S. Acta Virologica. 35(3): 260-267.
- 42. Foster G. D., Mills P. R. (1991b). Occurrence of chloroplast ribosome recognition sites within conserved elements of the RNA genomes of carlaviruses. Federation of European Biochemical Societies. 280(2): 341-343.
- 43. Foster G. D., Mills P. R. (1992a). The 3'-nucleotide sequence of an ordinary strain of *Potato virus S*. Virus Genes. 6: 213-220.
- 44. Foster G. D., Mills P. R. (1992b). Translation of *potato virus S* RNA in vitro: evidence of protein processing. Virus Genes. 6(1):47-52.
- 45. Foster G.D., Scott R., Draper J., Mills P.R. (1992) Expression of Helenium virus S coat protein inEscherichia, in vitro in rabbit reticulocyte lysate and transgenic tobacco. Acta Virologica 36: 567-575.
- 46. Fraile A., Alonso-Prados J. L., Aranda M. A., Bernal J. J., Malpica J. M., Garcia-Arenal F. (1997). Genetic exchange by recombination or reassortment is infrequent in natural populations of tripartite RNA plant virus. Journal of Virology. 71: 934-940.
- 47. Franssen, H., Leunissen, J., Goldbach, R., Lomonosoff, G. P., and Zimmern, D. 1984. Homologous sequences in nonstructural proteins from cowpea mosaic virus and picornaviruses. The EMBO Journal. 3: 855-861.
- Galvino-Costa S. B. F., Figueira A. R., Camargos V. V., Geraldino P. S., Hub X. J., Nikolaeva O. V., Kerlan C., Karasev A. V. (2011). A novel type of *Potato virus Y* recombinant genome, determined for the genetic strain PVY^E. Plant Pathology. 61: 388-398.
- 49. Gibbs M. (1995). The luteovirus supergroup: rampant recombination and persistent partnerships. In: Gibbs A. J., Calisher C. H., Garcia-Arenal F. Molecular basis of virus evolution. Cambridge University Press, Cambridge. 351-368.
- Gibbs M. J., Armstrong J. S., Gibbs A. J. (2000). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics. 16: 573-582.

- Gil J. F., Cotes J. M., Marín M. (2013). Detección serológica y caracterización molecular de Potato virus S (PVS, Carlavirus) en cultivos de papa de Colombia. Revista de Biología Tropical. 61(2): 565-575.
- 52. Gold A. H., Oswald J. W. (1955). A latent virus in virus X resistant potato clone and its relation to potato virus S. Phytopathology. 45: 693–694.
- 53. Goldbach R. W. (1986). Molecular evolution of plant RNA viruses. Annual Review of Phytopathology. 24: 289-310.
- Gomez de Cedrón M., Ehsani N., Mikkola M. L., García J. A., Kääriäinen L. (1999). RNA helicase activity of Semliki Forest virus replicase protein NSP2. Federation of European Biochemical Societies Letters. 448(1): 19-22.
- 55. Gorbalenya A. E., Blinov V. M., Koonin E. V. (1985). Prediction of nucleotidebinding properties of virus proteins from their amino acid sequences. Molek Genetika. 11: 30-36.
- 56. Gorbalenya A. E., Koonin E. V. (1989). Virus proteins containing the purine nucleotide-binding proteins. Nucleic Acids Research. 17: 8413-8440.
- 57. Gorbalenya A. E., Koonin E.V., Donchenko A.P., Blinov V.M. (1988). A novel superfamily of nucleoside triphosphate binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. Federation of European Biochemical Societies Letters, 235: 16-24.
- 58. Goth R. W., Webb R. E. (1975). Lack of Potato Virus S Transmission Phytopathology. 65:1347-1349.
- 59. Gramstatt A., Courtpozanis A., Rohde W. (1990). The 12 kDa protein of *Potato virus M* displays properties of a nucleic acid-binding regulatory protein. Federation of European Biochemical Societies Letters. 276: 34-38.
- 60. Gulyas K.D., Donahue T.F. (1992). SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell. 69(6): 1031-1042.
- Haft D.H., Selengut J.D., Richter A.R., Harkins D., Basu M.K., Beck E. (2013). TIGRFAMs and Genome Properties in 2013. Nucleic Acids Research. 41: D387-D395.
- 62. Haseloff J., Coelet P., Zimmern, D., Ahfquist P., Dasgupta R., Kaesberg, P. (1984). Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. Proceedings of the National Academy of Sciences of the United States of America. 81: 4358-4362.
- 63. Hinostroza-Orihuela A. M. (1973). Some properties of *Potato virus S* isolated from Peruvian potato varieties. Potato Research. 16: 244-250.
- 64. Hiruki C. (1975). Factors affecting bioassay of *Potato Virus S* in *Chenopodium quinoa*. Phytopathology 65: 1288-1292.

- 65. Holland J. J., Spindler K., Horodyski F., Crabau E., Nichol S., Van de Pol S. (1982). Rapid evolution of RNA genomes. Science. 215: 1577-1585.
- Horváth J. (1964). Ergebnisse der Identifizierung von mechanisch übertragbare Kartoffelviren an Testpflanzen mit besonderer Rücksicht auf Vergleichsuntersuchungen. Acta Agronomica Academiae Scientiarum Hungaricae. 13: 103-135.
- 67. Horváth J. (1967). Data on the possibilities of controlling potato viruses. Acta Agronomica Academiae Scientiarum Hungaricae. 16: 75-86.
- Horváth J. (1968). A vírusrezisztenciára nemesítés eredményei és a dohánymozaik vírus rezisztenciára nemesítés lehetőségei burgonyánál. Növénytermelés. 17(3): 225-238.
- 69. Horváth J. (1972). Symptomless *Lycopersicon* host plants for *Potato virus S*. American Potato Journal. 49: 339-342.
- 70. Horváth J. (2009). Burgonyakutatás Magyarországon nemzetközi kitekintéssel: múlt, jelen, jövő. Növénytermelés. 58: 135-183.
- 71. Jiang B., Monroe S. S., Koonin E. V., Stine E. V., Glass R. I. (1993). RNA sequence of astrovirus: unique genome organization and a putative retrovirus-like ribosomal frameshifting signal directing synthesis of the viral repliease. Proceedings of the National Academy of Sciences of the United States of America. 90: 10539-10543.
- 72. Ju H. J., Samuels T. D., Wang Y. S., Blancaflor E., Payton M., Mitra R., Krishnamurthy K., Nelson R. S., Verchot-Lubicz J. (2005). The *Potato virus X* TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiology. 138: 1877-1895.
- 73. Jukes T. H., Cantor C. R. (1969). Evolution of protein molecules. Mammalian protein metabolism. Academic Press, New York, US. 21-132.
- 74. Kamer G., Argos P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research. 12: 7269-7282.
- 75. Khalil E. M. és Shalla T. A. (1982). Detection and spread of *potato virus S*. Plant Disease 66: 368-371.
- 76. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. (2012). Carlavirus. In: Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses London: Academic Press. 924.
- Klimke W., Agarwala R., Badretdin A., Chetvernin S., Ciufo S., Fedorov B., Kiryutin B., O'Neill K., Resch W., Resenchuk S., Schafer S., Tolstoy I., Tatusova T. (2009). The National Center for Biotechnology Information's Protein Clusters Database. Nucleic Acids Research. 37: D216-D223.
- 78. Koenig R. (1982). Carlavirus group. CMI/AAB Descriptions of Plant Viruses. 259.

- 79. Kong F., Sivakumaran K., Kao C. (1999). The N-terminal half of the *brome mosaic virus* 1a protein has RNA capping-associated activities: specificity for GTP and S-adenosylmethionine. Virology. 259(1): 200-210.
- 80. Koonin E. V., Dolja V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology. 28(5): 375-430.
- 81. Koonin E. V., Gorbalenya A. E. (1989). Evolution of RNA genomes: Does the high mutation rate necessitate high rate of evolution of viral proteins? Journal of Molecular Evolution. 28: 524-527.
- Kostiw M. (2003). The effect of feeding time on potato virus S transmission by Myzus persicae (Sulz.) and Aphis nasturtii (Kalt.) aphids. Potato Research. 46: 129-136.
- Kowalska A. (1977). Reaction of red kidney bean to potato virus S. Potato Research. 20: 85-88.
- 84. Kowalska A. és Waś M. (1976). Detection of *potato virus M* and *potato virus S* on test plants. Potato Research 19: 131-140.
- 85. Kryldakov R., Akbergenov R., Hohn T., Iskakov B. (2011). Identification of silencing suppressors of *potato virus M*. Journal of Cell and Molecular Biology. 9(1): 15-20.
- 86. Kyte J., Doolittle R. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 157: 105-132.
- 87. Lambert S. J., Scott J.B., Pethybridge S. J., Hay F. S. (2012). Strain characterization of *Potato virus S* isolates from Tasmania, Australia. Plant Disease. 96: 813-819.
- 88. Lawrence D. M., Rozanov M. N., Hillman B. I. (1995). Autocatalytic processing of the 223-kDa protein of *blueberry scorch carlavirus* by a papain-like proteinase. Virology. 207(1): 127-135.
- Le Gall O. L., Lanneau M., Candresse T., Dunez J. (1995). The nucleotide sequence of the RNA-2 of an isolate of the English serotype of *Tomato black ring virus*: RNA recombination in the history of nepoviruses. Journal of General Virology. 76: 1279-1283.
- 90. Letunic I., Doerks T., Bork P. (2015). SMART: recent updates, new developments, and status in 2015 Nucleic Acids Research. 43: D257-D260.
- 91. Lin Y.-H. (2012). Biological and molecular properties of *Potato virus S* (PVS) and the effect of PVS on latebight resistant potato genotypes. Dissertation. Washington
- 92. Lin Y.-H., Druffel K. L., Whitworth J., Pavek M. J., Pappu H. R. (2009). Molecular characterization of two *Potato virus S* isolates from late-blight-resistant genotypes of potato (*Solanum tuberosum*). Archives of Virology. 154: 1861-1863.

- 93. Lin Y.-H., Abad J. A., Maroon-Lango C. J., Perry K. L., Pappu H. R. (2014). Molecular characterization of domestic and exotic *potato virus S* isolates and a global analysis of genomic sequences. Archives of Virology. 159: 2115-2122.
- 94. Lukhovitskaya N. I., Ignatovich I. V., Savenkov E. I., Schiemann J., Morozov S. Y., Solovyev A. G. (2009). Role of the zinc-finger and basic motifs of chrysanthemum virus B p12 protein in nucleic acid binding, protein localization and induction of a hypersensitive response upon expression from a viral vector. Journal of General Virology. 90: 723-733.
- 95. Lukhovitskaya N. I., Solovieva A. D., Boddeti S. K., Thaduri S., Solovyev A. G., Savenkov E. I. (2013). An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell. 25: 960-973.
- 96. Lukhovitskaya N. I., Gushchin V. A., Solovyev A. G., Savenkov E. I. (2014). Making sense of nuclear localization: a zinc-finger protein encoded by a cytoplasmically replicating plant RNA virus acts a transcription factor: a novel function for a member of large family of viral proteins. Plant Signaling & Behavior. 8(8): 1-5.
- 97. Macarthur A. W. (1956). Scottish Plant Breeding Station, Annual Report. 27-36.
- 98. Mackenzie D. J., Tremaine J. H., Stace-Smith R. (1989). Organization and interviral homologies of the 3'-terminal portion of *Potato virus S* RNA. Journal of General Virology. 70: 1053-1063.
- 99. Makarova K. S., Aravind L., Koonin E. V. (2000). A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends in Biochemical Sciences. 25(2): 50-52.
- 100. Manzer F.E., Merriam D.C., Helper P.R. (1978). Effects of two strains of potato virus X on yields of Russet Burbank, Kennebec and Katahdin cultivars in Maine. American Journal of Potato Research. 55: 601-609.
- Maoka T., Sugiyama S., Maruta Y., Hataya T. (2010). Application of cDNA macroarray for simultaneous detection of 12 Potato Viruses. Plant Disease 94: 1248-1254.
- 102. Marchler-Bauer A., Anderson J.B., DeWeese-Scott C., Fedorova N.D., Geer L.Y., He S., Hurwitz D.I., Jackson J.D., Jacobs A.R., Lanczycki C.J., Liebert C. A., Liu C., Madej T., Marchler G. H., Mazumder R., Nikolskaya A. N., Panchenko A. R., Rao B. S., Shoemaker B. A., Simonyan V., Song J. S., Thiessen P. A., Vasudevan S., Wang Y., Yamashita R. A., Yin J. J., Bryant S. H. (2003). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Research. 31: D383-D387.
- Marchler-Bauer A, Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., Geer R. C., He J, Gwadz M., Hurwitz D. I., Lanczycki C. J., Lu F., Marchler G. H., Song J. S., Thanki N., Wang Z., Yamashita R. A., Zhang D, Zheng C., Bryant S. H. (2015). CDD: NCBI's conserved domain database. Nucleic Acids Research. 43: D222-D226.

- 104. Martin D. P., Rybicki E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics. 16: 562-563.
- 105. Martin D. P., Posada D., Crandall K. A., Williamson C. (2005). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research and Human Retroviruses. 21: 98-102.
- 106. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. (2010). RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462-2463.
- 107. Martin R. R., Keese P. K., Young M. G., Waterhouse P. M., Gerlach W. L. (1990). Evolution and molecular biology of luteoviruses. Annual Review of Phytopathology. 28: 341-363.
- 108. Matoušek J., Scubert J., Dědič P., Ptáček J. (2000). A broad variability of *Potato virus S* (PVS) revealed by analysis of virus sequences amplified by reverse transcryptase-polymerase chain reaction. Canadian Journal of Plant Pathology. 22: 29-37.
- 109. Matoušek J., Schubert J., Ptáček J., Kozlová P., Dědič P. (2005). Complete nucleotide sequence and molecular probing of *Potato virus S* genome. Acta Virology. 49: 195-205.
- Matoušek J., Scubert J., Dědič P. (2009). Complementation analysis of triple gene block of *Potato virus S* (PVS) revealed its capability to support systemic infection and aphid transmissibility of recombinant Potato virus X. Virus Research 146: 81-88.
- 111. Matthews R. E. (1979). Classification and nomenclature of viruses. Intervirology. 12: 129-296.
- 112. Maynard Smith J. (1992). Analyzing the mosaic structure of genes. Journal of Molecular Evolution. 34: 126-129.
- 113. Monis J., de Zoeten G. A. (1990). Characterization and translation studies of *Potato virus S* RNA. Phytopathology. 80: 441-445.
- 114. Morozov S. Y., Lukasheva L. I., Chemov B. K., Skryabin K. G., Atabekov J. G. (1987). Nucleotide sequence of open reading frames adjacent to the coat protein cistron in *Potato virus X* genome. Federation of European Biochemical Societies Letters. 213: 438-442.
- 115. Morozov S. Y., Dolja V. V., Atabekov J. G. (1989). Probable reassortment of genomic elements among elongated RNA-containing plant viruses. Journal of Molecular Evolution. 29: 52-62.

- 116. Morozov S. Y., Miroshnichenko N. A., Solovyev, A. G., Zelenina D. A., Fedorkin O. N., Lukasheva L. I., Grachev S. A., Chernov B. K. (1991). In vitro membrane binding of the translation products of the *carlavirus* 7-kDa protein genes. Virology. 183: 782-785.
- Morozov S.Y., Solovyev A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology. 84: 1351-1366.
- 118. O'Reilly E K., Kao C. C. (1998). Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology. 252(2): 287-303.
- 119. Ozeki J., Hashimoto M., Komatsu K., Maejima K., Himeno M., Senshu H., Kawanishi T., Kagiwada S., Yamaji Y., Namba S. (2009). The N-terminal region of the *Plantago asiatica mosaic virus* coat protein is required for cell-to-cell movement but is dispensable for virion assembly. Molecular Plant-Microbe Interactions. 22: 677-685.
- 120. Padidam M., Sawyer S., Fauquet C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology. 265: 218-225.
- 121. Park E., Guzder S. N., Koken M. H., Jaspers-Dekker I., Weeda G., Hoeijmakers J. H., Prakash S., Prakash L. (1992). RAD25 (SSL2), the yeast homolog of the human *xeroderma pigmentosum* group B DNA repair gene, is essential for viability. Proceedings of the National Academy of Sciences of the United States of America. 89(23): 11416-11420.
- 122. Patel S., Latterich M. (1998). The AAA team: related ATPases with diverse functions. Trends in Cell Biology. 8(2): 65-71.
- 123. Petty I. T., French R., Jones R. W., Jackson A. O. (1990). Identification of *Barley stripe mosaic virus* genes involved in viral RNA replication and systemic movement. European Molecular Biology Organization Journal. 9: 3456-3457.
- 124. Posada D., Crandall K. A. (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proceedings of the National Academy of Sciences. 98: 13757-13762.
- 125. Pramesh D., Baranwal V. K. (2013). Molecular characterization of coat protein gene of *Garlic common latent virus* isolates from India: an evidence for distinct phylogeny and recombination. Virus Genes. 47(1): 189-93.
- 126. Rose D. G. (1983). Some properties of an unusual isolate of *Potato virus S*. Potato Research. 26: 49-62.
- 127. Rozanov M. N., Koonin E.V., Gorbalenya A. E. (1992). Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses. Journal of General Virology. 73: 2129-3214.
- Rozendaal A., Brust J. H. (1955). Proceedings of 2nd Conference Potato Virus Diseases. Wageningen-Lisse. 1954. 120-133.

- 129. Salari K., Massumi H., Heydarnejad J., Pour A. H., Varsani A. (2011). Analysis of Iranian *Potato virus S* isolates. Virus Genes. 43: 281-288.
- 130. Sambrook J., Fritsch E. F., Maniatis T. A. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- 131. Schepetilnikov M. V., Manske U., Solovyev A. G., Zamyatnin A. A. Jr., Schiemann J., Morozov S. Y. (2005). The hydrophobic segment of *Potato virus X* TGBp3 is a major determinant of the protein intracellular trafficking. Journal of General Virology. 86: 2379-2391.
- 132. Scott K. P., Kashiwazaki S., Reavy B., Harrison B. D. (1994). The nucleotide sequence of potato mop-top virus RNA 2: a novel type of genome organization for a furovirus. Journal of General Virology. 75: 3561-3568.
- 133. Sherpa A. R., Hallan V., Pathak P., Zaida A. A. (2007). Complete nucleotide sequence analysis of *Cymbidium mosaic virus* Indian isolate: further evidence for natural recombination among potexviruses. Journal of Biosciences. 32(4): 663-669.
- 134. Shine J. és Dalgarno L. (1975). Determinant of cistron specificity in bacterial ribosomes. Nature. 254: 34-38.
- 135. Singh A. K., Mahinghara B. K., Hallan V., Ram R., Zaidi A. A. (2008). Recombination and phylogeographical analysis of *Lily symptomless virus*. Genes 36: 421-427.
- 136. Singh L., Hallan V., Martin D. P., Ram R., Zaidi A. A. (2012). Genomic sequence analysis of four new *chrysanthemum virus B* isolates: evidence of RNA recombination. Archives of Virology. 157(3): 531-537.
- 137. Slack S. A. (1983). Identification of an isolate of the Andean strain of *Potato virus S* in North America. Plant Disease. 67: 786-789.
- 138. Solovyev A. G., Savenkov E. I., Agranovsky A. A., Morozov S. Y. (1996). Comparisons of the genomic cis-elements and coding regions in RNA β components of the hordeiviruses *Barley stripe mosaic virus*, *Lychnis ringspot virus* and *Poa semilatent virus*. Virology 219: 9-18.
- 139. Song J.-J., Meng J.-R., Zou C.-Wu., Li P., Wang Z.-Q., Chen B.-S. (2013). Identification of Viruses from Potato Planted in Winter in Guangxi by Small RNA Deep Sequencing. China Agriculture Science. 46(19): 4075-4081.
- 140. Steinhauer D., Holland J. J. (1987). Rapid evolution of RNA viruses. Annual Review of Biochemistry. 41: 409-433.
- 141. Szymański M., Deniziak M., Barciszewski J. (2000). The new aspects of aminoacyltRNA synthetases. Acta Biochimica Polonica. 47(3): 821-34.
- 142. Tatusov R.L., Natale D.A., Garkavtsev I.V., Tatusova T.A., Shankavaram U.T., Rao B.S., Kiryutin B., Galperin M.Y., Fedorova N.D., Koonin E.V. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research. 29: 22-28.

- 143. Thomson A. D. (1959). *Potato viruses A* and *S* in New Zealand. New Zealand Journal of Agricultural Research. 2: 702-706.
- 144. Turner R., Bate N., Twell D., Foster G. D. (1994a). Analysis of a translational enhancer upstream from the coat protein open reading frame of potato virus S. Archives of Virology. 134(3-4): 321-33.
- 145. Turner R., Bate N., Twell D., Foster G. D. (1994b). In vivo characterisation of a translational enhancer upstream from the coat protein open reading frame of potato virus S. Archives of Virology. 137(1-2): 123-132.
- 146. Turner R., Foster G. D. (1997). Deletion analysis of a translational enhancer upstream from the coat protein open reading frame of *Potato virus S*. Archives of Virology. 142: 167-175.
- Turner R., Glynn M., Taylor S. C., Cheung M.-K., Spurr C., Twell D., Foster G. D. (1999). Analysis of a translational enhancer present within the 50 -terminal sequence of the genomic RNA of potato virus S. Archives of Virology. 144: 1451-1461.
- Vale R. D. (2000). AAA Proteins: Lords of the Ring. The Journal of Cell Biology, Volume 150(1): F13–F19.
- Valkonen J. P. T., Contreras A., Pehu E., Salazar L. F. (1992). Naturally occurring viral infections in Solanum brevidens and S. fernandezianum. Potato Research. 35: 411-417.
- 150. Vaughan E. K., van Slogteren D. H. M. (1956). *Potato virus S* in Oregon. American Potato Journal. 33(7): 218-219.
- 151. Venkatachalam K. V., Fuda H., Koonin E. V., Strott C. A. (1999). Site-selected mutagenesis of a conserved nucleotide binding HXGH motif located in the ATP sulfurylase domain of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase. Journal of Biological Chemistry. 274(5): 2601-2604.
- 152. Verchot-Lubicz J., Ye C.-M., Bamunusinghe D. (2007). Molecular biology of *potexviruses*: Recent advances. Journal of General Virology. 88: 1643-1655.
- Vulić M. és Hunnius W. (1967). Die Reaktionen verschiedener Pflanzenarten auf Blattinfektionen mit S- und M-Virus der Kartoffel. Phytopathologische Zeitschrift. 59: 225-248.
- 154. Walker J. E., Saraste M., Runswick M. J., Gay N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. The EMBO Journal. 1(8): 945–951.
- 155. Wardrop E. A., Gray A. B., Singh R. P., Peterson I. F. (1989). Aphid transmission of *Potato virus S*. American Journal of Potato Research. 66: 449-459.
- 156. Wetter C. (1971). *Potato virus S*. In: Descriptions of plant viruses. Commonwealth Mycological Institute, Association of Applied Biologist, Kew, England. 60: 1-3.

- 157. Wetter C., Milne R.G. (1981). Carlaviruses. In: E. Kurstak. Handbook of Plant Virus Infections and Comparative Diagnosis, Elsevier, Amsterdam. 695.
- Wierzchoslawski R., Bujarski J.J. (2006). Efficient in vitro system of homologous recombination in brome mosaic bromovirus. Journal of Virology. 80(12): 6182-6187.
- 159. Wolf I., Horváth S. (2002). A vírusfertőzés hatása a vetőburgonya minőségére. In: Georgikon Tudományos Napok. 306-310.
- 160. Yarwood C. E., Gold A. H. (1955). Guar as a local lesion host of *Potato virus S*. Plant Diseases Reporter. 39: 622.
- 161. Zimmern D. (1987). Evolution of RNA viruses, In: Holland J., Domingo E., Ahlquist P. RNA genetics. CRC Press, Boca Raton. 211-240.

10. Mellékletek

1. melléklet A köpenyfehérje elemzéshez felhasznált PVS izolátumok adatai az NCBI adatbázisból (AUS-Ausztrália, BRA-Brazília, CAN-Kanada, CHI-Chile, CHN-Kína, COL-Kolumbia, CZE-Csehország, GBR-Egyesült Királyság, GER-Németország, HUN-Magyarország, IND-India, IRI-Irán, KOR-Kórea, NED-Hollandia, POL-Lengyelország, SYR-Szíria, TAN-Tanzánia, USA-Amerikai Egyesült Államok, UKR-Ukrajna)

NCBI azonosító	Törzs	Izolátum	Származási helv	Gazdanövény
AB364945	PVS ^O	PVS3-5	SYR	Solanum tuberosum
AB364946	PVS ^O	PVS6-2	SYR	<i>Solanum tuberosum</i> cv. Mohamad Chikh
AF493950	PVS ^O	ordinary		
AF493951	PVS ^A	andean	GBR	
AJ863509	PVS ^O	Leona	GER	Solanum tuberosum cv. Leona
AJ863510	PVS ^A	Vltava	CZE	Solanum tuberosum cv. Vltava
AJ889246	PVS ^O	Hangzhou	CHN	Solanum tuberosum
AY512653	PVS ^O		CHN	Solanum tuberosum
AY687337	PVS ^O		CHN	Solanum tuberosum
D00461	PVS ^A	Andean (Peruvian)	CAN	
DQ315387	PVS ^O	Hebei	CHN	Solanum tuberosum
DQ786653	PVS ^O		IND	
FJ643622	PVS ^A	Andean (India)	IND	Solanum tuberosum
FJ813512	PVS ^O	WaDef-US	USA	Solanum tuberosum cv. Defender
FJ813513	PVS ^O	Id4106-US	USA	Solanum tuberosumclone LBR 4106
FJ813514	PVS ^O	IdDef-US	USA	Solanum tuberosum cv. Defender
GU144322	PVS ^O	136-PVS	GBR	Solanum tuberosum cv. Orkney Black
GU144323	PVS ^O	137-PVS	GBR	Solanum tuberosum cv. Red Foula
GU144324	PVS ^O	138-PVS	GBR	Solanum tuberosum
GU144325	PVS ^O	139-PVS	GBR	Solanum tuberosum cv. Red Foula
GU144326	PVS ^O	143-PVS	GBR	Solanum tuberosum cv. Shetland Black
GU144327	PVS ^O	144-PVS	GBR	Solanum tuberosum cv. Red Foula
GU144328	PVS ^O	Sam-13-PVS	GBR	Solanum tuberosum cv. Maris Bard
GU144329	PVS ^O	Sam-23-PVS	GBR	Solanum tuberosum cv. Kerr's Pink
GU144330	PVS ^O	Sam-24-PVS	GBR	Solanum tuberosum cv. Merlin
GU233453	PVS ^O	QLDKip	AUS	Solanum tuberosum cv. Kipfler
GU233454	PVS ^O	QLD1092	AUS	Solanum tuberosum
GU233455	PVS ^O	SK	AUS	Solanum tuberosum cv. Kennebec
GU256061	PVS ^O	Indian	IND	Solanum tuberosum
GU319942	PVS ^O	TAS05-09	AUS	<i>Solanum tuberosum</i> cv. Russet Burbank
GU319943	PVS ^o	WADel1	AUS	Solanum tuberosum cv.Delaware
GU319944	PVS ^O	WADel2	AUS	Solanum tuberosum cv. Delaware
GU319945	PVS ^o	WAFL	AUS	Solanum tuberosum cv. FL 1867

NCBI	Törzs	Izolátum	Származási	Gazdanövény
azonosító	10125	Izolatum	hely	Gazuanoveny
GU319946	PVS ^o	WAKip1	AUS	Solanum tuberosum cv.Kipfler
GU319947	PVS ^O	WAKip2	AUS	Solanum tuberosum cv. Kipfler
GU319948	PVS ^O	WAMd	AUS	Solanum tuberosum cv. Mondial
GU319949	PVS ^o	WAPC	AUS	Solanum tuberosum cv. Purple Congo
GU319950	PVS ^O	TASPF	AUS	Solanum tuberosum cv. Pink Fir Apple
GU319951	PVS ^{O-CS}	Dutch	NED	Solanum tuberosum
GU319952	PVS ^{O-CS}	Exodus	NED	Solanum tuberosum cv. Exodus
GU319953	PVS ^{O-CS}	Europe	NED	Solanum tuberosum
GU319954	PVS ^O	TAS1	AUS	Solanum tuberosum
GU369814	PVS ^O		IND	Solanum tuberosum
HQ856834	PVS ^O	KHO.FA.2	IRI	Solanum tuberosum
HQ875132	PVS ^O	AZA.TA.6	IRI	Solanum tuberosum
HQ875133	PVS ^O	ESF.FA.19	IRI	Solanum tuberosum
HQ875134	PVS ^O	FA.SI.14	IRI	Solanum tuberosum
HQ875135	PVS ^O	HAM.KA.20	IRI	Solanum tuberosum
HQ875136	PVS ^O	KER.JI.4	IRI	Solanum tuberosum
HQ875137	PVS ^o	KER.JI.6	IRI	Solanum tuberosum
HQ875138	PVS ⁰	KER.LA.12	IRI	Solanum tuberosum
HQ875139	PVS ^o	KER.LA.15	IRI	Solanum tuberosum
HQ875140	PVS ⁰	KER.SA.28	IRI	Solanum tuberosum
HQ875141	PVS ^O	KHO.CH.3	IRI	Solanum tuberosum
HQ875142	PVS ⁰	KER.SO.21	IRI	Solanum tuberosum
JQ647830	PVS ^A	BB-AND	BRA	Solanum tuberosum
JX183949	PVS ^O	41956	USA	burgonya szövetenyészet
JX183950	PVS ^O	Cosimar	USA	burgonya szövetenyészet
JX183951	PVS ^O	FL206-1D	USA	burgonya szövetenyészet
JX183952	PVS ^o	Galaxy	USA	burgonya szövetenyészet
JX183953	PVS ^O	ND2492-2R	USA	burgonya szövetenyészet
JX183954	PVS ^o	Q1(Q44843)	CHI	burgonya szövetenyészet
JX183955	PVS ^A	Q3(Q44675)	CHI	burgonya szövetenyészet
JX183956	PVS ^A	Q5(Q44667)	CHI	burgonya szövetenyészet
JX419379	PVS ^A	RVC Andean	COL	<i>Solanum phureja</i> var. Criolla Colombia
JX683388	PVS ^A	RL5	COL	Solanum phureja
KC430335	PVS ^o	Yunnan YN	CHN	Solanum tuberosum
KC818634	PVS ^o	St	CHN	Solanum tuberosum
KC818635	PVS ^o	Cm	CHN	Cucurbita moschata
KC853751	PVS ^o	216-S	IRI	Solanum tuberosum
KC853752	PVS ^o	226-S	IRI	Solanum tuberosum
KC853753	PVS ^o	286-S	IRI	Solanum tuberosum
KC853754	PVS ^O	314-S	IRI	Solanum tuberosum
KC853755	PVS ^O	315-S	IRI	Solanum tuberosum
KC853756	PVS ^O	352-S	IRI	Solanum tuberosum
KC853757	PVS ^o	354-S	IRI	Solanum tuberosum

NCBI azonosító	Törzs	Izolátum	Származási hely	Gazdanövény
KC853758	PVS ^o	490-S	IRI	Solanum tuberosum
KC853759	PVS ^o	492-S	IRI	Solanum tuberosum
KC853760	PVS ^O	501-S	IRI	Solanum tuberosum
KC853761	PVS ^O	515-S	IRI	Solanum tuberosum
KC853762	PVS ^O	652-S	IRI	Solanum tuberosum
KC853763	PVS ^O	691-S	IRI	Solanum tuberosum
KF011268	PVS ^O	PVS-a	CHN	Solanum tuberosum
KF011269	PVS ^o	PVS-b	CHN	Solanum tuberosum
KF011270	PVS ^A	PVS-c	CHN	Solanum tuberosum
KF011271	PVS ^A	PVS-d	CHN	Solanum tuberosum
KF011272	PVS ^A	PVS-e	CHN	Solanum tuberosum
KF011273	PVS ^A	PVS-f	CHN	Solanum tuberosum
KF011274	PVS ^A	PVS-g	CHN	Solanum tuberosum
KF011275	PVS ^A	PVS-h	CHN	Solanum tuberosum
KF011276	PVS ^A	PVS-i	CHN	Solanum tuberosum
KF011277	PVS ^A	PVS-j	CHN	Solanum tuberosum
KF011278	PVS ^A	PVS-k	CHN	Solanum tuberosum
KF011279	PVS ^O	PVS-1	CHN	Solanum tuberosum
KF011280	PVS ^O	PVS-m	CHN	Solanum tuberosum
KF225470	PVS ^A	Guizhou CP01	CHN	Solanum tuberosum
PVU74375	PVS ^O	S-SE	KOR	
PVU74376	PVS ^O	S-RB	KOR	
S45593	PVS ^O	Orion	GBR	
Y15609	PVS ^O	Vitava	CZE	
Y15610	PVS ^O	Vitava	CZE	
Y15611	PVS ^O	Karla	CZE	
Y15612	PVS ^O	Karla	CZE	
Y15613	PVS ^O	Aschersleben	GER	
Y15614	PVS ^o	Kobra	CZE	
Y15615	PVS ^O	Aschersleben	GER	
Y15616	PVS ^o	Vitava	CZE	
Y15625	PVS ^o	Kobra	CZE	

2. melléklet A *Carlavirus* nemzetség jellemzéséhez felhasznál izolátumok adatai az NCBI adatbázisból

NCBI azonosító	Faj	Izolátum	Genom méret (nt)
AB051848	Aconitum latent virus	D	8657
JQ245696	American hop latent virus	Bittergold	8601
AY941198	Blueberry scorch virus	BC-1	8522
AB517596	Butterbur mosaic virus	J	8662
AM493895	Chrysanthemum virus B	Punjab INDIA	8855
EF527260	Coleus vein necrosis virus		8727
KC884244	Cowpea mild mottle virus	CPMMV:BR:MG:09:2	8196
AJ620300	Daphne virus S	KT	8739
KJ415259	Gaillardia latent virus	5/18-05-2010	8659
JF320810	Garlic common latent virus	WA-1	8638
NC_003557	Garlic latent virus		8363
FJ196836	Helleborus net necrosis virus	H6	8541
DQ098905	Hippeastrum latent virus		8500
HG793797	Hop latent virus	Zatec 2008	8612
EU527979	Hop mosaic virus	Australia	8550
EU754720	Hydrangea chlorotic mottle virus	NZ	8433
FJ531635	Kalanchoe latent virus	1452	8513
EU074853	Ligustrum necrotic ringspot virus		8412
HM222522	Lily symptomless virus	LSV-DL	8394
JN039374	Mirabilis jalapa mottle virus		8315
AM158439	Narcissus common latent virus	Zhangzhou	8539
AM182569	Narcissus symptomless virus	Hangzhou-2005	8281
JQ395043	Nerine latent virus	Marijiniup 4	8334
DQ455582	Passiflora latent carlavirus		8386
EU162589	Phlox Virus B		9058
EF492068	Phlox virus S		8590
X65102	Poplar mosaic virus	ATCC PV257	8737
EU433397	Potato latent virus		7890
HM584819	Potato virus H	Huhhot	8417
JX678982	Potato virus M	PVM-352	8523
EU338239	Potato Virus P		8392
FJ685618	Red clover vein mosaic virus	Washington	8604
HQ258896	Shallot latent virus	MS/SW/Aus2	8400
AY461421	Sweet potato chlorotic fleck virus		9104
JX212747	Sweet potato C6 virus	Sosa 29	8857

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Alex	1		99,71	99,71	96,94	94,81	95,56	94,01	94,02	93,99	93,45	93,93	93,59	91,54	78,59	78,97
Irena	2	25		99,81	97,04	94,84	95,45	94,08	94,10	94,06	93,49	94,00	93,65	91,60	78,58	78,92
Valery	3	25	16		97,04	94,81	95,43	94,06	94,10	94,06	93,49	94,00	93,66	91,57	78,54	78,86
Ewa	4	260	251	251		96,74	93,41	94,65	94,58	94,67	93,88	94,71	94,08	92,95	78,57	79,01
AJ863509	5	440	438	440	277		92,23	93,97	93,86	94,05	93,43	94,09	93,49	94,07	78,58	78,70
89.249	6	377	386	388	559	659		92,65	92,75	92,65	92,33	92,56	92,29	89,28	78,10	78,72
FJ813513	7	508	502	504	454	512	624		97,98	97,71	94,58	94,73	93,90	90,69	78,82	78,77
FJ813512	8	507	501	501	460	521	615	171		97,76	94,43	94,58	93,88	90,54	78,78	78,68
09.369	9	510	504	504	452	505	624	194	190		94,49	94,71	93,93	90,78	78,85	78,81
KP089978	10	557	553	553	520	558	652	461	473	468		94,36	93,53	90,27	78,82	79,23
KC430335	11	515	509	509	449	502	632	447	460	449	479		93,85	90,80	78,79	78,77
Bonita	12	544	539	538	502	552	654	518	519	515	550	522		90,50	79,04	78,84
AJ863510	13	718	713	715	598	503	910	790	803	782	827	781	806		80,53	78,68
JQ647830	14	1825	1826	1829	1827	1826	1867	1805	1809	1803	1806	1808	1787	1660		79,49
JX419379	15	1789	1793	1798	1786	1812	1810	1806	1814	1803	1767	1806	1800	1814	1749	

3. melléklet A teljes PVS genomok páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Alex	1		99,58	99,58	94,80	94,75	96,59	94,60	93,56	93,57	93,45	93,54	93,08	92,97	77,26	77,43
Valery	2	25		99,73	94,80	94,80	96,74	94,42	93,66	93,67	93,56	93,61	93,15	93,07	77,19	77,28
Irena	3	25	16		94,84	94,84	96,74	94,45	93,66	93,67	93,56	93,64	93,15	93,05	77,24	77,36
AJ863509	4	308	308	306		98,36	96,88	91,51	93,66	93,27	93,45	93,35	92,91	92,86	77,28	77,18
AJ863510	5	311	308	306	97		96,79	91,72	93,66	93,29	93,44	93,35	92,98	92,95	77,33	76,86
Ewa	6	202	193	193	185	190		92,24	94,43	94,03	94,11	94,11	93,54	93,52	77,28	77,51
89.249	7	320	331	329	503	491	460		92,00	92,17	91,94	91,99	91,85	91,51	76,77	77,34
KC430335	8	382	376	376	376	376	330	474		94,42	94,52	94,57	94,23	93,42	77,46	77,40
FJ813512	9	381	375	375	399	398	354	464	331		97,54	97,89	94,25	93,42	77,40	77,33
09.369	10	388	382	382	388	389	349	478	325	146		97,52	94,28	93,42	77,46	77,33
FJ813513	11	383	379	377	394	394	349	475	322	125	147		94,33	93,40	77,53	77,33
KP089978	12	410	406	406	420	416	383	483	342	341	339	336		93,03	77,33	77,63
Bonita	13	417	411	412	423	418	384	503	390	390	390	391	413	(77,63	77,11
JQ647830	14	1348	1352	1349	1347	1344	1347	1377	1336	1340	1336	1332	1344	1326		77,99
JX419379	15	1338	1347	1342	1353	1372	1333	1343	1340	1344	1344	1344	1326	1357	1305	

4. melléklet PVS ORF 1 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

5. melléklet PVS ORF1 régió filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
09.369	1		94,08	91,80	95,70	95,19	95,65	97,87	98,03	93,57	95,65	84,72	84,20	95,29	95,54	96,00
AJ863509	2	117		95,69	96,30	94,38	96,96	94,58	94,63	92,86	96,20	83,61	83,59	94,78	96,20	94,59
AJ863510	3	162	85		93,92	92,10	94,58	92,35	92,35	90,84	93,82	82,60	82,18	92,35	93,82	92,26
Alex	4	85	73	120		95,95	98,89	96,15	96,30	95,44	99,44	84,77	85,01	96,25	99,49	96,05
Bonita	5	95	111	156	80		96,25	95,44	95,75	93,72	95,80	85,23	84,46	95,49	95,80	95,70
Ewa	6	86	60	107	22	74		96,10	96,25	94,84	98,73	84,72	84,86	96,46	98,78	96,10
FJ813512	7	42	107	151	76	90	77		98,78	94,23	96,05	84,93	84,66	95,80	96,00	96,46
FJ813513	8	39	106	151	73	84	74	24		94,38	96,20	85,03	84,66	96,00	96,15	96,51
89.249	9	127	141	181	90	124	102	114	111		95,24	84,27	84,30	94,33	95,19	94,38
Irena	10	86	75	122	11	83	25	78	75	94		84,62	85,06	96,15	99,34	95,95
JQ647830	11	302	324	344	301	292	302	298	296	311	304		84,22	84,47	84,52	84,78
JX419379	12	312	324	352	296	307	299	303	303	310	295	312		84,61	84,76	84,82
KC430335	13	93	103	151	74	89	70	83	79	112	76	307	304		96,10	96,10
Valery	14	88	75	122	10	83	24	79	76	95	13	306	301	77		95,90
KP089978	15	79	107	153	78	85	77	70	69	111	80	301	300	77	81	

6. melléklet PVS 223K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

7. melléklet PVS 223K fehérje filogenetikai törzsfája (UPGMA)

97

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	99,86	97,68	95,08	95,90	95,49	95,08	94,54	94,13	85,79	85,52	87,30	84,70
Valery	2	0		100,00	99,86	97,68	95,08	95,90	95,49	95,08	94,54	94,13	85,79	85,52	87,30	84,70
Alex	3	0	0		99,86	97,68	95,08	95,90	95,49	95,08	94,54	94,13	85,79	85,52	87,30	84,70
Ewa	4	1	1	1		97,54	94,95	95,77	95,36	94,95	94,40	93,99	85,66	85,38	87,16	84,56
89.249	5	17	17	17	18		94,40	94,67	94,54	93,85	93,58	93,58	85,11	84,56	87,02	83,74
FJ813512	6	36	36	36	37	41		98,36	97,95	95,36	94,26	94,40	86,34	86,61	88,39	84,70
09.369	7	30	30	30	31	39	12		98,36	96,04	94,95	95,08	86,61	86,61	89,07	85,11
FJ813513	8	33	33	33	34	40	15	12		95,77	94,67	94,81	86,48	86,20	88,80	84,84
Bonita	9	36	36	36	37	45	34	29	31		95,77	95,22	86,48	86,75	88,39	85,11
KC430335	10	40	40	40	41	47	42	37	39	31		94,95	85,66	85,93	87,70	84,02
AJ863509	11	43	43	43	44	47	41	36	38	35	37		86,07	85,66	88,25	85,25
JX683388	12	104	104	104	105	109	100	98	99	99	105	102		96,17	89,48	84,56
JQ647830	13	106	106	106	107	113	98	98	101	97	103	105	28		90,44	84,84
AJ863510	14	93	93	93	94	95	85	80	82	85	90	86	77	70		86,07
JX419379	15	112	112	112	113	119	112	109	111	109	117	108	113	111	102	

8. melléklet PVS ORF2 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

9. melléklet PVS ORF2 régió filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	99,59	98,36	97,95	97,95	97,95	97,54	96,72	97,13	95,49	95,49	94,67	95,49
Valery	2	0		100,00	99,59	98,36	97,95	97,95	97,95	97,54	96,72	97,13	95,49	95,49	94,67	95,49
Alex	3	0	0		99,59	98,36	97,95	97,95	97,95	97,54	96,72	97,13	95,49	95,49	94,67	95,49
Ewa	4	1	1	1		97,95	97,54	97,54	97,54	97,13	96,31	96,72	95,08	95,08	94,26	95,08
89.249	5	4	4	4	5		97,13	97,13	97,13	96,72	95,90	96,31	94,67	94,67	93,44	94,26
AJ863509	6	5	5	5	6	7		97,54	97,95	97,95	97,13	97,54	95,90	95,90	94,26	95,08
KC430335	7	5	5	5	6	7	6		97,13	97,13	96,31	96,72	95,08	95,49	93,85	95,49
FJ813513	8	5	5	5	6	7	5	7		97,54	96,72	97,13	95,49	95,49	93,85	94,67
09.369	9	6	6	6	7	8	5	7	6		97,13	97,13	95,49	95,49	94,26	95,08
FJ813512	10	8	8	8	9	10	7	9	8	7		96,31	94,67	94,67	94,67	95,49
Bonita	11	7	7	7	8	9	6	8	7	7	9]	95,08	95,08	93,85	94,67
JX419379	12	11	11	11	12	13	10	12	11	11	13	12		96,72	95,08	95,08
AJ863510	13	11	11	11	12	13	10	11	11	11	13	12	8		94,26	94,67
JX683388	14	13	13	13	14	16	14	15	15	14	13	15	12	14		97,95
JQ647830	15	11	11	11	12	14	12	11	13	12	11	13	12	13	5	

10. melléklet PVS 25K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

11. melléklet PVS 25K fehérje filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	99,69	96,64	96,02	93,27	93,58	94,50	94,50	95,11	94,19	83,79	84,71	82,87
Valery	2	0		100,00	99,69	96,64	96,02	93,27	93,58	94,50	94,50	95,11	94,19	83,79	84,71	82,87
Alex	3	0	0		99,69	96,64	96,02	93,27	93,58	94,50	94,50	95,11	94,19	83,79	84,71	82,87
Ewa	4	1	1	1		96,33	95,72	92,97	93,88	94,19	94,19	94,80	93,88	83,49	84,40	82,57
Bonita	5	11	11	11	12		94,19	94,19	94,50	96,02	96,02	95,41	94,19	83,49	84,10	82,26
89.249	6	13	13	13	14	19		90,83	91,13	92,05	93,27	93,58	91,44	83,18	82,26	81,96
FJ813513	7	22	22	22	23	19	30		96,64	97,55	93,88	93,27	91,74	82,87	83,18	81,65
FJ813512	8	21	21	21	20	18	29	11		97,86	92,97	93,58	92,05	82,87	82,57	80,12
09.369	9	18	18	18	19	13	26	8	7		94,50	94,50	93,27	83,79	84,10	81,96
KP089978	10	18	18	18	19	13	22	20	23	18		95,11	93,27	83,79	83,18	82,57
KC430335	11	16	16	16	17	15	21	22	21	18	16		94,50	84,40	83,79	81,96
AJ863509	12	19	19	19	20	19	28	27	26	22	22	18		83,49	84,10	81,04
JQ647830	13	53	53	53	54	54	55	56	56	53	53	51	54		89,30	85,32
AJ863510	14	50	50	50	51	52	58	55	57	52	55	53	52	35		83,79
JX419379	15	56	56	56	57	58	59	60	65	59	57	59	62	48	53	

12. melléklet PVS ORF3 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

13. melléklet PVS ORF3 régió filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	100,00	98,17	99,08	99,08	98,17	98,17	98,17	99,08	97,25	95,41	97,25	94,50
Valery	2	0		100,00	100,00	98,17	99,08	99,08	98,17	98,17	98,17	99,08	97,25	95,41	97,25	94,50
Alex	3	0	0		100,00	98,17	99,08	99,08	98,17	98,17	98,17	99,08	97,25	95,41	97,25	94,50
09.369	4	0	0	0		98,17	99,08	99,08	98,17	98,17	98,17	99,08	97,25	95,41	97,25	94,50
Bonita	5	2	2	2	2		97,25	97,25	98,17	96,33	96,33	97,25	95,41	93,58	95,41	94,50
Ewa	6	1	1	1	1	3		98,17	97,25	99,08	97,25	98,17	96,33	94,50	96,33	93,58
89.249	7	1	1	1	1	3	2		97,25	97,25	97,25	98,17	96,33	94,50	96,33	93,58
KP089978	8	2	2	2	2	2	3	3	-	96,33	96,33	97,25	95,41	93,58	95,41	92,66
FJ813512	9	2	2	2	2	4	1	3	4		96,33	97,25	95,41	93,58	95,41	92,66
FJ813513	10	2	2	2	2	4	3	3	4	4		97,25	95,41	93,58	95,41	92,66
KC430335	11	1	1	1	1	3	2	2	3	3	3		98,17	94,50	96,33	93,58
AJ863509	12	3	3	3	3	5	4	4	5	5	5	2		92,66	94,50	91,74
AJ863510	13	5	5	5	5	7	6	6	7	7	7	6	8		98,17	93,58
JQ647830	14	3	3	3	3	5	4	4	5	5	5	4	6	2		95,41
JX419379	15	6	6	6	6	6	7	7	8	8	8	7	9	7	5	

14. melléklet PVS 12K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

15. melléklet PVS 12K fehérje filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	100,00	98,01	95,52	96,02	95,52	94,53	95,02	96,02	95,52	83,08	82,59	85,07
Valery	2	0		100,00	100,00	98,01	95,52	96,02	95,52	94,53	95,02	96,02	95,52	83,08	82,59	85,07
Alex	3	0	0		100,00	98,01	95,52	96,02	95,52	94,53	95,02	96,02	95,52	83,08	82,59	85,07
Ewa	4	0	0	0		98,01	95,52	96,02	95,52	94,53	95,02	96,02	95,52	83,08	82,59	85,07
89.249	5	4	4	4	4		94,53	95,02	94,53	94,53	94,03	95,02	94,53	82,09	80,60	83,08
FJ813513	6	9	9	9	9	11		98,51	98,01	97,01	96,52	96,02	95,02	83,08	82,59	83,08
FJ813512	7	8	8	8	8	10	3	1	98,51	97,51	97,01	96,52	95,52	83,58	83,08	83,58
09.369	8	9	9	9	9	11	4	3	2	97,01	96,52	96,02	95,02	84,08	83,58	83,08
KP089978	9	11	11	11	11	11	6	5	6		95,52	95,52	94,03	83,58	83,58	82,59
AJ863509	10	10	10	10	10	12	7	6	7	9		96,52	94,53	82,59	81,59	83,58
Bonita	11	8	8	8	8	10	8	7	8	9	7		94,53	82,59	82,09	84,08
KC430335	12	9	9	9	9	11	10	9	10	12	11	11		81,09	81,59	83,08
JQ647830	13	34	34	34	34	36	34	33	32	33	35	35	38		89,05	82,59
AJ863510	14	35	35	35	35	39	35	34	33	33	37	36	37	22		83,58
JX419379	15	30	30	30	30	34	34	33	34	35	33	32	34	35	33	

16. melléklet PVS ORF4 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

17. melléklet PVS ORF4 régió filogenetikai törzsfája (UPGMA)

[1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Irena	1		100,00	100,00	100,00	98,48	95,45	95,45	95,45	96,97	96,97	95,45	93,94	90,91	86,36	84,85
Valery	2	0		100,00	100,00	98,48	95,45	95,45	95,45	96,97	96,97	95,45	93,94	90,91	86,36	84,85
Alex	3	0	0		100,00	98,48	95,45	95,45	95,45	96,97	96,97	95,45	93,94	90,91	86,36	84,85
Ewa	4	0	0	0		98,48	95,45	95,45	95,45	96,97	96,97	95,45	93,94	90,91	86,36	84,85
89.249	5	1	1	1	1		96,97	96,97	96,97	98,48	98,48	96,97	95,45	89,39	84,85	83,33
AJ863509	6	3	3	3	3	2	_	96,97	96,97	95,45	98,48	96,97	95,45	90,91	86,36	84,85
FJ813512	7	3	3	3	3	2	2		96,97	95,45	98,48	96,97	95,45	89,39	84,85	83,33
Bonita	8	3	3	3	3	2	2	2		95,45	98,48	96,97	95,45	89,39	84,85	83,33
KC430335	9	2	2	2	2	1	3	3	3		96,97	95,45	93,94	87,88	83,33	81,82
FJ813513	10	2	2	2	2	1	1	1	1	2	-	98,48	96,97	90,91	86,36	84,85
09.369	11	3	3	3	3	2	2	2	2	3	1		95,45	89,39	84,85	83,33
KP089978	12	4	4	4	4	3	3	3	3	4	2	3		90,91	86,36	87,88
JQ647830	13	6	6	6	6	7	6	7	7	8	6	7	6		93,94	89,39
JX419379	14	9	9	9	9	10	9	10	10	11	9	10	9	4		89,39
AJ863510	15	10	10	10	10	11	10	11	11	12	10	11	8	7	7	

18. melléklet PVS 7K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

19. melléklet PVS 7K fehérje filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Valery	1		100,00	100,00	94,01	94,58	97,85	94,01	94,46	94,12	93,56	94,58	81,02	93,45	79,89	81,47
Irena	2	0		100,00	94,01	94,58	97,85	94,01	94,46	94,12	93,56	94,58	81,02	93,45	79,89	81,47
Alex	3	0	0		94,01	94,58	97,85	94,01	94,46	94,12	93,56	94,58	81,02	93,45	79,89	81,47
AJ863509	4	53	53	53		98,08	93,45	95,59	95,71	95,25	94,24	95,03	81,13	94,46	79,55	81,36
Ewa	5	48	48	48	17		94,01	96,05	96,27	95,82	94,69	95,93	81,13	94,69	79,89	81,47
89.249	6	19	19	19	58	53		93,67	93,79	93,79	92,77	93,79	80,90	92,88	79,32	80,90
FJ813513	7	53	53	53	39	35	56		98,76	98,19	95,14	95,71	81,47	93,79	80,23	81,02
FJ813512	8	49	49	49	38	33	55	11		98,53	95,03	96,27	81,58	94,35	80,56	81,47
09.369	9	52	52	52	42	37	55	16	13		94,80	95,93	81,81	93,90	80,34	81,47
KP089978	10	57	57	57	51	47	64	43	44	46		94,92	81,24	93,45	80,00	81,47
KC430335	11	48	48	48	44	36	55	38	33	36	45	2	82,03	94,46	80,68	80,90
AJ863510	12	168	168	168	167	167	169	164	163	161	166	159		82,26	87,68	81,24
Bonita	13	58	58	58	49	47	63	55	50	54	58	49	157		80,45	82,03
JQ647830	14	178	178	178	181	178	183	175	172	174	177	171	109	173		81,81
JX419379	15	164	164	164	165	164	169	168	164	164	164	169	166	159	16 1	

20. melléklet PVS ORF5 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

21. melléklet PVS ORF5 régió filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Valery	1		100,00	100,00	99,32	97,28	98,30	97,62	97,28	96,94	97,28	97,62	96,94	94,56	94,22	94,22
Irena	2	0		100,00	99,32	97,28	98,30	97,62	97,28	96,94	97,28	97,62	96,94	94,56	94,22	94,22
Alex	3	0	0		99,32	97,28	98,30	97,62	97,28	96,94	97,28	97,62	96,94	94,56	94,22	94,22
89.249	4	2	2	2		96,60	97,62	96,94	96,60	96,26	96,60	96,94	96,26	93,88	93,54	93,54
AJ863509	5	8	8	8	10	3	98,98	96,94	96,94	96,60	96,94	96,94	95,92	92,86	92,52	93,20
Ewa	6	5	5	5	7	3		97,96	97,96	97,62	97,96	97,96	96,94	93,88	93,20	94,22
KC430335	7	7	7	7	9	9	6		97,62	97,28	97,62	97,96	96,60	94,22	93,54	94,56
FJ813513	8	8	8	8	10	9	6	7		98,98	99,32	98,30	95,92	94,22	93,20	94,56
FJ813512	9	9	9	9	11	10	7	8	3		98,98	97,96	95,58	93,54	92,52	93,88
09.369	10	8	8	8	10	9	6	7	2	3	_	98,30	95,92	93,88	92,86	94,22
KP089978	11	7	7	7	9	9	6	6	5	6	5		97,28	94,22	92,86	94,56
Bonita	12	9	9	9	11	12	9	10	12	13	12	8		94,90	93,54	95,24
AJ863510	13	16	16	16	18	21	18	17	17	19	18	17	15		95,58	95,58
JQ647830	14	17	17	17	19	22	20	19	20	22	21	21	19	13		93,88
JX419379	15	17	17	17	19	20	17	16	16	18	17	16	14	13	18	

22. melléklet PVS CP fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

23. melléklet PVS CP fehérje filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Valery	1		100,00	100,00	98,95	96,84	96,84	97,19	96,14	95,79	95,09	94,74	95,09	83,16	81,75	83,16
Irena	2	0		100,00	98,95	96,84	96,84	97,19	96,14	95,79	95,09	94,74	95,09	83,16	81,75	83,16
Alex	3	0	0		98,95	96,84	96,84	97,19	96,14	95,79	95,09	94,74	95,09	83,16	81,75	83,16
89.249	4	3	3	3		96,49	96,49	96,84	95,79	95,44	95,44	94,39	95,44	82,81	82,11	83,51
KP089978	5	9	9	9	10		96,49	97,54	95,79	96,14	95,44	95,44	95,44	83,16	81,40	82,11
AJ863509	6	9	9	9	10	10		98,95	97,54	96,84	96,84	95,79	94,04	83,51	81,75	82,46
Ewa	7	8	8	8	9	7	3		97,54	97,19	97,19	96,14	95,09	83,16	81,40	83,16
KC430335	8	11	11	11	12	12	7	7		96,84	95,44	94,39	94,74	84,56	82,46	84,91
FJ813513	9	12	12	12	13	11	9	8	9		97,19	96,84	95,09	82,11	80,70	82,46
09.369	10	14	14	14	13	13	9	8	13	8		96,84	93,68	81,05	80,35	81,75
FJ813512	11	15	15	15	16	13	12	11	16	9	9		93,33	80,70	80,00	80,35
Bonita	12	14	14	14	13	13	17	14	15	14	18	19		83,16	82,46	83,86
AJ863510	13	48	48	48	49	48	47	48	44	51	54	55	48		88,07	83,86
JQ647830	14	52	52	52	51	53	52	53	50	55	56	57	50	34		83,51
JX419379	15	48	48	48	47	51	50	48	43	50	52	56	46	46	47	

24. melléklet PVS ORF6 régió páronkénti összehasonlítása (azonosság %, nukleotid különbség db)

25. melléklet PVS ORF6 régió filogenetikai törzsfája (UPGMA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Valery	1		100,00	100,00	100,00	97,89	97,89	98,95	97,89	97,89	94,74	93,68	93,68	88,42	82,11	86,32
Irena	2	0		100,00	100,00	97,89	97,89	98,95	97,89	97,89	94,74	93,68	93,68	88,42	82,11	86,32
Alex	3	0	0		100,00	97,89	97,89	98,95	97,89	97,89	94,74	93,68	93,68	88,42	82,11	86,32
89.249	4	0	0	0		97,89	97,89	98,95	97,89	97,89	94,74	93,68	93,68	88,42	82,11	86,32
KP089978	5	2	2	2	2		98,95	98,95	96,84	97,89	95,79	94,74	94,74	87,37	80,00	84,21
Ewa	6	2	2	2	2	1		98,95	97,89	97,89	96,84	95,79	94,74	88,42	80,00	84,21
KC430335	7	1	1	1	1	1	1		96,84	98,95	95,79	94,74	94,74	87,37	81,05	85,26
Bonita	8	2	2	2	2	3	2	3		95,79	94,74	93,68	92,63	88,42	81,05	84,21
AJ863509	9	2	2	2	2	2	2	1	4		96,84	95,79	95,79	86,32	80,00	84,21
FJ813513	10	5	5	5	5	4	3	4	5	3		96,84	95,79	85,26	76,84	81,05
09.369	11	6	6	6	6	5	4	5	6	4	3		96,84	85,26	75,79	80,00
FJ813512	12	6	6	6	6	5	5	5	7	4	4	3	1	83,16	75,79	80,00
JX419379	13	11	11	11	11	12	11	12	11	13	14	14	16		81,05	83,16
AJ863510	14	17	17	17	17	19	19	18	18	19	22	23	23	18		86,32
JQ647830	15	13	13	13	13	15	15	14	15	15	18	19	19	16	13	

26. melléklet PVS 11K fehérje páronkénti összehasonlítása (azonosság %, aminosav különbség db)

27. melléklet PVS 11K fehérje filogenetikai törzsfája (UPGMA)

					223	κ			
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#1 - >Valery	specific	250778	43	352	5.62612e-103	334.26	pfam01660	Vmethyltransf	cl03298
Q#1 - >Valery	superfamily	250778	43	352	5.62612e-103	334.26	cl03298	Vmethyltransf superfamily	-
Q#1 - >Valery	non-specific	250270	1561	1967	1.85213e-49	184.386	pfam00978	RdRP_2	cl03049
Q#1 - >Valery	superfamily	250270	1561	1967	1.85213e-49	184.386	cl03049	RdRP_2 superfamily	-
Q#1 - >Valery	non-specific	114120	999	1087	1.00276e-22	95.7934	pfam05379	Peptidase_C23	cl05111
Q#1 - >Valery	superfamily	114120	999	1087	1.00276e-22	95.7934	cl05111	Peptidase_C23 superfamily	-
Q#1 - >Valery	specific	257726	1171	1285	8.79895e-07	49.5969	pfam13401	AAA_22	cl21455
Q#1 - >Valery	superfamily	276299	1171	1285	8.79895e-07	49.5969	cl21455	ABC_ATPase superfamily	-
Q#1 - >Valery	specific	251233	900	994	0.000131858	42.454	pfam02338	OTU	cl19932
Q#1 - >Valery	superfamily	268285	900	994	0.000131858	42.454	cl19932	OTU superfamily	-
Q#1 - >Valery	non-specific	238843	1766	1854	0.000632163	42.6556	cd01699	RNA_dep_RNAP	cl02808
Q#1 - >Valery	superfamily	261455	1766	1854	0.000632163	42.6556	cl02808	RT_like superfamily	-
Q#1 - >Valery	multi-dom	250626	1181	1423	2.77039e-05	46.2187	pfam01443	Viral_helicase1	-
Q#2 - >Irena	specific	250778	43	352	5.46404e-103	334.26	pfam01660	Vmethyltransf	cl03298
Q#2 - >Irena	superfamily	250778	43	352	5.46404e-103	334.26	cl03298	Vmethyltransf superfamily	-
Q#2 - >Irena	non-specific	250270	1561	1967	1.67116e-49	184.771	pfam00978	RdRP_2	cl03049
Q#2 - >Irena	superfamily	250270	1561	1967	1.67116e-49	184.771	cl03049	RdRP_2 superfamily	-
Q#2 - >Irena	non-specific	114120	999	1087	5.74972e-23	96.5638	pfam05379	Peptidase_C23	cl05111
Q#2 - >Irena	superfamily	114120	999	1087	5.74972e-23	96.5638	cl05111	Peptidase_C23 superfamily	-
Q#2 - >Irena	specific	257726	1181	1285	4.76277e-06	47.2857	pfam13401	AAA_22	cl21455
Q#2 - >Irena	superfamily	276299	1181	1285	4.76277e-06	47.2857	cl21455	ABC_ATPase superfamily	-
Q#2 - >Irena	specific	251233	900	994	7.39608e-05	43.2244	pfam02338	OTU	cl19932
Q#2 - >Irena	superfamily	268285	900	994	7.39608e-05	43.2244	cl19932	OTU superfamily	-
Q#2 - >Irena	non-specific	238843	1766	1854	0.000649075	42.2704	cd01699	RNA_dep_RNAP	cl02808
Q#2 - >Irena	superfamily	261455	1766	1854	0.000649075	42.2704	cl02808	RT_like superfamily	-

28. melléklet A 223K fehérje konzervált domén analízisének összefoglaló táblázata
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#2 - >Irena	multi-dom	250626	1181	1423	8.89667e-06	47.7595	pfam01443	Viral_helicase1	-
Q#3 - >Alex	specific	250778	43	352	9.2472e-103	333.875	pfam01660	Vmethyltransf	cl03298
Q#3 - >Alex	superfamily	250778	43	352	9.2472e-103	333.875	cl03298	Vmethyltransf superfamily	-
Q#3 - >Alex	non-specific	250270	1561	1967	1.31057e-49	184.771	pfam00978	RdRP_2	cl03049
Q#3 - >Alex	superfamily	250270	1561	1967	1.31057e-49	184.771	cl03049	RdRP_2 superfamily	-
Q#3 - >Alex	non-specific	114120	999	1087	5.64049e-23	96.5638	pfam05379	Peptidase_C23	cl05111
Q#3 - >Alex	superfamily	114120	999	1087	5.64049e-23	96.5638	cl05111	Peptidase_C23 superfamily	-
Q#3 - >Alex	specific	257726	1171	1285	3.57094e-07	50.7525	pfam13401	AAA_22	cl21455
Q#3 - >Alex	superfamily	276299	1171	1285	3.57094e-07	50.7525	cl21455	ABC_ATPase superfamily	-
Q#3 - >Alex	specific	251233	900	994	5.02986e-05	43.9948	pfam02338	OTU	cl19932
Q#3 - >Alex	superfamily	268285	900	994	5.02986e-05	43.9948	cl19932	OTU superfamily	-
Q#3 - >Alex	non-specific	238843	1766	1854	0.000626624	42.6556	cd01699	RNA_dep_RNAP	cl02808
Q#3 - >Alex	superfamily	261455	1766	1854	0.000626624	42.6556	cl02808	RT_like superfamily	-
Q#3 - >Alex	multi-dom	250626	1181	1423	2.04408e-05	46.6039	pfam01443	Viral_helicase1	-
Q#3 - >Alex	multi-dom	214640	1175	1263	0.00458028	38.5085	smart00382	AAA	-
Q#3 - >Alex	multi-dom	223989	1181	1275	0.00718318	39.7303	COG1061	SSL2	-
Q#4 - >Ewa	specific	250778	43	352	2.12607e-99	324.245	pfam01660	Vmethyltransf	cl03298
Q#4 - >Ewa	superfamily	250778	43	352	2.12607e-99	324.245	cl03298	Vmethyltransf superfamily	-
Q#4 - >Ewa	non-specific	250270	1561	1967	5.44119e-50	185.926	pfam00978	RdRP_2	cl03049
Q#4 - >Ewa	superfamily	250270	1561	1967	5.44119e-50	185.926	cl03049	RdRP_2 superfamily	-
Q#4 - >Ewa	non-specific	114120	999	1087	6.45098e-23	96.1786	pfam05379	Peptidase_C23	cl05111
Q#4 - >Ewa	superfamily	114120	999	1087	6.45098e-23	96.1786	cl05111	Peptidase_C23 superfamily	-
Q#4 - >Ewa	specific	257726	1171	1285	3.44222e-06	47.6709	pfam13401	AAA_22	cl21455
Q#4 - >Ewa	superfamily	276299	1171	1285	3.44222e-06	47.6709	cl21455	ABC_ATPase superfamily	-
Q#4 - >Ewa	specific	251233	900	994	0.000103175	42.8392	pfam02338	OTU	cl19932
Q#4 - >Ewa	superfamily	268285	900	994	0.000103175	42.8392	cl19932	OTU superfamily	-
Q#4 - >Ewa	non-specific	238843	1766	1854	0.00078771	42.2704	cd01699	RNA_dep_RNAP	cl02808
Q#4 - >Ewa	superfamily	261455	1766	1854	0.00078771	42.2704	cl02808	RT_like superfamily	-

Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#4 - >Ewa	multi-dom	250626	1181	1423	7.6719e-05	45.0631	pfam01443	Viral_helicase1	-
Q#5 - >89.249	specific	250778	43	352	7.31912e-103	333.875	pfam01660	Vmethyltransf	cl03298
Q#5 - >89.249	superfamily	250778	43	352	7.31912e-103	333.875	cl03298	Vmethyltransf superfamily	-
Q#5 - >89.249	non-specific	250270	1561	1967	5.42404e-49	183.23	pfam00978	RdRP_2	cl03049
Q#5 - >89.249	superfamily	250270	1561	1967	5.42404e-49	183.23	cl03049	RdRP_2 superfamily	-
Q#5 - >89.249	non-specific	114120	999	1087	1.16903e-22	95.7934	pfam05379	Peptidase_C23	cl05111
Q#5 - >89.249	superfamily	114120	999	1087	1.16903e-22	95.7934	cl05111	Peptidase_C23 superfamily	-
Q#5 - >89.249	specific	257726	1171	1285	6.40297e-07	49.9821	pfam13401	AAA_22	cl21455
Q#5 - >89.249	superfamily	276299	1171	1285	6.40297e-07	49.9821	cl21455	ABC_ATPase superfamily	-
Q#5 - >89.249	specific	251233	900	994	1.98451e-05	45.1504	pfam02338	OTU	cl19932
Q#5 - >89.249	superfamily	268285	900	994	1.98451e-05	45.1504	cl19932	OTU superfamily	-
Q#5 - >89.249	non-specific	238843	1722	1854	0.000283692	43.426	cd01699	RNA_dep_RNAP	cl02808
Q#5 - >89.249	superfamily	261455	1722	1854	0.000283692	43.426	cl02808	RT_like superfamily	-
Q#5 - >89.249	multi-dom	250626	1181	1423	3.39185e-05	45.8335	pfam01443	Viral_helicase1	-
Q#5 - >89.249	multi-dom	214640	1175	1263	0.00576204	38.1233	smart00382	AAA	-
Q#6 - >09.369	specific	250778	43	352	4.06553e-100	326.171	pfam01660	Vmethyltransf	cl03298
Q#6 - >09.369	superfamily	250778	43	352	4.06553e-100	326.171	cl03298	Vmethyltransf superfamily	-
Q#6 - >09.369	non-specific	250270	1561	1967	1.36051e-49	184.771	pfam00978	RdRP_2	cl03049
Q#6 - >09.369	superfamily	250270	1561	1967	1.36051e-49	184.771	cl03049	RdRP_2 superfamily	-
Q#6 - >09.369	non-specific	114120	999	1087	1.12504e-22	95.7934	pfam05379	Peptidase_C23	cl05111
Q#6 - >09.369	superfamily	114120	999	1087	1.12504e-22	95.7934	cl05111	Peptidase_C23 superfamily	-
Q#6 - >09.369	specific	257726	1171	1285	2.38012e-06	48.0561	pfam13401	AAA_22	cl21455
Q#6 - >09.369	superfamily	276299	1171	1285	2.38012e-06	48.0561	cl21455	ABC_ATPase superfamily	-
Q#6 - >09.369	specific	251233	900	994	0.000113612	42.8392	pfam02338	OTU	cl19932
Q#6 - >09.369	superfamily	268285	900	994	0.000113612	42.8392	cl19932	OTU superfamily	-
Q#6 - >09.369	non-specific	238843	1766	1854	0.000632163	42.6556	cd01699	RNA_dep_RNAP	cl02808
Q#6 - >09.369	superfamily	261455	1766	1854	0.000632163	42.6556	cl02808	RT_like superfamily	-
Q#6 - >09.369	non-specific	257541	1175	1262	0.00233516	38.698	pfam13173	AAA_14	cl21455

Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#6 - >09.369	multi-dom	250626	1181	1423	2.1759e-07	52.3819	pfam01443	Viral_helicase1	-
Q#6 - >09.369	multi-dom	214640	1175	1263	0.0035729	38.5085	smart00382	AAA	-
Q#6 - >09.369	multi-dom	223989	1181	1275	0.00501052	40.1155	COG1061	SSL2	-
Q#7 - >Bonita	specific	250778	43	352	3.38966e-103	335.03	pfam01660	Vmethyltransf	cl03298
Q#7 - >Bonita	superfamily	250778	43	352	3.38966e-103	335.03	cl03298	Vmethyltransf superfamily	-
Q#7 - >Bonita	non-specific	250270	1561	1967	4.71492e-49	183.23	pfam00978	RdRP_2	cl03049
Q#7 - >Bonita	superfamily	250270	1561	1967	4.71492e-49	183.23	cl03049	RdRP_2 superfamily	-
Q#7 - >Bonita	non-specific	114120	999	1087	4.18982e-23	96.949	pfam05379	Peptidase_C23	cl05111
Q#7 - >Bonita	superfamily	114120	999	1087	4.18982e-23	96.949	cl05111	Peptidase_C23 superfamily	-
Q#7 - >Bonita	specific	257726	1171	1285	1.48007e-06	48.8265	pfam13401	AAA_22	cl21455
Q#7 - >Bonita	superfamily	276299	1171	1285	1.48007e-06	48.8265	cl21455	ABC_ATPase superfamily	-
Q#7 - >Bonita	specific	251233	900	994	9.3697e-05	42.8392	pfam02338	OTU	cl19932
Q#7 - >Bonita	superfamily	268285	900	994	9.3697e-05	42.8392	cl19932	OTU superfamily	-
Q#7 - >Bonita	non-specific	238843	1766	1854	0.000589185	42.6556	cd01699	RNA_dep_RNAP	cl02808
Q#7 - >Bonita	superfamily	261455	1766	1854	0.000589185	42.6556	cl02808	RT_like superfamily	-
Q#7 - >Bonita	multi-dom	250626	1181	1423	2.83842e-06	49.3003	pfam01443	Viral_helicase1	-

	25K													
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily					
Q#1 - >Valery	multi-dom	250626	40	235	1.05762e-48	161.779	pfam01443	Viral_helicase1	-					
Q#2 - >lrena	multi-dom	250626	40	235	1.05762e-48	161.779	pfam01443	Viral_helicase1	-					
Q#3 - >Alex	multi-dom	250626	40	235	1.05762e-48	161.779	pfam01443	Viral_helicase1	-					
Q#4 - >Ewa	multi-dom	250626	40	235	4.1006e-48	160.238	pfam01443	Viral_helicase1	-					
Q#5 - >89.249	multi-dom	250626	40	235	1.0464e-48	161.779	pfam01443	Viral_helicase1	-					
Q#6 - >09.369	multi-dom	250626	40	235	1.65575e-48	161.393	pfam01443	Viral_helicase1	-					
Q#7 - >Bonita	superfamily	261332	185	235	0.00767751	33.6187	cl02541	CIDE_N superfamily	-					
Q#7 - >Bonita	multi-dom	250626	40	235	3.83337e-51	168.327	pfam01443	Viral_helicase1	-					

29. melléklet A 25K fehérje konzervált domén analízisének összefoglaló táblázata

	12K													
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily					
Q#1 - >Valery	specific	250523	3	103	1.28915e-36	121.538	pfam01307	Plant_vir_prot	cl03157					
Q#1 - >Valery	superfamily	250523	3	103	1.28915e-36	121.538	cl03157	Plant_vir_prot superfamily	-					
Q#2 - >lrena	specific	250523	3	103	1.28915e-36	121.538	pfam01307	Plant_vir_prot	cl03157					
Q#2 - >lrena	superfamily	250523	3	103	1.28915e-36	121.538	cl03157	Plant_vir_prot superfamily	-					
Q#3 - >Alex	specific	250523	3	103	1.28915e-36	121.538	pfam01307	Plant_vir_prot	cl03157					
Q#3 - >Alex	superfamily	250523	3	103	1.28915e-36	121.538	cl03157	Plant_vir_prot superfamily	-					
Q#4 - >09.369	specific	250523	3	103	1.28915e-36	121.538	pfam01307	Plant_vir_prot	cl03157					
Q#4 - >09.369	superfamily	250523	3	103	1.28915e-36	121.538	cl03157	Plant_vir_prot superfamily	-					
Q#5 - >Bonita	specific	250523	3	103	4.98097e-37	122.693	pfam01307	Plant_vir_prot	cl03157					
Q#5 - >Bonita	superfamily	250523	3	103	4.98097e-37	122.693	cl03157	Plant_vir_prot superfamily	-					
Q#6 - >Ewa	specific	250523	3	103	6.49837e-35	117.301	pfam01307	Plant_vir_prot	cl03157					
Q#6 - >Ewa	superfamily	250523	3	103	6.49837e-35	117.301	cl03157	Plant_vir_prot superfamily	-					
Q#6 - >Ewa	non-specific	185677	4	31	0.00348325	34.1446	cd00817	ValRS_core	cl00015					
Q#6 - >Ewa	superfamily	275460	4	31	0.00348325	34.1446	cl00015	nt_trans superfamily	-					
Q#6 - >Ewa	multi-dom	273070	4	45	0.00258692	34.6493	TIGR00422	ValinetRNA_ligase	-					
Q#7 - >89.249	specific	250523	3	103	3.05238e-35	118.071	pfam01307	Plant_vir_prot	cl03157					
Q#7 - >89.249	superfamily	250523	3	103	3.05238e-35	118.071	cl03157	Plant_vir_prot superfamily	-					

30. melléklet A 12K fehérje konzervált domén analízisének összefoglaló táblázata

					7К				
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#1 - >Valery	specific	251332	12	65	3.42607e-12	55.7502	pfam02495	7kD_coat	cl03621
Q#1 - >Valery	superfamily	251332	12	65	3.42607e-12	55.7502	cl03621	7kD_coat superfamily	-
Q#2 - >lrena	specific	251332	12	65	3.42607e-12	55.7502	pfam02495	7kD_coat	cl03621
Q#2 - >lrena	superfamily	251332	12	65	3.42607e-12	55.7502	cl03621	7kD_coat superfamily	-
Q#3 - >Alex	specific	251332	12	65	3.42607e-12	55.7502	pfam02495	7kD_coat	cl03621
Q#3 - >Alex	superfamily	251332	12	65	3.42607e-12	55.7502	cl03621	7kD_coat superfamily	-
Q#4 - >Ewa	specific	251332	12	65	3.42607e-12	55.7502	pfam02495	7kD_coat	cl03621
Q#4 - >Ewa	superfamily	251332	12	65	3.42607e-12	55.7502	cl03621	7kD_coat superfamily	-
Q#5 - >89.249	specific	251332	12	65	5.26516e-12	54.9798	pfam02495	7kD_coat	cl03621
Q#5 - >89.249	superfamily	251332	12	65	5.26516e-12	54.9798	cl03621	7kD_coat superfamily	-
Q#6 - >Bonita	specific	251332	12	65	1.14213e-11	54.2094	pfam02495	7kD_coat	cl03621
Q#6 - >Bonita	superfamily	251332	12	65	1.14213e-11	54.2094	cl03621	7kD_coat superfamily	-
Q#7 - >09.369	specific	251332	12	65	7.92022e-12	54.5946	pfam02495	7kD_coat	cl03621
Q#7 - >09.369	superfamily	251332	12	65	7.92022e-12	54.5946	cl03621	7kD_coat superfamily	-

31. melléklet A 7K fehérje konzervált domén analízisének összefoglaló táblázata

	СР													
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily					
Q#1 - >Valery	specific	249741	108	247	3.32674e-80	241.869	pfam00286	Flexi_CP	cl02836					
Q#1 - >Valery	superfamily	249741	108	247	3.32674e-80	241.869	cl02836	Flexi_CP superfamily	-					
Q#1 - >Valery	specific	149427	48	99	1.10206e-22	88.8168	pfam08358	Flexi_CP_N	cl07103					
Q#1 - >Valery	superfamily	149427	48	99	1.10206e-22	88.8168	cl07103	Flexi_CP_N superfamily	-					
Q#2 - >lrena	specific	249741	108	247	3.32674e-80	241.869	pfam00286	Flexi_CP	cl02836					
Q#2 - >lrena	superfamily	249741	108	247	3.32674e-80	241.869	cl02836	Flexi_CP superfamily	-					
Q#2 - >lrena	specific	149427	48	99	1.10206e-22	88.8168	pfam08358	Flexi_CP_N	cl07103					
Q#2 - >lrena	superfamily	149427	48	99	1.10206e-22	88.8168	cl07103	Flexi_CP_N superfamily	-					
Q#3 - >Alex	specific	249741	108	247	3.32674e-80	241.869	pfam00286	Flexi_CP	cl02836					
Q#3 - >Alex	superfamily	249741	108	247	3.32674e-80	241.869	cl02836	Flexi_CP superfamily	-					
Q#3 - >Alex	specific	149427	48	99	1.10206e-22	88.8168	pfam08358	Flexi_CP_N	cl07103					
Q#3 - >Alex	superfamily	149427	48	99	1.10206e-22	88.8168	cl07103	Flexi_CP_N superfamily	-					
Q#4 - >89.249	specific	249741	108	247	1.78653e-77	234.551	pfam00286	Flexi_CP	cl02836					
Q#4 - >89.249	superfamily	249741	108	247	1.78653e-77	234.551	cl02836	Flexi_CP superfamily	-					
Q#4 - >89.249	specific	149427	48	99	1.22894e-22	88.4316	pfam08358	Flexi_CP_N	cl07103					
Q#4 - >89.249	superfamily	149427	48	99	1.22894e-22	88.4316	cl07103	Flexi_CP_N superfamily	-					
Q#5 - >Ewa	specific	249741	108	247	2.46493e-81	244.566	pfam00286	Flexi_CP	cl02836					
Q#5 - >Ewa	superfamily	249741	108	247	2.46493e-81	244.566	cl02836	Flexi_CP superfamily	-					
Q#5 - >Ewa	specific	149427	48	99	4.51481e-23	89.5872	pfam08358	Flexi_CP_N	cl07103					
Q#5 - >Ewa	superfamily	149427	48	99	4.51481e-23	89.5872	cl07103	Flexi_CP_N superfamily	-					
Q#6 - >09.369	specific	249741	108	247	1.16215e-80	243.025	pfam00286	Flexi_CP	cl02836					
Q#6 - >09.369	superfamily	249741	108	247	1.16215e-80	243.025	cl02836	Flexi_CP superfamily	-					
Q#6 - >09.369	specific	149427	48	99	8.51749e-23	88.8168	pfam08358	Flexi_CP_N	cl07103					

32. melléklet A CP fehérje konzervált domén analízisének összefoglaló táblázata

Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily
Q#6 - >09.369	superfamily	149427	48	99	8.51749e-23	88.8168	cl07103	Flexi_CP_N superfamily	-
Q#7 - >Bonita	specific	249741	108	247	5.30252e-80	241.099	pfam00286	Flexi_CP	cl02836
Q#7 - >Bonita	superfamily	249741	108	247	5.30252e-80	241.099	cl02836	Flexi_CP superfamily	-
Q#7 - >Bonita	specific	149427	48	99	5.45151e-23	89.5872	pfam08358	Flexi_CP_N	cl07103
Q#7 - >Bonita	superfamily	149427	48	99	5.45151e-23	89.5872	cl07103	Flexi_CP_N superfamily	-

33. melléklet A 11K fehérje konzervált domén analízisének összefoglaló táblázata

	11K													
Query	Hit type	PSSM-ID	From	То	E-Value	Bitscore	Accession	Short name	Superfamily					
Q#1 - >Valery	specific	250753	1	89	2.54544e-39	127.498	pfam01623	Carla_C4	cl03285					
Q#1 - >Valery	superfamily	250753	1	89	2.54544e-39	127.498	cl03285	Carla_C4 superfamily	-					
Q#2 - >lrena	specific	250753	1	89	2.54544e-39	127.498	pfam01623	Carla_C4	cl03285					
Q#2 - >lrena	superfamily	250753	1	89	2.54544e-39	127.498	cl03285	Carla_C4 superfamily	-					
Q#3 - >Alex	specific	250753	1	89	2.54544e-39	127.498	pfam01623	Carla_C4	cl03285					
Q#3 - >Alex	superfamily	250753	1	89	2.54544e-39	127.498	cl03285	Carla_C4 superfamily	-					
Q#4 - >89.249	specific	250753	1	89	2.54544e-39	127.498	pfam01623	Carla_C4	cl03285					
Q#4 - >89.249	superfamily	250753	1	89	2.54544e-39	127.498	cl03285	Carla_C4 superfamily	-					
Q#5 - >Ewa	specific	250753	1	89	1.31417e-39	128.268	pfam01623	Carla_C4	cl03285					
Q#5 - >Ewa	superfamily	250753	1	89	1.31417e-39	128.268	cl03285	Carla_C4 superfamily	-					
Q#6 - >Bonita	specific	250753	1	89	3.52332e-39	127.498	pfam01623	Carla_C4	cl03285					
Q#6 - >Bonita	superfamily	250753	1	89	3.52332e-39	127.498	cl03285	Carla_C4 superfamily	-					
Q#7 - >09.369	specific	250753	1	89	4.54294e-38	124.416	pfam01623	Carla_C4	cl03285					
Q#7 - >09.369	superfamily	250753	1	89	4.54294e-38	124.416	cl03285	Carla_C4 superfamily	-					

Köszönetnyilvánítás

Köszönetet szeretnék mondani témavezetőmnek, **Dr. Palkovics László** egyetemi tanárnak, az MTA doktorának, a munkámban nyújtott útmutatásért, szakmai irányításért. Hálás vagyok, hogy kutatásaimat jól felszerelt laboratóriumban, megfelelő anyagi és technikai feltételeket végezhettem. Külön szeretném megköszönni, hogy a disszertációmat nyugodt környezetben készíthettem el. Remélem támogatására és iránymutatására a továbbiakban is számíthatok.

Szeretném megköszönni a keszthelyi minták begyűjtésében nyújtott segítséget Dr. Polgár Zsoltnak, Dr. Wolf Istvánnak és Dr. Czernák Istvánnak.

Köszönettel tartozom **Dr. Kruppa József**nek, hogy segítséget nyújtott a nyírteleki minta beszerzéséhez.

Nagyon köszönöm Őri Balázsnak, hogy rendelkezésemre bocsátotta a különleges burgonyafajtáit.

Hálásan köszönöm a Kievi Taras Shevchenko Nemzeti Egyetem, Virológia Tanszék munkatársainak, **Dr. Budzanivska Irena Genadiyivna**-nak, **Dr. Polischuk Valery Petrovytch**-nak, **Dr. Shevchenko Alex**-nek, hogy az általuk biztosított ukrán mintákkal színesebb lehetett a munkám.

Szeretném kifejezni hálámat **Dr. Zimnoch-Guzowska Ewa**-nak, a lengyel Nemzeti Kutató Intézet (IHAR-PIB), Növénynemesítési és Akklimatizációs Intézetből, aki volt olyan kedves és a lengyel mintát elküldte nekem.

Hálás vagyok **Dr. Gergely László**nak, hogy rendelkezésemre bocsátotta a birtokában lévő, nehezen hozzáférhető irodalmakat.

Hálás vagyok a **Növénykórtani Tanszék** minden volt és jelenlegi munkatársának, akik segítségükkel és türelmükkel segítséget nyújtottak a dolgozat elkészítésében.

A dolgozat nem jöhetett volna létre az **NKTH-TECH-09-A3-2009-0210** pályázat anyagi és a konzorciumi tagok szakmai támogatása nélkül.