A TERMŐHELY, VALAMINT EGYES AGRO- ÉS FITOTECHNIKAI MŰVELETEK HATÁSA A SZŐLŐ MIKORRHIZA-KOLONIZÁCIÓJÁRA

DOKTORI ÉRTEKEZÉS

Donkó Ádám

Témavezetők: Dr. Zanathy Gábor, Dr. Erős-Honti Zsolt

Budapest

2015
A doktori iskola

megnevezése: Kertészettudományi Doktori Iskola

tudományága: Növénytermesztési és kertészeti tudományok

vezetője: Dr. Tóth Magdolna

egyetemi tanár, DSc

Budapesti Corvinus Egyetem, Kertészettudományi Kar

Gyümölcstermő Növények Tanszék

Témavezetők: Dr. Zanathy Gábor

egyetemi docens, CSc

Budapesti Corvinus Egyetem, Kertészettudományi Kar, Szőlészeti és
Borászati Intézet, Szőlészeti Tanszék

Dr. Erős-Honti Zsolt

egyetemi adjunktus, PhD

Budapesti Corvinus Egyetem, Kertészettudományi Kar

Növénytani Tanszék és Soroksári Botanikus Kert

A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, azért az értekezés védési eljárásra bocsátható.

Dr. Tóth Magdolna Dr. Zanathy Gábor Dr. Erős-Honti Zsolt

Az iskolavezető jóváhagyása A témavezetők jóváhagyása
A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanácsának 2015. 10. 13-i határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki:

BÍRÁLÓ BIZOTTSÁG:

Elnöke
Kállay Miklós, CSc

Pótlpnöke
Tóth Magdolna, DSc

Tagjai
Mihalik Erzsébet, CSc
Péter Gábor, PhD
Varga Péter, PhD

Opponensek
Biró Borbála, DSc
Csikászné Krizsics Anna, PhD

Titkár
Fazekas István, PhD
Tartalomjegyzék
1. BEVEZETÉS .. 7
2. IRODALMI ÁTTEKINTÉS ... 9
2.1. A mikorrhiza kapcsolatról általában ... 9
2.2. A mikorrhiza-gazdanövény kölcsönhatás... 10
2.2.1. A mikorrhiza-kapcsolat hatása a szőlő tápelem- és vízfelvételére... 13
2.2.2. A mikorrhiza gombák szerepe a szőlő kártevőkkel szembeni védelmében 15
2.3. A szőlő mikorrhizáltságát befolyásoló környezeti tényezők .. 17
2.3.1. A termőhely és a talaj ... 17
2.3.2. Gazdanövény, és mikorrhiza-gombafajok ... 18
2.3.3. A termesztéstechnológia hatása a szőlő mikorrhizáltságára.. 19
2.4. A szőlő mesterséges mikorrhizálása ... 23
2.4.1. Mesterséges mikorrhizálás különböző korú ültetvényekben .. 23
2.4.2. A mesterséges mikorrhizálás hazai eredményei ... 24
3. CÉLKITŰZÉS ... 25
4. ANYAG ÉS MÓDSZER ... 27
4.1. Kísérleti helyszínek és jellemzésük ... 27
4.1.1. Szigetcsépi kísérleti helyszín ... 27
4.1.2. Gál Szőlőbirtok és Pincészet, Szigetcsép ... 31
4.1.3. Egri kísérleti helyszín .. 33
4.1.4. Villangó Szőlőbirtok, Eger .. 35
4.2. Rügyterhelési és lombtrágyázási kísérletek ... 37
4.2.1. Rügyterhelési és lombtrágyázási kísérlet a BCE SZBI Szigetcsépi Tangazdaságban 37
4.2.2. Rügyterhelési kísérlet a Gál Szőlőbirtok és Pincészet (Szigetcsép) területén 41
4.3. Lejtős területű szőlőültetvény eltérő tengerszint feletti magasságú szőlőparcelláinak mikorrhiza-kolonizációjának vizsgálata (Villangó Szőlőbirtok, Eger) 42
4.4. A szőlő mikorrhizáltság és vízpotenciál vizsgálata .. 45
4.5. További vizsgálatok .. 49
4.5.1. A levelek tápanyagtartalma ... 49

~ 4 ~
4.5.2. A termésmennyiség, vesszőtömeg, titrálható savtartalom és mustsűrűség meghatározása 49

5. EREDMÉNYEK ÉS ÉRTÉKELÉSÜK...51

5.1. Az eltérő rügyterhelés, csonkázás és a foszfor-hangsúlyos lombtrégyázás kezelések eredményei (BCE SZBI Szigetcsépi Tangazdaság) ...51

5. 1. 1. Kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei ...51

5. 1. 2. Termésmennyiség, vesszőtömeg, termőegyensúly eredmények ...59

5. 1. 3. A termés minősége (mustsűrűség, titrálható savtartalom) ..63

5. 1. 4. Vízpontenciál mérési eredmények..66

5. 1. 5. A levélanalízis eredményei...68

5.2. Eltérő rügyterhelés hatása a mikorrhizáltságra (Gál Szőlőbirtok és Pincészet, Szigetcsép) ..70

5.2.1. A mikorrhiza kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei ..70

5.3. Mikorrhiza vizsgálat eredményei a talajnedvesség-grádiens függvényében (Villangó Szőlőbirtok, Eger) ...74

5.3.1. A mikorrhiza kolonizáció (K %), arbuszkuláris kolonizáció (A %), arbuszkulumszám (A db.) vizsgálat eredményei a kísérleti parcellákon ...74

5.3.2. Termésmennyiség vizsgálat eredményei ...79

5.3.3. Termésminőség vizsgálat eredményei ..81

5.3.4. Vízpontenciál mérési eredmények az egyes parcellákon ...81

5.3.5. A vizsgált parcellákról gyűjtött levélminták analízisének eredményei82

6. KÖVETKEZTETÉSEK ÉS JAVASLATOK..84

7. ÚJ TUDOMÁNYOS EREDMÉNYEK..85

8. ÖSSZEFOGLALÁS ..87

8.1. Terhelés és foszfor-hangsúlyos lombtrégyázás hatása a mikorrhiza-kolonizációra (BCE SZBI Szigetcsépi Tangazdaság) ...87

8.2. Eltérő rügyterhelés hatása a szőlő mikorrhizáltságára (Gál Szőlőbirtok és Pincészet, Szigetcsép) ...88
8.3. Mikorrhiza vizsgálat a talajnedvesség-grádiens függvényében (Villangó Szőlőbirtok, Eger) .. 89

9. SUMMARY .. 90

9.1. Effects of bud load and phosphorus spray fertilisation on the degree of mycorrhizal colonization .. 90

9.2. Investigation of the effect of different bud load on the mycorrhizal colonization of the grape .. 91

9.3. Changes of mycorrhizal colonization along a moist gradient in a vineyard of Eger 92

10. IRODALOMJEGYZÉK .. 94

11. KÖSZÖNETNYILVÁNÍTÁS ... 109
1. BEVEZETÉS

A szőlőtermesztés hagyománya több évezredes múltra tekint vissza. Ez idő alatt számos szemszögőből került vizsgálat alá a szőlő és a belőle készített bor, a szőlővel szimbiózisban élő gombákról (mikorrhiza-kapcsolatról) azonban csak 1900 óta tudunk. Ha kertészeti és mezőgazdasági növényekkel kapcsolatban gombákról hallunk, legtöbbször a növények számára káros, patogén gombák jutnak az eszünkbe. Fontos, hogy a témával foglalkozók felismerjék a mikorrhiza-kapcsolat jelentőségét, s olyan termesztési gyakorlatot dolgozzanak ki, mely elősegíti e hasznos szervezetek zavartalan tevékenységét, így a szőlő kiegyenlített növekedését, optimális víz-és tápanyagfelvételét, biotikus és abiotikus stresszhatásokkal szembeni eredményesebb fellépését.

Az utóbbi évtizedekben mind nagyobb figyelem fordul a talajkimélő/ökológiai szemléletű talajápolási módszerek felé. Ez a jelenség több okra vezethető vissza: a hegy-völgy irányú sorvezetésű, meredek lejtésű ültetvényekben a szélsőségesebb váló időjárási elemek hatására jelentős eróziós károk léptek/lépnek fel. A másik ok az egyoldalú mechanikai művelésmod leváltása, és a biodiverzitás fokozása, hazai körülmények közé adaptált fajgazdag sorköztakaró alkalmazásával „elő ültetvény” kialakítása. A mikorrhizaképző gombák szempontjából ez azért lényeges, mert egyidejűleg több növény kolonizációjára, közös mikorrhiza hálózat létrehozására is képesek. Előnyei különösképp figyelemreméltóak kevedőtlen edafikus és klimatikus körülmények között, mint például sok esetben a Kunsági borvidéken, amely az ország legnagyobb borvidéke is egyben. És bár mind gyakoribb technológiai elem a fürtválogatás, gondos zöldmunkázás, illetve minőségi borkészítéshez jó beltartalmi értékekkel adó, kisebb egyedi tőketerhelés alkalmazása (egyben nagyobb hektáronkénti tőkeszám, kisebb tőkénkénti tenyészterület), előfordulnak még az inkább mennyiségi termelést preferáló ültetvények is, jelentős rügyterhelést alkalmazva. A nagy terhelés, a tőkék nagyobb mértékű igénybevételé, műtrágyák alkalmazása megrövidíti egy ültetvény életét, a tőkekondícióra, természetes ellenállóképességre is rossz hatással van. A mikorrhizaképző gombák a víz- és tápanyagfelvételben játszott szerepükért „cserébe” szénhidrátokhoz jutnak. Tülerhelt, legyengült, fenntartó műtrágyázásban, általában rendkívül természetes ökológiai állapotban működik. A mikorrhiza kapcsolat tudatos hasznosítása kiemelt jelentőségű az oltványiskolai gyakorlatban, a fiatal telepítések indításakor, a környezetkimelő szőlőtermesztésben, illetve azokban az ültetvényekben, ahol nem áll rendelkezésre elegendő víz illetve tápanyag.

Ha a talaj nagy mennyiségben tartalmazza az őshonos mikorrhiza-gombák inokulumait, rendszerint nem érdemes mesterségesen oltást végezni. A mikorrhiza kapcsolat tudatos hasznosítása kiemelt jelentőségű az oltványiskolai gyakorlatban, a fiatal telepítések indításakor, a környezetkimelő szőlőtermesztésben, illetve azokban az ültetvényekben, ahol nem áll rendelkezésre elegendő víz illetve tápanyag.

Mindeneket alapján elmondhatjuk, hogy a szőlővel szimbiózisban élő gombatárs szerepe
nem hagyható figyelmen kívül a szőlőtermesztésben. A klímaváltozás következtében egyre gyakoribbá váltó szélsőséges időjárasi elemek hatásainak, egyéb biotikus és abiotikus stresszhatások kivédésében segítségére lehet a szőlőnek, továbbá, új telepítésnél – különösen homoktalajokon – mesterséges mikorrhizálással az eredési arány is fokozható, erőteljesebb hajtásnövekedés mellett.
2. IRODALMI ÁTTEKINTÉS

2.1. A mikorrhiza kapcsolatról általában

A növények tápanyagfelvétele számos tényezőtől, többek között a talaj tulajdonságaitól és az ültetvényben folytatott talajműveléstől, tápanyag-gazdálkodástól is függ. A könnyen felvehető tápanyagokban szegény talajok esetén nagyobb a jelentősége a mikorrhizáltságnak. Amennyiben a talaj tápanyagokban gazdag, az átadott szénhidrátok nagyobb veszteséget jelenthetnek, mint amennyit nyerhet a növény a többlet tápelem-felvétellel (Ryan és Graham 2002), így a kapcsolat intenzitása a kialakulást követően is megváltozhat (Johnson et al. 1997, Egger és Hibbett 2004). A mikorrhiza gombák segítségével elsősorban azon tápelemekek felvétele válik hatékonyabbá, amelyeknek ionos formában kicsi a mozgékonyága a talajban, illetve alacsony a koncentrációjuk a talajdaltban. A nehezen hozzáférhető foszfor mobilizálásán és növény által felvételének segítésén túl a gombatárs képes az együttműködésre a foszfor oldódását segítő baktériumokkal. Általánosan jellemző a foszfor mellett a cink- és a rézfélvétel elősegítése, de a mikorrhiza-kapcsolat révén fokozódhat a nitrogén, a kálium, a kalcium, a magnézium, a kén, illetve a bór és a vas felvételé is (Marschner 1997, Smith és Read, 1997, Clark és Zeto 2000). A mikorrhiza gombának nagy szerepe van az ember szempontjából káros, talajeredetű patogénekkel ellenállásában is.

2.2. A mikorrhiza-gazdanövény kölcsönhatás

A mikorrhizaképző gombák jelen vannak a (talajfetőlenítésben nem részesült) szőlőtermő területek talajában, így nincs akadálya a kolonizáció kialakulásának (Possingham és

Nemcsak a hajtások, hanem a gyökérzet növekedése is megváltozik a mikorrhizák kialakulása nyomán (Kothari et al. 1991). A különböző mikorrhizaképző gombafajok eltérő morfológiai sajátosságokat eredményezhetnek, s a változások minden bízonnal a mikorrhizált fokától is függnek. A mikorrhizált gyökérrendszer általában gazdagabbban elágazik, mint a mikorrhiza kapcsolat nélküli (Schellenbaum et al. 1991; Augín et al. 2004, Omar 2007).
2.2.1. A mikorrhiza-kapcsolat hatása a szőlő tápelem- és vízfelvételére

Az AM gombák aktívan bekapcsolódnak a nitrátok felvételébe (Tobar et al. 1994).
Alacsony nitrogén ellátottságnál azonban megnő a mikorrhiza jelentősége, illetve az általuk a gazdanövénybe szállított nitrogén mennyisége. A nitrogénfelvétel mértékét nemcsak a talaj N-tartalma, hanem a felvehető nitrogénformák is befolyásolják. A nitrogénfelvétel javulása abban az esetben várható, ha a kiágazó hifák nagymértékben beszöttek a talajt (Schreiner 2005). A gazdanövények nitrogénellátásában a mikorrhiza jelentősége igen változó: 0.2 % - 50 % közötti (Cheng és Baumgartner 2006).

A növények nitrogénháztartására gyakorolt hatás hátterében részben az a tény áll, hogy a mikorrhiza gombák kedvező hatást gyakorolnak a szabadon élő nitrogénfixáló mikroorganizmusok (Azotobacter, Azospirillum) populációkra (Sieverding 1991). Tevékenységük azért is jelentős, mert felgyorsítják a szerves anyagok bomlási folyamatát, s szerepet játszanak a lebomló takarónövények szerves N-készletének a hasznosításában (Hodge et al. 2001). A takarónövényből származó nitrogén felvételét 15N izotópot tartalmazó takaróanyag felhasználásával sikerült igazolni. Patrick et al. (2004) előzetesen üvegházban nevelt, 15N izotóppal kezelt pillangósövényeket forgattak be 15 cm mélyen a sorközök talajába. A takarónövényből származó 15N a bemunkálás után 4 héttel már kimutatható volt a szőlő levelében. A tenyészidő végén azonban a levélben kimutatható 15N részaránya igen csekély volt (0,28 %). A szőlő tehát képes hasznosítani a beforgatott takarónövényből származó nitrogént, gyökerei azonban rendszerint ritkán hálózzák be azt a talajszelvényt, ahová a takarónövény bedolgozásra került, ezért is lehet fontos a gombafonalak tevékenysége (Chenget al. 2008). A szőlőt és takarónövényeket összekötő közös mikorrhiza hálózat lehetővé teszi a tápanyagszállítást a takarónövénytől a szőlőbe. Minél kisebb a távolság a szőlő és a takarónövény gyökérrendszere között, feltételezhetően annál több mikorrhiza kapcsolat jön létre közöttük. Cheng és Baumgartner (2005) 15N izotóp felhasználásával igazolta, hogy a mikorrhiza hálózat segítségével a takarónövényből nitrogén kerül a szőlőbe. Megállapításuk szerint a nitrogénszállítás a Bromus hordeaceus L. ssp. molliformis irányából nagyobb, mint a Medicago polymorpha L. felől. Ebből azt a következtetést vonták le, hogy a fűfélék jobb N-donorok, mint a pillangósok.

A kolonizált gyökereknek jobb a vízfelvétel, mint a nem kolonizáltaké. Már annak idején Stahl (1900 in Possingham és Obbink 1971) majd Stanczak és Boratynska (1954 in Possingham és Obbink 1971) is beszámoltak arról, hogy a mikorrhizált növények több vizet vesznek fel. A vízfelvétel növekedése minden bizonyal azextraradikális hifák kiterjedt
hálózatával magyarázható, mely hatékonyan aknázza ki a talaj vízkészletét. Száraz talajokon a szőlő hajszálgyökereinek a fejlődése visszaesik. A talaj nedvességtartalmának csökkenésével a gyökér mikorrhiza-kolonizáltsága és az arbuszkulomok gyakorisága egyaránt nő. Amennyiben a talaj víztartalma a szőlő gyökerei számára könnyen elérhetővé válik, az arbuszkulomok gyakorisága csökken (Schreiner et al. 2007).

A gazdanövény vízellátása nem kizárólag a talajt behálózó hifahálózat vízfelvétele és vízszállítása, továbbá a növényi anyagcserére kedvező befolyásolása révén javul. Az AM-gombák hatást gyakorolnak a talaj vízmegtartó-képességére, illetve a talajaggregátumok stabilizálására. Az AM-gombák karakterisztikai, összekötő képessége a talajrészecskék összekapcsolódásában azonban szerepet játszik a gomba által termelt glomalin (glikoprotein) is (Wright és Upadhyaya 1998).

2.2.2. A mikorrhiza gombák szerepe a szőlő kártevőkkel szembeni védelmében

Az újratelepítési problémát okozó gombás betegségek, így például a gyűrűs tuskógomba (*Armillaria mellea*) ellen a talajfertőtlenítés drága; a környezetkímélő szőlőtermesztésben nem megengedett eljárás. A talaj hosszú éveken át történő ugaroltatása elvileg megoldást jelenthet, így azonban a szőlőterület tűl sokáig esik ki a termelésből. Az AM-kapcsolat révén várhatólag javul a szőlő természetes ellenálló képessége a gyűrűs tuskógombával szemben (Nogales et al. 2008). A talaj mikorrhiza potenciáljának alapos ismeretére van szükség ahhoz, hogy egyértelműen eldönthessük a mestersége mikorrhizálást. A telepítés évében az oltás minden bizonytalan hatékony megoldást jelent, azonban az sem kizárható, hogy végrehajtása felesleges, ha a későbbiekben a helyi mikorrhiza-képző gombafajok is képesek kellőképen felszaporodni. A mikorrhiza potenciál növelése céljából celszerű a szőlő újratelepítését megelőzően a területen mikorrhizált növényeket termeszteni (Nogales et al. 2009).

Az AM mikorrhiza kapcsolat csökkenti a szőlő *Cylindrocarpon macrodidyum* okozta fertőzésének gyakoriságát is; Petit és Gubler (2006) szerint a *G. intraradices* mikorrhiza fajjal beoltott szőlő kevéssé fogékony a cilindrokarponos gyökérpusztulásra. Szerzők e betegség megelőzésére az oltványiskolában történő mikorrhizálást javasolják. Bleach et al. (2008) által végzett szabadföldi kísérletben a mikorrhizálás nem mérsékelte szignifikáns mértékben a betegség előfordulásának gyakoriságát, jóllehet a *G. mosseae* faj felhasználása egyértelműen javította a szőlő növekedését és egészségi állapotát.

A mikorrhiza-kapcsolat bizonyos fokú védelmet jelent egyéb kártevőkkel szemben is: csökkenti a kártétel gyakoriságát például a fonárfejek károkozása esetén (Calvet et al. 2001). A mikorrhizált növény a fokozott tápanyag-felvételük, illetve növekedési erélyüknek köszönhetően jobb ellenálló- és teljesítő képességek rendelkeznek: a fonárfejek a kísérletekben a kontroll növények fejlődését jobban visszavetik, mint a mikorrhizáltaként. Bár a gomba és a kártevők kapcsolata teljes mélységében nem ismert, de az kétségteles tény, hogy versengés folyik a gomba és a fonárfejek közt a fotoszintézis termékeiért: Pinkerton et al. (2004) *fonárfejgel* (*Mesocriconema xenoplax*) végzett mesterséges fertőzés során azt tapasztalták, hogy a kezelés hatására a szölgőgökerek viszonylag magas fokú kolonizáltsága ellenére csökkent a hajszálgyökerekben az arbuszkulumok élettartama és gyakorisága. Ennek oka minden bizonytalanság korai folyó versengés lehet, mivel az arbuszkulumok száma szorosan összefügg a
rendelkezésre álló szénhidrátok mennyiségével (Schreiner és Pinkerton 2008).

2.3. A szőlő mikorrhizáltságát befolyásoló környezeti tényezők

Az AM gombák, illetve szaporító képleteik az ültetvényekben szinte mindenütt jelen vannak. A mikorrhiza kapcsolat kialakulását, illetve a gyökerek kolonizációjának a mértékét azonban az ültetvény talajának és a szölészeti kezelésének sajátosságai jelentős mértékben befolyásolják.

2.3.1. A termőhely és a talaj

Gyökerek elhelyezkedése. A mikorrhiza-kolonizáció általában nagyobb mértékű a feltalajban (mintegy 40-50 cm-ig), s csökkenő arányú a mélyebben elhelyezkedő gyökerek esetében. Mikorrhizált szőlőgyökerek többségükben a sorok mentén találhatók, a sorközökben rendszerint kisebb gyakorisággal fordulnak elő (Schreiner 2005). Takarónövény használata esetén nem tapasztalhatók ilyen eltérések, ugyanis a sorközben fejlődő növények, elősegítik a szőlő gyökereinek mikorrhizálódását (Cheng és Baumgartner 2005, Sweet és Schreiner 2010).

DOI: 10.14267/phd.2015044

~ 17 ~
szénhidrátokkal való ellátása minden bizonyal nem áll arányban az általa nyújtott előnyökkel (Baumgartner 2003).

2.3.2. Gazdanövény, és mikorrhiza-gombafajok

Alanyhasználat. Az AM mikorrhizákat kialakító mikobionták nem fajspecifikus

2.3.3. A termesztéstechnológia hatása a szőlő mikorrhizáltságára

Az őshonos AM gombák tevékenységének elősegítése minden bizonytal hatékonyabb megoldás, mint a mesterséges beoltás. Érdemes ezért olyan termesztéstechnológiát alkalmazni, mely elősegíti a szőlő és a gombapartner hatékony együttműködését, amihez azonban tisztában kell lennünk azzal, hogy az egyes kezelési módok milyen hatást gyakorolnak a szőlőültetvény
mikorrhiza-közösségére, a növények mikorrhizálsági szintjére.

Talajfertőtlenítés. A szőlőültetvények újratelepítése során sok esetben elkerülhetetlen a talajfertőtlenítés, azonban ez a beavatkozás rendszerint megsemmisíti az AM gombákat (Linderman és Davis 2001). A talajfertőtlenítést követően éppen ezért a mesterséges mikorrhizálás nagy jelentőségű a fiatal ültetvények életében (Menge et al. 1983, Baumgartner 2003).

A terület természetes AM-közösségének a támogatása az esetek többségében hatékonyabb megoldás, mint a mesterséges beoltás. A telepítés előtti zöldtrágyanövény használat garantálja az AM gombák szaporító képleteinek bőséges jelenlétét, majd az eltelepített szőlőoltványok kolonizációját (Petgen et al. 1998). Ezzel szemben a betelepítésre váró terület

DOI: 10.14267/phd.2015044

~ 20 ~
hosszan tartó, növénytakarótól mentes ugaroltatása a mikorrhizaképző gombák szaporító képleteinek jelentős mértékű visszaeséséhez vezet (Schreiner 2005).

A monokultúra kedvezőtlen következményekkel jár. A takarónövények fontos szerepet játszanak a mikorrhiza közösség kialakulásában (Baumgartner et al. 2005), jelenlétük kedvező hatású a hifák és a spórák képzésére (Meyer et al. 2005). A szőlőültetvények mikorrhizáltságára a gyomnövények is kihatnak. Ezek egyes esetekben szintén gazdanövényei lehetnek a mikorrhizaképző gombákban, s elősegíthetik a szőlőgyökerek kolonizációját (Schubert és Cravero 1985). A felhasznált takarónövények, illetve a gyomszabályozás azonban gyakran megváltoztatja az őshonos mikorrhiza-közösség fajósszetételét, ami kihat a szőlő mikorrhiza kapcsolatának alakulására is (Chengés Baumgartner 2005, Schreiner 2005). A nem mikorrhizáló növények (például az olajretek (Raphanus sativus var. oliferu), a sárga mustár (Sinapis alba) és az őszi káposztarepece (Brassica napus) felhasználásával várhatóan kisebb mértékű lesz a szőlő mikorrhizáltsága (Petgen et al. 1998).

Talajjavítás. A talaj pH-értékének alakulása szintén kihat a kolonizáció mértékére. Az 5,5 pH-érték alatti kémhatású talajok meszezése például kedvező a mikorrhizáltságot illetően is (Schreinerés Linderman 2005). A túlságosan lúgos kémhatású, meszes talajok is bizonyára korlátozzák a szőlő mikorrhizáltságát, ennek határértéke azonban nem ismert. A tudományos kutatók tenyésztedényes kísérletben pH=8,9 (BavareSCO és Fogher 1996), szabadföldön pedig pH=9,4 érték mellett sem tapasztalták a mikorrhizáltság visszaesését (Schreiner 2005).

Vízellátás. A szőlő a száraz hegy- és domboldalakon minden bizonnyal nagyobb mértékben szorul a mikorrhiza-kapcsolatra, mint a jó vízellátottságú termőhelyeken (Sweet és Schreiner 2010). Száraz körülmények közt rendszerint nő a mikorrhizáltság mértéke, ezért a mérsékelt vízadagok általaban elősegítik a mikorrhiza-kapcsolat kialakulását (Augé 2001, Schreiner et al. 2007). Bár kisebb gyakorisággal találhatók azonban a szőlő gyökereiben arbuszkulumok azokon a területeken, melyek gyakori, nagy adagú öntözésben részesülnek, a fotoszintézist akadályozó vízhiány azonban minden szempontból káros hatású, hiszen visszaesik a szénhidrátok termelése és gyökerek felé mutató áramlása – ami háttrányosan befolyásolja a mikorrhizáltságot is (Schreiner 2005).

Termésszint. A mikorrhizáltság tekintetében a termés mennyisége is fontos tényező. Alanyakísérletben azt tapasztalták, hogy az alacsony termésszintet indukáló alanyoknál (pl. 101-14 Mgt) általában intenzív a mikorrhiza kapcsolat, s a gyökerekben ennek megfelelően sok arbuszkulum található. Ezzel szemben a nagy hozamot biztosító fajták (pl. Teleki-Fuhr SO4) gyökérében rendszerint kicsi az arbuszkulumok gyakorisága. Ez azzal indokolható, hogy a termés beérleléséhez a tőke igen sok szénhidrátot használ fel, ezért kevesebb lesz az a mennyiség, melyet a gombatárs táplálására fordíthat, ami az anyagátadás intenzitásának csökkenéséhez, következésképpen alacsonyabb arbuszkulum-gyakorisághoz vezet (Schreiner 2003). A nagymértékű lelevelezés hasonló hatással jár: csökken a szőlő szénhidrát termelése, s ezzel együtt az arbuszkulumok száma is (Pinkerton et al. 2004).
2.4. A szőlő mesterséges mikorrhizálása

A mikorrhiza gombák a szőlőtalajokban gyakorlatilag mindenütt jelen vannak, de nem feltétlenül alakítanak ki mikorrhiza-kapcsolatot gazdanövényeikkel. A mesterséges inokulálás megelőzően ezért célszerű felmérni a kérdéses terület mikorrhiza-potenciálját (Meyer 2005).

2.4.1. Mesterséges mikorrhizálás különböző korú ültetvényekben

A termőültetvények beoltása általában nem szükséges, de talajfertőtlenítő szerek használata esetén ugyancsak célszerű elvégezni az új telepítés mikorrhizálását. A talaj fertőtlenítését követően ugyanis az oltványok kisebb ütemű fejlődése rendszerint a mikorrhiza-gombák hiányával hozható összefüggésbe (Menge1983), amit az is alátámaszt, hogy ezeken a területeken mesterséges inokulálással helyreállítható a szőlöoltványok növekedési erélye. A mesterséges mikorrhizálás tenyészedényes kísérletekben jelentős mértékben fokozza a szőlö növekedését (Schubert et al. 1988, Schubert et al. 1990).

Az oltványiskolából kikerűlő szaporítóanyag mikorrhizáltsága általában csekély mértékű, mert a szőlőiskolai nevelés néhány hónapja nem feltétlen elegendő a kellő mikorrhizáltság kialakulásához. Az oltványiskolában használatos feketefólia alatt magas hőmérséklet alakul ki, ami zavarhatja a mikorrhiza-kapcsolat kialakulását, s szintén akadályozó tényező, hogy a szőlőiskolában rendszerint magas a talaj foszfornéhány a mesterséges mikorrhizálás. A mikorrhiza kapcsolatnak köszönhető biokémiai, élettani változások nemcsak az edzés időszakában, hanem a növény későbbi szabadföldi teljesítménye szempontjából is kedvezőek (Schubert et al. 1990, Krishna 2005).

2.4.2. A mesterséges mikorrhizálás hazai eredményei

DOI: 10.14267/phd.2015044
3. CÉLKITŰZÉS

Hazánkban a szőlő mikorrhiza-kapcsolatát eddig kevésbé vizsgálták, s azok a vizsgálatok, amelyek e témakörrel foglalkoztak/foglalkoznak, leginkább a mesterséges mikorrhizálás vonatkozásában történtek/történnek. Munkám során azt a célt tűztem ki, hogy eltérő termőhely, termesztéstechnológia, környezeti tényezők hatásait vizsgáljam a szőlő mikorrhizáltsági fokára és egyes fenológiai jellemzőire. Fő kísérleti helyszín a BCE SZBI Szigetcsépi Tangazdasága volt, ahol az interspecifikus, Viktória gyöngye fajtát vizsgáltuk. A Szigetcsépi Tangazdaság szőlőtermő területe a Kunsági borvidék része, mely az ország legnagyobb borvidéke. Az Alföldre jellemző homoktalaj az uralkodó, kontinentális klimahatások érvényesülnek, kemény fagyokkal, gyakori kora tavaszi, olykor igen erős fagyok egyaránt, a nyarak melegek, aszályos időszakok lépnek fel. Ezen paraméterekkel, egy reprezentatív kísérleti területről van szó, melynek paraméterei az Alföld nagy részén uralkodók.

A vizsgált fajta - Viktória gyöngye - rezisztenciájával, fagytűrésével perspektivikus fajta az Alföldön. Munkám során azt vizsgáltam, miként hat a szőlő mikorrhiza-kapcsolatára a foszfor tartalmú lombtrágyázás, eltérő terheléssel kombinálva.

Kutatásomat kiegészítettem a Tangazdasággal szomszédos, Gál Szőlőbirtok és Pincészet területén. Kékfrankos fajtán beállított kísérletben szintén az eltérő terhelés, majd az adott terhelés változásának kihatását vizsgáltam; nevezetesen azt, hogyan alakul a kolonizáció és az arbuszkulumok gyakorisága az üzemi terhelésre történő visszaállítás után.

A gombapartner fontos szerepet játszik a szőlő vízháztartásában. Harmadik kísérleti helyszín egy az Egri borvidéken elterülő, a Villangó család tulajdonát képező Pinot noir ültetvény. A szigetcsépi vizsgálataim mellett célul tűztem ki, hogy egy az Egri borvidéken elterülő ültetvényben a talaj eltérő nedvességtartalmának vonatkozásában vizsgáljam a kolonizáció mértékét. A 2010-es évben lezúduló, közel 1000 mm csapadék hatására a terület legmélyebben fekvő pontján, egy kb. 500 m²-es területen belvíz alakult ki, ahol a szőlő is kipusztult. Vizsgálatom első blokkja e területrész volt, majd haladtunk a birtok legmagasabb pontja felé, s további két kísérleti blokkot jelöltünk ki.

A munka során a következő kérdéseket vizsgáltam:

1. Milyen hatása lehet az eltérő rügyterhelésnek a szőlő mikorrhizáltságának mértékére? Az esetlegesen felmerülő eltérések milyen kapcsolatban állnak a növény egyes fenológiai tulajdonságait (fürtszám, termésminőség, vesszötőmég, termőegyensúly), a termés minőségével (sűrűség (Brix), titráltató savtartalom (g/l), a szőlőnövény napközben

DOI: 10.14267/phd.2015044
mérhető vízpotenciáljával (Ψₘ) és a levelek elemösszetételével? Milyen az eltérések időbeli dinamikája a két vizsgált vegetációs periódus vonatkozásában?

2. Hogyan befolyásolja az eltérő rügyterhelés a mikorrhiza-kolonizációra kifejtett hatást és minderre hogyan hatnak a foszfortartalmú lombtrágyák?

3. Milyen változást okoz a rügyterhelés hatására létrejött kolonizációs eltérésekben a rügyterhelés ismételt egységesítése?

4. Milyen hatása van a talaj eltérő nedvességtartalmának a szőlő mikorrhizáltságának mértékére? Milyen kapcsolatban állnak az eltérő mikorrhizáltsági adatok a termés-mennyiséggel, a termés-minőséggel és a levelek elem-összetételével?

5. Hogyan változik a szőlő mikorrhizáltságának mértéke a területet borító belvíz visszahúzódását követően?

A kísérlet beállítása során, minden esetben 25 tőkéből álló blokkokat jelöltünk ki, négy ismétlésben (n=100 tőke/kezelés). Minden mintavétel során, kezelésenként 16-16 db. tökét vizsgáltunk.
4. ANYAG ÉS MÓDSZER

4.1. Kísérleti helyszínek és jellemzésük

4.1.1. Szigetcsépi kísérleti helyszín

Szigetcsép szőlőtermő területe a Kunsági borvidék része, mely az ország legnagyobb borvidéke, a HNT 2015. évi adatai alapján területe 20233 ha. A területen homoktalaj az uralkodó, kontinentális klimahatás érvényesül. Gyakoriak a kora tavaszi, olykor igen erős fagyok, a nyarak melegek, aszályos időszakok léphetnek fel.

Az évjáratok jellemzése

A kísérlet első éve, 2010 igen csapadékos volt (1. ábra). A csapadék eloszlása az év során egyenetlen volt, s a legtöbb esetben az eső hirtelen lezúduló, nagy viharok formájában érkezett. Szigetcsépen 2010-ben összesen 915 mm csapadék hullott.

![1. ábra. A 2010-es év havonkénti hőmérséklet és csapadék értékei (forrás: OMSZ, Ercsi).](image)

A legtöbb eső a 2010-es évben a márciustól szeptemberig tartó időszakban esett, összesen 690 mm. Az egyes hónapokat tekintve a legtöbb csapadék májusban volt, amikor 176 mm-t regisztráltak. Az évi középhőmérséklet 9,8 °C volt, a vegetációs időszak effektív hőösszege pedig 3263 °C. A legmelegebb júniusban és júliusban volt, ekkor 19,4 °C illetve 22,6 °C középhőmérsékletet regisztráltak. A leghidegebb januárban, illetve decemberben volt. A havi középhőmérséklet ezen hónapokban 0 °C alá csökkent, -2,6 °C illetve -2,3 °C-ot mérték.

A legcsapadékosabbak a június és a július hónapok voltak, amikor 50,6 mm illetve 56,7 mm csapadék esett. A legmelegebbnek a július és az augusztus hónapok bizonyultak, amikor 20,1-, illetve 21,5 °C-os havi középhőmérsékletet regisztráltak. Leghidegebb a január és a február hónapokban volt, ekkor kevésbé 0 °C alatti havi középhőmérsékletet, -0,8 °C illetve -0,5 °C-ot regisztráltak.

A 2012-es év hőmérséklet és csapadékviszonyait tekintve a 2011-es évhez hasonlóan alakult (3. ábra). Az év során 337 mm csapadékot mérték, ebből a márciustól szeptemberig tartó időszakban 202 mm hullott. A legtöbb csapadék, 57 mm október hónapban volt, azonban május és július hónapokban is közel ennyi, 50,7 mm illetve 52,9 mm hullott. Május hónap során jégeső sújtotta a területet. Az évi középhőmérséklet 11,1 °C-nak adódott.
A vegetációs időszak effektív hőösszege 3570 °C-nak adódott. A legmelegebb hónap a július volt, 23 °C középhőmérséklettel. A leghidegebb ezen a kísérleti helyszínen is szintén februárban valamint decemberben adódott, -3,5 °C illetve -1 °C.

A sík kísérleti terület tengerszint feletti magassága 98 m, a talaj jellemzői az 1. táblázatban találhatók. A sorok tájolása ÉNy–DK. Vizsgált fajtánk a Berlandieri X Riparia T. K. 5BB alanyra oltott Viktória gyöngye, az ültetvény telepítésének éve: 1997. A telepítés ikertőkés, a tőkék térállása 3 (sortáv) x (1,7 + 0,3 (tőtáv)) m, a tőkeművelésmód egyesfüggöny. A támasz egysikú, függőleges, nincsenek hajtástartó- és segédhuzalok, a tőke karját és a hajtásokat az 5 mm-es kartartó huzal tartja.

A sorközök művelése mechanikai módon, a soraljak művelése kapálással és damilos kaszával történt.
1. táblázat. A Szigetcsépi Tangazdaság kísérleti blokkjának talajtani jellemzői (Szigetcsép, 2010)

<table>
<thead>
<tr>
<th></th>
<th>0-30 cm</th>
<th>30-60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH(H₂O)</td>
<td>7,97</td>
<td>8,00</td>
</tr>
<tr>
<td>pH(KCl)</td>
<td>7,80</td>
<td>7,86</td>
</tr>
<tr>
<td>Arany-féle kötöttségi szám</td>
<td>35,00</td>
<td>33,00</td>
</tr>
<tr>
<td>Szénsavas mész (m/m%)</td>
<td>2,67</td>
<td>3,17</td>
</tr>
<tr>
<td>Humusz (m/m%)</td>
<td>0,70</td>
<td>0,52</td>
</tr>
<tr>
<td>Összes só (m/m%)</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>P₂O₅ (mg/kg)</td>
<td>341,27</td>
<td>300,13</td>
</tr>
<tr>
<td>K₂O (mg/kg)</td>
<td>73,47</td>
<td>79,00</td>
</tr>
<tr>
<td>Ca (mg/kg)</td>
<td>11671,00</td>
<td>12920,33</td>
</tr>
<tr>
<td>Mg (mg/kg)</td>
<td>32,50</td>
<td>31,63</td>
</tr>
<tr>
<td>Fe (mg/kg)</td>
<td>35,07</td>
<td>32,07</td>
</tr>
<tr>
<td>Mn (mg/kg)</td>
<td>29,90</td>
<td>24,47</td>
</tr>
<tr>
<td>Cu (mg/kg)</td>
<td>27,94</td>
<td>31,10</td>
</tr>
<tr>
<td>Zn (mg/kg)</td>
<td>5,20</td>
<td>4,32</td>
</tr>
<tr>
<td>Na (mg/kg)</td>
<td>10,87</td>
<td>10,25</td>
</tr>
<tr>
<td>(NO₃+NO₂)-N (mg/kg)</td>
<td>5,51</td>
<td>4,32</td>
</tr>
<tr>
<td>SO₄-S (mg/kg)</td>
<td>37,95</td>
<td>40,97</td>
</tr>
</tbody>
</table>

Vizsgált fajta: Viktória gyöngye

Neve az állami elismerése előtt: Cs.F.T. 195.

Teleki-Kober 5BB

4.1.2. Gál Szőlőbirtok és Pincészet, Szigetcsép

A birtok a Kunsági borvidéken helyezkedik el, a Tangazdaság tőszomszédságában. A mintavétel Szigetújfalu határában, az Újfalui dűlőben történt, 98 m-es tengerszint feletti magasságú területen. Az ültetvény telepítésének éve 2002, ÉK-DNy tájolású, egyesfüggöny művelésmódú, Teleki 5C alanyra oltott Kékfrankos. A térállás 3 x (1,8+0,2) a tőkeművelésmód
egyesfüggöny (ikertőkés elrendezés). A sorközök művelése mechanikai módon, a soraljak művelése vegyszeres gyomírtással történt. A terület talajtani jellemzőit a 2. táblázat személteti.

2. táblázat. A Gál Szőlőbirtok és Pincészet kísérleti blokkjának talajtani jellemzői (Szigetcsép, 2010)

<table>
<thead>
<tr>
<th></th>
<th>0-30 cm</th>
<th>30-60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH(H₂O)</td>
<td>8,10</td>
<td>8,21</td>
</tr>
<tr>
<td>pH(KCl)</td>
<td>7,93</td>
<td>7,95</td>
</tr>
<tr>
<td>Arany-féle kötöttségi szám</td>
<td>32,00</td>
<td>32,00</td>
</tr>
<tr>
<td>Szénsavas mész (m/m%)</td>
<td>3,74</td>
<td>4,16</td>
</tr>
<tr>
<td>Humusz (m/m%)</td>
<td>0,90</td>
<td>0,88</td>
</tr>
<tr>
<td>P₂O₅ (mg/kg)</td>
<td>398,00</td>
<td>336,00</td>
</tr>
<tr>
<td>K₂O (mg/kg)</td>
<td>242,00</td>
<td>167,00</td>
</tr>
<tr>
<td>Mg (mg/kg)</td>
<td>36,50</td>
<td>37,30</td>
</tr>
<tr>
<td>Fe (mg/kg)</td>
<td>23,60</td>
<td>24,30</td>
</tr>
<tr>
<td>Mn (mg/kg)</td>
<td>32,50</td>
<td>23,80</td>
</tr>
<tr>
<td>Cu (mg/kg)</td>
<td>25,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Zn (mg/kg)</td>
<td>6,30</td>
<td>6,67</td>
</tr>
<tr>
<td>Na (mg/kg)</td>
<td>14,20</td>
<td>11,80</td>
</tr>
<tr>
<td>(NO₃+NO₂)-N (mg/kg)</td>
<td>20,70</td>
<td>11,30</td>
</tr>
<tr>
<td>SO₄-S (mg/kg)</td>
<td>4,00</td>
<td>4,87</td>
</tr>
</tbody>
</table>

Vizsgált fajta: Kékfrankos

Hasonnevei: Franconien noir, Limberger, Blaufränkisch, Frankovka, Franconia nera, Morvka Frankinja crna, Nagyburgundi.

Teleki 5C

4.1.3. Egri kísérleti helyszín

Az Egri borvidék Magyarország északkeleti részén helyezkedik el, területén a szőlőtermesztés kultúrája közel ezer évre nyúlik vissza. A borvidék 5288 hektár nagyságú, névadója és központja Eger város.

Az évjáratok jellemzése

A kísérlet első éve, 2010 igen csapadékos volt minden borvidéken, megnehezítve a termelők munkáját. A csapadék eloszlása az év során egyenletlen volt, s a legtöbb esetben az eső hirtelen lezúduló, nagy viharok formájában érkezett. Egerben 1016 mm csapadék esett, melynek több mint fele, 720 mm a márciustól szeptemberig tartó időszakban hullott (6. ábra).

A legtöbb csapadék 201 mm májusban volt. Az éves középhőmérséklet 10,6 °C, a vegetációs időszak effektív hőösszege 3213 °C volt. A legmelegebb hónapok a július és az augusztus voltak, 21,9 illetve 20,1 °C-os középhőmérséklettel. A leghidegebb hónap a február volt, azonban a havi középhőmérséklet ekkor sem süllyedt 0 °C alá.
Az extrém, csapadékos 2010-es esztendőt egy viszonylag száraz év követte, mely növényvédelmi szempontból kedvezőnek bizonyult. A viszonylag száraz, meleg nyárutó és ősz kedvezett a termés-érésnek.

Egerben 2011-ben 359 mm csapadék hullott, melyből a márciustól szeptemberig tartó időszakban 251 mm esett (7. ábra). A legtöbb csapadék júniusban és júliusban hullott, 69,4 illetve 70,7 mm. Az éves középhőmérséklet 11,15 °C volt, a vegetációs időszak effektív hőösszege 3523 °C. A legmelegebb a júniustól augusztusig tartó periódus volt, amikor a havi középhőmérséklet 20,2 °C, 20,3 °C illetve 22,1 °C volt. A legalacsonyabb havi középhőmérsékletet, 1 °C-ot, illetve 1,4 °C-ot januárban és decemberben regisztrálták. A 2012-es év hőmérséklet és csapadékviszonyait tekintve a 2011-es évhez hasonlóan alakult. Egerben az év során 421 mm csapadék hullott, ebből a tenyészidőszakban, márciustól szeptemberig 259 mm (8. ábra).

8. ábra. A 2012-es év havonkénti hőmérséklet és csapadék értékei (forrás: OMSZ, Eger)

Az éves középhőmérséklet 11,4 °C volt. A vegetációs időszak effektív hőösszege 3689 oC. A legmelegebb július és augusztus hónapban volt, amikor 23,4 °C illetve 23 °C havi középhőmérsékletet regisztráltak. A leghidegebb hónapok a február és a december voltak -3,6 °C illetve -1,2 °C-os középhőmérséklettel.

4.1.4. Villangó Szőlőbirtok, Eger

Az Eger határában elterülő Villangó Szőlőbirtokon három vizsgálati blokkot jelöltünk ki, eltérő tengerszint feletti magasságokon. Az ültetvény 2001-es telepítésű, Teleki-Kober 125 AA alanyra oltott Pinot noir fajta. A talaj Ramann-féle barna erdőtalaj, Arany-féle kötöttsége 46, agyagos vályog, humusztartalma 1,5% (3. táblázat). Az ültetvény tengerszint feletti magasságai:
227-242 m. A sorok ÉNy-DK-i vezetésűek, a lejtőszög 6%. A tőkeművelésmód Guyot-művelés, a tőkék térállása: 2,4 x 0,8 m. A közbülső és a végoszlopok anyaga akác. Kartartó huzal, és két huzalpár biztosítja a megfelelő támaszt. A sorközök művelése mechanikai úton történt, kaszált sorközökkel váltakozva. A soralj művelése gyomirtással történt. A sorközöket négy alkalommal kultivázorozták, majd összel mélylazították.

3. táblázat. A Villangó Szőlőbirtok talajtani jellemzői (Eger, 2010)

<table>
<thead>
<tr>
<th></th>
<th>0-30 cm</th>
<th>30-60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH(H₂O)</td>
<td>6,97</td>
<td>7,16</td>
</tr>
<tr>
<td>pH(KCl)</td>
<td>5,61</td>
<td>5,81</td>
</tr>
<tr>
<td>Arany-féle kötöttségi szám</td>
<td>48,00</td>
<td>53,00</td>
</tr>
<tr>
<td>Szénsavas mész (m/m%)</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Humusz (m/m%)</td>
<td>2,01</td>
<td>1,63</td>
</tr>
<tr>
<td>Összes só (m/m%)</td>
<td>0,10</td>
<td>0,11</td>
</tr>
<tr>
<td>P₂O₅ (mg/kg)</td>
<td>330,00</td>
<td>300,00</td>
</tr>
<tr>
<td>K₂O (mg/kg)</td>
<td>298,00</td>
<td>265,00</td>
</tr>
<tr>
<td>Mg (mg/kg)</td>
<td>568,00</td>
<td>679,00</td>
</tr>
<tr>
<td>Mn (mg/kg)</td>
<td>266,00</td>
<td>268,00</td>
</tr>
<tr>
<td>Cu (mg/kg)</td>
<td>12,20</td>
<td>9,60</td>
</tr>
<tr>
<td>Zn (mg/kg)</td>
<td>3,82</td>
<td>4,43</td>
</tr>
<tr>
<td>Na (mg/kg)</td>
<td>37,20</td>
<td>26,20</td>
</tr>
<tr>
<td>(NO₃+NO₂)-N (mg/kg)</td>
<td>33,50</td>
<td>33,20</td>
</tr>
<tr>
<td>SO₄-S (mg/kg)</td>
<td>29,40</td>
<td>21,60</td>
</tr>
</tbody>
</table>

Vizsgált fajta: Pinot noir

Hasonnevei: Pineau noir, Blauer Burgunder, Spätburgunder, Noirien, Pinot nero, Burgundské modré, Burgunder crni, Kék kisburgundi.

Teleki-Kober 125AA:

4.2. Rügyterhelési és lombtrágyázási kísérletek

4.2.1. Rügyterhelési és lombtrágyázási kísérlet a BCE SZBI Szigetcsépi Tangazdaságban

DOI: 10.14267/phd.2015044

Kezelések

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>Jellemző terhelési rendszer</th>
<th>Kísérleti személyzetezési tevékenység</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK</td>
<td>Kontroll: kis terhelés (3 rügy/m²), a talajszinttől 100 cm magasan csonkázott lombsátor (11. ábra)</td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>Kis terhelés (3 rügy/m²), nem csonkázott lombsátor (12. ábra)</td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Kis terhelés (3 rügy/m²), a talajszinttől 100 cm magasan csonkázott lombsátor, Fosfonin Flow lombtrágyával kezelve</td>
<td></td>
</tr>
<tr>
<td>PK</td>
<td>Kis terhelés (3 rügy/m²), nem csonkázott lombsátor, Fosfonin Flow lombtrágyával kezelve</td>
<td></td>
</tr>
<tr>
<td>KN</td>
<td>Nagy terhelés (10,7 rügy/m²), a talajszinttől 100 cm magasan csonkázott lombsátor (13. ábra)</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>Nagy terhelés (10,7 rügy/m²), nem csonkázott lombsátor (14. ábra)</td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td>Nagy terhelés (10,7 rügy/m²), a talajszinttől 100 cm magasan csonkázott lombsátor, Fosfonin Flow lombtrágyával kezelve</td>
<td></td>
</tr>
<tr>
<td>PN</td>
<td>Nagy terhelés (10,7 rügy/m²), nem csonkázott lombsátor, Fosfonin Flow lombtrágyával kezelve</td>
<td></td>
</tr>
</tbody>
</table>

DOI: 10.14267/phd.2015044
11. ábra. A kísérleti egyesfüggöny művelésű Viktória gyöngye ültetvény kis rügyterhelésű (3 rügy/m²), csonkázott blokkja (Szigetcsép, 2011)

12. ábra. A kísérleti egyesfüggöny művelésű Viktória gyöngye ültetvény kis rügyterhelésű (3 rügy/m²), nem csonkázott blokkja (Szigetcsép, 2011)
13. ábra. A kísérleti egyesfüggöny művelésű Viktória gyöngye ültetvény nagy rügyterhelésű (10,7 rügy/m²), csonkázott blokkja (Szigetcsép, 2011)

14. ábra. A kísérleti egyesfüggöny művelésű Viktória gyöngye ültetvény nagy rügyterhelésű (10,7 rügy/m²), nem csonkázott blokkja (Szigetcsép, 2011)
4.2.2. Rügyterhelési kísérlet a Gál Szőlőbírto és Pincészet (Szigetcsép) területén

A birtokon 2009-ben beállított rügyterhelési kísérletet mintáztam (kis terhelés: 4 rügy/m²; nagy terhelés 11 rügy/m²). Két vegetációs időszakot követően, 2010-2011 telén a kísérleti szőlősorokat egységesen 8 rügy/m² terhelésű tőkékké alakították vissza, a termesztési gyakorlatnak megfelelően (15, 16, 17. ábra). Méréseimet 2010 őszén kezdem, eltérő terhelések hatását vizsgálva, majd 2011 tavaszán folytattam, az „uniformizált” ültetvényben, a megváltozott rügyterhelés hatását vizsgálva.

Kezelések

- Kis terhelés (4 rügy/m²)
- Nagy terhelés (11 rügy/m²)

A korábbi kis-és nagy terhelés egységesítése 2010-2011 telén:

- „Üzemi” terhelés (8 rügy/m²)

15. ábra. Kis rügyterhelésű blokk (4 rügy/m²) a Gál Szőlőbírto és Pincészet Kékfrankos kísérleti parcelláján (2009) Fotó: Gál Csaba
5. ábra. Üzemi rügyterhelésű (8 rügy/m2) blokk a Gál Szőlőbirtok és Pincészet Kékfrankos kísérleti parcelláján (2009) Fotó: Gál Csaba

4.3. Lejtős területű szőlőültetvény eltérő tengerszint feletti magasságú szőlőparcelláinak mikorrhiza-kolonizációjának vizsgálata (Villangó Szőlőbirtok, Eger)

A vizsgált Pinot noir ültetvény legmélyebbi pontján, a telepítést megelőző évtizedekben nem műveltek szőlőt, mivel belvíz kialakulásának lehetősége fennáll a kb. 1000 m2-es területen. A területen 2010-ben jelentős mennyiségű csapadék hullott, s a terület legmélyebb pontja 2011 nyaráig vízzel telített volt (18. ábra). A jelenség a korábbi években is megfigyelhető volt, azonban az 1016 mm csapadék hatására 2011-re ezen a részen kipusztultak a tőkék. 2012-ben a száraz nyár végett, az egykor belvízzel borított kvadráton megszűnt a vízborítás (19. ábra).
7. ábra. A belvíz visszahúzódása után az egri Villangó Szőlőbirtok Pinot noir ültetvényében (2012)

Első vizsgálati blokkunk e kipusztult területrész tőszomszédságában található, majd a terület legmagasabb pontja felé haladva további két blokkot jelöltünk ki. A kísérlet tervezése során, a három vizsgált magassági ponton jelöltük ki a vizsgálni kívánt blokkokat (20. ábra).
8. ábra. A mintaterületek kijelölése eltérő tengerszint feletti magasságokon az egri Villangó Szőlőbirtok Pinot noir ültetvényében (2011)

Mintaterületek

Eltérő tengerszint feletti magasságon elhelyezkedő kísérleti blokkok:
- (belvízzel borított terület: 226 m.)
- I. blokk: 227 m.
- II. blokk: 236 m.
- III. blokk: 242 m.

4.4. A szőlő mikorrhizálság és vízpotenciál vizsgálata

A mikorrhiza-vizsgálathoz - minden mintavétel alkalmával - kezelésként (illetve, az egri helyszín esetén mintaterületenként) 16-16 tőkéről vettem hajszálgyökér-mintákat, tőkénként 5-5 cm-t. A feltárás a soraljban, a tőkék közvetlen közelében történt, 0-50 cm-es mélységben. A gyökerek közül a talajt a helyszínen desztillált vízzel kimostam, a gyökérzetet 70%-os etanolban fixáltam.

DOI: 10.14267/phd.2015044
Minden 1 cm-es gyökérszakaszon három vizsgálati pontot értékeltem, melyek egymástól 2,5 mm-re találhatók (Schreiner 2003) (23. ábra). Amennyiben a vizsgált gyökérszakasz tartalmazott arbuszkulumot (21. ábra) és/vagy hifát, vezikulumot (22. ábra), kolonizáltuk tekintettem. Munkám során meghatároztam a következőket: kolonizáció (K %), amennyiben a vizsgált gyökérszakasz tartalmazott arbuszkulumot és/vagy hifát vezikulumot; arbuszkuláris kolonizáció (A%), ha a vizsgált gyökérszakasz tartalmazott arbuszkulumot. Továbbá, mivel a gomba-növény kapcsolat eredményességét leginkább az arbuszkulumok gyakorisága jellemzi (Schreiner 2003, Pinkerton et al. 2004, Schreiner 2005), a százalékos értékelés mellett a vizsgálati pontokban (23. ábra) darabra pontosan is megszámoltam az arbuszkulumokat: arbuszkulum-szám (A db.).

9. ábra. Mikorrhiza képletke: hifák és arbuszkulumok

10. ábra. Mikorrhiza képletke: hifák és vezikulumok

DOI: 10.14267/phd.2015044
11. ábra. Mikorrhiza vizsgálat során tárgylemezre előkészített gyökérszakaszok, és a vizsgálati pontok

Vízpotenciál-mérés

2012-ben (Szigetcsép, Eger) sor került a szőlő levelek nappali vízpotenciáljának (Ψ_m) mérésére (Scholander et al. 1964). Munkám során SPKM 4000 (Skye Instruments Ltd.) vízpotenciál mérőt használtam (24. ábra). A műszer 0-40 bar közötti nyomás mérésére képes. Derült, kánikulai nyári napokon a déli órákban kezelésenként nyolc-nyolc növényről nyolc-nyolc ép, egészségesnek látszó levelet gyűjtöttem a 8-10. levéleméletről. A mérést Szigetcsépen a Viktória gyöngye fajtán 2012. 08. 12, és 2012. 08. 23-i napokon végeztem el, míg Egerben (Pinot noir) 2012. 08. 19-én került sor a mérésre.
12. ábra. Scholander nyomáskamrával végzett napközi vízpotenciál (Ψ_m) mérés (Eger, 2012)
4.5. További vizsgálatok

4.5.1. A levelek tápanyagtartalma

<table>
<thead>
<tr>
<th>Vizsgálati paraméter</th>
<th>Módszer</th>
<th>Bizonytalanság (±rel%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minta előkészítés</td>
<td>MSZ-08-1783-1:1983</td>
<td></td>
</tr>
<tr>
<td>Nitrogén tartalom</td>
<td>MSZ-08-1783-5:1983</td>
<td>10</td>
</tr>
<tr>
<td>Foszfór tartalom</td>
<td>MSZ-08-1783-4:1983</td>
<td>10</td>
</tr>
<tr>
<td>Kálium tartalom</td>
<td>MSZ-08-1783-5:1983</td>
<td>10</td>
</tr>
<tr>
<td>Na tartalom</td>
<td>MSZ-08-1783-5:1983</td>
<td>10</td>
</tr>
<tr>
<td>Kálcium tartalom</td>
<td>MSZ-08-1783-2:1983</td>
<td>10</td>
</tr>
<tr>
<td>Magnézium tartalom</td>
<td>MSZ-08-1783-3:1983</td>
<td>10</td>
</tr>
<tr>
<td>Vas tartalom</td>
<td>MSZ-08-1783-7:1983</td>
<td>10</td>
</tr>
<tr>
<td>Mangán tartalom</td>
<td>MSZ-08-1783-8:1983</td>
<td>10</td>
</tr>
<tr>
<td>Réz tartalom</td>
<td>MSZ-08-1783-10:1983</td>
<td>10</td>
</tr>
<tr>
<td>Cink tartalom</td>
<td>MSZ-08-1783-9:1983</td>
<td>10</td>
</tr>
<tr>
<td>Bór tartalom</td>
<td>MSZ-08-1783-12:1983</td>
<td>10</td>
</tr>
</tbody>
</table>

A vizsgálat során alkalmazott berendezések: Elektronikus mérleg (Kern KB 6000-1, Kern 770-15); Szárítószekrény (Memmert) izzító kemence (Nabertherm); Blokkroncsoló TECATOR BD20; Kjeltec 2200 automata desztilláló; Fotométer (Spectro UV-VIS Auto); Atomabszorpciós spektrofotométer (GBC 932 plus).

4.5.2. A termésmennyiség, vesszőtömeg, titrálható savtartalom és mustsűrűség meghatározása

<table>
<thead>
<tr>
<th>Helyszín</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szigetcsép</td>
<td>szeptember 22.</td>
<td>szeptember 16, október 4.*</td>
</tr>
<tr>
<td>Eger</td>
<td>szeptember 2.</td>
<td>szeptember 5.</td>
</tr>
</tbody>
</table>

*A másodtermés szüretére is sor került

A mérés során kezeléseként 16 tőke termésmennyiségét (kg/m²) mértem meg a 6. táblázatban jelölt időpontokban. A mérések során digitális asztali mérleget (Ohaus Defender
3000) használtam. A mustminőség vonatkozásában, a titrálható savtartalom meghatározása történt (g/l) 0,1 n nátrium-hidroxiddal végzett titrálással, brómtimolkék indikátort hozzáadásával. A mustok szárazanyag tartalmát (ref. %) – 0,0001 g/cm3 pontosságú kézi refraktométerrel (DA-130N, Kyoto Electronics) végezem el. 2011 és 2012. február-március hónapokban sor került a vesszőtömeg, majd a termőegysúlyi állandó (tőkénkénti termésmennyiség (y) /vesszőtömeg (n)) meghatározására. Kezeléseként szintén 16-16 tőkét metszettem. A vesszőtömeg meghatározására 0,01 kg pontosságú Berkley digitális mérleget alkalmaztam.

4.6 Statisztikai analízis

A McGonigle (1990) Schreiner (2003) által módosított szisztémája szerint kiértékelt gyökérszakaszok eredményeit Excel programba szerkesztem. A mikorrhiza kolonizáció (K %) összehasonlítása során IBM SPSS program Fisher’s exact tesztjét alkalmaztam. Munkám során a további adatsorok statisztikai összehasonlító értékelését IBM SPSS One-Way Anova varianciaanalízis Tukey - tesztel végezem. Az eredményeket a következőképpen jelöltem: n.s = az átlagok között nincs szignifikáns különbség; + = p<0.1; * =p<0.05; **=p<0.01; ***=p<0.005.
5. ERDEMÉNYEK ÉS ÉRTÉKELÉSÜK

5.1. Az eltérő rügyterhelés, csonkázás és a foszfor-hangsúlyos lombtrágyázás kezelések eredményei (BCE SZBI Szigetcsépi Tangazdaság)

5.1.1. Kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei

13. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei az egyes kezelések szerint (2011 tavasz, Szigetcsépi Tangazdaság)
4. táblázat. A mikorrhiza-kolonizációra (K %), az arbuszkuláris kolonizációra (A %) és arbuszkulumszámra (A db.) vonatkozó páronkénti statisztikai analízis eredményei (2011 tavasz, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>A %</th>
<th>K %</th>
<th>Arbuszkulumszám (A db.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>***</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>**</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PN</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>BN-KK</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>*</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>BN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>BN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>*</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>*</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>KN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>+</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-PN</td>
<td>+</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SN</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>PN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>+</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>SK-SN</td>
<td>***</td>
<td>***</td>
<td>*</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

A terhelési kísérlet beállítása után, a 2011 tavaszi mintavétel során, virágzás után a kísérleti kezelésekből (SK, PK, KK, BK, SN, PN, KN, BN) az eltérő terhelés volt értékelhető, mivel még sem lombtrágyázás, sem pedig csonkázás nem történt. Ennek ellenére, minden kísérleti blokkot mintáztam (azaz kezelésenként 64 db tőke gyökerének 360 pontján vizsgáltam a gombapartner jelenlétét). Az arbuszkuláris kolonizáció (A %) a kis (3 rügy/m²) terhelésnél (későbbi SK, BK, PK, KK blokkok) 38 %-os, míg a nagy terhelésnél (SN, BN, PN, KN) 23,25 % volt (25. ábra, 7. táblázat). A mikorrhiza kapcsolat kiemelkedő fontosságú a szőlő számára,

Schreiner (2003) alacsonyabb kolonizációt detektált nagyobb termést indukáló alanyfajták nál. És bár a mikorrhizált növények tápanyagfelvételét a talaj tulajdonságai, az ültetvényben folytatott talajművelés, és a tápanyag-gazdálkodás is befolyásolja, a gombapartner jelentőségé a könnyen felvehető tápanyagokban szegény talajokon különösen nagy (Ryan és Graham 2002). Kísérletekben nagy terhelésnél alacsonyabb szintű arbuszkuláris kolonizációt és arbuszkulum-számot tapasztaltam. A nagyobb lombozat, a fejlődő, nagy fürtterhelés okozta tápanyagigény miatt minden bizonyal kevesebb jutott a gombapartner táplálására, arbuszkulumok fejlesztésére. Ha a tőke jelentős mennyiségű szénhidrátot használ fel, kevesebb juthat a gombapartner számára, így az arbuszkulumok fejlesztésére is (Schreiner 2003), mely jelenség esetünkben a kolonizáció intenzitásának (A %, A db.) csökkenéséhez vezethetett.
14. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei az egyes kezelések szerint (2011 ősz, Szigetcsépi Tangazdaság)

5. táblázat. A mikorrhiza-kolonizációra (K %), az arbuszkuláris kolonizációra (A %) és arbuszkulumszámra (A db.) vonatkozó páronkénti statisztikai analízis eredményei (2011 ősz, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th></th>
<th>A %</th>
<th>K %</th>
<th>Arbuszkulum-szám</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>+</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>+</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PN</td>
<td>n.s.</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>***</td>
<td>***</td>
<td>+</td>
</tr>
<tr>
<td>BN-KN</td>
<td>***</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>BN-PK</td>
<td>*</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>BN-PN</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>n.s.</td>
<td>+</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>*</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A %</th>
<th>K %</th>
<th>Arbuszkulumszám</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PN</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>*</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SN</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-PN</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SN</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SK</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>SK-SN</td>
<td>***</td>
<td>***</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005
lombfal (SK) kezelésnél eredményeim összhangban állnak Schreiner és Lindermann (2005) megállapításaival, mi szerint a fősztfortartalmú lombtrágyázás negatív kihatással lehet a kolonizáció mértékére.

Eredményeim alapján ez a jelenség a nem csonkázott blokkoknál viszont fordítottan alakult, azaz nem hogy nem csökkent, némileg (bizonyos esetekben statisztikailag igazolhatóan) nőtt a lombtrágyázott, talajszintig érő lombsátorral bíró tőkék gyökerének kolonizációja. Ez esetben, a tápanyagokban viszonylag szegény homoktalajon tenyésző tőkék valószínűleg a túlságosan nagyra (duplicája) engedett lombsátor megnövekedett tápelem igénye végét, illetve a tőke raktározott tápelemeinek kimerülését ellensúlyozandó, a kolonizációra mindennemű káros következmény nélkül hasznosította a kijuttatott lombtrágyát. A kijuttatott tápanyag enyhítette a szőlő radikálist megnövekedett tápanyagigényt, így kedvezőbb kondíciójú tőkéket eredményezhetett, mely során a szőlőnövény megfelelő mennyiségű (legalábbis több mint a lombtrágyázásban nem részesült, nem csonkázott állományok) szénhidrátot juttathatott a gombapartner számára, s így a mikorrhiza kapcsolat révén eredményesebb stressztűrés, víz-és tápanyagfelvétel valósulhatott meg.

15. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulum-szám (A db.) vizsgálat eredményei az egyes kezelések szerint (2012 tavasz, Szigetcsépi Tangazdaság)
6. táblázat. A mikorrhiza-kolonizációra (K %), az arbuszkuláris kolonizációra (A %) és arbuszkulumszámra (A db.) vonatkozó páronkénti statisztikai analízis eredményei (2012 tavasz, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>A %</th>
<th>K %</th>
<th>Arbuszkulum-szám</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>**</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>***</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>BN-KN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PK</td>
<td>*</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>KK-PN</td>
<td>+</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>+</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>SK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

A 2012 tavaszi mérések során az SK kezelésnél továbbra is megmutatkozott a lombrágyázás negatív hatása az arbuszkulumok számára és az arbuszkuláris kolonizációra, továbbá BK és KK kezeléseket összehasonlítva ismét tapasztaltuk, hogy a kétszer akkora lombsátorná (BK kezelésnél) „fenntartása” mellett valószínűleg nem jutott elegendő asszimilátum a gombapartnerek számára (27. ábra, 9. táblázat). Nagy terhelésnél szintén - a korábbi évhez hasonlóan - azt tapasztaltuk, hogy a nem csonkázott lombsátorná lombrágyázás némileg magasabb kolonizációt eredményezett.
28. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei az egyes kezelések szerint (2012 ősz, Szigetcsépi Tangazdaság)

7. táblázat. A mikorrhiza-kolonizációra (K %), az arbuszkuláris kolonizációra (A %) és arbuszkulumszámra (A db.) vonatkozó páronkénti statisztikai analízis eredményei (2012 ősz, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>A %</th>
<th>K %</th>
<th>Arbuszkulumszám</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>***</td>
<td>***</td>
<td>0,094</td>
</tr>
<tr>
<td>BK-KN</td>
<td>***</td>
<td>***</td>
<td>0,076</td>
</tr>
<tr>
<td>BK-PN</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>+</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>***</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>***</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>BN-KN</td>
<td>**</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>BN-PK</td>
<td>n.s.</td>
<td>***</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
A 2012 ősz mintavétel során az SK és a KK kezelések között hasonló összefüggést tapasztaltam, mint a korábbi mintavételezések során (28. ábra). A nem csonkázott kis terhelés (BK) és a nem csonkázott, lombtrágyázott kontroll kezelés (PK) K % és A db. értékei közel azonos értéket mutattak. Az SN és a KN kezelések az arbuszkulumok számában és a kolonizációt tekintve tértek el szignifikáns mértékben egymástól. Az A % vizsgálatánál nem tapasztaltam szignifikáns eltérést (10. táblázat), azonban ez is alátámasztja értékelési metodikánkat, mi szerint helyesen, darabra pontosan is megszámoltam az arbuszkulumokat.

5. 1. 2. Termésmennyiség, vesszőtömeg, termőegyensúly eredmények

8. táblázat. Termésmennyiség, vesszőtömeg, termőegyensúly vizsgálat eredményei az egyes kezelések szerint (2011, Szigetcsépi Tangazdaság)
<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Termés- mennyiség (kg/m²)</th>
<th>Vesszőtömeg (kg/m²)</th>
<th>Termőegyensúly (y/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK (Kontroll)</td>
<td>1,11</td>
<td>0,26</td>
<td>5,29</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>1,36</td>
<td>0,34</td>
<td>5,44</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombtrágyázott)</td>
<td>2,38</td>
<td>0,27</td>
<td>12,53</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombtrágyázott)</td>
<td>2,99</td>
<td>0,43</td>
<td>10,31</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>2,61</td>
<td>0,28</td>
<td>11,86</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>2,83</td>
<td>0,39</td>
<td>11,32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Termés- mennyiség (kg/m²)</th>
<th>Vesszőtömeg (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>BK-KN</td>
<td>***</td>
<td>0</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>BK-PN</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>***</td>
<td>+</td>
</tr>
<tr>
<td>BN-KN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>***</td>
<td>+</td>
</tr>
<tr>
<td>BN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>0</td>
</tr>
<tr>
<td>KK-SN</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>KN-PK</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>
A termésmennyiség vonatkozásában a kis és nagy rügyterhelésnél minden esetben statisztikailag igazolható, szignifikáns különbséget tapasztaltam (11, 12. táblázat). Eredményeim alapján a csonkázott és lombtrágyázott blokkok termésmennyisége – nem szignifikáns mértékben – elmaradt a nem lombtrágyázott, csonkázott blokkokétől. Összefüggést tapasztaltam a kolonizáció (K %) az arbuszkulumok száma (A db.) és a termés mennyisége között, azaz a lombtrágya okozta alacsonyabb K % és A db. hozzájárulhatott a kismértékű termésmennyiség csökkenéséhez. Nagy terhelés, és földig érő lombsátor fordított tendenciát eredményezett, szintén összhangban a mikroszkópi vizsgálatokkal. Az eltérő kezelések során tapasztalt mikorrhiza-kolonizáció intenzitással egyezően alakult a termésmennyiség is, bár szignifikáns különbségeket nem tapasztaltam.

10. táblázat. Termésmennyiség, vesszőtömeg, termőegyensúly vizsgálatok eredményei az egyes kezelések szerint (2012, Szigetcsépi Tangazdaság)
11. táblázat. A termésmennyiségre, vesszötömegre vonatkozó páronkénti statisztikai analízis eredményei (2012, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Termésmennyiség (kg/m²)</th>
<th>Vesszötömeg (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elsőrendű (2012. szept. 16.)</td>
<td>Másodrendű (2012. okt. 4.)</td>
</tr>
<tr>
<td>BK-BN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>PK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SK</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>SK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

A termésmennyiség vizsgálata során 2012-ben megállapítottam, hogy mindkét terhelésnél a csonkázott és lombtrágyázott (SK és SN) kezelések vonatkozásában mértük a legalacsonyabb termésmennyiségeket és vesszötömegeket, összhangban az arbuszkulumok számának alakulásával (13. táblázat). Általánosan a kis és a nagy terhelés között értelemszerűen jelentős különbségek mutatkoztak, ám a statisztikai analízis ezeket nem értékelte szignifikáns eltérésként (14. táblázat).
A vegetatív és generatív teljesítmény értékelésére úgynevezett termőegyensúlyi állandót számolhatunk. Termőegyensúly esetén a tőke „vegetatív és generatív tevékenysége egymással jól meghatározható viszonosságban áll” (Csepregi, 1982). A termésmennyiséget (y) elosztjuk a vesszőtömeggel (n), megkapjuk az y/n arányt, melynek értéke 2-5 között elfogadható (Bényei et al. 1999). Az y/n hányadost befolyásolhatja a fajta, a tőkekondíció és a művelésmód. Lőrincz és Barócsi (2010), Kozma (1993) 4-6 közé teszi az optimális tartományt. Eredményeim alapján az üzemi terhelés tekinthető optimálisnak, a nagy terhelés lényegében dupla értékeket eredményezett. A 'Viktória gyöngye' alapvetően bőtermő fajta, de a rügyterhelés fokozásával az y/n hányados is túlterhelést jelez a 2011-es évben. 2012 tavaszán egy jégeső sújtott le az ültetvényre, és a nagyszámú másodtermés képzés, és megtépázott lombozat okozhatta a kis terhelésnél is megmutatkozó túlterhelést/generatív túlsúlyt (13. táblázat).

5. 1. 3. A termés minősége (mustsűrűség, titrálható savtartalom)

12. táblázat. Mustminőség vizsgálat eredményei az egyes kezelések szerint (2011, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Átlagos mustsűrűség (Brix°)</th>
<th>Átlagos titrálható savtartalom (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK (Kis terhelés, csonkázott, lombtrágyázott)</td>
<td>22,7</td>
<td>7,29</td>
</tr>
<tr>
<td>PK (Kis terhelés, nem csonkázott, lombtrágyázott)</td>
<td>22,98</td>
<td>8,61</td>
</tr>
<tr>
<td>KK (Kontroll)</td>
<td>22,88</td>
<td>7,66</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>24,25</td>
<td>7,33</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombtrágyázott)</td>
<td>22,38</td>
<td>7,16</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombtrágyázott)</td>
<td>23,41</td>
<td>7,64</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>21,4</td>
<td>8,25</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>23,23</td>
<td>7,21</td>
</tr>
</tbody>
</table>
16. táblázat. A termésminőségre vonatkozó páronkénti statisztikai analízis eredményei az egyes kezelések szerint

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Átlagos mustsűrűség (Brix %)</th>
<th>Átlagos titrálható savtartalom (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>BK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>n.s.</td>
<td>0</td>
</tr>
<tr>
<td>BN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>KK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>KN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-PN</td>
<td>n.s.</td>
<td>*</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>PK-SN</td>
<td>n.s.</td>
<td>***</td>
</tr>
<tr>
<td>PN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>SK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005
17. táblázat. Mustminőség vizsgálat eredményei az egyes kezelések szerint (2012, Szigetcsépi Tangazdaság)

<table>
<thead>
<tr>
<th>Kezelések</th>
<th>Elsőrendű termés (2012. szept. 16.)</th>
<th>Másodtermés (2012. okt. 4.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Átlagos mustsűrűség (Brix)</td>
<td>Átlagos titrálható savtartalom (g/l)</td>
</tr>
<tr>
<td>SK (Kis terhelés, csonkázott, lombtrágyázott)</td>
<td>24,8</td>
<td>6,6</td>
</tr>
<tr>
<td>PK (Kis terhelés, nem csonkázott, lombtrágyázott)</td>
<td>24,2</td>
<td>6,4</td>
</tr>
<tr>
<td>KK (Kontroll)</td>
<td>23,7</td>
<td>7,1</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>24,8</td>
<td>6,6</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombtrágyázott)</td>
<td>24,6</td>
<td>6,4</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombtrágyázott)</td>
<td>25,3</td>
<td>6,6</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>24,4</td>
<td>6,3</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>24,0</td>
<td>6,6</td>
</tr>
</tbody>
</table>

A termés minőségének vizsgálata során nem tapasztaltam szignifikáns különbségeket egyik évben sem (16, 17. táblázat).
5.1.4. Vízpontenciál mérési eredmények

16. ábra. Scholander nyomáskamrával végzett napközi vízpotenciál (Ψ_m) értékeinek alakulása az egyes kezelések szerint (Szigetcsép, I. mérés: 2012. 08. 09.; II. mérés: 2012. 08. 23.)

18. táblázat. A vízpotenciál-mérés eredményeinek páronkénti statisztikai analízise (I. mérés: 2012. 08. 09.; II. mérés: 2012. 08. 23.)

<table>
<thead>
<tr>
<th></th>
<th>2012.08.09</th>
<th>2012.08.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-KN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PK</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-KK</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>BN-KN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-PK</td>
<td>n.s.</td>
<td>+</td>
</tr>
<tr>
<td>BN-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>BN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-KN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SK</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>KK-SN</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-PN</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>KN-SN</td>
<td>+</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
Mind a 2012. 08. 09-i, mind pedig a 2012. 08. 23-i mérésnél, mindkét terhelést figyelembe véve a csonkázott, lombbrágyázott tőkék (KK és KN) voltak vízszel legjobban ellátva (28. ábra, 18. táblázat). A lombbrágya alkalmazása negatívan hathatott csonkázott, kis (3 rügy/m²) terhelésnél (SK). Megmutatkozott a lombbrágyázás és a kolonizáció (révén a vízfelvételre gyakorolt hatás) esetleges összefüggése, a vízszel leggyengébben ellátott tőkék innen kerültek ki. Ezek az eredmények összhangban vannak mind a termésmennyiséggel, mind pedig a mikorrhizáltság intenzitásával. Általánosan elfogadott tény, hogy a kolonizált gyökerek hatékonyabb vízfelvétel jellemző, mint a nem kolonizáltakéra ((Stahl (1900) in Possingham és Obbink (1971), Stanczak és Boratynska ((1954 in Possingham és Obbink (1971), Schreiner et al. (2007)). Az utóbbi évtizedekben mind gyakrabban szembesülhetünk szélsőséges időjárási periódusokkal, így aszályos, csapadékos, száraz előzményekben szegény időszakokkal is, melyek a mezőgazdasági ágazat számára évről évre új kihívásokat jelentenek. S bár a szőlő viszonylag jól tűri a szárazságot, az eredményes szőlőtermesztéshez, jó minőségű termés eléréséhez elengedhetetlen a szőlő optimális vízellátása, és a megfelelő tőkekondíció.

A szélsőséges időjárási viszonyok esetén mind inkább fokozódik a szőlő gyökerén élő mikorrhiza gombák szerepe: a mikorrhiza kapcsolat megváltoztatja a növény élettani sajátosságait (Dell’ Amico et al. 2002), a gyökérkapacitásban élő növények jobban tűrik a szárazság stresszt (Davies et al. 1992, Marschner 1997). Csonkázott, lombbrágyázott kisterhelés (SK) esetén véleményem szerint a lombbrágyázás vezethetett a kolonizáció csökkenéséhez, mely hozzájárulhatott a gyengébb vízellátottsághoz, szemben a permetezetlen változattal. Eredményeim ezen része összhangban áll Schreiner és Lindermann (2005) megállapításával, mely szerint oregoni szőlőültetvényben alacsonyabb kolonizációt detektáltak a kezelésen átesett ültetvényeknél. Érdekes azonban, hogy nem csonkázott (BK és PK) lombsátor esetén a tendencia megfordult. Véleményem szerint, ez esetben a tápanyagokban viszonylag szegény homoktalajon tenyésző tőkék valószínűleg a túlságosan nagyra (duplázára) engedett lombsátrának megnövekedett tápelem igénye miatt, illetve a tőke raktározott tápelemeinek kimerülését ellensúlyozandó, a szőlő vízháztartására (és a kolonizációra) mindennemű káros következmény nélkül hasznosította a kijuttatott lombbrágyát. A kijuttatott lombbrágya enyhítette (legalábbis

<table>
<thead>
<tr>
<th></th>
<th>2012.08.09</th>
<th>2012.08.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK-PN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SK</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>PN-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>SK-SN</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; *=p<0.05; **=p<0.01 ; ***=p<0.005

DOI: 10.14267/phd.2015044
részben) a szőlő radikálisan megnövekedett tápanyagigényét, így kedvezőbb kondíciójú tőkéket eredményezhetett, mely során a szőlőnövény megfelelő mennyiséggő (legalábbis több mint a permetezésben nem részesült, nem csonkázott állományok) szénhidrátot juttathatott a gombapartner számára, s így az optimálisabb mikorrhiza kapcsolat hozzájárulhatott az eredményesebb stressztűréshez, víz-és tápanyagfelvételhez.

5. 1. 5. A levélanalízis eredményei

<table>
<thead>
<tr>
<th></th>
<th>2011 tavasz</th>
<th>2011 ősz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>P (%)</td>
</tr>
<tr>
<td>SK (Kis terhelés, csonkázott, lombrázgázott)</td>
<td>3,33</td>
<td>0,16</td>
</tr>
<tr>
<td>PK (Kis terhelés, nem csonkázott, lombrázgázott)</td>
<td>3,46</td>
<td>0,21</td>
</tr>
<tr>
<td>KK (Kontroll)</td>
<td>3,56</td>
<td>0,22</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>3,45</td>
<td>0,2</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombrázgázott)</td>
<td>3,25</td>
<td>0,18</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombrázgázott)</td>
<td>3,25</td>
<td>0,2</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>3,2</td>
<td>0,21</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>3,28</td>
<td>0,19</td>
</tr>
</tbody>
</table>

DOI: 10.14267/phd.2015044
<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>2,09</td>
<td>0,14</td>
<td>0,88</td>
<td>3,7</td>
<td>0,27</td>
<td>19</td>
<td>107</td>
<td>190</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>2,21</td>
<td>0,13</td>
<td>0,78</td>
<td>4,09</td>
<td>0,3</td>
<td>14</td>
<td>97</td>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK (Kis terhelés, csonkázott, lombtrágyázott)</td>
<td>3,24</td>
<td>0,33</td>
<td>0,76</td>
<td>3,11</td>
<td>0,23</td>
<td>15,3</td>
<td>80,34</td>
<td>70,85</td>
</tr>
<tr>
<td>PK (Kis terhelés, nem csonkázott, lombtrágyázott)</td>
<td>2,81</td>
<td>0,3</td>
<td>0,83</td>
<td>3,13</td>
<td>0,22</td>
<td>17,12</td>
<td>85,96</td>
<td>73,01</td>
</tr>
<tr>
<td>KK (Kontroll)</td>
<td>2,89</td>
<td>0,43</td>
<td>0,94</td>
<td>3,38</td>
<td>0,24</td>
<td>18,84</td>
<td>85,42</td>
<td>71,75</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>2,97</td>
<td>0,4</td>
<td>0,92</td>
<td>3,62</td>
<td>0,25</td>
<td>19,94</td>
<td>92,58</td>
<td>69,96</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombtrágyázott)</td>
<td>3,04</td>
<td>0,29</td>
<td>0,82</td>
<td>3,13</td>
<td>0,21</td>
<td>14,78</td>
<td>56,52</td>
<td>65,48</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombtrágyázott)</td>
<td>2,94</td>
<td>0,29</td>
<td>0,93</td>
<td>3,61</td>
<td>0,23</td>
<td>18,24</td>
<td>65,59</td>
<td>86,85</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>2,75</td>
<td>0,37</td>
<td>0,92</td>
<td>3,72</td>
<td>0,23</td>
<td>15,94</td>
<td>78,7</td>
<td>102,21</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>2,94</td>
<td>0,41</td>
<td>0,85</td>
<td>3,47</td>
<td>0,23</td>
<td>22,46</td>
<td>83,4</td>
<td>100,06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK (Kis terhelés, csonkázott, lombtrágyázott)</td>
<td>1,9</td>
<td>0,14</td>
<td>0,81</td>
<td>4,76</td>
<td>0,32</td>
<td>14,97</td>
<td>103,02</td>
<td>8,52</td>
</tr>
<tr>
<td>PK (Kis terhelés, nem csonkázott, lombtrágyázott)</td>
<td>1,87</td>
<td>0,13</td>
<td>0,76</td>
<td>4,78</td>
<td>0,3</td>
<td>15,51</td>
<td>111,3</td>
<td>8,02</td>
</tr>
<tr>
<td>KK (Kontroll)</td>
<td>1,71</td>
<td>0,14</td>
<td>0,78</td>
<td>4,15</td>
<td>0,25</td>
<td>17,5</td>
<td>127,35</td>
<td>8,77</td>
</tr>
<tr>
<td>BK (Kis terhelés, nem csonkázott)</td>
<td>1,72</td>
<td>0,12</td>
<td>0,64</td>
<td>4,19</td>
<td>0,25</td>
<td>13,62</td>
<td>107,57</td>
<td>6,55</td>
</tr>
<tr>
<td>SN (Nagy terhelés, csonkázott, lombtrágyázott)</td>
<td>1,76</td>
<td>0,11</td>
<td>0,55</td>
<td>4,01</td>
<td>0,26</td>
<td>13,01</td>
<td>86,53</td>
<td>6,38</td>
</tr>
<tr>
<td>PN (Nagy terhelés, nem csonkázott, lombtrágyázott)</td>
<td>1,83</td>
<td>0,13</td>
<td>0,62</td>
<td>3,89</td>
<td>0,27</td>
<td>14,48</td>
<td>92,46</td>
<td>9,12</td>
</tr>
<tr>
<td>KN (Nagy terhelés, csonkázott)</td>
<td>1,75</td>
<td>0,1</td>
<td>0,72</td>
<td>4,17</td>
<td>0,29</td>
<td>13,87</td>
<td>90,4</td>
<td>9,3</td>
</tr>
<tr>
<td>BN (Nagy terhelés, nem csonkázott)</td>
<td>1,79</td>
<td>0,11</td>
<td>0,55</td>
<td>4,26</td>
<td>0,28</td>
<td>11,96</td>
<td>92,42</td>
<td>8,47</td>
</tr>
</tbody>
</table>

A levélanalízis alapján ez a jelenség 2011 őszén mutatkozott meg (19. táblázat): az SK és az SN kezeléseknél jelentkeztek a leginkább alacsony P és K értékek, összhangban az
arbuszkulumok arányával, ami – anyagátadási felületként – leginkább jelzi a kapcsolat
különbségek kismértékűek, s azokat a későbbiekben a P vonatkozásában nem tapasztaltuk. A K-
szint vizsgálatánál szinte végig azt tapasztaltuk, hogy a csonkázott permezetetlen (KK, KN), és a
nem csonkázott lombragyázott (PK, PN) kezeléseknél volt a levelek K-tartalma legmagasabb.
Az eredmények összhangban állnak az - a gomba-növény kapcsolatban az anyagátadás helyéül
szolgáló - arbuszkulumok számának alakulásával. A 5. tartalomnál 2011 őszétől kezdve (tehát
valószínűleg a lombtrágyázás s így az arbuszkuláris kolonizáció változása okán) mindkét
terhelési kísérletben legtöbbször a csonkázott és lombragyázott állományoknál 7–23%-kal
alacsonyabb értékeket tapasztaltunk a többi kezeléshez viszonyítva. Egybehangzó kutatási
erdemények alapján, a mikorrhizált szőlőgyökér vizsgálatai egyértelműen igazolták a gombatárs
révén kedvezőbbé váló foszforellátottságot (Possingham és Obbink 1971, Deal et al. 1972,
Gebbing et al. 1977, Karagianides et al., 1995, Bavaresco és Fogoher 1996, Biricolti et al. 1997,
jellemző a foszfor mellett a cink- és a rézelvétel elősegítése, de fokozódhat a nitrogén, a kálium,
a kalcium, a magnézium, a kén, illetve a bór és a vas felvétele is (Marschner 1997, Smith és
levonni nem tudtak. A levélanalízis eredményei és az abból levont következtetések során
figyelembe kell venni, hogy a levelek kálium-, kalcium- és vas-, bór- és mangántartalmát illetően
nem lehet teljesen egyértelmű, ellentmondásoktól mentes kijelentéseket tenni (Bavaresco és

5.2. Eltérő rügyterhelés hatása a mikorrhizáltságra (Gál Szőlőbirtok és Pincészet, Szigetsép)

5.2.1. A mikorrhiza kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumsszám (A
db.) vizsgálat eredményei

A vizsgálatok során - 2010 őszén - szignifikánsan több arbuszkulumot számoltam az
alacsonyabb (4 rügy/m²) terhelésnél, mint a 11 rügy/m² mértékben terhelt tőkeken (20. táblázat),
20. táblázat. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei (2010 ősz, 2011 tavasz, Gál Szőlőbirtok és Pincészet, Szigetcsép)

<table>
<thead>
<tr>
<th>Vizsgált paraméterek</th>
<th>2010 ősz</th>
<th>2011 tavasz /a terhelés üzemi szintre történő visszaállítása után/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 rügy/m²</td>
<td>11 rügy/m²</td>
</tr>
<tr>
<td>Kolonizáció (K %)</td>
<td>83,3+</td>
<td>63,3</td>
</tr>
<tr>
<td>Arbuszkuláris kolonizáció (A %)</td>
<td>90***</td>
<td>50</td>
</tr>
<tr>
<td>Arbuszkulumszám (A db.)</td>
<td>151***</td>
<td>47</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

Ugyanakkor a rügyszám-többletből adódóan, a nagy terhelésnél nagyobb volt a tőkénkénti termésmennyiség (két év összesített terméshozama 2,16 kg/m² volt kis terhelésű tőkék esetében, míg a nagy terhelésnél 4,59 kg/m² (Gál, 2011)). A tőkének jelentős mennyiségi asszimilátumra volt szüksége kinevelni, beérlelni a fürtöket, hajtásokat, ellátnia lombozatot, így valószínűleg kevesebb szénhidrát jutott a gombapartner számára. Bár a levélanalízis (21. táblázat) nem mutatott ki különbséget a kezelések között, az alacsonyabb terhelés kedvezőbb lehetett a szőlőnövény számára, és valószínűleg kiegyenlítettebb volt a víz-és tápanyag felhasználás, ami magasabb kolonizációs értékhez vezetett.

21. táblázat. A kis és a nagy terhelésű Kékfrankos tőkék levélanalízisének tápelem-adatai (Gál, 2011)

<table>
<thead>
<tr>
<th>Tápelem</th>
<th>4 rügy/m²</th>
<th>11 rügy/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/m % légysz. a.</td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td>N</td>
<td>1,74</td>
<td>1,98</td>
</tr>
<tr>
<td>P</td>
<td>0,13</td>
<td>0,139</td>
</tr>
<tr>
<td>K</td>
<td>1,02</td>
<td>1,36</td>
</tr>
<tr>
<td>Ca</td>
<td>4,11</td>
<td>2,77</td>
</tr>
<tr>
<td>Mg</td>
<td>0,361</td>
<td>0,285</td>
</tr>
</tbody>
</table>
2011 tavaszára 8 rügy/m\(^2\) mértékűre egységesítették a rügyterhelést. A kolonizáció a az egykor nagy terhelésnél 80 %, míg a korábbi kis terhelésnél 92,2 % volt (20. táblázat). A kolonizációs értékek között az előző évben tapasztalt eltérés kiegyenlítődni látszik, a különbség közel harmadára csökkent, bár - ha nem is szignifikáns mértékben - még kissé magasabb értéket mutat a hajdan kis terhelésű növényeknél. Az arbuszkuláris kolonizáció nagy terhelésnél 56 %, míg kis terhelésnél 39 % volt. Összhangban Schreiner és Lindermann (2005) megállapításaival, minden kezelés vonatkozásában magasabb kolonizációs értékeket tapasztaltunk tavasszal, mint összel, továbbá, a korábban kis terhelésű (4 rügy/m\(^2\)) tőkék rügyterhelése kétszeresére emelkedett. Valószínűleg ennek hatására az arbuszkuláris kolonizáció, és ezzel együtt az arbuszkulumok száma alacsonyabb lett - közel fele -, mint a nagy terhelésről (11 rügy/m\(^2\)) alacsonyabb, üzemi (8 rügy/m2) terhelésre visszaalakított tőkéknél. Az arbuszkulumok számát tekintve minden bizonnyal a terhelés megváltozásának hatására, a 2010 őszi mérés tendenciájának az ellenkezőjét tapasztaltam. Mindhárom mért paramétert tekintve szignifikáns volt a két mintavételi alkalom közötti különbség. Két vegetációs időszak alatt a túlterhelt tőkék vélhetőleg elhasználták raktározott tápanyagaik egy részét, melyre a tápanyagokban szegény homoktalajon – terheléstől függetlenül – nagy szüksége van a szőlőnél. Ryan és Graham (2002) szerint a gombapartner jelentősége a könnyen felvehető tápanyagokban szegény talajok esetén különösen nagy: az arbuszkulumok magas száma feltehetően a korábban felhasznált tápanyagok visszapótlásának igényével indokolható, mivel nagy felületük biztosítja a kölcsönös anyagátadást a gomba és a gazdanövény között (Schreiner 2005). A 2012-es év tavaszán az arbuszkuláris kolonizációt (A %) tekintve még szignifikánsan magasabb értékeket mutatkoztak a korábban kis terhelésű tőkéknél (60 %) a korábban túlterhelt tőkékhez viszonyítva (30 %). Az arbuszkulumok számát (db.), és magát a hifakolonizációt (K %) tekintve, a kis terhelésnél 83,3 %-ot, míg nagy terhelésnél 92,2 %-os értékeket tapasztaltam (22. táblázat). Az egykori 11 rügy/m\(^2\) esetén 209 db, míg az alacsony terhelés (4 rügy/m\(^2\)) vonatkozásában 145 db. arbuszkulumot detektáltam. A korábban túlterhelt tőkék minden bizonnyal igénybe vették raktározott tápanyagkészletüket, és ennek pótlása is hozzájárulhatott az arbuszkulumok továbbra is magas számához.
22. táblázat. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei (2012 tavasz, 2012 ősz, Gál Szőlőbirtok és Pincészet, Szigetszép)

<table>
<thead>
<tr>
<th>Vizsgált paraméterek</th>
<th>2012 tavasz</th>
<th>2012 ősz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 rügy/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(korábbi 4 rügy/m² terhelés)</td>
<td>(korábbi 11 rügy/m² terhelés)</td>
</tr>
<tr>
<td>Kolonizáció (K %)</td>
<td>83,3+</td>
<td>92,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81,1 n.s.</td>
</tr>
<tr>
<td>Arbuszkuláris kolonizáció (A %)</td>
<td>60***</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43 n.s.</td>
</tr>
<tr>
<td>Arbuszkulumszám (A db.)</td>
<td>145+</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78 n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

Utolsó mintavételünk alkalmával, 2012 őszén a korábbi kis terhelésnél 81,1 %, míg a korábban nagy terhelésnél 76,7 %-os kolonizációs (K %) értékeket tapasztaltam. Az arbuszkuláris kolonizációt (A %) tekintve a nagyobb terhelésnél 40 %-ot, míg a kisebb terhelésnél 43 %-ot mértem. Az arbuszkulumok számára vonatkoztatva továbbra is magasabb értéket mértem a korábbi nagy terhelésnél (104 db.), mint a kis terhelésnél (78 db.), egyik paraméter kapcsán sem tapasztaltam már azonban szignifikáns különbségeket.

Eredményeim szerint Kékfrankos fajtánál, a tőkék terhelésének fokozása a mikorrhiza-kapcsolat intenzitásának a csökkenéséhez vezetett. Alanyakísérletekben egyaránt azt tapasztalták, hogy nagy terméshozamot biztosító alanyfajták gyökereiben is rendszerint alacsonyabb mértékű, míg alacsonyabb terméshozamot indukáló alanyfajtáknál magasabb szintű arbuszkuláris kolonizáció figyelhető meg (Schreiner 2003). Mindezt azonban nagymértékű lelevelezés is előidézheti, mivel ekkor csökken a szénhidrát-termelés intenzitása, ezzel együtt az arbuszkulumok száma (Pinkerton et al. 2004). A kapcsolat idődynamikájának vizsgálata során az is igazolást nyert, hogy valóban az eltérő rügyterhelés okozhatja a tapasztalt különbségeket, mivel 2012 őszére a szignifikáns eltérések megszűntek a korábban különbözőképpen terhelt növények között.
5.3. Mikorrhiza vizsgálat eredményei a talajnedvesség-grádiens függvényében (Villangó Szőlőbirtok, Eger)

5.3.1. A mikorrhiza kolonizáció (K %), arbuszkuláris kolonizáció (A %), arbuszkulumszám (A db.) vizsgálat eredményei a kísérleti parcellákon

![Diagram showing the results of mycorrhiza colonization, arbuscular colonization, and arbuscular number](image)

<table>
<thead>
<tr>
<th>Sign.</th>
<th>I-II</th>
<th>I-III</th>
<th>I-II</th>
<th>I-III</th>
<th>I-II</th>
<th>I-III</th>
<th>I-II</th>
<th>I-III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>+</td>
<td>+</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

29. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei (Eger, 2011 tavasz)

A mikroszkópi vizsgálatok során megállapítottam, hogy 2011 tavaszán az arbuszkulumszám a területeken lévő talajokban a I. és a II. terület közötti eltérést mutatott, továbbá a I. és a III. terület között (29. ábra). Számunkra jelen esetben is talán a legfontosabb információt az arbuszkulumszám jelenti, mivel a gomba és a gazdanövény közti kapcsolat funkcióképességét leginkább a kolonizált gyökérszakaszokon fellelhető arbuszkulumszám jelenti, mely a növény és a gomba közti kölcsönös tápanyagcserét biztosítja. (Schreiner és Lindermann 2005, Sweet és Schreiner 2010). A mikorrhiza kolonizáció, és az arbuszkuláris kolonizáció esetén nem tapasztaltam statisztikailag kimutatható eltéréseket. Eredményeim összhangban állnak Schreiner és Lindermann (2005), Sweet és Schreiner (2010) megállapításaival, miszerint a szőlő száraz hegy- illetve domboldalakon, kevésbé termékeny talajokon nagyből mértékben
szorul a mikorrhiza-kapcsolatra, mint termékeny, jó vízellátottságú termőhelyeken, illetve, a vízzle telített talaj minden bizonytal rendkívül kedvezőtlen volt a gombák számára is.

![Diagram](image-url)

<table>
<thead>
<tr>
<th>Sign.</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
<th>I-II</th>
<th>I-III</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>*</td>
<td>*</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

30. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulumszám (A db.) vizsgálat eredményei (Eger, 2011 ősz)

A vizsgálatot 2011 őszén folytatva, szignifikáns különbségeket tapasztaltam a mikorrhiza-kolonizáció mértékében is (K %), mely jelenség a gombák számára kedvezőtlen környezetre utal (30. ábra). Az értékek a következőképpen alakultak: I. blokk, 53 %; II. blokk, 64 %; III. blokk: 73 %. Az I. blokkra statisztikailag igazolhatóan szerényebb kolonizáció jellemző. Az arbuszkuláris kolonizáció (A %) az I. blokknál 58 %, a II. blokknál 66 %, míg a III. blokknál 62 %, szignifikáns különbségeket nem tapasztaltam. Az arbuszkulumszám (A db.) eredményei azonban statisztikailag igazolható eltéréseket mutattak: az I. blokk tőkéinek hajszálgyökerein 91 db, a II. blokknál markánsan megugró, 158 db, míg a III. blokknál 140 db. arbuszkulumot jegyeztet fel.
arbuszkulum számot határoztam meg e parcellánál, mivel a szőlő nem szorult rá a mikorrhiza hálózat vízfelvételben játszott szerepére: ha a talaj víztartalma a szőlő gyökerei számára könnyen elérhetővé válik, csökkent az arbuszkulumok gyakorisága (Schreiner et al. 2007). Schreiner (2005) a szőlő öntözésével kapcsolatban tett megállapításainál hasonlóság fedezhető fel, mi szerint kisebb gyakorisággal találhatók a szőlő gyökereiben arbuszkulumok azokban a parcellákban, melyek gyakori, nagy adagú öntözésben részesülnek. A gazdanövény vízellátása nem kizárólag a talajt behálózó hifahálózat vízfelvétele és vízszállítása, továbbá a növényi anyagcsere kedvező befolyásolása révén javul. Az AM gombákat hatást gyakorolnak a talaj vízmegtartó-képességére, illetve a talajaggregátumok stabilizálására is. A talajaggregátumok stabilitását szolgálják a talajrészecskék összekapcsolódásában a gomba által termelt glomalin glikoprotein is (Wright és Upadhyaya 1998).

1. Signifikancia

<table>
<thead>
<tr>
<th></th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.s.</td>
<td>n.s.</td>
<td>+</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

32. ábra. Mikorrhiza-kolonizáció (K %), arbuszkuláris kolonizáció (A %) és arbuszkulum szám (A db.) vizsgálat eredményei (Eger, 2012 ősz)
A 2012-es év aszályos, csapadékban szegény évnek volt mondható, aminek köszönhetően megszűnt a belvíz az adott területrészen. Mérésem alapján, 2012 őszén az arbuszkulumok számában már nem tapasztaltam szignifikáns eltéréseket, sőt, az arbuszkuláris kolonizációt tekintve tendencia szintű (a középső blokhoz képest), illetve szignifikáns (a felső blokhoz képest) különbségeket tapasztaltam, az első vizsgálati blokk javára (32. ábra).

Véleményem szerint ez azért alakulhatott így, mivel egyrészt a talaj vízellátottságának csökkenése indukáló tényező lehetett az arbuszkuláris kolonizáció fokozódására, továbbá, a levegőtlen, kedvezőtlen talajállapotok csökkentett tápanyagfelvételt eredményezhettek az elmúlt két évben, aminek kompenzálásában, a tőkék tápelem készletének helyreállításában is jelentős szerep juthat a gombapartner számára.

23. táblázat. A kezdeti és záró fénymikroszkópos vizsgálatok összehasonlítása (2011 tavasz - 2012 ősz)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Blokk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolonizáció (K %)</td>
<td>76</td>
<td>75</td>
<td>79</td>
<td>74</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>Arbuszkuláris kolonizáció (A %)</td>
<td>30</td>
<td>44</td>
<td>36</td>
<td>32</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>Arbuszkulum-szám (db.)</td>
<td>59</td>
<td>72</td>
<td>78</td>
<td>69</td>
<td>81</td>
<td>75</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

5.3.2. Termésmennyiség vizsgálat eredményei

24. táblázat. Termésmennyiség, fürt szám, és fürt átlagtömeg mérések eredményei (2011, Eger)

<table>
<thead>
<tr>
<th>Blokkok</th>
<th>Fürt átlagtömeg (g)</th>
<th>Fürt szám (fürt/tőke)</th>
<th>Termésmennyiség (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>106,4</td>
<td>11,4</td>
<td>0,63</td>
</tr>
<tr>
<td>II.</td>
<td>138,3</td>
<td>18,4</td>
<td>1,33</td>
</tr>
<tr>
<td>III.</td>
<td>148,3</td>
<td>15,6</td>
<td>1,21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign.</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
<th>I-II</th>
<th>I-III</th>
<th>II-III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>**</td>
<td>n.s.</td>
<td>***</td>
<td>**</td>
<td>n.s.</td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

Mikroszkópi méréseim összhangban állnak a szüreti eredményekkel. A fürtök számát tekintve, az I. blokkra 11,4 db, a II. blokkra 18,4 db, a III. blokkra 15,6 db átlagos fürtszám volt
jellemző (24. táblázat). Az I. blokk értéke szignifikánsan kisebb, mint a II. és a III. blokkoké. Az I. blokk átlagos fürttömege szignifikánsan alacsonyabb, mint a II. és III. blokkoké. A rügyek differenciálódása már az előző évben megtörténik (Bényei et al. 1999), így valószínűleg a rendkívül kedvezőtlen 2010-ik évi körülmények, a levegőtlen, hosszú időn keresztül vízzel telített talaj, kevesebb napsütéses órák száma kedvezőtlen hatással bírhatott a fürtkezdemények fejlődésére, ezáltal a következő évi termésmennyiség alakulására. A fürtszám vizsgálata esetén a 2011. évben szignifikáns különbséget tapasztaltunk: a vízzel leginkább ellátott területen mutatkozott a legalacsonyabb tőkénkénti fürtök. A fürtök átlagúlevélre szintén hasonló tendenciát mutatott. Az I. blokk tökéinek átlagos fürttömege 106,4 g, a II. blokké 138,3 g, a III. blokké 148,3 g. Az I. blokk 0,63 kg/m², a II. blokk 1,33 kg/m², a III. blokk 1,21 kg/m² termést hozott. Szignifikánsan alacsonyabbak az I. blokk mutatói. A szárazabb 2011-ik évjárat, illetve, a belvíz visszahúzódása pozitív hatással volt a rügyek differenciálódására. A 2012-es évben a fürtök számát tekintve, az I. blokk szignifikánsan magasabb értékeket eredményezett. I. blokk: 44 db, II. blokk: 32 db, III. blokk: 30 db fürt/tőke. A fürtátlagtömegek a következő módon alakultak: I. blokk: 75 g, II. blokk: 74 g, III. blokk: 82 g (25. táblázat). Bár ezen eredmények még mindig némileg alacsonyabb értéket mutattak az I. blokkban (a III. blokkhoz képest), de a különbség nem volt szignifikáns. A termésmennyiséget tekintve, közel azonos értékeket mértünk mindhárom blokk esetén. Az I blokk 2,34 kg/m², a II. blokk 2,25 kg/m², a III. blokk 2,44 kg/m² termést eredményezett. Az eredmények összhangban állnak a rügydifferenciálódással kapcsolatos gondolatmenettel, illetve, a fürtszám alakulása azonos tendenciát mutat az arbuszkulumszámok és az arbuszkuláris kolonizáció vonatkozásában tapasztalt változásokkal. A termés mennyiségében nem talapsztaltam szignifikáns különbségeket.

25. táblázat. Termésmennyiség, fürt szám, és fürt átlagtömeg mérések eredményei (2012, Eger)

<table>
<thead>
<tr>
<th>Blokkok</th>
<th>Fürt átlagtömeg (g)</th>
<th>Fürt szám (fürt/tőke)</th>
<th>Termésmennyiség (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>75</td>
<td>44</td>
<td>2,34</td>
</tr>
<tr>
<td>II.</td>
<td>74</td>
<td>32</td>
<td>2,25</td>
</tr>
<tr>
<td>III.</td>
<td>82</td>
<td>30</td>
<td>2,44</td>
</tr>
</tbody>
</table>

Sign. | I-II | I-III | II-III | I-II | I-III | II-III | I-II | I-III | II-III |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>+</td>
<td>*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

n.s = az átlagok között nincs különbség; + = p<0.1; * =p<0.05; **=p<0.01 ; ***=p<0.005

DOI: 10.14267/phd.2015044

~ 80 ~
E kísérleti helyszín esetén a sorközművelés mechanikailag és a természetes növényflórát történő kaszálással zajlott, így nem hagyható figyelmen kívül a mikorrhizaképző gombáknak a szabadon élő nitrogénfixáló mikroorganizmusokra gyakorolt kedvező hatása (*Azotobacter, Azospirillum*) (Sieverding 1991). Tevékenységük azért is fontos számunkra, mivel serkentik a szerves anyagok bomló folyamatát, s szerepet játszanak a lebomló takarónövény-maradványok szerves N-készletének a hasznosításában (Hodge et al. 2001).

5.3.3. Termésminőség vizsgálat eredményei

A mustminőség vizsgálata során, bár nem tapasztaltam szignifikáns különbségeket, a legszerényebb értékeket az I. blokk esetén mértem (26. táblázat), mely jelenség szintén a kedvezőtlen tőkekondíció és termesztési körülmények folyományaként léphetett fel.

<table>
<thead>
<tr>
<th>Vizsgált időszak</th>
<th>Titrálható savtartalom (g/l)</th>
<th>Brix°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.</td>
<td>II.</td>
</tr>
<tr>
<td>2011</td>
<td>7,33</td>
<td>8,4</td>
</tr>
<tr>
<td>2012</td>
<td>6,6</td>
<td>7,2</td>
</tr>
</tbody>
</table>

5.3.4. Vízpontenciál mérési eredmények az egyes parcellákon

A 2010-ik évben lehullott 1016 mm csapadék eredményeképp a terület legmélyebb pontján létrejött belvíz a 2012-es évben visszahúzódott, a területen kipusztultak a tőkék. A víz visszahúzódása ellenére, Scholander nyomáskamrával mért napközi vízpotenciál mérés során az I. blokk esetén 1,31 mPa, a II. blokk esetén 1,41 mPa, míg a III. vizsgált blokk esetén 1,54 mPa értékeket jegyeztem fel (33. ábra). Az egyes blokkok talajának víztartalmát illetően, szignifikáns különbségeket tapasztaltam. Mérésem alapján, 2012 nyarán az I. blokk volt vízzel legjobban ellátott.
33. ábra. Scholander nyomáskamrával végzett napközi vizpotenciál (ψ_m) értékeinek alakulása (Eger, 2012. 08. 19.)

5.3.5. A vizsgált parcellákról gyűjtött levélminták analízisének eredményei

27. táblázat. A levélanalízisek eredményei, 2011-2012 (Eger)

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>2,54</td>
<td>0,17</td>
<td>0,77</td>
<td>3,36</td>
<td>0,41</td>
<td>24</td>
<td>96</td>
<td>7,7</td>
</tr>
<tr>
<td>II.</td>
<td>2,87</td>
<td>0,19</td>
<td>0,77</td>
<td>3,5</td>
<td>0,42</td>
<td>29</td>
<td>77</td>
<td>13</td>
</tr>
<tr>
<td>III.</td>
<td>2,77</td>
<td>0,16</td>
<td>0,75</td>
<td>3,57</td>
<td>0,54</td>
<td>30</td>
<td>68</td>
<td>14</td>
</tr>
</tbody>
</table>

2011 ősz

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>1,99</td>
<td>0,27</td>
<td>0,59</td>
<td>3,82</td>
<td>0,54</td>
<td>22</td>
<td>63</td>
<td>28</td>
</tr>
<tr>
<td>II.</td>
<td>2,39</td>
<td>0,2</td>
<td>0,76</td>
<td>4,32</td>
<td>0,59</td>
<td>16</td>
<td>81</td>
<td>25</td>
</tr>
<tr>
<td>III.</td>
<td>2,22</td>
<td>0,21</td>
<td>0,79</td>
<td>4,36</td>
<td>0,71</td>
<td>23</td>
<td>98</td>
<td>41</td>
</tr>
</tbody>
</table>
2012 Tavasz

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>2.96</td>
<td>0.56</td>
<td>0.79</td>
<td>3.33</td>
<td>0.48</td>
<td>27.92</td>
<td>58.9</td>
<td>154.43</td>
</tr>
<tr>
<td>II.</td>
<td>2.74</td>
<td>0.2</td>
<td>0.6</td>
<td>3.46</td>
<td>0.54</td>
<td>22.75</td>
<td>48.96</td>
<td>171.89</td>
</tr>
<tr>
<td>III.</td>
<td>2.34</td>
<td>0.21</td>
<td>0.79</td>
<td>3.5</td>
<td>0.56</td>
<td>20.02</td>
<td>104.99</td>
<td>150.54</td>
</tr>
</tbody>
</table>

2012 Ősz

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Zn (mg/kg)</th>
<th>Mn (mg/kg)</th>
<th>Cu (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>1.85</td>
<td>0.16</td>
<td>0.31</td>
<td>4.24</td>
<td>0.59</td>
<td>21.15</td>
<td>45.08</td>
<td>105.29</td>
</tr>
<tr>
<td>II.</td>
<td>2.32</td>
<td>0.15</td>
<td>0.49</td>
<td>4.96</td>
<td>0.57</td>
<td>15.9</td>
<td>63.09</td>
<td>116.77</td>
</tr>
<tr>
<td>III.</td>
<td>1.56</td>
<td>0.13</td>
<td>0.35</td>
<td>5.15</td>
<td>0.96</td>
<td>11.96</td>
<td>154.61</td>
<td>71.73</td>
</tr>
</tbody>
</table>

6. KÖVETKEZTETÉSEK ÉS JAVASLATOK

- A lombtrágyázás mikorrhizáltságára gyakorolt hatása függ a talaj és a kijutattandó trágya tápelem-összetételétől, továbbá az alkalmazott rügyterheléstől és a zöldmunkák kivitelezésétől is.

- Nagy rügyterhelés és kezeletlen lombsátor a mikorrhiza-kapcsolat intenzitásának, azaz az arbuszkuláris kolonizációknak a csökkenéséhez vezethet, mivel bár megnövekszik a növény asszimiláló felülete, a nagyobb fürtszám és a fejlődő fő- és hőnaljhatások szénhidrátt-igényének kielégítése okán kevesebbet juthat a gombapartner számára.

- Kerülni kell a belvíz kialakulására hajlamos területeken a szőlő telepítését. Ha kialakult a belvíz, igyekozzunk minél hamarabb levezetni, mivel ilyen esetben az általános tőkekondíció-romlás mellett a szőlő tápanyagfelvételében és egészséges növekedésében fontos szerepet játszó mikorrhiza gombák kolonizációja is lecsökken.

- Kerüljük a tőkék túlterhelését, illetve a radikális rügyterhelés váltást, még idősebb ültetvények esetén is. A szakirodalom szerint, a hirtelen felmerülő jelentős rügyterhelés, illetve fürthozam növelés fokozott tápanyag-mobilizációt indíthat meg a fás részekből. A mikorrhiza kapcsolat leépülését okozhatja, ha a gombatárs nem részesül elegendő szénhidráttban. A megnövekedett rügyterhelés okozta nagyobb terméshozam beérlelése, a lombfelület, illetve a hőnaljhatások képződésének aránytalan mértékű fokozódása valósznál felé a szőlő által előállított asszimilátumokat, így a gombapartnernek nem jut elegendő mennyiségű tápanyag, s emiatt a kapcsolat intenzitásának a csökkenése várható. A csökkenő mikorrhiza-kolonizációval a stresszel szembeni ellenálló képesség visszaszorulása mellett romlik a víz- és tápanyagfelvétel hatékonysága, a kórokozókkal szembeni ellenálló képesség a középtávon rossz tőkekondíció, gyengébb beltartalmú termés, általánosan romló tőkekondíció lesz a végeredmény.
7. ÚJ TUDOMÁNYOS EREDMÉNYEK

1) Hazánkban ez volt az első termő szőlőültetvényekben folytatott mikorrhiza-kolonizáció vizsgálat, melynek során, két borvidéken (Egri, Kunsági), három szőlőfajtán (Viktória gyöngye, Kékfrankos, Pinot noir) a termőhely, valamint egyes agro- és fitotechnikai műveletek a kolonizációra gyakorolt kihatását vizsgáltam. Az általánosan elfogadott százalékos értékelés mellett, a vizsgálati pontokban darabra pontosan is számoltam az arbuszkulumokat. Ez a módszer – bár rendkívül időigényes – még pontosabb képet ad a mikorrhiza-capcsolat intenzitását, a gomba működőképességét leginkább jelző, arbuszkuláris kolonizációról.

2) Kimutattam, hogy nemcsak a talaj tápanyagszintjétől, hanem a szőlő rügyerheltségétől is erősen függ a mikorrhiza gombapartner működőképessége. Állandó, 3 rügy/m² terhelésnél a csonkázott lombsátrú tőkék mikorrhiza-kolonizációjára, azon belül is az arbuszkulumok számára negatív kihatással volt a háromszori, 1,5 l/ha dózisban kijuttatott, foszfor hangsúlyos lombtrágya. A tápanyagokban gyengébben ellátott homoktalajon, egyesfüggöny művelésű Viktória gyöngye fajtára ugyanakkor nagy rügyerheltségnél és talajszintig érő lombsátor ismerős, háromszori, 1,5 l/ha dózisban kijuttatott, nagy mennyiségű foszfort tartalmazó lombtrágyának pozitív hatása volt a mikorrhiza-kolonizáció mértékére.

3) Kimutattam, hogy a foszfor lombtrágyázás hatására tapasztalt mikorrhiza-kolonizációs eredmények összhangban állnak a termésmennyiség, a vesszőtömeg, és a nappali vízpotenciál alakulásával. Kis tápanyag ellátottságú homoktalajon, túlterhelt és nem csonkázott tőkéknél a kezelések hatására nem szignifikáns mértékű növekedést tapasztaltam a termésmennyiségre és a vesszőtömeg értékeire.

4) A rügyerhelés hatására bekövetkező változások humuszban és tápanyagokban viszonylag szegény homoktalajon már a metszést követően, a vegetációs periódus virágzás utáni fázisában jelentkeznek. A rügyerhelés növelése csökkenti a mikorrhiza-kolonizáció intenzitását, míg a terhelés csökkentése serkentőleg hat rá. Aránytalanul nagy lombsátor esetén a mikorrhiza-kolonizáció, de különösen az arbuszkuláris kolonizáció csökken.
5) A túlterhelt állomány rügyterhelésének csökkentése után 1,5 évvel még megfigyelhető a magasabb arbuszkuláris kolonizáció, de a kolonizációban megfigyelt különbségek folyamatosan kiegynlítődnek.

6) A belvíz okozta magasabb talaj-vízellátottság hatására jelentős mértékben csökken az arbuszkulumok gyakorisága. A belvíz visszahúzódása után négy hónappal a mikorrhiza kolonizáció markáns növekedése tapasztalható.
8. ÖSSZEFoglalás

A szőlő gyökere nem hálózza be intenzíven a talajt, s a gyökerén kialakuló endomikorrhiza-kapcsolat fokozott szerepet játszik a szőlönövény növekedésében, optimális víz- és tápanyagellátásában, kórokozókkal szembeni eredményesebb fellépésében. Mindezek okán több figyelmet kellene fordítanunk e mikroszkópikus méretű, a szőlőt segítő talajlakó élőlény felé, már csak amiatt is, mert kedvezőtlen, aszályos évjáratokban; fiatal ültetvények esetén; száraz termőhelyeken, homoktalajon (kedvezőtlenebb vízhalásztás, alacsonyabb tápanyagszint); új ültetvények létesítésekor, stb. fontos szerepet töltthetnek a minél kedvezőbb fiziológiai állapot elérésében/megtartásában. Az alkalmazott fitotechnikai műveletekkel befolyásoljuk a tőkék szénhidrátról forgalmát, mely kihat a vele együtt elő gombatársak tevékenységére. Ha a tápanyag-utánpótlás során olyan tápanyagokat juttatunk ki a szőlőbe, melynek fokozott felvételéért a gombapartner (is) felelős, akkor ez szintén a kapcsolat megváltozásához vezethet.

Munkám során két borvidéken és három szőlőfajtán vizsgáltam az eltérő termőhely, időjárási jelenség, egyes agro- és fitotechnikai műveletek hatását a szőlő mikorrhiza kolonizációjára. Minden esetben kezelésenként négy kísérleti blokkot jelöltünk ki/állítottunk be, blokkonként 25 tőkével (n=100 tőke/kezelés).

8.1. Terhelés és foszfor hangsúlyos lombtrágyázás hatása a mikorrhiza kolonizációra (BCE SZBI Szigetscépi Tangazdaság)

A mikorrhiza gombák egyik fő „érdeme” a foszfor felvételében játszott szerepük. Célul tűztük ki, hogy eltérő terhelést és zöldmunkát alkalmazva vizsgáljuk a háromszor, 1,5 l/ha dózisban kijuttatott, foszfor hangsúlyos (P₂O₅: 72, 7 % w/w, K₂O: 8,3 % w/w, KH₂PO₄: 81,0 % w/w összetételű) lombtrágya hatását a kolonizáció, különösképpen az arbuszkuláris kolonizáció vonatkozásában.

Alkalmazott kezelések:

- Kontroll: kis terhelés (3 rügy/m²), a talajszinttől 100 cm magasan csonkázott lombsátor (6. ábra)
- Kis terhelés (3 rügy/m²), nem csonkázott lombsátor (7. ábra)
Eredményeim alapján, a 3 rügy/m² terhelésnél a csonkázott lombsátorral rendelkező tökék mikorrhiza kolonizációjára, azon belül is az arbuszkulomok mértékére kedvezőtlenül hatott a lombtrágya. Az eredmények összhangban állnak a termésmennyiség, a vesszőtömeg, és a nappali vízpotenciál értékeinek alakulásával. Az aránytalanul nagy lombsátornál a kolonizáció, különösen az arbuszkuláris kolonizáció csökkent. A gombapartner-gazdanövény kapcsolat lényege, hogy a gombatárs tevékenységéért szénhidrátokban részesül. A megnövekedett vegetatív és generatív terhelés minden bizonytal jelentős mennyiségű tápanyagot elvonta, így a gombatárs kevesebb táplálékban részesült, mely a kolonizáció intenzitásának leépüléséhez vezethetett. Talajszintig érő lombsátort esetén a lombtrágya kijuttatásának pozitív hatása volt a kolonizáció mértékére. A kijuttatott tápanyag enyhítette a szőlő radikálisan megnövekedett tápanyagigényét, így kedvezőbb kondíciójú tőkéket eredményezett, mely során a szőlőnövény megfelelő mennyiségű (legalábbis több mint a lombtrágyázásban nem részesült, nem csonkázott állományok) szénhidrátot juttathattott a gombapartner számára, s így a mikorrhiza kapcsolat révén eredményesebb stressztűrés, víz-és tápanyagfelvétel valósulhatott meg.

Munkám során választ kaptam arra a kérdésre, hogy adott edafikus és klimatikus viszonyok között mely agro-és fitotechnikai kezelések mellett hatthat negatívan a mikorrhiza kolonizációra a háromszori, 1,5 l/ha dózisban kijuttatott, foszfor hangsúlyos lombtrágya kezelés.

8.2. Eltérő rügyterhelés hatása a szőlő mikorrhizáltságára (Gál Szőlőbirtok és Pincészet, Szigetcsép)

Munkám során egy 2009-ben beállított rügyterhelési kísérletet mintáztam (kis terhelés: 4 rügy/m²; nagy terhelés 11 rügy/m²). Két vegetációs időszakot követően, 1010-2011 telén a kísérleti szőlősorokat egységesen 8 rügy/m² terhelésű tőkéké alakították vissza, a termesztési gyakorlatnak megfelelően. A méréseket 2010 őszén kezdet, eltérő terhelések hatását vizsgálva,
majd 2011 tavaszán folytattam, az „uniformizált” metszésű ültetvényben, a megváltozott rügyterhelés hatását vizsgálva. Célom az volt, hogy a terhelés megváltoztatásának hatását egy év múlva is értékeljem, ezért 2012 tavaszán és összen újra megvizsgáltam a kolonizáció mértékét.

Eredményeim alapján kimutattattam, hogy a rügyterhelés megváltoztatása kihatással van a mikorrhiza kolonizációra, azon belül is leginkább az arbuszkuláris kolonizációra. A rügyterhelés révén bekövetkező változás humuszban és tápanyagokban viszonylag szegény homoktalajon már a metszést követően, a vegetációs periódus virágzás utáni fázisában megfigyelhető. A két évig fenntartott nagy rügyterhelés üzemű terhelésűvé történő visszaalakítása után 1,5 évvel még megfigyelhető az üzemétől eltérő, magasabb arbuszkuláris kolonizáció. A túlzott vegetatív és generatív igénybevétel a tőkék raktározott tápanyagainak megfogyatkozásához vezethet, ezek visszapótlásához az arbuszkulumok tápanyagátadó szerepe fontos.

8.3. Mikorrhiza vizsgálat a talajnedvesség-grádiens függvényében (Villangó Szőlőbirtok, Eger)

A vizsgált Pinot noir ültetvény legmélyebbi pontján, a telepítést megelőző évtizedekben nem műveltek szőlőt, mivel belvíz kialakulásának lehetősége fennáll a kb. 1000 m²-es területen. A területen 2010-ben jelentős mennyiségű (1016 mm) csapadék hullott, s a terület legmélyebb pontja 2011 nyaráig vízzel telített volt. A jelenség a korábbi években is megfigyelhető volt, azonban a közel 1000 mm csapadék, illetve a levegőtlen talaj hatására 2011-re ezen a részen kipusztultak a tőkék. Az első vizsgálati blokk e kipusztult területrész tőszomszédságában található, majd a terület legmagasabb pontja felé haladva, további két blokkot jelölt em ki. Így a kísérlet tervezése során, a három vizsgált magassági ponton jelöltem ki a vizsgálni kívánt blokkokat.

Célom az volt, hogy meghatározzam az eltérő szinteken elhelyezkedő blokkok tőkéinek mikorrhiza kolonizációját, illetve megvizsgáljam, van-e összefüggés az arbuszkuláris kolonizáció, a vízháztartás, és a termésmennyiség között. Szélsőségesen csapadékos évjárat által előidézett belvíz hatására jelentős mértékben csökkent az arbuszkulumok gyakorisága. A rá következő szárazabb évben a belvíz visszahúzódása után, a tavaszi mintavétel után négy hónappal a mikorrhiza kolonizáció markáns növekedését tapasztaltam, melynek oka a víz visszahúzódása, és a belvíz által indukált gyenge tőkekondíció lehetett. Kerülni kell a belvíz kialakulására hajlamos területeken a szőlő telepítését. Ha kialakult a belvíz, igyekezzünk minél hamarabb levezetni, mivel általános tőkekondíció-romlás mellett a szőlő tápanyagfelvételében és egészséges növekedésében fontos szerepet játszó mikorrhiza gombák kolonizációja is degradálódik.

DOI: 10.14267/phd.2015044
9. SUMMARY

Similar to a variety of other plants, mycorrhizal symbiosis, i.e. the mutualistic interaction between fungi and the root of vascular plants, also has significant importance for the grape. The fungal partner (mycobiont) supports the water and nutrient uptake of the host plant, while the mycobiont gets carbohydrates necessary for its metabolism from the plant. This symbiosis is essential for the optimal and healthy development of the host plants. Consequently, in case of nutrient deficiency and poor soil condition, mycorrhizal colonization is of considerable importance.

The nutrient uptake of mycorrhizal plants is influenced by the soil characteristics, the soil cultivation method and the nutrient supply. Defoliation of the grape leads to a decreasing production of carbohydrates which may lead to a decrease in mycorrhizal colonization. In drought tolerance, this mutualism has a remarkable effect on the nutrient uptake including also the phosphorus (P) uptake of the grape. An increasing P supply can lead to moderation of mycorrhizal colonization. In case of superabundant phosphorous supply, the carbohydrate demand of the mycorrhiza is not proportional to the benefits offered by the fungus. Therefore, the degree (importance?) of mycorrhizal colonization is lower (less important) here compared to phosphorous deficient soils. However, the small negative effect of the foliar P spray treatments on the mycorrhizal colonization will likely have little impact on the vine physiology and fruit quality. Previous experiments resulted that foliar P spray fertilisation in vineyards of Oregon resulted reduced level of mycorrhizal colonization. The climatic and edaphic conditions and the training system may also influence the interaction.

That is why the aim of our open field trials were to investigate the effect 1) of different bud load, 2) different bud load and canopy management combined with foliar P spray treatments 3) different soil moisture conditions caused by extreme weather conditions on the mycorrhiza colonisation level of the grape. The different treatments – and the control plants – were set up in every vineyard in four replications. Each replication-block contained 25 vines (n=100 vines/treatment).

9.1. Effects of bud load and phosphorus spray fertilisation on the degree of mycorrhizal colonization

The aim of our open field trial located in Szigetcsép was to study the effect of different bud load and canopy management combined with foliar P spray treatments on the mycorrhiza colonization of grape roots within a two-year-long period (2011 and 2012).
Treatments:

- Control: 9 bud/vine load (3 bud/m²), summer pruning
- Low bud load (3 bud/m²)
- Low bud load (3 bud/m²), summer pruning and P-spraying
- Low bud load (3 bud/m²), P-spraying
- Heavy load: 32 bud/vine (10, 7 bud/m²), summer pruning
- Heavy load: 32 bud/vine (10, 7 bud/m²)
- Heavy load: 32 bud/vine (10, 7 bud/m²), summer pruning and P-spraying
- Heavy load: 32 bud/vine (10, 7 bud/m²), P-spraying

Although the indices of the colonization are important for evaluating the mutualism, the effectiveness of endomycorrhizal interaction is not revealed by the mere degree of colonization, but it is indicated by the number of arbuscules in the colonized root fragments. The high bud load resulted in lower level of arbuscular colonization. The reason could be the increased demand for the carbohydrates due to the increased canopy and number of bunches, what resulted a decrease in the carbon amount available for the fungal partner. Similarly to the observations of Schreiner and Lindermann (2005), foliar P sprays resulted reduced level of the colonization in case of the control bud load. Our results show that in case of high bud loaded and non-trimmed stocks the foliar spraying had positive effect on the percentage of arbuscules. Most probably, the nutrient content of the sprayed fertilizer compensated for the high nutrient demand of the overloaded and non-trimmed vines. It could have affected beneficially the plants’ physiological parameters, like the intensity of carbohydrate synthesis. We found that the heavy loaded blocks had lower water potential values (ψ_m) than the control. These results are in accordance with the results of the colonization.

9.2. Investigation of the effect of different bud load on the mycorrhizal colonization of the grape

The experiment was carried out in the Gál Vineyard and Winery. The investigated variety was Kékfrankos, grafted on Teleki 5 C rootstocks. The samples were collected from vines with two several bud loads (low bud load: 4 bud/m²; high bud load: 11 bud/m²). After monitoring the mycorrhizal colonisation for two vegetation periods (in the autumn and winter of 2010-2011), the bud load was unified to 8 bud/m² in each row, according to the practice of the vineyard. With this field trial our aim was to study the effects of bud load and bud load uniformization on the mycorrhizal colonization.

In case of the 11bud/m² load, in 2010, the number of arbuscules was significantly lower than in case of the 4bud/m² load. When the stocks were loaded to a heavier extend, they used more...
assimilate to supply the bunches and to develop a larger canopy, so there were less carbohydrates available for the mycobiont. In the next season, the bud load of the grape was uniformly adjusted to 8 bud/m². Both the arbuscular colonization and the number of arbuscules was almost the double than of the other (previously 4 bud/m²) treatment. In the two vegetation periods, the overloaded stocks may have utilized the majority of their stored nutrients, which is important for the grape. Consequently, the reason for the elevated number of the arbuscules might be the fact that the modified bud load increased the need of a more intensely working endomycorrhizal interaction. Nevertheless, the difference between the endomycorrhizal colonization of the two treatments decreased, thus we can observe a tendency toward an equalized endomycorrhizal status as a result of unifying the bud load. One year later, we still found difference between the previously treatments. The formerly overloaded stocks still maintained higher level of the colonization, probably because of the intense nutrient need of the grape. The results showed that optimal loading is important to form a balanced plant-fungus symbiosis too. At the last sampling occasion (2012 autumn) we did not found significant difference between the colonisation values of the plants. Our results on Kékfrankos grape variety show that increased bud load leads to the decrease of mycorrhizal colonization. This is in accordance with previously published results, where others have also found that the rootstocks of higher yield had less intensely colonized roots in terms of the arbuscule number, while in case of the varieties of lower yields, higher arbuscule ratio/colonisation was observed.

In our study in a ten-year-old vineyard on sandy soil of the Kunság wine region, the mycorrhizal colonization of differently loaded grapes became balanced within two years after unifying their bud load.

9.3. Changes of mycorrhizal colonization along a moist gradient in a vineyard of Eger

Three sets of experimental blocks were delineated at three different elevations along the slope of the sample vineyard. The lowest part of the plantation had not been cultivated for the decades before vine establishment, because the roughly 1000 m² area was often covered with standing water. Due to the high level of precipitation in 2010, the low-lying area was covered with inland water until the end of 2012. However, the precipitation of 2010 (1016 mm) induced inland water till the end of 2012 disappeared, the standing water and high water table destroyed all the grape plants in this area. The lowest lying block (Block I) was adjacent to this area, so that to describe the significant differences regarding water potential of the plants between the three blocks. Samples were taken from the same plots in the spring and autumn. In addition to mycorrhizal colonization, yield and the stumquality were measured. The vine variety investigated was a Pinot Noir grafted on Teleki-Kober 125 AA rootstock, planted in 2001.
The results show that in the spring of 2011 there was significant difference between the number of arbuscules in the roots of the different blocks. During the investigation of the roots sampled in the autumn of 2011 and the spring of 2012 we still found significant difference between the mycorrhizal colonization of the roots from blocks I compared to those from II and roots form block I compared to those from III, and in the number of arbuscules we again found difference between the plants from blocks I compared to block II and between the roots having derived from block I compared to those from block III. The year of 2012 was a dry year in Eger and the inland water evaporated from the lowest part of the vineyard. In the autumn of 2012 we did not observed significant difference between the numbers of arbuscules within the roots deriveing from the three blocks, but in terms of arbuscular colonization we saw significant differences in favor for block I. Most likely, the decrease of the soil moisture content contributed to the increased arbuscular colonisation. Moreover, because of the previously unfavourable soil conditions, the nutrient uptake was limited in the first two years close to the inland water area, and the increased AM colonization enabled the uptake of the previously unavailable nutrients (due to the saturated state of the soil) to nutrients available to the vines.
10. IRODALOMJEGYZÉK

94. MEDIZINISCHES LABOR BREMEN (2013): Determination of Glyphosate residues in human urine samples from 18 European countries. Medical Laboratory Bremen, Haferwende 12, 28357 Bremen, Germany

103. NAGAHASHI, G., DOUDS JR., D. D., ABNEY, G. D. (1996): Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza. 6 (5) 403-
408. p.

154. TOBAR, R., AZCÓN, R., BAREA, J.M. (1994): Improved nitrogen uptake and

~ 106 ~

11. KÖSZÖNETNYILVÁNÍTÁS

Köszönetemet szeretném kifejezni Dr. Zanathy Gábor és Dr. Erős-Honti Zsolt témavezetőimnek pótolhatatlan segítségükért, valamint a Szőlészeti Tanszék munkatársainak, hogy segítségükkel hozzákárultak a munka elvégzéséhez. Köszönöm Dr. Ladányi Márta segítségét a statisztikai analízisekben.

Köszönöm a Szigetsépi Tangazdaság, a Gál Szőlőbírtoxd és Pincészet, valamint nem utolsó sorban a Villangó Szőlőbírtoxd vezetőinek/munkatársainak, hogy kísérleti helyszíneket biztosítottak számomra.

Köszönöm a családom türelmét és segítségét, hogy a kutatás és a diszertáció elkészülhetett.