

Ph.D. Thesis Summary

László Mohácsi

Business Computing and
Parallel Architectures

Supervisors:

Dr. József Abaffy, DSc
Dr. Erzsébet Kovács, CSc

Budapest, 2014

Doctoral School of
Business Informatics

Department of Computer Science

Ph.D. Thesis Summary

Mohácsi László

Business Computing and
Parallel Architectures

Supervisors:

Dr. József Abaffy, DSc
Dr. Erzsébet Kovács, CSc

© Mohácsi László

1

Contents

1. Background and overview of the research 3

2. Research method .. 7

3. Result of the research, contribution of the thesis 9

4. Summary .. 12

5. References .. 15

6. References of the author .. 19

3

1. Background and overview of the research

Over the last few years the rate of improvement in the operation execution
speed of processor cores has slowed down. (The outline of a promising
result in basic research that could bring rapid development cannot be seen
‒ apart from the graphene research which is currently very far from pro-
duction stage.) The breakthrough cannot be expected in the near future.
Therefore massive improvement in the execution speed of programs de-
signed for a single core CPU cannot be expected from the perfection of the
hardware manufacturing technology. Increase in execution speed at order
of magnitude can only be achieved using parallel architectures to carry out
calculations parallel in time. Software development and algorithm design
for parallel architectures require a different approach than traditional algo-
rithm design. To utilize parallel architectures tasks have to be split into
subtasks that can be carried out parallel in time by individual computing
units. Depending on how the results of subtasks are related to each other
the performance varies. Some algorithms can be adopted for parallel exe-
cution with minor modification, but in many cases major modification or a
completely new approach is necessary.

Market pressure encourages hardware manufacturers to design architec-
tures with more computing units on a single chip, but at the same time the
speed of the individual computing units increases slowly over time.

Carrying out calculations in parallel is not a new idea. Working on the
Manhattan Project Richard Feynman organized calculations in a way that
makes them suitable for parallel executions back in 1944. The problem
was the calculation of energy release patterns of various ignition bomb
layouts using an IBM program-controlled calculator. Gene Amdahl in
1960 recognized that despite the increased number of active parallel data

4

processing units the execution speed is limited by parts of the program
where results are based on each other.

Since the 1960-s there is a continuing effort to build and utilize computers
with several or a great number of processors. These attempts culminate
from time to time in well-established and widely used computers or ideas,
sometimes they simply fade away. A recent idea is to use the graphics card
in the computers to execute numerical computations, since they have a
large number of processing units. Flynn's taxonomy classifying the basic
parallel approaches uses the expression of the Single Instruction Single
Data (SISD) for describing the usual one-processor computer. The main
computing unit of a graphics card, which contains hundreds of processors
for image rendering, is called GPU. When used for parallel computation
the GPU can be called Single Instruction Multiple Data (SIMD) computer,
since these hundreds of processors execute the same instruction on differ-
ent data sets. CPUs with multiple cores fall into the Multiple Instruction
Multiple Data (MIMD) category since cores can carry out calculations
independently of each other on different sets of data. (The remaining class
of this taxonomy is MISD.)

The different architectures and their hardware implementation are not
equally suitable for each problem. In many cases the algorithm has to be
adopted to the underlying hardware architecture.

The thesis gives the parallel adaptation of three algorithms of relevance in
economic calculations. It mainly focuses on general purpose multi-core
CPU and GPU architectures since they are widely available for research-
ers.

The first chapter of the thesis describes and compares different general
purpose parallel architectures. It gives an overview on the strengths and
weeknesseses of different architectures and gives and explains the

5

differences through computational problems. The extract of this chapter
was published in GIKOF Journal issued by the John von Neumann
Computer Society in 2013.

The second chapter introduces an implementation of the ABS algorithm
for solving systems of linear equations on a massively parallel GPU archi-
tecture. The topic is actual since the excellent stability properties of the
ABS algorithm were proved in 2013. One of the leading GPU manufactur-
er is the NVidia Corporation, their architecture is called CUDA. Features
of the CUDA architecture are explained in depth through the ABS algo-
rithm in this chapter.

Based on the third chapter our article “A parallel implementation of an
O*(n4) volume algorithm” that was published in the Central European
Journal of Operations Research in 2014. My co-author was István Deák.
The thesis includes a more detailed version of published materials with
deeper explanations and execution results that couldn’t fit into the article
due to volume limitations. By the parallel implementations deeper under-
standing of the algorithm’s behavior was made possible even in higher
dimensions.

Our results were first introduced at the 30th Conference on Operations Re-
search organized by the Hungarian Operations Research Society in 2014.

I have chosen the demographic forecasts and the estimation of future pen-
sion as the topic of the fourth chapter. Two approaches are described: the
cohort-component method and the microsimulation method. The chapter
focuses on the microsimulation method since in case of estimating the
future pension the macro approach is not suitable. Apart from the number
and age of the pensioners their marital status, education and income also
carry significant information. A custom microsimulation framework utiliz-
ing parallel programing technologies is also introduced. To illustrate the

6

capabilities of the microsimulation framework I have implemented a birth
and death forecast in detail. The large number of records to process and the
similar steps to be carried out on each record many times make the mi-
crosimulation method perfectly suitable for parallel execution.

7

2. Research method

Statements and explanations of the first chapter are based on many years
of practical experience as an electric engineer and a software developer.

I have used the Visual Studio development environment with the CUDA-C
and the built-in C# compiler to build software in the thesis.

The classical waterfall software development methodology was applied
during the implementation of the ABS method. In the first stage the basic
matrix and vector operations were implemented optimized for the data
transfer between different memory locations. The implemented functions
have been validated by unit tests. The module test validating the imple-
mented algorithm as a whole used random generated systems of equations
with known solutions.

The development of the volume calculation algorithm followed the spiral
methodology. Newer and newer iterations were necessary to optimize
runtime and to filter out defects as a result of double precision variable
rounding errors in increasingly higher dimensions.

Debugging Monte Carlo simulations based on random numbers in a paral-
lel environment can be challenging, since there can be thousands of paral-
lel threads in nondeterministic state. Debugging tools can spot the error but
they can’t trace back the previous states of the thread. So it can be difficult
to figure out how the thread got into an undesired state. For the testing of
the correctness of the algorithm various visualization tools have also been
implanted to plot the spread of different variables in time and space. A
separate application have been developed to carry out many calculations
for the same problem in a row and to plot the spread of the results.

8

The volume algorithm uses a Mersenne-Twister random number generator
implementation by NVidia. It’s important to point out that a vast amount
of computing power is used by the random generator functions. The open
source AlgLib library was ported to CUDA-C to calculate functions like
chi-square or inverse chi.

The variance reduction methods introduced in the third chapter are based
on orthogonal vector systems. In the first version the Gram–Schmidt
method was applied for orthogonalization that was replaced by the House-
holder method for stability reasons.

The development of the Microsimulation Framework in the fourth chapter
followed the spiral methodology in .NET environment using the C# lan-
guage. The random number generator of the .NET framework is based on
Knuth’s subtractive algorithm and is not thread safe. To solve this prob-
lem, several approaches are compared in terms of execution time – imple-
menting classic locks seemed to be optimal. As in the case of the volume
algorithm the majority of the computing power is used by the random gen-
erator. For querying the datasets of the entire population at the end of the
simulation the task-parallel LINQ query technology is used.

9

3. Result of the research, contribution of the thesis

Theses related to the ABS algorithm:

T1. The observed stability of the modified Huang version of the ABS

algorithm confirms the statement of Attila Gáti’s thesis on the stabil-
ity of the algorithm.

T2. The modified Huang class of the ABS algorithm is stable and the

generated pi vectors are orthogonal in case of being launched using
H1=I matrix. Due to its low memory consumption, the algorithm suits
the GPU architecture well.

T3. Parlett and Kahan have proved that their “twice is enough” technique

developed for the classical Gram-Schmidt method increases the preci-
sion of the solution of the linear equation dramatically. This technique
can also be applied to the modified Huang method that creates or-
thogonal vectors as well. The applied reprojection with the ABS ma-
trix serves the same purpose. We have confirmed that the technique
works for large (8000) dimensions and dense coefficient matrices as
well. The results are underlined by tests.

In case of a dense coefficient matrix linear equation of 4000 variables the
execution time was around 100 seconds using a GeForce GTX 570 graphic
card.

10

Thesis related to the Lovász-Vempala volume algorithm:

T4. The LVD algorithm uses one point thread only. To achieve (quasi)
independence it doesn’t use all of the consecutive points for vol-
ume calculations. After each integral a few points are left out of
the integration. These points are only used to step the point thread
further. In the PLVDM implementation no points are left out, be-
cause the number of points used was so great that even if we had
left out some points, sooner or later we would have got a point at
(or very near to) the dropped points. The computer experimenta-
tion supported this claim. This way the PLVDM implementation
of the algorithm can achieve increment in performance besides the
number of the processing units. The methods introduced for vari-
ance reduction didn’t meet out expectations.

Besides the volume algorithm I have developed utilities to visualize the
spread of points in time and space. The visualization plays an important
role in bug tracking and the deeper understanding of certain properties and
behavior of the algorithm. Due to the rounding error of the applied double
precision numbers the implementation described in the thesis is limited to
20 dimensions. More precise variables could break this limit, but it cannot
be achieved effectively using GPUs. The implementation makes the vol-
ume calculation possible up to 20 dimension on a PC equipped with a
CUDA capable GPU. The parallel implementation introduced in the thesis
made experimentation possible in higher dimensions for the first time. It
helps understanding the properties of the algorithm.

11

Theses related to the microsimulation framework:

T5. The long execution time of ordinary microsimulation service systems

is hard to tolerate for the users ‒ the well-known algorithms had to be
speeded up. Using parallel programming techniques the execution
time was cut down to an acceptable level.

T6. The goal is to make a microsimulation framework be suitable for var-

ious simulations. The introduced Microsimulation Framework can be
parameterized both in terms of the structure of the dataset to be pro-
cessed and the micromodule design and execution order.

Using our Microsimulation Framework 50 year forecasts were made using
the research dataset provided by Hungarian Central Statistical Office. The
execution time was cut down to 2 minutes using an ordinary PC by parallel
programing techniques. To demonstrate the capabilities of the Microsimu-
lation Framework demographic forecasts were made with the probabilities
of death and birth taken into account. Using the query module of the
framework demographic trees and tables were created to check the cor-
rectness of the application.

The capabilities of Microsimulation Framework are demonstrated by de-
mographic forecasts as an example. Demographic forecasts play an im-
portant role in future pension calculations to give an estimation on the
number of tax payers and future pensioners. The Microsimulation Frame-
work is capable of calculating other factors as well. It’s customizable and
can be used for the development, maintenance and testing of various simu-
lation models.

12

4. Summary

Many decision supporting calculations in the economic life require mas-
sive computing workload. Monte Carlo simulations based on random
numbers or modelling the dependence between random variables are good
examples of computation intensive tasks, where precision and reliability of
the result may depend on the invested computing work. In these cases the
amount of time available is the limiting factor.

Since the speed of individual computing units are close to the physical
limits progress at an order of magnitude can only be achieved by utilizing
more computing units at the same time. By now processors in almost every
desktop PC and mobile phone are capable of parallel program execution. A
challenging task for professionals of various disciplines is to find and im-
plement algorithms that can take advantage of this possibility.

The first step is choosing the architecture that suits the problem the best. In
many cases a custom hardware design would yield the best results, but due
to financial and time-to-market reasons custom hardware solutions are
rare. (FPGAs can be applied as hybrid solution to build custom logical
networks programmatically to accelerate calculations, but the work with
FPGAs needs more like an electric engineer’s approach besides significant
time and effort.) The thesis focuses on General Purpose GPUs and multi-
core CPUs since they are widely available to the researchers. The various
architectures provide a good performance in different types of tasks.

The experience gained by the study also confirmed that creating and im-
plementing algorithms for a parallel architecture is not only professional
software development work, but also mathematical and engineering task
requiring serious planning, that needs a lot of intuitive ideas as well. There

13

is no straightforward methodology to transform single threaded algorithms
to parallel architectures.

In many cases business calculations depend on the solution of linear equa-
tions with a large number of variables. Solving a large linear equation re-
quire significant computing power. The error propagation and the instabil-
ity has to be taken into account as well. Operations like matrix multiplica-
tion move a lot of data in the memory but the basic arithmetic operations
carried out on the data are relative simple. Therefore a GPU with a wide
data bus is suitable for the problem. The modified Huang version of the
ABS linear equation solver algorithm suits the CUDA architecture well
due to its data movement pattern and low memory consumption. The exe-
cution time needed to solve an equation of 4096 variables was pushed to
approximately 100 seconds on a GeForce GTX 570 GPU. The superior
stability properties of the algorithm were also confirmed.

It’s very hard to give a precise estimate on the performance of a specified
hardware for a given problem. This is especially true for the CUDA archi-
tecture, where groups of arithmetic units share a common control unit.
Therefore even one thread entering a conditional branch blocks the execu-
tion of all the threads of the control unit. As the development progresses
the number of conditional braches in the program can increase. This can
lead to the slow erosion of the promising advantage of the GPU measured
during the test project. In case of the Lovász-Vempala volume algorithm
we had to go back time to time to revise the code for better performance.
In some cases the original algorithm had to be modified. In higher dimen-
sions double-precision rounding errors made workarounds necessary.

The Microsimulation Framework is designed for a multicore CPU.
Threads running on different cores use locks to control access to common
variables.

14

The microsimulation methodology follows each entity individually along
the simulation steps. In our demographic simulations as an example the
changes in the population are simulated individually person by person in
one year simulation steps using simple algorithms. The algorithms make
decisions on birth, death, marriage, divorce etc. using parameter tables
with the corresponding probabilities. The decision making algorithms of
the simulation step are relatively simple while the Simulation Framework
handling data of the entire population and running simulation steps is ra-
ther complicated. The system is built up in a kind of “program in a pro-
gram” manner. The complicated simulation framework runs the less-
complicated simulation steps that can be easily modified by non-IT profes-
sionals as well. The framework is built on parallel programing technolo-
gies to make the execution time acceptable for the users.

There are profiling tools available to measure the utilization of different
parts of the CPU or GPU. This way bottlenecks can be identified and the
algorithm or program source code can be modified accordingly.

In order to design efficient algorithms for parallel architectures we must
have a deep understanding of the underlying architecture. Similarly, archi-
tectural insight is generally necessary for the implementation.

15

5. References

Abaffy, J. (1979): A lineáris egyenletrendszerek általános megoldásának
egy direkt módszerosztálya. Alkalmazott Matematikai Lapok, 5, 223-240

Abaffy, J./Spedicato, E./Broyden, C.G (1984): A Class of Direct Methods
for Linear Equations. Numerische Mathematik, 45, 361-376

Abaffy, J./Spedicato, E. (1989): ABS projection algorithms: mathematical
techniques for linear and nonlinear equations.

Csicsman, J. (1987): A mikroszimulációs rendszer számítástechnikai
hátterének kialakítása., (KSH) A Háztartási Mikroszimulációs Rendszer
munkálatai, Ts-3/8/8 tanulmánysorozat, 1. kötet

Csicsman, J. (2001): A BME PIKK Mikroszimulációs projektjének cé-
lkitűzései és meggondolásai., (V. Pénzinformatikai Konferencia, Budapesti
Műszaki és Gazdaságtudományi Egyetem, 2001. Október 15-16.)

Csicsman, J./Fényes, C. (2003): A Mikroszimulációs Szolgáltató Rendszer
fejlesztése. Alma Mater sorozat - Üzlet, folyamat, monitoring 91

Csicsman, J./László, A. (2012): Microsimulation Service System. Hungar-
ian Electronic Journal of Sciences

Deák, I. (1979): Comparison of methods for generating uniformly distrib-
uted random points in and on a hyperspere. Problems of Control and In-
formation Theory, No. 8, 105-113

16

Deák, I. (1990): Random number generators and simulation, in: Mathemat-
ical Methods of Operations Research (series editor A. Prékopa). Budapest:
Akadémiai Kiadó

Deák, I. (2002): Probabilities of simple n-dimensional sets in case of nor-
mal distribution. IIE Transactions (Operations Engineering), No. 34, 1-18

Deák, I. (2011): E-ciency of Monte Carlo computations in very high di-
mensional spaces. Central European Journal of Operations Research, 19,
177-189

Dyer, M./Frieze, M./Kannan, R. (1991): A random polynomial-time algo-
rithm for approximating the volume of convex bodies. Journal of the As-
sociation for Computing Machinery, 38, 1-017

Gáti, A. (2013): Automatic roundoff error analysis of numerical algo-
rithms. Ph.D thesis, Apllied Informatics Doctoral School, Óbuda Universi-
ty

Goetz, B./Peierls, T. (2006): Java Concurrency in Practice. Addison-
Wesley 92

Hablicsek, L. (2007): Társadalmi-demográfiai előreszámítások a nyug-
díjrendszer átalakításának modellezéséhez., Jelentés a Nyugdíj és Időskor
Kerekasztal számára

Methuen Haque, Imran S/Pande, Vijay S (2010): Hard data on soft errors:
A large-scale assessment of real-world error rates in gpgpu. In Cluster,
Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on Cluster, Cloud, and Grid Computing. IEEE, 691-696

17

Kannan, R./Lovász L./Simonovits, M. (1997): Random walks and an
O*(n5) volume algorithm for convex bodies. Random Structures and Al-
gorithms, 11, 1-50

Kiss, T./Csata, I. (2007): A magyar népesség előreszámításának le-
hetőségei Erdélyben. Demográfia No. 7

Klevmarken, N. A./Olovsson, P. (1996): Direct and behavioral effects of
income tax changes: simulations with the Swedish model MICROHUS.
Amsterdam: Elsevier Science Publishers

Kovács, E. (2010): A nyugdíjreform demográfiai korlátai. Hitelintézeti
Szemle, 2, 128-149

Lovász, L./Deák, I. (2012): Computational results of an O*(n4) volume
algorithm. European Journal of Operational Research, 216, 152-161

Lovász, L./Simonovits, M. (1992): On the randomized complexity of vol-
ume and diameter. In 33rd IEEE Annual Symp. on Foundations of Comp.
Sci., 482-491

Lovász, L./Simonovits, M. (1993): Random walks in a convex body and an
improved volume algorithm. Random Structures and Algorithms, No. 4,
359-412

Lovász, L./Vempala, S. (2003): Simulated annealing in convex bodies and
an O*(n4) volume algorithm. In Proc. of FOCS., 650-659 93

Lovász, L./Vempala, S. (2006): Simulated annealing in convex bodies and
an O*(n4) volume algorithm. J. of Computer and System Sciences, 72,
392-417

18

O'Donoghue, Cathal (2001): Dynamic Microsimulation: A Methodological
Survey. Brazilian Electronic Journal of Economics 4 No. 2

Parlett, B.N. (1980): The symmetric Eigenvalue Problem, Englewood
Cliffs, N. J. Prentice-Hall

Romeijn, E./Smith, R.L. (1994): Simulated annealing for constrained glob-
al optimization. J. of Global Optimization, 5, 101-126

Sanders, J./Kandort, E. (2010): CUDA by example: an introduction to
generalpurpose GPU programming. Addison-Wesley Professional , 312
pages

Simonovits, M. (2003): How to compute the volume in high dimensions.
Math. Programming Ser. B. 97, 337-374

Smith, R.L. (1996): The hit and run sampler: a globally reaching Markov
chain sampler for generating arbitrary multivariate distribution. In Proc.
28th Conference on Winter Simulation., 260-264 94

Zafír, M. (1987): A háztartási mikroszimuláció. Koncepció, rend-
szerleírás., (KSH) A Háztartási Mikroszimulációs Rendszer munkálatai,
Ts-3/8/8 tanulmánysorozat, 1. kötet

19

6. References of the author

Csetényi, A./ Mohácsi, L./ Várallyai, L. (2007): Szoftverfejlesztés.
HEFOP, Debrecen, ISBN : 978-963-9732-56-8 p. 157

Mohácsi, L./ Forgács, A. (2014): Gazdasági számítások párhuzamos archi-
tektúrákon. GIKOF Journal, HU ISSN 1588-9130, pp. 6-14.

Mohácsi, L./Rétallér, O. (2013): A mechanical approach of multivariate
density function approximation. Proceedings of the International Confer-
ence on Modeling and Applied Simulation, ISBN 978-88-97999-17-1, pp.
179-184.

Mohácsi, L. / Deák, I. (2014): A parallel implementation of an O*(n4)
volume algorithm. Central European Journal of Operations Research, DOI
:10.1007/s10100-014-0354-7.

