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I. INTRODUCTION 
 

While managing the risk associated with the various financial instruments is a daily 

routine in the financial sector, the need for professional risk management is still 

something new for the power plants active in the electricity market. Hungarian power 

stations primarily deal with technical risks (failures, malfunctions, catastrophes), financial 

risk management is in its very early stages (Western European power plants are ahead of 

us in this regard). The situation seems particularly problematic considering that the 

electric energy industry is, in a certain respect, characterized by a higher level of risk than 

banking: the price of electricity is extremely volatile, and very difficult to model (the 

different time-of-use periods – that is, the electric energy delivered during those periods – 

may be considered different products) and moreover, the electricity market has a rather 

high total turnover and is very concentrated (the number of market actors being small, 

they can more easily influence the prices). 

Recently, the development and the spreading of energy market risk management 

techniques has been facilitated by a number of factors. One is the liberalization of 

electricity markets (one of the most significant consequences of which was the 

appearance of the spot price) resulting in the previously prevailing system of long-term 

production contracts and fixed-schedule production becoming gradually replaced by 

market (profitability) dependent operation. Another important factor is the start-up of the 

EU ETS (EU emissions trading system), whereby the new risk factor represented by the 

emission units further complicates our risk models. 

In the present phase of the emissions trading system, the total volume of allowances that 

the authorities allocate to European corporations free of charge adds up to approximately 

2 billion tonnes1, distributed among some ten thousand participating businesses. As a 

consequence, some actors might possess large amounts of “unbound” allowances after the 

allocation. It was the need to manage these enormous free-of-charge assets that first made 

the individual companies face the question how many allowances they will actually need, 

and how many they should sell or buy, and when they should do so. While the 

                                                
1 Assuming an allowance price of 7 EUR/tonne, this means a 14 billion euro market. 
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(economically sound) storage of the electricity generated is hardly possible and that of the 

fuel (gas) necessitates large-scale investments, a specialty of emission units is that they 

are not directly required for the production itself (only when surrendering them 

afterwards) and that they can be stored at practically no cost. Consequently, during the 

year, power plants are free to adjust their allowance positions as they wish, which gives 

space to various hedging and speculative transactions. 

Experience from the first years of the EU ETS also called attention to the importance of 

the total volume of allowances: in spring 2006, market actors witnessed a two-thirds drop 

in the price of quotas within 8 days (24 Apil 2006: 29.43 EUR/ton, 2 May 2006: 10.9 

EUR/ton). The reason behind the sudden price dip was the publication of the actual 

emissions data, in the light of which market actors felt it more and more likely that too 

many allowances had been allocated in total. That price drop meant a huge loss for any 

actor with a surplus of quotas, while a substantial profit for the ones in a lack of 

allowances. Following the allocation – and still before the price drop – many actors 

decided to sit out, that is, not make any transactions in the market. This sitting-out, this 

lack of exchange transactions was nothing else but speculation: actors with a quota 

surplus (i.e. in a long position) bet on an increase in the allowance price, while those in a 

shortage of quotas (i.e. in a short position) put their bet on a price drop. 

This unintended sort of speculation, caused by the lack of quota position management, 

was not limited to market actors only: though only a few are aware of this fact, but the 

Hungarian state itself was one of these actors. In its national allocation plan, Hungary 

made use of its right not to distribute a portion of the allowances free of charge, but 

through auctions open to participating companies. Setting the amount to be sold at these 

auctions meant that afterwards, the government held an open (i.e. exposed to price risk) 

position of a substantial value. If the Hungarian government does not enter appropriate 

hedging arrangements after the decision has been made, that means they – unintentionally 

– bet on a rise in the price: in possession of an amount of salable allowances, they hold an 

open (long) position, that is, they bet that with time, the present value of their position 

comprised of auctionable quotas will exceed the price that prevails at the time the 

decision about the auctions is made. This state of unintentional speculation lasts until they 

either open a hedge position or close their open position by completing the auction. 

During the very first ten months of operation of the allowance market (right until the 

price drop), the price remained above 20 euro. The first auction in Hungary was held on 
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11 December 2006; the Hungarian government sold allowances equivalent to 1.2 million 

tonnes at a price of 7.42 euro per tonne (Kaderják, 2007), generating an income of about 

8.88 million euro (about HUF 2.3 billion at the then current exchange rate). The second 

auction took place on 26 March 2007, with a total sales volume of 1.18 tonnes at a 0.88 

euro per tonne price generating about 1.04 million euro in revenue (approx. HUF 256 

million). Thus the total revenue from the auctions amounted to about 9.92 million euro 

(HUF 2.5 billion). Following the decision on the auctions, it would have been reasonable 

for the state to open a hedge position to cover their future allowance sales, which would 

have prevented most of the “loss” they made because of the price drop. Assuming a 

sufficiently liquid market with a 20 euro per tonne strike price and the absence of hedging 

transaction costs, the state’s revenue could have reached nearly 48 million euro or HUF 

12 billion  (which is approx. 38 million euro or 10 billion HUF more than what was 

actually realized). 

Though the speculative aspect and the order of magnitude of the loss were (and probably 

still are) not really clear to the actors and the public, it was a general perception that the 

postponement of the auction and the drop in the quota price must have caused a loss of 

profit for the state. The ministry responsible for environmental protection put the blame 

on the Ministry of Finance for delaying the auction. Noteworthy is, however, that there 

was not one single critical remark about the state’s open – i.e. risk-exposed – position 

being unhedged and the inherent, though unintended, speculation it implied. Obviously, 

the emissions trading system was a novelty not only for market actors, but for the 

authorities, as well, which is why it is not fully justified to emphasize the deficiencies of 

their proceedings. The case nevertheless calls attention to the fact that not even regulators 

had a full understanding of the relevant risk management issues, and the nature of 

allowance (and energy) market risk and how it might be kept under control. 

It must be underlined that the hedging of an open (risk-exposed) position does not warrant 

a profit, but reduces the volatility of future revenues (cash flow). Had their position been 

hedged, the state would have suffered a far smaller loss caused by the price decrease. The 

profit to be made on the hedging transactions would have compensated for the damages 

caused by the price dip. Of course, there are always two sides to a coin: the hedging 

arrangement does not only reduce a potential loss casused by price change, but also 

“eliminates” the profit that could be made on a price change. Had the position been 

hedged, a hypothetical increase in the market price would have resulted in the loss from 
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the hedge diminishing the profit from the delay and the price increase. In which case, an 

unhedged position would have yielded a significant additional revenue for the state (i.e. 

the state would have made the right bet). (In this theoretical scenario, it might have been 

the Ministry of Finance that would blame the environmental department for urging the 

auction.) 

The dissertation aims at employing a combined approach, comprising environmental 

economics, corporate economics, real options, simulation and stochastic finance 

elements, to the European Union Emissions Trading System (EU ETS) participant electric 

power generator company, and at providing power plants with practicable risk 

management techniques. 

 

I.1. Structure of the Dissertation 

 

The rest of the first chapter deals with the major environmental economics theories 

related to the emissions trading scheme, the path that, through a series of international 

conferences, led to the introduction of the EU ETS, and the basic features of the actual 

scheme. 

In the second chapter, I will develop a real option decision model for a EU ETS 

participant (i.e. obliged to comply) power generator company. I will show that a rational, 

profit maximizing business operates conditionally: they only generate power if the spread 

(gross margin) per unit of production is positive. Technological constraints (e.g. 

minimum up and down times) were not considered in the model. 

As we will see, the company’s emissions can be deduced from the real option model: the 

output of a future period can be interpreted as the payoff function of a three-asset digital 

spread option. While the realized gross margin of a future production day can be 

interpreted as the payoff function of a three-asset (electric energy, gas and emission 

allowances) spread option. The value of the power plant’s revenue generating capacity is 

equal to the sum of the values of all the spread options for the given future interval. 

I extended the three-asset model (incorporating electric energy, gas and emission 

allowances) to a four-asset model by accounting for the price of electricity in a dual way: 
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for peak and off-peak periods separately. The advantage of the four-asset model is that it 

can better approximate the phenomenon that gas power stations, which have higher 

production costs but are more flexible to operate, are typically kept idle during off-peak 

hours (characterized by lower electricity prices), but do generate power in peak periods 

(with higher electricity prices). 

The third chapter presents the technical background of the calculations. First, I will 

introduce the mean-reverting stochastic model for the prices of the four underlying 

commodities, which I fitted to price data from the German power exchange. 

Subsequently, I will provide an overview of major spread option pricing methods, along 

with a detailed account of the analytical approach and Monte Carlo simulation employed  

in the dissertation. 

The fourth chapter demonstrates the first application of the real option model, used to 

predict the company’s carbon dioxide emissions. The expected volume of emissions is of 

particular importance to both energy market actors and the regulator (just think of the 

price dip in spring 2006). Beyond the expected value of emissions, its distribution, its 

probability density function will also be given, which shows the probability of each 

emission level. Relying on these results, the value of the carbon credits the power plant 

has to buy for the year in question – that is, the maximum cost of their compliance – can 

be calculated for a given confidence level. With reference to this chapter, the appendix 

also includes a description of a numerical method built upon recombining binomial trees, 

which can be used to approximate the probability density function of future emissions. 

The fifth chapter is devoted to discussing the real option applications related to the value 

of the future realized spread. I will examine the sensitivity of the spread options that 

represent the value of the power plant to changes in various technological and market 

factors and, based on the results, I will explore the dependence of the power station’s 30-

year revenue generating capacity on different factors. 

The value of the power plant is exposed to the risk arising from potential changes in the 

price of the underlying commodities, against which it should therefore be hedged. I will 

suggest a four-asset dynamic delta hedging strategy, which requires the power plant to 

hold, at any given moment, an amount of hedging positions that ensures the resultant 

portfolio (generation capacity, any potential supply agreements and hedging transactions) 

has a deltas of zeroes. At the same time, we will also arrive at the recommended 
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“optimal” amount of emission allowances at that given point in time. As we will see, this 

is a quantity close to the expected emissions volume; more specifically, it can be 

quantified based on the aggregate of the delta parameters of the remaining days’ spread 

options with respect to emission units. 

Relying on the power plant valuation model, the value of a theoretical efficiency 

improvement project can easily be determined. I will identify the factors that have a 

significant influence on the value of the savings from more efficient production. 

Power stations frequently enter long-term production agreements with fixed or resource-

dependent selling prices. I will show that given the model’s assumptions (absence of 

technological constraints, sufficient liquidity in the marketplace), power plants’ decisions 

whether to run or idle should still be based on spot prices even if they have such 

agreements in place. If their production follows a fixed schedule, a portion of the option 

value from their flexibility will be lost. The loss is related to the production days when 

the spread is negative: the power plant would be better off stopping production and 

covering its supply obligations through market transactions instead. The amount of the 

profit lost can be estimated by the difference between the values of the spread options and 

the swap transactions for the period in question. I will examine how this loss is influenced 

by various technological and market factors. 

The sixth chapter aims at assisting power plants in defining an efficient auction strategy. 

Based on the options for the spread without the emission units, I will derive the 

reservation price of the allowances, which will be used to arrive at the company’s MNPB 

(Marginal Net Private Benefit) and individual allowance demand functions. Using these, 

then again, one can determine the highest per-unit price that is worth paying for a given 

amount of allowances at the auction by a given company. I will also examine how 

changes in thermal efficiency and in the parameters of the price model affect the MNPB 

and individual demand functions. 

The last chapter comprises my conclusions. 
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I.2. Introduction to the Theory of Emissions Markets – from an Environmental 

Economics Point-of-View 

 

This section provides a brief overview of the mainstream environmental economics 

theories related to emissions trading. 

In reality, economic activities are almost certain to unintentionally affect, either in a 

positive or a negative way, one or more third parties. These consequences are, for the 

most part, externalities (external economic effects), which by definition (Kerekes, 2007, 

p. 118) have the following characteristics: 

 The activity affects the welfare of some third party 

 The effect on the third party is unintended 

 The third party is not compensated for the damages / does not have to share the 

benefits. 

A well-known example of a positive externality (the external effect increases the third 

party’s welfare) is the case of the orchard and the beekeeper, where the positive external 

economic effect is bi-directional: the beekeeper’s activities enhance the orchard owner’s 

welfare by the bees pollinating the trees; at the same time, the beekeeper also benefits 

from the orchard, because the nectar harvested from the flowers is what the honey they 

produce is made from.2 

A negative externality means that the economic activity causes – unintentional – damage 

to some third (external to the economic transaction) party, and they receive no 

compensation for that. A telling example is carbon dioxide emitting economic activities: 

the greenhouse gases emitted show no respect for state boundaries, they spread 

throughout the atmosphere and hence affect the climate of the entire Earth, probably 

resulting in a reduction in global welfare; the effect is unintentional; and the affected 

parties are not (yet) compensated for the damages suffered.  

                                                
2 In practice, the beekeeper case does not always involve an externality: beekeepers often pay for using the 

bee pasture, and orchard owners, as well, frequently pay for the pollination. In which case the third party is 

compensated, and thus there is no externality any more. 
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The mainstream microeconomic model of external economic effects is that of Pearce and 

Turner (1990, p. 90), also discussed in detail by Kerekes and Szlávik (2003, pp. 92–93). 

The model involves two measures, marginal revenue and marginal cost, both interpreted 

as a function of production/pollution quantity: 

 The MNPB (Marginal Net Private Benefit) function shows how much the 

company’s profits are increasing by a unit increase in production (or pollution). In 

the most basic interpretation, the MNPB function can be represented by a 

downward sloping straight line, and given as the difference between the horizontal 

marginal revenue (MR) function – equivalent to the market price – and the 

upward sloping (growing) marginal cost (MC) curve. 

 The MEC (Marginal External Cost) function shows how the additional social 

costs (i.e. those affecting external parties) of pollution change with its total level. 

In this model, the function’s graph is an upward sloping straight line: the rate at 

which costs grow increases with pollution level. 

 

Figure 1: Optimal level of economic activity in case of externality (Kerekes, 2007, p. 125.). 

In the absence of regulation, the traditional model suggests that the profit maximizing 

company will continue to increase its production until its MNPB function is positive. The 

individual optimum is at the point of intersection Qm of the MNPB function and the 

horizontal axis. At that point, the company’s profit corresponds to the area A+B+C, total 

external cost to B+C+D, and total social benefit to A-D. 
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If however external costs are also taken into consideration, the socially optimal 

production (pollution) level of the company will be given by the point of intersection Q* 

of the two functions MNPB and MEC. The company’s profit is equal to the area A+B, 

external cost equals B, and total social benefit corresponds to area A. Moving away from 

this social optimum in any direction will result in a drop in total social benefit. The model 

also illustrates the finding – probably rather surprising for the layman – that we should 

not aim at the total elimination of environmental pollution, but rather at its reduction to 

the level that ensures maximum social benefit (Kocsis, 1998). That is, an environmental 

pollution level above zero may well be rational. 

Unlike the traditional model, Löfgren (2000) opts for a horizontal MNPB function. The 

author presumes the company’s market to be competitive, and also accounts for its 

capacity constraints. From the company’s perspective, the selling price of its product is an 

exogenous factor, and hence constant – which is a similarity with the mainstream model. 

A difference is, however, that the average variable cost of production is constant 

throughout its entire capacity range and, consequently, so is its marginal cost (in contrast 

to the increasing marginal cost assumption of the traditional model). The real option 

model in the dissertation applies to power generators yields an MNPB similar to that 

proposed by Löfgren in the short run – within a given time-of-day interval –, yet a 

downward sloping MNPB curve in the long run (for details, see Chapter VI). 

In order to shift towards the social optimum, external costs need to be internalized. 

Command and control type methods (Kerekes - Szlávik, 2003, pp. 109-116) are a top-

down, administrative approach to influencing the company’s pollution level. The two 

main types are taxes on pollution (Pigouvian tax) and quantity restrictions. A Pigouvian 

tax is a predetermined charge imposed by the authorities on each unit of production (or, 

possibly, pollution) in order to reduce production and, hence, pollution by an extent 

sufficient to reach the social optimum. An advantage of this solution is that companies’ 

cost of compliance is predictable, while a drawback is that the total amount of emissions 

remains uncertain. The other command and control type method is quantity restriction, 

which sets separate maximum pollution levels for each company falling under the 

regulation. Its advantage is the high certainty in determining the total amount of 

emissions; on the other hand, a disadvantage is that the total social cost of compliance is 

difficult, if at all possible, to predict. Polluters have to limit their emissions to a given 

extent irrespective of their cost structure, therefore pollution reduction does not 
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necessarily happen where it would be the cheapest to achieve, thus the social optimum is 

certain to be not met. An overall problem with command and control type methods is that 

in order to use them efficiently and to arrive at the social optimum, one would need to 

know the individual MNPB and MEC functions of all the companies and set quantity 

restrictions on a company-by-company basis – neither of which is feasible in practice. 

Another possible way of dealing with externalities is Coase’s property rights approach 

(1960), according to which the appropriate definition and allocation of property rights 

allows for the social optimum to be achieved through negotiation (given that transaction 

costs are sufficiently low). If the polluter has the right to pollute, then those exposed to 

the externalities caused will pay the polluter for reducing the pollution. If, however, the 

third party exposed to the pollution has got the right to live in a completely clean 

environment, then it will be the company that has to pay for the possibility to pollute. 

From a Coasean point of view, the problem with the externality related to the excessive 

emission of greenhouse gases originates in the atmosphere not having an exactly defined 

owner, that is, in the lack of one given person or organization designated to make 

decisions in air pollution matters. An important precondition for the Coasean solution is 

the possibility of bargaining at low transaction costs. Is the number of stakeholders too 

high, agreements become rather hard to negotiate. 

Building on the Coasean foundations, it was Dales (1968) who developed the concept of 

pollution permit markets, which the operation of the European Union Emissions Trading 

System (EU ETS) is based upon. It is not the atmosphere exposed to pollution the 

property rights of which are defined by the model, but rather the permits for emitting a 

unit of pollution. Pollution permits can be freely traded, which ensures that emission 

reduction happens where it is the cheapest to achieve. If the price at which a company can 

sell their pollution permits in the market is higher than what they could earn by causing a 

unit of pollution, they will terminate production and sell their quotas instead (or buy less 

of them). If however the profit they make on the activity causing the pollution exceeds the 

quota price, they will increase production (and hence pollution) and buy more permits. If 

transaction costs are low and market actors are well-informed, the system will ensure that 

the social optimum is achieved. 

In a cap and trade system, the first step is to lay down the “permitted” total amount of 

pollution (cap) and create the corresponding number of pollution quotas. Subsequently, 
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the trade in these pollution permits will ensure that targets are met in an efficient way. 

Rubin (1996) built a model for the emissions market and the behavior of quota prices. He 

concluded that a market comprised of profit maximizing companies indeed leads to 

emission reduction being realized at the lowest possible cost. Soleille (2006) underlines, 

nevertheless, that the efficiency of the emissions trading scheme does not arise from the 

nature of the instrument alone, but also depends on how strict the global emissions target 

is. A weak spot of the system is the setting of the correct cap (total amount): if too many 

emission units are issued, they will suffer a price drop and thus cease to motivate for 

pollution reduction; if there are too few of them, on the other hand, that might lead to an 

excessive restriction of production and, consequently, recession. 

When employing a complex environmental policy comprising several different types of 

instruments, one also has to take into account the interactions between the emissions 

trading system and other regulatory measures. According to Sorrell and Sijm (2003), the 

application of complementary instruments in addition to an emissions trading scheme is 

only acceptable if they improve the efficiency of the latter or if they serve some further 

regulatory purposes. They also emphasize that the parallel use of two environmental 

policy instruments increases the system’s costs, and the complementary instrument does 

not necessarily contribute to the further reduction of emissions. Böhringer et al. (2006) 

call attention to the fact that if the emissions trading scheme does not cover all industries, 

then the remaining industries need to be regulated by some other environmental policy 

instrument in order to meet the relevant emissions targets. Based on a simulation for 

Germany, the authors conclude that a possible lack of efficiency in the emissions market 

should be ascribed to the lobbying activities of influential sectors, which aim at being 

exempted from the regulation or at being allocated more than their reasonable share of 

emission units. 

The first significant emissions market was created in the United States of America, a 

country with a long tradition of stock markets, and operates within the framework set 

forth in the Clean Air Act of 1990, enacted as part of the Acid Rain Program of the US 

Environmental Protection Agency (EPA). The first phase of the program started in 1995, 

the second in 2000. Though chronologically only the second, the emission market that 

ranks first in terms of volume and international significance is the European Union 

Emissions Trading System (EU ETS), launched in 2005 – a detailed description of which 

follows below.  
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I.3. European Union Emissions Trading System (EU ETS) 

 

As we were approaching the end of the 20th centrury, it became more and more 

unquestionable that the significant amount of carbon dioxide emissions that large-scale 

industrialization brought about would result in long-term global climate change. The 

pollution and its effects both being global, the issue may only be effectively addressed 

through international cooperation. The first agreement of decisive importance was the 

United Nations Framework Convention on Climate Change (UNFCCC), basically a result 

of the 1992 Rio Earth Summit. Those signing the convention admitted that greenhouse 

gases indeed act to disrupt the Earth’s ecosystem. The declared purpose of the agreement 

was to stabilize the atmospheric concentrations of greenhouse gases at levels that could 

still prevent human-induced, dangerous climatic changes from occurring. The parties 

furthermore agreed to hold, starting in 1995, annual conferences (Conference of Parties, 

COP) to discuss the most important advancements in their fight against climate change 

and to elaborate concrete steps in order to avoid the worst consequences. 

The third conference (COP 3) in the Japanese city of Kyoto in December 1997 adopted 

the Kyoto Protocol (The Kyoto Protocol on Climate Change), in which industrialized and 

transitional (Annex B) countries committed to an average 6 to 8 percent reduction in their 

emissions for 2008-2012 relative to their 1990 levels. The condition for the protocol itself 

to enter into force was that the countries it gets ratified by account for at least 55 percent 

of global greenhouse gas (GHG) emissions. Implementation was put in jeopardy by the 

withdrawal from the protocol in 2001 of the largest polluter, the long-hesitating US (the 

United States would have had to pledge to a 7 percent reduction). At the 2001 meeting in 

Bonn (COP 6), the US delegation remained on the sidelines as observers. The agreement 

adopted in Bonn dealt with the various flexibility mechanisms (ET, JI, CDM) and the 

matter of carbon sinks, as well. The deadlock over the Kyoto Protocol was only resolved 

in 2004, when another dominant polluter – namely Russia – decided to sign the treaty. 

The uncertainties about the protocol’s coming into effect and the seven-year delay are 

telling examples of the strength of the conflicts between individual countries’ short-term 

economic interests and the long-term global interests of mankind. 

Concerning climate change and climate talks, there are two significant pieces of work that 

have had very remarkable influence on public and political opinion and, thus, must be 
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mentioned here: the periodic report (Assessment Report) of the Intergovernmental Panel 

on Climate Change (IPCC) and the Stern Review. IPCC released four reports so far (in 

1990, 1995, 2001 and 2007), and the next one is due in 2014 (IPCC Fifth Assessment 

Report: Climate Change 2014). The reports summarize the findings of three workgroups, 

discussing atmospheric physical, ecological and economic matters. Nicholas Stern was 

commissioned by the UK government to prepare his 700-page Stern Review (2006). One 

of its most important conclusions is that in the absence of appropriate action, mankind 

may lose 5 percent of global GDP each year (should more significant collateral 

consequences occur, losses might even amount to some 20 percent). The report also states 

that the most significant negative effects might be possible to avoid by devoting approx. 

1-2 percent of our annual GDP to the matter. Beyond delivering a “diagnosis”, the report 

also urges to create, through international cooperation, global prices for emission units, 

“broadly similar” within the individual regions, as an essential condition for efficient 

emissions reduction. 

Thanks to these reports, the public of the more developed countries became more and 

more supportive of climate protection efforts. It may be both interesting and instructive to 

review how the role of the European Union in the Kyoto process has changed with time  

(for details, see Convery et al., 2008). The first significant stage of community-level pro-

environmental cooperation was the Single European Act of 1986, which put emphasis on 

the cost-efficient, community-level management of environmental challenges. In order to 

limit greenhouse gas emissions and to internalize external effects, the European 

Commission suggested in 1992 that a community-wide carbon dioxide tax be introduced. 

The proposal was not implemented after all, on the one hand because some member states 

interpreted a European-level tax as a limitation of their fiscal autonomy, on the other hand 

because the energy industry, having an adverse interest, possessed significant lobbying 

power. The Union assumed a leading role in the negotiations that laid the foundations of 

the Kyoto Protocol. Its initial stance was the introduction of a uniform 15 percent 

reduction and the refusal of emissions trading. From the European point of view, the 

negotiations were far from successful given that neither one of these two suggestions 

were incorporated in the protocol after all. Following the signature of the treaty and the 

failure of the European lobby, there was a turnaround in the EU’s strategy: given the 

absence of the US, it took over the leading role in international climate protection. The 
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former adversary of the emission market turned into the initiator of the currently largest 

carbon permit market. 

The EU as a community committed itself to an 8 percent reduction in the protocol, while 

the determination of the individual countries’ share was left to the EU’s own discretion. 

Member states’ emissions targets (through which the Union’s target will be met) were 

defined in the Burden Sharing Agreement. The more developed member states pledged to 

larger reduction percentages, while the emissions of less developed countries were 

allowed to rise. As regards the protocol, the transitional economies of the former “Eastern 

Bloc” (including Hungary) had a special position, for their previously significant 

industrial output, energy consumption and greenhouse gas emissions all fell back at the 

end of the eighties due to the economic transition. These countries were allowed not to 

choose the year 1990 as a basis (compared to which their reduction targets are 

interpreted), but one of the earlier years. Concerning Hungary, this means that the 6 

percent reduction we committed to needs to be met on a 1985-87 basis, which will be 

possible without any particular additional effort. Hungary is expected to have a quota 

surplus until 2020 (Szabó et al., 2010), but in the long run, we will also have to assume a 

more active role in carbon dioxide emission reduction. 

The foundations of the European Union Emissions Trading System (EU ETS), established 

in order to meet emissions targets in a cost-efficient way, were laid by Directive 

2003/87/EC of 13 October 2003. The EU ETS is a cap and trade system, where countries 

determine the permissible amount of emissions in a top-down process, and issue a 

corresponding amount of freely tradable quotas. The quota price fluctuates depending on 

market processes, therefore the total cost of emission reduction is impossible to determine 

in advance. The low level of transaction costs (a result of free tradability and liquidity in 

the quota market) ensures that emission reduction – or savings – occurs where the 

associated costs are the lowest. 

With its launch in 2005, EU ETS preceded the 2008-2012 period – which the Kyoto 

commitments concern – by three years. In line with that, the startup of the trading system 

was performed in two stages: the first stage (Pilot Phase, First Phase) lasted from 2005 

until 2007, with the gaining of experience as the main purpose, while the second stage, 

until 2012 (Kyoto Phase, Second Phase), was intended to ensure the cost-efficient 

compliance with the set targets. The third stage (Third Phase) covers the period between 
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2013 and 2020 and includes the further reduction of the emissions of all types of 

greenhouse gases, and the gradual transition from the free allocation of permits to 

auctioning. 

The European Union Emissions Trading System is the world’s first international system 

for the exchange of carbon dioxide emission units. It covers the total carbon dioxide 

emission volume of 2 billion tonnes of approximately 10,500 institutions in the 27 

member states of the EU plus the three associated states (Iceland, Lichtenstein, Norway). 

From amongst all the greenhouse gases, the present system almost exclusively covers 

carbon dioxide. The only exception is nitrous oxide emitted in Norway and the 

Netherlands (European Commission, 2009), though the respective amount is rather 

limited. 

It might be worth comparing the volume covered by the EU ETS to total global 

emissions. Comparability is compromised by the fact that emissions data available for the 

different country categories (developed, developing) pertain to differing periods. The total 

emission of developed (Annex I) countries in 2007 was equivalent to 18.1 billion tonnes 

of carbon dioxide (UNFCCC, Flexible Queries, 2010), with 5 billion tonnes ascribed to 

the EU-27. The total emission of the 122 developing countries (non Annex I) was, based 

on 1994 data, equivalent to 11.7 billion tonnes of carbon dioxide (UNFCCC, 2005), while 

the size of the EU ETS was equated to the amount allocated in 2009 (CITL, 2010): 

 

Table 1: Relative size of the EU ETS. 

As the emissions data evince, the currently largest emission market covers 39.1 percent of 

the emissions of the EU-27 and 6.6 percent of total global emissions (if we assume that 

the current total emission of developing countries exceeds the figure of 1994, the share of 

the EU ETS would be even lower). 

CO2 emissions 
(million tonnes)

As a ratio of 
the category 

before

Compared to 
total emissions

Total 29 848 - 100.0%
Annex-I 18 112 60.7% 60.7%
EU(27) 5 032 27.8% 16.9%
EU ETS 1 967 39.1% 6.6%
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If we were interested in which industries the 61 percent of European emissions not 

covered by the system comes from, it might be useful to take a look at the 2007 industry 

breakdown of the EU-27: 

 

Table 2: Emissions of EU(27) by industries, energy industry is detailed further. 

In order to minimize per-unit transaction costs, it is imperative that the facilities causing 

the highest emissions be incorporated in the trading system first. The largest polluter, the 

energy industry, is indeed among those falling under the regulation. Industries with a 

significant total emission level yet including a relatively large number of individual 

polluters have not (yet) been incorporated into the EU ETS – a good example is 

transportation, where an immense amount of individual pollution sources altogether emit 

a very significant total volume of greenhouse gases (nearly 1 billion tonnes of carbon 

dioxide, based on 2007 data). Another non-covered area is agriculture with its near half-

billion tonne annual emissions. 

Of course, it cannot be simply concluded that certain areas were omitted from the 

regulation to begin with, for the commitments made by the individual countries in the 

protocol pertain to total country-level emissions. Even though there are other (regulatory) 

means of facilitating the achievement of national targets (e.g. an excise tax on fuels, 

setting mandatory minimum requirements for buildings’ heat insulation), it would be 

more fortunate if the already existing carbon dioxide price could “permeate” a wider 

range of prices already existing in the economy, which then again calls for the expansion 

Industries million 
tonnes

1.A.1 Energy Industries 1 604
1.A.2 Manufacturing Industries and Construction 642
1.A.3 Transport 980
1.A.4 Other Sectors 665
1.A.5 Other (Not elsewhere specified) 10

1.A Fuel Combustion - Sectoral Approach 3 901
1.B Fugitive Emissions from Fuels 87

1 Energy 3 988
2 Industrial Processes 430
3 Solvent and Other Product Use 12
4 Agriculture 461
5 LULUCF -407
6 Waste 141
7 Other 0
Total 4 625
Total (without LULUCF) 5 032
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of the emissions trading system (the inclusion of the aviation industry points to the same 

direction). 

Moreover, the EU ETS, as the very first multi-national emissions trading system, might 

prove out to be an invaluable source of experience to assist in the creation of a future 

global permit trading scheme. Buchner et al. (2006) and Ellerman (2008) discuss it in 

more detail how far the EU ETS can be interpreted as a prototype of a future international 

system. Ellerman argues that the Union is, in a sense, rather similar to the global 

community: member states are only connected by a weak federal structure and there are 

significant disparities in economic development between them. The differences in 

development between Europe’s East and West are not as remarkable as those across the 

world, but experience from the EU ETS might be very helpful in designing a future 

system. The author concluded that the trial stage was very useful for the participants 

because of the significant body of experience they gained on the operation of the system. 

Based on actual data he established that, contrary to expectations, the EU ETS did not 

generate a significant volume of international capital flow: the majority of permits got 

surrendered in the same country in which they had been issued. 

 

Quota Supply and Allocation 

The basic unit of the EU ETS is an EUA (EU Allowance), by which one is entitled to 

emit into the atmosphere one tonne of carbon dioxide (or the equivalent of that from other 

greenhouse gases). The quota has a special validity: if banking is prohibited, then it is 

only valid for a limited period (the given year), before and after which it is worthless. If 

transfers between years are allowed, then permits are only voided when used to cover an 

actual unit of emission. 

Besides the basic unit of the European Union Emissions Trading System, there are three 

more emission units worth mentioning: AAU, CER and ERU. An AAU (Assigned 

Amount Unit) is the basic unit of the Kyoto Protocol. An EUA actually corresponds to a 

“labelled” AAU, which the governments gives into private ownership within the 

framework of the national allocation plan (NAP). If a company from one member states 

sells an EUA to a participant in another country, then both the EUA and the AAU are 

handed over to the destination country. Therefore, the free allocation of permits actually 
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means a loss of potential revenue for the state: if they did not give away EUAs to their 

corporations free of charge, they could sell them in the marketplace in the form of AAUs 

(supposed that the total emissions level of the country allows for that). In the second 

trading phase, it was already allowed – to a limited extent – to fall back to other Kyoto 

units for compliance. CER (Certified Emission Reduction) units are created through 

realized Clean Development Mechanisms, that is, when an investor from a developed 

(Annex I) country completes an emission reduction project in a developing (non Annex I) 

country. CER units, likewise marketable, are issued after the actual amount of carbon 

savings has been verified.  ERUs (Emission Reduction Units) are created in so-called 

Joined Implementation projects – projects realized by two developed (Annex I) countries 

and resulting in carbon savings. In order to avoid duplication, the issuance of ERUs is 

accompanied by the cancellation of an equal amount of AAUs. 

Emission units are a special type of good, the special characteristics of which might be 

best understood by comparing it to other, more usual exchange-traded instruments. In 

their quota vs. share comparison, Benz and Trück (2009) conclude that while share prices 

primarily depend on companies’ profit expectations, the non-zero price of the quota is 

basically a consequence of its scarcity, its limited supply. Thinking along the same lines, 

we may also compare them to energy sources: emission units are special also because 

while resources need to be extracted at rather high costs, quotas are created through an 

administrative act: governments issue, based on their national allocation plan, a given 

number of emission units each year. Considering traditional resources, demand is 

satisfied from the reserves that can be efficiently extracted given the then current price 

level. Price increases along with demand, and – with the exhaustion of resources not 

taken into account – so do economically extractable reserves, thus supply is flexible to 

changes in market price (demand). The supply of emission units, on the other hand, is set 

at a fixed level by the regulator. A growing demand does induce a price hike, yet supply 

remains fixed. The situation is less clear-cut if we take into account emission reduction 

investments and the various Kyoto flexibility mechanisms, which in a sense act to expand 

supply. While the former increase companies’ – freely tradable – quota surpluses by 

lowering their per-unit-production emissions, Kyoto units that originate from Kyoto 

flexibility mechanism projects directly increase supply, though there are administrative 

limits to their utilization. 



 

29 
 

The supply of permits is provided by the national authorities, the current practice of 

which is to allocate the emission units to the participating companies free of charge, for 

the most part. This initial system of free quota allocation contributed to market actors’ 

acceptance of the emissions trading system. Participants did not suffer a sudden cost 

boom by entering the system (particularly compared to the other option: a carbon tax). In 

their dissertation, Lesi and Pál (2004) examined the effect of the different types of 

allocation (free distribution, auctioning), among others. They concluded that if transaction 

costs are low, the efficiency of the system is not affected by the method of quota 

allocation (free of charge or auctioning). The authors argue that free distribution may 

result in the resistance of market actors being lower, yet it is these quota-owners, as well, 

that earn the entire amount of the revenue from the scarcity of the units. Whereas in the 

case of a partial auction, part of the revenue goes to the government, yet participants’ 

willingness to cooperate will not be that high, either. According to the authors, the 

theoretically desirable share of auctions is, depending on the parameters, somewhere 

between 16-28 percent.  

In the long run, free allocation will be replaced by auctioning. The policymaker intends 

the resulting proceeds to provide government funding for environmental investments and 

tax cutting measures. 

 

The Rules of and Experience from Compliance 

In the current free allocation system, the distribution of units is performed each year by 

the end of February latest. Companies have to report on their actual annual emissions by 

March 31 next year, and within one month’s time (by April 30), they have to surrender to 

the competent authority (compliance) an amount of emission units equal in number to the 

certified volume of their emissions during the previous year. Important settlement-related 

dates are shown on the time-line below: 
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Figure 2: Periods and deadlines of EU ETS compliance. 

Non-compliance occurs whenever a company fails to surrender enough quotas to cover 

their entire amount of emissions. In such a case, the deficit is transferred to the next year 

– that is, the amount of the shortfall is deducted from their allowance for the next year – 

and they also have to pay an additional 100 EUR/tonne fine (40 EUR/tonne in the Pilot 

Phase). 

Relying on CITL3 as a data source, Ellerman and Buchner (2006) analyzed the EU ETS 

system based on facility-level emission and allowance figures from 2005. The authors 

compared baseline emissions, the number of permits allocated and actual emissions. As a 

result, they proposed a measure that would allow for estimating the extent of actual 

pollution reduction as a function of emissions data, economic activity and energy 

intensity. 

In her dissertation, Fazekas (2009) examined the impact the EU ETS has had on Hungary. 

According to her, the most significant problem of the Pilot Phase was that the majority of 

installations had not measured, calculated and kept a record of their carbon-dioxide 

emissions prior to the EU ETS start-up. Hungarian companies’ attitude towards the 

emissions trading system was explored via a series of personal interviews. They typically 

perceived the system as an administrative burden, did not recognize the opportunity cost 

of the emission units, but only strived to minimize the costs to be incurred. According to 

                                                
3 Data from CITL (Community Independent Transaction Log) can be used to analyze the allocated amounts 

and actual emissions by facility. Transactions affecting the ownership of emission units can only be 

examined indirectly, for individual deals remain confidential for a period of five years. 

1/1 4/30
1/1

2/28
Receiving allowances for

coming year

1/1 - 12/31
Monitoring period

1/1 - 4/30
Compliance period

1/1 4/30

3/31
Complete and submit verified

annual emissions report to
regulator

4/30
Surrender allowances
from registry account



 

31 
 

the author, Hungarian facilities’ primary goal during the Pilot Phase was to make the 

most out of the allocation process, that is, to acquire the largest possible amount of free-

of-charge units, instead of focusing on the total volume of avoidable emissions. 

Buchner et al. (2006) found that policymakers believe production cuts to be the primary 

key to the reduction of carbon dioxide emissions. Therefore, in order to prevent an 

economic recession, actors usually received enough permits to be able to keep up their 

current production volume without any disturbances. The exception was the energy 

industry, which had a great potential for emission reduction: the fuel switch from coal to 

gas. 

To shed further light upon the situation, let us have a look at how allocated amounts and 

actual emissions data from 2009 relate to each other: 

 
Table 3: Allocation and emissions by industries. 

As the table shows, companies were allocated emission units worth 1.97 billion tonnes of 

carbon dioxide in total in 2009, while the actual volume of emissions turned out to have 

been (partly “thanks” to the economic crisis) 94 million tonnes less than that. It was only 

one single industry where the difference between the allocated and the actually emitted 

amount was positive (i.e. emissions exceeded the allocated volume): power plants. Thus 

one might draw the – somewhat simplified – conclusion that the trading system brought 

about additional costs for the power plants and extra revenues for all the other industries. 

The data indeed seem to reflect the regulatory intent not to make the emissions trading 

system a source of competitive disadvantage for the industries that are exposed to 

international competition; thus the costs of compliance were born by the largest sector, 

one that produces primarily for the European market: the electric energy sector. 

Comparing of allocation and emissions 
in 2009 (million tonnes)

Allocation Emissions

Combustion installations 1 262.7 1 377.1 114.3 9.1%
Cement clinker or lime 213.8 151.5 -62.3 -29.1%
Pig iron or steel 185.0 95.5 -89.5 -48.4%
Mineral oil refineries 153.6 146.2 -7.4 -4.8%
Pulp, paper and board 38.8 27.9 -10.9 -28.2%
Glass including glass fibre 25.6 19.4 -6.2 -24.1%
Coke ovens 22.4 15.8 -6.7 -29.7%
Metal ore roasting or sintering 22.0 11.0 -11.0 -49.8%
Ceramic products by firing 19.2 9.1 -10.1 -52.7%
Other activity opted-in 24.2 19.9 -4.3 -17.7%
TOTAL 1 967.4 1 873.3 -94.1 -4.8%

Emissions 
surplus
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Experience About the Quota Market 

The quota market has been growing at a quick pace ever since the launch of the EU ETS. 

The figure below shows the distribution of monthly trading volume and value4 over a 

period of five years: 

 

Figure 3: Monthly trading volumes (2005-2010). 

As the graph shows, trade volume quintupled in those five years: at the beginning of the 

period in question, the monthly turnover of the entire market was had been 35 million 

tonnes, while in March 2010, it was already 361 million tonnes. Transaction were made 

in the futures market for the most part, the practical reason for which may be that it is 

sufficient to hold the quotas no sooner than the date of settlement, and hedging 

transactions are easier to do in the futures market, as well. 

After the start-up of the emissions trading system, the quota market and the quota price 

assumed an increasingly important role in corporate decision making. In their 

comprehensive work, Convery et al. (2008) discuss the most important experiences from 

the first trading phase. In their view, national authorities were faced with three major 

problems in the Pilot Phase: the time frame for preparing their respective national 

allocation plans was rather short, facility-level emissions data were not available and the 

coverage principles of the system (which companies of which industries it pertains to) 

                                                
4 Source of data: www.cdcclimat.com 
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were not yet elaborated in full detail. In spite of these problems, the Pilot Phase was 

successful, insofar as it did meet its declared objective: the system was up and running, 

market actors gained experience and the market now had a price for carbon dioxide 

emissions. The system did not have a significant effect on international competitiveness: 

due to the technological limitations of power transmission, the electric energy sector, the 

industry most affected by the regulation, did not have to face competition from foreign 

markets, while all the other, internationally competing industries received more quotas 

than what they required. The EU ETS also had an external global impact: it was joined 

with the Norwegian system and through the Kyoto mechanisms, it also generated 

emission reduction investments in other countries. Given all the differing national 

interests of the different EU member states behind the EU ETS, experience from the 

system’s operation will certainly be useful in designing a future global system. 

In the emissions trading system, compliance always pertains to the given year. Banking 

means the transfer of unsurrendered allowances to the next year. Borrowing, on the other 

hand, is the utilization of allowances yet to be issued (in the coming years). While 

banking within the given trading phase was allowed, banking across two different trading 

phases was basically prohibited. Schleich et al. (2006) put forward the opinion that 

banking reduces the costs associated with the system by providing intertemporal 

flexibility. By way of simulation, they demonstrated that the prohibition of inter-period 

banking deteriorated the system’s efiiciency. Employing a game theory model, they 

showed that in order to avoid the prisoners’ dilemma, member states need to coordinate 

their banking-related decisions. 

The ban on banking across the different phases had far-reaching consequences. The next 

figure shows the graphs of closing and settlement prices from the Bluenext (spot prices) 

and ECX (futures) exchanges for the period between June 2005 and May 2010. The 

reason for including futures prices is that they make it easier to compare prices across the 

first and second trading phases (futures prices have not been adjusted for time value): 
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Figure 4: Historical prices of emission quota. 

Due to the lack of banking, the permits of the two phases counted as two different assets. 

As evinced by the graphs, prices for the two periods followed more or less the same 

pattern until March 2006, the time when the pilot-phase price began to diverge from that 

of the Second Phase. The difference became particularly large following the publication 

of emissions data in 2006, as it became fairly likely that the number of emission units on 

the market exceeds the expected total volume of emissions. Given that, apart from a very 

few exceptions (Convery - Redmond, 2007), permits for the 2005-2007 period could only 

be utilized in that given period, any excess first-phase quotas lost their value right after 

the settlement of the year 2007. Which points out one of the specialities of cap and trade 

systems: over-allocation devalues the quotas, which therefore lose their potential for 

promoting emission reduction.  

Based on prices from the two periods, Ellerman and Parsons (2006) derived a variable 

expressing the probability of over-allocation. The index was built on the assumption that 

if there is a quota surplus on the market at the end of the First Phase, then it is worthless 

(price is zero), while if there is a shortage of quotas, then – presuming an arbitrage-free 

market – a first-phase quota will have the same value as the alternative of non-compliance 

(sum of the next-period emission unit price and the fine). 

Daskalakis et al. (2009) detected that the ban on inter-period banking also had an 

influence on the pricing of carbon credit derivatives. There are different types of 

derivative instruments depending on whether the term of the futures contract extends over 

the current trading phase or not. The pricing of those that “remain” within the given phase 

(intra-phase futures) follows the “usual” futures pricing formula, with zero convenience 
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yield. For the pricing of futures stretching over two consecutive phases (inter-phase 

futures), however, it was models incorporating stochastic convenience yields that proved 

out to be appropriate. Considering inter-phase contracts, investors have to face a new risk 

factor: the amount to be allocated during the next phase is uncertain. Higher risk means 

lower liquidity, and hence a drop in market efficiency. It is of utmost importance, 

according to the authors, that inter-phase banking not be banned or restricted, and that this 

consideration be taken into account when developing new emissions markets. 

Parsons et al. (2009) analyze the performance of cap and trade systems as a function of 

operating rules. They examined the two existing systems (the EU ETS and the US sulfur 

dioxide allowance market) with a primary focus on how the banking and borrowing of 

permits affects the operation of the market. They concluded that the restriction of these 

two operations negatively affect market liquidity. They also noted that free allocation 

keeps the opportunity of banking from being exploited to the full extent, reduces trade 

volume and thus limits market liquidity. As a consequence, the effects of short-term 

shocks get amplified and, due to the sub-optimal degree of emission reduction, the 

system-level cost of pollution reduction is increased. 

 

Publications on the Stochastic Modeling of Allowance Prices 

The publications that are in a closer relation to the topic of the dissertation employ 

various models to analyze the stochastic process governing quota prices. Daskalakis et al. 

(2009) tested different pricing models on a set of price data from 2005-2007. It was the 

geometric Brownian motion model with normally distributed jumps that best fit spot price 

data; the authors recommended against using mean-reverting models – quite widespread 

in commodity market applications – for quota prices. Seifert, Uhrig-Homburg and 

Wagner (2008) developed a stochastic equilibrium model for such purposes. They argue 

that the EU ETS differs from other more established emissions markets (for example the 

SO2 emission allowance market of the US), thus their models cannot be used without 

certain adjustments. They call attention to one of the features of immature markets, 

namely that a strong impact (shock) might have a significant influence on prices. The 

authors mention the price drop in spring 2006 as an example for a shock. Because of the 

immaturity of the market, they reason, the model should not be built upon characteristics 

observed on historical data: it would be more practicable to rely on the regulatory system 
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of the EU ETS and related micro-economic relationships instead. Their analysis primarily 

aims at determining whether there is seasonality in the time series, whether there are 

upper or lower price boundaries, whether prices follow a mean-reverting or a random 

walk process and, also, how volatility behaves. Their most important findings were the 

lack of seasonality in CO2 prices and the dependence of the model’s volatility on time 

and price. 

Some other modeling efforts focused on what other factors the price of emission units 

was related to. Alberola et al. (2008) performed econometric analyses on the first trading 

phase between 2005 and 2007. The authors found that the most significant drivers 

influencing the quota price were the price of electricity, extreme changes in weather and 

political/regulatory decisions. They employed multiple linear regression to analyze the 

period from 2005 to 2007 and concluded that it was the extreme cold and the weather 

being cooler than the relevant seasonal value that had a significant influence on the 

allowance price. Furthermore, the authors also sought to identify structural breaks within 

the said interval: points, when there were changes in how the individual factors affected 

the quota price, that is, in how market actors behaved. They detected two such breaks: the 

first occurred in April 2006, as the actual emissions data were published (compliance 

break); while the second structural break comprised of the European Commission’s 

communication in October 2006 that the amount of quotas to be allocated would be 

significantly cut back for the 2008-2012 period. 

Benz and Trück (2009) distinguished two large groups of price drivers: policy 

(regulatory) factors and fundamental factors. The former affect the price in the long run, 

while the latter have a short-term impact, for the most part. The authors argue that the 

cheapest emission reduction alternative for Europe is the switch from coal to gas, that is, 

from a high-carbon-intensity fuel to one with lower carbon dioxide emissions: the higher 

the price of the allowances or that of coal, the more willing the industry is to switch to 

gas. If, however, coal becomes relatively cheaper, that increases its utilization and thus 

leads to higher emission levels. A good example for a policy factor is official 

communications about national allocation plans (NAP), which act to alter the actual 

amount of allowances or expectations thereof. Another determinant of the amount of 

available emission units are adjustments to the rules on inter-period transfers (banking) 

and on the relationship with the Kyoto flexibility mechanisms. The authors analyze short-

term fluctuations in the EUA price, review the most important stylized facts about the 
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quota market and hence develop a model to describe price behavior. According to their 

observation, the quota price fluctuates because the changes in regulatory environmental 

factors and weather factors (extreme cold, extreme heat, too much or little precipitation) 

occur at points relatively distant from each other in time. This necessarily leads to 

volatility clustering. They suggest that Markov regime-switching models and AR-

GARCH models, both of which can handle the properties mentioned above (skewed 

distribution, heavy-tail phenomena and heteroscedasticity), should be used for modeling 

price behavior. 

Reilly and Paltsev (2005) relied on the EPPA-EURO (Emissions Prediction and Policy 

Analysis) model to give an estimate for the first-phase quota price; they arrived at 0.6-0.9 

EUR/ton. Whereas the actual per tonne value in mid 2005 was 20-25 euros. The authors 

ascribe this rather significant discrepancy to the expansion in the use of coal due to rising 

oil and gas prices, and to the drought, which restricted the availability of hydro energy 

and escalated the risks associated with nuclear energy. 

Mansanet-Bataller, Pardo and Valor (2007) examined the influence financial and weather 

factors had on the quota price. With regard to meteorological factors, they relied on 

weather data from Germany (from amongst all EU ETS participant countries, Germany is 

the number one in terms of allocated quota amount, and their energy market is the largest, 

as well). Deutscher Wetterdienst provide daily minimum, average and maximum 

temperatures and precipitation amounts for a number of locations. The authors used these 

meteorological data to derive a population-weighted index for the purpose of further 

analyses. Expectations were that high temperatures would increase electricity 

consumption (air conditioning), while cold weather would yield higher heating needs. 

Both effects were expected to increase both the demand for and the price of emission 

units. Concerning precipitation, larger amounts act to expand hydro power capacities and 

thus to reduce the utilization of fossil fuels, which has a moderating effect on quota price. 

Employing a panel-GARCH approach, Oberndorfer (2009) showed that changes in the 

quota price were positively related to changes in European power generation companies’ 

stock prices, yet the relationship differed country by country (the relationship detected 

was negative for Spain, but positive for Germany and Great Britain). Based on these 

observations, the author concludes that the EU ETS has a palpable impact on financial 

markets and on the value of participant corporations. Veith et al. (2009) examine the 
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relationship between carbon dioxide price and the stock prices of European power 

generation companies. The quota being a new factor of production and an additional cost, 

the correlation between the two was expected to be a negative one. Based on the authors’ 

evaluation of empirical data, however, the relationship is positive, which means that even 

though the allowances constitute an additional cost item for power plants, they managed 

to pass on the burden to their consumers. They also note that the windfall profits from the 

free allocation of allowances may also have contributed to the growing valuation of 

power generators. 

In his analysis of the relationship with energy source prices, Kanen (2006) found that it is 

the price of oil that determines gas price, which then again affects the prices of both 

electricity and carbon allowances. Convery et al. (2007) also argued that it is energy 

source prices that determine the price of carbon dioxide. A concept related to the 

relationship between energy source prices and the price of carbon permits is the switching 

price (Delarue – D’haeseleer, 2007). Given that the carbon intensity (i.e. carbon dioxide 

emissions per unit of energy generated) of coal-fired power plants exceeds that of gas-

fired ones, a rising quota price diminishes the cost advantage of coal-fired facilities, or 

eliminates it altogether. The switching price of the quotas is the price under which the 

gross margins realized by coal-fired and gas-fired power plants are equal. Plotting the 

switching price as a function of the gas/coal price ratio yields positively sloped straight 

lines, depending on thermal efficiency. An allowance price above (below) the line means 

that gas-fired (coal-fired) generators should be preferred. 

Given that allowances constitute a new factor of production for electric power plants, the 

question arises: to what extent do changes in the quota price influence the price of 

electricity? Both Linares et al. (2006) and Smale et al. (2006) demonstrated that as far as 

power generation companies are concerned, the quota price can be interpreted as part of 

their direct production costs. Consequently, the introduction of the EU ETS necessarily 

brings about a price hike in electricity. Based on their own model, Lesi and Pál (2004) 

conclude in their dissertation that auction-only allocation clearly acts to increase the price 

of electricity. According to them, Hungarian electricity tariffs will reflect the price-effect 

of CO2 costs even if the government continues to distribute the allowances free of charge.  

Based on a simulation, Chen et al. (2008) found that the “propagation” of carbon price 

through electricity tariffs was influenced by the competitive situation in the marketplace 

and the elasticities of demand and supply. Having analyzed the relationship between the 
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quota price and the price of electricity futures, Zachmann and von Hirschhausen (2008) 

found that changes in the price of carbon dioxide have an asymmetric effect on the price 

of electricity futures: an increase in the quota price generates a stronger effect in the 

electricity price than a decrease does. The explanation, they argue, is two-fold: first, the 

market is not mature enough and second, power plants may take advantage of their power 

in the marketplace. Certain authors (Kara et al., 2008) also quantify this spillover effect 

on electricity prices, and expect, for the 2008-2012 period, a 1 EUR/tonne quota price 

increase to induce a 0.74 EUR/MWh hike in the price of electricity in the northern region. 

Following the above theoretical introduction to emissions trading and the most important 

features of the EU ETS, we now proceed to the discussion of the real option model to be 

employed in later parts of the dissertation.  
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II. THE REAL OPTION MODEL OF THE GAS-FIRED POWER 

PLANT 
 

From the introduction, we now have a basic understanding of the EU ETS framework, 

and we know that early in the next year, companies have to cover their current year 

emissions with emission units. In this section, we will examine how an EU ETS 

participant gas-turbine power plant makes its production decisions. With some minor 

adjustments, the methodology derived herein is also applicable to power stations with 

different technologies, and to companies that participate in an industry other than the 

electric energy sector. The approach outlined in the dissertation is especially practicable 

in cases where product and resource prices are highly volatile, the role of technological 

constraints is less significant and operation is flexible. 

The focus of the chapter is the decision model of the individual company. There have 

been relatively few EU ETS related publications on this topic, especially if compared to 

the number of studies dealing with the rules of the emissions trading system and with 

quota price trends. Concerning Hungarian authors, Dobos (2002) used a comparative 

static model to examine the impact of the system of tradable pollution permits on a 

standard micro-economic (price-taking, profit-maximizing) firm. His model relies on two 

types of functions: the monotonically increasing and strictly concave production function 

and the monotonically increasing and strictly convex emission function. The production 

function gives the amount produced as a function of input volume (i.e. shows how 

efficient the production process is: how much fuel is needed to produce a given amount of 

output). The author defines investments in efficiency improvement to alter the production 

function of the firm. The emission function gives the emission volume as a function of 

output, that is, it shows the amount of emissions per unit of production. Investments into 

reducing emissions per unit of production, therefore, alter the emission function. A good 

example is end-of-pipe technologies, which prevent the pollutants generated from 

entering the environment. The author compares four different cases in his work: no 

change in technology; change in technology to improve efficiency; to reduce emissions 

per unit of production (pollution abatement); both projects are realized. The author’s 

conclusion from his model is that the company can achieve maximum profit if they 
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realize both types of improvement, that is, if their production process becomes both more 

efficient and less polluting. 

In their dissertation, Lesi and Pál (2004) primarily looked into the matter of efficient 

regulation and the system’s effect on Hungarian power stations. They modeled power 

plants’ decisions with the IID-MEH model, which was originally developed, on 

commission from the Hungarian Energy Office, to analyze the impact of electricity 

market liberalization. Based on their model, Hungarian companies are expected to be net 

sellers: to sell their quota surplus, about 2.7 - 6.1 million tonnes annually, in the European 

allowance market. The resulting revenues provide the funds for their carbon investments. 

Through a revenue-neutral, zero-windfall-profit allocation of emission units, the 

government should retain and sell about 4 to 7 million tonnes of CO2 permits each year, 

which would yield extra proceeds in the 5 – 35 billion HUF range annually between 2008 

and 2012. Then again, the state could use this additional revenue to finance its climate 

change related tasks (flood protection or investments to facilitate the adaptation of 

drought-stricken areas, for example). 

Delarue et al. (2010) analyzed the opportunities that the fuel switch induced short-term 

emission reduction constitute for the European electric energy sector. The analysis was 

performed using the E-Simulate model developed at the University of Leuven. The 

simulation provides an hourly breakdown of electricity generation for a one-year cycle in 

advance, at the level of the individual power plants. The system consists of inter-

connected “zones”, pertaining to a country or a group of countries. Inter-zone transfers 

are, just like in reality, limited. Demand is exogenous and given on an hourly basis; the 

model provides the least-cost production combination that can meet the demand from the 

zones. The model employs heuristics for generation dispatching, with some modifications 

in order to also account for certain technical conditions (minimum operating time, start-

up and shutdown times). Each power plant is assigned an availability factor, which 

quantifies unforeseeable outages (required regular maintenance works do not fall into this 

category, as these are scheduled for low-demand periods). The model uses uniform 

energy source prices throughout Europe, and power plants’ production decisions are 

independent from their existing contractual obligations. Simulation results suggest, 

according to the authors, that it is not only quota price, but also – and rather – the relative 

load on the system and the relative prices of gas and coal that the extent of abatement 

depends on. Their estimates for the volume of emission reduction induced by the 
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switchover to a less carbon-intensive fuel were 35 million tonnes and 19 million tonnes 

for 2005 and 2006, respectively. 

In the publications more closely related to the topic of this dissertation, authors develop 

real option models for the firm. They use the option techniques commonly applied in 

stochastic finance to model corporate decisions and their consequences. Real option 

models are to be used in valuation (decision) situations where the individual outcomes are 

uncertain, and we can assign probability values to the different cash flows. Also, they are 

a reasonable choice for situations with several inter-related future decisions. The results 

of traditional DCF (discounted cash flow) models tend to be unsatisfactory in such cases 

(for more details on real option, see Dixit and Pindyck (1994), and Bélyácz (2011)). 

Herbelot (1994), as well, employs a real option model to model the decisions of a power 

generator company. One of his examples is about a coal-fired power plant that is obliged 

to comply with the Clean Air Act’s provisions on sulfur dioxide emissions. The power 

station may buy SO2 allowances or switch to low-sulfur coal or install end-of-pipe 

emission reduction equipment (a scrubber). The two stochastic variables, both of which 

follow a Wiener process, are the market price of sulfur dioxide allowances and the price 

difference between high-sulfur and low-sulfur coal. The author used a binomial model for 

pricing the two options: the switchover to low-sulfur coal and the installation of an end-

of-pipe scrubber. He also examined the degree to which the different factors affect the 

value of the option. The second example discusses the effect of the installation of a coal 

gasification unit, with the two stochastic variables – both following a Wiener process, 

again – being the prices of gas and coal. The valuation was performed with several 

parameters being varied by the author. 

Laurikka (2006) developed a stochastic real option simulation model to examine the 

influence of the EU ETS on a combined cycle (IGCC) power plant. He concludes that the 

DCF method is unsuited for the valuation of this type of investments because of the 

significant degree of risk that the EU ETS constitutes and the many real option situations 

it incorporates. 

Abadie and Chamorro (2008) analyze a coal-fired power station, which has the 

opportunity to invest in a carbon capture (CCS) technology. The two stochastic variables 

are the price of the allowances and that of electricity. The authors use a two-dimensional 

binomial model to find the optimal investment decision. Based on the parameter values at 
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the time of the study, immediate installation would not have been rational, yet the 

situation will change considerably if and when CCS technologies undergo significant 

improvements or governments decide to support such investments. 

Hlouskova et al. (2005) present the real option model for a power generation firm 

operating in a liberalized energy market. The model was used to value the power plant 

and to identify the risk profile of its earnings. They concluded that the production 

decision of the company is independent of its entire portfolio (which also includes its 

long-term agreements). To model the price of electricity, they used a mean-reverting 

stochastic process with jumps, with seasonality being represented by a mean parameter 

that changes with time. The model did not incorporate any expenses for emission units, 

but did account for fuel costs and the various technical constraints (minimum up and 

down times, upper and lower capacity limits, startup and shutdown times and costs). 

Dynamic stochastic programming and Monte Carlo simulation were used to arrive at the 

optimum operating schedule.  

Cragg et al. (2011) define the real option decision model of an emission market 

participant power plant as a function of three assets. They show that the company may 

significantly reduce its risks by complementing the traditional two-instrument (electricity 

and fuel price) hedging strategy with allowance transactions. Such hedging will reduce 

the variance of its profits to a significant degree. 

The dissertation aims to contribute to the research avenue that relies on real options. The 

first and foremost goal is to derive the volume of emissions and to answer various 

questions related to the valuation of power plants. As an initial step, I will derive the 

gross margin (per unit of output), as the very foundation on which profit maximizing 

decisions are based. Subsequently, I will deduce the decision model of the rational power 

generation generation firm with respect to the utilization of its capacities vs. the 

suspension of its production. At the end of the chapter, I will show that the future 

emissions of the power plant may be interpreted as the sum of the digital options for the 

spread, and the value of the power plant as the sum of European spread options. 

According to the model employed by Löfgren (2000) and already mentioned in the 

introduction in relation to the MNPB function, the maximum sum the company is willing 

to pay for the allowances is determined by the difference between the selling price of its 

product and its average variable cost excluding allowance costs. Is the allowance price 
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lower than this value, production runs at full capacity, but if the emission unit price is 

higher, the firm’s output is zero. The various technological constraints (for example the 

additional costs of starting up and shutting down the capacities) set aside, and given that 

the company’s technology is fixed in the short run, the short run marginal cost curve can 

be taken as horizontal. The real option model applied in the dissertation makes use of 

Löfgren’s approach, as well: for the interval considered, the technology of the firm to be 

modeled is taken as given, and the marginal cost curve of the power plant is considered 

horizontal up to its capacity limit for the time-of-day interval in question (and infinite 

otherwise). The changes in the prices of the electric energy produced and the company’s 

inputs induce daily shifts in the horizontal MNPB function. If we consider the curve in 

the long run, we arrive at the downward sloping MNPB function that environmental 

economics models assume (I will elaborate on this in more detail at the end of the 

dissertation). 

For the purposes of our subsequent analyses, let us assume a power generation firm, 

which generates electric power by burning gas and the production-related carbon dioxide 

emissions of which fall under the EU ETS regulation. We further assume that: 

 The company’s technological parameters (type of fuel used, efficiency, carbon-

intensity) are fixed for the interval examined 

 The company is a price-taker, that is, the prices of its product (electric energy) and 

inputs (gas, allowances) are exogenous factors, it has no influence whatsoever on 

them 

 Markets are characterized by sufficient liquidity and zero transaction costs 

 The price of electricity is constant within each peak and off-peak period of each 

day, while the price of allowances is constant within each day 

 The company sells the energy produced on the spot market, and that is where the 

necessary inputs are procured, as well (i.e. holds no stocks) 

 The impact of technological constraints (minimum up and down times, for 

example) is negligible, operation is flexible. 

Let us see how, in view of the price of electricity, input prices and technological 

parameters, a rational power plant decides about the operation of its generator. 
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II.1. At the Heart of the Profit-Maximizing Decision: The Gross Margin Earned on 

Each Unit of Electric Energy Sold 

 

The energy generation capacity of the power plant is a conditional “conversion device” 

that generates, depending on their production decision – i.e. conditionally –, outputs 

(electric energy) from the inputs (gas and emission allowances). To the short-term profit-

maximizing decision, fixed costs are not relevant. Substantial variable costs were broken 

down into three basic categories in the model (cost of the fossil fuel, cost of covering the 

emissions with allowances, other variable costs). 

The company’s spread (or gross margin) can be calculated as follows: 

Spread = Sales revenue from the energy generated – Cost of the required energy source – 

Cost of the required emission allowances – Other variable costs    1.   

Let ߟ be the thermal efficiency of the power plant, which shows how much electric energy 

the plant can generate from a unit of heat-content input. Its value is between 0% and 

100% (a higher value indicates a higher efficiency). Let ߜ denote the carbon intensity of 

the fuel, that is, how much carbon dioxide is released when burning the given energy 

source (its unit being tCO2/MWh). 

If prices are denoted by S (pow: electric power, gas: gas, eua: emission allowance) and 

other variable costs by ݒ, then the spread per unit of energy generated will be: 

௪݀ܽ݁ݎݏ = ܵ௪ − ܵ௦ ⁄ߟ − ܵ௨ ∙ ߜ ⁄ߟ −    .2      ݒ

By rearranging the expression, we arrive at the spread realized on each unit of emission: 

௨݀ܽ݁ݎݏ = ௪݀ܽ݁ݎݏ ∙ ߟ ⁄ߜ = ൫ܵ௪ − ൯ݒ ∙ ߟ ⁄ߜ − ܵ௦ ⁄ߜ − ܵ௨   3.   

Several variants of the spread concept are being used in the energy market (for details, 

see Alberola – Chevallier – Cheze, 2008). These differ in, on the one hand, whether they 

pertain to coal or gas-fired facilities (the former is a dark, the latter is a spark spread) 

and, on the other hand, whether they account for the costs of procuring the quota amount 

required to cover the plant’s emissions (if yes, clean is used as a prefix). Hence the four 

spread concepts used in the field: dark spread, spark spread, clean dark spread, clean 

spark spread. The spread concept I use throughout the dissertation basically corresponds 
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to clean spark spread, with the difference that, first, it pertains to one individual power 

plant and, second, it includes an other variable cost term. The formula presented above 

differs from the approach of Hsu (1998) in two vital aspects: the profit function 

incorporates the cost of the emission allowances and, also, it includes an other variable 

cost term. 

The profit-maximizing power plant generates power only if the spread to be realized is 

positive – otherwise, they are better off suspending production. This statement only holds 

true if the model does not take into account the additional technological constraints of 

power plants. Which include, for example, minimum operating point, which shows the 

minimum capacity at which it must be run as a percentage of its nominal capacity, the 

plant’s heat rate curve, which gives the efficiency of operation at partial load levels, 

minimum up and down times, startup and shutdown times, startup and shutdown costs. 

Calculating the optimal production decision with all the technological constraints taken 

into account would necessitate a far more complex simulation technique. The “directions” 

of the conclusions of the dissertation will remain valid even if technological constraints 

are introduced to the picture – yet the actual figures will be different. The more flexible – 

that is, the easier to start up and shut down – the power plant, the closer the no-constraint 

model will be to reality. Hereinafter, the impact of technological constraints will not be 

considered. 

The per-unit profit function ߨ௪ of the profit-maximizing firm can be derived from the 

spread as follows: 

௪ߨ = ௪݀ܽ݁ݎݏ൫ݔܽ݉ 	, 0൯ = ൫ܵ௪ݔܽ݉ − ܵ௦ ⁄ߟ − ܵ௨ ∙ ߜ ⁄ߟ − ,ݒ 0൯    4. 

The profit function can also be given in a per-unit-of-emission form (ߨ௨), which yields 

the following equation: 

௨ߨ = ௨݀ܽ݁ݎݏ)ݔܽ݉ , 0) = ௪ߨ ∙ ߟ ⁄ߜ = 

= ൫൫ܵ௪ݔܽ݉ − ൯ݒ ∙ ߟ ⁄ߜ − ܵ௦ ⁄ߜ − ܵ௨ , 0൯	     5.   

The conditional value of the profit function ߨ resembles the payoff functions of options.  

Which fact allows us to rely on the tools of stochastic finance used for the pricing of 

conditional claims in modeling the related decision situations and in pricing the real 

assets in question. In addition to presenting relevant real option analogies, I will also 



 

47 
 

introduce a fourth asset into our model in the next section (the day’s price of electricity 

will be split into two prices). 

 

II.2. The Four-Asset Real Option Model for the Future Spread 

 

In reality, electric energy cannot be stored or, more precisely, can only be stored at a very 

high cost. Production is, in practice, adjusted to current and expected demand, and spot 

prices are quoted on an hourly basis. Fluctuations in the price of electricity demonstrate 

strong seasonality (Marossy, 2011). Within the day, electricity price changes according to 

human activities: high consumption in the „daytime” peak period results in a high price, 

while the low demand of evening hours induces a significant price dip. Typically, the 

power plants that operate during the low-demand (off-peak) period are the ones that 

generate electricity at a relatively lower per-unit cost. A weakness of theirs is that they 

tend to be less flexible (start-up and shutdown costs a significant amount of time and 

money). During the high-demand (peak) period, additional power plants join in: the ones 

that generate electric energy at a higher cost, but in a timing that matches demand. The 

gas-turbine facility to be modeled belongs to this latter type. 

Regular fluctuations may be observed within the week as well (Ulreich, 2008, pp. 817-

820.), the explanation for which is that a significant share of industrial production and 

service activities is concentrated to weekdays. Also detectable are some intra-annual 

cycles, primarily due to climatic factors: during periods of abundant precipitation, 

hydropower stations produce more energy, which acts to moderate the price of electricity. 

Particularly warm or cold seasons, nevertheless, increase consumption and, hence, 

electricity prices: during a hot summer, it is air conditioning, while in a cold winter, it is 

the increased heating need that leads to high levels of electricity consumption. Weekly 

and yearly cycles were not taken into consideration in the model. 

Another typical electricity market phenomenon is the strikingly frequent occurrence of 

extreme values: a sudden hike in demand or a capacity shortage due to some technical 

failure cause significant upward spikes, while a sudden decline in demand induces a 

downward spike in the price level of electricity. This frequency of extreme values was 

incorporated into the model through the high volatility of electricity prices, yet I did keep 
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the assumption about the log-normality of future prices (i.e. did not apply a heavy-tailed 

distribution). 

In order to more accurately approximate the real-life situation, I decided to enhance the 

three-asset model to include a fourth asset, namely by splitting the day into two equal 

parts: the off-peak period comprises all the low-demand (and hence low-price) hours 

(8:00 p.m. - 8:00 a.m.), while the peak period covers higher-demand (higher-price) hours 

(8:00 a.m. - 8:00 p.m.). For the two time-of-day periods, there are two different electricity 

prices: an off-peak and a peak price. 

The advantage of the four-asset model is that it facilitates a better approximation of the 

real decision situation of our gas-turbine power plant, where it is, depending on the future 

market situation and the current prices, typically idle during off-peak hours, but runs in 

the peak period. Hereinafter, I will use the expression spread to exclusively denote the 

gross margin realized on each unit of energy generated and hence refrain from using the 

index „pow”; the gross margin per unit of emission can be arrived at by a simple 

transformation. 

The spread associated with any future day ߬ can be expressed as a function of the relevant 

future spot prices (denoted by ܵ(߬)). In the four-asset model, the peak and off-peak 

spreads can be given as: 

(߬)݀ܽ݁ݎݏ = ܵ(߬) − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ −      ݒ

(߬)ି݀ܽ݁ݎݏ = ܵି(߬) − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ −  .6   ݒ

While the per-unit (of energy produced) profits ߨ to be realized by the profit-maximizing 

firm on a future ߬ day are, respectively: 

(߬)ߨ = ,(߬)݀ܽ݁ݎݏൣݔܽ݉ 0൧ 

(߬)ିߨ = ,(߬)ି݀ܽ݁ݎݏൣݔܽ݉ 0൧      7. 

The total volume of profit ߎ  to be realized on a given day ߬  can be reckoned by 

multiplying the per-unit profit ߨ pertaining to the given period by the daily maximum 

capacity Γ for the same period. As both periods constitute the exact half of a day, it 

follows that a day’s total profit equals the product of the arithmetic mean of the per-unit 

profits and daily capacity: 
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Π(߬) = 0.5 ∙ Γ ∙ (߬)ିߨ + 0.5 ∙ Γ ∙ (߬)ߨ = Γ ∙ గషೌೖ
(ఛ)ାగೌೖ(ఛ)

ଶ
  8. 

 

II.3. The Real Option Model of Carbon Dioxide Emissions 

 

A power plant operated in a profit-maximizing manner only produces energy if its 

revenue exceeds its variable costs, that is, if the value of the spread between the future 

spot prices is positive. Subsequently, I will assume that the company’s carbon dioxide 

emissions are the direct, technologically determined consequence of its production, i.e. 

the company does not have an end-of-pipe cleaning technology in place that can be freely 

switched on or off. If and when production is running, the company releases carbon 

dioxide into the atmosphere, but whenever it stands still, it has a zero emission level. 

In view of the above, it is possible to derive the emission volume of the company from 

the profit-maximization condition. Let there be a Bernoulli distributed, binary (0/1) 

production decision variable (Λ) such that: 

Λ(߬):= ൜1 (߬)݀ܽ݁ݎݏ	݂݅ > 0
0 ݁ݏ݅ݓݎℎ݁ݐ

ൠ       9.  

If the spread is positive, the firm can realize a profit on its production and thus the turbine 

is running (Λ = 1) and releasing carbon dioxide into the atmosphere; if, however, the 

spread is negative, the firm would realize a loss if it was producing electricity, therefore 

its generation capacity sits idle (߉ = 0) and emission is zero. 

The probability that the turbine will operate at a given time ߬ in the future equals the 

probability that the then-current gross margin is positive: 

E[Λ(ݐ)] = (߬)݀ܽ݁ݎݏ)ܲ > 0) ∙ 1 + (߬)݀ܽ݁ݎݏ)ܲ ≤ 0) ∙ 0 = (߬)݀ܽ݁ݎݏ)ܲ > 0) 10.   

The value of the production decision variable ߉ corresponds to the payoff function ܾ݊ை 

of a European-style binary option for the spread, with maturity ߬ and exercise price ݒ. 

Λ(߬) = ,࢝,(0)ࡿ)ைܾ݊ ,ݒ ߬) = ൜1 ᇱ࢝		݂݅ ∙ (߬)ࡿ > ݒ
0 ݁ݏ݅ݓݎℎ݁ݐ

ൠ   11. 
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Where ࡿ is the column vector of the prices and w the column vector of the weights for the 

individual assets, with a positive weight for the first underlying and negative weights for 

the rest, namely: 

′࢝ = [1 −1 ⁄ߟ ߜ− ⁄ߟ ].         12. 

The payoff function of the option is an expression of future realization. As far as expected 

emissions are concerned, we are interested in the expected value of this expression. 

Given that the price of the spread option itself is the present value of the payoff function’s 

expected value, the expected value of future emissions can also be derived from the prices 

of the spread options that use the appropriate peak and off-peak electricity prices. 

The volumes of carbon dioxide emissions are not exchange-traded, thus the conditions of 

arbitrage-free pricing do not hold. Consequently, it is not the risk-neutral, but the physical 

measure that we have to use in the option pricing formula used to estimate emissions5. In 

practice, this means that the drift parameter used to calculate the future distributions will 

not be derived from the risk-neutral rate of return, but from the parameters of the model 

fitted to observed price movements. Whereas in calculating the present value, we will 

have to use the sum ݎ∗ of the risk-free rate plus the risk premium. 

The option’s value equals the present value of the expected value, therefore the expected 

value can be given as the future value of the option’s price. The expected value of the 

production decision variable Λ can be expressed in terms of the price ܾ݊ of the binary 

option. 

E[Λ(ݐ)] = E[ܾ݊ை(࢝,(0)ࡿ, ,ݒ ߬)] = ݁∗ఛ ∙ ,࢝,(0)ࡿ)ܾ݊ ,ݒ ߬)    13.   

The emission volume Q on a future day ߬ can be given as a function of the production 

decision variable ߉, the daily maximum capacity ߁, the carbon-intensity ߜ of the fuel and 

the thermal efficiency ߟ as follows: 

                                                
5 For details on the considerations related to physical and risk-neutral measures, see (Medvegyev, 2009) 
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Q(߬) = Λ(߬) ∙ Γ ∙ ߜ ⁄ߟ          14.   

We decided to split the day into two – a period of peak hours and a period of off-peak 

hours – in the four-asset model. In light of the above, the expected value of emissions on 

a future day ߬ will be: 

E[Q(߬)] = 


ଶ
∙ ߜ ߟ ∙ ݁∗ఛ ∙ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ܾ݊ൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ܾ݊ ,ݒ ߬൯൧ൗ   15.   

While the expected value of the cumulative emissions for a longer period ܳ(0, ܶ) that 

lasts from now to date T is given by: 

,(0ܳ]ܧ ܶ)] =

ଶ
∙ ߜ ߟ ∙ ∑ ݁∗ఛ ∙ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ܾ݊ൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ܾ݊ ,ݒ ߬൯൧்

ఛୀൗ  16.   

Thus the expected emissions of the power plant for a given period may be calculated 

based on the expected payoffs or prices of the binary options for the spread and the daily 

maximum amount of emissions. In the four-asset model, the expected volume of 

emissions can be derived from the future value of the arithmetic mean of the prices of the 

two (peak and off-peak) three-asset binary spread options by cumulating these values 

over the future period of interest and multiplying the result by the daily maximum output. 

Chapter IV will elaborate in more detail on questions related to the emission derived from 

the real option model. The emission’s probability density function and the maximum cost 

of compliance at a given confidence level will also be determined, among others. A 

detailed analysis of the results’ sensitivity to technological and market factors will also be 

provided.   

 

II.4. Real Option Valuation of the Power Plant 

 

The value of future profits depends on future prices. We, nonetheless, would like to 

evaluate the power plant in the present, which requires us to reckon the expected present 

value of future profits. To this end, we will use European-style spread options. 
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The payoff function ݏை of a European-style three-asset spread option with exercise 

price ݒ and maturity ߬ can be written as: 

,࢝,(0)ࡿ)ைݏ ,ݒ ߬) = ቄ࢝′ ∙ (߬)ࡿ − ݒ ℎܽ	࢝′ ∙ (߬)ࡿ > ݒ
0 ݁ݏ݅ݓݎℎ݁ݐ

ቅ    17.   

The payoff function of the option can be used to express the profit realized on each unit 

of electric energy generated during peak and off-peak hours: 

(߬)ିߨ = ,࢝,(0)ࢇࢋିࢌࢌࡿை൫ݏ ,ݒ ߬൯ 

(߬)ߨ = ,࢝,(0)ࢇࢋࡿை൫ݏ ,ݒ ߬൯       

(0)ࢇࢋିࢌࢌࡿ = 
ܵ௪
ି(0)

ܵ௦(0)
ܵ௨(0)

  (0)ࢇࢋࡿ = 
ܵ௪
(0)
ܵ௦(0)
ܵ௨(0)

  18. 

Thus the sum total of the profit realized on a future day ߬ is given by: 

Π(߬) = 
ଶ
∙ ቀݏை(࢝,(0)ࢋ࢙ࢇ࢈ࡿ, ,ݒ ߬) + ,࢝,(0)ࢇࢋࡿை൫ݏ ,ݒ ߬൯ቁ   19. 

The option’s payoff function is an expression of future realization. With the valuation of 

the facility in mind, we are interested in the expected present value of this expression. 

Given that the price of the spread option itself is the present value of the payoff function’s 

expected value, the expected value of future profits can also be derived from the prices of 

the spread options that pertain to the appropriate peak and off-peak electricity prices. If 

  stands for the price of the option, the present value of the expected profits for aݏ

future day ߬ can be written as: 

ொ[Π(߬)]൧ܧൣܸܲ = 

= ܸܲ ቈܧொ 
Γ
2 ∙ ቀݏ

ை൫࢝,(0)ࢇࢋିࢌࢌࡿ, ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿை൫ݏ ,ݒ ߬൯ቁ൨ = 

= 
ଶ
∙ ቀݏ൫࢝,(0)ࢇࢋିࢌࢌࡿ, ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ݏ ,ݒ ߬൯ቁ   20. 

Concerning the valuation of the power plant’s profits, the conditions for an arbitrage-free 

pricing would only be met if (among others) the facility as an asset would be perfectly 

divisible for the shares to be bought and sold at low transaction costs. Given that this is 
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not practically feasible (even though a number of energy generation companies are indeed 

listed on some stock exchange, but they typically own more than one power plant and 

their balance sheet tends to include several additional assets, as well), the power plant is 

not sufficiently divisible for its shares to be traded at low transaction costs. Accordingly, 

the valuation, too, will be performed using the physical measure, instead of the risk-free 

one. 

Relying on our option analogy, we can express the financial value of the power plant as 

an asset: it equals the sum total of the present values of all the expected gross margins to 

be realized over its entire lifetime T: 

ܸ	 = 
ଶ
∙ ∑ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ݏൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ݏ ,ݒ ߬൯൧்

ఛୀ   21. 

As evinced by the above, the real option model can be used to calculate the revenue 

generation capacity of the power plant. In the four-asset model, the price of the power 

plant corresponds to the aggregate amount of the arithmetic means of the appropriate 

three-asset spread options. The calculation is based on the assumptions that: the cost of all 

repairs throughout the power plant’s lifetime is included in the other variable costs term; 

tax effects are ignored; replacement investments are also included in other variable costs; 

end-of-life (residual) value is zero. 

Chapter V will further analyze the questions related to the real option based valuation of 

the power plant. I will examine how sensitive the power plant’s price is to changes in 

certain technological and market factors, and how the plant might reduce its risk arising 

from price fluctuations in the underlying commodities. I will provide an overview on a 

method for evaluating an efficiency improvement project, and on the factors that the 

result depends on. Afterwards, we will determine the extent of the loss our power plant 

would make if it was not operating in the spot-price-dependent, profit-maximizing 

fashion we have assumed so far, but enters long-term production agreements and runs 

continuously instead. 

In the next chapter, I will discuss the pricing model applied to the underlying assets and 

the procedures used to evaluate the spread options. 

   



 

54 
 

III. THE PRICING MODEL AND THE PRICING PROCEDURES 

APPLIED 
 

In order to make use of the real option model, we need a stochastic model to describe the 

price movements of the underlying assets. Subsequently, I will first introduce the 

geometric Ornstein-Uhlenbeck (GOU, Log Ornstein-Uhlenbeck, logOU or Exponential 

Vasicek) model we are going to use. I will present the mathematical relationships 

associated with the simulation runs (that is, the discrete realizations of the process), and 

the distributions of the prices for a future point in time. Afterwards, I will derive a 

relationship that will allow for the analytical pricing formulae pertaining to geometric 

Brownian motion to be applied to a weighted case of underlying assets that follow a GOU 

process. The stochastic model was fitted to market data from the German energy 

exchange. To round off the chapter, I will introduce the procedures used to evaluate the 

spread options. 

The price movement of stocks is often presumed to follow a geometric Brownian motion 

(GBM). In this model, consecutive continuous returns are independent, future prices are 

log-normally distributed. As regards geometric Brownian motion, the standard deviation 

of the distribution of logarithmic returns increases proportional to the square root of time; 

in the model, as we progress in time, the distribution gets “wider”: the range that the 

higher-probability price values cover is becoming larger and larger. The price movements 

of commodities are, however, most often modeled with mean-reverting stochastic 

processes. In these models, prices are “prone” to revert to a long-term mean after a series 

of swings. The distribution of the price stabilizes in the long run, its standard deviation 

becomes constant. According to the economic consideration behind the application of 

mean-reverting models, raw material prices are determined by the costs of extraction 

(supply side) and the gross margin that can be realized on the final product (demand side). 

On both sides, the factors are more or less stable in the long run, which is why the price, 

though swinging in the short run due to temporary fluctuations in supply and demand, 

reverts to a certain constant value with time. 

The arithmetic mean-reverting process was defined by Ornstein and Uhlenbeck (1930), 

who employed their model to describe the velocity of the Brownian particle under the 

influence of friction: 
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௧ݔ݀ = Θ)ߣ − ݐ݀(௧ݔ + ݀ߪ ௧ܹ 

Where Θ > 0, ߪ > 0 and ௧ܹ is a Wiener process     22. 

The discrete realizations of the process can be simulated according to the following 

relationship (van der Berg, 2011): 

௧ାఋݔ = ௧݁ିఒఋݔ + Θ൫1 − ݁ିఒఋ൯ + ටଵିషమഊഃߪ

ଶఒ ܰ,ଵ       23. 

At time T, the variable is normally distributed with the following parameters: 

்ݔ 	~	ܰ ቂΘ + ݔ) − Θ)	exp(−λT), 	
మ

ଶ
	൫1 − exp(−2λT)൯ቃ   24. 

Among the first ones to introduce the Ornstein-Uhlenbeck model to the field of stochastic 

finance was Vasicek, who used it to describe spot interest rate changes over time (1977). 

One of the specialties of the arithmetic base model is that the random variable to be 

modeled can take negative values, as well. This characteristic is not much of an advantage 

with respect to commodity markets, where negative prices are hardly possible6. 

 

The geometric Ornstein-Uhlenbeck process 

In order to avoid prices below zero, it seems advisable to use the one-factor model of 

Schwartz (Schwartz, 1997), where future movements in commodity prices follow the 

process below: 

݀ܵ = ߠ)ߣ − ݐ݀ܵ(݈ܵ݊ +  .25       ܹ݀ܵߪ

The model can be traced back to an arithmetic Ornstein-Uhlenbeck process. The model 

pertaining to the logarithm of the price can be derived by applying Itō’s Lemma: 

݀ ln ܵ = ߤ)ߣ − ln ݐ݀(ܵ +  ܹ݀ߪ

ߤ = ߠ − ఙమ

ଶఒ
          26. 

                                                
6 Electricity, however, is one of the very exceptions: because of the very limited and costly availability of 

storage and the absolute necessity of balancing supply and demand, it may eventually have a negative price. 
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In this model, the price distribution at maturity can be obtained from the distribution of 

the arithmetic model by adjusting the mean term: 

்݈݊ܵ 	~	ܰ ቂߠ −
ఙమ

ଶఒ
+ ቀ݈݊ܵ − ߠ + ఙమ

ଶఒ
ቁ 	exp(−ߣT), 	

మ

ଶఒ
	൫1 − exp(−2ߣT)൯ቃ 27. 

The process is interchangeably called one-factor Schwartz model, logarithmic Ornstein-

Uhlenbeck, geometric Ornstein-Uhlenbeck (GOU) process, or exponential Vasicek model 

by others (Brigo et al., 2007). 

In the real option model, the prices of the inputs are multiplied by technologically 

predetermined weight factors. A multiplication by a non-negative weight w corresponds 

to a parallel shift by a value ln(w) in the logarithmic model. In the arithmetic model, both 

the initial and the long-term mean parameters are shifted by this same value, the mean-

reversion rate remains unchanged. By applying the following substitutions, we may 

express the price distribution at maturity for the weighted case: 

ln	(ܵ) ⟶ ln(ܵ) + ln	(ݓ), ߠ ⟶ ߠ +  (ݓ)݈݊

The distribution of the weighted value at maturity date T will be: 

ݓ)݈݊ ∙ ்ܵ)	~	 

ܰ ቂߠ + (ݓ)݈݊ − ఙమ

ଶఒ
+ ቀ݈݊ܵ − ߠ + ఙమ

ଶఒ
ቁ 	exp(−ߣT), 	

మ

ଶఒ
	൫1 − exp(−2ߣT)൯ቃ 28. 

The real option model presented earlier incorporates several assets, therefore we will need 

the joint probability density function of the three-dimensional logarithmic Ornstein-

Uhlenbeck process, which will be a multi-dimensional normal distribution with the 

following parameters: 

ܰ ቂࣂ + (࢝)݈݊ − మ࣌

ଶࣅ
+ ቀࡿ − ࣂ + ࣌

ଶࣅ
ቁ 	exp(−ࣅ ∙ T), ቃ    29. 

Where vector ࢝ contains the weights, ࣂ the long-term means, ࣅ the mean-reversion rates, 

 ଶ the variances, and  is the covariance࣌  the logarithms of the initial prices andࡿ

matrix. Utilizing the formula of effective correlation as provided by Deng et al. (2008) 

and the variance of the distribution, the elements of the covariance matrix are given by: 

Σ୧,୨ = ϱ୧,୨ ∙
∙ౠ
ఒାఒౠ

∙ ൣ1 − exp	(−൫ߣ୧ +  .୨൯T)൧      30ߣ
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where ϱ୧,୨ is the correlation between the Wiener terms. 

 

The Correspondence Between Geometric Brownian Motion and Geometric 

Ornstein-Uhlenbeck Motion 

One of the models most widely used in stochastic finance is geometric Brownian Motion 

(GBM), where the price movements of the underlying asset follow the process: 

݀ܵ = ݐ݀ܵߤ +  .31         ܹ݀ܵߪ

The distribution of the price’s logarithm is normal, and the joint probability density 

function of the multi-dimensional variant is characterized by the following parameters 

ࢀࡿ)  is the vector of the prices at maturity,	ૄ is that of the expected returns, and the 

elements of covariance matrix ࢳ can be derived from the products of the correlation 

coefficients between the Wiener terms and the standard deviations thereof): 

ܰ	~	(ࢀࡿ)݈݊ ቂቀૄ −
ો

ଶ
ቁ ∙ T,  ∙ Tቃ       32. 

Regarding the pricing of European-style derivatives, the price of the derivative depends 

on the price of the underlying asset at maturity. The particular path followed by the price 

until maturity does not have an influence on the yield. A notable consequence of this 

attribute is that if we have an analytic pricing formula pertaining to geometric Brownian 

motion, the very same formula can, by way of parameter substitution, also be used for the 

valuation of European-style derivatives with underlying assets that follow a GOU 

process. It is important to note that the valuation is performed under the physical measure, 

therefore we do not need to address the issue of finding a risk-neutral measure for the 

geometric Ornstein-Uhlenbeck process. The correspondence between the two types of 

process can be created the following way: based on the parameters of the GOU model, we 

determine the multi-dimensional distribution at maturity, and find, by calculation, the 

parameters of the GBM process that yields the exact same distribution. Then, the 

resulting GBM parameters are substituted into the potentially available analytic formula. 

Considering the multi-dimensional weighted case, the drift and variance vectors of the 

GBM process that corresponds to the GOU process are: 
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ો′ =	 ો
మ

ଶࣅ
	൫1 − exp(−2ࣅT)൯ Tൗ         

ૄ′ =
࣌ି(࢝)ାࣂ

మ

మࣅା൬ࡿିࣂା
࣌

మࣅ൰	ୣ୶୮(ିࣅ∙)

ࢀ
+ ોᇱ


      33. 

According to Deng et al. (2008), the formula of the correlation needed to calculate the 

covariance matrix can be obtained from: 

ρ୧,୨ = 2ϱ୧,୨ ∙
ටఒఒౠ

ఒାఒౠ
∙ ଵିୣ୶୮	(ି൫ఒାఒౠ൯)

ඥଵିୣ୶୮	(ିଶఒ)ටଵିୣ୶୮	(ିଶఒౠ)
      34. 

where ϱ୧,୨ is the correlation coefficient between the Wiener terms. 

 

III.1. Fitting the Stochastic Model to Market Data 

 

The starting point for the estimation of the model’s parameters was the simulation 

equation of the geometric Ornstein-Uhlenbeck process (van der Berg, 2011): 

ln	( ௧ܵାఋ) = ln	( ௧ܵ)݁ିఒఋ + (Θ − మ

ଶ
)൫1 − ݁ିఒఋ൯ + ටଵିషమഊഃߪ

ଶఒ ܰ,ଵ    35.   

The model fits to a linear equation: 

ln	( ௧ܵାఋ) = ܽ ∙ ln	( ௧ܵ) + ܾ + ߳        36.   

The coefficients estimated by the least squares method are used to express the parameters 

of the stochastic model: 

ߣ = ୪୬()
ఋ

ߪ  = (ୟ)	ටିଶ୪୬(߳)݀ݐݏ
ఋ∙(ଵିమ)

  Θ = ୠ
ଵିୟ

+ మ

ଶ
    37.   

The correlation matrix is calculated from the resulting residual terms ߳. 

The prices for the individual instruments were those of the EEX7 energy exchange. The 

period examined was from 28 February 2008 to 31 May 2012. Only those days were 

                                                
7 www.eex.com 
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considered for which there was a price for all four assets, thus I had price data for 1010 

observation days in the end. For emission units prices were only available for working 

days, weekends were left out of consideration altogether, and the time distance between 

two consecutive observation days was assumed to be ߜ = 1/252 years. The very nature 

of the logarithmic model necessitated some further minor adjustments: days with a 

negative price (for off-peak power – there were four such occurences altogether) were 

excluded from the data set, and thus I had a final total of 1006 observations. 

Having been acquainted with the parameter estimation procedure, we now proceed to the 

regression results with respect to the individual assets. 

 

The Stochastic Model of the Emission Units 

As regards the emission units, the model was fitted to prices from the second trading 

phase (2008-2012), more specifically from 26 February 2008 to 31 May 2012. The 

following figure illustrates, based on data from the EEX, the movements in the quota 

price during the said period: 

 

Figure 5: Historical daily prices of EUA in the Second Phase. 

As depicted by the curve, the initial price of nearly 20 EUR/tonne increased throughout 

the first half of 2008 and then, after the 2008 financial crisis unfolded, it began to fall 

sharply. The primary cause of the price drop was the demand for electricity being 

proportional to GDP: the expected production – and, hence, the expected carbon dioxide 

emissions – of energy-intensive industries dropped due to business expectations having 

been darkened by the crisis. Consequently, the demand for and the price of the allowances 
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fell, too. Afterwards, the quota price hovered around 15 EUR/tonne for more than two 

years to once again take a steady downward path in mid-2011, gradually approaching the 

6.26 euro value that was used as the initial price in the simulation. 

Plotting the logarithms of the prices from consecutive trading days and performing the 

linear regression yields the following figure: 

 

Figure 6: Linear regression on the logarithm of consecutive EUA prices. 

It is clearly apparent that the regression line fits the data points quite well. The linearized 

model takes the following form: 

ln	( ௧ܵାଵ/ଶହଶ) = 0.9989	ln(S_t) 	+ 	0.0018      38. 

The gradient is very close to 1, which infers that autoregression only has a weak role in 

price developments (the theoretical gradient of GBM models is 1). The coefficient of 

determination is rather high (ܴଶ = 0.9929), which confirms the good fit of the model. 

The parameters and the shape of the fitted model are: 

ߪ = ߠ 0.4375 = ߣ 1.9222 = 0.2804 

dS = 0.2804	(1.9222 − lnS)	S	dt + 	0.4375	S	dz     39. 

Annual standard deviation is high (43.75%), the logarithm of the price reverts to 1.92, the 

exponential equivalent (exp	(ߠ)) of which is 6.84 EUR/ton. The initial value for the 

simulation is the price of the last day used in the fit: 6.26 EUR/ton. 
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The Stochastic Model of the Gas Price 

Gas prices were acquired from the EEX exchange, as well; they pertain to the day ahead 

contracts. Even though prices are for delivery the following day, I will treat them as spot 

prices hereinafter. Movements in the price of gas during the period examined, based on 

data from the EEX, are shown on the following graph: 

 

Figure 7: Historical daily prices of gas. 

Plotting the logarithms of the prices from consecutive trading days and performing the 

linear regression yields the following figure: 

 

Figure 8: Linear regression on the logarithm of consecutive gas prices. 

It is clearly apparent that the regression line fits the data points well. The linearized model 

takes the following form: 
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ln	( ௧ܵାଵ/ଶହଶ) = 0.9967	ln(S_t) 	+ 	0.0097      40. 

The gradient in the linear formula is close to 1, thus autoregression has a weak role in 

price developments. The coefficient of determination is remarkably high (ܴଶ = 0.9934) 

for gas, as well, which confirms the good fit of the model. 

The parameters of the fitted model and the shape of the resulting GOU model are: 

ߪ = ߠ 	0.4545 = ߣ 	3.0811 = 0.8251	 

dS = 0.8251	(3.0811 − lnS)	S	dt + 	0.4545	S	dz     41. 

Annual standard deviation is 45.45%, the logarithm of the price reverts to 3.0811, the 

exponential equivalent of which is 21.78 EUR/ton. The initial value for the simulation is 

23.47 EUR/MWh. 

 

The Stochastic Model of Peak and Off-Peak Power Price 

I relied on the hourly closing prices (EUR/MWh) of the EPEXSpot. Historical peak and 

off-peak prices were determined as the arithmetic means of the hourly closing prices in 

the interval between 8:00 a.m. - 8:00 p.m. and 8:00 p.m. - 8:00 a.m., respectively. The 

following figure shows the price movements for electricity during the period in question: 

 

Figure 9: Historical daily prices of peak and off-peak electricity. 

As it is obvious from the graph, the price of electricity is highly volatile, the time series is 

full of sudden spikes. Extreme lows are quite frequent, as well, there are even some 

negative values for off-peak power (which necessitated a minor adjustment to be made 
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when fitting the model built upon the logarithm of the price). Another observation is that 

daily peak and off-peak prices tend to move in unison, the cause of which might be that 

demand and supply exercise a similar influence on these two types of daily price. Plotting 

the logarithms of the prices from consecutive trading days and performing the linear 

regression yields the following figures: 

  

Figure 10: Linear regressions on the logarithm of consecutive off-peak (left) and peak (right) 
electricity prices. 

The regression lines have the following shapes: 

off-peak period:   ln	( ௧ܵାଵ/ଶହଶ) = 0.5979		ln(S୲)	+ 	1.5005 

peak period:   ln	( ௧ܵାଵ/ଶହଶ) = 0.7282			ln(S୲)	+ 	1.1184    42. 

The coefficient of determination for the off-peak period is 0.3574, which infers a worse 

fit compared to that of gas and quota prices. The fit is, nonetheless, better for the peak 

period, with a coefficient of determination of 0.5303. To allow for the application of the 

analytic results, the assumption of the GOU model was kept for all underlying assets. 

The shapes of the stochastic differential equations for electricity prices are: 

Off-peak period ߪ = ߠ 	5.3291 = ߣ 	3.8409 = 129.6231	 

dS = 129.6231(3.8409 − lnS)S	dt + 	5.3291	S	dz 

Peak period  ߪ = ߠ 	4.1001 = ߣ 	4.2203 = 79.9205	 

dS = 79.9205(4.2203 − lnS)S	dt + 	4.1001	S	dz     43. 
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In the model, the initial price used for off-peak power was 38.82 EUR/MWh, with a long-

term mean of exp(3.8409)=46.57 EUR/MWh. As regards peak power, the initial price 

was 67.67 EUR/MWh, and the long-term mean equalled exp(4.2203)=68.05 EUR/MWh. 

Correlation 

The relationships between the price changes of the four assets can be determined by 

calculating the correlation matrix of the remainder terms from the model fitting. I 

performed a hypothesis test for the results, where the null hypothesis was that the 

correlation between the terms is zero, while the alternative hypothesis was that the 

correlation coefficient is not equal to zero. The resulting matrices were: 

 

Table 4: Correlation coefficients and the corresponding p-values. 

There is a strong correlation between peak and off-peak electricity price (48.3%, p value 

is 0, the relationship is significant). The strong positive relation suggests that a part of the 

demand and supply factors that determine the price pertain to a given day, and thus 

influence the price of both periods. The absence of a perfect correlation, however, 

indicates that intra-day (possibly even hourly) market factors have a great role, as well. 

The relationship between gas and emission units is also positive and significant, though 

weaker (16.55%). Whenever the price of gas increases, the production share of power 

plants using fuels of higher carbon-intensities goes up, along with the emissions, and thus 

the quota price increases, as well. The significance of all the other relations was low, 

therefore the results and their interpretations are less reliable. The correlation coefficient 

of gas and electricity price is higher for the peak period (2.75%), than for off-peak hours 

(1.9%). Which might imply that a large number of gas power plants concentrate their 

production into the peak period. The growth in the demand for electric power is met by 

the more flexible, yet also more expensive gas-fired type of power plants, inducing a hike 

in the demand for and the price of gas. Emission units are weakly negatively correlated 

with electricity price. The explanation, once again, might lies in the production capacity 

mix. Short term supply is fixed, the growing electricity price acts to increase the share of 

gas power plants, which generate electricity in a cleaner way (with less carbon dioxide 

Correlation Off-peak Peak Gas EUA p-value Off-peak Peak Gas EUA
Off-peak 1.0000 0.4830 0.0190 -0.0192 Off-peak 1.0000 0.0000 0.5481 0.5439

Peak 0.4830 1.0000 0.0275 -0.0051 Peak 0.0000 1.0000 0.3845 0.8717
Gas 0.0190 0.0275 1.0000 0.1655 Gas 0.5481 0.3845 1.0000 0.0000

EUA -0.0192 -0.0051 0.1655 1.0000 EUA 0.5439 0.8717 0.0000 1.0000
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emissions); accordingly, this shift towards gas acts to reduce the demand for and the price 

of carbon credits. This negative effect is stronger (-1.92%) in the off-peak period (when 

the share of coal-fired power stations is relatively higher), and weaker during off-peak 

hours (-0.51%). 

 

Simulation Parameters Used 

For the purposes of the simulation, the year was broken down into 252 trading days, 

excluding weekend days from the model. The reason was that weekend days were not 

taken into account in the fitting of the model to market data, either, as for these dates, 

there were no historical prices available for all four assets. 

The technological parameters of the power plant to be modeled cannot be observed 

through market prices, because every single facility is different. The model assumes an 

open cycle gas-turbine power plant, the thermal efficiency (the quotient of the energy 

output and energy input) of which is 38% (Comission of the European Communities, 

2008). The energy content of the fuel used – natural gas – is 0.2014 tCO2 / MWh, other 

variable costs amount to 3 EUR/MWh and the power plant has an installed capacity of 

100MW, hence a maximum daily capacity – i.e. maximum amount of electric energy 

generated per day –   of 2400 MWh. 

The initial values for the spread calculated from the initial prices as per the technological 

parameters were: 

spreadoff-peak = 38.8167 - 23.4700/0.38 - 6.2600 * 0.2014 / 0.38 - 3 = - 29.2643 

spreadpeak= 67.6667 - 23.4700/0.38 - 6.2600 * 0.2014 / 0.38 - 3 = - 0.4143 44. 

As it can be seen from the initial prices, should the power plant for some reason decide to 

produce energy during the off-peak period, it would make a loss of about EUR 29 on each 

MWh. The spread is negative for the peak period, as well, production yields a loss, 

though close to break-even. 

The picture is roughly similar if we substitute the long-term means into the formula, 

production in the off-peak hours makes a loss, while operation in the peak period yields a 

small profit: 
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spreadoff-peak =   46.5685 - 21.7829/0.38 -  6.8357 *  0.2014 / 0.38 - 3 = -17.3778 

spreadpeak = 68.0518 - 21.7829/0.38 -   6.8357 * 0.2014 / 0.38 - 3 = 4.1055 45. 

The lower 5-percentile and the upper 95-percentile values of the spread values simulated 

by the stochastic price models over a period of 1 year are depicted on the curves below: 

 

Figure 11: Simulated 5% and 95% percentiles of the spread. 

As it can be seen from the figure, the behavior that corresponds to the long-term means is 

adopted by the spread model in two steps: the fast mean-reverting electricity reaches the 

state when it only fluctuates around its long-term mean rather quickly, while the more 

“sluggish” inputs only reach this state slower. Accordingly, we wittness a relatively fast 

initial correction in possible spread values, while the confidence intervals continue to 

widen at a decreasing rate in the longer run. 

Having reviewed the parameters of the simulation model, we now proceed with an 

overview of the valuation methods for the spread options. 
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III.2. Pricing Spread Options 

 

Spread options are a widely-used type of derivative instrument, used for risk management 

and asset valuation just as well as for speculative purposes. Derivatives traded in large 

volumes on overseas commodity exchanges are the spread options on the difference of 

the prices of soybean oil vs. defatted soybean meal, and crude oil vs. gasoline. On the 

energy market, it is the options for the spark spread (price difference of electricity and 

gas) the trading of which has become particularly widespread. 

The most simple form of spread options is written on the price difference of two 

underlying assets. The option, if exercised, gives its owner the right to receive the 

difference between the prices of the two assets in exchange for paying the exercise price. 

In other words, the owner of the option has the right to exchange the two underlyings at a 

predetermined exercise price. 

Considering multi-(more than two)asset spread options, there is usually only one asset 

with a positive weight and the rest with negative weights, that is, the price difference is 

calculated between one asset and the sum of the others. Similar to spread options are 

basket type options, which represent the right to buy or sell a basket of multiple (possibly 

differently weighted) assets at a predetermined exercise price. The spread option is a 

special type of basket option, where the weight is positive for the first asset and negative 

for the remaining assets. 

The prices of the four underlying assets (peak and off-peak electricity, gas, emission 

units) of the real option model employed in this dissertation are, according to the 

assumptions, log-normally distributed. Contrary to the sum of normally distributed 

variables, the sum of log-normally distributed variables cannot, to our present knowledge, 

be expressed in a closed analytic form. This is the case in spite of the fact that the topic 

(the sum of log-normal variables) has been in the forefront of mathematicians’, engineers’ 

and finance professionals’ attention for more than five decades now, ever since the time 

of Fenton (1960). In engineering sciences, an immense variety of problems are described 

by log-normal models (for instance, the shadowing effect and the distance-proportional 

radiation intensity of antenna towers). In finance, one of the most frequently used risk 

management measure is portfolio Value at Risk (VaR), which is calculated from the value 

distribution of a portfolio comprising log-normal assets. Many a time, this unsolved 
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problem (the distribution of the sum of log-normal variables) gets simplified and a normal 

distribution is assumed for the resultant distribution. Modern Portfolio Theory, a work of 

Harry Markowitz (1952), the 1990 Nobel Laureate for Economics, also presumes the 

portfolio’s value to be normally distributed. The normality assumption of the resultant 

distribution may, depending on the correlation structure and the weights applied, lead to a 

bias of significant proportions. 

It is partly “thanks” to this problem that the pricing of spread options is one of the most 

challenging areas in stochastic finance, as it requires us to solve far more complex 

problems than for European vanilla call options (for details on those see (Hull, 1999, pp. 

301-303.), (Benedek, 1999) and (Száz – Király, 2005)). 

As of now, a closed formula has only been found for two assets and an exercise price of 

zero (Margrabe, 1978); there is no analytic solution for more general cases. Lacking an 

analytic solution, researchers resort to numerical integration techniques, simulations and 

various analytic approaches for pricing spread options. 

What the numerical integration procedure is based on is that the value of a European 

option is, in the general case, the discounted expected value of the option payoff 

calculated according to the risk-neutral measure (Harrison and Pliska, 1981): 

 




















  tBT

T

t
v

Qb
t FKBdvrEV 0,maxexp       46.   

where E[.] denotes the expected value, calculated according to the risk-neutral 

(martingale equivalent) measure Q, and B stands for the price of the underlying asset. 

In order to arrive at the formula for the multi-asset case, we need to be able to write the 

joint probability density function of the risk-neutral measure in an analytic form. The 

subsequent numerical integration of the pdf can be done in several ways. In one of my 

prior works (2011), I relied on a special convolution integral to express the joint 

probability density function of N correlated variables in terms of an integral of dimension 

N-1. The problem with numerical integration methods is that an increase in the number of 

the option’s underlying assets increases the number of dimensions (of the joint probability 

density function), and hence the time required for the calculations (curse of 

dimensionality). 
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The method probably most widely used for pricing exotic derivatives is Monte Carlo 

simulation. A multi-dimensional Monte Carlo simulation essentially means the generation 

of multi-dimensional normal distributions of a given correlation structure. Between 

independent standard normal and dependent normal distributions, a bi-directional 

relationship can be established (for details see Nagy, 2011). The set of multi-dimensional 

normal distributions is closed under linear transformation: what we obtain by adding a 

vector to a multi-dimensional normal distribution and/or right-multiplying it by a matrix 

is always a normal distribution (Glasserman, 2003, p. 65.). A multi-dimensional normal 

distribution of given expected value vector and covariance matrix can be generated from 

a multi-dimensional standard normal distribution. Let us consider a multi-dimensional 

standard normal (N(0,1)) distribution Z, left-multiply it by matrix L and add vector ࣆ: 

ࡸ  ∙ ܼ + ࣆ = ,ࣆ)ܰ ࡸ ∙ (ࢀࡸ = ,ࣆ)ܰ )  where  = ࡸ ∙  .47   ࢀࡸ

The resulting equality can be used in a wide range of applications, as any real (symmetric 

and positive definite) covariance matrix can be factorized, using Cholesky decomposition, 

as the product of a lower triangular matrix and its transpose. Thus utilizing the above, we 

can easily generate correlated yields and, hence, prices for underlying assets from a given 

covariance matrix and expected value vector. 

From amongst numerical methods, discrete price trees are a frequently applied. While the 

binomial tree method was addressed by a relatively large number of authors (and even 

more practicing professionals), numerical tree techniques meant to model more than one 

asset are far more rarely encountered. Korn and Müller (2009) developed a procedure 

based on multi-dimensional trees for the pricing of derivative contracts on a set of 

correlated assets. The procedure makes use of another correspondence derived from the 

previous equation: 

ଵିࡸ ∙ ,ࣆ)ܰ] ) − [ࣆ = ܼ         48.   

That is, we can use a correlated normal distribution to generate a non-correlated standard 

normal distribution. Having performed the transformation to a non-correlated process, the 

multi-dimensional tree becomes easy to build, since the probabilities in the tree can be 

obtained as the products of the respective marginal probabilities pertaining to the 

individual assets. 
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A drawback of using numerical integration, simulation or discrete price trees for pricing 

is that they cannot provide a closed formula for the option value. Which, however, we 

would need for the sake of quickness on the one hand, and, on the other hand, because 

they can be used to derive the various factor sensitivities – the so-called Greeks – by way 

of partial derivation. One of the methods most frequently referenced and most frequently 

used by traders is Kirk’s approximation (1995), which gives an approximate solution for 

the price of a two-asset spread option. Jarrow and Rudd (1982) also worked to price a 

two-asset spread option, and approximated the risk-free measure with a Gram-Charlier A 

series. Alexander and Venkatramanan (2009) applied compound exchange option (CEO) 

approximation for pricing and hedging spread options. Carmona and Durrleman (2003) 

worked out a relatively accurate pricing method, which requires the user to numerically 

solve a multi-dimensional nonlinear equation system. Its implementation is relatively 

difficult; the authors used the Newton-Raphson algorithm. 

Another type of procedure opts for approximating the distribution of portfolio value (the 

problem of the sum of lognormals) by applying a distribution that does have a closed 

formula. They determine the theoretical distribution by way of momentum fitting, and 

then apply the closed Black-Scholes formula to the resulting approximate distribution. 

The majority of these procedures work with positive portfolio weights only, and are thus 

unsuited for pricing spread options (for the spread may just as well take a negative value). 

Milevsky and Posner (1995) used an inverse gamma distribution to approximate the 

probability density function of the portfolio’s value. Borovkova, Permana and Weide 

(2007) employed a negatively shifted log-normal pdf, which allows for negative portfolio 

values and is, hence, suitable for pricing spread options. 

The primary problem with early approximation methods is that they either provide a 

solution for two-asset spread options only or yield rather inaccurate results for baskets 

that comprise a small number of assets. Deng et al. (2008) derived a solution for multi-

asset spread options that is relatively quick and delivers an accurate result. This is the 

method that I will use for pricing the options and calculating the greeks throughout the 

dissertation. The authors elaborated solutions for two types of stochastic underlying asset 

processes (geometrc Brownian motion and mean-reverting geometric Ornstein-Uhlenbeck 

process). 
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If the geometric Ornstein-Uhlenbeck process is given by the following stochastic 

differential equation: 

dS୩ = ݈ܵ݃)ߣ− − ݐ)ܵ݀ߟ + ܵ݀ߪ ܹ       49.   

Then, according to the procedure outlined by Deng et al. (2008), the price of the option 

can be written as: 

Π = ݁ି்ାఓబା
భ
మఔబ

మ
Ι − ∑ ݁ି்ାఓೖା

భ
మజೖ

మ
Ι୩ே

ୀଵ −          ்Ιାଵି݁ܭ

μ୩ = η୩ −
ఙೖ
మ

ଶఒೖ
+ ݁ିఒೖ் ቀ݈ܵ݃ − ߟ +

ఙೖ
మ

ଶఒೖ
ቁ  υ୩ = σ୩ට

ଵି௫(ିଶఒೖ்)
ଶఒೖ

 50. 

The values of the integrals Ii included in the formula can be approximated using the 

method presented by the authors. 

The authors report that, considering a three-asset spread option, the order of magnitude of 

the calculation error is 10-4, while calculation time amounts to 2x10-4 seconds per option 

(i.e. even with 100 dimensions, it does not exceed 10-2 seconds). 

Because of the multiplication by the weights pertaining to the underlying assets, I had to 

modify the formula presented by the authors by performing the following substitutions: 

݈ܵ݃ ⟶ ݈ܵ݃ + ߟ  ݓ	݈݃ ⟶ ߟ + ݓ	݈݃  

This way, the procedure has become suitable for pricing spread options on weighted 

underlying assets. 
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IV. THE REAL OPTION MODEL OF CARBON DIOXIDE 

EMISSIONS 
 

In this chapter, I will give a prediction for the carbon dioxide emissions of our power 

plant, relying on the real option model. Besides the development of the expected value, I 

will also calculate the probability density function of emissions, which shows the 

probability of a given volume of emission occuring. I will furthermore determine the 

amount of emission units the company has to purchase in order to comply, that is, the 

maximum cost of compliance at a given confidence level. In a later part of the chapter, I 

will examine how the emission level of the power plant depends on changes in various 

technological and market factors. Changes in the individual factors will be evaluated 

under the ceteris paribus assumption, that is, all other parameters were considered 

unchanged (i.e. exogenous parameters). The power plant is assumed to be of negligible 

size compared to the market and its behavior has no influence on the market. In the 

sensitivity analyses, I relied on simulation results, and in order to speed up the evaluation 

process, I also made use of the variant of the analytic option pricing formula of Deng et 

al. (2008) that had been adjusted for the use of weights. 

As seen in section II.3, daily and peak-period emissions correspond to two three-asset 

European-style binary (payoff either 0 or 1) spread options. If the value of the spread for 

a given peak or off-peak period is positive, the company is generating power (and 

polluting), if however the weighted price difference is negative, the turbine remains 

turned off. The expected value of the emissions for a future day ߬ can be obtained, using 

the following formula, from the price of the binary options as calculated under the 

physical measure: 

E[Q(߬)] = 


ଶ
∙ ߜ ߟ ∙ ݁∗ఛ ∙ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ܾ݊ൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ܾ݊ ,ݒ ߬൯൧ൗ  51. 
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The expected cumulative volume of emissions ܧ[ܳ(0,ܶ)]  for the period from the 

present to date T can be derived as follows: 

,(0ܳ]ܧ ܶ)] =

ଶ
∙ ߜ ߟ ∙ ∑ ݁∗ఛ ∙ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ܾ݊ൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ܾ݊ ,ݒ ߬൯൧்

ఛୀൗ  52.  

 

 

The Probability of Production, Expected Carbon-Dioxide Emissions 

As we saw earlier, the profit maximizing power plant only generates power if the value of 

the spread is positive for the time-of-day interval in question. Based on the simulated 

spreads, the realizations of the binary production decision variable ߉ can be determined. 

The average of the realizations of variable ߉ (i.e. its expected value) pertaining to a given 

future day is equal to the probability of production for that day. The expected daily 

volume of the power plant’s emissions can, then again, easily be expressed in terms of the 

probability of production: the resulting value needs to be multiplied by the maximum 

volume of emissions for the period in question, which is given by the formula Γ ∙  if it ߟ/ߜ

is an entire day, while it is half of that for a single, half day long, time-of-day interval. 

The simulation was performed using the parameters of the model that was fitted to 

available market data; the last set of market prices were used as initial prices for the 

simulation. Based on the simulation runs, the following graphs can be plotted for the 

probability of production and for the expected emissions: 

  

Figure 12: Probability of production (left) and expected daily emissions (right). 
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As the figure shows, the probability that the company generates power in the peak period 

is about 50 percent. For the off-peak period, the probability is much lower (15%-25%). 

The reason is that the price of electricity is much lower during off-peak hours (as 

compared to the peak period), therefore the chance of the spread being above zero is 

smaller than it is in peak hours. Since I decided to divide the day into two equal parts, the 

probability of production for the entire day is the arithmetic mean of the two values. The 

entire-day value gives the percentage share of the 24 hours within a day during which the 

power plant is expected to operate and thus emit carbon dioxide. The figure also suggests 

that there occurs a “correction” in the probabilities during the first couple of simulation 

runs. This is due to the electricity price (the price with the highest mean-reversion rate ߣ) 

quickly reaching the state of fluctuating around its long-term mean from its initial value. 

The modest long-term increase in the probabilities is, however, “thanks” to the slower 

mean-reversion rate of gas price, which is therefore slower to adapt to its long-term mean. 

The expected value of the emissions level develops in parallel with the probability of 

production. During the peak period, the power plant is expected to emit nearly 300 tonnes 

of carbon dioxide into the atmosphere each day, while expected daily emissions for the 

off-peak period are around 100 – 150 tonnes. The expected volume of emissions for the 

entire day is obtained as the sum of the peak and off-peak values. Its value rises from 320 

tonnes in the beginning of the year to 450 tonnes per day in the end of the year. 

Having determined the expected volume of emissions, let us now proceed with a factor 

that has a significant role in risk management: the probability density function of 

emissions, which shows the probability that the power plant will emit a given amount of 

carbon dioxide. 

 

The Probability Density Function of Cumulative Emissions 

The cumulative value of the daily decision variables (߉) is the cumulative production 

decision variable (ߗ). Its value gives the whole-production-day equivalent of the total up 

time of the power plant until a given date. The day having been divided into two equal 

parts, the resulting ߉ values need to be multiplied by 0.5 before the cumulation. The value 

of ߗ pertaining to the entire first production day may be 0, 0.5 or 1, any one number from 

the series {0, 0.5, 1, 1.5, 2} on the second day, and any increment of 0.5 between 0 and 
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252 for the entire simulation period of 252 days. By multiplying the cumulative 

production decision variable by the maximum volume of emissions we arrive at the 

cumulative volume of carbon dioxide emissions (Qc). It is important to underline that 

while expected values may as well be calculated using analytic formulae, the probability 

density function can hardly be determined in any other way but through simulation. In the 

appendix, I will outline a numerical method developed by myself that makes use of 

recombining binomial trees to approximate the probability density function. What follows 

below is an overview of the pdf determined through Monte Carlo simulation. To the 

50,000 cumulative emissions values the simulation runs yielded, a histogram – or more 

precisely, the normalized and continuous approximation of that: a Kernel density function 

(Rosenblatt, 1956) – was fitted. The figure below shows the pdf of the cumulative 

emissions volume pertaining to the 10th, 100th and 252nd days: 

 

Figure 13: Probability density function of cumulated emissions for time periods of different lengths. 

As evinced by the figure, resulting probability density function for the short, 10-day 

period is extremely right-skewed: the zero emission volume is the most probable to occur. 

The reason for that lies in the relationship between the consecutive days’ emissions. If on 

a given day the spread is negative and the turbine rests, then its value is very likely to be 

below zero the following day, as well, so the turbine is likely to remain turned off. 

Therefore a zero-emission day is very likely to be followed by another zero-emission 

day(s). Given that under the initial prices of the simulation, the spread values are smaller 

than zero for both time-of-day intervals, zero-emission days will certainly dominate the 

first couple of runs, that is, the frequency function will have its peak around zero. As 

regards longer intervals, the probability of positive-emission days grows with time, thus 

the distribution becomes more symmetric (less skewed) and flatter. 
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The pdf of the individual time-of-day intervals are remarkable, as well. Let us have a look 

at how the 1-year emission probability density functions pertaining to the off-peak period, 

peak hours and the entire day relate to each other: 

 

Figure 14: Probability density function of yearly cumulated emissions of off-peak, peak hours and for 
the total day. 

Due to the smaller spread values, the probability of production is lower during off-peak 

hours, the resulting probability density function is right-skewed, and the probability of a 

low cumulative annual emission level is high. In the peak period, the probability of 

production is higher because of the higher electricity price induced by the growing 

demand, the resulting distribution will be less skewed, and hence higher emission levels 

will become more probable. 

 

Cost of Compliance, Value at Risk of the Emission Position 

As we have already mentioned in the introduction, the power plant has an obligation to 

comply. It is required to surrender to the authorities an amount of emission units that 

corresponds to its annual emissions volume. It seems reasonable to ask how much cost 

the company should expect to incur for its compliance with this regulation. 

The probability density function not only facilitates a more accurate prediction of future 

emission levels, but it can be used as a starting point for approximating the maximum cost 

of compliance at a given confidence level, as well. 
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An index widely-used in the field of risk-management is Value at Risk (VaR) (Jorion, 

1999, p. 97.), which refers to the maximum loss an investor might suffer on their position 

at a given confidence level (c):  

|݈݂݅ݐݎ	݊	݀݁ݖ݈݅ܽ݁ݎ	ݕ݈݈ܽ݅ݐ݊݁ݐ	ݏݏܮ|)ܲ < ܸܴܽ) < 1 − ܿ    53. 

If for example, we assume the value of a portfolio to be normally distributed with an 

expected value of EUR 1 million and a standard deviation of EUR 200 thousand, then 

there is a 95% chance that in 1 year’s time we will not incur a loss greater than: |Φିଵ(1 −

0.95, 0, 200000)| = ܴܷܧ	328,971 , where Φିଵ(ܲ, ,ߤ (ߪ  is the value of the inverse 

cumulated distribution function of the normal distribution with expected value ߤ  and 

standard deviation ߪ for a probability P. 

The Value at Risk concept can also be applied to compliance: in our case, it will provide 

us with the maximum cost of compliance at a given confidence level. 

From amongst the various costs and expenses associated with EU ETS compliance, the 

value of the necessary amount of quotas is the most obvious item. Besides, there is a lost 

profit component, as well: a high quota price acts to reduce the probability of production. 

There are periods when the quota cost is the only factor that keeps the power plant from 

generating electricity (the value of the spread would be positive in the absence of quota 

cost). During these days, “foregone” production results in a deadweight loss. Carbon 

dioxide emission does, however, also have external costs, and therefore foregone 

production and emissions lower the damages on the social level and hence increase 

welfare. The direction of the net effect of pollution is uncertain (for details see Kocsis, 

1998). For the sake of simplicity, cost of compliance will hereinafter refer to the value of 

the necessary amount of carbon credits only, and lost profit will not be considered. 

The cost of compliance depends on the emission volume and the quota price: a large 

volume of emissions coupled with a high carbon credit price result in a significant burden 

on the company; whereas if the emission level and/or the quota price is low, compliance 

can be realized at a low cost. The cost of covering the emissions with quotas can be 

obtained by adding up the products of the emission amounts Q and the respective price 

realizations SEUA pertaining to the future days ߬, with the remark that it is the future 

values (at the end of the year) of the individual products pertaining to the different dates 

that need to be added up: 



 

78 
 


ଶ
∙ ߜ ⁄ߟ ∙ ∑ ൣ൫Λ୭ି୮ୣୟ୩(߬/252) + Λ୮ୣୟ୩(߬/252)൯ ∙ ܵா(߬/252) ∙ ݁(ଵିఛ/ଶହଶ)൧ଶହଶ

ఛୀ    54. 

Future values were calculated under the assumption of a constant risk-free interest rate 

(r), equated to 0.928% based on the 6-month Euribor rate8. 

There are a couple of important conclusions with respect to the calculation of the 

maximum cost of compliance at a given confidence level. As already mentioned in the 

introduction, the compliance obligation in the EU ETS always pertains to the total 

emission volume of the previous year and needs to be met by April 30 the next year (by 

submitting the corresponding amount of emission units). At the end of the year, the total 

volume of emissions is already known, thus it seems a reasonable first approximation to 

state that by the end of the year latest, the risk minimizing power plant needs to possess 

the amount of quotas (or its equivalent in derivative contracts) they need to cover their 

obligation on April 30. Otherwise they will have an open position (i.e. exposed to price 

changes, not covered by quotas) and thus engage in speculation (win if the price goes up 

and lose if it falls). Narrowing down the condition, we can also conclude that as time 

passes by in the course of the year, an ever growing volume of emissions will become 

known for a fact. Consequently, at any point in time during the year, the company should 

have an emission unit position that corresponds to its total volume of past emissions 

during that year. Finally, further narrowing the condition, we can argue that even its 

future emissions are partially known (from the stochastic model). In order to minimize the 

risks associated with covering its future emissions, the company should possess an 

amount of emission units that corresponds to (by putting it in not-so-accurate terms) its 

expected emissions. Or more accurately: at any one point in time, it needs to possess an 

amount of carbon credits that corresponds to the sum of the emission delta parameters of 

the spread options that represent future gross margins in order to cover its future 

emissions and it should hold an amount of quotas that covers its past – factual – emissions 

for that same year. In order to completely hedge its future gross margin, the power plant 

would need to equate the cumulative deltas for the four underlying assets (peak and off-

peak electricity, gas, emission units) to zero, which can be realized via hedging 

transactions for those four assets. The hedging procedure and the calculation of the 

                                                
8 Source of the data for 2 July 2012: euribor-rates.eu 
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amount of emission units needed to cover future emissions will be discussed in detail in 

the following chapter. 

Subsequently, the Value at Risk associated with the cost of compliance will pertain to the 

quota position without the hedging contracts. Based on the simulation, the distribution of 

the future value of the expected annual quota position – required for determining Value at 

Risk – will be: 

 

Figure 15: Probability density function of future value of yearly emissions. 

The shapes of the resulting functions is very similar to those of the histograms of 

cumulative emissions; the lack of exact shape equivalence can be ascribed to the 

quantities having been multiplied by the future values (as of year end) of future carbon 

credit prices. Considering off-peak hours, lower-emission events are more probable to 

occur, thus the probability density function is right-skewed. The higher expected 

electricity price in the peak period implies a higher spread value, which is why the peak 

of the probability density function is shifted to the right. The pdf of the entire-day value is 

flatter. The cost incurred by the company because of the carbon dioxide they emit in the 

course of one year will, with a great probability, be in the range from EUR 0.25 to 1 

million. 

The cumulated distribution function (cdf) can be derived from the probability density 

function by way of integration. The Value at Risk pertaining to the maximum cost of 

compliance at a given confidence level can then be easily read from the inverse 

cumulated distribution function: 
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Figure 16: Inverse cumulated distribution function of yearly emissions. 

With a probability of 95%, the cost of compliance for this power plant with a 2400 MWh 

daily capacity will remain below EUR 781 thousand for the peak period and below EUR 

383 thousand for off-peak hours, both given in future value terms. Given that the 

emissions of the two intervals are not independent from each other, the entire-day value is 

not equal to the sum of the two values; with a 95% reliability, compliance will cost the 

power plant an amount less than EUR 1.15 million. 

Having reviewed the calculation of Value at Risk, let us now examine how changes in the 

model’s various parameters affect our results. The sensitivity analysis was completed for 

three scenarios: 

 Effect of efficiency improvement projects (the role of thermal efficiency) 

 Effect of fuel price changes (the role of long-term gas price) 

 Significant price changes in the carbon credit market (the role of long-term EUA 

price) 

 

The Effect of a Change in Thermal Efficiency 

The technological parameters of the power plant have a significant role in the 

determination of the spread and, hence, production and emission volumes. From amongst 

these, it is thermal efficiency (ߟ) – which shows the percentage share of total energy input 

utilized in the form of the electric power generated –  the potential changes in which I 

will elaborate on in detail. By manipulating parameter ߟ in the model, we can, on the one 

hand, compare the expected carbon dioxide emissions of power plants that use the same 

fuel, incur an equal amount of other variable costs, but are characterized by differing 
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thermal efficiencies and, on the other hand, it may provide some sort of starting point for 

estimating the environmental impact of a potential efficiency improvement project. 

The facility’s thermal efficiency parameter gives the amount of resources required to 

generate one unit of energy, and also, the power plant’s maximum possible volume of 

carbon dioxide emissions. If it has a fixed capacity ߁, the maximum daily volume of its 

emissions (Γ ∙ ߜ ⁄ߟ ) decreases if its efficiency increases. Given a fixed daily production 

capacity, we arrive at the following daily maximum emissions curve by varying 

parameter ߟ in a somewhat wider (i.e. less realistic) interval: 

 

Figure 17: Daily theoretical maximal emissions as a function of thermal efficiency (with fixed output 
capacity). 

Considering the default 38% value and assuming constant production, the daily maximum 

amount of carbon dioxide potentially emitted by the power plant is 1272 tonnes. Under an 

efficiency of 50%, the possible daily maximum emission volume drops to 967 tonnes, 

while a 30% figure would bring about a significant growth, to 1611 tonnes. 

An improvement in thermal efficiency, thus, seems to reduce the emissions of the 

company. In the real option model, however, we can observe the opposite, as well: an 

improvement in efficiency reduces the required amount of resources, thus the value of the 

spread to be realized grows larger. Therefore, the probability of production becomes 

higher which, ceteris paribus, results in higher emissions. 

Varying thermal efficiency in a wider-than-realistic interval, the probability of production 

(the expected value of the daily decision variable Λ) on the day one year from now can be 

characterized as follows: 
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Figure 18: Probability of production at a future day (one year from now) as a function of thermal 
efficiency. 

As seen on the figure, the probability of production grows with increasing ߟ, at a rate that 

is first increasing, then decreasing. The expected volume of emissions as a function of 

thermal efficiency is obtained as the product of these two opposite effects (decreasing 

maximum daily emissions, increasing probability of production): 

 

Figure 19: Expected daily emissions at a future day (T=1 year) as a function of thermal efficiency. 

The increase in the probability of a positive spread induced by an improvement in 

efficiency is quite significant with respect to the off-peak period, therefore the expected 

volume of emissions grows with increasing ߟ; the opposite can only be observed for 

particularly high (hardly realistic) efficiency figures. As regards the peak period, the 

higher spread value implies a high probability of production, which the improvement in 

efficiency can only offset to a lesser degree. The impact of the fall in maximum 

emissions, during the peak hours, becomes dominant above approximately 47%, and thus 

results in a decrease in the expected volume of emissions for the peak period. The entire-

day volume of emissions, i.e. the sum of the two time-of-day periods, basically grows 
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with increasing thermal efficiency, which only turns into a decrease for very high values 

of ߟ (around 60%). 

Let us examine how changes in thermal efficiency affect the maximum cost of 

compliance (Value at Risk). The probability density function of the cumulative annual 

emission volume for three different efficiency levels (30%, 38%, 50%) can be plotted as 

follows: 

 

Figure 20: Probability density function of annual emissions in terms of different thermal efficiencies. 

A higher-efficiency power plant is expected to produce more electricity due to the 

increase in its spread, thus the probability density function will be left-skewed (compared 

to the “default” case). Whereas for lower efficiencies, expected production falls, and 

therefore the pdf becomes right-skewed. The value of the carbon credit position (quantity 

multiplied by quota price) exhibits a similar pattern. A more efficient power-plant will, 

under the values examined, emit more carbon dioxide, therefore the cost of compliance is 

expected to become higher: 

  

Figure 21: Probability density function (left) and inverse cumulated distribution function (right) of 
future value of annual emission in terms of different thermal efficiencies. 
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An efficiency-improvement to 50% acts to raise the Value at Risk to EUR 1.26 million, 

while a deterioration to a ߟ value of 30% would induce a fall to EUR 930 thousand. With 

thermal efficiency being varied in a wider interval, the development of the 95% value of 

VaR is shown on the following figure: 

 

Figure 22: 95% Value at Risk of emission position as a function of thermal efficiency. 

The off-peak 95% Value at Risk increases with increasing thermal efficiency. The peak-

period VaR reaches its maximum around 42%, above that, further improvements in 

efficiency act to decrease the Value at Risk (for this time-of-day period). Considering its 

entire-day value, the VaR grows with increasing efficiency at lower efficiency levels, yet 

does not significantly change in higher ranges of parameter η. 

 

The Effect of Gas Price Changes on the Carbon Dioxide Emissions of the Power 

Plant 

Energy markets are characterized by rather significant price fluctuations. A drop in the 

supply of gas (delivery hindrances, for instance) effects a significant hike in its price, 

whereas the introduction of new exploitation technologies may allow for the 

economically feasible exploitation of large, previously unavailable reserves, which might 

well result in a price drop. As far as our model is concerned, the effect of gas price was 

tested by varying the long-term mean parameter of the respective mean-reverting price 

model. 

The expected volume of emissions, as a function of long-term mean gas price, can be 

plotted as follows: 
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Figure 23: Expected emissions at a future day (T = 1 year) as a function of gas price. 

We can see that as the gas price approaches zero, the volume of emissions reaches its 

maximum, as the spread will, in such a case, almost always be above zero, and thus the 

turbine will be up and running nearly all the time. The spread and, hence, expected 

emissions decrease with increasing gas price. Off-peak emissions do so at a faster pace 

because the lower electricity price associated with it implies a higher probability for a 

negative spread value. During peak hours, on the other hand, chances are that higher 

electricity prices can compensate for a higher gas price, and thus the negative impact the 

fuel price increase has on emissions will be weaker. With the gas price at extreme high 

levels, the volume of emissions – for both time-of-day periods – converges to zero.  

The pdf and the inverse cumulated distribution functions of the value of the power plant’s 

annual emissions volume for different gas price levels are: 

 

Figure 24: Probability density function of future value of annual emissions (left) and its inverse 
cumulated distribution function (right) in terms of different long term gas prices. 

A higher gas price of EUR 30 acts to reduce expected emissions and to make the value of 

the quota position right-skewed (as compared to the “default” case), and the Value at Risk 

of the cost of compliance sinks to EUR 700 thousand. A lower gas price of 10 EUR/MWh 
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distorts the distribution of the quota positions’s value to the right, and the Value at Risk 

of the cost of compliance increases to EUR 2.4 million. 

Varying the gas price in a wider range, the 95% Value at Risk of the cost of compliance 

follows the pattern shown on the figure below: 

 

Figure 25: 95% VaR as a function of long term gas price. 

It is apparent from the figure that the Value at Risk of the cost of compliance, for both the 

peak and the off-peak period, decreases with increasing long-term gas price, the curves of 

the functions for the two time-of-day periods being nearly parallel, but at a certain 

distance from each other.  
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The Effect of Emission Unit Price Changes on the Emissions of the Power Plant 

During both trading phases of the emissions market, there were certain significant price 

changes with long-term effects. As the over-allocation at the start of the First Phase 

became obvious, the quotas turned practically worthless. For the Second Phase, the 

policymaker reduced the amount of credits to be issued, as a consequence of which the 

price for 1 tonne of carbon dioxide emissions was, in the beginning, above EUR 20 on the 

quota market. As the financial and economic crisis unfolded, expected emissions began to 

fall as a results of faltering growth prospects, which put a downward pressure on the 

quota price. Now, we will examine how a significant change in the price of emission units 

affects the power plant in our model. Given a mean-reverting model, the simplest way to 

perform such a test is to shift the value of the long-term mean. 

The relationship between expected emissions and long-term quota price can be illustrated 

by the figure below: 

 

Figure 26: Expected emissions at a future day (T = 1 year) as a function of long term EUA price. 

As it can be read from the curves, the expected volume of emissions is not extremely 

sensitive to changes in long-term quota price. The cause of this apparently surprising 

result resides in the formula of the spread: while in the case of gas, the resource price only 

needs to be multiplied by the reciprocal of the thermal efficiency (which is equivalent to a 

factor of 2.63 if 38%=ߟ), in the case of the quota price, there is one more term – the 

carbon intensity of the fuel – that needs to be included in the multiplication (which yields 

a resultant multiplier of ߜ ⁄ߟ ). Which then again means that for a δ=0.2014 tCO2/MWhin, 

the cost-increasing effect of the quota price is only about one fifth of that of the price of 

gas, the effective multiplier being 0.53. 
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Given that the effect a shift in the long-term mean price of emission units has on the value 

of the spread and, hence, on the volume of emissions is only one fifth in extent in 

comparison to that of the gas price, the probability density function of the emission 

volume will not be significantly changed, either. Such a change in the long-term quota 

price will, however, significantly influence the cost of compliance. The pdf and the 

inverse cumulated distribution function of the value of the quota position under three 

different long term quota prices can be plotted as follows: 

 

Figure 27: Probability density function of future value of annual emissions (left) and its inverse 
cumulated distribution function (right) in terms of long term EUA price. 

Given a carbon credit price of 1 EUR/ton, the maximum cost of compliance at the given 

confidence level is EUR 200 thousand, while for a long-term quota price of 30 EUR/ton, 

it is EUR 3.3 million. Varying the quota price in a wider range, the 95% Value at Risk 

will be: 

 

Figure 28: 95% VaR of compliance cost as a function of long term EUA price. 

The Value at Risk grows with increasing quota price, albeit at a diminishing rate. 
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As I have shown in this chapter, the expected volume of emissions and its probability 

density function can indeed be derived from the real option model. The emission volumes 

of consecutive days are highly autocorrelated, therefore the probability density function 

of cumulative emissions is extremely skewed (to the right, in our case) for shorter 

intervals. With time, the function becomes more symmetric and flattens. Based on the 

probability density function, we can obtain the total value of the emission units required 

to cover the emissions (i.e. to comply), which then again can be used to determine the 

Value at Risk with respect to the cost of compliance. Having examined the development 

of the results for different parameter values, it can be concluded that thermal efficiency 

has a significant influence on the volume of emissions. Given a fixed daily production 

capacity, an increase in the value of ߟ reduces the maximum volume of emissions and, 

inducing a simultaneous yet opposite effect, increases the number of days with a positive 

spread and the probability of production. For lower efficiency levels, it is the emission-

increasing effect, while for higher efficiency ranges, the maximum-emission-decreasing 

effect that outweighs the other. From amongst the inputs, it is the price of gas that has a 

significant impact on expected emissions. A high gas price deteriorates the probability of 

a positive spread and, hence, that of production, the probability density function of 

emission volume becomes skewed to the right, the expected cost of compliance drops. A 

change in the price of emission units has less of an influence on the probability of 

production and the probability density function of emission volume, it does, however, 

significantly affect the cost of compliance: high carbon credit prices yield high levels of 

cost of compliance.  
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V. THE REAL OPTION VALUATION MODEL OF THE POWER 

PLANT 
 

As we have seen in the previous chapter, the real option model is suitable for the 

estimation of the power plant’s carbon dioxide emissions and the related costs of 

compliance. The results do not only pertain to the expected values, but, relying on the 

probability density functions, the risk characteristics of the quantities can also be 

estimated. 

In this chapter, I will perform the valuation of the power plant using the real option 

model. The questions we will seek to answer are: 

 How does the value of the power plant depend on various technological and 

market factors? 

 What sort of hedging strategy should the company follow in its efforts to manage 

the financial risk associated with the power plant’s operation? What is the 

(optimal) amount of emission units to be held at any given moment? 

 How much is a thermal efficiency improvement project worth for the power plant, 

as a function of various factors? 

 How much would be lost in profits if the power plant would not be operated in a 

profit-maximizing fashion, i.e. based on the relevant daily prices, but on a fixed 

schedule, by entering long-term production agreements? 

As we have already seen when reviewing the real option model, the value of the power 

plant’s income generating capacity corresponds to the present value of the incomes 

expected to be generated during the period in question, which can be expressed in terms 

of spread options: 

ܸ	 = 
ଶ
∙ ∑ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫ݏൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫ݏ ,ݒ ߬൯൧்

ఛୀ   55. 

The value of the power plant, according to the model, equals the product of the sum – for 

the relevant period – of the daily averages of the European-style options on the daily peak 

and off-peak spread values multiplied by the facility’s maximum daily capacity. For the 

purposes of this valuation, a 30-year life span and a zero residual value are assumed; 

furthermore, all maintenance costs and replacement investments are assumed to be 
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included in the other variable costs (ݒ, which in our case corresponds to the exercise price 

of the spread options) term; and tax effects are ignored. For the modeling of the price 

movements of the four underlying assets, we employ the geometric Ornstein-Uhlenbeck 

process – as presented earlier –, with parameters that have been fitted to market data. The 

valuation of the spread options involved in the calculation is performed using the 

modified form of the analytic pricing formula of Deng-Li-Zhou (2008). Incomes are 

discounted by using the 12-month EURIBOR rate of 1.213% for 2 July 20129, with a risk 

premium of 2 percentage points. 

Let us first examine the expected payoffs and values of the spread options as a function of 

their maturity. The results for the two time-of-day periods and their averages pertaining to 

the entire day have been plotted on the following graphs: 

  

Figure 29: Expected payoff (left) and value (right) of spread options as a function of maturity. 

The expected payoff of the spread option gets stable with time, the reason for which is 

that the realizations of the mean-reverting model are, in the longer run, determined by 

those constant long term mean values. Under the model’s parameters, the expected payoff 

of the spread option is, in the long run, 3.5 EUR/MWh for the off-peak period and 13.8 

EUR/MWh for peak hours. The values of the options are lower than these because of the 

discounting, and they reach their maximum values for a maturity of about 3 years (3 

EUR/MWh and 12 EUR/MWh, respectively). 

The sum total for the 30-year period corresponds to the product of the area under the 

curve of the options’ average value function multiplied by the maximum daily capacity, 

                                                
9 http://www.euribor-rates.eu/euribor-rate-12-months.asp 
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with the restriction that it is the discrete value for each day that needs to be considered in 

the calculation of the area under the curve. 

The power plant’s value is, given the model’s assumptions, EUR 97.3 million. Let us 

examine how sensitive this value is to changes in a number of different factors. The 

starting point for this analysis will be the sensitivities of the spread options to the various 

parameters. 

The price of the spread options depends on a variety of technological and market 

parameters. From amongst these, the following will be examined in detail for their impact 

on the options’ value: 

 Thermal efficiency 

 Spot prices of the underlying assets 

 Long-term mean prices of the underlying assets 

 Volatilities 

 Value of the correlation coefficient between the prices of gas and emission units 

In stochastic finance, the so-called Greeks indicate the change in the value of a derivative 

generated by a unit increase in the parameter examined. Their value equals the partial 

derivative of the option’s price function with respect to the factor in question.  

 

The Role of Thermal Efficiency 

Thermal efficiency has a central role in the calculation of the spread option’s value. A 

more efficient power plant requires less inputs – less gas and fewer emission units – to 

produce a unit of electric energy. In the formula of the spread, thermal efficiency 

modifies the impact of input prices: a 1 percent improvement in thermal efficiency 

increases the value of the spread by the amount given by the following formula: 

ቀௌೌೞ
ఎ
+ ௌೠೌ∙ఋ

ఎ
ቁ − ቀ ௌೌೞ

ఎାଵ%
+ ௌೠೌ ∙ఋ

ఎାଵ%
ቁ = ௌೌೞାௌೠೌ∙ఋ

ଵ∙ఎ∙(ఎାଵ%)
     56. 

The extent to which a change in thermal efficiency modifies the option’s value is different 

for the peak and the off-peak spreads, because the probability of exercise changes, as 

well. The following figure shows the sensitivities of the options to changes in parameter 

 :for varying maturities ,ߟ
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Figure 30: Thermal efficiency sensitivity of spread options for off-peak (left) and peak hours (right) 
as a function of maturity. 

The resulting sensitivity values are positive for all maturities, that is, an improvement in 

thermal efficiency always induces an increase in the spread options’ value. Concerning 

the values taken by the function, it is important to note that a unit change in parameter ߟ 

would mean an efficiency improvement of 100 percentage points, which is obviously 

impossible in reality. For the ease of understanding, it is practicable to divide the resulting 

function values by 100 and interpret the sensitivity values as pertaining to percentage 

point changes in thermal efficiency. 

Considering off-peak spread options, sensitivity sets off from zero, the reason for which 

is that the initial value of the spread is negative, thus the power plant is not generating 

electricity and, hence, it cannot realize a margin, either. In other words, the option is 

OTM (out of the money), the cashflow from the immediate exercise of the option would 

be zero. Sensitivity rises sharply with increasing maturity, as the reversion of the 

underlyings’ initial prices to their long-term means acts to increase the spread’s value. 

Having reached the peak, the derivative with respect to thermal efficiency starts to drop, 

the reason for which is that discounting assigns a lower present value to longer-maturity 

options, which renders the impact of an efficiency improvement smaller, as well. 

The immediate exercise of the peak-period spread option would be a near break-even 

transaction (the option is approximately ATM (at the money)), the sensitivity parameter 

takes high values even for short maturities, because even a small improvement in thermal 

efficiency yields a significant change in the expected payoff, and thus in the value of the 

option. The function value drops for longer maturities, which is a consequence of the 

discounting, just like it was the case with off-peak options. 
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The following figure shows how the value of the power plant changes with improving 

thermal efficiency: 

  

Figure 31: Value of power generator (left) and value increasing effect of 1 percentage point efficiency 
improvement (right) as a function of thermal efficiency. 

An improvement in thermal efficiency increases the value of the power plant, the effect 

being nearly linear. By plotting the change in value as a function of the percentage point 

change in parameter η, we can formulate the relationship in more exact terms: a 1 

percentage point improvement adds nearly EUR 5 million to the value of the power plant; 

the resulting function is concave, and it is the facilities with an efficiency between 37-

40% the value of which increases most with improving thermal efficiency. 

 

The Role of the Prices of the Underlying Assets 

As we have witnessed in Chapter III, the prices of the four underlying assets all exhibit a 

significant degree of volatility. This is particularly true for the price of electric energy, the 

annualized volatility of which amounts to 533% in the off-peak period and to 410% 

during peak hours. One of the things worth examining is how much the values of the 

spread options would be modified by a change in the initial price used in the valuation 

process. One of the specialties of mean-reverting models is that the role the initial price 

used in the simulation has in the determination of future prices is getting smaller and 

smaller with time; for long maturities, it is the long-term mean the effect of which 

dominates. One of the consequences is that, as far as the model is concerned, short-term 

price changing has no significant influence on the value of real assets. 
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Concerning derivatives, the delta parameter shows how the price changes as a function of 

the initial prices of the underlying assets. The model includes 3 underlying assets for both 

the peak and the off-peak period. The following figure shows the sensitivities of the 

spread options to changes in the initial prices of the underlying assets, for varying 

maturities: 

   

  

Figure 32: Sensitivity of spread options on initial prices of off-peak (top) and peak (bottom) hours 
with shorter (left) and longer (right) maturities. 

As regards the off-peak period, the option is OTM under the initial prices, its intrinsic 

value is zero, as would be the cashflow from its immediate exercise. The delta values for 

very short maturities are, therefore, zero: small changes in the initial prices have no 

influence whatsoever on the option’s value. As a consequence, the delta functions 

pertaining to off-peak power, gas and emission units all start at the origin. The delta 

parameter takes a value of zero for longer maturities, as well, since the effect of the initial 

prices fades away with time and the long-term mean prevails, as it is usual with mean-

reverting models. Considering peak hours, the value of the spread as calculated using the 

initial prices is close to zero (the option is near-ATM). The initial value of the delta 

parameter for near-zero maturities is determined by the spread’s formula: 1 for peak-
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period electricity, −1/ߟ  for gas and −ߟ/ߜ  for emission units. With respect to longer 

maturities, the deltas will be zero for this time-of-day period, as well. 

The following figure shows the sensitivity of the power plant’s value to changes in the 

initial prices: 

  

  

Figure 33: The value of power generator as a function of initial prices, top: off-peak (left) and peak 
(right) electricity, bottom: gas (left), eua (right). 

It can be read from the figure that the spot prices used as a starting point for the 

simulation have a rather limited impact. The factor that the power plant’s value is the 

least sensitive to is the initial price of electricity, for the high volatility and the high 

mean-reversion rate make the effect of the initial price fade away relatively fast. The 

impact is stronger for both gas and emission units: a 40 EUR/MWh gas price gives 93 

million as the power plant’s value, while the lower price of 10 EUR/MWh yields EUR 

109 million. Under a near-zero quota price, the power plant is worth EUR 103 million, 

while a 40 EUR/tonne price results in EUR 91 million. 

To demonstrate the relationship with initial prices, I also calculated – relying on the 

model and on past price data – historical figures for the value of the power plant. The rest 

of the parameters (long-term mean, mean-reversion rate, volatility, correlation) remained 
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unchanged, that is, the stochastic model was not re-fitted again and again at each step. 

The results are shown on the figure below: 

  

  

Figure 34: Modeled historical value of power plant. Top-left figure shows the historical prices of gas, 
top-right shows the daily spread. Bottom-left figure shows the model value of generator, the bottom-
right shows the 21 day moving average of spread. 

As we can see by contrasting the two graphs on the left-hand side, the price of the power 

plant, as given by the model, and gas price move in almost exactly opposite directions. 

The daily value of the spread, which fluctuates wildly because of the high volatility of the 

price of electricity, is less significant in effect as compared to fuel price, yet the graph of 

its 42-day moving average looks similar to that of the power plant’s value. The historical 

prices of the power plant having been determined using the model, the relationships 

between the power plant’s value and the historical factors were not analyzed using 

statistical methods. 

 

The Role of Long-Term Means 

In the geometric Ornstein-Uhlenbeck process, prices revert to their long-term means. For 

longer maturities, the spread options’ value is far more sensitive to changes in the means 



 

98 
 

than to changes in the initial prices. The options’ sensitivities to the long-term means are 

illustrated by the following figure: 

  

  

Figure 35: Spread options’ sensitivity (EUR/MWh) on long term prices of underlying assets (off-peak 
hours (top), peak hours (bottom), shorter (left), longer (right) maturities). 

The graphs clearly evince that in the mean-reverting model, the future gross margin 

realized by the power plant is not very sensitive to the initial prices, whereas the role of 

the long-term means is indeed significant. This conclusion is particularly valid for the fast 

mean-reverting electricity price. The mean reversion rate and the volatility of gas and 

emission unit prices are lower, thus here the spot prices have a remarkable impact, as 

well. For near-zero maturities, the options’ sensitivities are zero, that is, the price of the 

option is, as far as short maturities are concerned, insensitive to changes in the long-term 

means. For longer maturities, the low sensitivities to the initial prices are accompanied by 

high sensitivities to the mean prices. Similar to what has been said with respect to the 

initial prices, the technological parameters incorporated in the spread’s formula set an 

absolute upper limit for the sensitivities: 1 EUR/MWh for electricity, −1/ߟ ≈ −2.63 

EUR/MWh for gas and −ߟ/ߜ ≈ −0.53 EUR/MWh for emission units. The sensitivities 

decrease with increasing maturity (because of the discounting). 
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The power plant’s value reacts to changes in the long-term means in the following ways: 

  

  

Figure 36: Value of power generator as a function of long term underlying prices. Top: off-peak (left) 
and peak (right) electricity, bottom: gas (left), eua (right). 

In contrast to spot prices, long-term means have a significant impact on the value of the 

power plant. A rise in the mean price of electricity makes the power plant more valuable. 

Varying the off-peak figure, a mean price of 30 EUR/MWh yields EUR 80 million as the 

power plant’s value, while at a mean price of 70 EUR/MWh, the power plant is worth 

EUR 170 million. The price of the power plant is somewhat more sensitive to variations 

in the long-term mean price of peak-period electricity: for a 50 EUR/MWh price, the 

approximate value of the power plant is EUR 50 million, while a figure of 90 EUR/MWh 

implies a value of EUR 185 million.  

An increase in the long-term price of either gas or emission unit acts to decrease the 

power plant’s value. A 40 EUR/MWh gas price yields EUR 21 million, while a 10 

EUR/MWh figure leads to EUR 272 million. As regards the quotas, the effect is weaker: 

a 40 EUR/tonne price reduces the power plant’s value to EUR 60 million, while a near-

zero carbon credit price boosts it to EUR 111 million. 

It is important to underline, again, that these effect were examined under the ceteris 

paribus assumption, which in this case means that the size of the power plant is negligible 
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in comparison to the entire market and that changes in resource prices do not cascade 

through to the price of electricity. 

The Role of Volatility 

In capital markets, the measure of the variation of prices is the volatility (the standard 

deviation of returns). In the Ornstein-Uhlenbeck model, it is the parameter ߪ that scales 

the stochastic Wiener (dW) term, which stands for randomness in the formula. In real 

option scenarios, the effects of escalating/diminishing market uncertainty can be modeled 

by varying volatility. Crises and other types of market shock tend to increase the standard 

deviation of returns, while long calm periods typically decrease it. Let us now examine 

how a change in the degree of uncertainty influences the value of our spread options. 

From amongst the Greeks, it is the vega parameter that indicates how the value of the 

option changes upon a unit change in volatility. By calculating the vegas based on the 

model’s parameters and plotting them against maturity, we arrive at the following graphs: 

 

Figure 37: Spread options’ sensitivity on volatilities of underlying instruments, left: off-peak, right: 
peak. 

The resulting functions take positive values for all maturities, which might make us recall 

the general relationship that with respect to European-style call options, a higher standard 

deviation leads to a higher option price. The reason is that an increase in volatility acts to 

increase the probability of outstandingly high and outstandingly low prices occurring. For 

very low prices, the payoff function of the call option, which is bounded from below, will 

be zero, whereas high prices act to increase future cash flows. The resultant effect will be 

positive, both the expected payoff and the option’s value increase with increasing 

volatility. From amongst the underlying assets examined, it is the volatility of gas the 
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changes of which induces a significant increase in the spread option’s price. The impact is 

stronger for the peak period than for off-peak hours. 

Varying the price volatility of electricity between 100% – 800%, and that of gas and 

emission units between 10% – 100%, we arrive at the following prices for the power 

plant: 

 

 

Figure 38: Value of generator as a function of volatilities. Top: off-peak (left) and peak electricity 
(right), bottom: gas (left) and eua (right). 

As suggested by the figure, an increase in the volatility of electricity does not 

significantly affect the value of the power plant, even though the value of the parameter 

was varied across an extremely wide range. The reason lies in the mean-reversion rate: 

because of the high value of parameter ߣ, even a significant change in the volatility of 

electricity can only have a moderate impact on the expected value of the future spread 

(and, hence, on the prices of the options). It is the volatility of the gas price that has the 

strongest effect: if the initial figure of 45% is reduced to 10%, the power plant’s value 

falls to EUR 60 million, while if raised to 100%, the price goes up to EUR 209 million. 

Regarding the quotas, the effect is weaker, as compared to that of gas: reducing the initial 

volatility of 44% to 10% yields an EUR 95 million figure for the power plant’s value, 

while a 100% quota volatility boosts it to EUR 104 million. 
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The Role of Correlation 

In the stochastic model, it is the Wiener term (dW) that represents uncertainty. 

Considering the multi-dimensional case, the linear correlation coefficients pertain to the 

connectedness of the dW terms. In the fitted model, it was the correlation coefficient 

between peak and off-peak electricity price and that between the prices of gas and 

emission units that were significant. In the four-asset model, we employ two spread 

options, each having three underlying assets. The model is centered around the following 

expected values: 

ିைݏൣܧ ൫ܵି , ܵ௦ , ܵ௨൯൧ + ைݏൣܧ ൫ܵ , ܵ௦ , ܵ௨൯൧  57. 

In the model, the two prices of electricity, peak and off-peak, are part of two separate 

options, and the correlation between the two periods’ prices has no influence on the 

results. However, the connection between changes in the quota price and changes in the 

price of gas does affect the results. The reason is that the two stochastic variables ܵ௦  

and ܵ௨ , which represent the prices of gas and emission units, respectively, are both 

factors of the expected value, as the payoff function of the option is a non-linear function 

of the underlying assets’ prices. Therefore I will only analyze sensitivity with respect to 

the correlation coefficient between the prices of gas and carbon credits. The results are 

shown in the figure below, for options with varying maturities: 

 

Figure 39: Sensitivity of spread options on correlation coefficient between gas and eua yields (left: 
off-peak, right: peak). 

An increase in the correlation coefficient increases the value of the options; the figure is 

higher for the peak period than for off-peak hours. Given that correlation, similar to 

thermal efficiency, is measured in percentages, the consideration mentioned there is also 
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valid in this case: the function will be easier to make sense of if we divide the resulting 

function values by 100 and interpret the sensitivity values as pertaining to percentage 

point changes in the correlation coefficient. The power plant’s price is approximately 

hundred times less sensitive to this correlation than it is to thermal efficiency, that is, 

whatever the value of the correlation coefficient, the price remains practically unchanged: 

 

Figure 40: Effect of correlation coefficient between gas and eua on the value of power generator. 

Having explored the sensitivities, let us take a look at how the operator of the power plant 

may mitigate the market risks arising from the fluctuation of prices. 

 

V.1. Dynamic Hedging of the Power Plant 

 

The spread option’s sensitivity to the underlying asset is represented by the delta 

parameter, which is the partial derivative of the spread option with respect to the spot 

price. Considering our two separate three-asset options for the two time-of-day periods, 

we have four delta parameters in total. 

If we do not wish to expose our power plant to unjustifiable risks, the position needs to be 

hedged against price fluctuations that would induce changes in its value. One of the most 

widely used techniques for hedging the risks associated with derivatives is the delta 

hedge, by which we aim at eliminating the risk arising from changes in the price of the 

underlying asset. This type of strategy requires us to enter hedging contracts the delta 

parameters of which take the same value but opposite sign as the position we intend to 

hedge. This way we can set the resultant delta parameter of the entire portfolio (the sum 

of the hedge position and the one to be hedged) close to zero, which renders this 
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combined portfolio virtually insensitive to changes in the price of the underlying asset. 

Assuming a perfectly hedged position, the loss (profit) we make on the hedge contract in 

the case of a change in the price of the underlying asset equals the profit (loss) we make 

on the portfolio to be hedged, i.e. the total effect is approximately zero. Since the delta 

parameter tends to continuously change with time, the hedge positions need to be adjusted 

dynamically. The more frequent the adjustment of the hedge contracts, the more precise 

the hedging will be. With transaction costs taken into account, too frequent adjustments 

may be very costly, which is why in practice, professionals opt for a “reasonable” 

adjustment schedule, where the exact meaning of “reasonable” depends on the 

changeability of the delta parameter and the transaction costs (Benedek, 1999). 

The only modification we need to make to the “default” dynamic delta hedging strategy 

to tailor it to our needs is that the power plant’s initial portfolio, made up of a derivative 

the value of which depends on four underlying assets, requires us to calculate a delta 

parameter for each one of these assets, and that the appropriate hedging contracts will, as 

well, need to be entered into for all four underlying assets. 

 

The Optimal Quota Position 

Upon the launch of the emissions trading system, the participants received a remarkable 

amount of emission units from the authorities free of charge. However the actors, for the 

most part, did not really know how many quotas they should keep and how many they 

should sell on the market. Relying on the dynamic hedging strategy, we can determine the 

“optimal” amount of quotas to be held. Drawing from the heuristic approach, one might 

be inclined to think that the amount of emission units held with the purpose of covering 

our future emissions should correspond (i.e. be equal) to the expected volume of our 

emissions. This is, however, only an approximation of the amount to be held. The correct 

solution is to hold an amount of quotas that corresponds to the delta parameter pertaining 

to the emission units – which quantity will indeed be close to the expected volume of 

emissions. The amount needed to cover our current, factual past emissions will, of course, 

need to be added to the optimal quota position so determined. 

The relationship between expected emissions and the delta parameter may be illustrated 

by way of an example including European-style vanilla call options. According to the 
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Black-Scholes formula – if r is the risk free interest rate, T denotes the maturity, S0 stands 

for the initial price and X corresponds to the exercise price – the value of a call option is 

(Hull, 1999, p. 334.): 

ܿ = exp(−ݎ	ܶ) ∙ [ܵ ∙ exp(ݎ	ܶ) ∙ ܰ(݀ଵ) − ܺ ∙ ܰ(݀ଶ)]    58. 

The value of the expression N(d2) in the formula equals the probability of exercise, that 

is, the probability P that the spot price at maturity ST will exceed the exercise price X: 

ܰ(݀ଶ) = ܲ(்ܵ > ܺ)         59. 

The option valuation formula may be expressed in a form that is easier to interpret; this 

includes the discounted expected value of the option’s payoff: 

ܿ = exp(−ݎ	ܶ) ∙ ቂ൫1 − ܲ(்ܵ > ܺ)൯ ∙ 0 + ܲ(்ܵ > ܺ) ∙ ்ܵ|்ܵ]ܧ] > ܺ] − ܺ]ቃ = 

= exp(−ݎ	ܶ) ∙ ܲ(்ܵ > ܺ) ∙ ்ܵ|்ܵ]ܧ]) > ܺ] − ܺ])     60. 

That is, we can obtain the price of the option by multiplying the probability of exercise by 

the difference of the conditional expected value at maturity and the exercise price, and 

then calculating the present value of the figure so obtained10. 

These formulae can be used to express N(d1): 

ܰ(݀ଵ) =
ா[ௌ|ௌவ]
ௌబ ∙ୣ୶୮(	்)

∙ ܲ(்ܵ > ܺ) = ܰ(݀ଶ) ∙
ா[ௌ|ௌவ]
ௌబ ∙ୣ୶୮(	்)

    61. 

That is, we can obtain the value of N(d1) by adjusting the probability of exercise by the 

quotient of the conditional expected value of the price at maturity and the forward price. 

In this example, N(d2) corresponds to the probability of production – a simple 

multiplication of which gives the expected volume of emissions –, while N(d1) is 

equivalent to the delta parameter. These two values are very close – but not equal. This is 

why, for the sake of more precise hedging, we should hold an amount of quotas that 

corresponds to the delta parameter, and not to the expected volume of emissions. 

 
                                                
10  In arbitrage-free pricing, expected values are determined using the risk-neutral measure, while for 

discounting purposes, we are to use the risk-free interest rate. 
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V.2. Value of Efficiency Improvement Projects 

 

The value of the power plant as an asset depends on its revenue generating capacity, 

which can be derived, according to our model, from the sum of the cumulative values of 

the two three-asset spread options for a given interval. If the power plant improves the 

efficiency of its production, the amount of gas required to produce a unit of electric 

energy will be smaller, which acts to also reduce carbon dioxide emissions and, hence, 

the necessary quantity of quotas, as well. The value of the spread will grow, thus the 

company is likely to realize a higher gross margin, and the number of days when the 

facility actually generates power and makes a profit will increase. 

Let us assume an efficiency improvement project that increases the value of parameter ߟ 

from the “default” 38% to 43%. Here, the value of the investment will be equal to the 

change in revenue generating capacity, that is, the difference between the facility’s value 

assuming a thermal efficiency of 43% and that under the original 38% figure: 

ܸ௧ = ܸ௪௧(ߟ = 43%) − ܸ௪௧(ߟ = 38%)   62. 

Given a thermal efficiency of 43%, the model yields a price of EUR 125.5 million for the 

power plant, which we have to diminish by the EUR 97.3 million figure that corresponds 

to the default efficiency level of 38% in order to arrive at the value of the project: EUR 

28.2 million. 

Let us examine the factors that the value of this 5 percentage point efficiency 

improvement depends on. Changes in the initial prices of the underlying assets affect the 

value of the investment as follows: 
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Figure 41: Effect of initial prices on value of thermal efficiency improvement project. 

As it is apparent, the initial prices of electricity have no influence on the value of the 5 

percentage point efficiency improvement project. An increase in the price of either gas or 

emission units leads to the savings from more efficient production becoming slightly 

smaller. The role of the long-term means is illustrated below: 
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Figure 42: Role of long term means in determining the value of efficiency improvement project. 

Long term price means have a rather significant influence on the value of the efficiency 

improvement project. Considering electricity, a ceteris paribus shift of about +/- 20 

EUR/MWh boosts the value of the investment to EUR 40 million or cuts it back to EUR 

20 million, respectively. As long as it is in a relatively low range, an increase in the long 

term mean of gas price induces a slight growth in the savings, while in higher ranges, the 

value of the investment clearly falls. The reason is that if the gas price is low, the turbine 

is up and running most of the day, thus an increase in the price of gas means bigger 

savings. Further gas price hikes, however, act to significantly diminish the possibility of 

production, and thereby reduce potential savings – that is, the value of the project. An 

increase in the mean of emission unit price lessens the value of the investment, yet the 

effect is more moderate than for gas. 
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The role of volatility can be illustrated as follows: 

 

Figure 43: Role of volatilities in determining the value of efficiency improvement project. 

Out of the four underlying assets, it is peak-period electricity the volatility of which has 

the most significant impact: an increase in volatility decreases the value of the project. 

The effect of price volatility is not significant in the case of off-peak electricity and 

emission units. An increase in the volatility of the price of gas initially induces a slight 

increase and then a slight decrease in the value of the project. 

I also looked into how the value of the efficiency improvement project changes as a 

function of the correlation coefficient between the price of gas and that of emission units. 

According to the model, there is no significant relationship between the two. 
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V.3. The Production Decision in the Presence of Long-Term Supply Agreements 

 

In the Hungarian electric energy market, long-term supply agreements are quite 

commonplace, that is, it is typical for power plants to sell a portion of their capacities for 

a long interval at a pre-determined price, or in other words: to assume fixed-price supply 

obligations. Many a time, power plant operators are inclined to interpret supply 

obligations as actual production obligations, that is, they keep on generating power 

according to the schedule stipulated in the contract irrespective of current market prices. 

Below we will show that, given a turbine that can be flexibly operated, this approach is 

false. 

With technological constraints not taken into account, a profit maximizing power plant 

generates electricity only if and when its gross margin per unit of energy generated is 

positive. Let us examine whether this profit maximization condition changes if the power 

plant assumes a long-term supply obligation. 

Hlouskova et al. (2005) call our attention to the two most obvious consequences of 

electricity market liberalization: the formerly prevailing fixed price was replaced by a 

highly volatile market price, and production facilities now have the option to not meet 

their contractual obligations by generating electric energy themselves but to buy the 

required amount of electricity in the marketplace. This rendered the production decision 

independent from any potential supply obligations. 

 

Fixed-Price Supply Agreement 

Let us first see what happens if the company sells electricity at a pre-determined (fixed) 

price (denoted by C) under a long-term agreement. 

The supply obligation is equivalent to a forward contract, the value of which on the 

maturity date τ is: 

C - Spow(τ)          63.   
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If the decision makers at the company interpret the supply obligation as a production 

obligation, then the company’s profit on day ߬ will be equal to: 

(߬)ᇱߨ = ܥ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ −    .64      ݒ

If however they follow the line of thought presented earlier and regard the power plant as 

a production opportunity, then the profit can be obtained by adding the supply obligation 

to the payoff function of the relevant real option: 

(߬)ᇱᇱߨ = ܥൣ − ܵ௪(߬)൧ + (߬)൫ܵ௪ݔܽ݉ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ − ,ݒ 0൯ = 

= ܥ൫ݔܽ݉ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ − ,ݒ ܥ − ܵ௪(߬)൯   65.   

It can be easily shown that ߨ′′(߬) ≥   since ,(߬)′ߨ

ݔܽ݉ ቀܥ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ − ,ݒ ܥ − ܵ௪(߬)ቁ ≥ 

≥ ܥ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ −    .66       ݒ

As it is apparent from the above, the conditional (i.e. dependent on the daily value of the 

spread) operation of the power plant yields higher profits than the approach that equates 

the supply obligation to a production obligation. The reason for which is that in the case 

of a negative spread, the company is better off having its equipment idle and meeting its 

supply obligation with electricity purchased in the market. 

 

Variable-Price Supply Agreement 

The above conclusion remain valid even if the supply agreement does not stipulate a fixed 

price, but one that depends on current production costs. For the sake of simplicity, let us 

assume that exercise price C’ is equal to the sum of the production costs increased by the 

profit per unit of energy generated (denoted by h). The future price of the energy 

generated will be: 

(߬)ᇱܥ = ܵ௦(߬) ⁄ߟ + ܵ௨(߬) ∙ ߜ ⁄ߟ + ݒ + ℎ      67.   
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The agreement corresponds to the forward sale of the spread at an exercise price of ݒ + ℎ.  

In this case, unconditional production will yield the following profit per unit of energy 

generated: 

(߬)′ߨ = ᇱܥ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ − ݒ = ℎ      68.   

Under a fixed production schedule, the power plant realizes a fixed profit. If the facility 

is, however, operated depending on the daily value of the spread, then the unit profit will 

be equal to: 

(߬)′′ߨ = ′ܥൣ − ܵ௪(߬)൧ + (߬)൫ܵ௪ݔܽ݉ − ܵ௦(߬) ⁄ߟ − ܵ௨(߬) ∙ ߜ ⁄ߟ − ,ݒ 0൯ =

,൫ℎݔܽ݉ ′ܥ − ܵ௪(߬)൯         69.   

It still holds that ߨᇱᇱ௪(߬) ≥  ᇱ௪(߬), sinceߨ

,൫ℎݔܽ݉ ′ܥ − ܵ௪(߬)൯ ≥ ℎ         70.   

As we have just shown, the company is still better off generating power only if and when 

the spread is positive. The reason is that in the case of a negative gross margin, the 

company gains more than the guaranteed profit of h if it meets its supply obligation by 

way of a market transaction. 

If the company is worse off with constant production, it is absolutely reasonable to ask 

how much the loss suffered amounts to. If and when the spread is positive, the payoffs 

from the two production strategies (fixed schedule vs. operation depending on daily 

spread) match. The loss associated with the fixed schedule comes from the potential that 

the power plant may be generating energy even if and when the spread derived from the 

daily prices is negative. In such a case, it would be better off stopping production and 

meeting its supply obligation through the marketplace. 

Under constant production, the capacity of the power plant corresponds to a series of 

forward spread swaps, the exercise price of which is ݒ. If the power plant is in constant 

operation, then the loss – as compared to following the profit maximization condition – 

incurred on each unit of energy generated (lcp, loss of constant production) on an 

arbitrary future day ߬ is equal to the difference between the values of the spread option 

(spo) and the spread swap (spread swap, ssw) with the same exercise price: 
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,࢝,(0)ࡿ)݈ܿ ,ݒ ߬) = ,࢝,(0)ࡿ)ݏ ,ݒ ߬) − ,࢝,(0)ࡿ)ݓݏݏ ,ݒ ߬)   71.   

The amount of the loss is independent from the price stipulated in any potential long-term 

agreement. For the supply agreement has a value in itself – irrespective of the power plant 

–, which can be realized even if the turbine is switched on/off depending on daily market 

prices. 

The cumulative loss of constant production for a given period (0,T) equals the product of 

the average of the losses pertaining to the two time-of-day periods and the maximum 

daily capacity: 

	
ଶ
∙ ∑ ,࢝,(0)ࢇࢋିࢌࢌࡿ൫݈ܿൣ ,ݒ ߬൯ + ,࢝,(0)ࢇࢋࡿ൫݈ܿ ,ݒ ߬൯൧்

ఛୀ    72.   

The options in the formula can only take positive values, whereas the swap transactions 

might as well be negative. Therefore the loss of constant production may, in absolute 

terms, exceed the cumulative option value for the interval in question. Assuming constant 

production, the loss that the power plant in our model incurs is, for the intervals of 1, 3 

and 5 years: 

 

Table 5: Relative loss of constant production in 3 different cases (the power plant operates constantly 
for 1, 3 and 5 years). 

The longer they keep the power plant constantly running, the bigger the loss they make. 

Below, we will determine how various technological and market factors affect the loss of 

constant production. 

The dependence of the loss of constant production on thermal efficiency can be illustrated 

by the following graph: 

Values in million Euros 1 yr 3 yr 5 yr
Option value (spo) 3.34 12.09 21.04
Value of swaps (ssw) -7.05 -16.17 -22.79
Loss caused by constant production (lcp) 10.39 28.26 43.82
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Figure 44: Effect of thermal efficiency on loss of constant production. 

As thermal efficiency increases, the loss of constant production gets smaller. The reason 

for which is that an increased efficiency means that the probability of a negative spread is 

smaller, thus a situation when it is rational to have the turbine rest and meet one’s supply 

obligation through the market occurs less frequently. 
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The following figures illustrate the roles of the initial prices: 

 

Figure 45: Effect of initial prices on loss of constant production. 

Because of the reasons already mentioned in earlier chapters (high mean reversion rate 

and volatility), the initial prices of electricity have no impact on the loss of constant 

production. An increase in the prices of the inputs with lower mean reversion rates does, 

however, induce a significant rise in the amount of the loss. The reason is that the higher 

resource costs increase the probability of a negative spread and, therefore, the proportion 

of the days when the power plant would be better off meeting its supply obligations by 

way of market transactions – instead of constant production – will be higher, as well. 
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The long-term means have the following impact: 

 

Figure 46: Effect of long term means on loss of constant production. 

An increase in the long-term mean of electricity price reduces, while the same change in 

inputs increases the loss of constant production. The resulting values are particularly 

sensitive to increases in the mean price of gas. 
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Changes in the volatilities influence the loss of constant production as follows: 

 

Figure 47: Effect of volatility on loss of constant production. 

As regards electricity, an increase in volatility renders the loss of constant production 

higher, while the value examined was not significantly affected by the variation – in a 

relatively narrow range – of the volatility of neither gas, nor carbon allowances. 

The impact of the correlation coefficient between gas price and allowance price is 

negligible.  



 

118 
 

VI. DERIVING THE MNPB AND THE INDIVIDUAL ALLOWANCE 

DEMAND FUNCTIONS 
 

In the third trading phase (2013-2020), policy makers intend to allocate an increasing 

share of the emission allowances for the given phase among the participants by way of 

auctions. In order for the power plant to be able to develop the right strategy for the 

auctions, it will need to know its own reservation price, that is, the maximum amount that 

the emission units are worth for them. 

For the power plant, the emission allowances cannot be worth more than the amount of 

profit they can realize on a unit of carbon dioxide emission: the reservation price of the 

quotas equals the value of the spread that does not include the per unit cost of the 

allowances. It is the first emission unit that the power plant is willing to pay the most for, 

as the marginal profit to be realized gets lower and lower with each additional quota. 

The MNPB (Marginal Net Private Benefit) function mentioned in the introduction shows 

how much the company’s profits increase upon a unit increase in production (or 

pollution). The function pertains to the revenue before quota costs and shows the value of 

the spread (without the cost of emission units) that the company can expect to realize on a 

unit of pollution. We can obtain the MNPB function by sorting the reservation prices for 

the individual allowances in descending order. 

Assuming a quota market of infinite liquidity, the potential buyers at the auction will not 

place a bid higher than the market price, after all, they can buy the desired amount at that 

price in the marketplace. Nonetheless, given the opportunity to sell the units at the market 

price, it is not worth for the authorities to sell them for less. Is the liquidity of the market 

low, however, the alternative of selling/buying in the market is available to the 

participants to a limited extent only. If the authorities opt for an auction-only allocation, 

the market liquidity of spot transactions will definitely be low in the beginning. In these 

cases, the market price represents less of an upper limit with respect to large-volume 

purchases. Hereinafter, I will only examine the case when the company exclusively relies 

on the MNPB function to arrive at the price to be offered at the auction, without taking 

the market price of quotas into account, that is, the upper price limit that the current 

market price might constitute will not be considered. 
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The individual allowance demand function shows the maximum per unit price the power 

plant is willing to pay for a given amount of emission units. The demand function can be 

obtained by integrating the MNPB function up to the quantity in question and dividing the 

resulting value by this quantity. 

The maximum amount to be paid for a given quantity of allowances is equal to the value 

of the MNPB function’s integral up to that quantity or, deriving it from the individual 

demand function, the product of that given quantity and the respective price.  

Future MNPB values can be derived from the real option model. The price of the option 

spo2Pr on the weighted price difference between electricity and gas on a given future day 

gives us the gross margin (without the carbon cost) the power plant can expect ro realize 

on the energy generated. Each unit of energy generated results in an emission of volume 

ߜ ⁄ߟ . The gross margin realized on each unit of emission can be obtained by multiplying 

the gross margin realized per unit of energy by ߟ ⁄ߜ . The reservation price Peua for a unit 

of emission on a future day ߬ will be: 

P୭ି୮ୣୟ୩ୣ୳ୟ (߬) = 	 ߟ ⁄ߜ ∙ 2ିݏ ൫࢝,(0)ࢇࢋିࢌࢌࡿ, ,ݒ ߬൯ 

P୮ୣୟ୩ୣ୳ୟ (߬) = 	 ߟ ⁄ߜ ∙ 2ݏ ൫࢝,(0)ࢇࢋࡿ, ,ݒ ߬൯	

࢝ = [1 −1 ⁄ߟ (0)ࢇࢋࡿ  [ = ቈܵ௪
(0)
ܵ௦(0)

 (0)ࢇࢋିࢌࢌࡿ = ቈܵ௪
ି(0)

ܵ௦(0)
  73. 

The model includes separate reservation prices for peak-period and off-peak-period 

emissions. The reservation price pertaining to past (already emitted) emissions differs 

from both. The power plant has no way of undoing its past emissions (no technology to 

capture atmospheric carbon dioxide). The reservation price for this case, therefore, is to 

be derived from the conditions of non-compliance: in the Second Phase, they need to pay 

a 100 euro fine and its quantity of quotas for the next year will be diminished by the 

appropriate amount. Here, the reservation price can be approximated with the sum of the 

fine and the expected gross margin for the future period in question. For the ease of 

understanding, I will only deal with future emissions, that is, I will assume that the power 

plant intends to determine the reservation price right at the start of the year for its 

emissions during the year ahead. 
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The prices of the option on the spread between electricity and gas as a function of 

maturity are: 

 

Figure 48: Two-asset spread option values as a function of maturities. 

The off-peak option value is close to zero for very short maturities, because during this 

period, the spread calculated from the initial prices is negative even without the quota 

cost. The peak-period value starts much higher, indicating that the value of the profits to 

be realized is much higher during these hours. 

By multiplying the resulting option prices by the factor ߟ ⁄ߜ , we obtain the reservation 

prices for the emission units, i.e. the MNPB values (without the cost of the allowances). 

The values pertain to half-day periods, the corresponding quantities for which are 
ଶ
∙ ߜ ⁄ߟ . 

By sorting the resulting values in descending order, we arrive at the MNPB function, 

which, if integrated and divided by the respective quantities, leads us to the individual 

demand function: 

 

Figure 49: MNPB on emission unit (calculated without emission cost) and the individual demand 
function for the annual emissions. 
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The maximum annual volume of emissions is 321 thousand tonnes. Above that value, the 

marginal benefit to be realized is zero, because the power plant cannot possibly produce 

more than its maximum emission. The resulting individual demand function sets off from 

a value of around 23 euro/ton, which belongs to the most valuable peak-period spread 

option. With increasing quantity, the MNPB function starts to sink, first slowly and then, 

as we “run out” of peak-period spread options, more steeply. 

Let us now examine, as we have done before, how changes in thermal efficiency, input 

prices and volatilities affect the MNPB and the individual demand functions. 

Evaluating the functions for a +/-5 percentage point change in thermal efficiency, we 

arrive at the following results: 

  

Figure 50: Shifting of MNPB (left) and individual demand function (right) caused by +/- 5 percentage 
point change in thermal efficiency. 

On the one hand, an improvement in thermal efficiency shifts the MNPB function 

upwards due to the improvement in the spread’s value and, on the other hand, shifts the x-

axis intersection point to the left due to the reduction in the maximum daily volume of 

emissions. The quota demand function is shifted upwards. The deterioration of the 

thermal efficiency has the exact opposite effect. 

Let us now see how a change in the price of electricity affects the MNPB and the 

individual demand functions. Given that electricity is extremely volatile and fast mean-

reverting in the model, I did not analyze a shift in the spot price separately, but modified 

it along with the long-term mean, by +/- 25 euro/MWh. The resulting functions are shown 

in the figure below: 
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Figure 51: Changing of MNPB (left) and individual demand function (right) caused by the joint 
shifting of initial and long term mean prices of peak (top) and off-peak (bottom) electricity. 

A price hike in electricity shifts both functions upwards, while a price drop has the 

opposite effect. A change in the off-peak power price shifts the “lower step” of the 

MNPB curve, as a consequence of the option prices pertaining to the low-demand period. 

The peak-period price moves the upper section of the curve. 
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The following figure illustrates the changes in the two functions according to the gas 

price:  

  

  

Figure 52: Shifting of MNPB (left) and individual demand function (right) caused by initial (top) and 
long term (bottom) price change of gas. 

An increasing gas price shifts the functions downwards, whereas a price drop does the 

opposite. An increase/decrease in the spot price of gas increases/decreases the gradient of 

the MNPB curve. For changes in the long-term means, the nature of the effect remains the 

same, yet its direction is the opposite: a price increase flattens the MNPB function, while 

a decrease makes it steeper. 
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The real option model allows for the impact of volatility to be examined, as well:  

  

  

  

Figure 53: Shifting of MNPB (left) and individual demand function (right) caused by change in 
volatility (top: off-peak electricity, in the middle: peak electricity, bottom: gas). 

An increase in volatility shifts both the MNPB and the individual allowance demand 

function upwards. Off-peak volatility affects the lower “step” of the MNPB curve, while 

peak-period volatility is related to the upper section. The asset to the volatility of which 

the functions in question are the most sensitive to is gas: an increase in the volatility of its 

price shifts both sections of the MNPB curve and the entire allowance demand function 

upwards.  
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VII. CONCLUSIONS 
 

Upon the launch of the EU ETS, companies have to face a new type of compliance 

requirements: they need to cover their emissions with carbon credits. The new risk factor 

acted to increase electric power plants’ demand for risk management. The compliance 

requirement (to surrender to the authorities an amount of allowances that corresponds to 

the volume of their emissions) made it inevitable for them to actively “manage” their 

quota position and to make forecasts about its expected emissions. As far as the power 

plant is concerned, it is not only the expected volume of emissions that is of interest, but 

the “risk profile”, i.e. the probability density function of the value, as well. 

The prediction of the power plant’s decisions is unthinkable without managing the 

uncertainty arising from the prices of the underlying assets. Relying on real options, the 

future production decisions of the profit maximizing power plant can be derived from the 

simulated prices of the underlyings, and we can also find answers to our questions 

concerning risk management. 

At the center of the real option decision model employed in the dissertation is the spread, 

which is equal to the profit realized on a unit of energy generated. The company operates 

the turbine whenever the spread is positive, and leaves it off whenever it is negative. Our 

conclusions from the real option model are primarily valid for power plants with gas 

turbines, which lend themselves to flexible operation. It is important to note that even 

though potential technological constraints (minimum up and down times, for example) 

would alter the concrete figures themselves, the essence of the conclusions would remain 

the same. These constraints were ignored in my calculations. 

The tools of stochastic finance are highly suitable for real option based calculations. 

Throughout the dissertation, I used a closed-form analytic formula and Monte Carlo 

simulation for the pricing of the spread options. The model necessitated a stochastic price 

model, which was chosen to be the geometric Ornstein-Uhlenbeck process. Mean-

reverting models are more suitable for modeling commodities, where prices are controlled 

by forces of demand and supply that are more or less stable in the longer run. The 

decision model includes four underlying assets: peak and off-peak electricity, gas and 
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emission units. I fitted the four-dimensional stochastic process to prices from the German 

energy exchange. 

The first application of the real option model was to calculate the expected volume of the 

power plant’s emissions and its probability density function from two three-asset binary 

spread options, by way of simulation. If the spread follows a one-dimensional geometric 

Brownian motion, then the probability density function of cumulative emissions can also 

be approximated with recombining binomial trees, using a procedure of my own, as 

presented in the Appendix. The probability density function of the short-interval 

emissions, which was derived from the Monte Carlo simulation, is extremely right-

skewed. The reason is that the states (turbine on vs. off) of consecutive days are strongly 

correlated and that the value of the initial spread is negative, that is, the power plant does 

not generate electricity in the beginning. For longer intervals, the distribution of the 

emissions becomes more symmetric. 

In its lower ranges, an increase in thermal efficiency increases emissions: for the amount 

of resources needed to produce a unit of energy will be less, which improves the value of 

the spread and increases the probability of production. In very high efficiency ranges, the 

effect turns around: an increase in efficiency will not significantly increase the probability 

of production, as the value of the spread will be high anyway. In these cases, it will be the 

effect that reduces the maximum daily volume of emissions that will be stronger, and the 

expected volume of emissions will shrink. A change in the spot price of electricity does 

not significantly influence the volume of emissions, because according to the fitted 

parameters of the mean-reverting model, both the volatility and the mean-reversion rate 

of electricity is high, and therefore the impact a change in the spot price has in the longer 

run is small. Changes in the gas price do, however, affect emissions significantly: a low 

gas price will make the volume of emissions reach its theoretical maximum (measured 

under constant production), while a high gas price induces a significant fall in expected 

emissions. Changes in the quota price have no significant effect on emissions, the reason 

for which lies with the formula of the spread: given the parameters of the model, the 

impact a change in the quota price has on the value of the spread is approximately five 

times smaller than the impact of a change in the gas price. The volume of emissions is 

not, but the cost of compliance is largely influenced by the quota price: is the market 

price high, the cost of compliance becomes quite substantial. The cost of compliance will 

be particularly high if a high quota price is accompanied by a low gas price. 
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In the second application of the real option model, I derived the value of the power plant, 

which is equal to its cumulative income generating capacity for the interval in question. I 

approximated the value with the sum of the spread options’ prices. The value of our 

imaginary power plant in the model turned out to be EUR 97.3 million. These spread 

options are sensitive to changes in certain technological and price-related parameters. 

From amongst these, the ones that I examined under the ceteris paribus assumption were: 

thermal efficiency, the initial prices and the long-term mean prices of the underlying 

assets, the volatilities of the prices and the correlation coefficient between the price of gas 

and that of the allowances. 

Improvements in thermal efficiency act to increase the value of the power plant, the effect 

being nearly linear: a 1 percentage point improvement effectuates a EUR 5 million 

increase in the facility’s value; it is the power plants with an efficiency in the 37-40% 

range that are the most sensitive to improvements in thermal efficiency. 

The impact of spot prices is not significant in the model. From amongst the four 

underlyings, it is electricity to the initial price of which the value of the power plant is the 

least sensitive to, because the impact of the initial prices fades away quickly due to the 

high volatility and the high mean reversion rate. Increases in the spot prices of the inputs, 

and especially that of gas, have a more substantial impact on the price of the facility. Gas 

price has an effect that is five times larger than that of the price of emission units. Are we, 

however, to manipulate the long-term means instead of the spot prices, the value of the 

power plant will react with significant changes. An increase in the long term mean of 

electricity price will increase, while higher mean prices for the inputs will reduce the 

value of the power plant. Increases in price volatilities induce an increase in the facility’s 

value. Out of the four underlying assets, the impact is significant only for gas. From 

amongst the correlation coefficients I evaluated when fitting the model, the one between 

peak and off-peak electricity prices was found to be significantly positive. The value of 

the power plant is not influenced by changes in this coefficient, because it is the sum of 

the option prices for the two time-of-day periods that we use, which is independent from 

the correlation between the two electricity prices. The other correlation coefficient that 

was significant was that between the prices of quotas and gas, which does have an 

influence on the power plant’s value, because the two underlying assets in question are 

part of the very same option formula. However, the impact of the correlation coefficient 

between gas price and quota price is, according to the model, not significant. 
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If we do not wish to expose our power plant to unjustifiable risks, the position needs to be 

hedged against price fluctuations that would induce changes in its value. We may achieve 

that through a dynamic delta hedge, that is, by entering hedging contracts that ensure that 

the resultant delta parameters for all four underlying assets be close to zero. Knowing that 

electricity is rather volatile and that from amongst the underlyings, gas is the one the price 

of which has the greatest influence, it appears reasonable to hedge the power plant against 

changes in the gas price, at a minimum. A dynamic delta hedge delivers the solution to 

the optimal quota position problem, as well: the delta parameter pertaining to the 

emission units tells us how many quotas the power plant should hold at any given time in 

order to cover its future emissions. To arrive at the quantity required to cover the 

emissions of the entire year, the amount needed to cover the facility’s past emissions still 

needs to be added to this figure. 

As a third application for the real option model, I used spread options to derive the value 

of a 5 percentage point efficiency improvement project. I examined the sensitivity of the 

resulting value to changes in various factors. In the formula of the spread, thermal 

efficiency appears in relation to input prices, which is why it is input prices that have the 

greatest influence on the value of the efficiency improvement project. The only impact 

electricity has is that a higher electricity price at a higher efficiency level will increase the 

probability of a positive spread. 

Considering spot prices, those of the two inputs act to decrease the value of the 

investment. From amongst the long-term means, increases in those associated with 

electricity increase, while increases in those of the inputs decrease the value of the 

project. As regards volatilities, an increase in that of off-peak electricity reduces the value 

of the investment. The project’s value is insensitive to the correlation between the price of 

gas and that of emissions units. 

Oftentimes, power plants are not operated depending on the market prices, i.e. in a profit 

maximizing fashion, but kept constantly running during certain periods based on long-

term supply agreements. Under the assumptions of the model (ignoring technological 

constraints, for instance), this means a loss of value for the power plant. Therefore, the 

fourth application was to estimate the loss of constant production based on the value 

difference between certain spread options and forward spread swap contracts. The loss of 

constant production decreases with increasing thermal efficiency. The reason is that an 
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increased efficiency means that the probability of a negative spread is smaller, thus a 

situation when it is rational to have the turbine rest and meet one’s supply obligation 

through the market occurs less frequently. The real option model also revealed that the 

lower the mean price of electricity and the higher the initial prices of gas and emissions 

units, the higher the loss of constant production will be. The reason for which is that in all 

these cases, the probability of a negative spread grows larger, which makes the power 

plant incur losses (under constant production, that is). 

The fifth application of the real option model is intended to facilitate the development of 

an efficient auction strategy. The MNPB (Marginal Net Private Benefit) function, a 

central part of a number of environmental-economic models, shows the marginal revenue 

the company can realize on an additional unit of pollution. The function, which does not 

include the cost of the quotas, can be obtained by sorting in descending order the 

reservation prices derived from the two-asset spread options on the weighted price 

difference of electricity and gas. By integrating the resulting MNPB function and dividing 

it by the volume of emissions, we can calculate the individual allowance demand 

function, which informs the power plant about the maximum unit price worth paying for a 

given quantity of emission units. Relying on the real option model, we could conclude 

that an improvement in thermal efficiency increases the gradient of the MNPB function, 

shifts the x-axis intersection to the left, and shifts the entire allowance demand function 

upwards. An increase in the long-term mean of electricity price shifts both functions 

upwards, whereas a price drop has the opposite effect. A change in the mean price of off-

peak power shifts the lower section of the MNPB curve upwards, because of the option 

prices pertaining to the low-demand period; changes in the long-term mean price for peak 

hours move the upper section of the curve. 

Considering the wide range of applications presented in the dissertation, it can be clearly 

seen that a power plant operating in a deregulated market must not and cannot manage 

without modern risk management techniques, and especially not without the real option 

model to base its profit maximizing decisions upon. 
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IX. MOST IMPORTANT NOTATIONS USED IN THE TEXT 
 

E[. ], ܸܲ[. ] Expected value, present value 

 Thermal efficiency of the power plant (in percentage)  ߟ

 Carbon intensity of the fuel (tCO2/GWh)  ߜ

 Other variable costs  ݒ

,(߬)௪ߨ   ߬ Profit per unit of energy generated on a future day (߬)ߨ

   ߬ ௨(߬)  Profit per unit of carbon dioxide emitted on a future dayߨ

ܵ௪(߬), ܵ௦(߬), ܵ௨(߬) Spot price of power, gas and allowances on a future day ߬ 

Γ  Maximum daily production 

Π(߬)  Total profit realized during the entire future day ߬  

Λ(߬)  Value of the binary production variable on a future day ߬  

Q(߬)  Volume of emissions on a future day ߬ 

Q(0, ܶ) Cumulative emissions from the present until date T  

,ைܾ݊  ,  Payoff (PO) and price (Pr) of the three-asset (electricity, gasܾ݊

emission units) European-style binary spread option  

ைݏ ,  ,  Payoff (PO) and price (Pr) of the three-asset (electricity, gasݏ

emission units) European-style spread option 

,2ைݏ  2 Payoff (PO) and price (Pr) of the two-asset (electricity, gas)ݏ

European-style spread option 

 Value of the three-asset (electricity, gas, emission units) forward swap  ݓݏݏ

 Loss of constant production per unit of energy generated  ݈ܿ

V  Value of the power plant’s revenue generating capacity   
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X. APPENDIX: Numerical Approximation of the Emissions’ 

Probability Density Function via Recombining Binomial Trees 
 

Below, I will present a method of my own that employs recombining binomial trees to 

approximate the density function of cumulative emissions. The binomial tree model that 

has been traditionally used to price derivatives typically consists of three trees. The first 

describes the price movements of the underlying asset (the values that the discrete model 

can take), the second contains the probabilities pertaining to the given states and the third 

tree represents the price movements of the derivative. 

In this model of recombining binomial trees, the probability tree of the traditional model 

is divided up into several trees, according to which cumulative production decision level 

 they belong to. Each element of the resulting probability trees shows the percentage (ߗ)

chance that the underlying asset takes that given price at the given cumulative decision 

level. 

If the interval examined is divided into N parts, we will have N+1 dates – including the 

starting date (t=0) – and N+1 possible cumulative emission levels, and thus we will be 

required to use N+1 probability trees. In the probability trees that represent higher values 

of ߗ cumulative decision variable, non-zero probabilities can only be found in later steps: 

high cumulative production decision levels count as impossible events in the initial 

period. In the last step, even the elements of the tree associated with the highest 

cumulative decision and emission levels can take a non-zero value. 

If the interval is divided into 3 parts, then we will work with 4 trees; the possible elements 

of the binomial trees, which have a non-zero probability, are shown in grey in the 

following figure: 

 

Figure 54: Non-zero probabilities of binomial trees. 

Ω = 1 Ω = 2 Ω = 3 Ω = 4



 

140 
 

An alternative approach may be to substitute the four simple probability trees with a 

single three-dimensional tree, the horizontal slices of which are the relevant non-zero-

probability parts of the individual two-dimensional trees, which contain the probabilities 

pertaining to the given cumulative decision levels: 

 

Figure 55: Three dimensional binomial probability tree. 

The three-dimensional binomial tree is easier to comprehend, yet more difficult to plot, 

therefore I will continue to use the two-dimensional price trees (the individual slices) in 

the figures. 

The relationship between the probabilities pertaining to the cumulative decision levels is a 

special one. There are only two ways to get into a state belonging to a given cumulative 

decision level: either from one of the states that belong to the cumulative decision level 

directly below or from one of the states that belong to the same tree. That is, there are two 

things that can happen with respect to a given price and cumulative decision level: first, if 

the price is above the critical value (the exercise price), then the company decides to 

generate power, the value of Ω grows by 1 and, in this case, the probability will need to 

be derived from the tree associated with the Ω value that is 1 less than the one in question. 

In the opposite case (i.e. if the price is below the critical value and the turbine remains 

idle) the emission level remains unchanged, thus the probability will need to be calculated 

from two of the states that belong to the previous steps of the same tree: 
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Figure 56: The connection between binomial trees in two different cases (above: Λ=1, bellow: Λ=0). 

The relationships pertaining to the probability trees can also be expressed formally. The 

formula for the probability at the jth price point of the kth step of the lth probability tree is 

(where S denotes the price, K is the exercise price, p is the probability of an upward 

movement and q=1-p stands for the probability of a downward movement): 

ܲ(݇, ݆, ݈) =

൜݂݅	ܵ
(݇, ݆) > ܭ ⇒ Λ = 1						ܱ(݇ − 1, ݆ − 1, ݈ − 1) ∙  + 	ܱ(݇ − 1, ݆, ݈ − 1) ∙ ݍ
݂݅	ܵ(݇, ݆) ≤ ܭ ⇒ Λ = 0						ܱ(݇ − 1, ݆ − 1, ݈) ∙  + 	ܱ(݇ − 1, ݆, ݈) ∙ ݍ ൠ  	

O(݇, ݆, ݈) ≔ ቄ݂݅	݇ ≥ ݆, ݈	ܽ݊݀	݇, ݆, ݈ ≥ 0, ܲ(݇, ݆, ݈)
݁ݏ݅ݓݎℎ݁ݐ 0

ቅ    74.   

In order to illustrate the method with an example, let us assume that the spread (without 

other variable costs) follows a geometric Brownian motion, its initial value is S0 = 3.1, the 

annual drift equals μ = 0.1, volatility is σ = 0.2 and the interval examined is 1 year, which 

we divide up into three parts. The parameters of the price model are: Δt = 0.33, u = 1.224, 

d = 0.8909, p = 0.6176, q = 0.3824. Let us assumer, furthermore, that the other variable 

costs term equals 3, that is, the power plant will decide to generate power if the value of 

the above spread exceeds 3. The possible prices, the respective probabilities P and the 

values of decision variable Λ are contained in the following trees: 

 

Figure 57: Process of spread and the production decisions modeled by binomial trees. 

Λ P (Ω = x) P (Ω = x+1)

1

Λ P (Ω = x) P (Ω = x+1)

0

3 S (j,k) 4.4 3 PS (j,k) 23.6% 3 Λ(j,k): S(j,k)>=X 1
2 3.9 3.5 2 38.1% 35.4% 2 1 1
1 3.5 3.1 2.8 1 61.8% 47.2% 35.4% 1 1 1 0
0 3.1 2.8 2.5 2.2 0 100.0% 38.2% 14.6% 5.6% 0 1 0 0 0

j,  k 0 1 2 3 j,  k 0 1 2 3 j,  k 0 1 2 3
100.0% 100.0% 100.0% 100.0%
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Having divided the interval into three parts, the process will be represented by four 

binomial probability trees associated with four cumulative decision levels: 

 

Figure 58: Cumulated emissions process modeled by binomial trees. 

In the example, the number of possible cumulative decision (emission) levels (Ωs) is 4, 

therefore we will need to use 4 probability trees in the model (two upper rows). The 

probabilities highlighted with a thick border below the individual probability trees are the 

sums of the probabilities that pertain to the kth step of the tree that belongs to the given Ω 

value, which sums we “carry forward” to the probability tree of the cumulative emission 

value (tree on the left-hand side in the bottom row) that we are looking for, and which 

depends on the values of Ω and k. The columns of this tree contain the discrete 

approximation of the continuous density function we are looking for. In the binomial tree 

on the right-hand side of the bottom row, I added up the probabilities of the trees for the 

four different Ω values, and the resulting values coincide with the values in the 

probability tree of the basic process (see the previous figure). That is, the sum of the 

probability trees associated with the different cumulative emission levels (Ωs) is identical 

with the probability tree of the basic price process. That is because what the method 

actually does is to separate, in a special way, the price process into sub-processes with the 

same cumulative emission level. From the values in the last step of the probability tree of 

cumulative emissions, we can derive the approximation of the density function of the total 

3 PΩ=1 (j,k) 0.0% 3 PΩ=2 (j,k) 0.00%
2 0.0% 0.0% 2 0.00% 0.00%
1 0.0% 0.0% 9.0% 1 61.76% 23.62% 9.03%
0 100.0% 38.2% 14.6% 5.6% 0 0.00% 0.00% 0.00% 0.00%

j, k 0 1 2 3 j, k 0 1 2 3
100.0% 38.2% 14.6% 14.6% 0.0% 61.8% 23.6% 9.0%

3 PΩ=3 (j,k) 0.0% 3 PΩ=4 (j,k) 23.6%
2 38.1% 14.6% 2 0.0% 29.2%
1 0.0% 23.6% 9.0% 1 0.0% 0.0% 0.0%
0 0.0% 0.0% 0.0% 0.0% 0 0.0% 0.0% 0.0% 0.0%

j, k 0 1 2 3 j, k 0 1 2 3
0.0% 0.0% 61.8% 23.6% 0.0% 0.0% 0.0% 52.7%

4 PΩ (Ω,k) 52.7% 4 PS (j,k) 23.6%
3 61.8% 23.6% 3 38.1% 43.8%
2 61.8% 23.6% 9.0% 2 61.8% 47.2% 27.1%
1 100.0% 38.2% 14.6% 14.6% 1 100.0% 38.2% 14.6% 5.6%

Ω, k 0 1 2 3 j, k 0 1 2 3
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%



 

143 
 

cumulative volume of emissions at the end of the interval, which in our case is left-

skewed and slightly “U”-shaped: 

 

Table 6: The discrete probability density vector of cumulated decision variable Ω. 

Ω 1 2 3 4
P 14.6% 9.0% 23.6% 52.7%


