

ICP-MS ALKALMAZÁSA KÜLÖNBÖZŐ TÍPUSÚ MINTÁK EREDETMEGHATÁROZÁSÁHOZ

PhD értekezés

Katona Róbert

Budapesti Corvinus Egyetem

2013

A doktori iskola

megnevezése:	Élelmiszer-tudományi Doktori Iskola
tudományága:	Élelmiszertudományok
vezetője:	Dr. Fodor Péter
	egyetemi tanár, DSc
	Budapesti Corvinus Egyetem
Témavezető:	Dr. Stefánka Zsolt
	Országos Atomenergia Hivatal
	Általános Nukleáris Igazgatóság
	Nukleáris és Radioaktív Anyagok Főosztály

A doktori iskola- és a témavezető jóváhagyó aláírása:

A jelölt a Budapesti Corvinus Egyetem Doktori Szabályzatában előírt valamennyi feltételnek eleget tett, az értekezés műhelyvitájában elhangzott észrevételeket és javaslatokat az értekezés átdolgozásakor figyelembe vette, azért az értekezés nyilvános vitára bocsátható.

.....

Az iskolavezető jóváhagyása

A témavezető jóváhagyása

A Budapesti Corvinus Egyetem Élettudományi Területi Doktori Tanács 2013. június 4-i határozatában a nyilvános vita lefolytatására az alábbi bíráló Bizottságot jelölte ki:

BÍRÁLÓ BIZOTTSÁG:

Elnöke Fodor Péter, DSc

Tagjai Hoschke Ágoston, CSc Mihucz Viktor, PhD Posta József, DSc Vincze Árpád, PhD

Opponensek

Bartha András, PhD Heltai György, DSc

Titkár Fodor Marietta, PhD

TARTALOMJEGYZÉK

TARTALOMJEGYZÉK	
RÖVIDÍTÉSEK	
1. BEVEZETÉS	
1.1 Az elemanalízis jelentősége és szerepe az eredet meghatározásában	11
2. IRODALMI ÁTTEKINTÉS	
21 Az eredetmeghatározás és a tömegsnektrometria kancsolata	13
2.1.1 Élelmiszerminták eredetének meghatározása	
2.1.2 Törvényszéki minták eredetének meghatározása	15
2.1.3.Az izotóparány meghatározás alkalmazása az eredetmeghatározásban	15
2.1.3.1 ⁸⁷ Sr/ ⁸⁶ Sr izotóparány meghatározása	19
2.1.4. Elemujjlenyomat	23
2.1.4.1 Magas urán tartalmú minta ritkaföldfém-ujjlenyomatának meghatározása	
2.1.4.2 Magas uran tartaimu minta egyeb szennyező elemtartaimanak megnatarozásá	29
2.2 Törvényszéki analitika	
2.2.1. Nukleáris törvényszéki analitika	
2.2.2. Nukleáris üzemanyaggyártás	
2.2.3. Magyarorszagi helyzet	42
2.3 Élelmiszeranalitika	43
2.3.1. Bor	
2.3.1.1 A bor élettani hatása	
2.3.1.2 A bor kemiai osszeletele	46
2.3.2. Füszerpupriku	47 48
2.3.2.1 A paprika eletitati hatasa 2.3.2.2 Az őrölt paprika	
2.3.2.3 Az őrölt paprika gyártásának technológiája	50
3 <i>CÉLKITŰZÉS</i>	54
A ANVAC Éς ΜΌΩςΖΕΡ	
4. ANTAG ES MODSZER	
4.1 A kiserletek helye	
4.2 Felhasznált anyagok, vegyszerek, standardok, hiteles anyagminták	56
4.2.1 MTA-IKI ICP-MS Laboratórium, illetve BCE-ÉTK Alkalmazott Kémia Laboratórium	57
4.2.2 Bécsi Agrártudományi Egyetem VIRIS Laboratórium	
4.2.3 A kisérletek során felhasznált minták	
4.3 Alkalmazott műszerek	59
4.3.1 Az induktív csatolású plazma, mint ionforrás	60
4.3.2 ICP-SF-MS	61
4.3.3 ICP-CC-QMS	62 64
4.5.4 MC-ICI -MS	
J. EKEDMENTEK	
5.1 Bor eredetének meghatározásához kidolgozott módszerek	66
5.1.1 Mintaelőkészítés kiválasztása	
5.1.1.1 AZ ICP-MS analizis	
5.1.2 v alos miniak elem-ajjienyomalanak megnalarozasa	/3 72
5.1.2.2 Többelemes analízis	73
5.1.2.3 Analitikai teljesítményjellemzők meghatározása	
5.1.2.4 A borok elemösszetétél mérésének eredménye	79
5.1.3 ⁸⁷ Sr/ ⁸⁶ Sr izotóparány	81

5.1.3.1 Sr/Rb elválasztás	81
5.1.3.1 A Sr izotóparány mérése	
5.1.3.2 Borminták Sr izotóparánya	83
5.2 Az őrölt fűszerpaprika eredetének meghatározása	87
5.2.1 Mintaelőkészítési eljárás	87
5.2.2 ICP-MS analízis	
5.2.2.1 Kimutatási határok	
5.2.3 Homogenitas vizsgalat	
5.2.4 Kontaminacios vizsgalat	95 06
5.2.5 Sr/ Sr 12010puruny megnutur ozusu	
5.3 Urán-oxid minták eredet-meghatározásának lehetőségei	
5.3.1 Módszer kidolgozása urán-oxid minták ritkaföldfém-ujjlenyomatának meghatározására	
5.3.1.1 Az alkalmazott meresi parameterek	100
5.3.1.3 A kidolgozott módszer teljesítmányjellemzőj	100
5.3.1.4 A kidolgozott módszer alkalmazása valós mintákon	101
5.3.1.5 A kidolgozott módszer robosztusságának vizsgálata	
5.3.2 Módszer kidolgozása urán-oxid minták egyéb szennyező elemtartalmának meghatározására	107
5.3.2.1 Az alkalmazott mérési paraméterek	109
5.3.2.2 A kidolgozott módszer validálása	110
5.3.2.3 A kidolgozott módszer teljesítményjellemzői	
5.3.2.4 A kidolgozott módszer alkalmazása valós mintákon	113
6. ÚJ TUDOMÁNYOS EREDMÉNYEK	118
7. ÖSSZEFOGLALÁS	120
8. ABSTRACT	122
9. MELLÉKLETEK	124
M.1 Irodalomjegyzék	124
M.2 Weinviertel területről származó borminták elemanalízisének eredménye	139
M.3 Borminták Sr izotóparányainak évenkénti változása	140
M.4 Borminták Sr izotóparányainak csoportok közötti összehasonlítása	141
M 5 Különhöző országokhól származó nanrikamintál elemanalízisének eredménye	142

RÖVIDÍTÉSEK

<u>Rövidítés</u>	Angol megfelelő	Magyar megfelelő
AAS	Atomic Absorption Spectrometry	Atomabszorpciós Spektrometria
ADU	Ammonium diuranate	Ammónium diuranát
AS	Alpha Spectrometry	Alfa spektrometria
AUC	Ammonium uranyl carbonate	Ammónium uranil karbonát
BEC	Background equivalent concentration	Háttér ekvivalens koncentráció
CF-IRMS	Continous Flow Isotope Ratio Mass	Folyamatos áramlású izotóp arány
	Spectrometry	tömegspektrometria
CRM	Certified reference material	Hitelesített referenci minta
DF-ICP-MS	Double Focussing Inductively	Dupla fókuszállású induktív csatolású
	Coupled Plasma Mass Spectrometry	plazma tömegspektrometria
DU	Depleted uranium	Szegényített urán
GC-IRMS	Gas Chromatography Isotope Ratio Mass	Gáz kromatográfiás izotóp arány
	Spectrometry	tömegspektrometria
GDMS	Glow Discharge Mass Spectrometry	Koronakisüléses tömegpektrometria
GS-IRMS	Gas Source Isotope Ratio Mass	Gázforrásos izotóp arány
	Spectromrty	tömegspektrometria
НАССР	Hazard Analysis and Critical Control Point	Veszélyelemzés és kritikus
		ellenőrzőpontok
HEU	Highly enriched uranium	Nagy dúsítású urán
HPLC	High Performance Liquid Chromatography	Nagy teljesítményű
		Folyadékkromatográfia
HR-ICP-MS	High Resolution Inductively Coupled	Nagy felbontású induktív csatolású
	Plasma Mass Spectrometry	plazma tömegspektrometria
IAEA	International Atomic Energy Agency	Nemzetközi Atomenergia Ügynökség
ICP-AES	Inductively Couples Plasma Atomic	Induktív csatolású plazma
	Emission Spectrometry	atomemissziós spektrometria
ICP-CC-MS	Inductively Coupled Plasma Collision Cell	Induktív csatolású plazma ütközési
	Mass Specrtometry	cellás tömegspektrometria
ICP-OES	Inductively Coupled Plasma Optical	Induktív csatolású plazma optikai
	Emission Spectrometry	emissziós spektrometria

ICP-Q-MS	Inductively Coupled Plasma Quadrupole	Induktív csatolású plazma quadrupól
	Mass Spectrometry	tömegspektrometria
ICP-SFMS	Inductively Coupled Plasma Sector Field	Induktív csatolású plazma "sector
	Mass Spectrometry	field" tömegspektrometria
ICP-TOF-MS	Inductively Coupled Plasma Time Of	Induktív csatolású plazma repülési
	Flight Mass Spectrometry	idő tömegspektrometria
ID-ICP-MS	Isotope Dilution Inductively Coupled	Izotóphigításos induktív csatolású
	Plasma Mass Spectrometry	plazma tömegspektrometria
IRMS	Isotope Ratio Mass Spectrometry	Izotóparány tömegspektrometria
ITDB	Illicit Trafficking Database	Tiltott kereskedelmi adatbázis
ITWG	International Technical Working Group	Nemzetközi Műszaki Munkacsoport
LA-ICP-MS	Laser Ablation Inductively Coupled	Lézer ablációs induktív csatolású
	Plasma Mass Spectrometry	plazma tömegspektrometria
LC-MS-MS	Liquid Chromatography Tandem Mass	Folyadékkormatográfia tandem
	Spectrometry	tömegspektrometria
LEU	Low enriched uranium	Alacsony dúsítású urán
LOD	Limit Of Detection	Kimutatási határ
MC-ICP-MS	Multicollector Inductively Coupled Plasma	Többdetektoros induktív csatolású
	Mass Spectrometry	plazma tömegspektrometria
NMR	Nuclear Magnetic Resonance Spectroscopy	Magmágneses rezonancia
		spektroszkópia
REE	Rare earth elements	Ritkaföldfémek
SIMS	Secondary Ion Mass Spectrometry	Másodlagos ion tömegspektrometria
SNIF-NMR	Specific Natural Isotope Fractionation	Egyedi természetes izotópfrakcioná
	Nuclear Magnetic Resonance	lódásos magmágneses rezonancia
	Spectometry	spektrometria
TIMS	Thermal Ionization Mass Spectrometry	Hőionizációs tömegspektrometria
TXRF	Total Reflection X-ray Fluorescence	Totálreflexiós röntgenfluoreszcens
	Spectrometry	spektrometria
XRF	X-ray Fluorescence Spectrometry	Röntgenfluoreszcens spektrometria

1. BEVEZETÉS

Az eredetmeghatározás manapság igen elterjedt és igen sűrűn használt kifejezés. Eredetmeghatározásról beszélhetünk egy szó, vagy éppen egy népcsoport esetében is, de az eredetmeghatározás témakörébe tartozik az igazságszolgáltatási eljárás során vett ujjlenyomat vagy DNS minta, melyeknek segítségével az elkövető személyét szeretnék meghatározni. Még a kutyák esetében is, a törzskönyv kiállításához hitelt érdemlően kell bizonyítani az adott állat felmenőit, azaz eredetét. Eredetmeghatározás segítségét hívják régészeti feltárások során talált eszközök, anyagok, tárgyak esetében is. Az élelmiszeriparban alkalmazott HACCP (Veszélyelemzés a Kritikus Ellenőrzési Pontokon) rendszer egyik fő előnye többek között az, hogy minden egyes élelmiszert, annak termelőjét, gyártóját, feldolgozóját, azaz eredetét vissza lehet követni.

Az imént felsorolt példákon keresztül belátható, hogy milyen hatalmas területet is fed le az "eredetmeghatározás" kifejezés. Használják a törvényszéki tudományokban éppúgy, mint a geológiában, régészetben, élelmiszeriparban, vagy éppen a történelemtudományokban és a bűnmegelőzésben, illetve felderítésben. A felsorolásból számos esetben az eredetmeghatározás sok egyéb mellett analitikai problémát is felvet az eredet bizonyítására. Dolgozatomban arra törekedtem, hogy ennek az analitikai alkalmazási lehetőségnek széles területét mutassam be azáltal, hogy egymástól igen távol álló területek, illetve tudományágak esetében keresek megoldást az ott felmerülő eredetmeghatározásban tapasztalt nehézségekre.

Az egyik ilyen általam választott terület az élelmiszeripar. Ha az elmúlt évek élelmiszerekkel kapcsolatos botrányaira gondolunk úgy, mint a Brazíliából származó, a megengedett határértéket nagy mértékben meghaladóan aflatoxint tartalmazó paprikára, vagy ha elképzeljük milyen károkat okozhat például egy tisztességes bortermelőnek, ha az üzletek polcain a jelölés szerint az ő termékével megegyező minőségű, olcsóbb, ám valójában kétes eredetű, rossz minőségű, a jelöléstől eltérő eredetű borokat forgalmaznak, beláthatjuk, hogy az eredetmeghatározás milyen fontos szerepet tölthet be az egyes élelmiszeripari ágazatok esetében.

Az eredet meghatározása azonban nem csak az élelmiszerek esetében fontos. Az élelmiszeripartól igen távol álló területen, ám azonos alapokon nyugvó vizsgálatok elvégzése is legalább annyira indokolt, ez pedig a nukleáris terület. Az utóbbi években a radioaktív és nukleáris anyagok csempészete előtérbe került. Elsősorban a Szovjetunió felbomlása után ezek az anyagok egy része kikerült az ellenőrzés alól, ami igen komoly veszélyt jelenthet. Az ilyen anyagok nem várt helyen történő felbukkanása, valamint lefoglalása után felmerülő kérdések megválaszolására a tudomány egy új ága alakult ki, amelyet "nuclear forensics"-nek, azaz magyarul nukleáris, törvényszéki analitikának neveztek el. E tudományág feladata a lefoglalt anyag korára,

veszélyességére, felhasználásának lehetséges céljára, valamint természetesen az eredetére vonatkozó kérdések megválaszolása [MAYER et.al. 2004].

Dolgozatomban az élelmiszereken belül a paprika és a bor, a nukleáris területen belül pedig a lefoglalt urán-oxid üzemanyagtabletták eredetének meghatározásához kíséreltem meg olyan analitikai megoldásokat kidolgozni, amelyek a minták elem összetételének és izotóp arányának elemzésén alapulnak.

1.1 Az elemanalízis jelentősége és szerepe az eredet meghatározásában

Jelen munkámban "elemanalitika" kifejezés alatt a szervetlen tömegspektometriás módszereket értem. Ezen belül is a különböző ionforrásokkal rendelkező szervetlen tömegspektrometriás módszereket, elsősorban a legelterjedtebb, plazma ionforrással működő induktív csatolású plazma tömegspektrometria (ICP-MS) technikát. Ennek oka, hogy a disszertációm további részében, bár a mintatípusok, és ezáltal a mintamátrixok, valamint a mintaelőkészítési technikák különböznek egymástól, az analízis célkitűzése megegyezik, az elvégzése minden esetben ezzel a technikával történik, így ez a technika, valamint az alkalmazása során esetlegesen felmerülő problémák nagy hangsúlyt kapnak.

Az elemanalízis szerepe az eredetek meghatározásában igen jelentős, mivel a meghatározandó anyagban jelenlévő elemek eloszlása információt hordozhat az anyag földrajzi, illetve technológiai származási helyére vonatkozóan. A nyomelem-ujjlenyomat meghatározás alkalmas lehet mezőgazdasági-, illetve nukleáris minták eredetének meghatározására. A mikroelemek vizsgálatával lehetőség nyílik a változatos mátrixszal rendelkező élelmiszer-, környezeti- és nukleáris minták elemujjlenyomatának felvételére. A fő cél azon alkalmas elemek – főként nehézfémek és ritkaföldfémek – azonosítása, melyek koncentrációja az élelmiszerek esetében egyes földrajzi régiók függvényében szignifikánsan változik, de lehetőleg nem változnak az élelmiszer feldolgozási folyamatában. Nukleáris minták, elsősorban urán-oxid tabletták esetében a földrajzi eredetű, valamint az előállítási technológia során bekövetkezett jellemző szennyeződések együttes hatásának vizsgálata releváns lehet az eredetmeghatározás szempontjából.

A természetben előforduló természetes, stabil izotópok egymáshoz viszonyított arányainak vizsgálatával például a csapadék körforgását, rovarok migrációját valamint számos más természeti folyamatot követhetünk nyomon. A természetes eltérésen alapuló stabil izotóparányok segítségével következtethetünk az élelmiszerek esetében az eredetre, nukleáris eredetű minták esetében pedig a mesterségesen megváltoztatott izotóparányok (pl. ²³⁵U/²³⁸U) segítségével a felhasználásuk céljára,

11

nem stabil izotópok (pl. ²³⁴U/²³⁰Th) vizsgálata esetében pedig a nukleáris eredetű minta gyártási idejére.

A földrajzi eredet meghatározására elsősorban mezőgazdasági minták esetében egyre elterjedtebben alkalmazzák az úgynevezett nehéz elemek stabil izotóparányainak meghatározását. Ezen elemek közé tartozik a stroncium (Sr) is, melynek ⁸⁷Sr/⁸⁶Sr izotóparánya a geológiai viszonyoktól függően az egyes – akár közvetlenül szomszédos – területeken más és más. Sajnos az egymástól alig eltérő tulajdonságú, egymáshoz térben közel elhelyezkedő geológiai helyekről származó minták eredetének meghatározása ezzel a módszerrel nem mindig vezet tökéletes eredményre. Azonban ha a ⁸⁷Sr/⁸⁶Sr izotóparány méréseket kiegészítjük egy másik, független módszerrel, például egy elemujjlenyomat meghatározással az adott régión belül, az eredet megjelölése biztosabbá válhat.

Az egyes minták elemösszetételének meghatározásához természetesen rendelkezésre állnak megfelelő analitikai technikák. Az egyik, erre a feladatra alkalmas módszer a tömegspektrometria, amely a koncentrációk, valamint az izotóparányok pontos, precíz meghatározásához a legcélravezetőbb és napjainkban leginkább alkalmazott. Ezen belül is a legdinamikusabban fejlődik az induktív csatolású plazma tömegspektrometria (Inductively Coupled Plasma Mass Spectrometry, ICP-MS). Ennek a technikának is természetesen több változata létezik, amelyek eltérő teljesítményjellemzőkkel rendelkeznek, a megfelelő kiválasztása az elvégzendő feladat függvényében történik. Azonban minden változatra jellemző a kiemelkedően nagy érzékenység, precizitás és pontosság.

Az ICP-MS eredetmeghatározásra történő alkalmazásához azonban elengedhetetlen a megfelelő mintaelőkészítési eljárás. Bár bizonyos esetben (pl. lézerablációs, "kvázi" roncsolásmentes ICP-MS módszert alkalmazva) a mintaelőkészítési lépés elmaradhat, a doktori munka keretében kifejlesztett eljárások nem roncsolásmentes eljárások voltak. Ennek oka, hogy bizonyos feladatokhoz (pl.: élelmiszervizsgálat) nem, vagy csak korlátozottan állnak rendelkezésre a koncentráció meghatározáshoz alkalmazható szilárd etalonok, valamint számos esetben a minta sem alkalmas az ilyen jellegű mintabevitelre. Ezért a minták előkészítése során az irodalomban jól ismert előkészítési lépések kombinációját alkamaztam, melyek a következők: (i) az analízisre szánt mintából a mérendő elemeket általában kivonják, vagy (ii) a mintát feloldják, illetve (iii) elhamvasztják [BROEKAERT 2002]. E műveletek után az előkészített, feltárt mintákat, illetve a célunk eléréséhez szükséges komponenseit folyadék halmazállapotban juttatják az ICP-MS készülékbe.

2. IRODALMI ÁTTEKINTÉS

2.1 Az eredetmeghatározás és a tömegspektrometria kapcsolata

A tömegspektrometriás technikák közül talán az ICP-MS az, amely a legdinamikusabban fejlődött az 1970-2000 között eltelt 30 évben, majd a hatalmas fejlődési ütem platóját elérve rutin technikává vált. Az első ICP-MS kísérletek az 1970-es évekre tehetőek, ami után az első készülékek már az 1980-as évek elején kereskedelmi forgalomba kerültek. A technika előnye, hogy különböző mintabeviteli rendszerekkel kapcsolható össze, így számos területen felhasználható. A módszer hátrányaként említhető, hogy néhány elem (pl. H, O, N) mérésére nem alkalmas, valamint egyes tömegszámok tiltott tömegként vannak definiálva, amelyek nem mérhetőek (pl. argon plazmás ICP-MS esetében az m/z = 40 a magas Ar háttér miatt). Továbbá a mintamátrix okozta jelszupresszióval, valamint a spektrális zavaróhatásokkal is számolni kell.

2.1.1 Élelmiszerminták eredetének meghatározása

A világ élelmiszerpiacán fokozódó verseny, valamint a fogyasztók által támasztott elvárások növekedése az élelmiszerek minőségellenőrzéséhez szükséges új módszerek kialakulásához vezettek. Kiderült, hogy a különböző kémiai módszerek, amelyeket az élelmiszerekben előforduló szennyeződések feltérképezésére használnak, fontos információt hordoznak az eredetre vonatkoztatva is. A környezet, ahol a növényeket, illetve az állatoknak szánt takarmányt termesztik évmilliók alatt alakult ki. Ez a változás az egyes földrajzi helyeken eltérő módon ment végbe, amely jellemző lehet az adott területre, a terület elemanalitikai felépítésére, valamit az onnan származó élelmiszerekre, azok eredetére. Az élelmiszerek eredetének meghatározására kifejleszett elemanalitikai vizsgálatok elsősorban a minta elemujjlenyomatának, illetve – elsősorban – stroncium izotóparányának vizsgálatán alapszanak. A stoncium meghatározott izotópjainak aránya az adott földrajzi területre jellemző és ott állandó, aminek következtében számos termék eredetének meghatározására alkalmazható. A stroncium izotópjainak aránva a ⁸⁷Rb radioaktív bomlásának ($T_{1/2}$ =4.8*10¹⁰ év) köszönhetően – melynek eredménye a ⁸⁷Sr izotóp – a természetben folyamatosan változik, mégis regionálisan állandóságot mutat. Mivel a ⁸⁷Sr mennvisége a ⁸⁷Rb természetes bomlásának következtében változik az egyes kőzetekben, kijelenthető, hogy a különböző földrajzi helyekről származó talajok Sr izotóparánya az eredetileg a kőzetben jelenlevő Rb mennyiségétől függ. A Sr izotópok vándorlásáról a természetben az alábbiakban található egy összefüggő ábra (1.ábra).

1.ábra: A stroncium vándorlása a természetben

Azonban a legtöbb esetben a mért adatok nem elegendőek ahhoz, hogy további vizsgálatok nélkül, egyetlen módszert alkalmazva a földrajzi eredet meghatározása, vagy akár több helyről származó minták egymástól történő elválasztása sikeres legyen. Ezért a legcélravezetőbb a különböző módszerek egymással, valamint megfelelő matematikai, statisztikai módszerekkel történő kombinációja lehet.

Az analitikai vizsgálatok során az egyes mintákból általában csak igen kis mennyiség szükséges, amely mennyiségnek reprezentatívnak kell lennie az egész mintamennyiségre vonatkoztatva, tehát a minta egészének megfelelően homogénnek kell lenni. A megfelelő homogenitás eléréséhez különböző módszerek állnak rendelkezésre, mint a hígítás, porítás, keverés. Továbbá az egész módszert vizsgálva a minták előkészítése a kritikus, ez az adott módszer legszűkebb keresztmetszete. A minták előkészítése legtöbbször roncsolással, vagy oldással indul, ahol a reagens, valamint a módszer kiválasztása igen fontos, a további méréseket nagymértékben meghatározza. Általában ezt követi a mérendő komponensek szelektív elválasztása a mátrixtól, valamint ultranyomelem meghatározás esetében a minta koncentrálása.

Számos publikált módszer áll rendelkezésre az élelmiszerek nyomon-követhetőségének meghatározására. [PERES et al., 2007] és [KAROURI és DE BAERDEMAEKER, 2007] munkái például többek között a tejtermékekre térnek ki. A borhamisítások elterjedése következtében a borok eredetének meghatározása is fontos része az élelmiszervizsgálatoknak [MARISA et al., 2003; DAY MP et al., 1995; ALMEIDA, VASCONCELOS, 2003a; COETZEE et al., 2005a; COETZEE, VANHAECKE F, 2005].

2.1.2 Törvényszéki minták eredetének meghatározása

A törvényszéki minták fogalomköre igen tág. A különböző tudományágak – mint például az igazságügyi toxikológia, a törvényszéki geológia, a törvényszéki kémia, valamint ez utóbbiba tartozó nukleáris törvényszéki analitika – egymástól igen távol helyezkednek el, a vizsgálatokhoz gyűjtött minták mind megjelenésben, előkészítésben, meghatározni kívánt komponensben és ehhez használatos technikákban nagymértékben különböznek. Egyetlen közös pontjuk az, hogy az eredmények egy igazságszolgáltatási eljárás lehetséges bizonyítékai.

Számos esetben ezeknek a vizsgálatoknak nem is célja a vizsgált anyag eredetének meghatározása, azonban ha az mégis fontossá válik, a legkülönfélébb módon, illetve módszerekkel érhető el. Ebben az esetben is a legcélravezetőbb megoldás, ha nem csupán egyetlen mintaelőkészítésből származó egyetlen paraméter meghatározása a cél, hanem a különböző technikák egymás mellett történő alkalmazása [MAYER et al., 2004], amelynek következtében statisztikailag is jobban alátámasztott eredményeket nyerhetünk. A módszerek lehetnek kémiaiak és fizikaiak egyaránt, illetve egymást kiegészítőek. Számos publikált eset van például a nukleáris törvényszéki analitika területén, amikor pusztán a minta átmérőjének és magasságának mérésével már nagymértékben lecsökkent a lehetséges eredetek száma [STEFÁNKA et al., 2008], azonban sokszor ennél jóval bonyolultabb meghatározásra van szükség.

2.1.3. Az izotóparány meghatározás alkalmazása az eredetmeghatározásban

Az izotóp görög eredetű szó (jelentése: azonos hely), a periódusos rendszer azonos helyén található egyazon kémiai elem nuklidjaira utal, amelyeknek rendszáma – tehát protonszáma – megegyezik, de tömegük eltérő az atommagban található neutronok eltérő száma miatt. Az egyes izotópok kémiai tulajdonságai megegyeznek (ez alól csak a hidrogén izotópjai kivételek), fizikai tulajdonságaik (tömeg, térfogat, mágneses momentum, forgatónyomaték) viszont eltéréseket mutatnak. Az elemek természetes előfordulásukat tekintve gyakorlatilag izotópjaiknak keverékéből állnak. Különösen a páros rendszámú elemek között találhatóak olyanok, amelyeknek 5-10 izotópjuk ismert. Azonban léteznek olyan elemek is (Be, Al, Mn, Co, As, Rh), amelyeknek csak egyetlen stabil izotópja létezik, ezek a berillium kivételével mind páratlan rendszámúak [NEUMÜLLER 1981, ÜVEGES 2008].

Az izotópok tömegbeli különbségeivel magyarázható, hogy egy atom különböző izotópjainak természetes eloszlása nem mindig állandó. A jelenség az úgynevezett izotópfrakcionálódás, melynek lényege, hogy a viszonylag nagy tömegkülönbségek következtében az izotópok között egy megoszlás jön létre [FAURE et. al., 2004]. A természetes stabil izotópok mellett jelen vannak még instabil (radioaktív) izotópok is, melyek lehetnek természetes, vagy mesterséges izotópok, amelyek valamilyen magreakció(k) következtében jönnek létre. Bár a

dolgozat nukleáris törvényszéki analitikai témát is érint, a radioaktív izotópok meghatározása nem tárgya ennek a dolgozatnak.

A már említett stabil izotópok vizsgálata, illetve alkalmazása egyre bővül, elsősorban a mezőgazdaságban, azon belül is az élelmiszeriparban [GHIDINI et al., 2006]. Ezen izotópok arányának természetes eltérése jól felhasználható lehet különböző minták (ebben az esetben elsősorban élelmiszerminták) eredetének meghatározására, illetve az élelmiszerbe illegálisan bekerült anyagok kimutatására. (1/a. táblázat) Ezek a vizsgálatok rutinszerűek az élelmiszeriparban, a leggyakrabban vizsgált élelmiszerek körébe tartozik a bor, a gyümölcslé, a különböző olajok, a tej, a tejtermékek, a hús és a méz [FÖRSTEL 2007]. Borok esetében például a vízzel történő $^{18}O/^{16}O$ izotóparány mérésével derülhet hígításra az fény. A szőlőben végbemenő transzportfolyamatok következtében ez az izotóparány a gyümölcsben magasabb a talajvízhez, illetve az ivóvízhez képest. Tehát hozzáadott víz hatására a borban a jellemző izotóparány eltolódik, a hamisításra így fény derül [CALDERONE et al., 2008; ÜVEGES 2008]. Megfigyelhető, hogy az élelmiszerek igen széles körét vetették már alá izotóparány-vizsgálatnak. A vizsgálati módszerek is - természetesen elsősorban a vizsgálandó paraméterek függvényében - eltérőek, azonban a legelterjedtebb és a legszívesebben alkalmazott módszerek az IRMS, azaz az izotóparánytömegspektrometria (ezen belül is kettőt, a GS-t, azaz a gáz forrásút, valamint a CF-et, azaz a folyamatos áramlásút használják előszeretettel) és az ICP-MS, azaz az induktív csatolású plazma tömegspektrometria (ezen belül is a különböző típusok, úgy mint a normál quadrupolusos (Q), a repülési idő (TOF), a nagy felbontású (SF illetve HR), illetve a multikollektoros (MC) tömegspektrometria). A minták különbözősége ellenére szinte minden esetben ugyanazoknak az izotópoknak a mérésére kerül sor. Az 1. táblázatban megtalálható az élelmiszerek széles skálája, amelyek analíziséhez természetesen különböző mintaelőkészítési eljárások, illetve különböző technikák alkalmazása elkerülhetetlen. Az ICP-MS technika a TIMS (termikus ionizációs tömegspektrometria) technikával egyetemben elsősorban a nehéz elemek izotóparányainak meghatározására alkalmazható, kivétel ez alól a borok esetében alkalmazott ¹¹B/¹⁰B izotóparány meghatározása.

1/a. táblázat: Összefoglaló táblázat izotóparány meghatározásának alkalmazására élelmiszerek (élelmiszer összetevők) tekintetében

Minto tínugo / mótilia	Meghatározandó	Analitikai	Deferrer
Minta tipusa / matrix	izotóp arányok	módszer	Referencia
	ÉLELMISZE	REK	
marhahús			
trigliceridek	$\frac{D/H}{{}^{13}C/{}^{12}C}$	NMR GS-IRMS	[RENOU et al., 2004]
zsírtalanított izomszövet	¹³ C/ ¹² C ¹⁵ N/ ¹⁴ N	CF-IRMS	[SCHMIDT et al., 2005]
húsvíz	$^{34}S/^{32}S$ $^{18}O/^{16}O$ D/H	GS-IRMS	
nyersfehérje	¹⁵ N/ ¹⁴ N ¹³ C/ ¹² C ³⁴ S/ ³² S	GS-IRMS	[BONER, FÖRSTEL, 2004]
birkahús			
nyersfehérje nyers zsír és fehérje	$^{15}N/^{14}N$ $^{13}C/^{12}C$	GS-IRMS	[PIASENTIER et al., 2003]
tej	130/120	IDMC	
tej tej kazein	$^{15}C/^{12}C$ $^{15}N/^{14}N$ $^{34}S/^{32}S$ $^{18}O/^{16}O$ $^{87}Sr/^{86}Sr$	TIMS	[CRITTENDEN et al., 2007]
liofilizált tei	$^{13}C/^{12}C$	IRMS	[KORNEXI et al
kazein savó	$^{15}N/^{14}N$ $^{18}O/^{16}O$	CF-IRMS	[1997]
sajt			
kazein és glicerin kazein glicerin kazein	¹³ C/ ¹² C ¹⁸ O/ ¹⁶ O ¹⁵ N/ ¹⁴ N ³⁴ S/ ³² S	IRMS	[CAMIN et al., 2004]
kazein	¹³ C/ ¹² C ¹⁵ N/ ¹⁴ N	IRMS	[MANCA et al., 2001]
gyümölcslevek			
hígított gyümölcslé	¹³ C/ ¹² C ¹⁸ O/ ¹⁶ O D/H	IRMS GS-IRMS	[KOZIET et al., 1995] [GUILLOU, 1999]
citromsavas extraktum	D/H ¹³ C/ ¹² C	IRMS	[JAMIN et al., 2005]
szűrt gyümölcslé	¹³ C/ ¹² C ¹⁸ O/ ¹⁶ O	IRMS	[PUPIN et al., 1998]
fermentált és desztillált gyümölcslé	D/H	SNIF-NMR	
bor	T 07 07	1	
UV-besugárzott bor	^{8/} Sr/ ⁸⁶ Sr	ICP-Q-MS	[ALMEIDA, VASCONCELOS, 2001]
szőlőtalaj, szőlőlé (must), szőlőlevél, kész bor	²⁰⁴ Pb/ ²⁰⁶ Pb ²⁰⁷ Pb/ ²⁰⁶ Pb ²⁰⁸ Pb/ ²⁰⁶ Pb	ICP-MS AAS	[ALMEIDA, VASCONCELOS, 2003]

szőlőtalaj, szőlőlé (must),	⁸⁷ Sr/ ⁸⁶ Sr	ICP-MS	[ALMEIDA,
szőlőmagok, kész bor			VASCONCELOS,
	204 207		2004]
mikrohullámmal roncsolt	$\frac{204}{207}$ Pb/ $\frac{206}{207}$ Pb	ICP-Q-MS	[BARBASTE et al.,
bor	$\frac{20}{Pb}/\frac{206}{200}$ Pb	ICP-TOF-MS	2001],
	²⁰⁸ Pb/ ²⁰⁶ Pb	ICP-SF-MC-MS	[AUGAGNEUR et al., 1997]
hígított és mikrohullámmal	$^{11}B/^{10}B$	ICP-Q-MS	[COETZEE
roncsolt bor			VANHAECKE, 2005]
kezeletlen bor (direkt	²⁰⁶ Pb/ ²⁰⁷ Pb, ²⁰⁸ Pb/ ²⁰⁶ Pb	ICP-MS	[LARCHER et al.,
analízis)	²⁰⁸ Pb/ ²⁰⁷ Pb, ²⁰⁶ Pb/ ²⁰⁴ Pb		2003]
	²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁸ Pb/ ²⁰⁴ Pb		
	²⁰⁷ Pb/ ²⁰⁶ Pb, ²⁰⁴ Pb/ ²⁰⁶ Pb		
olíva olaj			
kezeletlen olaj (direkt	$^{13}C/^{12}C$	TIMS	[ANGEROSA et al.,
analízis)	¹⁸ O/ ¹⁶ O		1999]
fahéjolaj			
desztillált olaj	$^{13}C/^{12}C$	GC-IRMS	[SEWENIG et al.,
	D/H	IRMS	2003]
víz		-	
szűrt természetes víz	204 Pb/ 206 Pb	ICP-TOF-MS	[BENKHEDDA et al.,
	$\frac{20}{Pb}/\frac{206}{Pb}$		2004]
	²⁰⁸ Pb/ ²⁰⁶ Pb		
csapvíz	¹⁸ O/ ¹⁶ O	IRMS	[FÖRSTEL et al.,
			1997]
méz			
extrahált fehérje	$^{13}C/^{12}C$	GC-IRMS	[COTTE el al., 2006]
fermentált méz	D/H	SNIF-NMR	
ömlesztett méz és fehérje	$^{13}C/^{12}C$	IRMS	[MARINI et al., 2004]
hígított, valamint	$^{135}Ba/^{138}Ba$	ID-ICP-MS	[PACKER, GINÉ,
salétromsavval és	$^{65}Cu/^{63}Cu$		2001]
perklórsavval feltárt méz	²⁰⁶ Pb/ ²⁰⁸ Pb		
	$^{66}Zn/^{68}Zn$		

Az izotóparány vizsgálatok nem csak élelmiszerek esetében alkalmazhatóak, hanem – ahogy az a 1/b. táblázatban is látszik – a nukleáris anyagok eredetének meghatározására is. Ezek esetében az egyes izotópok arányaiból következtetnek a minta korára, eredetére, dúsítási fokára. Ezen a területen a legelterjedtebb módszer a SIMS, azaz a szekunder, illetve másodlagos ion tömegspektrometria, illetve az ICP-MS, amelyet rendszerint a Pu és egyéb alfa-bomló izotópok meghatározásakor alfa-spektrometriás (AS) mérésekkel egészítenek ki.

1/b. táblázat: Összefoglaló táblázat izotóparány meghatározásának alkalmazására törvényszéki nukleáris minták tekintetében

Minta típusa /	Meghatározandó	Analitikai	
vizsgálat célja	izotóp arányok	módszer	Referencia
	<u>TÖRVÉNYSZÉKI</u> A	ANALITIKA	
nukleáris anyagok			
urán-oxid	238 Pu/ 234 U	SIMS	[TAMBORINI et al.,
kormeghatározás	239 Pu/ 235 U		2002]
	²⁴⁰ Pu/ ²³⁰ U		
urán-oxid geológiai eredet	¹⁰ O/ ¹⁰ O	SIMS	[TAMBORINI et al., 2002]
nagy dúsítású urán/	$^{234}\text{U}/^{230}\text{Th}$	TIMS	[WALLENIUS el al.,
kormeghatározás	$^{235}\text{U}/^{231}\text{Pa}$	ICP-MS	2002]
	²³⁶ U/ ²³² Th	AS	
urán-oxidgeológiai eredet	$^{18}O/^{16}O$	TIMS	[PAJO et al, 2001a]
urán koncentrátum	87 Sr/ 86 Sr	MC-ICP-MS	[VARGA et al., 2009]
geológiai eredet	$\frac{20}{Pb}/\frac{206}{204}$ Pb		
	$^{206}Pb/^{204}Pb$		
	²⁰⁸ Pb/ ²⁰⁴ Pb		
környezeti minta	$^{239}Pu/^{242}Pu$	ICP-SFMS	[VARGA et al., 2007]
plutónium elemzés	$^{240}Pu/^{242}Pu$	AS	
mintaelőkészítés	$^{241}Pu/^{242}Pu$		
	²³⁰ Pu/ ²³⁹ Pu ²⁴⁰ D / ²³⁹ D		
	²¹⁰ Pu/ ²³⁹ Pu		
üledek és talajminták/ Am	240 Pu/ 239 Pu	ICP-SFMS	[VARGA et al., 200/a]
es Pu meghatarozasa	235r + /238r +	AS	
uran-oxid geologiai eredet	$234_{\rm II}/238_{\rm II}$	ICP-SFMS	[SIEFANKA et al.,
	$0/236_{\rm II}/238_{\rm II}$		2008]
	U/20		

2.1.3.1⁸⁷Sr/⁸⁶Sr izotóparány meghatározása

Kutatások igazolják, hogy élelmiszerekben (elsősorban borban) jelen levő ⁸⁷Sr/⁸⁶Sr izotóparány igen nagy segítséget jelent az eredet meghatározásában [ALMEIDA et al., 2001]. Természetesen borok mellett egyéb élelmiszerek Sr-izotóparányon alapuló eredetvizsgálatát is elvégezték úgy, mint a sajt [FORTUNATO et al., 2004], a rizs [KAWASAKI et al., 2002], vagy akár a vaj [ROSSMANN et al., 2000]. Ezen kívül pedig egyéb tudományterületek is nagy előszeretettel hasznosítják, többek között a geológia [CAPO et al., 1998], vagy akár a régészet [PROHASKA et al., 2002], ahol szintén egyre elterjedtebbé válnak a stabil stroncium izotópok arányainak mérésén alapuló vizsgálatok.

Az izotóparány mérésére több, különböző alapokon nyugvó analitikai technika érhető el. Természetesen mindegyiknek megvan az előnye, illetve a hátránya. Ezért a megfelelő analitikai technika kiválasztásánál érdemes figyelembe venni a kapott eredmény pontosságát, precizitását, a módszer kimutatási határait, valamint azt, hogy mekkora mennyiségű, valamint milyen jellegű mintára van szükség a meghatározás végrehajtásához.

Az izotóparány mérésének pontosságára több tényező is jelentős hatást gyakorol. Az egyik legfontosabb, ami nem csak az izotóparány meghatározásánál, de a koncentráció mérések folyamán is problémákat okozhat a sprektrális zavaróhatás. Ennek okozói lehetnek izobár-, többatomos,-valamint kettős töltésű ionok, oxidok, hidridek és hidroxidok. Ezek az interferenciák szinte azonos tömeggel rendelkeznek, így megfelelő felbontás hiányában a tömegspektrumban egymás takarásában jelennek meg.

A ⁸⁷Sr/⁸⁶Sr izotóparány mérésénél a fellépő spektrális zavaróhatást elsődlegesen a ⁸⁷Rb izotóp, valamint – bár jóval kisebb mértékben – a ⁸⁶Kr izotóp okozza.

Ezen zavaróhatások kiküszöbölésére több módszer áll rendelkezésre. Egyes műszerek technikai felépítése által támogatott, hogy a felbontást – bár az érzékenység és ez által a precizitás rovására – növelni lehet (nagyfelbontású ICP-SFMS), azonban ezt is csak egy bizonyos felbontásig (m/ $\Delta m = 10000$). Ez a felbontás azonban sajnálatos módon nem elegendő a ⁸⁷Rb, valamint a belőle radioaktív bomlással keletkező ⁸⁷Sr elválasztására, mivel az ehhez szükséges felbontás (m/ Δm) kb. 300000. Ennek oka, hogy a két izotóp tömege nagyon közel áll egymáshoz. A ⁸⁷Rb atomtömege: 86,909186 g, míg a ⁸⁷Sr atomtömege: 86,908882 g. Ezért a ⁸⁷Sr/⁸⁶Sr izotóparány mérését nehezítő spektrális zavaróhatásokat (⁸⁷Rb keltette izobár interferencia) szelektív mintaelőkészítés alkalmazásával lehet kiküszöbölni.

A mintában lévő stroncium izotópok meghatározása előtt a minták feltárása szükséges. Ehhez több technika áll rendelkezésre, az egyik legelterjedtebb, valamint kísérleteim során is használt módszer a savas roncsolás. Szilárd minták esetében a minta felületét megtisztítják a szennyeződésektől, zsírtalanítják, tiszta vízben mossák, majd szárítják. A minta típusának függvényében a roncsolási technika többféle lehet (hamvasztás, mikrohullámú, vagy főzőlapos roncsolás, ömlesztés) [BALCAEN et al., 2005]. Nem szilárd minták esetében (pl. bor) a nagy mennyiségű szerves mátrix eltávolításán van a hangsúly.

A minta feltárását követően a ⁸⁷Rb izotóp (a Rb elem) eltávolítására van szükség. Az elválasztás kémiai úton történik, melyhez ionkromatográfiát, extrakciós kromatográfiát vagy ezek kombinációját alkalmazzák [WAIGHT et al., 2002].

Az extrakciós kromatográfiában nagy előszeretettel alkalmazzák a Sr specifikus gyantát [HORWITZ et al., 1992]. Az állófázis egy inert kromatográfiás hordozóra felvitt ionasszociációs komplexet képző folyadékból áll. A leggyakrabban a Triskem vagy Eichrom cég által gyártott stroncium gyantát használják, melynek állófázisa oktanolban oldott koronaéter (4,4'(5')-di-t-butilciklohexano-korona-6-éter).

Az 2 (a). ábrán a stroncium specifikus gyanta állófázisát alkotó koronaéter szerkezete látható. Az 2 (b). ábrán a gyanta néhány elemre vonatkoztatott kapacitásfaktorát (k') láthatjuk az eluáláshoz alkalmazott salétromsav koncentráció függvényében. Az egyensúly eltolható a stroncium retenciójának irányába azáltal, hogy a salétromsav koncentrációját növeljük, aminek következtében a gyanta egyre erősebben képes a stronciumot megkötni. Látható, hogy az alkálifémeknek – többek között a rubídiumnak is – jóval gyengébb a kötődése a gyantán, a kálcium kötődési affinitása mintegy 2 nagyságrenddel a stroncium alatt marad. A bárium retenciója kis savkoncentrációnál a stronciummal szinte teljesen azonos, azonban megközelítőleg 3 M-nál (mol/dm³) koncentráltabb salétromsav alkalmazása esetén retenciója gyengül, így a megfelelő savkoncentráció kiválasztásával az esetleges bárium okozta zavarás is elkerülhető [HORWITZ et al., 1991].

2. ábra A Sr specifikus gyanta állófázisának szerkezete (a) valamint, néhány fontosabb mátrixalkotó kapacitásfaktora a Sr specifikus gyantán a mozgófázis salétromsav koncentrációjának függvényében (b)

Forrás: [HORWITZ et al., 1992; ÜVEGES 2008]

Tehát a stroncium izotóparány mérése érdekében a pontos meghatározást zavaró mátrix komponenseket, elsősorban a Rb izotópokat kémiai elválasztással, extrakciós kromatográfiás módszerrel, a megfelelő koncentrációjú salétromsavat kiválasztva elválasztják a Sr izotópoktól. Az eredmény sajnos nem tökéletes, mivel a módszer hatékonysága nem 100%, így bizonyos mennyiségű ⁸⁷Rb izotóp is jelen lehet a már teljesen előkészített, mérésre váró mintában, aminek következtében az izobár zavaróhatások reális hibaforrást jelentenek. Ennek kompenzálására általában matematikai korrekciós egyenleteket alkalmaznak. Ennek a műveletnek az a célja, hogy a meghatározandó elem nettó jeléhez jussunk. Ezt úgy lehet véghezvinni, hogy mérni kell a zavaró

ismert természetes gyakoriságot felhasználva következtetünk a zavaró izotóp (⁸⁷Rb) jelintenzitására. Ezt a számolt intenzitást levonva az összes intenzitásból kaphatjuk a mérendő komponens tényleges jelintenzitását. A matematikai korrigálás az alábbi képletek segítségével történik. A számítások a tömegelhajlás – vagyis az exponenciális tömegfrakcionálódás – törvénye alapján kerültek korrigálásra [ALBARÈDE et al., 2004]. Az átláthatóság érdekében konkrét példával – ebben az esetben a ⁸⁷Sr/⁸⁶Sr izotóparány Rb-mal történő korrigálásának bemutatásával – vezetem le az egyenleteket.

Frakcionálódási faktor:

$$F = \log \left(R_{\text{Std},(86/88)} / R_{\text{meas},(86/88)} \right) / \log \left(m_{86} / m_{88} \right)$$
(1)

⁸⁷Sr/⁸⁶Sr izotóparány- és tömegelhajlás számítása:

$$(R_{S,(87/86)}) * (m_{87} / m_{86}) ^{F}$$
(2)

⁸⁷Sr – Rb korrigálás:

 $I_{87Sr-Rb corr} = I_{87Sr} - (A_{87Sr} / A_{85Rb}) * I_{85Rb} * (m_{87} / m_{85}) ^{F}$ (3)

⁸⁷Sr/⁸⁶Sr izotóparány, tömegelhajlás és Rb korrigálás:

$$(I_{87Sr-Rb corr} / I_{86Sr}) * (m_{87} / m_{86}) ^{F}$$
(4)

Ahol:

F	tömegegységre jutó tömegelhajás	
R _{Std} ,(86/88)	az SRM 987 86 Sr/88 Sr izotóparányának hitel	lesített értéke
R _{meas,(86/88)}	mért ⁸⁶ Sr/ ⁸⁸ Sr izotóparány az SRM 987 refe	renciamintában
R _{S,(87/86)}	vak értékkel korrigált ⁸⁷ Sr/ ⁸⁶ Sr izotóparány	
m ₈₈	⁸⁸ Sr moláris tömege ($m_{88} = 87.905619$)	[g]
m ₈₇	⁸⁷ Sr moláris tömege ($m_{87} = 86.90918$)	[g]
m ₈₆	⁸⁶ Sr moláris tömege ($m_{86} = 85.909267$)	[g]
m ₈₅	85 Rb moláris tömege (m ₈₅ = 84.91180)	[g]
I _{85Rb}	⁸⁵ Rb intenzitása	[cps]
I _{86Sr}	⁸⁶ Sr intenzitása	[cps]
I _{87Sr}	⁸⁷ Sr intenzitása	[cps]
I _{87Sr-Rb corr}	⁸⁷ Sr Rb-mal korrigált intenzitása	[cps]
A _{87Sr}	⁸⁷ Sr %-os előfordulása ($A_{87Sr} = 27.8346$ %)	
A _{85Rb}	⁸⁵ Rb %-os előfordulása (A_{88Rb} = 72.1654 %)

Hasonló módon lehet levezetni a ⁸⁶Sr pontos meghatározását megnehezítő ⁸⁶Kr spektrális zavaróhatásának matematikai korrekcióját. Ebben az esetben csak a matematikai korrekciót alkalmazhatjuk, mivel nem áll rendelkezésre kémiai technika ennek az izotópnak az elválasztásához. A zavaró elem jelét itt is egy másik tömegszámon kell detektálni (⁸²Kr, illetve ⁸³Kr), majd az ismert természetes gyakoriságot felhasználva következtetünk a zavaró izotóp (⁸⁶Kr) jelintenzitására, amit levonunk az összes intenzitásból.

További figyelembe veendő paraméter a holtidő korrekció. A fotoelektron-sokszorozó elvén működő detektor, miután egy ion becsapódott, egy rövid ideig nem képes jel fogadására. Így a mért jelintenzitás egy bizonyos beütésszám felett (kb. 10⁶ beütés/másodperc) nem lesz lineáris a koncentrációval, az abból számolt koncentráció nem tükrözi a tényleges értéket. Ez problémát okozhat izotóparány mérésnél is, különösen akkor, ha két lényegesen eltérő gyakoriságú izotóp arányának meghatározása a feladat pl. Sr⁸⁸ (9,9%), Sr⁸⁶ (82,6%). Ebben az esetben a valódi koncentráció az alábbi összefüggés segítségével határozható meg:

$$C_v = \frac{C_m}{(1 - C_m \tau)}$$
(5)

Ahol C_v a valódi, C_m a mért koncentráció és τ a detektor holtideje [STEFÁNKA 2003].

Következő korrigálandó paraméter a tömegtorzítás. Az ICP-MS készülékben számos olyan hatás érheti az ionokat (pl. különböző mintavételezési hatásfok, tértöltés hatás) amely megváltoztatja az eredeti izotóp eloszlását [LONGERICH 1987]. Ezért izotóparány mérése során a készülék tömegtorzítását figyelembe kell venni. A korrekció lehet külső, amikor egy ismert izotópeloszlású mintát (pl. hiteles anyagmintát) használnak, vagy lehet belső, amikor a mérendő mintában található állandó izotóparányt használják fel. A valódi izotóparányt az alábbi összefüggéssel lehet meghatározni:

$$R_{v} = R_{m} * (1+C)^{\Delta m}$$
(6)

Ahol R_v a valódi, R_m a mért izotóparány, Δm a két izotóp tömege közötti különbség és C a mért koncentráció [STEFÁNKA 2003].

2.1.4. Elemujjlenyomat

Az élelmiszerek, valamint a nukleáris minták esetében is a mintában fellelhető elemek összetételének meghatározása, amely szoros összefüggésben van a termő-, illetve az előállítási területtel, kiválóan alkalmazható az ilyen jellegű minták eredetének meghatározására. A legelterjedtebben a tömegspektrometriát alkalmazzák az ilyen vizsgálatok elvégzéséhez, ahogy azt a 2. táblázatban felsorolt példák is mutatják.

Különböző mátrixokkal rendelkező környezeti, vagy biológiai minták elemujjlenyomatának létrehozása a minták multielemes analízisével lehetséges. A cél az, hogy azonosítsuk a mintában megtalálható olyan elemeket, legtöbbször nehézfémeket, amelyek koncentrációja a különböző földrajzi területek függvényében változik, és amelyek lehetőleg változatlanok maradnak a feldolgozás során. Az egyes régiók elemujjlenyomatának meghatározásához segítségül hívhatók különböző statisztikai módszerek, mint a többváltozós statisztika, vagy a diszkriminancia analízis.

Az érc jellegű minták, mint az uránérc, az urán koncentrátum ("yellow cake"), vagy az uránoxid üzemanyag elemujjlenyomata a környezetükkel mutat egyezést leszámítva a feldolgozásuk során bekövetkezett változásokat. A növények, illetve a növényi alapú élelmiszerek esetében viszont az egyik legnagyobb kihívás megtalálni azokat az elemeket, amelyek ugyanolyan, vagy jól definiáltan eltérő eloszlást mutatnak az adott növényben, mint a termőtalajában, mivel ezek az elemek a talajhoz kötötten vannak jelen és a növényekbe biológiai úton, a biológiai hozzáférhetőségük függvényében jutnak. Éppen ezért az azonos helyről származó növényminták elemujjlenyomatát elsősorban nem is a termőtalajhoz, hanem egymáshoz viszonyítva határozzuk meg.

Az 2/a. táblázatban egy irodalmi feldolgozás eredménye látható, amely a különböző élelmiszerek különböző mintaelőkészítés után mért elemtartalmának meghatározását mutatja be. Az elemtartalom mérése AAS, azaz atomabszorpciós technikával, de többségében ICP-MS (egy esetben még HPLC, azaz nagyhatékonyságú folyadékkromatográfiát is kapcsolva a tömegspektrométerhez), illetve ICP-AES, azaz atom emissziós technikával valósult meg. Az élelmiszerek sorában megtalálható a viszonylag könnyebb mintaelőkészítést igénylő folyékony, mint a tej, bor és egyéb italok, illetve az esetlegesen nehezebben előkészíthető szilárd mintatípus is, többek között a burgonya, gyümölcs és rizs. Előfordul, hogy azonos minta, mint például a bor, vagy a méz esetében többféle mintaelőkészítést is alkalmaznak annak ellenére, hogy a meghatározni kívánt elemek nagy része megegyezik. A táblázatból látható, hogy az elemek igen széles skáláját határozzák meg az egyes minták többelemes analízisével, továbbá néhány esetben még a ritkaföldfémek elemzése, illetve azok eredményei is fontosak lehetnek a végkövetkeztetés során.

2/a. táblázat: Összefoglaló táblázat a multielemes analízis alkalmazására élelmiszerek tekintetében

Minta típusa /	Meghatározandó	Analitikai	D.C. '
mintaelőkészítés	elemek	módszer	Keterencia
	ÉLELMISZ	ÚER (
tej			
savas mikrohullámmal feltárt tej	Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Co, Cu, As, Ag, Pt, Au, Pb	SF-ICP-MS	[PROHASKA et al., 2000]
savas mikrohullámmal feltárt tej, fölözött tej és savó	Na, Ca, Mg, Al, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Cd, Hg, Pb	DF-ICP-MS	[MARTINO et al., 2001]
ultracentrifugázott tej	Fe, Cu, Zn, Mn, Sr, I, Br, Ca, Mg	HPLC-ICP-MS	[MARTINO et al., 2002]
vaj			
vaj, margarin (feltárt), növényi olaj (kezeletlen)	Cd, Co, Cr, Cu, Ni, Mn	ICP-OES	[DE SOUZA et al., 2005]
rizs			
savas mikrohullámmal feltárt rizs	Al, Ca, Mg, P, Na, K, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mb, Cd, Pb, REE (ritkaföldfémek)	ICP-MS	[KELLY et al., 2002]
friss gyümölcs			
homogénezett, fagyasztva szárított eper, áfonya és körte	Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, V, Zn	ICP-AES	[PEREZ et al., 2006]
higított és szűrt gyümölcslé és tea	Ca, Mg	AAS	[POHL, PRUSISZ, 2006]
bor			
szőlőtalaj, szőlőlé (must), kész bor	Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hf, Li, Mn, Mo, Nb, Ni, Pb, Rb, Sb, Sc, Sr, Ti, Th, Tl, U, V, W, Y, Zn, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, La	ICP-Q-MS AAS	[ALMEIDA, VASCONCELOS 2003a]
savas addícionált bor	Na, K, Ca, Mg, Mn, Fe, Ag, Al, As, Ba, Be, Pb, Cr, Cu, Li, Ni, Sb, Tl, U, V, Rb, Sr, Zn, Cd, Co	ICP-Q-MS AAS	[KMENT et al., 2005]
savas mikrohullámmal feltárt bor	REE	ICP-HR-MS	[JAKUBOWSKI et al., 1999]
kezeletlen bor (direkt analízis)	REE Te, Re, Pt, Au, Tl, Be, Pd, Cd, Sn, Sb, Cs, Co, Ga, As, Zr, W, Li, V, Ni, Pb, Ti, Cu, Zn, Rb, Sr, Ba	ICP-MS	[BARBASTE et al., 2002]
kezeletlen bor (direkt analízis)	Li, Be, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rh.	ICP-MS	[BAXTER et al., 1997]

	Sr, Y, Zr, Nb, Mo, Ru,		
	Rh, Pd, Ag, Cd, In, Sn,		
	Sb, Te, I, Cs, Ba, La, Ce,		
	Pr, Nd, Sm, Eu, Gd, Tb,		
	Dy. Ho. Er. Tm. Yb. Lu.		
	Hf Ta W Re Os		
	In Pt Au H σ Tl Ph Bi		
	Th $I \downarrow P$		
higított és mikrohullámú	Li B Mg Al Si Cl Sc	ICP-O-MS	[COETZEE et al 2005a]
ronesolt bor	Mn Ni Ga Se Rh Sr		
	Nh Cs Ba La W TI U		
higított hor	$\begin{array}{c} 110, 03, D4, D4, H, H, O \\ \hline \\ I i B M G Ca V Mn \end{array}$	SE-ICP-MS	[GÓMEZ M M C et a]
ingitott boi	C_0 Fe Zn Rh Sr Cs	51-101-1015	20041
	Ph		2004]
kezeletlen hor (direkt	As Ca Cu Fe K Mg	٨٨٢	[GUERRERO at a]
analizia)	As, Ca , Cu , Pc , K , Mg , Mn No Zn	AAS	
hightetther	Mil, Na, Zli		[797]
nigitou bor	LI, Be, Mg, AI, P, CI,	ICP-Q-MIS	[TAYLOR et al., 2003]
	Ca, 11, V, Mn, Fe, Co,		
	N1, Cu, Zn, As, Se, Br,		
	Rb, Sr, Mo, Ag, Cd, Sb,		
	I, Cs, Ba, La, Ce, TI, Pb,		
	Bi, Th, U		
kezeletlen fehérbor (direkt	Cu, Fe, K, Na, Mg, Ca	AAS	[SAUVAGE et al., 2002]
analízis)			
alkoholtartalmú italok	1		
higított, savanyított viszki,	Al, Sb, As, Ba, Be, B,	ICP-SF-MS	[RODUSHKIN et al.,
vodka, gin, konyak, rum	Cd, Cr, Co, Cu, Fe, Pb,		1999]
	Ag, Mn, Au, La, Li, Ir		
burgonya			
burgonya salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V,	ICP-AES	[ANDERSON et al.,
burgonya salétromsavval roncsolt burgonya	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu,	ICP-AES	[ANDERSON et al., 1999]
burgonya salétromsavval roncsolt burgonya	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P	ICP-AES	[ANDERSON et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P	ICP-AES	[ANDERSON et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V,	ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH,
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu,	ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P	ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg,	ICP-AES ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn	ICP-AES ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn	ICP-AES ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn	ICP-AES ICP-AES ICP-AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn	ICP-AES ICP-AES ICP-AES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis)	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn	ICP-AES ICP-AES ICP-AES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn,	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al.,
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr.	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott és salétromsavval roncsolt	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott méz hamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]
burgonyasalétromsavval roncsoltburgonyakávésalétromsavval roncsoltkávészárított, majd kénsavval éssalétromsavval roncsoltkávéolíva olajkezeletlen olaj (direktanalízis)savas mikrohullámmalfeltárt olajmézhamvasztott éssalétromsavval roncsoltmézhamvasztott mézhamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott méz hamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Ph, S, Se, Si, Zn	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott méz hamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Se, Si, Zn, Ca, K, Mg, Na, P, S, Si	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott méz hamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Se, Si, Zn, Ca, K, Mg, Na, P, S, Si, Al, Cu, Fe, Li, Zn, As	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]
burgonya salétromsavval roncsolt burgonya kávé salétromsavval roncsolt kávé szárított, majd kénsavval és salétromsavval roncsolt kávé olíva olaj kezeletlen olaj (direkt analízis) savas mikrohullámmal feltárt olaj méz hamvasztott és salétromsavval roncsolt méz hamvasztott méz hamvasztott méz	K, Mg, Ca, Sr, Ba, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P K, Mg, Ca, Na, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, P Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, Zn Cu, Cd, Pb, Zn Be, Mg, Ca, Sc, Cr, Mn, Fe, Co, Ni, As, Se, Sr, Y, Cd, Sb, Sm, Eu, Gd Fe, Cu, Zn, Mg, Ca, Sr, K, Na, Li, Rb K, Na, Ca, Mg, S Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Se, Si, Zn, Ca, K, Mg, Na, P, S, Si, Al, Cu, Fe, Li, Zn, As, Cd Mo, Sr, V	ICP-AES ICP-AES ICP-AES ICP-OES ICP-MS AAS AES ICP-OES ICP-OES	[ANDERSON et al., 1999] [ANDERSON, SMITH, 2002] [MARTIN et al., 1999] [ANGIONI et al., 2006] [BENINCASA et al., 2007] [HERNANDEZ et al., 2005] [TERRAB et al., 2004] [TERRAB et al., 2005]

salétromsavval roncsolt méz	Al, Ba, Ca, Cu, Fe, La, Mg, Mn, Sr, Ti, Zn, Cd, Co, Cr, Cs, Hg, La, Li, Nd, Ni, Pb, Pr, Rb, Se, Sn, Ti, V, Zr	ICP-AES ICP-MS	[MARCOS et al., 1998]
kénsavval és salétromsavval roncsolt méz	Na, K, Fe, Ca, Zn, Cu	AAS	[NANDA et al., 2003]
különböző élelmiszerek			
rizs, gabonafélék, olajok és zsírok, hüvelyesek, gyümölcsök, zöldségek, gombák, fűszerek, halak, húsok, tojások, tej és tejtermékek, készételek fagyasztva szárított, hamvasztott és savasan feltárt	Li, Sc, V, Cr, Mn, Co, Ni, Cu, Rb, Sr, Mo, Cd, Cs, Ba, Th, U, Sr, Cs, Th, U	ICP-MS	[SHIRAISHI et al., 1998]

Hasonlóképpen, mint az izotóparány vizsgálatoknál kiterjedt irodalma van a nukleáris minták elemtartalmának mérésének, illetve az ehhez szükséges mintaelőkészítéseknek. A 2/b. táblázat 9 áttekintést nyújt a nukleáris analitikán belül elvégzett elemtartalom meghatározására irányuló vizsgálatok, illetve általánosságban előforduló mintatípusok egy részéről. A vizsgált mintatípusok uránércek, urán koncentrátumok, úgynevezett sárga pogácsa ("yellow cake"), valamint urán-oxidok. Megfigyelhető, hogy ezeknél a vizsgálatoknál az atomabszorpció helyett már csak és kizárólag ICP-MS, TIMS és XRF, azaz röntgen fluoreszcenciás mérérseket alkalmaznak. A mért komponensek épp olyan tág határok között mozognak, mint az élelmiszerek esetében. Szinte az összes fém – beleértve a ritkaföldfémeket is – meghatározására sor kerül.

2/b. táblázat: Összefoglaló táblázat a multielemes analízis alkalmazására törvényszéki nukleáris minták tekintetében

Minta típusa /	Meghatározott	Analitikai	Referencia	
mintaelokeszites	elemek	modszer		
<u>TÖRVÉNYSZÉKI ANALITIKA:</u>				
nukleáris anyagok				
salétromsavban oldott,	Ritkaföldfémek	ICP-SF-MS	[VARGA et al., 2010]	
extrakciós				
kromatográfiásan U-tól				
elválasztott "yellow cake"				
és uránérc				
feloldott, majd higított	Al, Ca, Cr, Cu, Fe, K,	ICP-MS	[WALLENIUS et al.,	
urán-oxid pellet	Mg, Mn, Na, Ni, Zn		2006]	
urán tartalmú szintetikus	Sn, Mo, Cd, Pb, Co, Ni,	ICP-AES	[MARIN et al., 1996]	
oldatok	Fe, B, Si, Mn, Cr, Mg,			
	V, Be, Cu, Ca, Al			
szilárd urán minta	Al, Ni, Si, Cr, Fe, Co,	LA-ICP-MS	[LELOUP et al., 1997]	
	Cu, Mo, Sn, Pb			

lefoglalt fűtőelem	NA, Mg, Si, Ca, Ti, Cr,	TIMS	[PAJO et al., 2001]
	Mn, Fe, Co, Ni, Cu, Zn,	GDMS	
	Pb	ICP-MS	
tömény salétromsavban	Al, Be, Ca, Cd, Co, Cr,	ICP-AES	[PUROHIT et al., 2000]
oldott urán-oxid	Cu, Mg, Mn, Na, Ni, Zn,		
	Dy, Eu, Gd, Sm		
salétromsavban oldott,	K, Ca, Ti, Cr, Mn, Fe,	TXRF	[MISRA et al., 2005]
extrakciós	Ni, Cu, As		
kromatográfiásan U-tól			
elválasztott urán-oxid			
tömény salétromsavban	Al, B, Be, Ca, Cd, Cr,	ICP-AES	[GOPALKRISHNAN et
oldott, 1M savban felvett	Cu, Fe, Mg, Mn, Ni, Pb,		al., 2000]
urán-oxid	Si, Zn, Ce, Dy, Eu, Gd,		
	Sm		
5M salétromsavban oldott	K, Ca, Ti, Cr, Mn, Fe,	XRF	[SIMABUCO et al.,
urán-oxid, melyet	Ni, Cu, As		2002]
extrakciós			
kromatográfiásan U-tól			
elválasztottak			

2.1.4.1 Magas urán tartalmú minta ritkaföldfém-ujjlenyomatának meghatározása

A magas urán tartalmú minták esetében, mint az urán-oxid mintákban is az elemszennyezők meghatározása a szilárd minták feloldása utáni hígítással végezhető el. A túlzottan nagymértékű higításnál azonban a minták elemtartalma kimutatási határ alá csökkenhet, a kisebb mértékű hígításnál viszont nagy mennyiségű urán marad a mintákban, amely kedvezőtlen a mérés szempontjából. A nagy koncentrációban jelenlévő (esetleg magas dúsítású) urán ugyanis a készüléket nagymértékben elszennyezheti, valamint a minták urán-tartalma rontja a többi elem ionizációját, amely kisebb érzékenységhez vezet. Így egy olyan módszer alkalmazása szükséges, amelyben minimális higítás mellett a mintákban lévő urán elválasztható a mérendő komponensektől. Erre a célra leginkább az extrakciós kromatográfia alkalmas.

A TRU[®] gyanta alkalmazása urán elválasztására igen elterjedt, mivel az uránra vonatkozó kapacitásértéke nagy, az alkálifémeket, az alkáli földfémeket és a legtöbb átmeneti fémet azonban nem köti meg. Salétromsavas közegben ritkaföldfémekre is relatíve nagy megkötő képességgel rendelkezik. Sósavas közegben a ritkaföldfémekre vonatkoztatott megkötő képessége erősen lecsökken, uránra vonatkoztatva, viszont erős marad, így a mintamátrix elválasztható a mérés szempontjából fontos komponensektől (3. ábra) [HORWITZ et al, 1995].. Hatóanyaga tri-n-butil-foszfátban oldott oktilfenil-N,N-di-izobutil-karbamil-foszfin-oxid.

3. ábra Az egyes ionok TRU[®] gyantán mért retenciós tényezői (k') a salétromsav, illetve a sósav koncentráció függvényében [HORWITZ et al, 1993]

2.1.4.2 Magas urán tartalmú minta egyéb szennyező elemtartalmának meghatározása

A nukleáris eredetű, illetve urán-tartalmú minták nyomelem-ujjlenyomatának meghatározása nem csak a ritkaföldfém-tartalom, hanem minden egyéb elemből álló szennyezések meghatározását jelenti. Ha az adott minta esetében a ritkaföldfém-tartalom mérése nem vezet eredményre, a mintában található egyéb szennyező elemek ujjlenyomata is információt hordozhat az adott minta eredetére vonatkozóan, illetve lehetővé teszi több, különböző eredetű minta egymástól történő megkülönböztetését.

Az UTEVA[®] extrakciós kromatográfiás gyanta alkalmazása urán elválasztásához igen elterjedt, mert széles körben elérhető, és nagy megkötési képességgel rendelkezik uránra nézve, ellenben a mátrixalkotó elemeket, mint pl. az alkálifémeket, vagy alkáli földfémeket és a legtöbb átmeneti fémet nem, vagy csak kevéssé köti meg. Hatóanyaga diamil-amilofoszfanát. A 4. ábra az UTEVA[®] gyanta megkötési sajátságait mutatja be transzuránok esetén, illetve az adott elemek kötődési erősségének változását az alkalmazott eluáló sav minőségének és koncentrációjának változásával.

4. ábra: Az egyes ionok UTEVA[®] gyantán mért retenciós tényezői (k') a salétromsav, illetve a sósav koncentráció függvényében [HORWITZ et al, 1992a]

2.2 Törvényszéki analitika

A törvényszéki analitika olyan különböző műszaki tudományokat foglal magában, amelyek segítségével a bizonyítékok kiértékelhetőek, az igazságszolgáltatási eljárásban felhasználhatóak. Például az igazságügyi toxikológia tárgykörébe tartozik a testnedvek, szövetek, valamint egyéb biológiai anyagok vizsgálata annak érdekében, hogy a halál okával és módjával összefüggésbe hozható mérgeket detektálják. A törvényszéki geológia foglalkozik a talajjal, beleértve az ásványokat, a kövületeket és a nyomelemeket, ahol a talaj összetétele utal az uralkodó éghajlati viszonyokra. A törvényszéki kémia elsősorban az analitikai kémiának egy alkalmazási területe, ami magában foglalja többek között a gyújtogatás, a robbanóanyagok és a kábítószerek nyomainak [DAMS et al., 2001; KOPER et al., 2007], üvegeknek [BRIDGE et al., 2007], festékeknek a vizsgálatát, de éppen úgy alkalmazható a fénymásoló és nyomtatópatronok törvényszéki összehasonlításánál [MERRILL et al., 2003] is. Tömegspektrometriai technikák is egyre inkább

előtérbe kerülnek ilyen jellegű vizsgálatok kapcsán. Többek között a különböző dokumentumok, levelek alapjául szolgáló papír eredetének meghatározásához, illetve egymástól történő megkülönböztetéséhez [SPENCE et al., 2000] épp úgy használják, mint a papírokon található különböző tinták elkülönítéséhez [DENMAN et al., 2008]. Bár az egyes elemek pontos koncentrációjának meghatározásához a tömegspektrométer nem használható lézerablációs technikával összekötve, [HENNIGES et al, 2006; STEWART et al, 2000, 2001] szerint az egyes papír, illetve tinta minták elkülönítéséhez alkalmazható amely nagymértékben lerövidíti a mérési időt, mivel nem igényel mintaelőkészítést. És mivel a lézerablációs mérés csak a felületen okoz néhány mikrométer átmérőjű krátert, tehát "kvázi" roncsolásmentes technika, festmények hamísításának megállapításánál is használhatóak [SMITH et al., 2005]. Az elmúlt évtizedekben a nukleáris anyagok vizsgálata is a törvényszéki tudományok részévé vált, amely a tudomány egy új ágát – a nukleáris törvényszéki analitikát – alakította ki.

2.2.1. Nukleáris törvényszéki analitika

A világban 1998 végén több mint 1350 tonna plutóniumot (Pu) tartottak számon. Ezt a mennyiséget kiégett nukleáris fűtőelemek melléktermékeként (~1100 t), vagy nukleáris fegyverekhez (~250 t) állították elő [ALBRIGHT et al., 1999]. Plutóniumot főként nukleáris fegyverrel rendelkező országokban gyártanak, vagy olyan országokban, amelyek energiaigényük nagy részét nukleáris energiából nyerik. Ezen országok közé tartozik többek közt az USA, Japán, Kanada, Oroszország, Franciaország, az Egyesült Királyság és Németország. A plutónium nagy része kiégett fűtőelemekben található, ami azt jelenti, hogy nincs elválasztva az urántól. Az ebben a formában előforduló plutónium nem ad okot aggodalomra törvényszéki szempontból, mivel a hasadási termékek magas radioaktivitása miatt a szállítása igen veszélyes és ez által igen bonyolult. Azonban a nukleáris fegyverekhez elválasztott plutónium szállítása sokkal egyszerűbb, mivel relatív kicsi a radioaktivitása, valamint a mérete [WALLENIUS 2001].

Az 1990-es évek eleje, a Szovjetunió felbomlása problémákat okozott a nukleáris anyagok védelme terén. A Szovjetunió volt tagállamai (Fehéroroszország, Ukrajna, Kazahsztán és Litvánia) hirtelen nagy mennyiségű plutónium, valamint nagy dúsítású urán (HEU) tulajdonosaivá váltak, ugyanakkor nem volt megfelelő szabályozásuk, vagy ellenőrzésük a nukleáris anyagok felett. Ennek következményeként megnőtt a nukleáris anyagok illegális kereskedelme. A Nemzetközi Atomenergia Ügynökség Illegális Kereskedelmi Adatbázisában (IAEA ITDB) 1993 óta halmozódnak az adatok. Ettől az időponttól 2331 eseményről vannak hiteles információk, amelyből 419 a jogosulatlan birtokláshoz, illetve az ahhoz köthető bűncselekményekhez kapcsolódik. Ezen belül 16 esetben nagy dúsítású uránról, illetve plutóniumról van szó. 615 eset az elveszett, illetve ellopott nukleáris anyagokkal, valamint további 1244 eset az egyéb nem bejelentett

tevékenységekkel kapcsolatos. A Nemeztközi Atomenergia Ügynökség 2005-ig vezetett adatbázisa mélyebben részletekbe menő, azaz a csempészett anyagok esetében a radioaktív anyag minőségét is meghatározza ahogy azt az 5/a. ábra is mutatja. A 2005-ig terjedő időszakban körülbelül 50 olyan esetet regisztráltak, amikor olyan, nagy aktivitású radioaktív forrás cserélt volna gazdát, amely szándékos alkalmazás estén jelentős veszélyforrást jelentett volna [IAEA database on illicit trafficking incidents, open information, 2006.08.01]. Az 5/b ábrán a csempészett nukleáris anyagok eloszlását lehet nyomon követni a szerint, hogy nagy dúsítású, alacsony dúsítású, természetes vagy szegényített uránról, illetve tóriumról, plutóniumról, vagy nem kategorizált anyagról van szó. Az 5/c ábrán pedig a csempészett radioaktív források eloszlását lehet megfigyelni a fent említett időszakban.

5/a. ábra: A NAÜ adatbázisa a nukleáris és radioaktív anyagok csempészetének alakulásáról

5/b ábra: A csempészett nukleáris anyagok eloszlása

5/c ábra: A csempészett radioaktív anyagok eloszlása

A Nemzetközi Atomenergia Ügynökség honlapján hozzáférhető egy frissebb kimutatás is, amely 2012-ig tartalmazza az eseményeket (6. ábra), azonban sajnos ez a kimutatás már nem olyan

részletes, mint az azt megelőző [IAEA database on illicit trafficking incidents, open information, 2013.02.21]. Ezeknek az ábráknak a segítségével nyomon lehet követni a 2005 után történt eseményeket, illetve azt, hogy ezek az események milyen tendenciát mutatnak. A nukleáris anyagok jogosulatlan birtokása esetében (6/a ábra) a 2006-os enyhe növekedést követően egy intenzív csökkenés figyelhető meg, 2009-ben már csak 11 ilyen eseményt regisztráltak, azonban ezt követően ismét nőtt a számuk. Az ellopott, vagy elveszett nukleáris anyagok számának alakulása 2006-ban – a már addig is növekvő tendenciát mutató események után – kimagasló értéket mutat, majd csökkenésnek indult. 2012-ben az események száma ismét lecsökkent a 2000-es évek elejének szintjére (6/b ábra). Ezt a tendenciát mutatja a nem bejelentett tevékenységek számát ábrázoló diagram (6/c ábra), azzal a különbséggel, hogy a 2012-es évben még mindig kimagasló, több mint 80 ilyen eseményt regisztráltak. Ez a szám közelítőleg megegyezik a 2004-ben és 2005-ben regisztráltal. Az ezt megelőző években ez a szám alig lépte át a 40-et, a 90-es évek elején a 10-et sem haladta meg. Ez a tendencia azonban köszönhető az ellenőzések egyre nagyobb mértékű fokozásának is, amelynek következtében a felderítések száma is emelkedett.

6/a ábra: Nukleáris anyagok jogosulatlan birtoklásának alakulása 1993-2012 között

6/b ábra: Ellopott, vagy elveszett nukleáris anyagok számának alakulása 1993-2012 között

6/c ábra: Nem bejeltette tevékenységek számának alakulása 1993-2012 között.

A földrajzi eloszlás vizsgálata alapján kijelenthetjük, hogy globális jelenséggel állunk szemben. Ennek ellenére a számadatok azt jelzik, hogy igen kicsi azoknak az eseményeknek a száma, melyek során atomfegyverek gyártásához szükséges hasadóanyagokkal kereskedtek volna

illegálisan. Az ilyen tárgyú tevékenység legutóbb 1992 és 1994 között ért el "számottevő" méreteket, amikor is bizonyítottan mindössze két esetben került szóba hasadóanyag [HANKA et al., 2007].

Az illegális kereskedelemmel kapcsolatban a Nemzetközi Atomenergia Ügynökség a következő megállapítást tette: "A nukleáris anyagok illegális kereskedelme potenciális fenyegetést jelent a nemzetközi biztonságra vonatkozólag. A nukleáris kereskedelemnek egyenes következménye lehet a nukleáris proliferáció és a nukleáris terrorizmus. A nukleáris anyagok illetéktelen értékesítése, elvesztése vagy pazarlása súlyos gazdasági és környezeti következményeket okozhat."

Magyarországon és majd minden országban az első nukleáris anyagok lefoglalásáról napvilágot látott hírek nagymértékben magukra vonták a közvélemény figyelmét. Ezen tények a tudományos világban is egyre nagyobb követelményeket támasztottak, mivel a lefoglalt minták esetében meg kellett határozni a radiológiai veszélyt, a minták felhasználásának valószínűsíthető formáját valamint a lehetséges származási helyet [GRANT et al., 1998; KOCH, 2000]. Ez az új feladat nem csak a magyar, de a nemzetközi laboratóriumoknak is kihívást jelentett, melynek megoldásán való fáradozás egy új tudományág, a nukleáris törvényszéki analitika – angol nevén: nuclear forensics - kialakulásához vezetett. Magát az azonosítást egy kirakós játékhoz lehetne hasonlítani, mivel a különböző módszerrel és technikával nyert információkból épül fel a mintáról alkotott teljes kép. Egy lefoglalt urán pellet legfontosabb azonosítási eszköze a geometriája, valamint a dúsítási fokának meghatározása. Ezen paraméterek, melyek az irodalomban is rendelkezésre állnak, ugyanis jellemzőek a különböző típusú reaktorokra. Mindemellett a nukleáris anyagokra vonatkozó, ezeket a paramétereket tartalmazó adatbázis már elérhető az azonosítás céljára [SCHUBERT et al., 1998]. Azonban ez a megközelítés nem minden esetben alkalmas az azonosításra, ezért további paraméterek vizsgálata is szükséges (elemszennyezők, oxigén-izotóp összetétel, felületi érdesség...).

Az ilyen típusú nukleáris minták eredetmeghatározásának egy lehetséges módja a mintában található szennyező elemek, beleértve természetesen a ritkaföldfémeket, elemujjlenyomata alapján történő azonosítás. Az elemujjlenyomatok meghatározása, majd annak összevetése egy központi adatbázissal, leszűkítheti a lehetséges előállítási helyeket. Az elemek – és azon belül természetesen a ritkaföldfémek is – a nukleáris anyagokban széles koncentrációtartományban vannak jelen (0,001-0,5 ng/g). Néhány ritkaföldfém, mint például az erbium vagy a gadolínium mesterséges módon került a nukleáris üzemanyagba abból a célból, hogy ellenőrzés alatt lehessen tartani az abban végbemenő reakciókat a nukleáris reaktorokban [VARGA et al., 2010]. A méréshez felhasznált minta mennyiségének a lehető legnagyobb mértékű csökkentése is igen fontos, mivel a vizsgálandó minták az igazságszolgáltatási eljárás során bizonyítékként szolgálnak, így az elemzéshez a lehető legkisebb mennyiségű minta felhasználására kell törekedni. Ezen kritériumoknak leginkább az
induktív csatolású plazma tömegspektrometria (ICP-MS) felel meg, mivel kellően érzékeny, több nagyságrenden keresztül lineáris a koncentráció - jel intenzitás függvény és kevés minta is elegendő az analízishez. Azonban ennél a technikánál az urán-oxid minták nyomelem-, valamint ritkaföldfém-tartalmának meghatározása során a túl magas uránkoncentráció azon túl, hogy elszennyezheti a készüléket, rontja az ionizációs hatásfokot és vele együtt a mérés érzékenységét, ezért az urán mátrixot el kell választani, ami leghatékonyabban extrakciós kromatográfiával valósítható meg.

A nukleáris anyagok tiltott kereskedelmét először hivatalosan 1995-ben, a G8 országok találkozóján ismerték el. Ennek eredményeként még az év novemberében sor került egy nemzetközi találkozóra, amelynek címe "Nuclear Smuggling Forensic Analysis" volt. Ezt követően az újonnan létrehozott "International Technikal Working Group (ITWG)" első találkozójára került sor 1996ban. Az ITWG elsődleges célja a nukleáris törvényszéki analitikához szükséges nemzetközi források fejlesztése [KOCH et al., 1999].

Magyarországon egy 1996 évi 17/1996 (I.31.) számú kormányrendelet értelmében az ilyen és hasonló minták elemzésére kijelölt hely a Magyar Tudományos Akadémia Izotópkutató Intézete lett (ma az Energiatudományi Kutatóközpont része). Ennek a feladatnak igen fontos része a nukleáris minták helyszíni, majd laboratóriumi azonosítása, fizikai, kémiai jellemzőinek meghatározása. A feladat fontos részét képezi a minták eredetének, gyártási helyének meghatározására alkalmas vizsgálati rendszer kidolgozása.

Az ismeretlen nukleáris anyag azonosítása az anyag speciális paramétereinek meghatározásán alapul [KOCH 1997]. Az első lépés a lefoglalt anyag kategorizálása annak alapján, hogy nukleáris anyag, vagy radioaktív forrás (pl.: ⁶⁰Co, ¹⁹²Ir...). Ezeket a vizsgálatokat általában gamma spektrometriás módszerrel végzik. A plutóniumnak és az uránnak az izotópösszetétel alapján az alábbi kategóriáit különböztethetjük meg [KOCH 1995]:

- Nagy dúsítású urán (HEU) 235 U > 20 tömeg%
 - Fegyver fokozat 239 Pu < 7 tömeg% és 235 U > 92 tömeg%
- Alacsony dúsítású urán (LEU) 0,72 tömeg% $< {}^{235}$ U < 20 tömeg%
 - o Nukleáris üzemanyag 235 U < 20 tömeg%
- Természetes urán (NU) 238 U ~ 99,3 tömeg% és 235 U ~ 0,7 tömeg%
- Szegényített urán (DU) 235 U < 0,71 tömeg% (általában 0,2-0,4 tömeg%)

A modern analitikai technikák információt szolgáltathatnak az anyag típusára, életkorára, valamint a felhasználás lehetséges módjára vonatkozóan [WALLENIUS 2001].

2.2.2. Nukleáris üzemanyaggyártás

Munkám során a nukleáris üzemanyaggyártás első és utolsó lépéséből származó mintákat is vizsgáltam, úgymint urán koncentrátumokat ("yellow cake") és üzemanyagtablettákat. Az eredmények jobb értehtősége kedvéért ebben a fejezetben röviden bemutatom a nukleáris üzemanyaggyártás lépéseit, az egyes fázisokban keletkező köztestermékekkel együtt.

A litoszférában található urán koncentrációja kb. $2*10^{-4}$ tömeg%. Ez a mennyiség a különböző, több, mint 100 ásványban szélesen eloszlatva található, legnagyobb mennyiségben szilikátokban. Iparilag a kitermelt urán több mint felét a monazit nevű ásványból nyerik. Annak ellenére, hogy a világ két legnagyobb uránérc előállítója Kanada és Dél-Afrika, a legnagyobb uránoxid (UO₂) előállítók Franciaország, az USA és Kanada, a volt Szovjetunió tagállamai feltehetően nagy mennyiségű urán-oxidot birtokolnak. A 3. táblázat tartalmazza a Nemzetközi Atomenergia Ügynökség (IAEA) nyilvántartása szerinti uránérc előállító országokat [PAJO, 2000]..

Állam	bán	bánya								
	neve	típusa	%-os aránya							
	Key Lake	külszíni								
Kanada	Rabbit Lake	felszín alatti	32,3							
	Cluff Lake	külszíni	1							
Ausztrália	Ranger	külszíni	10							
1 HUDZVI MINU	Olympic Dam	Kulozini	4,1							
Namíbia	Rossing	külszíni	7							
Dél-Afrika	Vaal Reefs	felszín alatti	2,6							
Gabon	Okelobond	felszín alatti	1,6							

3. táblázat: A világ vezető urán előállítói és uránérc bánya típusai a NAÜ nyilvántartása szerint

Az uránkitermelésre különböző módszereket alkalmazhatnak, úgymint: hagyományos bányászatot (~38%), külszíni fejtést (~23%), in-situ oldást (~28%), réz és aranytermelés melléktermékeként történő előállítást (~8%), és más módszereket (~3%). A legfontosabb módszereket a 7. ábra mutatja.

7. ábra: Az uránkitermelés legfontosabb módszerei valamint arányuk 2007-ben

Alapvetően az urángyártásban használt létesítményeknek két típusát lehet megkülönböztetni. Az első a hagyományos uránércet feldolgozó üzem, míg a másik a foszfát-gyártás melléktermékeként uránt előállító létesítmény.

Ahhoz, hogy nukleáris tevékenységre hasznosítani lehessen, az uránércből először ki kell vonni az uránt, majd úgy átalakítani azt, hogy használható legyen a kívánt célra. A különböző uránérceket különböző módszerekkel dolgozzák fel. Az urán-oxid előállítás általános eljárása a 8. ábrán látható. Az összetört, kilúgozott ércet oxidálják, majd kénsavval $UO_2(SO_4)_2^{-2}$ formára hozzák. A terméket a vizes oldattól anioncserélő gyanta- vagy extrahálószer alkalmazásával távolítják el. Az urán uránércből történő kivonása tehát az urángyártás első lépése. Az ebben a lépésben keletkezett termék az urán-koncentrátum, melyet a színe alapján sárga pogácsának is neveznek ("yellow cake"). A változó kémiai összetételű "yellow cake"-et, azaz az uránkoncentrátumot tisztítják a szennyező anyagoktól, majd ammónia segítségével csapják ki az oldatból, amit ezt követően salétromsavban oldanak, majd tisztítanak. Az urán a továbbiakban ammónium-diuranát (ADU), illetve ammónium-uranil-karbonát (AUC) formában ülepedik ki. A csapadékot szárítás, valamint hevítés hatására U₃O₈ formára hozzák, amit a hidrogénnel történő redukció követ, aminek eredményeként urán-oxid (UO₂) jön létre, amely zsugorítás után felhasználható, mint természetes urán üzemanyagpellet [PAJO, 2000]. Gyakran fordul elő, hogy az urán-koncentrátumot urán-hexafluoriddá (UF₆) alakítják át, majd a dúsítás után visszaalakítják száraz, vagy nedves eljárással. Az UF₆ konverzió kétlépéses folyamat. Az első lépésben UF₄ keletkezik, amely zöld színű só. A folyamat során az uránkoncentrátumot savban feloldják, mely során UO₂(NO₃)₂·6H₂O keletkezik. Ezt tisztítják és kalcinálás során UO₃ porrá alakítják, melyet folysavval reagáltatva UF₄ keletkezik. Ezt további fluorozás után UF₆-dá alakítják, mely vegyület már viszonylag alacsony hőmérsékleten gáz halmazállapotú.

A leggyakrabban használt nedves módszerben az ADU-t választják le, ez volt az első ipari módszer és még ma is ezt használják a legszélesebb körben üzemanyag minőségű urán-oxid előállításához [LERCH, NORMAN, 1984]. Ezzel a módszerrel a termék 100 ppm (mg/kg) koncentrációban tartalmaz fluorid szennyezést [PAJO, 2000]. A másik, szintén gyakori nedves módszerben az AUC-t választják le, a módszert eredetileg a NUKEM cég fejlesztette ki.

Néhány üzemanyag esetében a ¹⁵⁷Gd, mint éghető neutronelnyelő használatos. Ezt keverik a nagy dúsítású uránnal a magasabb kiégés, valamint az egyenletes neutron fluxus eléréséért [CHOPPIN et al., 1995].

Annak érdekében, hogy a hőátadás, illetve hővezetés optimális legyen, az üzemanyagpellet dimenziói pontosan meghatározottak kell, hogy legyenek. Az ipari préselési folyamat 10 μm pontossággal azonos átmérők elérését teszi lehetővé. Ezt követően a pelleteket mossák, szárítják, a hibásakat pedig eltávolítják. Így jönnek létre az üzemanyagtabletták, amelyeket aztán úgynevezett üzemanyagpálcákba helyeznek, amelyeket 15-30 bar közötti hélium atmoszférával töltenek meg, majd leforrasztanak. Az üzemanyag-készítés végső lépése a pálcák fűtőelem-kötegekbe rendezése. Az elkészített fűtőelem-kötegek a nukleáris reaktorban kerülnek besugárzásra. Nukleáris erőmű esetén a keletkezett energiát áramtermelésre használják. Adott mennyiségű uránból nyerhető energia mennyisége több tényezőtől függ. Ilyenek pl. a reaktor típusa, az üzemanyag kiégettsége stb.

8. ábra: Az urán-oxid előállításának lépései

A világon rendelkezésre álló urán készlet és a mutatkozó igényeket a NAÜ kétévente megjelenő kiadványában, az úgynevezett Uranium Red Book-ban adja közre [OECD NUCLEAR ENERGY AGENCY, 2007]. A kiadvány alapján összegezve elmondható, hogy az 1970-es években a nukleáris energiaipar növekedését felülbecsülték, melynek eredményeképpen az 1980-as években nagy mennyiségű civil uránkészletek halmozódtak fel, valamint a magas költséggel működő urántermelő üzemek bezárásra kerültek. Ennek következménye, hogy az időközben megnövekedett urán iránti igénynek csak mindössze a 60%-át képes a jelenlegi termelő kapacitás kielégíteni. Egy 2007. évi adat alapján pl. az uránigény 69 110 t U, míg a gyártás csak 43 328 t U volt [IAEA, 2006]. Ez az uránigény 2030-ra 70 000 t és 122 000 t közé fog emelkedni az előrejelzések szerint,

az előállítás ezzel szemben viszont nem lesz több, mint 57 000 t. A különbség egy részét, mint ma is, a meglévő azonban véges készletekből (természetes urán-koncentrátum, dúsított urán, reprocesszált urán), valamint a katonai célra előállított nagydúsítású urán felhígításával lehet pótolni. Ez a tény magyarázza az urán világpiaci árának utóbbi időben tapasztalt nagyarányú növekedését, azonban ez az aktuális olajártól is függ.

2.2.3. Magyarországi helyzet

A magyarországi uránkészlet kitermelése és felhasználása különleges helyet foglalt el az üzemanyagciklus tekintetében, ugyanis a feldolgozott érc teljes mértékben elhagyta az országot, nem szolgálta közvetlenül a hazai nukleáris ipart [BÍRÓ, 2006].

1952-ben kormányközi megállapodás alapján földtani expedíciót szerveztek szovjet geológus és geofizikus szakértők bevonásával, akik radiometriai méréseket végeztek a Mecsek hegység térségében, ahol a perm időszaki homokkő összlet urán dúsulást sejtetett. 1955 nyarán Bauxitbánya Vállalat néven jött létre az a vállalat, amely 1957-től Pécsi Uránércbánya Vállalat néven megkezdte a kutatófúrások és aknák mélyítését, és végül az érc felhozatalát. Jelentős technológiai előrelépést jelentett az érc kénsavas kémiai feltárása, amellyel a végtermék, az úgynevezett sárga pogácsa (yellow cake, U₃O₈) készült. 1962-től ezt szállították a Szovjetunióba. A bányát 1997-ben bezárták.

Magyarország mai napig egyetlen, de még mindig aktívan működő atomerőműve, a paksi atomerőmű négy reaktorblokkja 1982-1987 között kezdte meg működését. Mivel az eredetileg tervezett élettartam 30 év volt, a korábbi elképzelések szerint a blokkokat 2012-2017 között le kellene állítani. Az erőmű azonban 2000-ben – a nemzetközi tendenciákat követve – megvalósíthatósági tanulmányt készíttetett az üzemidő 20 évvel történő meghosszabbításáról. A vizsgálat eredménye alapján pedig nem volt olyan műszaki akadály, biztonsági határ, amely az üzemidő 50 évre történő bővítését akadályozta volna [SZÉLES, 2009]. Az erőmű üzemidejének meghosszabbítása mellett a Magyar Országgyűlés 2009. március 30-án az atomenergiáról szóló 1996. évi CXVI. törvény 7. §-ának (2) bekezdése alapján - összhangban a 2008–2020 közötti időszakra vonatkozó energia politikáról szóló 40/2008. (IV. 17.) OGY határozat 12. *f)* pontjával - elvi jóváhagyását adta Pakson új atomerőművi blokk(ok) létesítésének előkészítését szolgáló tevékenység megkezdéséhez is.

Az atomerőmű mellett hazánkban található még a Budapesti Műszaki és Gazdaságtudományi Egyetem oktatóreaktora, amely 100 kW névleges teljesítménnyel rendelkezik. A reaktor 1971 végén indult el, ezt követően 1980-ban bővítették. Az üzemanyag kiégettségi foka ma kevesebb, mint 1% ²³⁵U.

Az egykori Központi Fizikai Kutatóintézet (KFKI) területén 1959 óta működik a Budapesti Kutatóreaktor, melynek üzemeltetője az MTA Energiatudományi Kutatóközpont (EK). A reaktor névleges teljesítménye 10 MW, az üzemanyag korábban 36%-os dúsítású urán-oxid volt, amelyet a közelmúltban 19,95% dúsításúra cseréltek. A reaktor teljes üzemideje 3500-4000 óra/év.

2.3 Élelmiszeranalitika

Az élelmiszeranalitika fő céljai kezdetben csak minőségi (kvalitatív) meghatározások voltak, amelyek arra szolgáltak, hogy megállapítsák az élelmiszerek ismeretlen összetevőit. Ebből fejlődött tovább a mennyiségi (kvantitatív) meghatározások irányába, amelyek közé gravimetriai (tömeg szerinti), titrimetriai (térfogat szerinti), valamint műszeres analitikai vizsgálatok tartoznak. Ennek következtében bizonyos elemek esetében egészségügyi felső határértékeket határoztak meg. A műszeres analitikai vizsgálatokat tovább bontva jutunk a spektroszkópia, illetve a spektrometria tárgykörébe. A műszerek és a technika fejlődésével a mennyiségi meghatározáson túl egyre inkább előtérbe került az egyes élelmiszerminták közötti különbségek, ezen belül a földrajzi eredetből származó különbségek keresése, azaz a minták eredet szerinti csoportosítása. Megfelelő nagyságú adathalmaz alapján az eredet meghatározása is előtérbe került, amit ma már több élelmiszer esetében sikeresen alkalmaznak.

Az élelmiszeranalitika igen széles területet fed le, mivel a szerves- és szervetlen analitikai eljárások, valamint az érzékszervi vizsgálatok is ide tartoznak, amelyek még további csoportokra oszthatók. A szervetlen analitikai eljárások során a mintában található szerves mátrixot első lépésben a mintaelőkészítés segítségével elroncsoljuk és a mintában található elemek, izotópok mennyiségét, illetve egymáshoz, vagy egy állandó értékhez viszonyított arányát a különböző technikák segítségével határozzuk meg. Ezzel szemben a szerves analitikai technikáknál olyan mintaelőkészítésre van szükség, mely a mintában található szerves komponenseket eredeti formájában megőrzi egészen a mérésük pillanatáig. A szerves élelmiszeranalitika alkalmas többek között az élelmiszerben maradékként megtalálható káros szerves anyagok meghatározására. Az ilyen jellegű vizsgálatok fontosságát az is alátámasztja, hogy az elmúlt évek során nagy mennyiségű természetes és mesterséges szerves vegyi anyag jutott a környezetbe [BLUMMER, 1975], amely többek között hatással van az élelmiszerekre és így az ember egészségére is.

Az eljárások célját tekintve igen sok hasonlóság fedezhető fel a szervetlen és a szerves analitika között. Szerves kémiai módszereket az élelmiszeriparban többek között eredet meghatározásra használnak, azonban egyéb célokra is alkalmaznak, mint például teák esetében vizsgálják az antioxidáns és a fitokémiai tulajdonságok kapcsolatát [APÁTI et al., 2003], vagy keresik a méz sebgyógyító hatásának bizonyítékát [CUTTING, 2007]. A szerves analitika továbbá

alkalmas paprikaminták aromakomponenseinek [KOCSIS et al., 2002], valamint búzák fenolos összetevőinek [DINELLI et al., 2009] meghatározására. Eredet meghatározásra különböző területeken alkalmazzák. Igen nagy irodalma van a mézekre vonatkozó eredetvizsgálatoknak [BOGDANOV et al., 2004; PIRO et al., 2004], amelyek esetében felismerték, hogy a méz aromája függ az illékony frakció összetételétől, amit viszont a nektár összetétele és a növény eredete határoz meg [CUEVAS-GLORY et al., 2007]. Az imént említett meghatározásokhoz általában gázkromatográfiás technikát használtak, esetleg tömegspektrométerhez kapcsoltan. Azonban a szerves analitika műszerezettsége igen széles. Az egyik legmodernebb, úgynevezett LC-MS-MS technikát is egyre szélesebb körben alkalmazzák a kutatásokhoz, többek között szintén eredet meghatározásához. A borok esetében a fenolok analízisével következtetnek az eredetre [JAITZ et al., 2010]. Ez a terület más okokból kifolyólag is egyre népszerűbb [FLAMINI, 2003; MODUN et al., 2008], mivel a fenolok az antioxidáns és bakteriocid tulajdonságuknak köszönhetően kis mennyiségben igen előnyösek az emberi egészség szempontjából. Azonban az eredet meghatározása szempontjából a legcélravezetőbb a szerves és a szervetlen analitikai módszerek ötvözése.

Munkám tárgyául két olyan élelmiszerfajtát választottam, amelyek magyar viszonylatban is fontosak lehetnek. Ez a két élelmiszertípus az őrölt fűszerpaprika, amellyel kapcsolatosan az utóbbi években több botrány is napvilágot látott, valamint a bor, amelynek eredetvédelme a mai napig nincs teljes biztonsággal megoldva. Mivel mind a kalocsai, mind a szegedi fűszerpaprika-őrlemény a Hungaricumok listáján van, valamint nagyon sok bor is (például az Egri Bikavér) megtalálható ott, ezért választottam e két élelmiszertípust a vizsgálataim tárgyául, remélhetőleg elősegítve ezzel az eredetvédelem fejlődését.

2.3.1. Bor

A bor már évezredek óta az emberiség kedvelt élvezeti cikkei közé tartozik, de sokkal több is annál; része mindennapjainknak, ünnepeinknek, és a hozzá fűződő kultuszokon, valamint hiedelmeken túl ma már a tudomány is elismeri jelentőségét az egészséges táplálkozásban, illetve életmódban. Kultúrtörténete során mind készítését, mind érzékszervi minősítését "művészi fokra" fejlesztették az egyes borvidékek vezető szakemberei, régi fényét azonban csak akkor nyerheti vissza teljesen, ha az egészségügyi normák betartásán túl a borászat alapvető problémájára, a fajta-és eredetvédelem kérdésére is sikerül megfelelő, azaz kellően objektív megoldást találni [MURÁNYI, 2002].

A műszeres analitika fejlődésének következtében egyre több információ áll rendelkezésünkre a borok beltartalmi jellemzőiről, melyek elsősorban az illat- és ízanyagok, melyek kialakulásáért több ezer komponens komplex hatása a felelős.

2.3.1.1 A bor élettani hatása

A borfogyasztási kultúra eltolódása a nem megfelelő irányba, valamint a bor azonosítása a többi szeszes itallal rossz hatással volt a borfogyasztás egészségügyi megítélésére. Azonban az elmúlt évek kutatásainak – amelyek egyik középpontjába ismét a bor került – hatására ez az ital ismét kezdi visszaszerezni évezredes tapasztalatból adódó jó hírét. Széles körű vizsgálatok bizonyították, hogy a borfogyasztók, azon belül is a vörösborfogyasztók körében kisebb a szív- és érrendszeri megbetegedések száma [RENAUD, 1992; POKORN, 1995], sőt a rákos megbetegedések valószínűsége is kevesebb [GOLDBERG et al., 1995; WAMHOFF et al., 1998]. Ezen pozitív tulajdonságok elsősorban a bor bizonyos szerves komponenseinek tulajdoníthatóak, (pl. a resveratrol), de a fémkomponensek jótékony hatásai is szerepet játszanak ebben [WAMHOFF et al., 1998; KEUL et al., 1997]. Ezt a tényt alátámasztja a 4. táblázat, amely néhány táplálék-kiegészítő készítmény fémtartalmát hasonlítja össze egy átlagos vörösbor (egri Zweigelt) fémtartalmával [MURÁNYI, 2002].

Fóm	1. készítmény	2. készítmény	3. készítmény	bor
Felli	(mg/tabletta)	(mg/tabletta)	(mg/tabletta)	(mg/0,1 liter)
Ca	162	37,5	36	16
K	40	-	2	85
Fe	18	7	28	1,2
Mg	100	5	3	10
Cu	2	0,115	0,45	0,05
Zn	15	0,05	-	0,3
Со	-	0,1	0,04	0,0015
Mn	2,5	0,115	0,5	0,35
Мо	0,025	0,05	0,1	0,001
Cr	0,025	-	-	0,003
Se	0,025	-	-	0,0001

4. táblázat: Táplálék-kiegészítő készítmények és egy bor fémtartalma

A táblázatban közölt összehasonlítás várható eredményeket közöl, mivel a táplálékkiegészítők fogyasztásának elsődleges oka az, hogy a fogyasztó minél több, a szervezet zavartalan működéséhez nélkülözhetetlen szerves, illetve szervetlen komponenest pótoljon, amely a teljes értékú táplálkozás hiányának következményeként a szervezet számára nem hozzáférhető. A természetes eredetű mintákra, mint például a borokra is jellemző, hogy igen széles elemösszetétellel rendelkeznek.

2.3.1.2 A bor kémiai összetétele

A bor nagy számú komponens – oldott, illetve kolloidális – vizes oldata, egy folyton változó, érzékeny egyensúlyi rendszer, melyben komponenseik számát 2000-2500-ra becsülik. A borban található szerves és szervetlen komponensek minőségi és mennyiségi viszonyait meghatározó legfontosabb tényezők:

- termőterület
- a szőlő fajtája és érettsége
- a szőlőültetvény kora
- a szőlőművelés módja
- mikroklimatikus viszonyok (évjárat)
- a szüret időpontja
- a bor előállításának technológiája
- erjesztési körülmények
- tárolási körülmények
- érlelési körülmények

Az irodalom több mint 50 szervetlen alkotót tart számon borokban. A hamvasztási maradék 2-5 g literenként, ami a bor összes oldottanyag-tartalmának, azaz az extraktnak kb. 10%-át jelenti [ESCHNAUER et al., 1988]. Az elemek mennyisége alapján Eschnauer a következő csoportokat állapítja meg:

- Főelemek (ásványi anyagok): mennyiségük 10-1000 mg/l tartományba esik
- Nyomelemek: koncentrációjuk 1 mg/l vagy ez alatti ("ppm" tartomány)
- Ultranyomelemek: koncentrációjuk 1 µg/l vagy ez alatti ("ppb" tartomány)

Fontos megjegyezni, hogy a fenti csoportosításból a 1-10 mg/l tartomány kimaradt, pedig néhány fontos fém – mint például a nátrium, a vas és a mangán – általában ebben a tartományban található. Eschnauer az adott elem összes, borban található mennyiségét két csoportra osztja, az elsődleges, azaz természetes, valamint a másodlagos, azaz kontaminációs koncentrációra. Az elsődleges koncentráció azt a mennyiséget takarja, ami közvetlenül a szőlőszemből kerül a mustba, illetve a borba, ez arányos a növény által a talajból felvett mennyiséggel, ami függ a termőtalaj minőségétől, valamint a termesztés során alkalmazott szerektől. Másodlagos koncentráció alatt azt a mennyiséget érti, ami nem a szőlő tápanyagfelvétele során jut a szőlőszembe, illetve a borba. Ennek a forrásai két csoportba sorolhatóak:

- Természetes források (vulkáni tevékenység, természetes emisszió)
- Mesterséges források (közvetve vagy közvetlenül az emberi tevékenységnek köszönhetően kerülnek a borba), melyek további 3 csoportra bonthatók
 - o ipari termelés (bányák, erőművek, gyárak, közúti forgalom)
 - szőlészeti, borászati technológia (növényvédő szerek, alkalmazott berendezések, edények a bor kezelése, szállítása, tárolása)
 - o borhamisítás fémtartalmú adalékanyagok alkalmazásával.

A bor szervetlen összetételének megállapítására használt mintaelőkészítési módok, illetve alkalmazott műszerek igen szerteágazóak (1. és 2. táblázat). Az idő előrehaladtával egyre nagyobb mértékben terjedt el a borok fémtartalmának meghatározásához alkalmas módszerek közül az induktív csatolású plazma technika, azon belül is elsősorban a tömegspektrometria. E technika segítségével az elemek széles köre mérhető, azonban a mintaelőkészítési módok igen különböznek egymástól [KATONA et al., 2012]. Bizonyos szerzők a borminták egyszerű hígítását, míg mások az esetleges zavaró hatások elkerülése érdekében a szerves anyagok teljes elroncsolását részesítik előnyben, amihez szintén különböző savakat, illetve savkeverékeket használnak.

2.3.2. Fűszerpaprika

A paprika Európába az újvilág meghódítását követően jutott el. Kezdetben, akárcsak a krumplit virágáért tartották, majd gyógyhatásáért és csak a későbbiekben ismerték meg, mint kiváló ételízesítőt. Hazánkban a 16. században jelent meg, majd két nagy termőterület alakult ki, az egyik Szeged, a másik pedig Kalocsa környéke, mivel mindkét területen megfelelőek a talaj,- hőmérséklet és csapadékviszonyok. A szegedi paprikát, mint márkanevet 1748-ban említik először és a 19. század végére már Amerikába is exportáltak belőle.

A pirospaprikához számos tudományos eredmény is köthető. A C-vitaminnal kapcsolatos kutatásaiért 1937-ben Nobel-díjat kapott Szent-Györgyi Albert, aki a szegedi paprikából tudta legegyszerűbben kivonni a C-vitamint. De még ezelőtt 1931-ben Zechmeister László és Cholnoky László felfedezték a kapszantint, a paprika festékanyagát. 1917-ben pedig megnyitották a Kalocsai Paprikakísérleti és Vegyvizsgáló Állomást, amely a világ első ilyen irányú intézete volt. Horváth Ferenc és Obermayer Ernő itt nemesítették ki az első csípősségmentes paprikát.

A magyar fűszerpaprika mai termőterülete megközelítőleg 6500-7000 hektár, melyen mintegy 8-9 ezer tonna örleményt állítanak elő, melyből 4-5 ezer tonna kerül exportra. Ezzel Magyarország a világ fűszerpaprika termesztésének 8-10%-át adja [KAPITÁNY 2003].

2.3.2.1 A paprika élettani hatása

Ahogy az a 5. táblázat is mutatja a paprika alacsony energiatartalmú, mivel alacsony a szénhidrát- és zsírtartalma. Fehérjetartalma inkomplett, tehát nem teljes értékű, élelmi rostokat tekintve vízben nem oldódó és vízben oldódó élelmi rostokat is tartalmaz, utóbbit pektin formájában [BÍRÓ 2004].

Energia	20 kcal
Fehérje	1,2 g
Zsír	0,3 g
Szénhidrát	3 g
Összes élelmi rost	2,25 g
Vízben nem oldható élelmi rost	1,56 g
Vízben oldódó élelmi rost (pektin)	0,69 g

5. táblázat: 100 g paprika átlagos tápanyagtartalma

Vitamintartalmát tekintve a paprikában megtalálható az A-provitamin (karotin), B₁-, B₂-, B₆- és C-vitamin, valamint folsav (6. táblázat). A paprikában található karotin tartalom a színanyag függvényében változik. A piros színű paprikákban több karotin található, mint a zöld színű fajtákban. A C-vitamin tartalma jelentős, termesztési technológiától, fajtától és érettségi állapottól függően a 300 mg-ot is elérheti 100 g paprikánként, melyet savanyított formában is megőriz. Az ásványi anyagok között említésre méltó a káliumban való gazdagsága [LUGASI et al., 2004].

6. táblázat: 100 g paprika átlagos vitamintartalma

Karotin	0,4 mg
$I \operatorname{tamin}(B_1)$	50 µg
Riboflavin (B ₂)	30 µg
Niacin	0,2 mg
Pantoténsav	0,19 mg
Piridoxin (B ₆)	0,24 mg
Biotin	1 μg
Folsav	13 µg
C-vitamin	120 mg

A paprikában ezen kívül még megtalálható és fontos megemlíteni a csípősséget okozó kapszaicint, amelynek fájdalomcsillapító hatását a gyógyászat több ágában is használják, valamint a

flavonoidokat, amelyek a növény nem-tápanyag komponensei, hanem természetes színező- és ízanyagok. Ez utóbbiak fontosságát azonban kísérleti eredmények bizonyítják, melyek szerint antioxidáns, antikarcinogén és gyulladáscsökkentő hatással bírnak [LICHTHAMMER 2006].

A paprika fogyasztása elősegíti a nyálképződést és elősegíti a nyugtató neuropeptidek kibocsátását az agyban. Megfigyelhető még étvágyjavító, emésztést segítő hatása is. Átmenetileg gyorsítja az anyagcserét, aminek és alacsony energiatartalmának következtében fogyókúrában és diétában is jól alkalmazható alapanyag. A karotinoidok révén védi a bőrt, a nyálkahártyát, valamint elősegíti a sebgyógyulást. Baktérium- és vírusölő, ételben fertőtlenítő, valamint lázcsillapító hatású. A növényben található szaponinok hozzájárulnak a megfelelő szívműködéshez és csökkentik a koleszterinszintet is. Egyes nagyon erős fajták elpusztítják, kihajtják a bélparazitákat [VERESNÉ 2004].

2.3.2.2 Az őrölt paprika

Az utóbbi években a paprika őrlemény is áldozatul esett az élelmiszer-hamísítási, illetve a gazdasági előnyszerzés szempontjából olcsó, rossz minőségű élelmiszer-behozatali hullámnak, ami igen nagymértékben csökkentette a fogyasztók bizalmát a termékekkel szemben, valamint hátrányos helyzetbe hozta a hazai, jó minőségű termékek előállítóit. Éppen ezért egyre nagyobb igény van a paprika eredetének vizsgálatára, hiteles igazolására. Magyarországon a "Szegedi Fűszerpaprika" név deklarált OEM (oltalom alatt álló eredet-megjelölés), ami azt jelenti, hogy az EU OEM/OFJ (oltalom alatt álló földrajzi jelzések) rendelet (510/2006/EK rendelet) előírja az egész Unióra kiterjedő védelmet e termékek címkéire, melyek szorosan kapcsolódnak az előállításuk földrajzi helyéhez [BRUNNER et al., 2010]. Az ilyen termékeket meghatározott területen, meghatározott termelési előírás szerint kell előállítani [European Council Regulation, 2006].

Az eredet meghatározására különösen az analitikai módszerek fejlesztése bír nagy jelentőséggel, mivel új, független ellenőrzési lehetőségeket szolgáltat, amely nélkülözhetetlen lehet az élelmiszerminőség és élelmiszerbiztonság garantálásában. Az egyik ilyen analitikai lehetőség az izotóparányon és elemujjlenyomat meghatározáson alapuló módszerek kidolgozása, amelyek egyediek, de egy földrajzi területen belül azonosak, így alkalmasnak tűnnek az eredet meghatározására. Az elemujjlenyomat az egyes területeken más és más, ami a Sr izotóparányra is igaz. Ez utóbbinál bizonyított, hogy a növény Sr tartalmának fő forrása a talaj biológiailag hozzáférhető Sr tartalma [SWOBODA et al., 2008].

A borral ellentétben a paprika esetében nem áll rendelkezésre kiterjedt irodalom a paprika nyomelem-tartalmának illetve izotóparány-vizsgálatának meghatározására. Ennek oka az lehet, hogy ezen a területen eddig nem érezték égető szükségét a földrajzi eredet deklarálása érdekében

egy analitikai eljárás kidolgozásának, mivel a terület viszonylag szűkebb kört érint és a közelmúltig nem volt különösebb ok megkérdőjelezni a termékek eredetét, ami sajnos ma már nem kerülhető meg. Ezt a paprika körül előforduló botrányok teszik indokolttá. A '90-es évek elején következett be az ólmozott paprika esete, amely megismétlődésének kivédése viszonylag egyszerű vizsgálatokkal elérhető, azonban a 2004-ben kirobbant "aflatoxin botrány" megismétlődése kizárólag eredetvédelem útján kerülhető el. Ugyanis a Dél-Amerikából importált paprika egy olyan, gombák által termelt méreganyagot tartalmazott, amely a mi éghajlatunkon jóval kisebb, az egészségügyi határértéket el nem érő mennyiségben termelődik. Ennek nyomán öt élvonalbeli cégről derült ki, hogy külföldi termékekkel keverve, megtévesztő csomagolásban dobta piacra ezt a "hungarikumot". Ennek a problémának a megoldása, hogy kizárólag hazai (hungarikum), illetve azonos éghajlatbeli termesztésű paprikát használjanak fel a különböző végtermékek előállításához. Dolgozatomban ezen a területen eddig hiánypótló témát is feldolgoztam.

2.3.2.3 Az őrölt paprika gyártásának technológiája

A 9. ábrán a paprikaőrlemény előállításának általános technológiája látható. Az egyes feldolgozó üzemekben az üzem méretének függvényében ettől kisebb-nagyobb eltérés tapasztalható, azonban a narancssárga színnel jelölt lépések minden esetben elmaradhatatlanok. A technológiai lépéseknek az alapanyag mellett döntő hatása van az őrlemény minőségére.

A technológia első lépése az utóérlelés, amely azt az időszakot foglalja magában, amely a paprika pirossá érése és a feldolgozás megkezdése előtt eltelik. A megfelelő utóérés során a paprika nedvességtartalma és cukortartalma csökken, klorofil tartalma teljes egészében átalakul piros és sárga színezékké, illetve növekszik a piros színezék aránya [VASTAG 2003]. Nagyon fontos dolog, hogy ez a lépés csak addig tartson és csak olyan körülmények között, hogy a termést baktériumok és penészedés ne károsítsák.

Az ezt követő lépés a nyersanyag-előkészítés, amely során eltávolításra kerülnek a romlott, vagy nem teljesen érett részek, majd többszöri mosással megtisztítják a paprikát a szennyeződésektől.

Ezt követi a szárítási lépés, amely során a paprika nedvességtartalmát 6-8%-ra csökkentik a jó őrölhetőség érdekében. Ez igen kritikus lépés, mivel 80-85 °C-os melegben a paprika minőségét döntően meghatározó színezék, aroma és illatanyagok károsodhatnak. Sajnálatos módon ennél a lépésnél a paprikában található antioxidánsok mennyisége is csökken, ami károsan befolyásolhatja az őrlemény színezék stabilitását [MÁRKUS et al., 1999].

A következő lépés a csírátlanítás, amelynek célja az, hogy a fűszerpaprika mikrobiológiai paraméterei megfeleljenek az előírásoknak. Hazánkban ehhez a lépéshez a legelterjedtebb berendezések a nagynyomású, telített gőzt impulzus jelleggel befecskendező sterilezők. Sajnálatos

módon azonban az eljárás érzékelhető színezékbomlást és színváltozást okoz, illetve negatívan befolyásolja az őrlemény szín- és színezékstabilitását [KISPÉTER et al., 2003].

Az őrlés a következő lépés, amelynek során a paprikát maximum 500 μm, illetve 630 μm szemcseméretű részekre aprítják a termék minőségétől függően. A jelenlegi nagyüzemi gyakorlatban daráló segítségével előaprítás történik, majd az így kapott darált paprikát több, sorba kapcsolt kőpárra helyezik. Ez után az őrlemény az úgynevezett pirosítókőre kerül, amely műveletet pirosításnak nevezünk.

Ezt követi a kondicionálási lépés, melynek célja az őrlemény nedvességtartalmának beállítása. Az őrlés alkalmával a 6-8% nedvességtartalmú paprika további 1-2%-ot veszít a nedvességtartalmából. A szabvány 11%-ban maximalizálja az őrlemény nedvességtartalmát, így ebben a lépésben 9-10%-ra növelik. Ennek köszönhetően az őrleménynek nem csak a tömege növekszik meg, de a színe is mélyebb piros lesz. A magasabb nedvességtartalmú őrleménynek a tárolás során a színfestése is mérsékeltebb lesz [MÁRKUS és KAPITÁNY 2001].

9. ábra: Az őrleménygyártás folyamatábrája [HOVORKÁNÉ 2007]

A malmi őrlemények keverési arányának meghatározása az előállítandó őrleménynek megfelelően történik. Ez a technológiai lépés esetenként megelőzheti az őrlést. Ekkor a szárított féltermékekből kiválasztják az előállítandó őrlemény minőségének megfelelően az alapanyagokat. Más esetekben – elsősorban nagyüzemi gyártás során – előre megadott minőségi paraméterekkel rendelkező őrlemény előállítása a cél. Ebben az esetben az őrlemények minőségi jellemzői alapján az előállítandó őrlemény minőségének megfelelően kiválasztják a felhasználandó alapanyagokat és meghatározzák a megfelelő keverési arányt.

3. CÉLKITŰZÉS

Doktori munkám célja egyrészt a szervetlen tömegspektrometriai elemzés egyik legfontosabb lépésének, a mintaelőkészítési lépés fejlesztése mind elemujjlenyomat mind az eredet szempontjából releváns izotópok meghatározásának pontosabb, a zavaró hatásoktól kevésbé terhelt elvégzése céljából. A kidolgozott módszerek validálása neuralgikus pontja a módszer jövőbeni sikeres alkalmazásának, ezért erre nagy hangsúlyt fektettem, mind hiteles anyagmintákat, mind független analitikai módszerekkel történő méréseket alkalmaztam a validálás során. A kidolgozott és validált módszerekkel ismert eredetű minták elemzését végeztem el, annak érdekében, hogy tesztelni lehessen a módszerek megbízhatóságát.

A doktori disszertációm célkitűzéseit a vizsgált mintatípusok szerint csoportosítottam. Ennek megfelelően:

Célkitűzések élelmiszerek eredetmeghatározására alkalmazható módszerek esetében

- Módszerfejlesztés
 - Olyan elemujjlenyomat meghatározásához szükséges mintaelőkészítési módszer kidolgozása, amely az irodalomban megtalálható módszerek kritikáján alapul, azok továbbfejlesztése, és a módszerfejlesztések során alapmódszernek használható.
 - Olyan az eredet szempontjából releváns izotópok meghatározására alkalmas mintaelőkészítési módszer és a hozzá kapcsolódó elemzési eljárás kidolgozása, amely képes az elemzést zavaró hatások minimalizálására.
- Validálás
 - A kidolgozott módszerek analitikai teljesítményjellemzőinek meghatározása után a módszer validálása hiteles anyagminták és független analitikai módszerek alkalmazásával.
- Valódi minták elemzése
 - Különböző feldolgozottságú élelmiszerek (fűszerpaprika, bor) eredetének meghatározására kidolgozott módszerekkel ismert eredetű élelmiszerek elemzése a módszerek alkalmazhatóságának tesztelése céljából.

Célkitűzések nukeáris minták eredetmeghatározására alkalmazható módszerek esetében

- Módszerfejlesztés
 - Ritkaföldfém elemujjlenyomat meghatározásához szükséges mintaelőkészítési módszer kidolgozása
 - Nyomelem ujjlenyomat meghatározásához szükséges mintaelőkészítési módszer kidolgozása
- Validálás
 - A kidolgozott módszerek analitikai teljesítményjellemzőinek meghatározása után a módszer validálása hiteles anyagminták és független analitikai módszerek alkalmazásával.
- Valódi minták elemzése
 - A validált módszer alkalmazása valódi törvényszéki minták eredetmeghatározásának céljából

4. ANYAG ÉS MÓDSZER

A munkám során felhasznált módszerek részletes leírására az "Eredmények" című fejezet vonatkozó alfejezeteiben kerül sor, mivel a munka igen nagy része módszerfejlesztést takar, a módszerek az egyes mintatípusok, illetve meghatározandó komponensek függvényében változnak.

4.1 A kísérletek helye

A kísérletek 3 különböző laboratóriumban folytak. A borok roncsolásának kiválasztásához szükséges vizsgálatok a Budapesti Corvinus Egyetem, Élelmiszertudományi Kar Alkalmazott Kémia Tanszék laboratóriumában egy kvadrupól ICP-CC-QMS (Agilent 7500ce, Agilent Technologies Inc., Santa Clara, CA, USA) készülékkel, valamint a Magyar Tudományos Akadémia Izotópkutató Intézetében működő ICP-MS laboratóriumban egy nagyfelbontású ICP-SF-MS (Element2, Thermo Electron Corp., Bréma, Németország) műszerrel történtek. Ez utóbbi laboratóriumban folyt még az élelmiszermintákon belül a borminták elemujjlenyomatának analízise, a paprikaminták előkészítése, elemujjlenyomatának analízise valamint a nukleáris törvényszéki minták előkészítése és elemzése. A borminták előkészítése, valamint mind a paprika-, mind a borminták Sr izotóparány vizsgálata a Bécsi Agrártudományi Egyetem Kémia Tanszékének Analitikai Kémia Csoportjában, a VIRIS Laboratóriumban (Universität für Bodenkultur Wien, Department für Chemie, Abteilung für Analytische Chemie, VIRIS Labor) történt egy multikollektoros MC-ICP-MS (Nu Plasma HR, Nu Instruments Ltd., Wrexham, Egyesült Királyság) készülékkel.

4.2 Felhasznált anyagok, vegyszerek, standardok, hiteles anyagminták

A vizsgálataim során minden esetben nagytisztaságú vegyszereket használtam, azonban mivel ezek a vizsgálatok különböző helyeken történtek, ezért az említett vegyszerek típusukban, tisztasági fokukban, illetve márkájukban elértek, eltérhettek egymástól. Az alábbiakban bemutatom a felhasznált vegyszereket a minta mérésének, illetve előkészítésének függvényében.

4.2.1 MTA-IKI ICP-MS Laboratórium, illetve BCE-ÉTK Alkalmazott Kémia Laboratórium

A Budapesten található mindkét laboratóriumban azonos vegyszerekkel dolgoztam. Az ICP működtetéséhez nagytisztaságú (99,996 %) argongázt használtam. A tömény salétromsav a munkám elején Suprapur[®] tisztaságú 65%-os volt (Merck, Darmstadt, Németország), majd forráspont alatti desztillálóval (Milestone System, Mileston S.r.l, Sorisole, Olaszország) előállított. A víz Milli-Q nagytisztaságú víz (Millipore Corp., MA, USA) volt 18,2 M Ω ellenállással. A mintaelőkészítések során alkalmazott 30%-os H₂O₂ (Scharlau Chemist S.A., Barcelona, Spanyolország) analitikai tisztaságú volt. A sósav Suprapur[®] tisztaságú volt (Merck, Darmstadt, Németország). A standard oldatokat Merck IV (Merck, Darmstadt, Németország) többelemes ICP standard, valamint 10 mg Γ^1 koncentrációban tartalmazó Claritas PPT I., II és IV többelemes standardok (Spex CertiPrep, USA), valamint 1000 mg Γ^1 koncentrációjú As, Rb, U, Zr Mo (Merck, Darmstadt, Németország) monoelemes standardok felhasználásával készítettem. A ródium belső standard 10 mg Γ^1 koncentrációjú monoelemes standardból (Sigma-Aldrich, Steinheim, Németország) készült.

Az élelmiszerminták mintaelőkészítésének validálására két különböző hitelesített referenciaminta, BCR 679 (porított fejes káposzta) és NIST 1573a (porított paradicsom levél) is rendelkezésünkre állt. A BCR 679 a benne található Cd, Cu, Fe, Mn, Mo, Ni, Sr, Zn, Sb, Hg és Tl koncentrációra hitelesített. A NIST 1573a a következő elemekből tartalmaz hitelesített koncentrációkat: Al, Sb, As, B, Cd, Cr, Co, Cu, Fe, Mn, Hg, Ni, Rb, Se, Na, V és Zn.

Az urán elválasztásához TRU[®], illetve UTEVA[®] gyantát (Eichrom, Darien, Illinois, USA) alkalmaztunk. Az oszlop (műanyag oszlop, Bio-Rad, átmérő: 8 mm, hossz: 40 mm) elkészítésekor a gyanta tetejét üveggyapottal fedtük le az esetleges felkeveredés elkerülése végett. A módszer validálásához Morille (kucsmagomba) hitelesített referencia mintát (Cetama, Franciaország) alkalmaztunk, amely 4 ritkaföldfém-koncentrációra (Dy, Gd, Eu és Sm) hitelesített, valamint az egyéb elemkoncentrációk meghatározásának validálására BCR-2 (Bazalt) refernciaanyagot (U.S. Geological Survey Certificate of Analysis, USA), amely hitelesített az alábbi elemekre: Ba, Ca, Co, Cr, Ga, K, Mn, Na, Sr, Ti, Th és Zn.

4.2.2 Bécsi Agrártudományi Egyetem VIRIS Laboratórium

A vizsgálataim során ebben a laboratóriumban is nagytisztaságú vegyszerekkel dolgoztam. Az ICP működtetéséhez nagytisztaságú argongázt használtam. A tömény salétromsavat (Merck, Darmstadt, Németország) forráspont alatti kétszeres desztillációval (Milestone-MLS, Németország) tisztítottam, amelyet nagytisztaságú vízzel történő hígítással állítottam be a kívánt töménységre. A nagytisztaságú vízként minden esetben R>18 MΩ ellenállású Purelab classic redszerrel (Elga, Egyesült Királyság) tisztított, majd forráspont alatti desztillálóval egy lépésben továbbtisztított vizet használtam. A stroncium elválasztásra 100-150 μ m szemcseátmérőjű stroncium specifikus gyantát (kolonna töltetet) használtam (Triskem, Franciaország), míg a kolonna vázát alkotó 1 mm átmérőjű PVC cső a Spetec cégtől (Németország) származott. Stroncium standard oldatként, valamint minőségbiztosítás céljából hiteles izotóp-összetétellel rendelkező NIST SRM 987 SrCO₃ referencia anyagot (National Insitute of Standards and Technology, USA) alkalmaztam, melynek hiteles izotóparánya ⁸⁷Sr/⁸⁶Sr-ra nézve 0,71034 ± 0,00026.

4.2.3 A kísérletek során felhasznált minták

Magyarország szegedi termőterületéről származó 2 típusú, és az előállítási technológiának mind a 10 lépésből kb. 200-200 g paprikamintát a Szegedi Paprika Kutatóintézet bocsátott rendelkezésemre. Ezeket főként a multielemes analízis kifejlesztésére és validálására használtam fel. További 35 friss paprikaminta származott a szegedi régióból, amelyeket a Szegedi Paprika ZRT közreműködésével közvetlenül a termelőktől szereztem be. 20 minta származik Szeged- Kecskés telepről, 4 Mezőhegyesről, és 11 Zsombóról. A kereskedelmi forgalomban elérhető Szenegálból, Franciaországból, Spanyolországból, Magyarországról (Szeged környékéről) és Romániából származó 15 paprika mintát szintén a Szegedi Paprika Kutatóintézetnek köszönhetően, 50 g-os kiszerelésű műanyag zacskókban kaptam.

A borok mintaelőkészítésének kiválasztásához 5 különböző cukortartalommal rendelkező magyarországi borvidékekről származó bort használtam. A száraz borok közé tartozik a Somlói Borvidékről származó Juhfark (Juh) és Rizling (Riz), melyek cukortartama 2,3 – 3,3 g l⁻¹ között volt. Édes bor a Balatoni Borvidékről származó 47,6 – 61,1 g l⁻¹ közötti cukortartalmú Muskotály (Mus) és Tramini (Tra). Ráadásképpen kísérleteim során a Tokaji Borvidékről származó 149,8 g l⁻¹ cukorkoncentrációjú és ezért már desszert bornak minősülő 5 puttonyos Tokaji Aszú mintát is használtam. Az eredetmeghatározáshoz használt valós borminták teljes mennyiségét – 97 mintát (egyenként 1 ml mennyiségben) – 5 éves periódusban gyűjtötték össze (2003-2007) Ausztria keleti részén található borvidékekről. Ezeket a borvidékeket mutatja be a 10. ábra.

10. ábra: A borminták Kelet-Ausztriai származási helyének térképe

A urán mérésére kifejlesztett módszer alkalmazásának teszteléséhez lefoglalásból származó természetes összetételű, alacsony dúsítású és szegényített (jelölésük: ANNEX NC0649_590NAT, ANNEX NC0649_6421LEU és ANNEX NC0649_6432DU) urán-oxid pelleteket, urán koncentrátumokat (yellow cake). A yellow cake minták különböző bányaterületekről (Beverley, Ausztrália; Cluff Lake és Stanrock, Kanada) származtak, mérésük technikai együttműködés keretein belül az ITU-ban (Institute for Transuranium Elements, Karlsruhe, Németország) történt.

4.3 Alkalmazott műszerek

Kísérleteim során többféle tömegspektrométert alkalmaztam: az elemtartalom meghatározásához nagyfelbontású induktív csatolású plazma tömegspektrométert (ICP-SF-MS, ELEMENT2, Thermo Electron Corp., Bréma, Németország), valamint ütközési cellával szerelt kvadrupól induktív csatolású plazma tömegspektrométert (ICP-CC-QMS, Agilent 7500ce, Agilent Corp., CA, USA), a Sr izotóparány meghatározásához multikollektoros induktív csatolású plazma tömegspektrométert (MC-ICP-MS, Nu Plasma HR, Nu Instruments Ltd., Wrexham, Egyesült Királyság). A nagyfelbontású tömegspektrométert PFA porlasztóval (ES-2040, PFA ST Nebulizer, Elemental Scientific Inc.,Nebraska, USA), melynek mintabeviteli sebessége 100 µl/perc és Scott

ködkamrával (Perkin Elmer, Ontario, Canada) szereltem, a kvadrupól tömegspektrométert Babington porlasztóval (Agilent Corp., CA, USA) szereltem. A multikollektoros tömegspektrométer porlasztójaként egy deszolvatáló egységet (DSN 100, Nu Instruments Ltd., Wrexham, Egyesült Királyság) használtam. A deszolvatációs porlasztási rendszerhez tarozik továbbá egy "forró gáz" áramlásos ködkamra, amellyel elkerülhető a cseppképződés és a kondenzáció.

A minták roncsolását MLS típusú (MLS 1200mega, Milestone GmbH-Microwave Laborsysteme, Leutkirch im Allgäu, Németország), valamint MARS-5 típusú (CEM Corp. Metthews, NC, USA) mikrohullámú roncsoló berendezésben végeztem 6 db teflon bombával. Az elválasztáshoz alkalmazott filterek mosásához, valamint a szilárd anyagok oldásának elősegítéséhez Transsonic T80 (Elma Hans Schmidbauer GmbH & Co. KG, Singen, Németország) típusú ultrahangos fürdőt használtam.

4.3.1 Az induktív csatolású plazma, mint ionforrás

Az ICP-MS technika olyan tömegspektrometriai módszer, amelyben az ICP az ionforrás. Az ICP a bevezetett minta alkotóit elpárologtatja, atomiálja és ionizálja. Alkalmazásánek előnye az alacsony háttérszint, valamint az, hogy az elemek többsége legalább 90%-ban ionizálódik, melynek során az egyszeresen töltött ionok dominálnak, azonban a kétszeresen töltött ionok és molekulaionok keletkezése sem elhanyagolható. Kétszeres töltésű ionok azokból az elemekből keletkeznek, melyek második ionizációs potenciálja alacsonyabb az argon első ionizációs potenciáljánál. Mivel az ionenergiák értékei viszonylag szűk tartományban mozognak, így a tömegspektrométerrek az ionok szétválaszthatóak és detektálhatóak.

A plazma fő alkotórésze az argon, bekapcsolásával egy rádiófrekvenciás generátor (RF) erős mágneses teret hoz létre. A gyújtásnál az áramló argon gázban egy Tesla-tekercs szikrakisülést hoz létre. A nagyfrekvenciás térben az argongáz ionizálódik és sajátos forgásszimmetriájú áramlási mintázat mentén áramlik a tekercs mágneses mezeje felé, ahol a töltött részecskék és a semleges argonatomok közötti rugalmatlan ütközések következtében stabil, 6000-8000 K hőmérsékletű plazma keletkezik.

Mivel a plazmán belül igen nagy hőmérsékletgradiens tapasztalható a mérés szempontjából fontos egyszeres töltésű ionok, valamitn a zavaró többszörös töltésű és molekulaionok koncentrációja jelentősen változik a plazma hossza mentén. Ennek kivédésére az interfész és az indukciós tekercs egymáshoz viszonyított helyzetét kell változtatni oly módon, hogy a meghatározandó és a zavaró ionok koncentrációaránya a mintavétel helyén a legnagyobb legyen [ZÁRAY, 2006].

4.3.2 ICP-SF-MS

A készülék az induktív csatolású plazmát ionforrásként alkalmazó tömegspektrométer az úgynevezett nagyfelbontású (high resolution HR), illetve más néven kettős fókuszállású, mágneses szektorterű (double focusing, magnetic sector field DF-MS, vagy SF-MS) tömegspektrométer. Az ilyen készülékeknél az ionforrásból érkező ionok belépnek a nagyvákuum-terű tömeganalizátorba, ahol áthaladnak egy mágneses, illetve egy elektromos mezőn. A mágneses szektortér az ionok energiája és tömege (pontosabban momentuma) alapján, míg az elektromos szektortér csak az ionok energiája alapján választja el az ionokat. Ha az elektromos, illetve a mágneses tér energiadiszperziója azonos nagyságú, de ellentétes irányú, akkor a két tér együtt mind az ionok elhajlási szögét (első fókuszállás), mind az ionok energiáját (második fókuszállás) fókuszálja, miközben tömeg/töltés (m/z) alapján pedig elválaszt, azaz tömegspektrométerként működik. A töltéssel rendelkező részecskék szétválasztását elektromos, illetve mágneses tér segítségével megvalósító tömegspektrométerek alapelvét szolgáló jelenséget Thomson írta le először 1899-ben [THOMSON 1899]. Az alkalmazott terek sorrendje és az egyes terek egymáshoz viszonyított helyzetének tekintetében azonban többféle elrendezés létezik. Abban az esetben, ha az ionok elsőként egy mágneses térbe jutnak, majd onnan az elektrosztatikus mezőbe továbbítódnak, fordított elrendezésről van szó [ABRANKÓ 2006].

A készülékek esetében elérhető nagy felbontás a belépőrés változtatásával, fizikai úton valósítható meg. Tömegspektrometriában a felbontás az $R = m/\Delta m$ képlettel írható le. A Δm kifejezés a tömegkülönbségre utal, amelynek azonban különböző tömeganalizátorok esetén eltérő az értelmezése. Mágneses szektorterű készülékek esetében a "10% völgy" definíció terjedt el, ami azt jelenti, hogy a specifikációban megadott felbontás kiszámítása során az egymás mellett található két felbontott tömegspekrometriás csúcs közötti tömegkülönbséget úgy határozzák meg, hogy a közöttük lévő átlapolás minimuma a csúcsmagasságok 10%-nál legyen.

Az itt leírtak alapján a munkám során alkalmazott kettős fókuszállású (fordított Nier-Johnson elrendezésű) mágneses szektorterű ICP tömegspektrométeren három különböző, rögzített felbontás állítható be, melyek: R = 300 (alacsony felbontás), R = 4000 (közepes felbontás), valamint R = 10000 (nagy felbontás). A beállított felbontás az egész tömegskálán keresztül állandó, azt azonban nem szabad figyelmen kívül hagyni, hogy a felbontás növelésével a készülék érzékenysége jelentősen csökken, ami 1 nagyságrendnyi csökkenést jelent minden emelkedő felbontási lépésnél. A munkám során használt készülék elrendezése és főbb egységei a 11. ábrán láthatóak.

11. ábra: ICP-SF-MS felépítése

4.3.3 ICP-CC-QMS

A készülék ICP részének argon plazmájában úgynevezett poliatomos adduktumok keletkezhetnek, amelyek zavaróhatásként jelentkeznek, mivel tömegszámuk megegyezik az esetlegesen mérendő elemek tömegszámával (pl. 40 Ar 16 O⁺ és 56 Fe, 40 Ar 40 Ar⁺ és 80 Se⁺, 37 Cl 18 O⁺ és 55 Mn).

A kvadrupól ICP-MS berendezésekben a spektrális zavarások kiküszöbölésére a legelterjedtebben ütközési-, vagy reakciós cellát használnak. Abban azonban, hogy a két teljesen különböző módszer közül melyik az optimálisabb, a gyártók, illetve a felhasználók eltérő véleményen vannak.

A reakciós cella esetében speciális reakcióképes gázokat alkalmaznak annak érdekében, hogy az interferenciákat, azaz a spektrális zavarásokat eltávolítsák minden analizálandó izotóptól. Az ütközési cella esetében viszont az előzővel éppen ellentétesen nem reakcióképes, úgynevezett inert gázokat alkalmaznak, hogy minden poliatomos interferenciát a méretük alapján szelektíven csillapítson. A folyamatot pedig kinetikus energia diszkriminációnak (KED) nevezik. Ez a technika azt a tényt használja ki, hogy minden poliatomos zavarásnak nagyobb az energiája, mint az azonos tömeggel rendelkező analizálandó ioné, aminek következtében a cellán áthaladva jóval gyakrabban ütköznek az ütközési gázokkal és így energiát veszítenek. Ezeket az alacsony energiájú ionokat a cella kijáratára kapcsolt feszültség eltávolítja az ionsugárból. Az ütközési cella lényege, hogy a tömegspektrométer egyes részeibe ütközési gázokat (H₂, He₂, NH₃, illetve ezek keveréke) vezetnek, amelyek az egyes poliatomos adduktumokkal ütközve különböző reakciókon keresztül szétütik azokat.

Az ütközési cellában lejátszódó folyamatok különféle mechanizmusok, mint ütközési disszociáció (12/a ábra), kémia reakciók (12/b ábra), töltésátvitel (12/c ábra), valamint ütközés után fellépő visszatartás, illetve energiaszűrés (12/d ábra) szerint játszódik le [SZÉLES et al., 2005].

12/a ábra: Ütközési disszociáció (ArAr⁺ + He \rightarrow Ar + Ar⁺ + He)

12/b ábra: Kémiai reakció (ArAr⁺ + H₂ \rightarrow ArH⁺ + ArH)

12/c ábra: Töltésátvitel (ArAr⁺ + H₂ \rightarrow ArAr + H₂⁺)

12/d ábra: Energiaszűrés (*ArAr⁺ + He \rightarrow ArAr⁺ + *He)

4.3.4 MC-ICP-MS

A multikollektoros ICP-MS-ek új generációs izotóparány tömegspektrométernek számítanak. A készülék ötvözi az induktív csatolású plazma ionizáció hatékonyságát a több kollektorral történő adatgyűjtés előnyeivel. Segítségével minden egyes izotóp egyidejű mérése valósítható meg az ICP-MS készülékekre jellemző "kvázi" szimultán méréssel szemben. Mivel az ionsugár felbontása térbeli, így a különböző m/z ionok egyidejűleg mérhetők több detektorral esetünkben – 12 Faraday cellával, valamint a a nagyon kis természetes előfordulású ionok méréséhez 3 különálló detektorral. A technika előnye, hogy kiküszöböli a plazmában keltett ionsugárban fellépő instabilitásokat. Így az izotóparány mérésének pontossága megegyezik a TIMS, vagyis a termikus ionizációs tömegspektrometriában tapasztaltakkal, azonban segítségével lehetőség nyílik magas ionizációs potenciállal rendelkező és ezért nehezen analizálható elemek elemzésére is [DOUTHITT 2007]. A készülékben található elekrosztatikus és mágneses analizátorok elrendezése az ICP-SF-MS-hez képest éppen fordított, ami azt jelenti, hogy az elektrosztatikus analizátor megelőzi a mágneses analizátort. A mágnest követően az ionsugarak a tömeg és töltés arányuknal megfelelően különböző, mozgatható kollektorokba csapódnak, amelyek mindegyikéhez külön detektor kapcsolódik. Ennek következtében azonos időben szolgáltatnak jelet anélkül, hogy a detekor pásztázó üzemmódban működne, amely nagymértékben megnöveli a technika alkalmazhatóságát izotóparány mérésekre.

Az MC-ICP-MS működési elve megegyezik a korábban bemutatott ICP tömegspektrométerekével azzal a különbséggel, hogy ezt a műszert típust koncentrációmérésre általában nem alkalmazzák, viszont izotóparányok mérésére kiváló. Az izotóparány számításának elve az, hogy az ionsugár a Faraday cellákban feszültségekké alakul. A különböző kollektorokon keltett feszültségek összehasonlításából, illetve arányából következtethetünk a keresett izotóparányokra. Egy MC-ICP-MS készülék elektronikájácellanak olyan precíznek kell lennie, hogy vele 0,01-0,001% pontosággal meghatározható legyen a keresett izotóparány, amely kritériumot a kereskedelemben kapható készülékek teljesítik.

A munkám során használt berendezés egy Nu Plasma HR típusú MC-ICP-MS volt, amelynek kollektor blokkja, illetve annak sematikus rajza a 13. ábrán látható.

13. ábra: A Nu Plasma HR MC-ICP-MS kollektor blokkjának sematikus rajza

5. EREDMÉNYEK

5.1 Bor eredetének meghatározásához kidolgozott módszerek

5.1.1 Mintaelőkészítés kiválasztása

A borok eredetének meghatározását megelőzően elsődleges célom az volt, hogy az irodalomban fellelhető, nyomelem meghatározáshoz kidolgozott, egymástól alapjaiban eltérő mintaelőkészítési eljárásokat áttekintsem, közülük kiválasszam az általam elvégzendő feladat szempontjából a legjobbat. Az eljárásban alkalmazott különböző cukortartalmú borok vizsgálatát azért tartottam szükségesnek, mert a cukortartalom a tömegspektrometriában a poliatomos interferencia egyik legfőbb forrása [TAYLOR et al., 2005]. Mivel hitelesített referenciaminta nem állt rendelkezésemre, ezért a mérések minőségbiztosítása érdekében két külön helyen (Budapesti Corvinus Egyetem valamint az MTA Izotópkutató Intézet) található különböző típusú ICP-MS (ICP-CC-QMS és ICP-SF-MS) készülék és így két független módszer által szolgáltatott eredményeket hasonlítottam össze. Az általam mért elemek listája a következő: Li, Mg, B, Al, Cu, Rb, Sr, Zr, Cd, Ba, Tl, Pb, Bi, U, Ca, Cr, Fe, Mn, Co, Ni, Zn, As, Mo és Ga. Néhány elemnél a lehetséges interferenciák kiküszöbölése érdekében több izotópot is detektáltam. Az általam tesztelt mintaelőkészítési eljárások közül 3 roncsolásos technikán alapult salétromsav, savkeverék, valamint salétromsavas roncsolást megelőző bepárlás alkalmazásával mikrohullámú roncsoló а berendezésben, egy esetben pedig a mérést csak egy hígítási lépés előzte meg, mivel az irodalomban megtalálható, borminták mérésekhez alkalmazott mintaelőkészítési eljárások is ebbe a 4 főbb csoportba sorolhatók.

A mintaelőkészítési eljárások mindegyike publikált módszer, amelyek a következők:

"A" eljárás: hígítás

2 ml bormintát vízzel 10 ml-re hígítottam, majd 200 μ l tömény salétromsavval savanyítottam [GÓMEZ M.M.C. et al., 2001; COETZEE et al., 2005a; MYORS et al., 2005; ALMEIDA et al., 2002]. A mennyiségi meghatározáshoz standard addíciót használtam, a hozzáadott mennyiségek 1, 5, 10, 50 és 100 ng g⁻¹ koncentrációval növelték a mintában található koncentrációkat minden elemre, kivétel az urán, a cirkónium és a molibdén, amelyek esetében a hozzáadott koncentrációk az előzőek tizedei voltak.

"B" eljárás: Salétromsavas mikrohullámú roncsolás

Teflonbombába 2,5 ml bormintához 2,5 ml tömény salétromsavat adagoltam, melyeket 30 percen keresztül mikrohullámú roncsolásnak vetettem alá 1000 W teljesítményen 190 °C maximális hőmérsékleten, illetve 30 bar maximális nyomás alatt [GÓMEZ M.M.C et al., 2001; GÓMEZ M.M.C. et al., 2004a; JAKUBOWSKI et al., 1999]. Az elroncsolt mintát PP anyagú műanyag csőbe töltöttem, majd vízzel 25 ml végtérfogatra hígítottam a kívánt 1 v/v% salétromsav-koncentrációt elérése édekében. Ez egy 1:10 arányú hígítást jelent az eredeti mintára vonatkoztatva.

"C" eljárás: Bepárlással kombinált salétromsavas mikrohullámú roncsolás

Az eljárás megegyezik a "B" eljárással, azonban a savkoncentráció töményítése érdekében a mikrohullámú roncsolást egy bepárlási lépés előzte meg [SZENTMIHÁLYI et al., 2000]. A teflonbombába bemért 2,5 ml bormintát infravörös lámpa alá helyeztem és lassú bepárlással a minta térfogatát körülbelül 1-1,5 ml-re csökkentettem. Ezt követően az eljárás teljes mértékben megegyezik a "B" eljárással

"D" eljárás: Salétromsavas és hidrogén-peroxidos mikrohullámú roncsolás

3 ml bormintát mértem be teflon edénybe, amelyhez 300 μ l tömény salétromsavat és 3 ml 30 ^v/_v% hidrogén-peroxidot adagoltam [COETZEE et al., 2005; COETZEE et al., 2005a]. Az ezt követő mikrohullámú roncsolás 33 percig tartott 600 W teljesítményen 190 °C maximális hőmérsékleten, illetve 30 bar maximális nyomás alatt. Az elroncsolt oldatot PP csőbe töltöttem, majd vízzel 20 ml-re hígítottam.

5.1.1.1 Az ICP-MS analízis

A mikrohullámú roncsolással előkészített mintákat ("B"-"D" eljárás) mindkét típusú ICP-MS berendezéssel megmértem, külső kalibrációt és 5 ng g⁻¹ Rh belső standardot alkalmazva a mennyiségi meghatározáshoz. A hígítással előkészített mintát ("A" eljárás) viszont csak ICP-CC-QMS segítségével elemeztem He módban, külső kalibrációt, illetve standard addíciót alkalmazva a mennyiségi kiértékeléshez. A két ICP-MS üzemelési paramétereit a 7. táblázat tartalmazza.

7. táblázat:	Az ICP-	-SF-MS	és az	ICP-CC-	-QMS	beállítási	paraméterei
--------------	---------	--------	-------	---------	------	------------	-------------

Paraméterek	ICP-SF-MS	Paraméterek	ICP-CC-QMS
Porlasztó	Conical	Porlasztó	Babington
Ködkamra	Scott	Ködkamra	Scott
Kicsatolt teljesítmény (W)	1350	Kicsatolt teljesítmény (W)	1500
Plazmagáz áramlási	16,08	Plazmagáz áramlási	16,57
sebessége		sebessége	
$(l m i n^{-1})$		$(l min^{-1})$	
Porlasztógáz áramlási	0,911	Porlasztógáz áramlási	1,17
sebessége (1 min-1)		sebessége (1 min-1)	
Segédgáz áramlási	1,2	Segédgáz áramlási	1,1
sebessége		sebessége	
(1 min-1)		(l min-1)	
Ismétlés és adatgyűjtés	3*3	Ismétlés	3
Tömegablak (%)	20(LR), 120(MR), 125		
	(HR)		
Keresési ablak (%)	100(LR), 60(MR, HR)		
Integrációs ablak (%)	80(LR, MR, HR)		
Belső standard	5ng g ⁻¹ Rh	Belső standard	5ng g ⁻¹ Rh
Samples per peak	100(LR), 20(MR, HR)		
Izotópok (LR: alacsony	LR: 7 Li, 10 B, 27 Al,	Izotópok	⁷ Li, ¹⁰ B, ²⁷ Al,, ⁶³ Cu,
felbontás; MR: közepes	⁶³ Cu, ⁸⁵ Rb, ⁸⁸ Sr, ⁹⁰ Zr,		⁸⁵ Rb, ⁸⁸ Sr, ⁹⁰ Zr, ¹¹¹ Cd,
felbontás; HR: nagy	¹¹¹ Cd, ¹³⁸ Ba, ²⁰⁵ Tl, ²⁰⁸ Pb,		¹³⁸ Ba, ²⁰⁵ Tl, ²⁰⁸ Pb, ²⁰⁹ Bi,
felbontás)	²⁰⁹ Bi, ²³⁸ U,		²³⁸ U, ⁵³ Cr, ⁵⁵ Mn, ⁵⁷ Fe,
			⁵⁹ Co, ⁶⁰ Ni, ⁶⁶ Zn, ⁷⁵ As,
			⁹⁵ Mo, ⁷¹ Ga
	MR: ⁵² Cr, ⁵³ Cr, ⁵⁵ Mn,		
	⁵⁶ Fe, ⁵⁷ Fe, ⁵⁹ Co, ⁶⁰ Ni,		
	⁶⁴ Zn, ⁶⁶ Zn,		
	HR: 75 As, 95 Mo, 71 Ga		

A borok ICP-MS berendezéssel történő vizsgálatai során az egyszerű, csak hígítási lépésből álló mintaelőkészítés az egyik legkedveltebb, aminek az egyik fő oka a gyorsaság, valamint az alkalmazandó reagensek igen kis mennyisége. Azonban a szerves mátrix jelenléte miatt nem szabad megfeledkezni a lehetséges spektrális zavarásokról sem. A borokban a legnagyobb mennyiségben előforduló szerves alkotórész az etanol, amely a spektrális zavarások elsőszámú okozója, mennyisége a minta előzetes bepárlását tartalmazó mintaelőkészítési lépést alkalmazva nagymértékben csökkenthető. Másrészről azonban a bepárlás időigényes és elsősorban az illékony elemek esetében analitikai veszteséget is eredményezhet. A salétromsavval (és hidrogénperoxiddal) történő mikrohullámú roncsolásos mintaelőkészítés a szerves komponenseket szinte teljes mértékben eltávolítja annak a kockázata nélkül, hogy az esetleges illékony elemek veszteséget szenvednek. Ennek is köszönhető, hogy ezt választottam alapmódszernek a további összehasonlításokban. A módszer által kapott eredmények az 8. táblázatban találhatóak.

	LoD		Tra, B eljárás		Mus, B eljárás		Juh, B	eljárás	Riz, B	eljárás	Aszú, B eljárás	
Elem	ICP- SFMS	ICP- CC- QMS	Avg	RSD %	Avg	RSD %	Avg	RSD %	Avg	RSD %	Avg	RSD %
⁷ Li	0,008	0,08	10,5	13,8	12,0	0,5	6,63	9,5	3,61	10,6	27,9	12,8
¹⁰ B	0,06	2,65	5450	6,3	4820	5,4	4200	9,5	3200	8,1	13800	0,3
²⁷ Al	0,09	0,42	2380	3,1	2000	4,3	884	5,9	539	5,2	2040	3,5
⁵³ Cr	0,03	0,06	20,4	5,9	23,5	9,5	67,5	0,7	15,1	5,2	41,3	2,9
⁵⁵ Mn	0,004	0,01	1100	4,9	1130	8,2	845	9,3	942	8,3	1750	13,9
⁵⁷ Fe	0,10	0,32	2130	9,8	1860	13,3	9230	12,5	11800	8,1	7660	9,9
⁵⁹ Co	0,003	0,01	3,12	1,4	2,96	0,2	3,73	6,1	3,92	5,6	5,88	2,8
⁶⁰ Ni	0,06	0,18	26,8	8,6	22,4	6,9	52,8	12,4	92,7	5,6	53,6	5,1
⁶³ Cu	0,006	0,004	117	2,6	103	3,9	112	0,1	94,6	0,5	129	2,6
⁶⁶ Zn	0,49	0,33	359	2,9	363	2,8	567	3,6	698	1,7	1300	1,2
⁷¹ Ga	0,002	0,01	0,44	26,4	0,36	26,3	0,23	5,9	0,23	32,1	0,46	22,6
⁷⁵ As	0,02	0,15	9,09	0,5	8,09	6,3	5,72	25,4	5,02	9,5	19,6	8,4
⁸⁵ Rb	0,001	0,006	834	6,2	668	5,3	896	3,0	998	6,8	1230	3,2
⁸⁸ Sr	0,008	0,0002	641	3,9	593	2,4	384	3,4	420	1,0	1220	0,9
⁹⁰ Zr	0,08	0,02	50,3	3,9	33,6	2,8	14,9	1,3	9,05	7,9	15,9	4,5
⁹⁵ Mo	0,04	0,07	5,32	0,4	5,48	5,6	0,84	18,3	1,42	5,4	9,86	4,2
¹¹¹ Cd	0,001	0,01	0,32	45,9	0,33	23,5	0,87	2,7	2,16	12,5	0,58	53,2
¹³⁸ Ba	0,009	0,009	118	6,1	101	7,8	50,9	5,7	64,3	7,0	203	6,0
²⁰⁵ TI	0,0004	0,004	0,22	31,3	0,22	19,7	0,11	19,6	0,14	27,0	0,40	19,7
²⁰⁸ Pb	0,003	0,03	24,9	10,7	19,2	13,6	14,9	13,1	15,8	11,2	51,0	9,9
²⁰⁹ Bi	0,001	0,45	0,20	-	0,15	-	0,08	-	0,04	-	0,09	-
²³⁸ U	0,001	0,02	0,79	31,1	0,64	22,5	0,07	23,8	0,18	13,1	0,59	30,1

8. táblázat: A salétromsavas roncsolással ("B" eljárás) előkészített borminták eredményeinek összehasonlítása (Az eredmények dimenziója: ng g⁻¹)

Az irodalmilag alátámasztott, előzetes várakozásoknak megfelelően [JAKUBOWSKI et al., 1998; ELWAER et al., 2008] a táblázatból látszik, hogy az ICP-SFMS készülék kimutatási határai alacsony felbontást használva általában 1 vagy 2 nagyságrenddel alacsonyabbak, mint az ICP-QMS kimutatási határai. Közepes és nagy felbontást használva a kimutatási határok összehasonlíthatóak, amelynek oka a csökkentett belépőrés okozta hatás. Habár az arzén méréséhez nagy felbontást használtam, a kimutatási határ így is 1 nagyságrenddel jobb, mint az ICP-QMS készülékre számolva. Ez magyarázható az utóbbi technikánál tapasztalt magas háttérértékkel, amely esetleg csökkenthető, ha a több elem mérésére alkalmas mérési módszer paramétereinek optimálása helyett csak egy elem (As) analíziséhez alkalmas mérési módszer paramétereinek beállítását kíséreljük meg. Azonban figyelembe véve a kapott eredményeket az adatok egyértelműen alátámasztják, hogy mindkét technika rendelkezik a megfeleló detektálási hatásfokkal az adott analitikai feladat elvégzéséhez. Egyedül a bizmutra kapott érték volt az ICP-QMS számolt kimutatási határa alatt, ami az oka annak is, hogy a táblázatban nincs megadva ehhez az elemhez tartozó relatív standard deviáció (RSD%) érték. A 8. táblázatban a két független ICP-MS technikára kapott értékek

jellemzik az analitikai módszer reprodukálhatóságát is. Mivel nem állt rendelkezésünkre hitelesített referencia anyag, a 2 független ICP-MS technika eredményeinek összehasonlítása szolgáltatott lehetőséget a módszer validálására. Az számolt standard deviációknak több, mint 80%-a 15% alatti, ahogy azt a 14. ábra is mutatja. A maradék 20%-hoz a minták típusától függetlenül az alábbi analitok tartoznak: ⁷¹Ga, ¹¹¹Cd, ²⁰⁵Tl és ²³⁸U. Ezeknek az elemeknek a koncentrációja minden esetben ng g⁻¹ alatti tartományban volt.

14. ábra: A salétromsavas eljárás eredményeinek összehasonlítása

Az ábra mutatja, hogy a mérés relatív standard hibája annál nagyobb minél közelebb van mért koncentráció a kimutatási határhoz. A koncentrációk növekedésével a mérés relatív hibája is csökken. A két görbe a két ICP technika eltérő kimutatási határait érzékelteti, azonban az azonos koncentrációk mérésének relatív hibája közel azonos a 2 különböző technika esetében.

Az eredmények kiértékelésének során először a <u>hígításos "A" és a roncsolásos "B"</u> <u>mintaelőkészítést</u> hasonlítottam össze. A kísérlet során a hígított minták elemtartalmának mennyiségi meghatározáshoz két módszert, (i) 1% HNO₃ mátrixban Rh belső standardot tartalmazó standardok alkalmazásával külső kalibrációt, valamint (ii) standard addíciót alkalmaztam. Az eredményeket pedig a "B" eljárásra kapott értékekkel hasonlítottam össze. Mint ahogy azt már emítettem, a hígításos mintaelőkészítés következtében spektrális interferenciák, valamint egyéb mátrix hatások zavarhatják a mérést. Annak érdekében, hogy ezeket a zavarásokat elkerüljem, a quadrupól ICP-MS ütközési cellájába He gázt adagoltam.

Az "A" eljárás külső kalibrációval mért és a "B" eljárás eredményei közötti standard deviáció az összes minta esetében csak a ¹³⁸Ba, ⁶³Cu, ⁸⁵Rb és ⁸⁸Sr esetén volt 15% alatti (9. táblázat). Ezt azt jelenti, hogy a belső standardot alkalmazó külső kalibráció nem elegendő a mátrixból adódó zavaróhatások korrigálására. Ezért a minták nyomelemtartalmát standard addíciós módszerrel is meghatároztam, amelyre kapott eredmények és a "B" eljárás eredményei közötti standard deviáció majdnem minden esetben 15% alattinak bizonyult (10. táblázat). Ez alól kivétel a ⁵³Cr (minden borminta esetében) és a ¹⁰B (édes borok esetében).

9. táblázat: A higításos "A" eljárás külső kalibrációval és a roncsolásos "B" eljárás közötti különbségek

	külső kal	feltárt		külső kal	feltárt		külső kal	feltárt		külső kal	feltárt		külső kal	feltárt	
konc. (ng/g)	BB_Tra_ hig_kk	BB_Tra _"B"	eltérés	BB_Mus_ hig_kk	BB_Mus _"B"	eltérés	Som_JF_ hig_kk	Som_JF _"B"	eltérés	Som_R_ hig_kk	Som_R _"B"	eltérés	Aszu_hig _kk	Aszu_" B"	eltérés
Ba	112	118	5.4%	97.5	101	3.6%	51.4	50.9	1%	63.4	64.3	1.4%	198	203	2.5%
Cu	113	117	3.5%	101	103	2%	120	112	7.1%	98.5	94.6	4.1%	131	129	1.6%
Rb	750	834	11%	613	668	9%	882	896	1.6%	942	998	5.9%	1210	1230	1.7%
Sr	590	641	8.6%	559	593	6.1%	372	384	3.2%	409	420	2.7%	1210	1220	0.8%
В	3990	5450	37%	2950	4820	63%	4520	4200	7.6%	3220	3200	0.6%	41100	13800	200%
Mg	15600	107000	590%	10900	112000	930%	n.d.	310000		58500	92900	59%	n.d.	247000	
Cd	0.47	0.43	9.3%	LOD	0.33		1.52	0.87	75%	3.36	2.16	56%	0.34	0.58	71%
TI	0.22	0.22	0%	0.15	0.22	47%	1.01	0.11	820%	1.59	0.14	1000%	0.88	0.4	120%
Pb	26.6	24.9	6.8%	21.1	19.2	9.9%	17.6	14.9	18%	20.1	15.8	27%	58.9	51	15%
U	0.65	0.79	22%	0.71	0.64	11%	0.12	0.07	71%	0.42	0.18	130%	0.84	0.71	18%
Ca	27000	385000	1300%	16600	352000	2000%	n.d.	183000		82600	254000	210%	n.d.	438000	
Cr	46.3	20.4	130%	49.1	23.5	110%	98.7	67.5	46%	44.7	15.1	200%	80.3	41.3	94%
Mn	1060	1100	3.8%	1100	1130	2.7%	904	845	7%	990	942	5.1%	2280	1750	30%
Fe	2260	2130	6.1%	1860	1860	0%	11000	9230	19%	10500	11800	12%	20200	7650	160%
As	5.61	9.09	62%	5.53	8.09	46%	5.22	5.72	9.6%	4.36	5.01	15%	12.9	19.5	51%
Mo	5.61	5.32	5.5%	6.44	5.48	18%	2.14	0.84	160%	3.49	1.42	150%	12.0	9.86	22%
Ga	2.27	0.44	420%	2.58	0.36	620%	3.8	0.23	1600%	4.00	0.23	1600%	4.69	0.46	920%

10. táblázat: A higításos "A" eljárás standard addícióval és a roncsolásos "B" eljárás közötti különbségek

	etd add	foltárt		etd add	foltárt		etd add	foltárt		etd add	foltárt		etd add	foltárt	
-										Siu auu			siu auu		
konc.	BB_Tra_	BB_Tra	eltérés	BB_Mus_	BB_Mus	eltérés	Som_JF_	Som_JF	eltérés	Som_R_	Som_R	eltérés	Aszu_std	Aszu_"	eltérés
(ng/g)	std_add	_"B"	ciures	std_add	_"B"	ciures	std_add	_"B"	citeres	std_add	_"B"	citer es	_add	B"	citeres
Ba	114	118	3.5%	99.5	101	1.5%	51.8	50.9	1.8%	62.1	64.3	3.5%	199	203	2.0%
Cu	115	117	1.7%	101	103	2.0%	118	112	5.4%	97.2	94.6	2.7%	135	129	4.7%
Rb	798	834	4.5%	645	668	3.6%	885	896	1.2%	964	998	3.5%	1180	1230	4.2%
Sr	610	641	5.1%	578	593	2.6%	375	384	2.4%	412	420	1.9%	1150	1220	6.1%
В	6950	5450	28%	5920	4820	23%	4480	4200	6.7%	3250	3200	1.6%	21300	13800	54%
Mg	95100	107000	13%	98400	112000	14%	278000	310000	12%	84500	92900	10%	218000	247000	13%
Cd	0.41	0.43	4.7%	0.3	0.33	10%	0.95	0.87	9.2%	2.34	2.16	8%	0.52	0.58	12%
TI	0.25	0.22	14%	0.21	0.22	4.8%	0.12	0.11	9.1%	0.16	0.14	14.3%	0.43	0.4	7.5%
Pb	25.9	24.9	4.0%	20.4	19.2	6.3%	15.8	14.9	6.0%	16.9	15.8	7%	56.5	51	11%
U	0.7	0.79	13%	0.68	0.64	6.3%	0.08	0.07	14%	0.2	0.18	11%	0.76	0.71	7.0%
Ca	338000	385000	14%	312000	352000	13%	164000	183000	12%	226000	254000	12%	403000	438000	8.7%
Cr	32.4	20.4	59%	34.1	23.5	45%	88.5	67.5	31%	24.2	15.1	60%	52.2	41.3	26%
Mn	1080	1100	1.9%	1090	1130	3.7%	884	845	4.6%	975	942	3.5%	1890	1750	8.0%
Fe	2180	2130	2.3%	1910	1860	2.7%	10150	9230	10%	10900	11800	8.3%	8120	7650	6.1%
As	8.45	9.09	7.6%	7.89	8.09	2.5%	5.45	5.72	5.0%	4.54	5.01	10%	17.2	19.5	13%
Mo	5.52	5.32	3.8%	5.79	5.48	5.7%	0.97	0.84	15%	1.51	1.42	6.3%	10.5	9.86	6.5%
Ga	0.48	0.44	9.1%	0.39	0.36	8.3%	0.25	0.23	8.7%	0.25	0.23	8.7%	0.52	0.46	13%

A standard addíciós eredmények alacsonyabb relatív standard hibája a 14. ábrával magyarázható, mivel ebben az esetben – a roncsolásos mintaelőkészítéssel ellentétben – nem alkalmaztam hígítást, tehát a koncentációk jóval magasabbak voltak a számított kimutatási határoknál. Az eredmények arra utalnak, hogy bár a standard addíció képes korrigálni a spektrális zavarások és a mátrix hatás nagy részét, a mérést a 10 és 53 tömeg/töltésen (m/z) ismeretlen interferenciák zavarják. A közelmúltban végzett vizsgálatok hasonló interferenciákra hívják fel a figyelmet az ICP-MS mérésekkel kapcsolatban, amelyeket a cukortartalommal hoztak összefüggésbe [TAYLOR et al., 2005], és amelyek roncsolással kiküszöbölhetők, bár magasabb tömeg/töltés tartományban (m/z = 60). Ennek oka feltehetően az, hogy a plazma, valamint a készülék paramétereinek szisztematikus változtatásával megváltozott a zavaró hatások helye (m/z) és mértéke.

A következő lépés az eredmények kiértékelésében a <u>bepárlás hatásának vizsgálata</u> az eredményekre. Ennek a mintaelőkészítésnek a legnagyobb előnye az, hogy az etanol nagy része a bepárlás során elpárolog a mikrohullámú roncsolást megelőzően. Továbbá a minta mennyiségének csökkenésével a roncsoláshoz használt sav aránya a mintához viszonyítva nő, így lehetővé téve a hatékonyabb roncsolást. Az eredmény azonban azt mutatta, hogy a bepárlás nincs jelentős hatással a roncsolás hatékonyságára. A "B" eljárással összehasonlítva a mért elemek többségénél kevesebb, mint 5% az eredmények közti különbség. Az eltérések az As, Cd, Ni és Zn esetében látszottak csupán szignifikánsnak. Az arzénnél minden bor esetében veszteség (22-32%) tapasztalható, ami azt jelzi, hogy ez csak a bepárlással, illetve az illékonysággal van összefüggésben. A kadmium (26-45%) és a cink (16-21%) esetében a veszteség csak az édes és desszert boroknál figyelhető meg, ami a cukortartalonmal való korrelációra utal. A Ni esetében a Tramini és Muskotály (édes) borokban tapasztalható 30-55% veszteség, azonban az aszúban nem, tehát a veszteség itt már nincs összefüggésben a cukortartalommal [KATONA et al, 2012].

Az utolsó vizsgálat a <u>salétromsavas és hidrogén-peroxidos roncsolás</u> eredményeit érinti. Ez a savkeverék széles körben alkalmazott, amikor a cél a magas szerves tartalom mellett történő nyomelemmeghatározás [COETZEE és VANHAECKE, 2005]. Coetzee és Vanhaecke 1:10 salétromsav, hidrogén peroxid arányt javasolnak. A tapasztalataimat összefoglalva kijelenthető, hogy az eredményeket összevetve a "B" eljárással szignifikáns negatív eltérést tapasztaltam a ¹⁰B, ²⁷Al, ²⁰⁹Bi, ⁵⁷Fe és ⁶⁶Zn esetén. A bór és cink mennyiségének csökkenését csak a desszert borok esetén tapasztaltam, azonban az alumínium, bizmut és vas esetében nem volt összefüggés az elemek viselkedése és a borok típusa között. Továbbá minden bor esetében pozitív irányú eltérést figyeltem meg az ⁷⁵As, ¹¹¹Cd és a ⁹⁵Mo esetében. Ezekben az esetekben az erős oxidálószer alkalmazásának
következményeként létrejött molekulaionok (⁵⁹Co¹⁶O⁺, ⁴³Ca¹⁶O₂, ⁹⁵Mo¹⁶O⁺, ⁷⁹Br¹⁶O⁺) okozhatnak interferenciákat. Króm esetében is tapasztaltam pozitív eltérést, azonban csak az édes (34-40%) és desszert (27%) borok esetében, amely szintén félreértelmezhetetlen összefüggésben áll a cukortartalommal, ami azt is jelenti, hogy a hidrogén-peroxid oxidáló hatása nem volt elegendő a cukortartalom teljes elroncsolásához.

Összefoglalva az előzőeket elmondható, hogy a leggyorsabb, csak hígítást alkalmazó módszerrel kapott eredmények nem kielégítőek bróm és króm esetében. Még a standard addíciós módszer sem, mivel mátrixhoz kötődő spektrális interferencia jelenlétére utal. Hasonlóan találtam gyenge pontot a savkeverékkel történő feltárási folyamatban is a fent említett okokkal megegyezően a krómra vonatkoztatva, továbbá eltérést észleltem az Al, As, Bi, Cd, Fe, Mo és Zn eredményeiben is. A bepárlással kapcsolatos tapasztalatok azt mutatják, hogy semmi előny nem származik az alkalmazásával, sőt a módszer jelentősen lasabb, valamint veszteséget okozhat az As, Cd, Ni és Zn elemek mennyiségében. Végül a savkeveréket használó feltárásos módszert alkalmazva egyértelmű korrelációt fedeztem fel a minta cukortartalma és a B, Cr, valamint a Zn tartalma között. Következésképpen a tanulmány bebizonyította, hogy a borok cukortartalma befolyásolhatja a vizsgálat eredményét, ezért azt a mintaelőkészítésnél figyelembe kell venni. A fent említett okok miatt a további minták mintaelőkészítésére a "B" jelű eljárást, azaz a salétromsavas mikrohullámú roncsolást választottam, amely esetében nem alkalmaztunk előzetes bepárlást.

5.1.2 Valós minták elem-ujjlenyomatának meghatározása

A minták folyadék halmazállapotú, igazolt eredetű borminták ausztriai borvidékekről, amelyeket 2 ml-es üvegcsőben tároltam, mielőtt mérésükre került volna a sor.

5.1.2.1 Mintaelőkészítés

A bormintákat a fent említett, kísérleti úton kiválasztott módszer segítségével, mikrohullámú roncsolást alkalmazva roncsoltam nagyhatékonyságú mikrohullámú roncsoló berendezéssel. Tömegre 4 tizedes pontossággal bemért körülbelül 1 ml térfogatú bormintát helyeztem közvetlenül a teflon edénybe mindegyik mintából, amelyhez 2 ml koncentrált, nagytisztaságú salétromsavat adtam. Egy vak mintát (2% HNO₃ nagytisztaságú vízben) is roncsoltam minden sorozatban, 5 valódi minta mellett. A mikrohullámú roncsolás idő és hőmérséklet programja a 11. táblázatban olvasható. A roncsoláshoz használt edényeket minden roncsolás között kétszer, a minták roncsolásához használt programmal a mikrohullámú roncsolóban 3 ml nagytisztaságú salétromsav alkalmazásával tisztítottam.

Mivel a minták üvegedényben voltak hozzáférhetőek, ezért ugyanilyen edényekben 3 vakmintát készítettem az esetleges szennyeződések felderítése érdekében. Ezekbe az üvegekbe nagytisztaságú vizet, 1 %-os salétromsav oldatot, valamint a mátrix modellezésére 12 %-os etanol oldatot töltöttem, amelyek néhány hét állást követően a bormintákkal megegyező mintaelőkészítésen estek át.

A roncsolt mintákat a hűtés után 10 ml-es kémcsövekbe öntöttem, nagytisztaságú vízzel 5 gra egészítettem ki pontos tömegméréssel.

idő	teljesítmény
5 perc	250 W
5 perc	400 W
10 perc	600 W
5 perc	250 W

11. táblázat: A nagyhatékonyságú mikrohullámú roncsolás idő- és teljesítményprogramja

5.1.2.2 Többelemes analízis

A multielemes analízis fő célja a borminták földrajzi eredetének meghatározása elemujjlenyomat – a ritkaföldfémeket is beleértve – segítségével.

A mérés megvalósításához ELEMENT 2 típusú ICP-SF-MS készüléket alkalmaztam a 12. táblázatban közölt beállítási paraméterekkel. Egy hagyományos Scott ködkamrát egy conical típusú porlasztóval kombinálva használtam a mintabevitelhez.

A mikrohullámú roncsolóval elroncsolt mintákat Milli-Q vízzel hígítottam 1:4 arányban. Számos roncsolási vak mintát is megvizsgáltam a mintaelőkészítés során esetlegesen bekövetkezett kontaminációk feltérképezése érdekében. A teflon roncsoló edények tisztítását is méréssel ellenőriztem, amiből arra következtettem, hogy 1 tisztítási (roncsolási) lépés elegendő a roncsoló edények újbóli használata előtt.

12. táblázat: Az Element 2 beállítási	paraméterei borminták	multielemes v	vizsgálatának cé	eljára
---------------------------------------	-----------------------	---------------	------------------	--------

porlasztógáz áramlási sebesség	0,95 ml min ⁻¹
segédgáz áramlási sebesség	0,90 ml min ⁻¹
plazmagáz áramlási sebesség	15,65 ml min ⁻¹
lencse tulajdonságok	10^{6} cps 1 ng g ⁻¹ ródium esetén (LR), 50000 (MR), 8000 (HR)
jelintenzitás	maximumnál az oxid arány 5%
mintaáramlási sebesség	$\sim 1 \text{ ml perc}^{-1}$
sample kónusz	nikkel
skimmer kónusz	nikkel
porlasztó	conical porlasztó
ködkamra	Scott
mérés	dual mode
ismétlések száma	3
adatgyűjtés száma	3
mérési idő	~ 6 min 30 s
öblítési idő	kalibráció (60 s), minták (60 s)
mosási idő	kalibráció (0 s), minták (120 s)

Az ICP-MS mérés előtt egy hozzávetőlegesen 1 ng g⁻¹ koncentrációjú modell oldatot készítettem abból a célból, hogy megtaláljam az optimális mérési módszert, az alkalmazott felbontásokat és megállapíthassam a különböző elemekre való kiterjesztésének lehetőségeit. Erre a célra Merck IV multielemes (Ag, Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl, Zn), számos monoelemes (As, Cs, Mo, Pd, Pt, Rb, Ru, Sb, Ti, U, Zr) és egy ritkaföldfémes multielemes standardot használtam fel. Belső standardként 1 ng g⁻¹ végső koncentrációban ródiumot alkalmaztam, amelyet a mérés előtt adtam a mintákhoz. A mért elemeket, illetve izotópokat, valamint a mérésükhöz alkalmazott felbontásokat a 13. táblázat foglalja magában.

izotóp	felbontás	izotóp	felbontás	izotóp	Felbontás
^{10}B	ALACSONY			¹¹ B	ALACSONY
⁸⁵ Rb	ALACSONY				
⁸⁸ Sr	ALACSONY				
⁸⁹ Y	ALACSONY				
⁹⁰ Zr	ALACSONY			⁹¹ Zr	ALACSONY
⁹⁵ Mo	ALACSONY, NAGY			⁹⁷ Mo	ALACSONY
¹⁰⁷ Ag	ALACSONY			¹⁰⁹ Ag	ALACSONY
¹¹² Cd	ALACSONY			¹¹⁴ Cd	ALACSONY
¹³³ Cs	ALACSONY				
¹³⁷ Ba	ALACSONY			¹³⁸ Ba	ALACSONY
²⁰³ T1	ALACSONY			²⁰⁵ Tl	ALACSONY
²⁰⁶ Pb	ALACSONY			²⁰⁸ Pb	ALACSONY
²⁰⁹ Bi	ALACSONY				
²³² Th	ALACSONY				
²³⁸ U	ALACSONY				

13. táblázat: Mért izotópok és alkalmazott felbontások (Element 2)

¹⁰³ Rh	ALACSONY				
¹⁴⁰ Ce	ALACSONY, NAGY				
¹³⁹ La	ALACSONY, NAGY				
²⁴ Mg	KÖZEPES	²⁵ Mg	KÖZEPES	²⁶ Mg	KÖZEPES
⁴² Ca	KÖZEPES			⁴⁴ Ca	KÖZEPES, NAGY
⁴⁵ Sc	KÖZEPES				
⁴⁷ Ti	NAGY			⁴⁸ Ti	KÖZEPES, NAGY
⁵² Cr	KÖZEPES			⁵³ Cr	KÖZEPES
⁵⁵ Mn	KÖZEPES				
⁵⁶ Fe	KÖZEPES			⁵⁷ Fe	KÖZEPES
⁵⁹ Co	KÖZEPES				
⁵⁸ Ni	KÖZEPES			⁶⁰ Ni	KÖZEPES
⁶³ Cu	KÖZEPES			⁶⁵ Cu	KÖZEPES
⁶⁴ Zn	KÖZEPES			⁶⁶ Zn	KÖZEPES
⁶⁹ Ga	KÖZEPES			⁷¹ Ga	KÖZEPES
⁹⁹ Ru	KÖZEPES			¹⁰¹ Ru	KÖZEPES
105 Pd	KÖZEPES				
¹¹⁵ In	KÖZEPES				
¹⁴³ Nd	KÖZEPES			¹⁴⁶ Nd	KÖZEPES
¹⁴⁷ Sm	KÖZEPES			¹⁴⁹ Sm	KÖZEPES
¹⁵⁵ Gd	KÖZEPES			¹⁵⁷ Gd	KÖZEPES
¹⁶¹ Dy	KÖZEPES			¹⁶² Dy	KÖZEPES
¹⁶⁶ Er	KÖZEPES	¹⁶⁶ Er	KÖZEPES	¹⁶⁸ Er	KÖZEPES
¹⁷¹ Yb	KÖZEPES	¹⁷² Yb	KÖZEPES	¹⁷³ Yb	KÖZEPES
¹⁹⁵ Pt	KÖZEPES				
²⁷ Al	NAGY				
⁷⁵ As	NAGY				
141 Pr	NAGY				
¹⁵¹ Eu	NAGY				
¹⁶⁵ Ho	NAGY				
¹⁷⁵ Lu	NAGY				

A mérés során 6 pontos kalibrációt alkalmaztam 1 ng g⁻¹ Rh belső standard jelenlétében. A kalibrációs standardok koncentrációtartománya a multielemes standardok esetében 0,1 ng g⁻¹ és 200 ng g⁻¹ között, a monoelemes standardok esetén 0,01 ng g⁻¹ és 20 ng g⁻¹ között, a ritkaföldfémek esetében 0,001 ng g⁻¹ és 2 ng g⁻¹ között mozgott. Vak értékként 1% (w/w) HNO₃ oldatot választottam. A műszer szoftverébe épített lineáris kalibráció segítségével történő koncentrációk kiszámítása során az intenzitásokat a vak értékkel korrigáltam, belső standarként ¹⁰³Rh-ot használtam. A kalibrációs egyenest minden elem esetén külön megvizsgáltam és a legjobb regressziós illesztést választottam ki. Minőségbiztosítási kontrollként az 50 ng g⁻¹ koncentrációjú minden mérendő elemet tartalmazó standard oldatot használtam, amelyet rendszeresen visszamértem, minden 5. minta mérését követően.

A bor esetében sajnos nem állt rendelkezésünkre hitelesített referencia minta, de az eredmények megbízhatóságáról az előzőleg 2 különböző működési elvű ICP-MS használatával

validált (normál mérés, spike-olás, azaz adalékolás és standard addíciós módszer alkalmazása) módszer gondoskodott.

5.1.2.3 Analitikai teljesítményjellemzők meghatározása

A LOD (kimutatási határ), valamint a BEC (háttér ekvivalens koncentráció) számolása az alábbiak szerint történik:

LOD (kimutatási határ):

$$3 * \sigma_{\text{blank}} * c_{\text{calstd}} / (I_{\text{calstd}} - I_{\text{blank}})$$
(7)

BEC (háttér ekvivalens koncentráció):

$$(I_{blank} * c_{calstd} / (I_{calstd} - I_{blank})$$
(8)

ahol:

σ_{blank}	a vak értékek szórása
c _{calstd}	a kalibrációs standard koncentrációja
Icalstd	a kalibrációs standardra kapott intenzitás
I _{blank}	a vak mintára kapott intenzitás

A borminták mérése során az egyes elemekre kapott kimutatási határ, valamint háttér ekvivalens koncentráció alakulását a 14. táblázat tartalmazza.

elemek	LOD (pg g ⁻¹)	BEC (pg g ⁻¹)
В	490	1900
Rb	5,4	59
Sr	21	190
Υ	42	220
Zr	41	50
Мо	140	140
Ag	11	22
Cd	5,6	9,8
Cs	1,6	35
Ва	5,8	110
TI	3,7	3,7
Pb	1,3	29
Bi	3,2	4,3
Th	48	82
U	2,3	4,6
Се	21	97
La	4,9	49
Mg	270	7300
Са	3300	54000

14. táblázat: A borminta vizsgálatához használt módszer LOD és BEC értékei

Ті	42	390
Cr	3,1	15
Mn	10	270
Fe	26	490
Со	1,6	12
Ni	6,0	460
Cu	9,3	26
Zn	400	7500
Ga	2,7	15
Ru	3,2	3,0
Pd	49	84
In	2,1	5,8
Sb	7,8	18
Nd	140	59
Sm	24	9,5
Gd	140	260
Tb	6,7	4,7
Dy	29	32
Er	13	5,2
Yb	25	4,1
Pt	2,4	4,7
AI	38	1300
As	10	11
Eu	58	11
Но	29	5,7
Lu	14	2,3
Sc	63	95

Az eredményekből jól látszik, hogy a mért elemek megfelelően alacsony kimutatási határral rendelkeznek, mivel a Mg, B, Ca és Zn kivételével az összes érték 0,15 ng g⁻¹ alatti, számos elem esetében nem haladja meg a 10 pg g⁻¹-ot.

A kalciumot, a bórt, valamint az alumíniumot kihagytam a további vizsgálatokból, mivel a magas háttér miatt a kalibrációs egyenes nagyban eltért a lineáristól.

A mikrohullámú roncsolás vakmintájának eredménye azt mutatta, hogy abban a mérendő elemek többsége kimutatási határ alatt van jelen. Ez alól kivételt képez a vas, a magnézium, a titán és a cink, melyek akár 0,1-3 ng g⁻¹, a réz, mely 0,05-0,5 ng g⁻¹ közti, valamint az itterbium, a kadmium, a bárium és a króm, amelyek maximum 0,01 ng g⁻¹ koncentrációban vannak jelen.

Az arzén mérése érdekes eredményre vezetett (15. ábra), mivel bár a mikrohullámú berendezésben feltárt vakmintákban koncentrációja kimutatási határ alatt van, az üvegedényekből származó vakmintákra kapott arzéntartalom a vízzel és az 1 %-os salétromsavval töltött edények esetében megegyeznek, sőt meg is haladják a mintákban mért arzén mennyiségét. A 12 %-os etanollal töltött üvegcsőben is 10-17%-a volt a mintákban mért arzéntartalomnak. Az Európai Únió 50 ng g⁻¹ határértéket határozott meg az élelmiszerek maximális As tartalmára, amihez a minták

többsége igen közel került (35-46 ng g⁻¹). Mivel a bormintákban megtalálható arzén az előbb leírtak miatt nem egyértelműen a borból származik, úgy döntöttem, hogy a további vizsgálatokból az arzént is kihagyom.

15. ábra: A minták arzéntartalmának alakulása

5.1.2.4 A borok elemösszetétél mérésének eredménye

A mulielem analízis elsődleges célja, a különböző területről származó borminták megkülönböztetése. Az elemzés eredményeinek táblázatos ábrázolásának egy része a 2. számú mellékletben található. A teljes lista közlésétől eltekintek, mivel a vizsgálatok során számos elem analízisét végeztem el nagyszámú mintában (97 db), amelynek ábrázolása nem lenne áttekinthető. Több elem (pl: Mo, Cd, Ag, Tl, Bi, U, Th, Ru, Pd, In, Sm, Tb, Pt, Ho, Lu) kimutatási határ alatt, illetve a kimutatási határ közelében detektálható szinte mindegyik mintában, ami a rendelkezésre álló kevés mintamennyiség, illetve a nagy hígítás következménye is lehet. A mintákban a ritkaföldfémek igen csekély, a többi elem jól mérhető mennyiségben vannak jelen, ezen elemek segítségével elvégezhető a statisztikai kiértékelés. Az egyes mintákra kapott eredményeket statisztikai módszerrel, úgynevezett kanonikus diszkriminancia analízis segítségével SPSS szoftvert alkalmazva értékeltem ki. Amint a 16. ábrán is látható, az egyes borvidékekről származó minták elkülönülése nem tökéletes, mivel azok nagyon közel helyezkednek el egymáshoz képest. Néhányuk egyértelműen megkülönböztethető, azonban egyes esetekben a matematikai statisztika módszer nem mutat szignifikáns eltérést.

Kanonikus diszkriminancia

Ahogy az ábrából is látszik, elemtartalom meghatározás alapján mindössze 1 mintát lehet szignifikánsan elkülöníteni az összes többitől, mégpedig a Thermenregionból származó bormintát. A többi, eltérő területről származó mintákon belül is lehet különbséget tenni, azonban nem mindegyik között. Az ábrán például jól kivehető, hogy a 12-es számmal jelölt, Weinviertel térségből származó minta jó elkülöníthető az 5-ös számmal jelölt Neusiedlersee területről, a 3-as számmal jelölt Kamptal területről, a 10-es számmal jelölt Traisental területről, vagy éppen a 4-es számmal jelölt Mittelburgenland területről származó mintáktól, viszont a 4-es, 5-ös és 10-es minták közötti különbség nem igazolható. A 6-os számmal jelölt, Neusiedlersee Hügelland területről származó minta is szignifikánsan elkülönül Kamtalból (3), Carnuntumból (1), vagy Weststeiermarkból (11) származó mintáktól.

Mindezek következtében megállapítható, hogy az egyes bortermő területek az ott előállított borok többelemes analízisen alapuló elkülönítésére tett kísérlet nem volt teljesen sikertelen, azonban a kapott eredmények nem minden esetben teljesen egyértelműek. Ennek egyik oka az lehet, hogy a vizsgálat tárgyát képező borok termőterületei egymáshoz igen közel, többször mindössze csak néhány 10 km távolságra esnek egymáshoz. Pontosabb eredmény várható, ha a vizsgált borok egymástól jóval távolabbi borvidékekről származnak, valamint, ha a többelemes analízist kombináljuk izotóparány meghatározással.

5.1.3 ⁸⁷Sr/⁸⁶Sr izotóparány

Az előző pontban említett okok miatt további célom élelmiszerekből és környezeti mintákból MC-ICP-MS segítségével stroncium izotóparány mérésére alkalmas módszer kidolgozása és annak vizsgálata, hogy ez a technika alkalmas-e a termőhelyek elkülönítésére.

Az alkalmazott készülék egy NU Plasma típusú készülék volt, amelyet PFA porlasztóval alkalmaztam. Izotóparány mérése során a beporlasztott mintát a vizes mátrixból származó interferenciák csökkentése érdekében egy membrán deszolvatáló egységen vezettem keresztül.

5.1.3.1 Sr/Rb elválasztás

A mérés előfeltétele egy minimális izobár és molekuláris interferenciát tartalmazó tiszta stroncium frakció elérése. A ⁸⁷Sr izotóp legfőbb interferenciája a ⁸⁷Rb izotóp. Ezért Rb/Sr elválasztást alkalmaztam az interferenciát okozó izotóp mennyiségének, illetve hatásának minimalizálása érdekében. Végül a ⁸⁷Sr jelintenzitását matematikailag korrigáltam a jelenlevő ⁸⁷Rb zavarásától a szintén mért ⁸⁵Rb izotópra kapott jelintenzitás alapján (lásd 2.1.3 fejezet). A borminták rubídium és stroncium koncentrációját előzetesen ICP-SF-MS készülék segítségével határoztam meg, melynek eredményeként arra jutottam, hogy a mikrohullámú roncsoláson átesett bormintákat az elválasztás előtt nem hígítom tovább, mivel stroncium koncentrációjuk igen alacsonynak bizonyult.

Az elválasztás a Sr-specifikus gyanta kondicionálásával kezdődött, melynek első lépése a kb. 5-10 g por alakú gyanta 100 ml-es mintatartóba helyezése, amelyhez kb. 50 ml 1 $^{w}/_{w}$ % HNO₃ oldatot adtam és a száraz gyantát legalább 30 percen keresztül, de optimális esetben egy éjszakán át áztattam. Ezután a gyanta készen áll a használatra.

A nagy mintaszámra használható off-line Rb/Sr elválasztás optimalizálása után mérésekkel bizonyosodtam meg róla, hogy a mikrohullámú roncsolt minták esetében az elválasztási művelet elvégzése után nem maradt Sr a gyantán. Emellett az eredményekből látszik az is, hogy az alkalmazott mosási lépés elegendő a Rb mennyiségének eltávolításához. Továbbá a gyanta használat utáni nagytisztaságú vízzel történő mosása, majd ismételt felhasználása során nem volt észlelhető memóriahatás még akkor sem, mikor a gyantát több mint 4-szer használtuk. A módszer vakmintája Sr-ra nézve 0,04 ng g⁻¹ alatti, Rb-ra nézve kimutatási határ (0,005 ng g⁻¹) alatti koncentrációkat tartalmazott.

A minták végleges savkoncentrációja a roncsolást követően 6 mol l⁻¹ volt. A módszer a tisztítási lépéssel kezdődik. A kémcsöveket először $10^{\text{ w}}/\text{w} \%$ HNO₃ -ban, majd $1^{\text{ w}}/\text{w} \%$ HNO₃ -ban

áztattam, majd nagytisztaságú vízzel mostam. A 10 μ m-es filtereket 5 percig tisztítottam ultrahangos fürdőben, majd ezt követően 5 ^w/_w% HNO₃ oldatban tároltam őket. Elválasztás előtt az oszlopokba helyeztem.

Az elválasztási eljárás az előkészített oszlopokkal a következőképpen zajlott:

- Az oszlop mosása 2 ml nagytisztaságú vízzel
- 0,5 ml gyanta oszlopra helyezése
- A gyanta mosása 4x 0,5 ml nagytisztaságú vízzel
- 6x 0,5ml 3 mol l⁻¹ HNO₃ kondicionálás
- terhelés 2 ml minta oldattal
- $12x 0,5 \text{ ml } 6 \text{ mol } 1^{-1} \text{ HNO}_3 \text{mosási lépés}$
- 5x 0,5ml nagytisztaságú víz elúció

5.1.3.1 A Sr izotóparány mérése

A ⁸⁷Sr/⁸⁶Sr izotóparány mérésére a deszolvatáló porlasztó rendszerrel szerelt MC-ICP-MS tökéletesen alkalmas, amely beállítási paramétereit a 15. táblázat tartalmazza. Az elválasztáson átesett bor eluátumát (2,5 ml minta mennyiség) közvetlenül, további hígítás nélkül mértem, mivel az elválasztás után a mintában jelenlevő Sr koncentráció igen alacsony volt (~1 ng g⁻¹ és 25 ng g⁻¹ közötti). Minőségbiztosítás céljára 5 ng g⁻¹ Sr koncentrációjú SRM-987, Sr izotópokra hitelesített referencia anyagot használtam.

RF feszültség	1300 W
segédgáz áramlási sebessége	0.75 ml min ⁻¹
plazmagáz áramlási sebessége	13.0 ml min ⁻¹
lencse beállítások	az optimális érzékenységre és a csúcs alakjához optimalizálva
mintaáramlási sebesség	$40 - 100 \mu l \min^{-1}$
sample kónusz	nikkel
skimmer kónusz	nikkel
porlasztó	PFA-porlasztó
mintavételi mód	10 mérés 6 blokkban
mérési idő	~ 15 perc
tömeg analizátor nyomása	$>10^{-8}$ bar
detektáló rendszer	12 Faraday kollektor
háttér/alapvonal meghatározás	HNO ₃ (1% w/w)
mosási idő	3 perc
DSN deszolvatáló:	
porlasztó nyomás	30 psi
DSN forrógáz áramlási sebesség	$0.7 - 0.91 \mathrm{min}^{-1}$
DSN membrángáz áramlási seb.	4 l min ⁻¹
ködkamra hőmérséklete	112°C
DSN membrán hőmérséklet	122°C

15. táblázat: A NU Plasma készülék működési paraméterei Sr izotóparány mérése esetén

A stroncium mérésnél alkalmazott vak korrekciót a NU Plasma készülék szoftverébe beépített "zéró-mérés" módszerrel hajtottam végre. A mágnes beáll az fő tömegre (m/z = 86) és eközben minden tömeg (88, 87, 86, 85, 84 és 83) háttérjelét (1 ^w/_w % HNO₃) 100 másodpercig méri (900 másodperc tökéletesíti a statisztikai kiértékelést). Az így kapott átlagértéket kivonja a következő minták eredményeiből. Az SRM 987 Sr izotóparány vizsgálatához használt referencia anyaghoz és a mintákhoz tartozó vak értékét 1 ^w/_w % HNO₃ adja.

Két különböző Faraday kollektor beállítás áll rendelkezésre, amelyeket a 16. és 17. táblázat foglal magában. Ezek a mért tömegeken kívül a lehetséges interferenciákat is tartalmazzák.

	L5	L4	L3	L2	L1	Ax	H1	Н2	Н3	H4	Н5	H6
tömeg	82	83	84		85	86		87		88		
figyelt	⁸² Kr	⁸³ Kr	⁸⁴ Sr		⁸⁵ Rb	⁸⁶ Sr		⁸⁷ Sr		⁸⁸ Sr		
izotóp	11,6%	11,5%	0,56%		72,2%	9,86%		7%		82,6%		
Interfe-			⁸⁴ Kr			⁸⁶ Kr		⁸⁷ Rb				
rencia			57,0%			17,3%		27,8%				

16. táblázat: Standard detektor blokk: figyelt izotópok, interferenciák, természetes előfordulás (%)

Az U-Pb detektor blokkok esetében a 84, 83 és 82-es tömegeket nem mértem. Így a kripton detektálásánál bekövetkező argon zavarás meghatározható az SRM 987 vak értékének mérésével.

|--|

	L5	L4	L3	L2	L1	Ax	H1	H2	Н3	H4	Н5	H6
tömeg					85	86		87		88		
figyelt					⁸⁵ Rb	⁸⁶ Sr		⁸⁷ Sr		⁸⁸ Sr		
izotóp					72,2%	9,86%		7%		82,6%		
Interfe-						⁸⁶ Kr		⁸⁷ Rb				
rencia						17,3%		27,8%				

5.1.3.2 Borminták Sr izotóparánya

A 17. ábrán a 2003-2007-es évekből, 2 osztrák borvidékről származó borminták ⁸⁷Sr/⁸⁶Sr izotóparányának összehasonlítása látható. A mért izotóparányok átlagos szórása 0,009%. Az izotóparányok eredményeinek alakulása alátámasztja azt a hipotézist, miszerint a stroncium izotópok nem mutatnak jelentősebb évenkénti változást. Ezt az állításomat statisztikailag is alátámasztottam, amelyhez tartozó számításokat a 3. számú melléklet tartalmazza. Feltételezve azt, hogy a különböző évekből származó minták Sr izotóparányai azonos szórásúak és normális eloszlást követnek egytényezős varianciaanalízist használtam a csoportátlagok összehasonlítására. Mivel mindkét esetben a számított "F" érték jóval a kritikus "F" érték alatt van, valamint a "p" érték is igen magas, így elfogadtam a nullhipotézist, azaz a Sr izotóparányok évek alatti változása az egyes területeken nem szignifikáns. Az ábrán azonban az is látszik, hogy a két különböző területről származó minták izotóparánya igen közel áll egymáshoz, így t-próbával igazoltam, hogy az alapsokaság átlagai P=5% szignifikancia szinten különböznek-e. A számításokat a 4. számú melléklet tartalmazza.

17. ábra: A stroncium izotópösszetétel időszakos változásai bormintákban

Első lépésben F-próba alkalmazásával ellenőriztem, hogy a 2 mintában az izotóparányok szórása azonosnak tekinthető-e, mivel ettől függően eltérő próbák alkalmasak az alapsokaság átlagának összehasonlítására. Mivel a próba során számolt "F" érték a kritikus "F" értéknél nagyobb, így az alaphipotézisemet, miszerint a 2 csoport szórása megegyezik, elvetettem. Ezt követően a nem egyenlő szórásnégyzeteknél alkalmazható kétmintás t-próbát alkalmaztam a csoportátlagok összehasonlítására. Mivel a számolt "t" érték nagyobb, mint a kritikus "t" érték, így az alaphipotézist elvetettem, azaz a két csoport átlaga nem azonos, a két területről származó minták Sr izotóparánya szignifikánsan eltér egymástól.

Az egyes régiókból származó borminták ⁸⁷Sr/⁸⁶Sr izotóparányainak alakulása a 18. táblázatban látható, azonban az eredményeket a jobb átláthatóság érdekében ábrázoltam is (18. ábra). Az ábrán igen jól látható, hogy az egymáshoz földrajzi értelemben közel álló borvidékek Sr izotóparányai is egymáshoz igen közeli értékeket mutatnak. Néhány kivételtől eltekintve a minták nem különböztethetőek meg egymástól. Megkíséreltem a Sr izotóparány függvényében egy nyomelemet (pl. Sr-ot) ábrázolni, de ahogy azt éppen a Sr esetében a 19. táblázat is mutatja, a koncentrációk igen széles tartományban vannak jelen az egyes régiókból származó mintákban, aminek következtében a Sr izotóparánynál megfigyeltekkel megegyező módon átfednek egymással. Ezért ezt az ábrázolást nem alkalmaztam, a kiértékelése során csak az stroncium izotóparányra kapott eredményeket vettem figyelembe.

18. táblázat: Különböző borvidékekről származó borminták mért ⁸⁷Sr/⁸⁶Sr izotóparánya

Régiók	⁸⁷ Sr/ ⁸⁶ Sr izotóparány	⁸⁷ Sr/ ⁸⁶ Sr középérték	2 σ [%]
Carnuntum	0,709728 - 0,711124	0,710259	0,116
Donauland	0,709933 - 0,710489	0,710159	0.101
Kamptal	0.710759 - 0.711596	0.711202	0.026
Mittelburgenland	0,710118 - 0,712966	0,711585	0.215
Neusiedlersee	0,708563 - 0,710465	0,709505	0.097
Neusiedlersee-Hügelland	0.709502 - 0.710670	0.710105	0.156
Südoststeiermark	0.706398 - 0.707452	0,706925	0,108
Südsteiermark	0,709432 - 0,709869	0,709581	0,058
Thermenregion	0,708858 - 0,709188	0,709054	0,204
Traisental	0.709476 - 0.709779	0,709627	0,076
Weststeiermark	0,711069 - 0,713046	0,711982	0,117
Weinviertel	0,709879 - 0,712206	0,710720	0,141

19. táblázat: Az egyes borvidékekről származó minták Sr koncentrációi

1													-						-	1	1	
minta származási	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
hely / darabszám									S	r kon	cent	ráció	(ng/g	;)								
Wienviertel	550	320	180	450	160	130	420	160	170	180	200	350	180	310	270	250	370	570	130	220	160	240
Mittelburgenland	840	300	320	990	190	230	460	240	230	250	520	460	170	220	140	230	200	200	150	590		
Carnuntum	170	330	220	280	190	380	290	130	350													
Neusiedlersee	220	210	350	680	370	220	670	170														
Neusiedlersee HL	150	450	150	240	160	360	210	350														
Weststeiermark	220	330	150	170	290	160	450															
Thermenregion	630	280	230	200	240	350																
Südsteiermark	190	250	150	220	130																	
Kamptal	420	370	280	240																		
Donauland	200	320	170																			
Südoststeiermark	240	160																				
Traisental	400	290																				

18. ábra: A borminták ⁸⁷Sr/⁸⁶Sr izotóparányának a földrajzi eredet meghatározás figyelembevételével történő elemzése (matematikai módszerként az összegzett eloszlás funkciót használtuk)

A borminták Sr izotóparányaira kapott eredmények alapján megállapítható, hogy szintén 1 terület van, Südoststeiermark, amely szignifikánsan elkülönül az összes többitől, azonban ez a terület nem egyezik meg a többelemes analízis kiértékelése során azonosított területtel. Ebből arra lehet következtetni, hogy az izotóparány vizsgálat és a többelemes analízis egymást kiegészítő technikák, amelyek együttes alkalmazása során még a földrajzilag egymáshoz közel fekvő területek is nagyobb biztonsággal különíthetőek el.

A többelemes analízis során a Weinviertel területről származó minták a Sr izotóparányuk segítségével még mindig elkülönülnek a Neusiedlersee területről és a Traisental területről származó mintáktól, továbbá ezt a kiértékelést használva még a Thermenregion területről, és Südsteiermark területről is. Azonban itt már nem különíthetőek el a Kamptal területről és Mittelburgenland területről származó mintáktól.

A Neusiedlersee Hügelland borvidékről származó minták Sr izotóparányuk alapján még mindig megkülönböztethetőek a Kamptal és Weststeiermark területéről származó mintáktól, továbbá Sr izotóparányuk alapján elkülöníthetőek a Südsteiermark területről, a Traisental területről és a Thermenrégionból származó mintáktól is. A Carnunutmból származó minták bár Sr izotóparányuk alapján nem különböznek a fent nevezett területről származó mintáktól szignifikánsan, többelemes analízisük során viszont megkülönböztethetőek, amely tény szintén a két technika egymás mellett történő alkalmazásának előnyeit, illetve fontosságát hangsúlyozza. Ezt követően a módszert kiterjesztettem szilárd halmazállapotú minták vizsgálatára is.

5.2 Az őrölt fűszerpaprika eredetének meghatározása

A méréshez szilárd halmazállapotú, 20 paprikamintát használtunk fel, egyenként 200 g mennyiségben magyarországi termőterületről, valamint kereskedelemből hozzáférhető további 10 különböző országokból származó paprikamintát.

5.2.1 Mintaelőkészítési eljárás

A mikrohullámú roncsolást megelőzően a hiteles, friss, szegedi régióból származó paprika mintákat 24 órán keresztül szárító berendezésben 60°C-on szárítottam, porítottam, majd homogenizáltam.

A mintaelőkészítési eljárás alapja a bormintáknál ismertetett módszer volt, azzal az eltéréssel, hogy ennél a módszernél már hőmérsékletprogram is elérhetővé vált, valamint természetesen a bemért minta és a sav mennyisége eltért. 0,5 g paprikát roncsoltam el 4 ml cc. HNO₃ segítségével mikrohullámú berendezésben, majd nagytisztaságú vízzel kb. 20 g-ra egészítettem ki. Az idő- és hőmérsékletprogramot a 20. táblázat tartalmazza. Egy vak oldószermintát is roncsoltam minden sorozatban, 5 valódi minta mellett. A roncsolási sorozatok között minden esetben 3 ml cc. HNO₃-val történő tisztítási lépést iktattam be, amelyet szintén mikrohullámú roncsolóban, a mintákkal megegyező programot alkalmazva végeztem el. Ezt a tisztítási lépést is vizsgáltam az utána következő mosó oldat mérésével. Minden paprika mintából 2-2 párhuzamost roncsoltam.

20. táblázat: A mikrohullámú roncsolás idő-, teljesítmény- és hőmérsékletprogramja

idő	teljesítmény	hőmérséklet
5 perc	300 W	190°C
20 perc	600 W	190°C

5.2.2 ICP-MS analízis

A mérés megvalósítására ICP-SF-MS készüléket alkalmaztam a 21. táblázatban közölt beállítási paraméterekkel. A minta porlasztásához hagyományos Scott típusú ködkamrát használtam PFA porlasztóval kombinálva. A mikrohullámú roncsolóval elroncsolt mintákat és hitelesített referenciaanyagokat nagytisztaságú vízzel hígítottam 1:5 arányban. Számos roncsolási vak mintát is megmértem a mintaelőkészítés során esetlegesen bekövetkezett kontaminációk feltérképezése érdekében. A teflon bombák tisztítását is megvizsgáltam, amiből arra következtettem, hogy 1 tisztítási roncsolási lépés elegendő a bombák újbóli használata előtt. A mérés során alkalmazott módszer teljes mértékben megegyezik a boroknál kifejlesztettel, amelyet az 5.1.2.1 pontban ismertettem.

porlasztógáz áramlási sebesség	0,85 ml min ⁻¹
segédgáz áramlási sebesség	0,90 ml min ⁻¹
plazmagáz áramlási sebesség	15,80 ml min ⁻¹
lencse tulajdonságok	$9x10^{5}$ cps 1 ng g ⁻¹ ródium esetén (LR), 30000 (MR), 6000 (HR)
jelintenzitás	maximumnál az oxid arány 7 % alatti
mintaáramlási sebesség	$\sim 100 \ \mu l \ perc^{-1}$ (önfelszívó mód)
sample kónusz	nikkel
skimmer kónusz	nikkel
porlasztó	PFA ST porlasztó
ködkamra	Scott
mérés	dual mode
futások száma	3
vizsgálatok száma	3
mérési idő	~ 6 min 30 s
öblítési idő	kalibráció (60 s), minták (60 s)
mosási idő	kalibráció (0 s), minták (120 s)

21. táblázat: Az Element 2 beállítási paraméterei paprikaminták multielemes vizsgálat céljára

A mikrohullámú roncsolás validálása a visszanyerési arány meghatározásával történt, amihez két különböző hitelesített referencia minta, BCR 679 (porított fejes káposzta) és NIST 1573a (porított paradicsom levél) is rendelkezésemre állt. A BCR 679 a benne található kadmium, réz, vas, mangán, molibdén, nikkel, stroncium, cink, antimon, higany és tallium koncentrációra hitelesített. A NIST 1573a referenci minta pedig alumíniumra, antimonra, arzénre, borra, kadmiumra, krómra, kobaltra, rézre, vasra, mangánra, higanyra, nikkelra, rubídiumra, szelénre, nátriumra, vanádiumra és cinkre hitelesített. A minta-előkészítési eljárás a paprikáéval megegyező módon történt. A validálás eredményét a 22. táblázat tartalmazza

A validálási eljárás másik lehetősége az adalékolás, azaz az úgynevezett "spike"-olás. A tizedik előállítási lépésből származó paprika mintákat adalékoltam még a mikrohullámú roncsolás előtt már előre elkészített oldattal, amely az összes analizált elemet tartalmazta. A spike-olt elemek körülbelüli koncentrációja a paprika mintára kapott eredmény átlagának duplája. Az adalékolásos validálásra kapott eredményeket a 23. táblázat foglalja magában. A ritkaföldfémekre használt validálási eljárás a standard addíció volt 10 ng g⁻¹ és 40 ng g⁻¹ közötti koncentrációtartományban.

		BCR 67	79	NIST 1573a					
elem	konc. CRM (mg kg ⁻¹)	Bizony- talanság (mg kg ⁻¹)	Vissza- nyerés (%)	RSD (%)	konc. CRM (mg kg ⁻¹⁾	Bizony- talanság (mg kg ⁻¹)	Vissza- nyerés (%)	RSD (%)	
Al					598	12	88,6	2,0	
As					0,11	0,004	90,9	3,6	
В					33,3	0,7	91,0	2,7	
Ba	10,3	0,6	108	2,8					
Ca	7768	655	96,6	4,1					
Cd	1,66	0,07	103	4,2	1,52	0,04	98,5	2,6	
Со					0,57	0,02	105	3,5	
Cr	0,60	0,1	101	1,5	1,99	0,06	93,5	3,0	
Cu	2,89	0,12	99,4	4,2	4,70	0,14	97,9	3,0	
Fe	55,0	2,5	107	4,6	363	7	95,6	1,9	
La					2,3	-	87,0	5,6	
Mg	1362	127	98,4	2,4					
Mn	13,3	0,5	100	3,8	246	8	98,0	3,2	
Мо	14,8	0,5	103	3,4					
Ni	27,0	0,8	107	3,0	1,59	0,07	91,4	4,4	
Rb					14,9	0,3	95,6	1,8	
Sb	20,6	2,6	115	2,0					
Sr	11,8	0,4	106	3,4					
Tl	3,00	0,3	0,11	10					
U					0,03	-	75,2	8,7	
Zn	79,7	2,7	89,3	3,4	30,9	0,7	84,3	2,3	

22. táblázat: A BCR 679 és a NIST 1573a hitelesített referenciaminták elemeinek visszanyerése

A hitelesített referenciaminták elemeinek átlagos visszanyerése 90% és 100% között mozogtak figyelembe véve a hitelesített értékek bizonytalanságát is. A cinkre, az alumíniumra, és a lantánra kapott visszanyerés 70% és 80% közötti, az antimonra 110% fölötti. Az egész módszer bizonytalansága 6% és 20% közötti, amibe beleértendő minden elem minta-előkészítését és mérését tartalmazó többelemes analízisére számolt teljes bizonytalanság. A tallium esetében a visszanyerési arány 1% alatti, tehát kijelenthető, hogy a mikrohullámú roncsolásos módszer tallium esetében nem alkalmazható, amit az adalékolásos validálás is alátámasztott (23. táblázat).

23. táblázat: Spike-olt paprikaminták (3 ismétlés) átlagos visszanyerési aránya, a paprikában található spi	ke-
olt elemek koncentrációja, valamint a teljes, összegzett bizonytalanság	

elemek	spike-olt koncentráció (ng g ⁻¹)	Visszanyerés (%)	Teljes, összegzett bizonytalanság (%)
Rb	218	76,8	16,0
Sr	166	83,2	8,4
Y	0,45	69,8	7,6
Zr	0,28	95,0	17,0
Cd	10,2	87,4	15,0
Ва	37,1	74,3	15,0
TI	10,52	0,120	22,0
Pb	10,5	97,2	16,0

Th	0,12	71,8	15,0
U	0,04	61,8	16,0
Се	0,89	91,2	12,0
La	0,97	95,6	7,2
Ti	133	74,9	7,3
Cr	12,3	61,6	6,7
Fe	653	103	6,8
Со	10,2	107	6,7
Ga	1,23	60,3	52,0
Ru	0,08	63,8	260,0
Sb	0,06	94,5	12,5
Nd	0,45	77,3	11,0
Gd	0,97	64,5	28,0
Tb	0,01	77,6	59,0
Dy	0,05	90,1	18,0
Er	0,05	65,5	21,0
Yb	0,05	77,7	45,0
AI	734	78,1	14,0
As	1,01	69,9	62,0
Eu	0,01	78,4	90,0
Но	0,01	114	120,0
Lu	0,01	78,0	220,0

A táblázat alapján elmondható, hogy a spike-olt, azaz adalékolt elemek visszanyerési aránya a paprika mintákban 60% és 100% között váltakozik. Továbbá az alacsony spike-olt koncentráción és a BEC közeli koncentráció arányon túl a visszanyerési arány nem szolgáltat hiteles eredményeket számos ritkaföldfém, valamint a gallium és az arzén esetében, mivel a kimutatási határhoz közeli koncentrációk mérése igen bizonytalan, így ezeket az elemeket nem is érdemes spike-olni.

A ritkaföldfémekhez tartozó visszanyerési arányt továbbá standard addícióval is megvizsgáltam. Az eredmények azt mutatták, hogy a standard addíciós eljárás nem működik a terbium, az itterbium, a prazeodinium és a holmium esetében.

A mikrohullámú roncsolás validálása a hitelesített értékkel rendelkező hitelesített referenciamintákon alapszik, amely a hitelesített elemekre 80%-100%-os visszanyerési arányt mutatott. A spike-olási kísérlet visszanyerési arányai 60%-100% között mozogtak. A spike-olt elemek többségének átlagos visszanyerése 60% körüli volt. Továbbá a paprikaminták átlagos homogenitása körülbelül 90%, de az alacsonyabb koncentrációtartományba tartozó elemeknél az eltérés 20% és 40% közötti. A validálási eljárás után a multielemes analízisre a következő elemeket alkalmaztam: As, Ba, Cd, Ce, Co, Cr, Cu, Dy, Er, Fe, Gd, La, Mn, Nd, Ni, Pb, Rb, Sc, Sm, Sr, Tb, Th, Ti, U, Y, Yb, Zn, Zr.

5.2.2.1 Kimutatási határok

A kimutatási határok, illetve a háttér ekvivalens koncentrációk számolása megegyezik az 5.1.2.3 pontban ismerterettekkel, a (7) és (8) képletek alapján. A paprikamérés során mért elemek teljesítményjellemzőit a 24. táblázat tartalmazza.

elemek	LOD (pg g ⁻¹)	BEC (pg g ⁻¹)
В	15	58
Rb	0,46	7,9
Sr	0,51	95
Y	0,09	0,22
Zr	0,81	1,0
Мо	6,6	55
Ag	1,9	4,7
Cd	6,0	95
Cs	0,13	0,11
Ba	5,3	51
T1	0,1	0,06
Pb	2,3	7,0
Bi	0,1	0,20
Th	2,4	0,94
U	0,02	0,01
Ce	0,10	0,22
La	0,03	0,20
Mg	370	3500
Ca	3000	52000
Ti	3,5	64
Cr	8,2	6,5
Mn	2,5	30
Fe	52	101
Со	0,22	0,92
Ni	14	31
Cu	7,3	8,2
Zn	140	560
Ga	0,93	2,0
Ru	9,0	3,3
Pd	4,0	43
In	1,0	7,7
Sb	1,3	0,41
Nd	0,30	0,11
Sm	1,5	0,41
Gd	4,9	2,3
Tb	0,28	0,12
Dy	0,18	0,08
Er	0,21	0,03
Yb	1.9	0,41
Pt	67	260
Al	70	30,8

24. táblázat: Az paprika mérés során mért elemek LOD és BEC értékei

As	3,0	15,0
Eu	0,87	0,52
Но	2,3	0,45
Lu	0,21	0,03
Sc	1,6	0,58

A mért ritkaföldfémek, csakúgy, mint a cirkónium, cézium, tallium, tórium, urán, antimon, gallium és arzén koncentrációi a roncsolt mintaoldatban 0,2 ng g⁻¹ alatt vannak. Mivel az arzén, itterbium, szkandium, holmium, szamárium, rubídium, antimon, gadolínium és tórium esetében a kimutatási határ a feltárt paprikaoldatra vonatkoztatva magasabb, mint 1 pg g⁻¹, néhány paprika mintában ezen elemek koncentrációja nem mérhető.

A kalciumot, a magnéziumot, a bórt, az ezüstöt és a palládiumot valamint az alumíniumot is kihagytam a további vizsgálatokból, mivel a magas háttér miatt a az oldatban lévő koncentrációk nem mérhetőek (24. táblázat).

A tisztítási roncsolás és a mikrohullámú roncsolás vakmintája utáni mosó oldat elemzése azt mutatta, hogy az analizálandó elemek legnagyobb mennyiségben kimutatási határ alatt vannak jelen. Ez alól kivételt képez a palládium 1 ng g⁻¹ körüli, az alumínium 0,3 ng g⁻¹ és 1 ng g⁻¹ közti, a molibdén 0,003 ng g⁻¹ és 0,01 ng g⁻¹ közti valamint az ólom maximum 0,01 ng g⁻¹ mikrohullámú roncsolás vakmintájában előforduló koncentrációval. Továbbá a titán vakmintában előforduló koncentrációja 0,005 és 0,009 ng g⁻¹ közötti.

A mintában a kalcium, a bór, a magnézium és a ritkaföldfémek (REE) kivételével az elemek 2 ng g⁻¹ és 8000 ng g⁻¹ közötti koncentrációtartományban mérhetőek. A REE-ek koncentrációtartománya 0,01 ng g⁻¹ és 0,5 ng g⁻¹ közötti. A háttér ekvivalens koncentráció néhány ritkaföldfém esetében megegyezik, vagy meghaladja a legkisebb kalibrációs standardot (1 pg g⁻¹), ezért a ritkaföldfémek kalibrációja 10 pg g⁻¹ és 2 ng g⁻¹ közti koncentrációban használható.

A paprikamintákra kapott eredmények matematikai statisztikai kiértékelését követően, – melyhez szintén az SPSS statisztikai programot használtam – arra a megállapításra jutottam, hogy az egymástól földrajzilag távol álló minták igen jól elkülöníthetőek egymástól, ahogy azt a 19. ábra is mutatja. A Magyarországról és Franciaországból származó minták elkülönítése nem tökéletes, de a Sr izotóparányok eredményeinek kiértékelése után ez az elválasztási bizonytalanság javul (lásd 22. ábra). Tekintettel a nagy mintamennyiségre a nyers eredmények egy részét az 5. számú melléklet tartalmazza.

Kanonikus diszkriminancia

19. ábra: Különböző országokból származó paprikaminták földrajzi eredetének meghatározása
1) Magyarország; 2) Spanyolország; 3) Franciaország; 4) Szenegál; 5) Románia

5.2.3 Homogenitás vizsgálat

A paprika minták homogenitását az első (félkész termék), a második (aprított piros paprika) és a tízedik (kész őrölt fűszerpaprika) előállítási lépésből 5-5 minta vizsgálatával ellenőriztem. A homogenitás minden elem esetében 20%-on belül volt (relatív standard hiba), mivel a 20%-os inhomogenitást is még elfogadtam, mint bizonytalansági tényezőt, mivel ez az érték a teljes bizonytalanság, amely tartalmazza a minta előkészítéséből, mérésből és inhomogenitásból származó bizonytalanságot. Az ennél nagyobb inhomogenítással bíró elemeket, mint a Eu, Ho, Lu és Sb, valamint a kimutatási határ alatti elemeket, mint a Ag, Bi, Ga, In, Pd, Pr, Pt, Ru és Tl a további vizsgálatokból kizártam.

A hiteles, friss paprikamintákat laboratóriumi körülmények között porítottam, a homogenításvizsgálat eredményeit a 25. táblázat tartalmazza.

23. tabiazat. I aprika mintak minomogemtasa (ing g - szaraz tonk

	B1 (ng g-1)	inhom. (%)	B2 (ng g ⁻¹)	inhom. (%)	B10 (ng g ⁻¹)	inhom. (%)	MZ* (ng g ⁻¹)	inhom. (%)
Ag	LOD		LOD		LOD		LOD	
As	43,1	13,6	46,0	15,8	45,1	15,8	104	10,5
B	12500	8,2	11400	5,0	11300	6,7	12000	5,0
Ba	890	16,0	767	8,4	957	5,6	862	10,7
Bi	LOD		LOD		LOD		LOD	
Cd	111	14,4	113	11,0	121	7,1	27,6	3,9
Ce	21,9	15,0	17,8	11,6	20,9	14,3	16,5	19,3
Co	155	20,0	176	7,3	195	4,4	54,5	9,5
Cr	193	18,6	211	13,3	223	19,0	85,7	13,8
Cu	8600	16,4	/980	/,1	8600	4,9	10100	12,/
	8,/	12,9	/,44	/,0	8,60	/,5	1,31	11,8
Dy En	1,73	15,9	1,43	10,5	1,40	13,0	0,94	14,9
Er	1.60	91.0	0,73	20.0	0,75	37.7	0,43	20.8
Eu Fe	72200	13.1	76500	8.0	75600	16.2	36900	10.5
Ga	LOD	15,1	LOD	0,0	LOD	10,2	LOD	10,5
Ho	0.86	63.6	0.21	33.6	0.22	27.1	0.24	27.7
In	LOD		LOD) -	LOD	.,	LOD	
La	7,71	10,3	8,15	10,5	8,59	18,7	8,90	12,0
Lu	0,36	58,7	0,12	91,3	0,04	224	0,08	84,2
Mg	1405000	15,0	1580000	6,9	1570000	4,1	1630000	4,6
Mn	10700	19,3	13100	6,1	13300	4,6	11000	5,7
Mo	394	4,3	402	6,3	422	5,9	536	6,7
Nd	9,14	10,1	9,03	7,5	9,95	16,2	8,16	17,6
Ni	682	17,5	715	3,7	760	3,0	469	6,9
Pb	34,2	10,9	36,2	4,9	39,3	13,1	27,5	3,1
Pd	LOD		LOD		LOD		LOD	
Pr	LOD		LOD		LOD		LOD	
Pt	LOD	1.4.1	LOD	0.0	LOD	()	LOD	()
Rb	6840	14,1	6850	9,8	/440	6,3	9330	6,0
Ku		(5.1	1.60	20.1	LOD	21.5	1.10	12.5
SD So	2,00	10.2	2,00	12.6	4,37	21,5	1,19	20.1
SC Sm	2,80	19,2	2,00	13,0	2,32	9,4 17.8	0,74	20,1 6.2
Sm Sr	7200	16,0	7490	11,0	7890	4 5	9960	15.6
Th	0.29	13.4	0.21	3.6	0.26	17.8	0.24	77
Th	2.35	19.3	2.69	17.4	2.95	19.5	1.48	55.8
Ti	3750	17,7	3950	11,4	4110	8,4	6650	14,1
TI	LOD		LOD	,	LOD	,	LOD	,
U	0,64	19,7	0,50	20,4	0,73	14,2	0,50	31,5
Y	5,35	18,5	4,56	4,4	5,78	3,2	3,50	11,7
Yb	0,50	18,4	0,53	17,2	0,56	12,4	0,32	27,5
Zn	9260	15,4	9390	7,2	11500	3,5	10500	8,3
Zr	16,6	17,0	15,3	10,5	15,5	9,5	10,4	3,6

B1, B2 és B10 a "B" jelű paprika 1., 2. és 10. előállítási lépéséből származó minta

* hiteles, szegedi régióból származó paprikaminta

5.2.4 Kontaminációs vizsgálat

Két különböző, Szegedről származó paprika mintának minden előállítási lépéséből (1. szárítás, 2. csírátlanítás, 3. aprítás, 4-7. őrlés, 8. kondicionálás, 9. pirosítás, 10. szitálás) származó 2-2 mintát elemeztem párhuzamosan a különböző előállítási lépések között esetlegesen bekövetkezett fémszennyezések azonosítása érdekében. Továbbá mértem a paprika mintákban a ⁸⁷Sr/⁸⁶Sr izotóparányát is annak a kiderítésére, hogy ez az arány változik-e az egyes előállítási lépések alatt.

A 20. ábrán a cink vizsgálat példáján szemléltetett eredmények szerint nem lépett fel jelentős fém kontamináció az előállítási lépések során az 5.2.2 pontban meghatározott elemek esetében. Néhány eltérés az első és a második előállítási lépés között a szárított paprika darabok inhomogenitásából ered. Továbbá az előállítási lépések közötti stroncium izotóparányának változását is megvizsgáltam (21. ábra), amely szerint nem történt szignifikáns változás az egyes előállítási lépések esetében a Sr izotóparányokat tekintve. Tehát az utolsó előállítási lépésből származó minták használata megfelel a multielemes analízisre és a stroncium izotóparány mérésére.

Cink

20. ábra: Cink kontaminációs vizsgálat profilja

21. ábra: Két paprika minta (A és B) ⁸⁷Sr/⁸⁶Sr izotóparánya az előállítási lépésekhez kapcsolódóan

Az ábra bizonyítja, hogy a stroncium izotóparány nem változik az előállítási lépések alatt. Továbbá az ábrán az is látszik, hogy a két, azonos régióból, de mégis különböző termőhelyről származó paprika Sr izotóparánya szignifikánsan eltér egymástól és ezt az eltérést a mintaelőkészítési lépések során megtartják.

5.2.5⁸⁷Sr/⁸⁶Sr izotóparány meghatározása

A stroncium izotóparányának meghatározási metodikája teljes mértékben megegyezik az 5.1.3.1, illetve az 5.1.3.2 pontban ismertetettekkel.

A minták Sr izotóparány vizsgálatának eredményeit a 26. táblázat szemlélteti. Ahogy az a táblázatból is kitűnik a magyarországi, a francia és a szenegáli paprikaminták Sr izotóparányai átfednek egymással, a megkülönböztetésük kizárólag ezzel a módszerrel nem lehetséges.

Régiók	⁸⁷ Sr/ ⁸⁶ Sr izotóparány	⁸⁷ Sr/ ⁸⁶ Sr medián	2 σ [%]
Magyarország (Szeged)	0,7076-0,7089	0,7084	0,104
Franciaország	0,7084 - 0,7087	0,7086	0,063
Szenegál	0,7088 - 0,7089	0,7089	0,009
Spanyolország	0,7138 - 0,7150	0,7146	0,177
Románia	0,7197 - 0,7202	0,7200	0,088

26. táblázat: 5 különböző országból származó paprikaminta mért ⁸⁷Sr/⁸⁶Sr izotóparánya

Azonban, ha Sr izotóparány eredménye mellett egy, vagy több elemkoncentrációt is figyelembe veszünk, az egyes eredetek elkülönítése hatásosoabb lehet. Ha a Sr izotóparány

eredményeit a Sr koncentráció függvényében ábrázolom (22. ábra), az azonos izotóparányokkal rendelkező minták elválasztása jobbnak bizonyult, sőt az elemtartalom esetében gondot okozó francia, szenegáli és magyar eredet is biztonságosan elkülöníthető.

22. ábra: A paprikaminták ⁸⁷Sr/⁸⁶Sr izotóparányai a Sr koncentráció függvényében.

Tehát megállípítható, hogy az egyes minták eredet-meghatározása esetén több módszert használva nagyobb biztonsággal lehet az egyes eredeteket meghatározni, illetve az egyes mintákat eredetük alapján elkülöníteni, valamit a különböző módszerek egymás ellenőrzésére is alkalmasak lehetnek.

5.3 Urán-oxid minták eredet-meghatározásának lehetőségei

Urán-oxid minták eredetének, illetve elemujjlenyomatának extrakciós kromatográfiával történő meghatározására két, alapjaiban eltérő módszer kidolgozása indokolt, mivel a ritkaföldfémek, valamint az egyéb elemek urántól történő elválasztása különböző extrakciós kromatográfiás gyanták alkalmazásával oldható meg hatékonyan.

5.3.1 Módszer kidolgozása urán-oxid minták ritkaföldfém-ujjlenyomatának meghatározására

A ritkaföldfém profil ismeretében információkat nyerhetünk a minták eredetéről és a vizsgált nukleáris anyagok (pl. fűtőelem tabletták) feldolgozása során bekövetkezett elemtartalmi változásokról, a feldolgozás típusáról és tulajdonságairól.

A ritkaföldfém urántól való elválasztását TRU extrakciós kromatográfiás gyantán kívántam megvalósítani a 2.1.4.1 pontban ismeretetettek alapján. Az elválasztás optimálásához egy laboratóriumi standard oldatból készítettem modellmintát, amely 100 μg/g uránt és ritkaföldfémből 1-1 ng/g mennyiséget tartalmazott. Ebből 1 ml-t használtam terhelő oldatként, majd az eluálás közben vizsgáltam a gyanta elválasztási sajátságait.

A terhelő oldat 1 ml 1 mol l⁻¹ HNO₃ volt, melynek adagolása után az oszlopot 8 ml 2 mol l⁻¹ koncentrációjú salétromsavval mostam 1 ml-es részletekben. Ezt követte az 1 ml koncentrált sósav adagolása az extrakciós kromatográfiás gyanta klorid formára történő felkészítése céljából. Végül a ritkaföldfémek eluálása következett, amihez 8 ml 4 mol l⁻¹ koncentrációjú sósavat használtam, 1 ml-es részletekben. Az eluátum részfrakcióit külön edényekbe gyűjtöttem, majd a ritkaföldfém-, valamint urán-tartalmukat ICP-MS készülékkel mértem. A laboratóriumi standard oldat elúciós profilja a 23. ábrán látható. Az ábra jól szemlélteti, hogy uránra a gyanta megkötőképessége valóban nagy, mivel csak egy kis, az ábrán nem is látható része jutott át az oszlopon azonnal a terhelő oldattal. Emellett látható, hogy minden ritkaföldfém eluálódott az oszlopról. A teljes visszanyerés az egyes ritkaföldfémekre 95-102 % közöttinek adódott.

Mivel elsődleges célom a ritkaföldfémek egyidejű kinyerése és az urán mátrix teljes elválasztása volt, így az optimált elválasztási módszernél már csak 2 ml 2 mol l⁻¹ salétromsavat alkalmaztam az esetleges frakcionálódás elkerülése érdekében. A legkisebb retenciós idővel rendelkező ritkaföldfém is csak 2 ml salétromsav adagolása után kezdett eluálódni az oszlopról. Ezt rögtön követte a ritkaföldfémek sósavas eluálása. Az optimált elválasztási módszerrel kapott elúciós profilt szemlélteti a 24. ábra.

23. ábra: A ritkaföldfémeket tartalmazó standard oldat elúciós profilja

24. ábra: Az optimált elválasztási módszer elúciós profilja

A 24. ábrán látható, hogy a kifejlesztett módszer alkalmazásával az összes ritkaföldfém egyszerre eluálódik egy frakcióban. Az urántól és az egyéb fém ionoktól – amelyek interferenciát okozhatnak – sikerült teljes mértékben elválasztani azokat. Az uránra számolt dekontaminációs faktor (elválasztási tényező) 2x10⁶, ami annyit jelent, hogy az alkalmazott TRU[®] extrakciós kromatográfiás gyanta valóban hatékonyan képes megkötni az uránt, vagyis a koncentrációja így a végső frakcióban, amely tulajdonképpen elemzésre kerül, megfelelően alacsony ahhoz, hogy ne okozzon mátrixhatást. Az urán elválasztása azt is biztosítja, hogy az ICP-MS készülék ne szennyeződjön el a mérések során. Az urán koncentrációja a végső, ritkaföldfémes (sósavas) frakciókban kisebb, mint 50 pg/g.

5.3.1.1 Az alkalmazott mérési paraméterek

A ritkaföldfémek meghatározása nagyfelbontású induktív csatolású plazma tömegspektrométerrel (ICP-SF-MS) történt. A mérések során alacsony felbontást alkalmaztam, mivel a kémiai elválasztás alkalmazásával az esetleges spektrális zavarást okozó molekulaionokat előzetesen elválasztottam az analizálandó elemektől, valamint mert a mérendő komponensek csak kis mennyiségben vannak jelen a mintákban, így elemzésükhöz az elérhető legnagyobb érzékenység szükséges. A mintát Scott-típusú ködkamrához csatlakoztatott alacsony áramlási sebességű PFA porlasztó segítségével juttattam a készülékbe. Az optimalizált paramétereket a 27. táblázat foglalja magában.

Paraméterek	ELEMENT2 ICP-SF-MS						
Kicsatolt teljesítmény (W)	1245						
Plazmagáz áramlási sebessége (l/min)	15,74						
Porlasztógáz áramlási sebessége (l/min)	0,850						
Segédgáz áramlási sebessége (l/min)	0,88						
Alkalmazott felbontás (R=m/∆m)	300						
Porlasztó	PFA alacsony áramlási sebességű porlasztó						
Ködkamra	Scott-típusú						
Minta áramlási sebessége (µl/perc)	60						

27. táblázat: Az ICP-SF-MS optimalizált paraméterei ritkaföldfém mérésekhez

5.3.1.2 A kidolgozott módszer validálása

A módszer validálásához "Morille" hitelesített referenciamintát (CETAMA, France) használtam. A minta ritkaföldfém-tartalmát a kifejlesztett módszer mellett kémiai elválasztás nélkül, csak hígítást alkalmazva az ITU-ban is megvizsgálták. Az utóbbi esetben külső kalibrációt használtak mátrix-illesztett standardokkal. A kapott eredményeket, vagyis a két különböző módszer alkalmazásával a négy hitelesített ritkaföldfémre kapott koncentrációkat összehasonlítva a

hitelesített értékekkel, a 25. ábra tartalmazza. Az ábrán látható, hogy a különböző módszerekkel kapott mérési eredmények jól egyeznek egymással és a referencia értékekkel is. A kidolgozott módszerrel kapott ritkaföldfém visszanyerés 94 \pm 6%-nak adódott, amely a mérés, illetve a referencia értékek bizonytalanságából adódik. Az egyezések igazolták a módszer alkalmazhatóságát.

25. ábra: A referenciamintára kapott mért értékek összehasonlítva a hitelesített értékekkel

5.3.1.3 A kidolgozott módszer teljesítményjellemzői

A kidolgozott módszer szerint az extrakciós kromatográfiás elválasztás alkalmazásával az urán jelentős része elválasztható a mérendő komponensektől. Az uránra számolt elválasztási tényező 10⁶, ami azt jelenti, hogy az urán kiindulási koncentrációjának 10⁻⁶-szorosa jelenik meg az elválasztás után a mérendő mintában.

A ritkaföldfémek visszanyerése – ahogy korábban látható volt a modelloldat alkalmazásával történő módszerfejlesztésnél, valamint a validálásnál – 96-102% közöttinek adódott elemtől függően.

A hitelesített referenciaanyagot alkalmazva, a módszer ismételhetőségét is megvizsgáltam a referenciaanyag 3 ismétlésben történő előkészítésével és mérésével. Az ismétlésből kapott értékeket összevetve megállapítható volt, hogy az eredmények a 4 hitelesített elem esetében, a referenciaértékkel megegyeztek, attól csak a számolt bizonytalanságon belül tértek el. A kapott relatív szórásértékek (RSD%) 0,30% és 0,90% érték között változtak. Az 1% alatti, igen jónak mondható ismételhetőségi értékek is alátámasztják a módszer robosztusságát.

A 28. táblázatban a kidolgozott módszerrel kapott kimutatási határértékek láthatók, összehasonlítva a kémiai elválasztást nem, csak hígítási lépést alkalmazó módszerrel elérhető kimutatási határokkal.

Elem	A mátrixillesztett kalibráció során számolt LOD értékek (ng/g)	A fejlesztett mintaelőkészítés során számolt LOD értékek (ng/g)					
La	37.6	0.080					
Ce	12.7	0.082					
Pr	2.3	0.014					
Nd	3.5	0.140					
Sm	3.5	0.200					
Eu	1.4	0.021					
Gd	1.3	0.048					
Tb	0.1	0.009					
Dy	7.5	0.025					
Но	1.6	0.007					
Er	2.2	0.039					
Tm	0.5	0.002					
Yb	8.2	0.120					
Lu	0.6	0.004					

28. táblázat: A kidolgozott és a csak hígítást alkalmazó módszer alkalmazásával kapott kimutatási határok összehasonlítása

Az elválasztást alkalmazó módszer körülbelül 2 nagyságrenddel jobb kimutatási határokkal rendelkezik, mint a csak hígításos előkészítést igénylő módszer, amely utóbbi értékeket mátrixillesztett kalibrációval határoztam meg. Ez a különbség a nagyobb előkoncentrálással (a kisebb mértékű hígítással), valamint a mátrixhatás csökkentésével (urán elválasztás) magyarázható. További előnye a kifejlesztett módszernek, hogy nem csak az urán választható el általa a mérendő komponensektől, hanem az egyéb, mátrix-alkotó és lehetséges zavaró molekulaionokat képző elemek is, mint pl. a bárium, amely a bárium-oxid és bárium-hidroxid molekulaionok okozta interferenciákat okozza. A módszer teljes bizonytalansága ugyan nagyobb, mint a csak hígítást alkalmazó módszer esetében, mivel az elválasztás bizonytalansága is hozzáadódik, viszont ahogy az ismételhetőségi vizsgálatban látható volt, még így is megfelelő a RSD% érték.

5.3.1.4 A kidolgozott módszer alkalmazása valós mintákon

A kidolgozott módszert először a természetes összetételű, az alacsony dúsítású és a szegényített urán-oxid pellete referencia anyagok elemzésével ellenőriztem, illetve teszteltem. A kapott eredményeket összevetettem az Institute of Transuranium (ITU) laboratóriumában, hígításos mintaelőkészítéssel mért elemzési adatokkal.

A mintaelőkészítés a szilárd minta oldásával kezdődött. Megközelítőleg 300-500 mg uránoxid mintát oldottam fel 9 ml 10 mol l⁻¹ koncentrációjú salétromsavban, miközben főzőlapon, 90 °C-on melegítettem 6 órán keresztül. Ezt követően ebből a törzsoldatból mértem be polietilén edénybe 300 μ l-t majd nagytisztaságú vízzel 4-szeresére hígítottam, hogy elérjük a kívánt salétromsav koncentrációt, amely az extrakciós kromatográfiás elválasztás első (terhelő) lépéséhez szükséges 4 mol Γ^1 HNO₃. Az így kapott mintamennyiséget (1,2 ml) alkalmaztuk az elválasztáshoz, melyet TRU[®] típusú extrakciós kromatográfiás gyantára vittünk fel. A gyanta 10 ml 2 mol Γ^1 salétromsavval történő előkondicionálását követően a minta teljes mennyiségével terheltem az oszlopot, amit az oszlop mosása, azaz a gyanta által nem visszatartott mátrix komponensek eltávolítása követett. Ehhez a lépéshez 2 ml 2 mol Γ^1 salétromsavat alkalmaztam, a módszer kidolgozásánál megállapítottak szerint. Ezt a lépést követte a ritkaföldfémek teflon edénybe történő eluálása az oszlopról, amihez 1 ml koncentrált sósavat, majd 4 ml 4 mol Γ^1 sósavat alkalmaztam.

A mintákhoz 1 ng g⁻¹ Rh belső standardot adagoltam, majd ICP-SF-MS készülékkel elemeztem azokat. A Rh belső standard alkalmazása ebben az esetben ahhoz szükséges, hogy a mintaoldatok mátrixtartalma (sósavból származó kloridionok) okozta zavaróhatásokat, valamint a minták és az alkalmazott standard oldatok esetlegesen eltérő összetételéből adódó intenzitáskülönbségeket figyelembe tudjuk venni és az eltéréseket korrigálni lehessen az elemzések során.

A kapott eredményeket a 29. táblázat mutatja be. A 3. oszlopban található szürke sáv azt jelzi, hogy az ITU az adott mintában a jelölt elemeket nem mérte, így ezekhez az elemekhez nem áll rendelkezésre összehasonlítási érték. Amint a táblázatban látható, a mérési adatok azt mutatják, hogy bár a mintákban a ritkaföldfém koncentráció igen alacsony, így az eredmények bizonytalansága nagy és az egyes elemek koncentrációja kevésbé pontosan határozható meg, a két laboratórium (ITU és IKI) eredményei között megfelelő az egyezés. Számos esetben a koncentráció kimutatási határ alatti. Ezekben az esetekben a két laboratórium által használt módszerek számolt kimutatási határait hasonlítottam össze. Néhány esetben az eredmények közötti kis mértékű eltérés adódhat abból, hogy a két laboratórium által vizsgált minták nem teljesen azonosak, csak azonos lefoglalásból származó azonos típusú minták. Az alacsony ritkaföldfém koncentráció a minták előállításának technológiai eljárásából adódhatnak, azonban ezek ellenére az eredmények jó egyezést mutatnak egymással.

	ANN	0649_6421L	ANNEX NC0649_6432DU							ANNEX NC0649_520NAT							
	ITU		!	IKI		I I	ITU		ļ	IKI		ITU		IKI			
	mg*kg⁻¹U	LOD	mg*kg⁻¹U		LOD	mg*kg⁻¹L	J	LOD	mg*kg	¹ U	l	LOD	mg*kg⁻¹U	LOD	mg*kg⁻¹U		LOD
Dy		< 0.01)	<	0.003		<	0.009			< (0.003				<	0.003
Er		< 0.00	0.035	±	0.005		<	0.007	0.008	:	± (0.005				<	0.005
Eu		< 0.00	ŧ į	<	0.004		<	0.004	l		< (0.004				<	0.004
Gd		< 0.03	0.012	±	0.01	0.024	±	0.003	0.017	:	± (0.01			ĺ	<	0.01
Но		< 0.00	2	<	0.030		<	0.002	İ		< (0.030			Í	<	0.030
La	0.30	£ 0.04	0.37	±	0.007	0.32	±	0.04	0.29	:	± (0.007			Í	<	0.007
Lu		< 0.00	1	<	0.004		<	0.003	I		< (0.004			1	<	0.004
Nd		< 0.02		<	0.01	0.036	±	0.004	0.042	:	± (0.01		< 0.02		<	0.01
Pr		< 0.00	3	<	0.004	0.012	±	0.001	0.010	:	± (0.004		< 0.004		<	0.004
Sm		< 0.02		<	0.01		<	0.01			< (0.01		< 0.03		<	0.01
Tb		< 0.00	2	<	0.004		<	0.002	ļ		< (0.004		< 0.002	ļ	<	0.004
Tm		< 0.00	3	<	0.004		<	0.003	ļ		< (0.004		< 0.003	l	<	0.004
Yb		< 0.01		<	0.007	0.011	±	0.001	0.010	:	± (0.007		< 0.011	1	<	0.007

29. táblázat: Valós mintákra kapott ritkaföldfém eredmények összehasonlítása természetes(NAT), alacsony dúsítású (LEU) és szegényített (DU) urán esetében(ITU és IKI elemzési adatai)

A lefoglalt minták alacsony ritkaföldfém tartalma miatt a módszer tesztelését elvégeztük különböző területekről származó urán koncentrátumok (yellow cake) ritkaföldfémelemujjlenyomatának meghatározásával is. A mérést, illetve az ábrázolást az ITU-ban végezték technikai együttműködés keretein belül.

26. ábra: 3 különböző helyről (bányából) származó urán koncentrátum ritkaföldfém profilja

A 26. ábrán az urán koncentrátumok ritkaföldfém koncentrációi az ún. kondrit (egy meteorit típus) értékekre normálva szerepelnek, ami elterjedt és megszokott gyakorlat a geokémiában. A

normálást a nukleáris stabilitásból eredő hatást kiküszöböljése érdekében használják [ANDERS, GREVESSE 1989].

Az ábrából látható, hogy a különböző helyről származó koncentrátumok különböző ritkaföldfém-ujjlenyomatot mutatnak, aminek következtében a kidolgozott módszer alkalmas lehet az ilyen anyagok egymástól történő elkülönítésére, eredetük meghatározására.

A kép akkor lenne teljes, ha a mért koncentrátumokból előállított és az adott bányászati helyről származó uránérceket is mérhettem volna. Erre azonban nem volt lehetőségem, így a mintákban, illetve a koncentrátumokban előforduló ritkaföldfémek összehasonlítása más adatokkal eredetmeghatározás céljából nem volt lehetséges. Az azonban mégis látszik, hogy a koncentrátumokban több ritkaföldfém mennyisége kimutatási határ fölötti, illetve magasabb koncentrációban van jelen, mint az urán-oxid mintákban. Vagyis ahogy az várható is volt, a ritkaföldfémek mennyiségének változása, ami általában csökkenés, a feldolgozási lépések során következik be.

5.3.1.5 A kidolgozott módszer robosztusságának vizsgálata

A kidolgozott módszer robosztusságát is megvizsgáltam, mivel a ritkaföldfém tartalom mérése igen nagyban függ a mátrixalkotó komponensektől. Ehhez a vizsgálathoz egy, a Cluff Lake bányából származó mintát a szervesanyag tartalom modellezése érdekében adalékoltam egyre növekvő, de ismert mennyiségben szulfát, illetve foszfát oldattal, amelyek lehetséges interferenciákat alkothatnak az elválasztás során. Minden egyes adalékolási lépés után a mintákban az elválasztási lépést követően megmértem a La, Nd, Ho és Lu tartalmat. A eredmények (27. ábra) azt igazolják, hogy még nagy adalékolt koncentráció mellett sem változik a visszanyerés még a Ho és a Lu esetében sem, amelyeknek a legkisebb a retenciós, azaz visszatartási koefficiensük az alkalmazott gyantán.

ör

27/a. ábra: Robosztusságvizsgálat (SO4 hatása a visszanyerésre)

27/b. ábra: Robosztusságvizsgálat (PO₄ hatása a visszanyerésre)

5.3.2 Módszer kidolgozása urán-oxid minták egyéb szennyező elemtartalmának meghatározására

Az egyes minták eredetének biztonságos meghatározásához, illetve az eltérő eredetek elkülönítéséhez a ritkaföldfém-ujjlenyomat mellett szükségünk lehet az egyéb elemszennyezők meghatározására, illetve azok ujjlenyomatszerű nyilvántartására is. Ezért ezen elemek meghatározására is módszert dolgoztam ki.

Ahogy az a 4. ábrán is látható, az urán szelektív megkötéséhez UTEVA gyantán leginkább 8 mol l⁻¹ HNO₃-as közeg szükséges, míg eluálása többnyire híg salétromsavval és redukálószerek alkalmazásával lehetséges.

Az elválasztás optimálásához ebben az esetben is egy laboratóriumi standard oldatot készítettünk, amely 100 μ g g⁻¹ uránt, nyomelemekből pedig 1-1 ng g⁻¹ mennyiséget tartalmazott. Ebből 2 ml-t használtam terhelő oldatként.

Az elem-ujjlenyomat meghatározásához két analitikai eljárást teszteltem:

- 1. elválasztás UTEVA gyantán, az eluátum savkoncentrációjának beállítása majd mérés
- elválasztás UTEVA gyantán, majd az eluátum bepárlása, 1%-os salétromsavban történő visszaoldás és ezt követte a mérés

A két eljárás alapjaiban hasonló. Mindkét esetben a terhelőoldat adagolását megelőzően az oszlopot, ill. az extrakciós kromatográfiás gyantát 2x20 ml nagytisztaságú vízzel, majd 20 ml 8 mol l⁻¹ koncentrációjú salétromsavval mostam az oszlop tisztítása és a vak érték minimalizálása végett. A terhelő oldat után az oszlopról 20 ml 8 mol l⁻¹ koncentrációjú salétromsavval eluáltuk az elemeket. Ettől a ponttól kettéválik a mintaelőkészítés a bepárlást alkalmazó, illetve nem alkalmazó módszerre.

A bepárlást nem alkalmazó (1. számú) módszer szerint a mosáshoz használt salétromsavat 2,5 ml-es részletekben gyűjtöttem (így lehetőségem adódik az elemek elúciós profiljának meghatározására), majd a frakciók végső savkoncentrációját mérés előtt 2 mol Γ^1 -re állítottam be. Ebben az esetben lehetőségem adódott a modelloldat elúciós profiljának felvételére, ami a 28. ábrán látható. A bepárlásos (2. számú) módszer szerint az eluáláshoz használt salétromsav teljes mennyiségét PFA edénybe gyűjtöttem, főzőlapon szárazra pároltam, majd 4 ml 1 W/W-os salétromsavban oldottam fel a méréshez. Mindkét esetben 1 ng g⁻¹ végső koncentrációban használtam Rh belső standardot a mintamátrixból adódó intenzitás-eltérések figyelembevételéhez. A két módszert a visszanyerés és a kapott kimutatási határok alapján hasonlítottam össze egymással és az irodalmi értékekkel.

esetében

Ahogy a 28. ábrán látható, a kifejlesztett módszert alkalmazva minden elem eluálódik, miközben az urántól sikerült teljes mértékben elválasztani azokat. Az uránra számolt dekontaminációs faktor (elválasztási tényező) ebben az esetben is 10⁶. Az egyes elemek visszanyerése 92-105% között alakult. Az elúciós profilból az is látszik, hogy a mérendő elemek a terhelést követően már 10 ml 8 mol l⁻¹ salétromsav adagolása után eluálódtak az oszlopról, ami további egyszerűsítési és anyagtakarékossági lépéseket eredményezett.

A két mintaelőkészítési módszer során kapott visszanyeréseket a 29. ábra szemlélteti. A bepárlás egy előkoncentrálási lépés, így az ezt alkalmazó módszernél jobb kimutatási határok várhatóak. A visszanyeréseket megvizsgálva azonban azt tapasztaltam, hogy a bepárlást alkalmazó módszer esetében 100%-nál lényegesen nagyobb (egyes elemeknél kiugróan nagy) visszanyeréseket kaptunk, amelynek oka egyértelműen a minta bepárlás során a környezetből bekövetkezett szennyezése. Ezt a vak értékek is alátámasztották. A modell oldatban minden elem 1 ng g⁻¹ koncentrációban van jelen, azonban ezeknek az elemeknek a mérése a nagyobb
koncentrációtartományban jóval pontosabb, ahogy az a valós minták eredményeiből a későbbiekben beigazolódott. A bepárlás nélkül feldolgozott mintákban csak a Fe és a Na kontaminációja volt jelentős, ez azonban magyarázható az alkalmazott kis koncentréciókkal. Ezen két elem mérése magasabb koncentrációtartományban már sokkal precízebb.

Az ismertetett okok miatt a továbbiakban a bepárlás nélküli módszert alkalmazom.

29. ábra: A két minta-előkészítés visszanyeréseinek összehasonlítása

5.3.2.1 Az alkalmazott mérési paraméterek

Az elem-ujjlenyomathoz szükséges elemek meghatározásához ebben az esetben is nagyfelbontású induktív csatolású plazma tömegspektrométert (ICP-SFMS) alkalmaztunk. A mérések során az esetleges spektrális zavaróhatásokat a felbontás ($R=m/\Delta m$) növelésével küszöböltük ki. A mérésekhez alacsony (LR, R=300) közepes (MR, R=4000) és nagy (HR, R=10000) felbontást is alkalmaztunk. A mintát Scott-típusú ködkamrához csatlakoztatott alacsony áramlási sebességű PFA porlasztóval jutattuk a készülékbe. Az optimalizált paramétereket a 30. táblázat foglalja össze.

Paraméterek	ELEMENT2 ICP-SF-MS
Kicsatolt teljesítmény (W)	1285
Plazmagáz áramlási sebessége (l/min)	15,44
Porlasztógáz áramlási sebessége (l/min)	0,925
Segédgáz áramlási sebessége (l/min)	0,98
Alkalmazott felbontás (R=m/∆m)	300; 4000; 10000
Porlasztó	conical
Ködkamra	Scott-típusú
Minta áramlási sebessége(ml/perc)	1

30. táblázat: Az ICP-SF-MS optimalizált paraméterei elemujjlenyomat mérésekhez

5.3.2.2 A kidolgozott módszer validálása

A módszer validálásához hitelesített referenciamintát (BCR-2) használtam. A mérések során a referencia mintához 100 μ g g⁻¹ koncentrációban uránt adagoltam a mátrixhatás modellezésére. A kapott eredményeket összehasonlítva a hitelesített értékekkel, a 30. ábra tartalmazza. Az ábrát a jobb átláthatóság érdekében 3 részre bontottam. A 30/a. ábra a makroelemek százalékos mennyiségét jelzi a hitelesített referenciaminta tanusítványával megeggyezően, majd a 30/b. és a 30/c. ábrán a koncetrációértékek szerepelnek, nagyságrendjük szerint kettébontva. Az ábrán látható, hogy a mérési eredmények jól egyeznek a referencia értékekkel. A módszerrel kapott elemek visszanyerése 96 ± 8%-nak adódott. Az egyezések igazolták a módszer alkalmazhatóságát.

BCR-2 referenciaanyag (Ca, Fe, K, Na, Ti)

30/a ábra: A mért eredmények összehasonlítása a %-ban megadott hitelesített értékekkel

BCR-2 referenciaanyag (Cr, Co, Ga, Th)

30/b ábra: A mért eredmények összehasonlítása az alacsonyabb koncentrációjú hitelesített értékekkel

BCR-2 referenciaanyag (Ba, Mn, Sr, Zn)

30/c ábra: A mért eredmények összehasonlítása a magasabb koncentrációjú hitelesített értékekkel

5.3.2.3 A kidolgozott módszer teljesítményjellemzői

Az extrakciós kromatográfiás elválasztás alkalmazásával az urán jelentős részét sikerült elválasztani a mérendő komponensektől. Az uránra számolt elválasztási tényező ebben az esetben is 10⁶ volt.

A bepárlást is alkalmazó mintaelőkészítés esetében a visszanyerési értékek – néhány elem esetében – jóval magasabbak, mint 100%, amit a jövőben a körülmények körültekintőbb megválasztásával kívánok kiküszöbölni.

A 31. táblázat a kidolgozott két különböző módszerre számolt kimutatási határokat mutatja be. Látható, hogy a bepárlást is alkalmazó módszerrel kapott kimutatási határ értékek az elemek többségénél kisebbnek adódtak, mint a másik módszer esetében, ahogy az várható is volt.

LOD	bepárlás	bepárlás nélkül	100	bepárlás	bepárlás nélkül
	m	g/kg U	LOD	mį	g/kg U
Al	0.014	0.164	Mn	0.152	0.008
As	0.02	0.152	Мо	0.009	0.053
Ва	0.191	0.008	Na	0.106	1.16
Bi	0.005	0.005	Ni	0.877	0.268
Са	3.28	10.2	Pb	0.042	0.215
Cd	0.02	0.013	Sb	0.013	0.018
Со	0.128	0.024	Sn	3.25	12.4
Cr	0.453	0.041	Sr	0.036	0.038
Cu	0.068	0.086	Th	0.003	0.018
Fe	0.029	0.101	Ti	0.328	0.1
Ga	0.01	0.016	TI	0.004	0.003
К	0.109	0.679	Zn	0.373	2.13
Mg	0.016	0.752	Zr	0.016	0.026

31. táblázat: A kidolgozott két különböző módszerrel kapott kimutatási határok összehasonlítása

Mivel a hitelesített referenciaanyag mátrixa – elsősorban az urántartalom tekintetében – eltér a valós mintákétól, egy lefoglalt, ITU által is elemzett alacsony dúsítású urán-oxid pellet mintát (ANNEX NC0649_6421LEU) felhasználva a módszer ismételhetőségét is megvizsgáltam. A mintát 3 ismétlésben készítettem elő. Az összes mérhető elem esetében az eredmények megegyeztek az ITU méréseiből származó eredményekkel, illetve azoktól csak a számolt bizonytalanságon belül tértek el. A három ismétlésből kapott relatív szórásértékek (RSD%) 0,35% és 2,7% érték között változtak. A jó ismételhetőségi értékek és az ITU mérési eredményeivel való egyezés ennél a módszernél is alátámasztja a módszer robosztusságát és az elemujjlenyomat meghatározásának megbízhatóságát.

5.3.2.4 A kidolgozott módszer alkalmazása valós mintákon

A kidolgozott módszert ebben az esetben is először egy természetes összetételű, valamint lefoglalásból származó, két különböző összetételű (LEU, azaz alacsony dúsítású urán és DU, azaz szegényített urán) minta elemzésével ellenőriztem. Ebben az esetben is lehetőségem volt a kapott eredményeket összevetni az ITU-ban, hígításos mintaelőkészítéssel kapott eredménnyekkel.

A mintaelőkészítés, akárcsak a ritkaföldfém-ujjlenyomat meghatározása során, a szilárd minta oldásával kezdődött. Megközelítőleg 300-500 mg urán-oxid mintát oldottunk fel 9 ml 10 mol Γ^1 salétromsavban, miközben főzőlapon 90 °C-on melegítettük 6 órán keresztül. Ezt követően ebből a törzsoldatból mértünk be polietilén edénybe 300 µl-t, amit 8 mol Γ^1 salétromsavval 2 ml-re töltöttük fel. Ezt a mintamennyiséget alkalmaztuk az elválasztáshoz. A mintát extrakciós kromatográfiás UTEVA[®] gyantára vittük fel a gyanta 3x20 ml nagytisztaságú vízzel történő mosását, majd 20 ml 8 mol Γ^1 salétromsavval történő kondicionálását követően. A következő lépés a nyomelemtartalom eluálása volt az oszlopról 20 ml 8 mol Γ^1 salétromsav segítségével. Az eluátum savtartalmát nagy tisztaságú vízzel történő hígítással 2 mol Γ^1 koncentrációra állítottam be. Ezt követte a Rh belső standard adagolása és a minták ICP-MS-sel történő mérése.

Mivel a módszer kidolgozása során kiderült, hogy a bepárlás alkalmazása szennyeződéseket juttathat a mintába, ezért a valós mintákat a bepárlást nem alkalmazó módszerrel vizsgáltam. Az ezzel a módszerrel kapott eredményeket a 32. táblázat tartalmazza.

	ANNEX NC06	49_590NAT (µg/g)	ANNEX NC0649_6421LEU (μg/g)				
	IKI (bep. Nélkül)	ΙΤυ	IKI (bep. Nélkül)	ΙΤυ			
AI	16,09 ± 2,41	15,1 ± 1,8	14,03 ± 1,68	13,7 ± 1,6			
As	0,09 ± 0,01	<5,5	0,011 ± 0,001	<6			
Ва	0,26 ± 0,09	0,18 ± 0,02	0,12 ± 0,05	0,11 ± 0,01			
Bi	<0,003	0,0034 ± 0,0004	<0,0043	0,0035 ± 0,0004			
Ca	114,06 ± 13,68	< 15,4	97,1 ± 7,51	101 ± 12			
Cd	0,026 ± 0,003	<0,1	1,19 ± 0,14	<0,11			
Ce	0,011 ± 0,001	0,016 ± 0,002	0,005 ± 0,001	0,038 ± 0,005			
Со	0,09 ± 0,01	<1,15	<0,0113	<1,07			
Cr	4,28 ± 0,72	4,04 ± 0,48	11,32 ± 1,35	11,9 ± 1,4			
Cu	0,43 ± 0,05	<1,28	2,80 ± 0,34	<1,79			
Fe	62,94 ± 7,55	61 ± 7	108,48 ± 13,01	99 ± 12			
Ga	<0,0591	<0,26	<0,0852	<0,22			
К	8,20 ± 0,98	17 ± 2	1,13 ± 0,13	< 21			
Mg	11,84 ± 1,54	11,1 ± 1,3	7,90 ± 0,95	7,93 ± 0,95			
Mn	1,01 ± 0,08	1,27 ± 0,15	0,83 ± 0,1	1,32 ± 0,16			
Мо	16,75 ± 1,89	18,2 ± 2,2	0,59 ± 0,02	0,64 ± 0,08			
Na	21,41 ± 1,37	22 ± 3	32,87 ± 2,34	31 ± 4			
Ni	1,11 ± 0,13	< 7,8	9,95 ± 1,19	11,5 ± 1,4			
Pb	0,69 ± 0,08	<0,57	0,58 ± 0,07	<0,62			
Sb	0,031 ± 0,004	<0,11	0,011 ± 0,001	<0,13			
Sr	0,21 ± 0,05	0,12 ± 0,01	0,18 ± 0,03	0,12 ± 0,01			
Th	<0,0295	0,027 ± 0,003	<0,0425	0,022 ± 0,003			
Ti	1,13 ± 0,14	< 1,42	1,95 ± 0,11	2,05 ± 0,25			
TI	<0,0032	<0,11	<0,0046	<0,08			
Zn	10,85 ± 1,3	14,4 ± 1,7	162,57 ± 7,51	172 ± 21			
Zr	0,53 ± 0,09	0,48 ± 0,06	<0,007	0,007 ± 0,01			

32. táblázat: Az IKI és az ITU valós mintákra (természetes és alacsony dúsítású urán) kapott elemujjlenyomat eredményeinek összehasonlítása

Látható, hogy az általam kapott eredmények igen jól egyeznek az ITU eredményeivel, valamint számos esetben jóval alacsonyabb kimutatási határt értem el. Itt is fontos megemlíteni, hogy az eredmények eltérése adódhat abból, hogy a két laboratórium által vizsgált minták nem teljesen azonosak, csak azonos lefoglalásból származó azonos típusú minták. Az eltérések közül, melynek okai visszavezethetőek az előzőekben leírtakra meg kell említeni a természetes urán mintánál tapasztalható eltérést a Ca, K és Sr esetében, valamitn az alacsony dúsítású urán mintánál tapasztalt eltérést a Sr és a Cd esetében.

Az eredmények jobb átláthatósága érdekében a kapott értékeket diagramokon is ábrázoltam (31. és 32. ábra). Mivel a koncentráció értékek több nagyságrend terjedelemben változnak, logaritmusos skálát alkalmaztam a jelöléshez, de így is látható, hogy az eredmények igen jól egyeznek egymással.

31. ábra: ANNEX NC0649_590NAT jelölésű, természetes izotópösszetételű urán-oxid mintára kapott elemujjlenyomat eredmények összehasonlítása

32. ábra: ANNEX NC0649_6421LEU jelölésű, alacsony dúsítású urán-oxid mintára kapott elemujjlenyomat eredmények összehasonlítása

Az egyes minták közötti, nyomelem-ujjlenyomatbeli különbségek láthatóak a 33. ábrán. Annak ellenére, hogy több elem közel azonos mennyiségben van jelen a mintákban, bizonyos diszkrimináló elemek (pl. Cr, Mo, Ni, Sr, Zn, Zr...) által az egyes minták más és más elemujjlenyomatot mutatnak, vagyis az eredmények alapján elkülöníthetőek egymástól.

33. ábra: ANNEX NC0649_590NAT, ANNEX NC0649_6421LEU, valamint az ANNEX NC0649_6432DU jelölésű természetes összetételű, alacsony dúsítású és szegényített urán-oxid mintákra általam (IKI) kapott elemujjlenyomat eredmények összehasonlítása

6. ÚJ TUDOMÁNYOS EREDMÉNYEK

1. Összehasonlítottam az irodalomban ismertetett magas feldolgozottsági fokú élelmiszerminták (borok) eredet meghatározásának céljára kidolgozott, nyomelem tartalom tömegspektrometriás analízisére szolgáló mintaelőkészítési eljárásokat és kiválasztottam a legegyszerűbb eljárást, amely különböző feldolgozottsági fokú élelmiszerek vizsgálatához is alkalmazható, úgymint a magas feldolgozottsági fokú borokra és az alacsonyabb feldolgozottsági fokú fűszerpaprikára. A módszert 5 különböző fajtájú bor elemzésével teszteltem, 2 független mérési technikával (ICP-SFMS és ICP-CC-QMS). Megállapítottam, hogy a módszer 22 elem meghatározására alkalmas (Al, As, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Li, Mn, Mo, Ni, Pb, Rb, Sr, Tl, U, Zn, Zr), kimutatási határa elemtől függően ICP-SFMS technikával 0,0004 ng g^{-1} és 0,49 ng g^{-1} közötti.

Ezt a nyomelem analízisen alapuló tömegspektrometriás módszert továbbfejlesztve, ⁸⁷Sr/⁸⁶Sr izotóparány meghatározására alkalmas eljárással kombináltam. Különböző feldolgozottsági fokú élelmiszerek vizsgálatával megállapítottam:

- a. a fűszerpaprika példáján az irodalomban elsőként bemutattam, hogy a technológiai folyamat nem befolyásolja az analitikai eljárás megbízhatóságát (nem változik az eredeti elemujjlenyomat), így az eredetmeghatározás szempontjából irreleváns, hogy a technológiai folyamat mely lépéséből származik a minta. Ezen túlmenően a kombinált elem-ujjlenyomaton és ⁸⁷Sr/⁸⁶Sr izotóparány meghatározáson alapuló módszer alkalmas különböző országból származó kis feldolgozottsági fokú élelmiszerek egymástól történő egyértelmű elkülönítésére.
- b. a borok elemzése esetében a stroncium izotóparány az elemujjlenyomat meghatározással kombinálva alkalmas lehet földrajzilag akár igen közeli helyről származó borok elkülönítére is feltéve, ha az egyes termőtalajok genetikája megfelelőképpen eltér egymástól. A termőterület mellett a geokémiai viszonyokat is vizsgálva az eredmények további pontosítása várható.
- 2. Nukleáris törvényszéki analitikai alkalmazás céljára két olyan új mintaelőkészítési módszert dolgoztam ki, amelyekben az urán mátrixot extrakciós kromatográfiával elválasztom, ezáltal egyrészt csökken az urán mátrixból eredő jelszupresszió és jobb kimutatási határ érhető el, másrészt csökken a készülék elszennyeződésének és a minták okozta keresztszennyeződés lehetősége.
 - Az első módszer, amelyben az uránt TRU gyantán választjuk el 14 ritkaföldfém (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Yb) kimutatására alkalmas elemtől függően 0,0024 ng g⁻¹ és 0,2 ng g⁻¹ közötti kimutatási határral.

b. Az másik kifejlesztett módszer, melyben az uránt UTEVA gyantával választjuk el 26 elem (Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sr, Th, Ti, Tl, Zn, Zr) kimutatására alkalmas elemktők függően 0,0031 ng g⁻¹ és 12,3905 ng g⁻¹ közötti kimutatási határral.

Az irodalomban elsőként kidolgozott módszereket hiteles anyagmintákkal és független analitikai módszerekkel történő összeméréssel validáltam, valamint megmutattam, hogy a módszer alkalmas különböző lefoglalásból származó, eltérő eredetű nukleáris törvényszéki minták (urán fűtőelem pasztillák) egyértelmű megkülönböztetésére.

7. ÖSSZEFOGLALÁS

A dolgozat tárgya a tömegspektrometriás módszerek alkalmazhatóságának vizsgálata elemujjlenyomat és stabil izotópok arányának elemzése révén különböző (élelmiszer és nukleáris) minták eredetének meghatározására.

Élelmiszeranalitika területén összefoglaltam a borminták elemzésénél alkalmazott mintaelőkészítési eljárásokat, amelyek – kis eltéréssel – alkalmazhatóak a paprika mintákra is.

Mind a paprika, mind a bor esetében sikerült kidolgozni egy eljárást, amely alkalmas a minták elemujjlenyomatának meghatározására, az eredmények statisztikai kiértékelésére. Mindkét mintatípus esetében végeztem ⁸⁷Sr/⁸⁶Sr izotóparány meghatározást, amely kiegészítő módszerként nagy segítség lehet az eredet meghatározásában.

Kiderült, hogy az egymáshoz földrajzilag nagyon közel álló minták esetében az ilyen típusú eredetmeghatározás csak kis hatásfokkal alkalmazható, de távolabbi minták esetében az eredmények megbízhatóak.

A módszereket hitelesített referenciaminták és laboratóriumi összemérések segítségével validáltam, alkalmazhatóságukat valós mintákon teszteltem. A kapott eredmények, valamint a meghatározott teljesítményjellemzők alapján kijelenthető, hogy a módszer alkalmas eltérő földrajzi területekről származó élelmiszerminták elkülönítésére, adatbázis segítségével pedig az eredetük meghatározására.

Törvényszéki analitika területén két extrakciós kromatográfiás elválasztással kombinált módszert fejlesztettem nagy urántartalmú (lefoglalt urán-oxid illetve urán koncentrátum) minták ritkaföldfém-, illetve egyéb nyomelem-ujjlenyomatának meghatározására. A módszereket validáltam referenciaanyagok elemzésével és laboratóriumok közötti összemérésekkel, valamint valós minták elemzésével teszteltem alkalmazhatóságukat.

A kidolgozott módszereknek megfelelően kicsi a kimutatási határa és alkalmasak az említett minták elem-ujjlenyomatának meghatározására, valamint a készülék uránnal történő elszennyezését is megakadályozzák. A módszerek alkalmazása során az uránra számolt dekontaminációs (elválasztási) tényező mindkét esetben 10⁶, ami az urán jó elválaszthatóságát jelöli a mérendő komponensektől. Az egyéb teljesítményjellemzők, mint visszanyerés, valamint ismételhetőség is jónak bizonyultak.

A kapott eredmények, valamint elért teljesítményjellemzők mutatják, hogy a módszerek jól alkalmazhatóak ismert, illetve ismeretlen eredetű minták egymástól történő elkülönítésére. A megfelelő számú eredmény adatbázisban történő tárolása pedig lehetővé teszi a minta eredetének azonosítását is.

8. ABSTRACT

The subject of this study is about the examination of the suitability of the mass spectrometry methods by analysis of elemental fingerprint and stable isotope ratio for origin determination of different (food and nuclear) samples.

In the field of **food analysis** I have compared several sample preparation method applied for preparing wine samples, which – by applying minor changes – may also be used to determine paprika samples.

Both in the case of paprika and wine I have succeeded in developing a procedure which is suitable for determining the elemental fingerprint of the samples and assessing the results statistically. I have measured the ⁸⁷Sr/⁸⁶Sr isotopic ratio in both sample types, which may be a complementary method in determination of origin.

Such origin determination proved to have relatively low efficiency on samples which are geographically too close to each other. However, results turned out to be reliable in the case of samples which are distant from each other.

The methods were validated using certified reference materials and in an interlaboratory comparison study and were tested using real samples. According to the results and the performance characteristics it may be declared that the method is suitable for distinguishing samples that are geographically distant from each other and for determining the origin using an appropriate database.

In the field of **nuclear forensics** I have developed two combined methods to determine the elemental fingerprint (including rare earth elements) of high uranium content samples (seized uranium-oxide and uranium concentrate) using extraction chromatographic separation. The methods were validated analysing certified reference materials and in an interlaboratory comparison study and were tested using real samples.

The developed methods have a sufficiently low detection limit and are capable to determine the elemental fingerprint of the above-mentioned samples. Additionally, they prevent the contamination of the device from uranium. The calculated decontamination factor of these methods is 10^6 for uranium, which indicate the successful separation of uranium from the measurands. Other performance characteristics like detection limit, recovery, repeatability were also satisfactory.

According to the results and the performance characteristics it may be declared that the methods are appropriate for separation, determination of elemental fingerprint and origin determination of nuclear (primarily uranium-based) samples using an appropriate database.

9. MELLÉKLETEK

M.1 Irodalomjegyzék

- ABRANKÓ L. (2006): Nagyhatékonyságú Mintabeviteli Technikák Fejlesztése az Elemanalitikában. Doktori disszertáció, Budapesti Corvinus Egyetem, Alkalmazott Kémia Tanszék, Budapest 126. p.
- ALBARÈDE F., TELOUK P., BLICHERT-FOFT J., BOYET M., AGRANIER A., NELSON B. (2004): Precise and accurate isotopic measurements using multiple-collector ICPMS. *Geochimica et Cosmochimica Acta, 68, 2725-2744*
- ALBRIGHT D., BARBOUR L. (1999): Separated inventories of civil plutonium continue to grow, ISIS Plutonium Watch, May
- ALMEIDA C., VASCONCELOS M., BARBASTE M., MEDINA B. (2002): ICP-MS multielement analysis of wine samples - a comparative study of the methodologies used in two laboratories. *Analytical and Bioanalytical Chemistry*, 374, 314-322
- ALMEIDA C.M., VASCONCELOS M.T. (2001): ICP-MS determination of strontium isotope ratio in wine in order to be used as a fingerprint of its regional origin. *Journal of Analytical Atomic Spectrometry*, 16, 607-611
- ALMEIDA C.M., VASCONCELOS M.T. (2003): Lead contamination in Portuguese red wines from the Douro Region: from the vineyard to the final product. *Journal of Agricultural and Food Chemistry, 51, 3012-3023*
- ALMEIDA C.M., VASCONCELOS M.T. (2003a): Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. *Journal of Agricultural and Food Chemistry, 51, 4788-4798*
- ALMEIDA M.R., VASCONCELOS T. (2004): Does the winemaking process influence the wine ⁸⁷Sr/⁸⁶Sr? A case study, *Food Chemistry*, 85, 7-12
- ANDERS E., GREVESSE N. (1989): Abundances of the elements: Meteoric and solar. *Geochimica* et Cosmochimica Acta, 53, 197-214
- ANDERSON K.A., MAGNUSON B.A., TSCHIRGI M.L., SMITH B. (1999): Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. *Journal of Agricultural and Food Chemistry*, 47, 1568-1575
- ANDERSON K.A., SMITH B.W. (2002): Chemical profiling to differentiate geographic growing origins of coffee. *Journal of Agricultural and Food Chemistry*, *50*, 2068-2075

- ANGEROSA F., BREAS O., CONTENTO S., GUILLOU C., RENIERO F., SADA E. (1999): Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. *Journal of Agricultural and Food Chemistry*, 47, 1013-1017
- ANGIONI A., CABITZA M., RUSSO M.T., CABONI P. (2006): Influence of olive cultivars and period of harvest on the contents of Cu, Cd, Pb, and Zn in virgin olive oils. *Food Chemistry*, *99*, *525-529*
- APÁTI P., SZENTMIHÁLYI K., KRISTÓ SZ.T., PAPP I., VINKLER P., SZOKE É., KÉRY Á. (2002): Herbal remedies of Solidago – correlation of phytochemical characteristics and antioxidative properties, *Journal of Pharmaceutical and Biomedical Analysis*, 32, 1045-1053
- AUGAGNEUR S., MEDINA B., GROUSSET F. (1997): Measurement of lead isotope ratios in wine by ICP-MS and its applications to the determination of lead concentration by isotope dilution. *Fresenius' Journal of Analytical Chemistry*, 357, 1149-1152
- BALCAEN L., SCHRIJVER I.D., MOENS L., VANHAECKE F. (2005): Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference material by multi-collector ICP-mass spectrometry. *International Journal of Mass Spectrometry*, 242, 251-255
- BARBASTE M., MEDINA B., SARABIA L., ORTIZ M.C., PEREZ-TRUJILLO J.P. (2002):
 Analysis and comparison of SIMCA models for denominations of origin of wines from de
 Canary Islands (Spain) builds by means of their trace and ultratrace metals content.
 Analytica Chimica Acta, 472, 161-174
- BARBASTE M., HALICZ L., GALY A., MEDINA B., EMTEBORG H., ADAMS F.C., LOBINSKI R. (2001): Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers. *Talanta 54, 307-317*
- BAXTER M.J., CREWS H.M., DENNIS M.J., GOODALL I., ANDERSON D. (1997): The determination of the authenticity of wine from its trace element composition. *Food Chemistry*, 60, 443-450
- BENINCASA C., LEWIS J., PERRI E., SINDONA G., TAGARELLI A. (2007): Determination of trace element in Italian virgin olive oils and their characterization according to geographical origin by statistical analysis. *Analytica Chimica Acta*, 585, 366-370
- BENKHEDDA K., INFANTE H.G., ADAMS F.C. (2004): Determination of total lead and lead isotope ratios in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line preconcentration. *Analytica Chimica Acta, 506, 137-144*
- BÍRÓ GY. (2004): Tápanyag-beviteli referencia-értékek, Medicina Könyvkiadó Rt., Budapest

- BÍRÓ T. (2006): Áttekintés a nukleáris anyagok magyarországi felhasználásáról, OAH-ÁNI-ABA-07/05
- BLUMMER M. (1975): Curtisite, idrialite and pendletonite, polycyclic aromatic hydrocarbon minerals: Their composition and origin, *Chemical Geology*, *16*, *245-256*
- BOGDANOV S., RUOFF K., ODDO L.P. (2004): Physico-chemical methods for the characterisation of unifloral honeys: a review, *Apidologie*, *35*, *S4-S17*
- BONER M., FÖRSTEL H. (2004): Stable isotope variation as a tool to trace the authenticity of beef. *Analytical and Bioanalytical Chemistry*, 378, 301-310
- BRIDGE C.M., POWELL J., STEELE K.L., SIGMAN M.E. (2007): Forensic comparative glass analysis by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 62, 1419-1425
- BROEKAERT J.A.C. (2002): Analytical Atomic Spectrometry with Flames and Plasmas. Weinheim: Wiley-VCH, 659 p.
- BRUNNER M., KATONA R., STEFÁNKA ZS., PROHASKA T. (2010): Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika. *European Food Research and Technology, 231, 623-634*
- CALDERONE G., GUILLO C. (2008): Analysis of isotopic ratios for the detection of illegal watering of beverages. *Food Chemistry*, 106, 1399-1405
- CAMIN F., WIETZERBIN K., CORTES AB., HABERHAUER G., LEES M., VERSINI G. (2004): Application of multielement stable isotope ratio analysis to the characterization of French, Italian, and Spanish cheeses. *Journal of Agricultural and Food Chemistry*, *52*, 6592-6601
- CAPO R.C., STEWART B.W., CHADWICK O.A. (1994): Strontium isotopes as tracers of ecosystem processes: theory and methods. *Geoderma*, 82, 197-225
- CHOPPIN G., RIDBERG J., LILJENZIN J.O. (1995): Radiochemistry and Nuclear Chemistry, second edition, *Butterworth- Heinemann, pp. 527*
- COETZEE P.P., VANHAECKE F. (2005): Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios. *Analytical and Bioanalytical Chemistry* 383, 977–984
- COETZEE P.P., STEFFENS F.E., EISELEN R.J., AUGUSTYN O.P., BALCAEN L., VANHAECKE F. (2005a): Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. *Journal of Agricultural and Food Chemistry, 53, 5060-5066*

- COTTE J.F., CASABIANCA H., LHERITIER J., PERRUCCHIETTI C., SANGLAR C., WATON H., GRENIER-LOUSTALOT M.F. (2006): Study and validity of ¹³C stable carbon isotopic ratio analysis by mass spectrometry and ²H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey. *Analytica Chimica Acta, 582, 125-136*
- CRITTENDEN R.G., ANDEW A.S., LEFOURNOUR M., YOUNG M.D., MIDDLETON H., STOCKMANN R. (2007): Determining the geographic origin of milk in Australasia using multi-element stable isotope analysis. *International Diary Journal*, *17*, *421-428*
- CUEVAS-GLORY L.F., PINO J.A., SANTIAGO L.S., SAURI-DUCH E. (2007): A review of volatile analytical methods for determining the botanical origin of honey, *Food Chemistry*, 103, 1032-1043
- CUTTING K.F. (2007): Honey and contemporary wound care: an overview. Ostomy / Wound Management 53, 49-54
- DAMS R., BENIJTS T., LAMBERT W.E., MASSART D.L., DE LEENHEER A.P. (2001): Heroin impurity profiling: trends throughout a decade of experimenting. *Forensic Science International*, 123, 81-88
- DAY M.P., ZHANG B., MARTIN G.J. (1995): Determination of the geographical origin of wine using joint analysis of elemental and isotopic composition. II—Differentiation of the principal production zones in france for the 1990 vintage. *Journal of the Science of Food and Agriculture*, 67, 113-123
- DE SOUZA R.M., MATHIAS B.M., DA SILVEIRA C.L.P., AUCELIO R.Q. (2005): Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water. *Spectrochimica Acta Part B, 60, 711-715*
- DENMAN J.A., KEMPSON I.M., SKINNER W.M., KIRKBRIDE K.P. (2008): Discrimination of pencil markings on paper using elemental analysis: An initial investigation. *Forensic Science International*, 175, 123-129
- DINELLI G., CARRETERO A.S., DI SILVESTRO R., MAROTTI I., FU S., BENEDETTELLI S., GHISELLI L., GUTIERREZ A.F. (2009): Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry, *Journal of Chromatography A*, 1216, 7229-7240
- DOUTHITT C.B. (2007): The evolution and applications of multicollector ICPMS (MC-ICPMS). Analytical and Bioanalytical Chemistry, 390, 437-440

- ELWAER N., HINTELMANN H. (2008): Comparing the precision of selenium isotope ratio measurements using collision cell and sector field inductively coupled plasma mass spectrometry. *Talanta*, *75*, *205-214*
- ESCHNAUER H., NEEB R. (1988): Micro element analysis in wine and grapes. Linskens H. F., Jackson J. F. (Szerk.): *Wine analysis. New York, 67-89*
- EUROPEAN COUNCIL REGULATION No. 510/2006, Official Journal of the European Union, European Commisson, Brussels
- FAURE G., MENSING T. M. (2004): "Isotopes: Principles and Application." Wiley 2004
- FLAMINI R. (2003): Mass spectrometry in grape and wine chemistry. Part I: Polyphenols. Mass Spectrometry Reviews, 22, 218–250
- FORTUNATO G., MUMIC K., WUNDERLI S., PILLONEL L., BOSSET J.O., GREMAUD G. (2004): Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication. *Journal of Analytical Atomic Spectrometry*, 19, 227-234
- FÖRSTEL H., HOUBE J., HÜTZEN H. (1997): Use of tap water samples for monitoring the geographical variation of stable isotopes used in authenticity studies; *Zeitung für Lebensmitteluntersuchung und -Forschung, 204, 103-108*
- FÖRSTEL H. (2007): The natural fingerprint of stable isotopes use of IRMS to test food authenticity. *Analytical and Bioanalytical Chemistry*, 388, 541-544
- GHIDINI S., IANIERI A., ZANARDI E., CONTER M., BOSCHETTI T. (2006): Stable isotopes determination in food authentication: a rewiev. *Annali della Facolta di Medicina Veterinaria 193-204*
- GOLDBERG D.M., HAHN S.E., PARKES J.G. (1995): Beyond alcohol: beverage consumption and cardiovascular mortality *Clin. Chim. Acta 237, 155-187*
- GÓMEZ M.M.C., BRANDT R., VON BOHLEN A., JAKUBOWSKI N. (2001): Development of a procedure for the multi-element determination of trace elements in wine by ICP–MS. *Fresenius' Journal of Analytical Chemistry*, 370, 553-558
- GÓMEZ M.M.C., FELDMANN I., JAKUBOWSKI N., ANDERSSON J.T. (2004): Classification of German white wines with certified brand of origin by multielement quantification and pattern recognition techniques. *Journal of Agricultural and Food Chemistry, Volume 52*, 2962-2974
- GÓMEZ M.M.C., BRANDT R., JAKUBOWSKI N., ANDERSSON T. (2004a): Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma–Mass Spectrometry. *Journal of Agricultural and Food Chemistry*, 52, 2953-2961

- GOPALKRISHNAN M., RADHAKRISHNAN K., DHAMI P.S., KULKARNI V.T., JOSHI M.V., PATWARDHAN A.B., RAMANUJAM A., MATHUR J.N. (1997): Determination of trace impurities in uranium, thorium and plutonium matrices by solvent extraction and inductively coupled plasma atomic emission spectrometry. *Talanta, 44, 169-176*
- GRANT P.M., MOODY K.J., HUTCHEON I.D., PHINNEY D.L., HAAS J.S., VOLPE A.M., OLDANI J.J., WHIPPLE R.E., STOYER N., ALCARAZ A., ANDREWS J.E., RUSSO R.E., KLUNDER G.L., ANDRESEN B.D., CANTLIN S. (1998): Forensic analyses of suspect illicit nuclear material, *Journal of Forensic Science.*, 43, 680-688
- GUERRERO M.I., HERCE-PAGLIAI C., CAMEAN A.M., TRONCOSO A.M., GONZALEZ A.G. (1997): Multivariate characterization of wine vinegars from the south of Spain according to their metallic content. *Talanta*, *45*, *379-386*
- GUILLOU C., KOZIET J., ROSSMANN A., MARTIN G.J. (1999): Determination of the ¹³C contents of organic acids and sugars in fruit juices: an inter-comparison study. *Analytica Chimica Acta*, 388, 137-143
- HANKA L., VINCZE Á., SOLYMOSI J. (2007): A nukleáris terrorizmus, mint potenciális fenyegetettség napjainkban, *Hadmérnök, II. Évfolyam, 4. szám*
- HENNIGES U., PROHASKA T., BANIK G., POTTHAST A. (2006): A fluorescence labeling approach to assess the deterioration state of aged papers. *Cellulose, 13, 421-428*
- HÉRNANDEZ O.M., FRAGA J.M.G., JIMENEZ A.I., ARIAS J.J. (2005): Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. *Food Chemistry*, 93, 449-458
- HORWITZ E.P., CHIARIZIA R., DIETZ M.L., DIAMOND H. (1993): Separation and preconcentration of actinides from acidic media by extraction chromatography. *Analytica Chimica Acta*, 281, 361-372
- HORWITZ E.P., DIETZ M.L., CHIARIZIA R., DIAMOND H., MAXWELL S.L., NELSON M.R. (1995): Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. *Analytica Chimica Acta*, *310*, *63-78*
- HORWITZ E.P., CHIARIZIA R., DIETZ M.L. (1992): A novel strontium-selective extraction chromatographic resin. *Solvent Extraction and Ion Exchange*, 10p.
- HORWITZ E.P., DIETZ M.L., CHIARIZIA R., DIAMOND H. (1992a): Separation and preconcentration of uranium from acidic media by extraction chromatography. *Analytica Chimica Acta*, 266, 25-37

- HORWITZ E.P., DIETZ M.L., FISHER D.E. (1991): Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. *Analytical Chemistry*, *63*, *522-525*
- HOVORKÁNÉ HORVÁTH ZSUZSA (2007): Fűszerpaprika őrlemények érzékelt és mért színjellemzői. Doktori disszertáció, Budapesti Corvinus Egyetem, Budapest 147. p.
- IAEA database on illicit trafficking incidents, open information, 2006-08-01, <u>http://www.iaea.org/newscenter/features/radsources/pdf/fact_figures2005.pdf</u>
- IAEA database on illicit trafficking incidents, open information, 2013-02-21, <u>http://www-ns.iaea.org/downloads/security/itdb-fact-sheet.pdf</u>
- INTERNATIONAL ATOMIC ENERGY AGENCY (2006) "Uranium Production and Raw Materials for the Nuclear Fuel Cycle Supply and Demand, Economics, the Environment and Energy Security" (*Proc. Int. Symp. Vienna, 20-24 June 2005*), *STI/PUB/1259, IAEA, Vienna*
- JAITZ L., SIEGL K., EDER R., RAK G., ABRANKO L., KOELLENSPERGER G., HANN S. (2010): LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage, *Food Chemistry*, 122, 366-372
- JAKUBOWSKI N., MOENS L., VANHAECKE F. (1998): Sector field mass spectrometers in ICP-MS. Spectrochim Acta B, 53, (13), 1739-1763
- JAKUBOWSKI N., BRANDT R., STUEWER D., ESCHNAUER H.R., GÖRTGES S. (1999): Analysis of wines by ICP-MS: Is the pattern of the rare earth elements a reliable fingerprint for the provenance, *Fresenius' Journal of Analytical Chemistry*, *364*, *424-428*
- JAMIN E., MARTIN F., SANTAMARIA-FERNANDEZ R., LEES M. (2005): Detection of exogenous citric acid in fruit juices by stable isotope ratio analysis. *Journal of Agricultural and Food Chemistry*, 53, 5130-5133
- KAPITÁNY J. (2003): Termesztés- és feldolgozástechnológiai elemek hatásaa fűszerpaprika minőségére. Doktori disszertáció, Budapesti Közgazdaságtudományi és Államigazgatási Egyetem, Zöldség- és Gabonatermesztési Tanszék, Budapest 91 p.
- KAROURI R., DE BAERDEMAEKER J. (2007): A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. *Food Chemistry*, *102*, *621-640*
- KATONA R., ABRANKÓ L., STEFÁNKA ZS. (2012): Comparison of sample preparation techniques for multielemental analysis of wine samples by ICP-MS. Acta Alimentaria, 41, Supplement 1, 83-91
- KAWASAKI A., ODA H., HIRATA T. (2002): Determination of strontium isotope ratio of brown rice for estimating its provenance. *Soil Science and Plant Nutrition, 48, 635-640*

- KELLY S., BAXTER M., CHAPMAN S., RHODES C., DENNIS J., BRERETON P. (2002): The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. *European Food Research and Technology*, 214, 72-78
- KEUL J., KÖNIG D. (1997): Forum Wein und Gesundheit. Wissenschaft und Praxis 3, 37-41
- KISPÉTER J., BAJÚSZ-KABÓK K., FEKETE M., SZABÓ G., FODOR G., PÁLI T. (2003): Changes induced in spice paprika powder by treatment with ionizing radiation and saturated stream. *Radiation Physics and Chemistry*, 68, 893-900
- KMENT P., MIHALJEVIC M., ETTLER V., SEBEK O., STRNAD L., ROHLOVA L. (2005): Differentiation of Czech wines using multielement composition - A comparison with vineyard soil. *Food Chemistry*, *91*, 157-165
- KOCH L., NIEMEYER S., NIKIFOROV N., MASON G., HERBILLON G.M.J. (1999): International co-operation in combating illicit trafficking of nuclear materials by technical means. *Proc. of the 21st Annual ESARDA Symposium, May 1999, pp. 805-810.*
- KOCH L., BETTI M., DOLGOW Y., MAYER K., RAY I., SCHUBERT A., STALIOS A.D.,
 WALLENIUS M. (1997): Nuclear forensic in nuclear material safeguards, Proc. of 19th
 Annual symposium on safeguards and nuclear material management, ESARDA,
 Montpellier, France, 13-15 May, 1997
- KOCH L. (1995): Annual rapport 1995, Institute for Transuranium elements, European Commission, Joint Research Centre, Karlsruhe 184-186
- KOCH L. (2000): Hot on the trail. Chemistry in Britain, 36, 29-40
- KOCSIS N., AMTMANN M., MEDNYÁNSZKY ZS., KORÁNY K. (2002): GC-MS Investigation of the Aroma Compounds of Hungarian Red Paprika (*Capsicum annuum*) Cultivars, *Journal* of Food Composition and Analysis, 15, 195-203
- KOPER C., VAN DER BOOM C., WIARDA W., SCHRADER M., DE JOODE P., VAN DER PEIJL G., BOLCK A. (2007): Elemental analysis of 3,4-methylenedioxymethamphetamine (MDMA): A tool to determine the synthesis method and trace links, *Forensic Science International*, 171, 171-179
- KORNEXL B.E., WERNER T., ROSSMANN A., SCHMIDT H.L. (1997): Measurement of stable isotope abundances in milk and milk ingredients -- a possible tool for origin assignment and quality control. *Zeitschrift für Lebensmitteluntersuchung und –Forschung A, 205, 19-24*
- KOZIET J., ROSSMANN A., MARTIN G.J., JOHNSON P. (1995): Determination of the oxygen-18 and deuterium content of fruit and vegetable juice water – An European inter-laboratory comparison study. *Analytica Chimica Acta*, 302, 29-37

- LARCHER R., NICOLINI G., PANGRAZZI P. (2003): Isotope ratios of Lead in Italian wines by inductively coupled plasma mass spectrometry. *Journal of Agricultural and Food Chemistry*, 51, 5956-5961
- LELOUP C., MARTY P., DALL'AVA D., PERDEREAU M. (1997): Quantitative Analysis for Impurities in Uranium by Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Improvements in the Experimental Setup. *Journal of Analytical Atomic Spectrometry*, 12, 945-950
- LERCH R.E., NORMAN R.E. (1984): Nuclear fuel conversion and fabrication chemistry. *Radiochimica Acta, 36, 75-88*
- LICHTHAMMER A. (2006): Szívügyünk a táplálkozás, ISBN: 963972849, Mezőgazda kiadó
- LONGERICH H.P. (1987): Determination of lead isotope ratios by inductively coupled plasmamass spectrometry (ICP-MS), *Spectrochimica Acta Part B*, 42, 39-48
- LUGASI A., BLÁZOVICS A. (2004): Az egészséges táplálkozás tudományos alapjai, Szécsenyi füzetek, Budapest
- MANCA G., CAMIN F., COLORU G.C., DEL CARO A., DEPENTORI D., FRANCO M.A., VERSINI G. (2001): Characterization of the geographical origin of Pecorino Sardo cheese by casein stable isotope (¹³C/¹²C and ¹⁵N/¹⁴N) ratios and free amino acids ratios. *Journal of Agricultural and Food Chemistry*, 49, 1404-1409
- MARCOS A., FISHER A., REA G., HILL S.J. (1998): Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. *Journal of Analytical Atomic Spectrometry, Volume 13, pages 521-525*
- MARIN S., CORNEJO S., JARA C., DURAN N. (1996): Determination of trace level impurities in uranium compounds by ICP-AES after organic extraction. *Fresenius Journal of Analytical Chemistry 355, 680-683*
- MARINI F., MAGRI A.L., BALESTRIERI F., FABRETTI F., MARINI D. (2004): Supervised pattern recognition applied to the discrimination of the floral origin of six types of Italian honey samples. *Analytica Chimica Acta*, *515*, *117-125*
- MARISA C., ALMAIDA R., VASCONCELOS M.T.S.D. (2003): Multielement Composition of Wines and Their Precursors Including Provenance Soil and Their Potentialities As Fingerprints of Wine Origin. *Journal of Agriculural Food Chemistry*, 51, 4788-4798
- MÁRKUS F., DAOOD H.G., KAPITÁNY J., BIACH P.H. (1999): Change in the carotenoid and antioxidant content of spice red pepper (paprika) as a function of ripening and some technológical factors. *Journal of Agricurtural and Food Chemistry*, 47, 100-107
- MÁRKUS F., KAPITÁNY J. (2001): A fűszerpaprika termesztése és feldolgozása. *Mezőgazdasági* Szaktudás Kiadó, 112. p.

- MARTÍN M.J., PABLOS F., GONZÁLEZ A.G. (1999): Characterization of arabica and robusta roasted coffee varieties and mixture resolution according to their metal content. *Food Chemistry*, 66, 365-370
- MARTINO F.A.R., SÁNCHEZ M.L.F., SANZ-MENDEL A. (2001): The potential of double focusing-ICP-MS for studying elemental distribution patterns in whole milk, skimmed milk and milk whey of different milks. *Analytica Chimica Acta, 442, 191–200*
- MARTINO F.A.R., SÁNCHEZ M.L.F., SANZ-MENDEL A. (2002): Multi-elemental fractionation in milk whey by size exclusion chromatography coupled on line to ICP-MS. *Journal of Analytical Atomic Spectrometry*, 17, 1271–1277
- MAYER K., WALLENIUS M., RAY I. (2005): Nuclear forensics a methodology providing clues on the origin of illicitly trafficked nuclear materials. *Analyst, 130, 433-441*
- MERRILL R.A., BARTICK E.G., TAYLOR III J.H. (2003): Forensic discrimination of photocopy and printer toners. I. The development of an infrared spectral library. *Analytical and Bioanalytical Chemistry*, 376, 1272-1278
- MISRA N.L., SINGH MUDHER K.D., ADYA V.C., RAJESWARI B., VENUGOPAL V. (2005): Determination of trace elements in uranium oxide by Total Reflection X-ray Fluorescence spectrometry. *Spectrochimica Acta Part B*, 60, 834-840
- MODUN D., MUSIC I., VUKOVIC J., BRIZIC I., KATALINIC V., OBAD A., PALADA I., DUJIC Z., BOBAN M. (2008): The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols. *Atherosclerosis*, 197, 250–256
- MURÁNYI Z. (2002): Újabb eredmények a borok nyomelemtartalmáról, Doktori disszertáció, Debreceni Egyetem, Természettudományi Kar, Debrecen 125 p.
- MYORS R.B., HEARN R., MACKAY L.G. (2005): The high-accuracy analysis of lead in wine by exact-matching isotope dilution mass spectrometry using ICP-MS. *Journal of Analytical Atomic Spectrometry*, 20, 216-219
- NANDA V., SARKAR B.C., SHARMA H.K., BAWA A.S. (2003): Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. *Journal of Food Composition and Analysis, 16, 613-619*
- NEUMÜLLER O.A. (1981): "Römpp Vegyészeti Lexikon." Műszaki Könyvkiadó
- ODDO L.P., PIRO R. (2004): Main European unifloral honeys: descriptive sheets, *Apidologie, 35,* Supplement 1, S38-S81
- OECD NUCLEAR ENERGY AGENCY (2008): Uranium 2007: Resources, Production and Demand, A Joint Report by the OECD Nuclear Agency and the Intrnational Atomic Energy Agency, OECD/NEA, Paris

- PACKER A.P., GINÉ M.F. (2001): Analysis of undigested honey samples by isotope dilution inductively coupled plasma mass spectrometry with direct injection nebulization ID-ICP-MS. *Spectrochimica Acta Part B*, *56*, *69-75*
- PAJO L., MAYER K., KOCH L. (2001): Investigation of the oxygen isotopic composition in oxidic uranium compounds as a new property in nuclear forensic science. *Fresenius' Journal of Analytical Chemistry*, 371, 348-352
- PAJO L., SCHUBERT A., ALDAVE L., KOCH L., BIBILASHVILI Y.K., DOLGOV Y.N., CHOROKHOV N.A. (2001a): Identification of unknown nuclear fuel by impurities and physical parameters. *Journal of Radioanalytical and Nuclear Chemistry*, 250, 79-84
- PAJO L. (2000): UO₂ fuel pellet impurities, pellet surface roughness and n(₁₈O)/n(₁₆O) ratios, applied to nuclear forensic science. *Doktori disszertáció, University of Helsinki, Helsinki 69p.*
- PERES B., BARLET N., LOISEAU G., MONTET D. (2007): Review of the current methods of analytical traceability allowing determination of the origin of foodstuffs. *Food Control, 18,* 228-235
- PEREZ A.L., SMITH B.W., ANDERSON K.A. (2006): Stable isotope and trace element profiling combined with classification models to differentiate geographic growing origin for three fruits: Effects of subregion and variety. *Journal of Agricultural and Food Chemistry*, 54, 4506-4516
- PIASENTIER E., VALUSSO R., CAMIN F., VERSINI G. (2003): Stable isotope ratio analysis for authentication of lamb meat. *Meat Science*, *64*, 239-247
- POHL P., PRUSISZ B. (2006): Fractionation of calcium and magnesium in honeys, juices and tea infusions by ion exchange and flame atomic absorption spectrometry. *Talanta, 69, 1227-*1233
- POKORN D. (1995): Wine and health in the Republic of Slovenia. Wein-Wissenschaft. 50, 132-136
- PROHASKA T., KÖLLENSPERGER G., KRACHLER M., DE WINNE K., STINGEDER G., MOENS L. (2000): Determination of trace elements in human milk by inductively coupled plasma sector field mass spectrometry (ICP-SFMS). *Journal of Analytical Atomic* Spectrometry, 15, 335-340
- PROHASKA T., LATKOCZY C., SCHULTHEIS G., TESCHLER-NICOLA M., STINGEDER G. (2002): Investigation of Sr isotope ratios in prehistoric human bones and teeth using laser ablation ICP-MS and ICP-MS after Rb/Sr separation. *Journal of Analytical Atomic Spectrometry*, 8, 887-891

- PUPIN A.M., DENNIS M.J., PARKER I., KELLY S., BIGWOOD T., TOLEDO M.C.F. (1998): Use of isotopic analyses to determine the authenticity of Brazilian orange juice (Citrus sinensis). *Journal of Agricultural and Food Chemistry*, *46*, *1369-1373*
- PUROHIT P.J., GOYAL N., THULASIDAS S.K., PAGE A.G., SASTRY M.D. (2000): Electrothermal vaporization - inductively coupled plasma-atomic emission spectrometry for trace metal determination in uranium and thorium compounds without prior matrix separation. Spectrochimica Acta Part B: Atomic Spectroscopy, 55, 1257-1270
- RENAUD S. (1992): Wine, alcohol, platelets, and the French paradox for coronary heart disease. *The Lancet*, 339, 1523-1526
- RENOU J.P., BIELICKI G., DEPONGE C., GACHON P., MICOL D., RITZ P. (2004): Characterization of animal products according to geographic origin and feeding diet using nuclear resonance and isotope ratio mass spectrometry. Part II: Beef meat. *Food Chemistry*, 86, 251-256
- RODUSHKIN I., ÖDMAN F., APPELBLAD P.K. (1999): Multielement determination and lead isotope ratio measurement in alcoholic beverages by high-resolution inductively coupled plasma mass spectrometry. *Journal of Food Composition and Analysis, 12, 243-257*
- ROSSMANN A., HABERHAUER G., HÖLZL S., HORN P., PICHLMAYER F., VOERKELIUS S. (2000): The potential of multielement stable isotope analysis for regional origin assignment of butter. *European Food Reseach and Technology, 211, 32-40*
- SAUVAGE L., FRANK D., STEARNE J., MILLIKAN M.B. (2002): Trace metal studies of selected white wines: an alternative approach. *Analytica Chimica Acta, 458, 223-230*
- SCHMIDT O., QUILTER J.M., BAHAR B., MOLONEY A.P., SCRIMGEOUR C.M., BEGLEYI.S., MONAHAN F.J. (2005): Inferring the origin and dietary history of beef from C, N andS stable isotope ratio analysis. *Food Chemistry*, *91*, *545-549*
- SCHUBERT A., JANSSEN G., KOCK L., PEERANI P., BIBILASHVILI Y.K., CHOROKHOV N.A., DOLGOV J. (1998): A software package for nuclear analysis guidance by a relational database. Proc. of the ANS international Conference on the Physics of Nuclear Science and Technology, New York, 5-8 October 1998, 1385-1392 (ISBN: 0-89448-631-4)
- SEWENIG S., HENER U., MOSANDL A. (2003): Online determination of ²H/¹H and ¹³C/¹²C isotope ratios of cinnamaldehyde from different sources using gas chromatography isotope ratio mass spectrometry. *European Food Research Technology, 217, 444–448*
- SHIRAISHI K. (1998): Multi-element analysis of 18 food groups using semi-quantitative ICP-MS. Journal of Radioanalytical and Nuclear Chemistry, 238, 6-73

- SIMABUCO S.M., VAZQUEZ C., BOEYKENS S., BARROSO R.C. (2002): Total reflection by synchrotron radiation: trace determination in nuclear materials. *X-Ray Spectrometry*, *31*, 167-172
- SMITH K., HORTON K., WATLING R.J., SCOULLAR N. (2005): Detecting art forgeries using LA-ICP-MS incorporating the in situ application of laser-based collection technology. *Talanta*, 67, 402-413
- SPENCE L.D., BAKER A.T., BYRNE J.P. (2000): Characterization of document paper using elemental compositions determined by inductively coupled plasma mass spectrometry. *Journal of Analytical Atomic Spectrometry*, 15, 813-819
- STEFÁNKA Z., KATONA R., VARGA Z. (2008): Laser ablation assisted ICP-MS as a tool for rapid categorization of seized uranium oxide materials based on isotopic composition determination, *Journal of Analytical Atomic Spectrometry*, 23, 1030-1033
- STEFÁNKA ZS. (2003): Nagyhatékonyságú mintabeviteli módszerek alkalmazási lehetőségei a speciációs analitikában, Doktori disszertáció, Budapesti Közgazdaságtudományi és Államigazgatási Egyetem, Alkalmazott Kémia Tanszék, Budapest 117. p.
- STEWART R., LI L., THOMAS D. (2000): Laser ablation of multilayers of ink from a paper substrate for tactile printing. *Optics & Laser Technology*, *32*, *301-305*
- STEWART R., LI L., THOMAS D. (2001): Multipass laser ablation of three coloured ink from a paper substrate. *Journal of Materials Processing Technology*, 114, 161-167
- SWOBODA S., BRUNNER M., BOULYGA S.F., GALLER P., HORACEK M., PROHASKA T. (2008): Identification of Marchfeld asparagus using Sr isotope ratio measurements by MC-ICP-MS. Analytical and Bioanalytical Chemistry, 390, 487-494
- SZENTMIHÁLYI K., CSIKTUSNÁDI-KISS G.A., KESZLER Á., KÓTAI L., CANDEAIAS M., BRONZE M.R., BOAS L.V., FORGÁCS E., SPAUGNER I. (2000): Method development for measurement of elements in Hungarian red wines by inductively coupled plasma optival emission spectrometry (ICP-OES). Acta Alimentaria, 29, 105-122
- SZÉLES É., KOVÁCS B., PROKISCH J. (2005): Ütközési cella (CCT) alkalmazása az ICP-MS technikában. Agrártudományi közlemények, 2005/16 különszám
- SZÉLES É. (2009): Felkészülés nukleáris erőművek leszerelésére: Környezeti szennyezettség referenciaszintű meghatározására alkalmazott módszer kidolgozása, *OAH-ÁNI-ABA-16/09*
- TAMBORINI G., WALLENIUS M., BILDSTEIN O., PAJO L., BETTI M. (2002): Development of a SIMS Method for Isotopic Measurements in Nuclear Forensic Application. *Microchimica Acta*, 139, 185-188

- TAYLOR V.F., MARCH R.E., LONGERICH H.P., STADEY C.J. (2005): A mass spectrometric study of glucose, sucrose, and fructose using an inductively coupled plasma and electrospray ionization. *International Journal of Mass Spectrometry*, 243, 71-84
- TAYLOR V.F., LONGERICH H.P., GREENOUGH J.D. (2003): Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICPMS) and multivariate statistics. *Journal of Agricultural and Food Chemistry*, *51*, 856-860
- TERRAB A., RECAMALES A.F., HERNANDEZ D., HEREDIA F.J. (2004): Characterisation of Spanish thyme honeys by their physico-chemical characteristics and mineral contents. *Food Chemistry*, 88, 537-542
- TERRAB A., RECAMALES A.F., GONZÁLEZ-MIRET M.L., HEREDIA F.J. (2005): Contribution to the study of avocado honeys by their mineral contents using inductively coupled plasma optical emission spectrometry. *Food Chemistry*, *92*, *305-309*
- THOMSON J.J. (1899): On the Masses of the Ions in Gases at Low Pressures. *Philosophical Magazine*, 48, 547-567 (1899)
- ÜVEGES M. (2008): Az izotóparány mérés alkalmazásának lehetőségei a módosulatanalitikában és az élelmiszereredet vizsgálata során. *Doktori disszertáció, Budapesti Corvinus Egyetem, Alkalmazott Kémia Tanszék, Budapest 175. p.*
- VARGA Z., SURÁNYI G., VAJDA N., STEFÁNKA Z. (2007): Improved sample preparation method for environmental plutonium analysis by ICP-SFMS and alpha-spectrometry. *Journal of Radioanalytical and Nuclear Chemistry*, 274, 87-94
- VARGA Z., SURÁNYI G., VAJDA N., STEFÁNKA Z. (2007a): Rapid sequential determination of americium and plutomium in sediment and soil samples by ICP-SFMS and alphaspectrometry. *Radiochimica Acta*, 95, 81-87
- VARGA Z., WALLENIUS M, MAYER K., KEEGAN E., MILLET S. (2009): Application of lead and strontium isotope ratio measurement for the origin assessment of uranium ore concentrates. *Analytical Chemistry*, 81, 8327-8334
- VARGA Z., KATONA R., STEFÁNKA Z., WALLENIUS M., MAYER K., NICHOLL A. (2010): Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. *Talanta*, 80, 1744-1749
- VASTAG J. (2003): Az utóérlelt paprika színanyaga megduplázódhat. Biokultúra, (14) 5: 8-9
- VERESNÉ BÁLINT M. (2004): Gyakorlati dietetika, Semmelweis Egyetem EFK, Budapest
- WAIGHT T., BAKER J., PEATE D. (2002): Sr isotope ratio measurement by double-focusing ICPMS techniques, observations and pitfalls. *International Journal of Mass Spectrometry*, 221, 229-244

- WALLENIUS M., MORGENSTERN A., APOSTOLIDIS C., MAYER K. (2002): Determination of the age of highly enriched uranium. Analytical and Bioanalytical Chemistry, 374, 379-384
- WALLENIUS M., MAYER K., RAY I. (2006): Nuclear forensic investigations: Two case studies. Forensic Science International 156, 55-62
- WALLENIUS M. (2001): Origin determination of reactor produced plutonium be mass spectrometric techniques: Application to nuclear forensic science and safeguards. University of Helsinki, Faculty of Science, Department of Chemistry, Laboratory of Radiochemistry, (February 2001)
- WAMHOFF H., RICHARD G. (1998): Wein und Gesundheit. Chemie in unserer Zeit 32, 87-93

ZÁRAY GY. (2006): Az elemanalitika korszerű módszerei. Akadémia Kiadó Budapest pp.225-284

M.2 Weinviertel területről származó borminták elemanalízisének eredménye

											We	inviertel	(ng/g)										
sample name	1	15	16	18	19	23	24	38	39	41	42	46	47	62	64	66	67	68	69	70	76	81	96
B10(LR)	12655.5	5367.4	6200.6	11257.7	8391.5	3340.0	13847.3	11221.8	6103.9	11900.3	8652.7	7170.4	8521.2	9235.2	10663.2	5500.1	9570.3	5227.7	4564.3	6615.2	7932.1	5649.6	9066.0
B11(LR)	12987.3	5645.0	6180.3	11759.6	7823.0	3505.5	14074.2	10489.1	6094.8	11472.5	8197.2	6893.7	8032.0	9491.9	10037.2	5349.4	9917.9	4843.5	4940.6	6386.4	7936.2	5849.1	8507.3
Rb85(LR)	1489.1	1678.1	90.5	308.9	193.0	3021.7	1020.9	495.1	433.6	352.6	1623.8	724.3	925.5	1120.8	1652.0	594.4	863.7	1308.3	674.3	525.9	843.5	897.8	267.8
Sr88(LP)	553.0	324.1	175.0	449.6	163.2	126.1	419.7	160.7	173.5	175.2	202.9	354.1	178.0	309.1	268.8	253.6	364.7	570.8	133.7	215.6	156.9	243.8	301.4
V90/L D)	0.050	0.302	0 131	0.087	0.108	0.174	0.348	0.477	0.411	0 173	0.282	0 174	0.216	0.259	0 303	0 /12	0.405	0.218	0 132	0 159	0 1 10	0 107	0 151
7-00(LR)	1 777	25.002	0.131	0.007	0.100	0.174	0.040	2.406	0.411	1.060	0.202	2.624	0.210	0.230	2 702	0.412	4 705	0.210 E 202	10.132	0.130	0.110	0.107	0.131
Z190(LR)	1.7710	20.002	0.000	0.043	0.000	0.021	0.000	2.400	0.000	1.909	0.002	3.024	-0.995	0.000	3.792	0.007	4.790	0.202	10.210	0.000	0.900	0.044	0.000
Zr91(LR)	1.748	22.688	0.000	0.476	0.000	0.760	0.000	2.298	0.000	1.948	0.500	2.4/4	0.000	0.000	4.096	0.000	7.076	0.000	9.357	0.000	0.902	0.708	0.000
M095(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mo97(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ag107(LR)	0.000	11.409	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ag109(LR)	0.000	11.258	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cd112(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cd114(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cs133(LR)	0.000	4.982	0.000	0.000	0.000	0.000	0.000	0.694	0.000	0.000	0.000	0.000	0.454	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ba137(LR)	632.4	262.5	311.3	362.2	340.9	268.6	410.6	271.1	263.7	282.0	267.9	334.1	258.7	299.3	271.5	289.2	296.5	177.6	315.8	367.7	343.9	293.8	304.0
Ba138(LR)	589.8	254.4	295.4	330.5	354.1	240.0	393.8	271.9	244.3	280.2	269.6	331.2	268.0	276.6	276.5	278.2	276.3	172.9	269.3	354.4	339.2	283.3	294.9
TI203(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
TI205(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pb206(LR)	2.459	7.742	5.417	2.858	2.876	4.797	6.158	7.653	4.591	2.857	5.756	3.862	1.514	2.254	3.142	4.744	4.049	3.221	3.156	3.874	4.354	3.906	7.584
Pb208(LR)	2.696	8.001	5.830	3.464	2.941	5.470	6.441	7.891	4.526	3.246	5.865	4.188	1.752	2.468	3.424	4.852	4.348	3.896	3.597	4.369	4.486	3.863	8.403
Bi209(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Th232(LR)	0.000	0.065	0.000	0.000	0.022	0.043	0.065	0.065	0.087	0.043	0.043	0.065	0.022	0.064	0.000	0.000	0.000	0.109	0.044	0.045	0.088	0.043	0.022
U238(LR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
La139(LR)	0.178	0.302	0.174	0.152	0.151	0.260	0.261	0.282	0.346	0.151	0.195	0.195	0.195	0.236	0.238	0.303	0.277	0.174	0.154	0.158	0.154	0.107	0.172
Mg24(MR)	82283	67580	66199	84807	71651	77504	80283	82608	60530	83686	77685	92648	58307	67161	70401	51924	67715	80494	64225	65478	80221	56785	63047
Ma25(MR)	86823	72173	66864	88420	73497	81862	82467	86828	62566	88813	78708	96921	58847	70637	74542	54495	70308	84176	67355	68397	80956	59215	65887
Ma26(MR)	84669	71568	65051	87459	73417	80644	84110	85390	61972	86552	79143	98061	58764	68684	73895	54201	70093	81520	67769	68368	82774	59776	65279
S32(MR)	139494	136457	141507	103203	129666	117852	162002	143822	120537	152761	179430	129571	129629	128521	141085	124827	128880	125982	140802	142713	179484	143657	144012
S34(MR)	135965	135980	135506	99430	127382	114506	164385	139090	118250	151002	172720	128501	126617	122481	135587	122410	125881	127495	135564	137583	175972	143638	141900
Ca42(MR)	68917	67977	75044	48310	81772	47284	56083	88358	116215	94614	180682	77418	107974	113053	110830	118843	117865	113472	56533	176020	87538	78444	90888
Ca44(MR)	42516	42915	39945	31053	44181	29568	34928	58076	63442	59828	97178	49802	56872	70049	71939	65771	75853	73133	35429	95933	55355	48590	49728
Sc45(MR)	0.030	0.129	0.000	0.022	0.065	0.065	0 131	0 195	0 108	0.065	0.087	0.065	0.043	0.086	0 130	0 173	0 107	0.087	0.044	0.068	0.044	0.021	0.043
Ti 49(MP)	383 448	301 540	228 813	234 020	238 146	234 465	270 672	370 883	322 381	375 803	431 010	330.056	270 004	444 650	487 760	311 710	501.666	460.000	266 840	428 201	374 303	338.840	240 118
CrE2(MD)	7 702	5.047	7 701	8 313	5 6/3	5 470	5 701	5 810	5 522	5.476	5 965	5 090	5.040	4 973	5 7/3	4 570	5 003	5 724	5 120	5 360	5 366	5 666	5 068
Cr52(MR)	8 472	5.370	8 267	8 768	5.991	5.001	5.831	6 157	5.760	5.602	6.234	5.909 6.401	5 3 8 6	5 173	5.973	4.370	6.223	5.808	5.076	5.653	5.037	6.310	5.068
Mp55(MR)	401 249	600.041	720.207	0.700	5.001	702 712	5.031	652 507	5.700	500 201	511.062	421 570	415 260	017 500	002 722	250 604	1464.050	5.030	406 570	527 002	5.557	672 775	5.300
WI155(WIR)	491.240	1070.974	1102.200	772 106	690.000 517.677	2025 200	509.427	1467.026	031.096	1275 217	1522.606	431.370	410.000	1064 007	003.73Z	1010 200	1074 212	1262 490	490.079	1250 602	1445 007	613.113 EAA 217	1600 522
FeSO(INIR)	930.00Z	10/0.0/4	1002 100	761 115	512 764	2023.300	595.551	1407.030	929.073	1070.017	1523.090	1520.070	1220.049	1004.027	2300.170	1010.399	1974.313	1206 272	666 204	1209.090	1440.007	544.317	1600.022
Fe5/(WR)	913.474	1093.201	0.000	0.000	0.400	1 004	0.026	1449.970	924.311	0.000	0.002	0.501	0.005	0.007	2309.039	0.203	2.000	0.270	0.704	0.020	0.740	0.420	0 547
C059(MR)	1.000	00.017	0.239	0.000	0.432	1.004	0.930	1.307	0.201	0.622	0.262	0.521	C00.0-	0.007	0.910	0.262	3.090	0.370	0.794	0.336	0.740	0.429	0.517
N158(MR)	46.805	28.317	17.686	24.811	12.260	42.612	17.320	24.714	18.622	25.257	32.365	62.317	88.925	34.623	39.875	28.678	41.282	45.421	20.634	53.016	50.117	13.864	22.1/1
N160(MR)	40.762	21.545	11.051	19.766	9.125	29.826	13.143	16.194	12.819	17.682	22.8/3	52.590	83.042	24.578	20.850	22.207	29.219	38.320	16.242	45.223	40.199	11.439	12.626
Cu63(MR)	28.350	126.077	43.357	35.246	30.098	54.052	20.911	13.853	16.392	50.796	95.813	24.194	12.178	90.390	110.652	12.130	55.241	23.614	12.932	19.594	17.395	40.627	26.136
Cu65(MR)	28.765	125.731	41.855	36.177	29.903	54.269	21.215	14.005	16.414	51.640	92.338	23.564	12.049	91.184	111.995	12.130	55.795	23.940	13.042	19.796	17.219	38.653	25.856
Zn64(MR)	457.152	284.330	290.313	326.000	254.839	467.888	291.335	217.245	237.888	518.584	231.920	267.474	819.471	472.018	469.544	192.233	680.475	411.513	227.258	316.629	379.251	312.206	255.345
Zn66(MR)	495.721	310.360	315.656	355.552	283.272	517.968	316.510	237.103	267.965	575.094	249.015	292.904	886.181	521.109	523.223	210.059	748.120	451.863	251.644	355.772	418.966	338.712	286.005
Ga69(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ga71(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ru99(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ru101(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pd105(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
In115(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sb121(MR)	0.089	0.129	0.348	0.346	0.173	0.152	0.131	0.238	0.281	0.195	0.434	0.152	0.281	0.494	0.303	0.303	0.725	0.740	0.552	0.225	0.110	0.193	0.409
Sb123(MR)	0.178	0.129	0.305	0.346	0.195	0.174	0.152	0.304	0.281	0.216	0.369	0.174	0.324	0.515	0.325	0.368	0.789	0.849	0.508	0.225	0.110	0.236	0.345
Nd143(MR)	0.059	0.259	0.000	0.108	0.108	0.174	0.261	0.347	0.390	0.173	0.217	0.152	0.151	0.236	0.260	0.303	0.256	0.152	0.110	0.135	0.132	0.129	0.129
Nd146(MR)	0.030	0.237	0.000	0.108	0.151	0.174	0.261	0.304	0.411	0.173	0.217	0.174	0.151	0.193	0.260	0.347	0.277	0.109	0.132	0.135	0.110	0.086	0.172
Sm147(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.043	0.087	0.000	0.022	0.000	0.022	0.000	0.000	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sm149(MR)	0.000	0.000	0.000	0.000	0.022	0.000	0.000	0.000	0.065	0.000	0.043	0.022	0.022	0.021	0.043	0.087	0.064	0.000	0.000	0.000	0.000	0.000	0.000
Gd155(MR)	2.666	0.970	1.022	1.191	1.232	0.955	1.414	1.019	1.083	1.299	1.021	1.193	0.887	1.245	1.040	1.105	1.002	0.827	1.214	1.351	1.605	1.567	1.120
Gd157(MR)	0.000	0.108	0.000	0.022	0.043	0.065	0.087	0.087	0.130	0.043	0.043	0.043	0.043	0.064	0.087	0.130	0.107	0.044	0.044	0.023	0.022	0.021	0.043
Tb159(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Dy161(MR)	0.000	0.086	0.000	0.000	0.022	0.043	0.065	0.087	0.108	0.043	0.065	0.043	0.043	0.043	0.043	0.087	0.064	0.044	0.022	0.000	0.022	0.021	0.043
Dy162(MR)	0.030	0.065	0.022	0.022	0.022	0.043	0.087	0.108	0.108	0.043	0.043	0.065	0.043	0.043	0.087	0.087	0.085	0.065	0.022	0.023	0.044	0.021	0.043
Er167(MR)	0.000	0.000	0.000	0.000	0.022	0.000	0.044	0.043	0.043	0.022	0.043	0.022	0.022	0.021	0.043	0.043	0.064	0.022	0.022	0.023	0.022	0.021	0.022
Er168(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.044	0.000	0.043	0.022	0.043	0.022	0.022	0.021	0.043	0.043	0.043	0.044	0.000	0.000	0.022	0.021	0.000
Yb171(MR)	0.030	0.043	0.000	0.022	0.022	0.043	0.044	0.065	0.043	0.043	0.065	0.022	0.022	0.043	0.043	0.043	0.064	0.022	0.000	0.023	0.022	0.021	0.022
Yb173(MR)	0.000	0.000	0.000	0.022	0.022	0.022	0.044	0.087	0.043	0.043	0.065	0.043	0.022	0.043	0.022	0.043	0.064	0.022	0.022	0.023	0.022	0.021	0.022
Pt195(MR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Er166(MR)	0.000	0.043	0.000	0.000	0.022	0.000	0.044	0.065	0.043	0.022	0.043	0.022	0.022	0.043	0.043	0.043	0.000	0.022	0.022	0.000	0.022	0.021	0.022
Yb172(MR)	0.030	0.065	0.000	0.022	0.022	0.043	0.044	0.087	0.043	0.043	0.065	0.022	0.022	0.043	0.043	0.043	0.064	0.022	0.022	0.023	0.022	0.021	0.022
AI27(HR)	742.2	871.6	719.9	670.9	688.8	790.5	578.2	984.1	881.0	525.1	856.4	731.6	563.7	768.0	677.2	773.7	657.4	758.3	719.5	707.8	497.7	584.8	868.1
Ti47(HR)	214.6	115.1	124.4	112.7	123.7	114.3	123.6	126.6	155.8	126.1	163.8	132.5	122.0	130.6	167.6	143.9	143.0	163.4	131.1	144.1	123.5	137.2	116.0
Ti48(HR)	222.5	121.9	125.5	115.3	126.5	118.8	128.5	129.5	154.3	132.4	168.1	135.0	124.0	134.0	171.7	143.3	151.4	163.6	137.6	142.6	126.6	141.2	118.4
As75(HR)	49.2	41.7	39.9	40.9	31.8	40.4	40.5	49.8	40.8	42.6	36.3	38.8	41.1	42.5	39.2	42.3	45.1	43.2	41.9	43.8	37.1	42.8	38.8
Ce140(HR)	0.178	0.496	0.326	0.281	0.324	0.608	0.500	0.607	0.693	0.325	0.478	0.412	0.324	0.451	0.477	0.606	0.511	0.326	0.353	0.338	0.242	0.258	0.345
Pr141(HR)	0.030	0.065	0.022	0.000	0.043	0.043	0.022	0.065	0.087	0.043	0.043	0.043	0.043	0.043	0.043	0.065	0.064	0.022	0.022	0.023	0.022	0.021	0.043
Eu151(HR)	0.000	0,022	0.000	0,000	0,000	0,000	0.000	0.022	0,000	0.000	0.152	0.022	0.000	0.000	0.022	0.303	0,000	0.022	0,000	0,000	0.000	0.000	0.000
Ho165(HR)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.000	0.022	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000
Lu175(HR)	0.000	0,000	0.000	0,000	0,000	0,000	0.000	0.000	0,000	0.000	0.022	0.000	0,000	0.000	0.000	0.000	0,000	0,000	0,000	0,000	0.000	0,000	0.000

M.3 Borminták Sr izotóparányainak évenkénti változása

Anova: Single Factor						
SUMMARY						
Groups	Count	Sum	Average	Variance		
2003	2	1.42151	0.710755	8.82E-08		
2004	3	2.133151	0.71105	6.92E-07		
2005	4	2.8406	0.71015	1.9E-07		
2006	5	3.55488	0.710976	8.62E-07		
2007	5	3.553545	0.710709	1.16E-06		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	1.96E-06	4	4.89E-07	0.676753	0.619213	3.11225
Within Groups	1.01E-05	14	7.23E-07			
Total	1.21E-05	18				

Wienviertel területről származó borminták:

Mittelburgenland területről származó borminták:

Anova: Single Facto	or					
SUMMARY						
Groups	Count	Sum	Average	Variance		
2003	4	2.84651	0.7116275	1.1E-06		
2005	3	2.134899	0.711633	4.83E-07		
2006	5	3.557408	0.7114816	8.07E-07		
2007	5	3.558133	0.7116266	1E-06		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	7.6246E-08	3	2.5415E-08	0.028703	0.993121	3.410534
Within Groups	1.1511E-05	13	8.8545E-07			
Total	1.1587E-05	16				

M.4 Borminták Sr izotóparányainak csoportok közötti összehasonlítása

Mittelburgenland	Weinviertel	Kétmintás F-próba a szór		
0.710118	0.709879			
0.710564	0.70989		I. csoport	II. csoport
0.710845	0.709925	Várható érték	0.711585	0.710720105
0.711056	0.709954	Variancia	6.19497E-07	6.70973E-07
0.711147	0.709965	Megfigyelések	17	19
0.711182	0.709999	df	16	18
0.711245	0.710025	F	0.923280967	
0.711345	0.710065	P(F<=f) egyszélű	0.439546521	
0.711478	0.7101	F kritikus egyszélű	0.434473507	
0.711589	0.710645			
0.711756	0.710965			
0.711832	0.710999	Kétmintás t-próba nem-e	egyenlő szórás	négyzeteknél
0.712121	0.711065			
0.712345	0.711089		I. csoport	II. csoport
0.712455	0.711305	Várható érték	0.711585	0.710720105
0.712901	0.711575	Variancia	6.19497E-07	6.70973E-07
0.712966	0.711875	Megfigyelések	17	19
	0.712156	Feltételezett átlagos elt	0	
	0.712206	df	34	
		t érték	3.228761649	
		P(T<=t) egyszélű	0.001377359	
		t kritikus egyszélű	1.690924255	
		P(T<=t) kétszélű	0.002754718	
		t kritikus kétszélű	2.032244509	

M.5 Különböző országokból származó paprikamintál elemanalízisének eredménye

ng/g minta	PA_bl_1	PA_bl_2	PA_1	PA_2	PA_3	PA_4	PA_5	PA_6	PA_7	PA_8	PA_9	PA_10	PA_11	PA_12	PA_13	PA_14	PA_15
B10(LR) B11(LR)	<lod< th=""><th><lod< th=""><th>14477.66</th><th>16079.39</th><th>15899.65</th><th>17104.87</th><th>23723.99</th><th>15339.93</th><th>16038.88</th><th>14684.46</th><th>17228.50</th><th>13985.41</th><th>15920.46</th><th>15563.76</th><th>15735.40</th><th>17118.64</th><th>16592.48</th></lod<></th></lod<>	<lod< th=""><th>14477.66</th><th>16079.39</th><th>15899.65</th><th>17104.87</th><th>23723.99</th><th>15339.93</th><th>16038.88</th><th>14684.46</th><th>17228.50</th><th>13985.41</th><th>15920.46</th><th>15563.76</th><th>15735.40</th><th>17118.64</th><th>16592.48</th></lod<>	14477.66	16079.39	15899.65	17104.87	23723.99	15339.93	16038.88	14684.46	17228.50	13985.41	15920.46	15563.76	15735.40	17118.64	16592.48
Rb85(LR)	<lod< th=""><th><lod< th=""><th>27998.02</th><th>11929.91</th><th>19889.26</th><th>16263.81</th><th>6187.63</th><th>15866.21</th><th>16003.69</th><th>23494.10</th><th>19174.00</th><th>20665.63</th><th>45981.27</th><th>30309.00</th><th>21096.73</th><th>48587.11</th><th>8564.42</th></lod<></th></lod<>	<lod< th=""><th>27998.02</th><th>11929.91</th><th>19889.26</th><th>16263.81</th><th>6187.63</th><th>15866.21</th><th>16003.69</th><th>23494.10</th><th>19174.00</th><th>20665.63</th><th>45981.27</th><th>30309.00</th><th>21096.73</th><th>48587.11</th><th>8564.42</th></lod<>	27998.02	11929.91	19889.26	16263.81	6187.63	15866.21	16003.69	23494.10	19174.00	20665.63	45981.27	30309.00	21096.73	48587.11	8564.42
Sr88(LR)	<lod< th=""><th><lod< th=""><th>18436.05</th><th>28942.39</th><th>24263.17</th><th>15334.22</th><th>45755.77</th><th>9333.69</th><th>14337.57</th><th>16092.55</th><th>18430.93</th><th>12754.41</th><th>6176.93</th><th>16248.93</th><th>17571.77</th><th>13117.87</th><th>43468.36</th></lod<></th></lod<>	<lod< th=""><th>18436.05</th><th>28942.39</th><th>24263.17</th><th>15334.22</th><th>45755.77</th><th>9333.69</th><th>14337.57</th><th>16092.55</th><th>18430.93</th><th>12754.41</th><th>6176.93</th><th>16248.93</th><th>17571.77</th><th>13117.87</th><th>43468.36</th></lod<>	18436.05	28942.39	24263.17	15334.22	45755.77	9333.69	14337.57	16092.55	18430.93	12754.41	6176.93	16248.93	17571.77	13117.87	43468.36
Y89(LR) Zr90(LR)	<lod< th=""><th></th><th>159.09</th><th>34.16 530.76</th><th>157.30</th><th>225.86</th><th>120.42</th><th>239 14</th><th>236 10</th><th>200.98</th><th>80.60</th><th>70.62</th><th>9.15</th><th>289 54</th><th>245 58</th><th>130.63</th><th>27.68</th></lod<>		159.09	34.16 530.76	157.30	225.86	120.42	239 14	236 10	200.98	80.60	70.62	9.15	289 54	245 58	130.63	27.68
Zr91(LR)	<lod< th=""><th><lod< th=""><th>127.23</th><th>564.50</th><th>142.40</th><th>240.22</th><th>91.80</th><th>242.68</th><th>248.30</th><th>199.32</th><th>83.37</th><th>70.01</th><th><lod< th=""><th>286.37</th><th>258.02</th><th>86.05</th><th>380.15</th></lod<></th></lod<></th></lod<>	<lod< th=""><th>127.23</th><th>564.50</th><th>142.40</th><th>240.22</th><th>91.80</th><th>242.68</th><th>248.30</th><th>199.32</th><th>83.37</th><th>70.01</th><th><lod< th=""><th>286.37</th><th>258.02</th><th>86.05</th><th>380.15</th></lod<></th></lod<>	127.23	564.50	142.40	240.22	91.80	242.68	248.30	199.32	83.37	70.01	<lod< th=""><th>286.37</th><th>258.02</th><th>86.05</th><th>380.15</th></lod<>	286.37	258.02	86.05	380.15
Mo95(LR)	<lod< th=""><th><lod< th=""><th>39.13</th><th><lod< th=""><th>82.78</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>39.13</th><th><lod< th=""><th>82.78</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	39.13	<lod< th=""><th>82.78</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	82.78	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>129.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	129.76	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Mo97(LR)	<lod< th=""><th><lod< th=""><th>2.75</th><th><lod< th=""><th>28.60</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>2.75</th><th><lod< th=""><th>28.60</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	2.75	<lod< th=""><th>28.60</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	28.60	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>73.76</th><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	73.76	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Ag107(LR) Ag109(LR)			<lod< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></lod<>														
Cd112(LR)	<lod< th=""><th><lod< th=""><th>165.38</th><th>58.62</th><th>456.40</th><th>470.60</th><th>52.66</th><th>240.39</th><th>454.42</th><th>88.15</th><th>219.69</th><th>132.07</th><th>22.86</th><th>30.43</th><th>369.30</th><th>152.63</th><th>42.36</th></lod<></th></lod<>	<lod< th=""><th>165.38</th><th>58.62</th><th>456.40</th><th>470.60</th><th>52.66</th><th>240.39</th><th>454.42</th><th>88.15</th><th>219.69</th><th>132.07</th><th>22.86</th><th>30.43</th><th>369.30</th><th>152.63</th><th>42.36</th></lod<>	165.38	58.62	456.40	470.60	52.66	240.39	454.42	88.15	219.69	132.07	22.86	30.43	369.30	152.63	42.36
Cd114(LR)	<lod< th=""><th><lod< th=""><th>177.18</th><th>59.04</th><th>422.37</th><th>470.01</th><th>49.68</th><th>243.09</th><th>440.62</th><th>76.12</th><th>185.23</th><th>131.87</th><th>21.67</th><th>27.90</th><th>365.99</th><th>161.78</th><th>43.82</th></lod<></th></lod<>	<lod< th=""><th>177.18</th><th>59.04</th><th>422.37</th><th>470.01</th><th>49.68</th><th>243.09</th><th>440.62</th><th>76.12</th><th>185.23</th><th>131.87</th><th>21.67</th><th>27.90</th><th>365.99</th><th>161.78</th><th>43.82</th></lod<>	177.18	59.04	422.37	470.01	49.68	243.09	440.62	76.12	185.23	131.87	21.67	27.90	365.99	161.78	43.82
Cs133(LR)	<lod< th=""><th><lod< th=""><th>102.65</th><th><lod< th=""><th>62.24</th><th>29.12</th><th>2.19</th><th>33.66</th><th>23.19</th><th>84.41</th><th>30.84</th><th>31.34</th><th>4.57</th><th>81.58</th><th>55.75</th><th>31.54</th><th><lod 4228.42<="" th=""></lod></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>102.65</th><th><lod< th=""><th>62.24</th><th>29.12</th><th>2.19</th><th>33.66</th><th>23.19</th><th>84.41</th><th>30.84</th><th>31.34</th><th>4.57</th><th>81.58</th><th>55.75</th><th>31.54</th><th><lod 4228.42<="" th=""></lod></th></lod<></th></lod<>	102.65	<lod< th=""><th>62.24</th><th>29.12</th><th>2.19</th><th>33.66</th><th>23.19</th><th>84.41</th><th>30.84</th><th>31.34</th><th>4.57</th><th>81.58</th><th>55.75</th><th>31.54</th><th><lod 4228.42<="" th=""></lod></th></lod<>	62.24	29.12	2.19	33.66	23.19	84.41	30.84	31.34	4.57	81.58	55.75	31.54	<lod 4228.42<="" th=""></lod>
Ba137(LR) Ba138(LR)			9888.60	4387.97	4711.28	2947.15	3722.04	3646 79	2964.19	5076.30	3893.96	3/17.21	1502.98	7400.52	10854.05	5372.91	4228.43
TI203(LR)	<lod< th=""><th><lod< th=""><th>111.89</th><th><lod< th=""><th>0.81</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>111.89</th><th><lod< th=""><th>0.81</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	111.89	<lod< th=""><th>0.81</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0.81	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>13.23</th><th><lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<></th></lod<>	13.23	<lod< th=""><th>2.75</th><th>56.16</th><th>191.76</th><th><lod< th=""></lod<></th></lod<>	2.75	56.16	191.76	<lod< th=""></lod<>
TI205(LR)	<lod< th=""><th><lod< th=""><th>122.12</th><th><lod< th=""><th>2.22</th><th>0.39</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>122.12</th><th><lod< th=""><th>2.22</th><th>0.39</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	122.12	<lod< th=""><th>2.22</th><th>0.39</th><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	2.22	0.39	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.41</th><th><lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	0.41	<lod< th=""><th>16.48</th><th><lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<></th></lod<>	16.48	<lod< th=""><th>4.23</th><th>60.51</th><th>206.95</th><th><lod< th=""></lod<></th></lod<>	4.23	60.51	206.95	<lod< th=""></lod<>
Pb206(LR)	<lod< th=""><th><lod< th=""><th>454.66</th><th>54.19</th><th>566.18</th><th>724.39</th><th>448.09</th><th>396.63</th><th>648.14</th><th>409.01</th><th>323.26</th><th>254.99</th><th>77.53</th><th>373.86</th><th>718.71</th><th>391.71</th><th>23.27</th></lod<></th></lod<>	<lod< th=""><th>454.66</th><th>54.19</th><th>566.18</th><th>724.39</th><th>448.09</th><th>396.63</th><th>648.14</th><th>409.01</th><th>323.26</th><th>254.99</th><th>77.53</th><th>373.86</th><th>718.71</th><th>391.71</th><th>23.27</th></lod<>	454.66	54.19	566.18	724.39	448.09	396.63	648.14	409.01	323.26	254.99	77.53	373.86	718.71	391.71	23.27
PD208(LR) Bi209(LR)	<lod< th=""><th><lod< th=""><th>469.41</th><th>57.57 <lod< th=""><th>557.72 <lod< th=""><th>749.18 <lod< th=""><th>446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>469.41</th><th>57.57 <lod< th=""><th>557.72 <lod< th=""><th>749.18 <lod< th=""><th>446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	469.41	57.57 <lod< th=""><th>557.72 <lod< th=""><th>749.18 <lod< th=""><th>446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	557.72 <lod< th=""><th>749.18 <lod< th=""><th>446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	749.18 <lod< th=""><th>446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	446.50 <lod< th=""><th>402.24</th><th>642.14</th><th>412.95</th><th>322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	402.24	642.14	412.95	322.62 <lod< th=""><th>256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	256.21 <lod< th=""><th>79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<></th></lod<>	79.52 <lod< th=""><th>381.05</th><th>704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<></th></lod<>	381.05	704.41 <lod< th=""><th>379.05 <lod< th=""><th>26.42</th></lod<></th></lod<>	379.05 <lod< th=""><th>26.42</th></lod<>	26.42
Th232(LR)	<lod< th=""><th><lod< th=""><th>38.94</th><th>8.43</th><th>87.62</th><th>90.89</th><th>61.00</th><th>55.47</th><th>79.97</th><th>178.58</th><th>40.41</th><th>44.97</th><th>5.77</th><th>219.37</th><th>82.27</th><th>31.93</th><th>8.60</th></lod<></th></lod<>	<lod< th=""><th>38.94</th><th>8.43</th><th>87.62</th><th>90.89</th><th>61.00</th><th>55.47</th><th>79.97</th><th>178.58</th><th>40.41</th><th>44.97</th><th>5.77</th><th>219.37</th><th>82.27</th><th>31.93</th><th>8.60</th></lod<>	38.94	8.43	87.62	90.89	61.00	55.47	79.97	178.58	40.41	44.97	5.77	219.37	82.27	31.93	8.60
U238(LR)	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>28.60</th><th>3.15</th><th><lod< th=""><th><lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>28.60</th><th>3.15</th><th><lod< th=""><th><lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>28.60</th><th>3.15</th><th><lod< th=""><th><lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>28.60</th><th>3.15</th><th><lod< th=""><th><lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	28.60	3.15	<lod< th=""><th><lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th>1.80</th><th>30.28</th><th>2.55</th><th>5.90</th><th><lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	1.80	30.28	2.55	5.90	<lod< th=""><th>15.85</th><th><lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<></th></lod<>	15.85	<lod< th=""><th>5.84</th><th><lod< th=""></lod<></th></lod<>	5.84	<lod< th=""></lod<>
Ce140(LR)	<lod< th=""><th><lod< th=""><th>783.26</th><th>109.65</th><th>600.62</th><th>466.86</th><th>413.12</th><th>515.06</th><th>451.42</th><th>859.08</th><th>283.06</th><th>346.77</th><th>50.30</th><th>1678.26</th><th>1007.19</th><th>518.25</th><th>94.57</th></lod<></th></lod<>	<lod< th=""><th>783.26</th><th>109.65</th><th>600.62</th><th>466.86</th><th>413.12</th><th>515.06</th><th>451.42</th><th>859.08</th><th>283.06</th><th>346.77</th><th>50.30</th><th>1678.26</th><th>1007.19</th><th>518.25</th><th>94.57</th></lod<>	783.26	109.65	600.62	466.86	413.12	515.06	451.42	859.08	283.06	346.77	50.30	1678.26	1007.19	518.25	94.57
Mg24(MR)	<lod< th=""><th><lod< th=""><th>1857391</th><th>2369863</th><th>295.00</th><th>2342123</th><th>2405269</th><th>2362157</th><th>2370474</th><th>2435347</th><th>2119036</th><th>2174118</th><th>2127581</th><th>2564019</th><th>2016225</th><th>1908208</th><th>2479694</th></lod<></th></lod<>	<lod< th=""><th>1857391</th><th>2369863</th><th>295.00</th><th>2342123</th><th>2405269</th><th>2362157</th><th>2370474</th><th>2435347</th><th>2119036</th><th>2174118</th><th>2127581</th><th>2564019</th><th>2016225</th><th>1908208</th><th>2479694</th></lod<>	1857391	2369863	295.00	2342123	2405269	2362157	2370474	2435347	2119036	2174118	2127581	2564019	2016225	1908208	2479694
Mg25(MR)	<lod< th=""><th><lod< th=""><th>1891435</th><th>2321417</th><th>2525092</th><th>2408356</th><th>2454753</th><th>2358486</th><th>2391646</th><th>2442099</th><th>2171610</th><th>2266489</th><th>2092542</th><th>2585910</th><th>2017551</th><th>1917390</th><th>2504718</th></lod<></th></lod<>	<lod< th=""><th>1891435</th><th>2321417</th><th>2525092</th><th>2408356</th><th>2454753</th><th>2358486</th><th>2391646</th><th>2442099</th><th>2171610</th><th>2266489</th><th>2092542</th><th>2585910</th><th>2017551</th><th>1917390</th><th>2504718</th></lod<>	1891435	2321417	2525092	2408356	2454753	2358486	2391646	2442099	2171610	2266489	2092542	2585910	2017551	1917390	2504718
Mg26(MR)	<lod< th=""><th><lod< th=""><th>1847247</th><th>2313634</th><th>2447106</th><th>2363639</th><th>2363370</th><th>2324981</th><th>2329800</th><th>2404538</th><th>2110279</th><th>2186137</th><th>2070249</th><th>2530875</th><th>1976126</th><th>1886278</th><th>2460822</th></lod<></th></lod<>	<lod< th=""><th>1847247</th><th>2313634</th><th>2447106</th><th>2363639</th><th>2363370</th><th>2324981</th><th>2329800</th><th>2404538</th><th>2110279</th><th>2186137</th><th>2070249</th><th>2530875</th><th>1976126</th><th>1886278</th><th>2460822</th></lod<>	1847247	2313634	2447106	2363639	2363370	2324981	2329800	2404538	2110279	2186137	2070249	2530875	1976126	1886278	2460822
S32(MR)	<lod< th=""><th>311.2 208.2</th><th>2707230</th><th>2866026</th><th>3275238</th><th>3383702</th><th>4345199</th><th>2932042</th><th>3351702</th><th>3146972</th><th>2995355</th><th>2841084</th><th>3189298</th><th>3113646</th><th>2726427</th><th>3035648</th><th>2724972</th></lod<>	311.2 208.2	2707230	2866026	3275238	3383702	4345199	2932042	3351702	3146972	2995355	2841084	3189298	3113646	2726427	3035648	2724972
Ca42(MR)	4499	2582.6	1891657	3311971	3389163	2195437	4160658	2055113	2115265	1966941	2397922	1608563	848414	2081294	3495160	2661436	2885255
Ca44(MR)	2640.2	1495.4	1202374	2085332	2111215	1439381	2563213	1329842	1390562	1273536	1568732	1040544	549659	1364806	2215565	1731924	1884713
Sc45(MR)	<lod< th=""><th><lod< th=""><th>33.43</th><th>11.81</th><th>74.93</th><th>60.60</th><th>65.97</th><th>56.51</th><th>62.77</th><th>103.70</th><th>45.09</th><th>40.09</th><th>5.77</th><th>193.80</th><th>76.06</th><th>26.28</th><th>11.32</th></lod<></th></lod<>	<lod< th=""><th>33.43</th><th>11.81</th><th>74.93</th><th>60.60</th><th>65.97</th><th>56.51</th><th>62.77</th><th>103.70</th><th>45.09</th><th>40.09</th><th>5.77</th><th>193.80</th><th>76.06</th><th>26.28</th><th>11.32</th></lod<>	33.43	11.81	74.93	60.60	65.97	56.51	62.77	103.70	45.09	40.09	5.77	193.80	76.06	26.28	11.32
1148(MR) Cr52(MR)	26.2	< 29	6315.00	514.94	21406.11	2045 49	20252.33	19232.52	20145.41	24672.59	17463.08	12875.30	4286.08	2394 70	7958 89	5456.82	424 60
Cr53(MR)	<lod< th=""><th><lod< th=""><th>6461.37</th><th>518.10</th><th>2837.52</th><th>2067.73</th><th>1250.48</th><th>1554.13</th><th>2270.48</th><th>2618.94</th><th>1838.95</th><th>1619.08</th><th>109.74</th><th>2510.52</th><th>8322.60</th><th>5584.54</th><th>445.57</th></lod<></th></lod<>	<lod< th=""><th>6461.37</th><th>518.10</th><th>2837.52</th><th>2067.73</th><th>1250.48</th><th>1554.13</th><th>2270.48</th><th>2618.94</th><th>1838.95</th><th>1619.08</th><th>109.74</th><th>2510.52</th><th>8322.60</th><th>5584.54</th><th>445.57</th></lod<>	6461.37	518.10	2837.52	2067.73	1250.48	1554.13	2270.48	2618.94	1838.95	1619.08	109.74	2510.52	8322.60	5584.54	445.57
Mn55(MR)	<lod< th=""><th><lod< th=""><th>23642.98</th><th>15320.89</th><th>20763.60</th><th>20980.43</th><th>17441.97</th><th>22605.88</th><th>21607.21</th><th>21736.94</th><th>18600.85</th><th>18609.43</th><th>18135.17</th><th>24650.14</th><th>24841.37</th><th>24081.93</th><th>15056.78</th></lod<></th></lod<>	<lod< th=""><th>23642.98</th><th>15320.89</th><th>20763.60</th><th>20980.43</th><th>17441.97</th><th>22605.88</th><th>21607.21</th><th>21736.94</th><th>18600.85</th><th>18609.43</th><th>18135.17</th><th>24650.14</th><th>24841.37</th><th>24081.93</th><th>15056.78</th></lod<>	23642.98	15320.89	20763.60	20980.43	17441.97	22605.88	21607.21	21736.94	18600.85	18609.43	18135.17	24650.14	24841.37	24081.93	15056.78
Fe56(MR)	105.8	53.2	244216.78	83985.72	407586.44	335012.98	306792.64	324675.40	327169.91	496830.81	254601.42	222786.28	65988.21	795751.91	417406.43	171204.69	75917.56
Co59(MR)	<lod< th=""><th>47.0</th><th>294.78</th><th>431.86</th><th>425937.30</th><th>453.09</th><th>403.58</th><th>358.40</th><th>448.02</th><th>315.67</th><th>405.35</th><th>299.96</th><th>581.71</th><th>769.28</th><th>440702.01</th><th>417.60</th><th>385.81</th></lod<>	47.0	294.78	431.86	425937.30	453.09	403.58	358.40	448.02	315.67	405.35	299.96	581.71	769.28	440702.01	417.60	385.81
Ni58(MR)	30.6	6 16	2915.75	1646.25	4552.97	4071.71	3787.41	3374.20	3978.98	5088.12	3325.71	2890.16	1141.75	7028.56	4546.87	2494.69	1308.62
Ni60(MR)	25.8	13.2	1434.96	1143.33	2089.67	2017.75	1898.28	1474.34	1962.60	2097.72	1750.05	1496.37	747.51	2081.28	1991.17	1444.76	837.68
Cu63(MR)	<lod< th=""><th>1.6</th><th>9947.60</th><th>8971.63</th><th>11564.00</th><th>11317.01</th><th>13473.34</th><th>11702.28</th><th>11270.22</th><th>11927.60</th><th>11255.92</th><th>11849.23</th><th>10202.97</th><th>10550.55</th><th>11249.46</th><th>8923.38</th><th>8124.93</th></lod<>	1.6	9947.60	8971.63	11564.00	11317.01	13473.34	11702.28	11270.22	11927.60	11255.92	11849.23	10202.97	10550.55	11249.46	8923.38	8124.93
Zn64(MR)	<lod< th=""><th><lod< th=""><th>28982.45</th><th>20897.53</th><th>27236.25</th><th>34382.87</th><th>39405.79</th><th>28128.02</th><th>32213.10</th><th>26770.10</th><th>25003.03</th><th>25489.49</th><th>22077.12</th><th>20477.01</th><th>36109.69</th><th>30688.56</th><th>16505.47</th></lod<></th></lod<>	<lod< th=""><th>28982.45</th><th>20897.53</th><th>27236.25</th><th>34382.87</th><th>39405.79</th><th>28128.02</th><th>32213.10</th><th>26770.10</th><th>25003.03</th><th>25489.49</th><th>22077.12</th><th>20477.01</th><th>36109.69</th><th>30688.56</th><th>16505.47</th></lod<>	28982.45	20897.53	27236.25	34382.87	39405.79	28128.02	32213.10	26770.10	25003.03	25489.49	22077.12	20477.01	36109.69	30688.56	16505.47
Zn66(MR)	<lod< th=""><th><lod< th=""><th>30978.26</th><th>22040.44</th><th>28669.72</th><th>36541.48</th><th>41580.68</th><th>29435.52</th><th>34018.16</th><th>28262.60</th><th>26675.46</th><th>26631.56</th><th>23618.87</th><th>21475.17</th><th>38558.46</th><th>32012.81</th><th>17561.63</th></lod<></th></lod<>	<lod< th=""><th>30978.26</th><th>22040.44</th><th>28669.72</th><th>36541.48</th><th>41580.68</th><th>29435.52</th><th>34018.16</th><th>28262.60</th><th>26675.46</th><th>26631.56</th><th>23618.87</th><th>21475.17</th><th>38558.46</th><th>32012.81</th><th>17561.63</th></lod<>	30978.26	22040.44	28669.72	36541.48	41580.68	29435.52	34018.16	28262.60	26675.46	26631.56	23618.87	21475.17	38558.46	32012.81	17561.63
Ga69(MR)	<lod< th=""><th>44.4</th><th>60.37</th><th>14.34</th><th>96.28</th><th>73.38</th><th>88.03</th><th>69.60</th><th>75.17</th><th>130.87</th><th>50.40</th><th>55.35</th><th>5.77</th><th>309.61</th><th>132.01</th><th>41.08</th><th>11.32</th></lod<>	44.4	60.37	14.34	96.28	73.38	88.03	69.60	75.17	130.87	50.40	55.35	5.77	309.61	132.01	41.08	11.32
Ga71(MR) Ru99(MR)	<lod< th=""><th>31.4</th><th>0.20</th><th>0.21</th><th>0.60</th><th>0.20</th><th>92.60</th><th>0.21</th><th>0.20</th><th>0.41</th><th>0.21</th><th>0.20</th><th>0.00</th><th>0.85</th><th>0.62</th><th>0.39</th><th>0.42</th></lod<>	31.4	0.20	0.21	0.60	0.20	92.60	0.21	0.20	0.41	0.21	0.20	0.00	0.85	0.62	0.39	0.42
Ru101(MR)	0.2	2.6	0.59	0.21	<lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th>0.39</th><th><lod< th=""></lod<></th></lod<>	0.39	<lod< th=""></lod<>
Pd105(MR)	<lod< th=""><th><lod< th=""><th>8.65</th><th>7.80</th><th>8.86</th><th>5.31</th><th>11.53</th><th>3.32</th><th>4.80</th><th>7.05</th><th>4.68</th><th>2.85</th><th><lod< th=""><th>12.26</th><th>13.47</th><th>5.06</th><th>9.44</th></lod<></th></lod<></th></lod<>	<lod< th=""><th>8.65</th><th>7.80</th><th>8.86</th><th>5.31</th><th>11.53</th><th>3.32</th><th>4.80</th><th>7.05</th><th>4.68</th><th>2.85</th><th><lod< th=""><th>12.26</th><th>13.47</th><th>5.06</th><th>9.44</th></lod<></th></lod<>	8.65	7.80	8.86	5.31	11.53	3.32	4.80	7.05	4.68	2.85	<lod< th=""><th>12.26</th><th>13.47</th><th>5.06</th><th>9.44</th></lod<>	12.26	13.47	5.06	9.44
In115(MR) Sb121(MP)	<lod< th=""><th>17.4</th><th><lod< th=""><th><lod 05<="" 2="" th=""><th>0.40</th><th>24.00</th><th><lod 13 71</lod </th><th><lod 12.05<="" th=""><th>26.70</th><th><lod< th=""><th>0.64</th><th><lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<></th></lod<></th></lod></th></lod></th></lod<></th></lod<>	17.4	<lod< th=""><th><lod 05<="" 2="" th=""><th>0.40</th><th>24.00</th><th><lod 13 71</lod </th><th><lod 12.05<="" th=""><th>26.70</th><th><lod< th=""><th>0.64</th><th><lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<></th></lod<></th></lod></th></lod></th></lod<>	<lod 05<="" 2="" th=""><th>0.40</th><th>24.00</th><th><lod 13 71</lod </th><th><lod 12.05<="" th=""><th>26.70</th><th><lod< th=""><th>0.64</th><th><lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<></th></lod<></th></lod></th></lod>	0.40	24.00	<lod 13 71</lod 	<lod 12.05<="" th=""><th>26.70</th><th><lod< th=""><th>0.64</th><th><lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<></th></lod<></th></lod>	26.70	<lod< th=""><th>0.64</th><th><lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<></th></lod<>	0.64	<lod< th=""><th><lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<></th></lod<>	<lod< th=""><th><lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod></th></lod<>	<lod 6.07<="" th=""><th>37.93</th><th><lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod></th></lod>	37.93	<lod 5.84<="" th=""><th><lod< th=""></lod<></th></lod>	<lod< th=""></lod<>
Sb123(MR)	<lod< th=""><th>0.8</th><th>8.26</th><th>2.95</th><th>23.97</th><th>24.39</th><th>12.12</th><th>12.05</th><th>25.99</th><th>17.21</th><th>17.23</th><th>20.96</th><th>1.79</th><th>6.55</th><th>19.90</th><th>5.84</th><th>1.4/</th></lod<>	0.8	8.26	2.95	23.97	24.39	12.12	12.05	25.99	17.21	17.23	20.96	1.79	6.55	19.90	5.84	1.4/
Nd143(MR)	<lod< th=""><th>0.2</th><th>375.60</th><th>49.13</th><th>281.38</th><th>194.77</th><th>198.71</th><th>231.04</th><th>185.92</th><th>389.10</th><th>130.58</th><th>141.84</th><th>16.10</th><th>611.20</th><th>408.47</th><th>286.58</th><th>39.84</th></lod<>	0.2	375.60	49.13	281.38	194.77	198.71	231.04	185.92	389.10	130.58	141.84	16.10	611.20	408.47	286.58	39.84
Nd146(MR)	<lod< th=""><th><lod< th=""><th>378.95</th><th>48.92</th><th>280.37</th><th>199.69</th><th>199.50</th><th>233.95</th><th>189.92</th><th>396.77</th><th>131.22</th><th>146.73</th><th>17.30</th><th>639.31</th><th>420.91</th><th>289.30</th><th>45.29</th></lod<></th></lod<>	<lod< th=""><th>378.95</th><th>48.92</th><th>280.37</th><th>199.69</th><th>199.50</th><th>233.95</th><th>189.92</th><th>396.77</th><th>131.22</th><th>146.73</th><th>17.30</th><th>639.31</th><th>420.91</th><th>289.30</th><th>45.29</th></lod<>	378.95	48.92	280.37	199.69	199.50	233.95	189.92	396.77	131.22	146.73	17.30	639.31	420.91	289.30	45.29
Sm147(MR) Sm149(MR)	<lud 0.2</lud 		58.80 59.00	8.43 9.70	52.17 52 77	36.59	37.56	44.05 44.88	34.79 35.19	72.50	24.67 26.37	∠6.46 27 47	2.98	113.49	71.08	51.79 48.09	7.76 8.60
Gd155(MR)	<lod< th=""><th><lod< th=""><th>128.02</th><th>25.94</th><th>82.38</th><th>51.94</th><th>59.41</th><th>63.58</th><th>54.98</th><th>108.06</th><th>40.19</th><th>44.36</th><th>9.54</th><th>175.41</th><th>141.55</th><th>83.33</th><th>24.95</th></lod<></th></lod<>	<lod< th=""><th>128.02</th><th>25.94</th><th>82.38</th><th>51.94</th><th>59.41</th><th>63.58</th><th>54.98</th><th>108.06</th><th>40.19</th><th>44.36</th><th>9.54</th><th>175.41</th><th>141.55</th><th>83.33</th><th>24.95</th></lod<>	128.02	25.94	82.38	51.94	59.41	63.58	54.98	108.06	40.19	44.36	9.54	175.41	141.55	83.33	24.95
Gd157(MR)	<lod< th=""><th><lod< th=""><th>60.96</th><th>9.28</th><th>50.35</th><th>36.59</th><th>35.97</th><th>40.72</th><th>36.79</th><th>71.76</th><th>22.54</th><th>24.42</th><th>3.38</th><th>111.17</th><th>65.90</th><th>46.14</th><th>7.97</th></lod<></th></lod<>	<lod< th=""><th>60.96</th><th>9.28</th><th>50.35</th><th>36.59</th><th>35.97</th><th>40.72</th><th>36.79</th><th>71.76</th><th>22.54</th><th>24.42</th><th>3.38</th><th>111.17</th><th>65.90</th><th>46.14</th><th>7.97</th></lod<>	60.96	9.28	50.35	36.59	35.97	40.72	36.79	71.76	22.54	24.42	3.38	111.17	65.90	46.14	7.97
1 D159(MR)		<lud< th=""><th>6.69</th><th>1.27</th><th>36.86</th><th>4.92 26.56</th><th>4.97 26.63</th><th>5.40 27.43</th><th>25 99</th><th>8.92 47 08</th><th>2.98</th><th>3.05</th><th>0.40</th><th>15.01</th><th>7.88</th><th>5.65 27.26</th><th>1.05</th></lud<>	6.69	1.27	36.86	4.92 26.56	4.97 26.63	5.40 27.43	25 99	8.92 47 08	2.98	3.05	0.40	15.01	7.88	5.65 27.26	1.05
Dy162(MR)	<lod< th=""><th><lod< th=""><th>33.63</th><th>8.43</th><th>36.66</th><th>26.76</th><th>27.82</th><th>28.67</th><th>26.39</th><th>48.95</th><th>17.65</th><th>17.09</th><th>2.19</th><th>85.17</th><th>41.86</th><th>28.42</th><th>6.50</th></lod<></th></lod<>	<lod< th=""><th>33.63</th><th>8.43</th><th>36.66</th><th>26.76</th><th>27.82</th><th>28.67</th><th>26.39</th><th>48.95</th><th>17.65</th><th>17.09</th><th>2.19</th><th>85.17</th><th>41.86</th><th>28.42</th><th>6.50</th></lod<>	33.63	8.43	36.66	26.76	27.82	28.67	26.39	48.95	17.65	17.09	2.19	85.17	41.86	28.42	6.50
Er167(MR)	<lod< th=""><th><lod< th=""><th>13.57</th><th>3.37</th><th>16.52</th><th>12.00</th><th>12.32</th><th>12.47</th><th>12.59</th><th>21.16</th><th>8.93</th><th>7.73</th><th>0.99</th><th>42.48</th><th>17.20</th><th>11.49</th><th>3.15</th></lod<></th></lod<>	<lod< th=""><th>13.57</th><th>3.37</th><th>16.52</th><th>12.00</th><th>12.32</th><th>12.47</th><th>12.59</th><th>21.16</th><th>8.93</th><th>7.73</th><th>0.99</th><th>42.48</th><th>17.20</th><th>11.49</th><th>3.15</th></lod<>	13.57	3.37	16.52	12.00	12.32	12.47	12.59	21.16	8.93	7.73	0.99	42.48	17.20	11.49	3.15
Er168(MR)	<lod< th=""><th><lod< th=""><th>13.37</th><th>3.80</th><th>15.71</th><th>12.20</th><th>12.32</th><th>12.67</th><th>12.79</th><th>21.78</th><th>8.72</th><th>7.73</th><th>0.99</th><th>42.27</th><th>17.20</th><th>11.29</th><th>3.15</th></lod<></th></lod<>	<lod< th=""><th>13.37</th><th>3.80</th><th>15.71</th><th>12.20</th><th>12.32</th><th>12.67</th><th>12.79</th><th>21.78</th><th>8.72</th><th>7.73</th><th>0.99</th><th>42.27</th><th>17.20</th><th>11.29</th><th>3.15</th></lod<>	13.37	3.80	15.71	12.20	12.32	12.67	12.79	21.78	8.72	7.73	0.99	42.27	17.20	11.29	3.15
Yb173(MR)	<lod< th=""><th><lod< th=""><th>9.05</th><th>2.90</th><th>14.50</th><th>11.61</th><th>9.94</th><th>11.01</th><th>10.80</th><th>18.46</th><th>7.23</th><th>6.72</th><th>0.00</th><th>36.56</th><th>12.64</th><th>7.98</th><th>2.52</th></lod<></th></lod<>	<lod< th=""><th>9.05</th><th>2.90</th><th>14.50</th><th>11.61</th><th>9.94</th><th>11.01</th><th>10.80</th><th>18.46</th><th>7.23</th><th>6.72</th><th>0.00</th><th>36.56</th><th>12.64</th><th>7.98</th><th>2.52</th></lod<>	9.05	2.90	14.50	11.61	9.94	11.01	10.80	18.46	7.23	6.72	0.00	36.56	12.64	7.98	2.52
Pt195(MR)	<lod< th=""><th>0.2</th><th>0.39</th><th><lod< th=""><th>0.20</th><th>0.20</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0.2	0.39	<lod< th=""><th>0.20</th><th>0.20</th><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	0.20	0.20	<lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Er166(MR)	<lod< th=""><th><lod< th=""><th>15.34</th><th>3.58</th><th>17.93</th><th>12.79</th><th>12.72</th><th>12.67</th><th>12.99</th><th>22.61</th><th>8.93</th><th>8.34</th><th>0.99</th><th>43.54</th><th>18.44</th><th>11.88</th><th>3.35</th></lod<></th></lod<>	<lod< th=""><th>15.34</th><th>3.58</th><th>17.93</th><th>12.79</th><th>12.72</th><th>12.67</th><th>12.99</th><th>22.61</th><th>8.93</th><th>8.34</th><th>0.99</th><th>43.54</th><th>18.44</th><th>11.88</th><th>3.35</th></lod<>	15.34	3.58	17.93	12.79	12.72	12.67	12.99	22.61	8.93	8.34	0.99	43.54	18.44	11.88	3.35
10172(MR)	<lud 164 8</lud 	<lud 230</lud 	9.83 242368	2.74	14.10 304162	242658	9.54	229916	256730	18.67	7.23	6.72 198617	0.80	36.98	13.47 470724	8.57	2.94
Ti47(HR)	14.4	17.8	2688	5373	12757	12283	7765	14194	15352	20610	11094	9044	1618	34966	8574	2406	5294
Ti48(HR)	15.8	19	2684	5352	12670	11857	7696	14092	14949	20014	10801	8843	1577	34543	8591	2539	5084
As75(HR)	<lod< th=""><th><lod< th=""><th>41.10</th><th>16.03</th><th>182.88</th><th>229.40</th><th>112.07</th><th>190.32</th><th>221.51</th><th>232.71</th><th>134.41</th><th>113.15</th><th>-1.19</th><th>127.44</th><th>207.66</th><th>18.11</th><th>10.90</th></lod<></th></lod<>	<lod< th=""><th>41.10</th><th>16.03</th><th>182.88</th><th>229.40</th><th>112.07</th><th>190.32</th><th>221.51</th><th>232.71</th><th>134.41</th><th>113.15</th><th>-1.19</th><th>127.44</th><th>207.66</th><th>18.11</th><th>10.90</th></lod<>	41.10	16.03	182.88	229.40	112.07	190.32	221.51	232.71	134.41	113.15	-1.19	127.44	207.66	18.11	10.90
M095(HR) La139(HR)	0.2	<lod< th=""><th>502.44</th><th>53.35</th><th>290.24</th><th>217.79</th><th>231.89</th><th>200.75</th><th>216.91</th><th>324.59</th><th>254.99 136.96</th><th>200.39</th><th>21.07</th><th>455.02</th><th>533.85</th><th>210.26</th><th>46.13</th></lod<>	502.44	53.35	290.24	217.79	231.89	200.75	216.91	324.59	254.99 136.96	200.39	21.07	455.02	533.85	210.26	46.13
Ce140(HR)	0.2	200	727.61	98.05	564.36	436.17	394.24	483.48	424.23	801.01	264.13	320.52	46.72	1604.50	940.46	484.18	89.11
Pr141(HR)	<lod< th=""><th><lod< th=""><th>94.59</th><th>11.81</th><th>66.47</th><th>51.55</th><th>51.47</th><th>57.97</th><th>49.58</th><th>99.97</th><th>32.33</th><th>37.04</th><th>4.37</th><th>168.02</th><th>105.28</th><th>73.20</th><th>10.27</th></lod<></th></lod<>	<lod< th=""><th>94.59</th><th>11.81</th><th>66.47</th><th>51.55</th><th>51.47</th><th>57.97</th><th>49.58</th><th>99.97</th><th>32.33</th><th>37.04</th><th>4.37</th><th>168.02</th><th>105.28</th><th>73.20</th><th>10.27</th></lod<>	94.59	11.81	66.47	51.55	51.47	57.97	49.58	99.97	32.33	37.04	4.37	168.02	105.28	73.20	10.27
Eu151(HR)	<lod< th=""><th></th><th>12.19</th><th>1.69</th><th>9.67</th><th>6.69</th><th>6.95</th><th>8.31</th><th>6.80</th><th>13.07</th><th>5.10</th><th>5.09</th><th>0.60</th><th>23.46</th><th>13.89</th><th>9.34</th><th>1.89</th></lod<>		12.19	1.69	9.67	6.69	6.95	8.31	6.80	13.07	5.10	5.09	0.60	23.46	13.89	9.34	1.89
Lu175(HR)	<lod< th=""><th><lod< th=""><th>1.38</th><th>0.63</th><th>1.81</th><th>1.38</th><th>1.59</th><th>1.25</th><th>1.60</th><th>2.90</th><th>1.06</th><th>1.02</th><th>0.20</th><th>5.07</th><th>1.87</th><th>1.17</th><th>0.42</th></lod<></th></lod<>	<lod< th=""><th>1.38</th><th>0.63</th><th>1.81</th><th>1.38</th><th>1.59</th><th>1.25</th><th>1.60</th><th>2.90</th><th>1.06</th><th>1.02</th><th>0.20</th><th>5.07</th><th>1.87</th><th>1.17</th><th>0.42</th></lod<>	1.38	0.63	1.81	1.38	1.59	1.25	1.60	2.90	1.06	1.02	0.20	5.07	1.87	1.17	0.42
Ca44(HR)	3860	1503	1429326	2468559	2469400	1677075	3140160	1483472	1633432	1469245	1850161	1225665	651670	1600169	2502369	2024298	2241591