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I. Introduction

Oligopoly theory originated with Cournot, who introduced a model in that the

oligopolists were able to set their outputs as strategies. While Cournot let a

neutral auctioneer determine the market clearing price, Bertrand claimed that

it is more natural to let the oligopolists set their prices. Although Bertrand’s

pricing mechanism is more plausible, the equilibrium behaviour of his model

is counterintuitive. The Bertrand paradox states that under certain circum-

stances the unique equilibrium is given by the two firms charging the competi-

tive price in the duopolistic case. Edgeworth resolved the Bertrand paradox by

dropping the assumption that the duopolist offering lower price has to cover

the whole market. Edgeworth argued that the company offering lower price

is not capable or not interested in covering the entire market. The former

behaviour may be due to capacity constraints and the latter to a U-shaped

marginal cost function. Edgeworth showed that in case of capacity constraints

the Bertrand solution is no longer an equilibrium. His work led to the birth of

the so-called Bertrand-Edgeworth model in that both price and quantity are

decision variables.

Two problems emerge naturally, in the Bertrand-Edgeworth framework.

First, the profit functions of the firms cannot be specified only in the knowl-

edge of the aggregate demand curve. This is because the aggregate demand

curve does not itself provide sufficient information to enable the demand of a

company offering a higher price to be determined. We have to investigate the

rationing problem in order to determine the profit function. This is the topic

of chapter 4 of my Ph.D. thesis. Second, we have to investigate the equilibrium

behaviour of the Bertrand-Edgeworth model. I address this question in chapter

5 of my Ph.D. thesis.

I have written my Ph.D. thesis in Hungarian with the title “Adagolási

szabályok és Bertrand-Edgeworth oligopóliumok” (“Rationing Rules and

Bertrand-Edgeworth Oligopolies”). The main results of my research are sum-
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marized in the following four papers.

The first one entitled “Implementation of Rationing Rules” has been sub-

mitted to an international journal. It develops the mathematical structure

required for discussing rationing rules in a uniform framework. To simplify our

analysis we focus on duopolistic situations. The extension of the structure to

the oligopolistic case is straightforward. We have to analyze the rationing prob-

lem at the individual level and at the market level. Suppose that the low-price

firm does not satisfy the entire demand of a consumer. Then the high-price

firm faces a so-called residual demand. This leads to the notion of the individ-

ual rationing rule, which determines the quantities of both firms product that

they can sell to a consumer given the consumer’s individual demand curve,

the firm’s own price, and its rival’s price as well as the quantity offered by the

rival to the consumer. The market rationing rule can be obtained by aggre-

gation of individual rationing rules. Since the residual demand of the market

may depend on the order in which the consumers were served by the low-

price firm, a probabilistic model seems to be appropriate for determining the

residual demand on a market. The two most frequently applied rationing rules

in the literature are the so-called efficient and the so-called random rationing

rules. Within the developed framework we analyze market situations in which

a given rationing rule is applicable.

The second paper in this collection was presented on a Ph.D. conference

at the Budapest University of Economic Sciences. “Which rationing rule does

a single consumer follow?” considers the individual residual demand of a con-

sumer. Given the utility function of a consumer we can determine its residual

demand by solving its utility maximization problem. For general utility func-

tions we cannot obtain the residual demand explicitly. Therefore, we have to

consider special types of utility functions. For the Cobb-Douglas utility func-

tion we obtain that the consumer behaves according to the combined rationing

rule, while for the quasilinear utility function we obtain that the consumer be-

haves according to the efficient rationing rule. This paper appeared in Blahó,
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A. (ed.), The Future in the Present: - Changing Society, New Scientific Issues.

Budapest: Budapest University of Economic Sciences, 187-200.

The third paper analyzes the capacity constrained Bertrand-Edgeworth

game. In general, the Bertrand-Edgeworth game does not have a Nash equi-

librium in pure strategies. We obtain that for price elastic demand curves the

capacity constrained Bertrand-Edgeworth game possesses a Nash equilibrium

in pure strategies for any capacity constraints. While if the demand curve has

a price inelastic part, then there are capacity levels for which the Bertrand-

Edgeworth game does not have an equilibrium in pure strategies. We can relax

the elasticity assumption imposed on the demand curve in case of efficient

rationing, if we do not allow a firm to be arbitrarily small in capacity with

respect to its rival. Then the demand curve can be even price inelastic at

any price level, to guarantee existence of equilibrium in pure strategies. The

paper “Existence of Pure Strategy Nash Equilibrium in Bertrand-Edgeworth

Oligopolies” appeared in Economics Letters 1999 Vol. 63(2), 201-206.

The fourth article investigates a two-stage Bertrand-Edgeworth game in

which the firms can select the applied rationing rule. We introduce the com-

bined rationing rule. The two limit cases of the combined rationing rule are the

efficient and the random rationing rules. The paper “A two-stage Bertrand-

Edgeworth game” appeared in Economics Letters 1999 Vol. 65(3), 353-358.
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II. Implementation of rationing rules

Abstract:

The Bertrand-Edgeworth duopolistic models may be specified by applying

a rationing rule. The present purpose is to discuss a rationing problem within

a uniform framework. A system of concepts are introduced for the detailed

examination of the rationing rule. We will show that our framework is capable

of integrating those well-known market situations in which a certain rationing

rule can be implemented. Additionally, we will present a new more general way

of implementing the random rationing rule in large but finite markets.

Keywords: Duopoly; Bertrand-Edgeworth; Rationing.

JEL classification: D45; L13.

1 Introduction

The rationing problem examined here arises in Bertrand-Edgeworth-type

duopolies. In Bertrand-Edgeworth models the price and the quantity are si-

multaneously decision variables.

The complete specification of the model is normally given in two ways. One

of these assumes that the demand side is given in terms of a representative

consumer utility function (see, for example, Benassy, 1986). In this case we

have to deal with the consumer’s utility maximization problem in conditions

of limited supply. Such analyses have been carried out by Howard (1977), Neary

and Roberts (1980) and Dixon (1987).

It is another commonly applied means for completely specifying the model,

which gives rise to the rationing problem intended for analysis here. In the

partial approach the consumer side is given by the aggregate demand curve.

In the absence of further information this results in an under-specified model.

This is because the aggregate demand curve does not itself provide sufficient

information to enable the demand of a company offering a higher price to be
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determined. We substitute for the lack of information by a rationing rule. It

should be noted that knowledge of the aggregate demand curve is sufficient, if

the duopolist offering at a lower price covers the whole market. This situation

holds in the Bertrand duopoly. In the Bertrand-Edgeworth duopoly, however,

the company offering at a lower price is not capable or not interested in covering

the entire market. The former behaviour may be due to capacity constraints

and the latter to a U-shaped marginal cost function.

There are many conceivable rationing rules. The two most frequently ap-

plied rationing rules in the literature are the efficient and the random rationing

rules. The random rationing rule has been applied for example by Beckmann

(1965) in determining the mixed strategy Nash equilibrium for the Bertrand-

Edgeworth duopoly game with capacity constraints in case of a linear demand

curve and by Allen and Hellwig (1986) in the asymptotic investigation of the

Bertrand-Edgeworth oligopoly model with capacity constraints. Dasgupta and

Maskin (1986) demonstrated the existence of mixed strategy equilibrium in

the case of random rationing for demand curves which intersect both axes.

Using the efficient rationing rule, Levitan and Shubik (1972) have determined

the Nash equilibrium for the Bertrand-Edgeworth game in mixed strategies,

and Vives (1986) has investigated the asymptotic behaviour of the Bertrand-

Edgeworth oligopolistic model. Market situations that implement the efficient

or the random rationing rule have been summarized by Davidson and De-

neckere (1986).

In Tasnádi (1999) we introduced the notion of a combined rationing rule

in order to investigate a two-stage Bertrand-Edgeworth game in that each

duopolist can select the way it will serve the consumers, if it becomes the low-

price firm. The efficient and random rationing rules are also combined rationing

rules.

Dixon (1987) already introduced a general framework for the investigation

of rationing rules. We extend Dixon’s (1987) model by incorporating explicitly

into our model the order in which the consumers are served. Furthermore, we
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want to investigate markets with finite but many consumers. Therefore, we

introduce the mathematical structure required for discussing rationing rules

in a uniform framework. The precise mathematical foundation of the random

rationing rule by Allen and Hellwig (1986) inspired the formulation of the

framework presented in this article.

Additionally, we show that in the case of many but finite consumers the

random rationing rule will be implemented approximately, if the consumers

are served randomly and if none of the consumers’ share of the entire de-

mand is significant. Hence, the commonly applied restrictions (see for instance

Davidson and Deneckere, 1986; Dixon, 1987) that consumers have identical

demand curves or unit demands can be dropped, if we content ourselves with

asymptotic results.

The second section introduces the rationing concept and what is understood

by the applicability of a rationing rule in a duopolistic market. In the third

section we take the combined rationing rule as an example to show that our

system of concepts is appropriate for the discussion of the implementation of

rationing rules. The fourth section contains an asymptotic implementation of

the random rationing rule.

2 Rationing rules

We will consider only duopolies for the sake of simplicity. The producers’ deci-

sions can be described by a price-quantity pair. Denote as Ai = R2
+ (i ∈ {1, 2})

the ith duopolists’ decision set. The price and quantity pair (pi, qi) ∈ Ai de-

notes a decision of duopolist i ∈ {1, 2}. Furthermore, let A = A1×A2 be the set

of decisions. In the following it will be assumed that the producers are indexed

so that p1 < p2. We will disregard cases where p1 = p2. There is only need

for rationing if q1 < D(p1), so that we will be restricted to the examination of

decisions on the set A′ := {a ∈ A | p1 < p2, q1 < D(p1)}. The demand of the

product of a company offering at a higher price is called residual demand.
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Rationing occurs at individual level and at market level. First, on the level

of consumers the residual demand of a consumer has to be determined, if the

consumer’s entire demand has not been satisfied by the low-price firm. Second,

on the level of the market the residual demand that the high-price firm faces

has to be determined, which depends on the way that consumers are served

and on the consumers’ individual residual demands.

Let us denote the consumers’s set by Ω. Above the consumers’s set there

is a measurable space (Ω,A, µ), where µ is assumed to be a finite measure.

Each consumer’s demand is described by a bounded and measurable function

d : R+ × Ω → R+, where d(p, ω) is the demand of consumer ω ∈ Ω at price

p. The aggregate demand is thus D(p) =
∫

Ω
d(p, ω)dµ(ω). Let us introduce

D ⊂ RR+

+ to denote the set of permitted demand functions.

We have to define the notion of the individual rationing rule:

Definition 2.1. The individual rationing rule of consumer ω ∈ Ω is the func-

tion giving the quantity of product that a firm can sell to consumer ω given the

individual demand curve d(·, ω), the firm’s own price, and its rival’s price as

well as the quantity offered by the rival to consumer ω. The consumers’ indi-

vidual rationing rules on a duopolistic market can be described by a mapping

of the form ρ : D × R+ × R2
+ × Ω→ R+.

If we denote by da1(p, ω) the residual demand of consumer ω ∈ Ω, where

a1 ∈ A1 and p1 < p, then

ρ(d(·, ω), p1, p2, q2, ω) = d(p1, ω)

ρ(d(·, ω), p2, p1, q1, ω) = da1(p2, ω).

To derive the rationing rule of a consumer we have to solve the consumer’s

utility maximization problem under constrained supply. Such investigations

have been carried out by Neary and Roberts (1980) in general and by Dixon

(1987) in context of the Bertrand-Edgeworth game. Shubik (1955) already

noted that unless income effects a consumer will behave according to the ef-

ficient rationing rule. From Tasnádi (1998) it follows that a consumer with a
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Cobb-Douglas utility function of form u(x,m) = Axαmβ behaves according to

a combined rationing rule (Definition 2.9) with parameter β
α+β

, where x is the

amount purchased from the duopolists’ product, m is the consumption from a

composite commodity, 0 < α, 0 < β and α+β < 1. We will focus on analyzing

the rationing problem at the market level and refer mainly to Dixon (1987) in

considering the level of the individual household.

We will use the following definition for the rationing rule:

Definition 2.2. Let a rationing rule be a function giving the quantity of

product that a firm can sell when the aggregate demand curve, the firm’s own

price, and its rival’s price and quantity are known. Formally, the rationing rule

on a duopolistic market is a mapping of the form R : D × R+ × R2
+ → R+.

The residual demand associated with a decision a ∈ A′ is denoted by Da1 .

To determine the residual demand the quantities offered by the low-price firm

to each consumer have to be given separately. A bounded and A-measurable

function X : Ω→ R+ is called an assignment, where X(ω) is the quantity that

the low-price firm offers to consumer ω and X(ω) ≤ d(p1, ω).

It shall be assumed that for a fixed decision a ∈ A′ there is a probability

space (Ω′,A′, P ), where Ω′ is the set of assignments and A′ is a σ-algebra on

Ω′. Xω is then a random variable of form Ω′ → [0, d(p1, ω)].

Of course only those assignments are interesting that allocate q1 products

to the consumers. Therefore we introduce the notion of an allocation.

Definition 2.3. An assignment Y ∈ Ω′ is called an allocation, if∫
Ω
Y (ω)dµ(ω) = q1.

We collect the above structures in the object defined below.

Definition 2.4. A producer-determined market situation can be described by

the structure

s = 〈(Ω,A, µ), d, ρ, {1, 2}, (p1, q1, p2, q2), (Ω′,A′, P )〉

where it is assumed that (p1, q1, p2, q2) ∈ A′.
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Assuming that the saleable quantities on the market can be given by a

rationing rule R, the residual demand can be given as follows:

Da1(p) = R(D, p, p1, q1), p > p1.

It is important to determine the market situations that a particular ra-

tioning rule may apply to. The following two conditions express that we regard

only allocations in our model.

Definition 2.5. A market situation s satisfies the supply condition, if

P ({Y ∈ Ω′ |
∫

Ω

Y (ω)dµ(ω) = q1}) = 1.

To state this in words: an assignment is an allocation with probability one.

We weaken the supply condition to prepare our framework to handle asymp-

totic results.

Definition 2.6. A sequence (s(n))∞n=1 of market situations satisfy the asymp-

totic supply condition, if p
(n)
1 = p1, p

(n)
2 = p2, q

(n)
1 = q1, q

(n)
2 = q2, and

∀ε > 0 : lim
n→∞

P (n)

({
Y ∈ Ω′(n) :

∣∣∣∣∫
Ω(n)

Y (ω)dµ(ω)− q1

∣∣∣∣ < ε

})
= 1.

Now, we are ready to define the implementability of rationing rules. We

introduce two types of implementations.

Definition 2.7. We say that in a market situation s a rationing rule R is

implemented if s satisfies the supply condition and

P

(
Y ∈ Ω′ | R(D, p2, p1, q1) =

∫
Ω

ρ(d(·, ω), p2, p1, Y (ω), ω)dµ(ω)

)
= 1

provided the integral exists.

To investigate the applicability of a rationing rule in large but finite markets

we define the notion of asymptotic implementation.
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Definition 2.8. A sequence (s(n))∞n=1 of market situations asymptotically im-

plements a rationing rule R, if the sequence (s(n))∞n=1 satisfies the asymptotic

supply condition and for all ε > 0 :

lim
n→∞

P (n)

({
Y ∈ Ω′(n) :

∣∣∣∣∣
∫

Ω(n) ρ
(n)(d(n)(·, ω), p2, p1, Y (ω), ω)dµ(ω)

R(D, p2, p1, q1)
− 1

∣∣∣∣∣ < ε

})
= 1

provided the integral exists.

An implementable rationing rule is also asymptotically implementable, be-

cause if the market situation s implements rationing rule R, then the sequence

(s, s, . . . , s, . . . ) of market situations asymptotically implements rationing rule

R.

We will investigate combined rationing rules.

Definition 2.9. A function R : D × R+ × R2
+ → R+ is called a combined

rationing rule with parameter λ ∈ [0, 1], if the demand faced by the firm

j ∈ {1, 2} is given by

Rj(D, pj, pi, qi) :=


D(pj), if pj < pi;

qj
q1+q2

D(pj), if pj = pi;

max (D(pj)− α(pi, pj)qi, 0) , if pj > pi;

where α(pi, pj) = (1− λ)
D(pj)

D(pi)
+ λ and i 6= j.

The efficient and the random rationing rules are also combined rationing

rules. We can see this by selecting for λ in Definition 2.9 the values 1 and 0

respectively.

3 Implementations of the combined rationing

rule

We will demonstrate that our concept of implementability is capable of dis-

cussing rationing rules in detail. We will consider combined rationing rules. We
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already mentioned in Tasnádi (1999) that the implementations of a combined

rationing rule can be obtained by combining implementations of the efficient

and the random rationing rules on a certain market. An overview of the im-

plementations of the efficient and the random rationing rules can be found for

instance in Davidson and Deneckere (1986).

3.1 Identical individual demand curves

Let the set of consumers be Ω = {1, . . . , I}. We assume that every consumer’s

demand curve d(·) is identical. Furthermore, we assume that every consumer’s

individual rationing rule is the efficient rationing rule. Let the first producer’s

price be the lower, i.e. p1 < p2. In the case of interest to us, we assume that

q1 < I · d(p1).

A combined rationing rule with parameter λ ∈ [0, 1] can be implemented

briefly in the following way: let 1− λ portion of the low-price firm’s supply be

sold to randomly selected consumers by satisfying their entire demand, and let

the remaining λ portion of the low-price firm’s supply uniformly distributed

amongst the unsatisfied consumers.

Clearly bq1/d(p1)c persons can be supplied completely at the low price.

Suppose, that the low-price firm supplies only m := b(1 − λ)q1/d(p1)c con-

sumers entirely. The remaining consumers obtain q := q1−md(p1)
I−m amount of the

product. This market situation is described by the structure

sI = 〈(Ω,P(Ω), ζ), d∗, ρ, {1, 2}, (p1, q1, p2, q2), (Ω′,A′, P )〉

where ζ is now the counting measure, d∗(p, ω) = d(p) for all ω ∈ Ω, ρ is the

efficient rationing rule for every consumer, and P is the measure of the uniform

distribution on set

{f : Ω→ [0, d(p1)] | |f−1(d(p1))| = m and |f−1(q)| = I −m}.

The supply condition is satisfied because∫
Ω

X(ω)dζ(ω) = md(p1) + (I −m)q = q1.
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Let us denote by B the set of those consumers, who have been only partly

satisfied at the low price by allocation X. A λ combined rationing rule is

implemented asymptotically in market situation s, because∫
Ω

ρ(d∗(·, ω), p2, p1, X(ω), ω)dµ(ω) =

∫
Ω

(d∗(p2, ω)−X(ω))+ζ(ω) =

=

∫
B

(d∗(p2, ω)−X(ω))+ζ(ω) =

= (I −m)(d(p2)− q)+ =

= (D(p2)−md(p2)− (q1 −md(p1)))+ ≈

≈ (D(p2)− q1(1− λ)
D(p2)

D(p1)
− q1λ)+,

holds with probability one, if I is sufficiently large.

3.2 Consumer’s with unit demand

We regard the other frequently applied market in that every consumer’s de-

mand is either a unit of the good or nothing. Let the consumers side be given

by the ([0, 1],B([0, 1]), µ) measure space, where µ denotes in this subsection

the Lebesgue-Borel measure on the unit interval. In fact we could have chosen

any nonatomic finite measure. Let the consumer’s reservation prices be given

by the measurable and strictly decreasing function r : [0, 1] → R+. Then the

consumers demand curves are

d(p, ω) =

 1, if p ≤ r(ω) ;

0, if p > r(ω).

At price level p the consumers in interval [0, D(p)] are those who are demanding

a unit of the good, and their demand equals to D(p), because r is decreasing.

Let p1 < p2 and q1 < D(p1).

In order to implement a combined rationing rule with parameter λ we will

assign to the consumers in interval [0, D(p2)] a higher probability of purchasing

from the low-price firm, than to those consumers in interval (D(p2), D(p1)].

We denote by πH the probability that a consumer in [0, D(p2)] and by πL
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the probability that a consumer in (D(p2), D(p1)] obtains the good at the low

price. Let

πH := min

{
(1− λ)

q1

D(p1)
+ λ

q1

D(p2)
, 1

}
and

πL :=

 (1− λ) q1
D(p1)

, if (1− λ) q1
D(p1)

+ λ q1
D(p2)

≤ 1;

q1−D(p2)
D(p1)−D(p2)

, if (1− λ) q1
D(p1)

+ λ q1
D(p2)

> 1.

Denote by M the set of [0, 1]→ {0, 1} functions which take the value zero

on the interval (D(p1), 1]. The value f(x) (x ∈ [0, 1]) of a function f ∈ M

expresses whether the consumer x has secured a supply of the product at the

lower price.

Consider base set {0, 1} and the σ-algebra P({0, 1}). Take the probability

measures

Pt({1}) =


0, if t ∈ (D(p1), 1];

πL, if t ∈ (D(p2), D(p1)];

πH , if t ∈ [0, D(p2)];

and Pt({0}) = 1−Pt({1}), where t ∈ [0, 1]. Let the probability measures Pt be

independent. It follows that (see, for example Theorem 9.2 and its consequences

in Bauer, 1991) on the measurable space (Ω′,A′) := ({0, 1}[0,1],P({0, 1})[0,1])

there exists a probability measure P for which:

∀T ⊂ [0, 1] : |T | <∞, P rT (P ) =
∏
t∈T

Pt,

where Pr is the projection operator. The measure P cannot be given explicitly,

but this is not necessary to solve the problem. Denote by Xt : Ω′ → {0, 1}

independent random variables for which Xt(f) = f(t), where t ∈ [0, 1] and

f ∈ Ω′.

Proposition 3.1. The market situation described above implements a λ com-

bined rationing rule.

Proof. First, we suppose that (1 − λ) q1
D(p1)

+ λ q1
D(p2)

≤ 1. By Kolmogorov’s
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strong law of large numbers,

Yn :=
n∑
i=1

Xti

D(p1)

n
=

mn∑
i=1

Xti

D(p1)

n
+

n∑
i=mn+1

Xti

D(p1)

n
→

→ πHD(p2) + πL(D(p1)−D(p2)) = q1

(1)

with probability one, if n → ∞, where mn :=
⌊
D(p2)
D(p1)

n
⌋
, ti ∈

[ i−1
n
D(p1), i

n
D(p1)). The limit of Yn is a quantity which approaches a Rie-

mann integral. Thus if f ∈ {0, 1}[0,1], the Riemann integral of f exists with

probability one and equals to q1 with probability one. The value of
∫ D(p1)

0
fdµ

gives the demand of those consumers, who obtain product at price p1. Hence,

the supply condition is satisfied.

We determine the demand of those consumers, who are served by the low-

price firm:

Zn :=
n∑
i=1

Xti

D(p2)

n
→ πHD(p2) = (1− λ)q1

D(p2)

D(p1)
+ λq1, (2)

where ti ∈ [ i−1
n
D(p2), i

n
D(p2)). The limit of Zn is a quantity which approaches

a Riemann integral. Thus if f ∈ {0, 1}[0,1], the Riemann integral of f on interval

[0, D(p2)] exists with probability one and equals to (1 − λ)q1
D(p2)
D(p1)

+ λq1 with

probability one. The value of
∫ D(p2)

0
fdµ gives the demand of those consumers

with higher reservation prices, who obtain product at price p1. Therefore, we

conclude that the current market situation implements a combined rationing

rule with parameter λ.

Second, we investigate the case of

(1− λ)
q1

D(p1)
+ λ

q1

D(p2)
> 1. (3)

Regarding (1) by Kolmogorov’s strong law of large numbers,

Yn → D(p2) + q1 −D(p2) = q1

with probability one, if n→∞. Hence, the supply condition is satisfied.

Similarly to (2) and its consequences we obtain that the demand of those

consumers who are served by the low-price firm Zn approaches to D(p2) with
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probability one. Therefore, the residual demand equals zero. A combined ra-

tioning rule with parameter λ gives the same value because of (3).

4 An implementation of the random rationing

rule

In this section we present an asymptotic implementation of the random ra-

tioning rule. In comparison to previous results (configure Davidson and De-

neckere, 1986; Dixon, 1987) on markets with finitely many consumers we drop

the assumption of equal demand curves.

We are looking for an asymptotic implementation, therefore we will regard

a sequence of market situations (s(n))∞n=1. Let the set of consumers in the nth

market situation be given by the measure space ({1, . . . , n},P({1, . . . , n}), ζn)

where ζn denotes the counting measure on set {1, . . . , n}. We denote by d(n)

the demand curves of the nth market situation. The prices and quantities

set by the duopolists are the same in each market situation, i.e. p1 := p
(n)
1 ,

p2 := p
(n)
2 , q1 := q

(n)
1 and q2 := q

(n)
2 for all n ∈ N. Let p1 < p2 and q1 < D(p1).

If a consumer is served by the low-price firm, then its entire demand will be

served. Thus, the set of assignments in the nth market situation is

Ω(n) = {f : {1, . . . , n} → R+ | ∀i ∈ {1, . . . , n} : f(i) ∈ {0, d(n)(p1, i)}}.

Let the demand curves d(n) be decreasing. Furthermore, suppose that the

market demand remains the same in every market situation, i.e. D(p) =∑n
i=1 d

(n)(p, i) for all prices p ≥ 0 and market situations n ∈ N. We assume

that in any market situation the individual demands are insignificant with

respect to the entire market demand.

Assumption 4.1. There exists a positive real value c such that for any n ∈ N

we have that

d(n)(p, i) <
c

n
D(p)

for all consumers i ∈ {1, . . . , n} and prices p ≥ 0.
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Suppose that every consumers’ chance of obtaining the low-price product

equals q = q1/D(p1). Hence, we assume that P (n) is the uniform distribution

with parameter 1/2n on the set Ω(n), i.e. P (n)(f) = 1/2n for all f ∈ Ω(n).

Proposition 4.2. The sequence s(n) of market situations defined above imple-

ments the random rationing rule asymptotically.

Proof. First, we show that the sequence s(n) of market situations satisfies the

asymptotic supply condition. Let us denote by X
(n)
i the random variable, which

tells us the amount of product obtained by consumer i in the nth market

situation. For any n ∈ N the random variables have independent characteristic

distributions of parameter q. The expected value of allocated products is

E

(
n∑
i=1

X
(n)
i

)
= q

n∑
i=1

d(n)(p1, i) = qD(p1) = q1. (4)

Furthermore, the variance of allocated products is

Var

(
n∑
i=1

X
(n)
i

)
= q(1− q)

n∑
i=1

(
d(n)(p1, i)

)2
<

< q(1− q)
n∑
i=1

( c
n
D(p1)

)2

= q(1− q)c
2

n
D2(p1)

(5)

because of Assumption 4.1. Therefore, the asymptotic variance is

lim
n→∞

Var

(
n∑
i=1

X
(n)
i

)
= 0. (6)

The asymptotic supply condition is satisfied because of the Chebyshev inequal-

ity, equation (4), and equation (6).

Second, we have to show that the residual demand equals the value sug-

gested by the random rationing rule. We can calculate the expected residual

demand in the following way

E(Da1(p2)) = E

(
n∑
i=1

ρ(p2, p1, X
(n)
i , i)

)
=

= (1− q)
n∑
i=1

d(n)(p2, i) = D(p2)− q1

D(p1)
D(p2),

(7)
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because ρ(n)(p2, p1, X
(n)
i , i) equals d(n)(p2, i) with probability 1−q, if consumer

i has not been served, and 0 with probability q, if consumer i has been served

at the low price. Similarly to (5), the variance of the residual demand can also

be determined:

Var

(
n∑
i=1

ρ(p2, p1, X
(n)
i , i)

)
= q(1− q)

n∑
i=1

(
d(n)(p2, i)

)2
<

< q(1− q)
n∑
i=1

( c
n
D(p2)

)2

=

= q(1− q)c
2

n
D2(p2).

(8)

Hence, by the Chebyshev inequality, equation (7), and equation (8) we conclude

that the random rationing rule is implemented asymptotically by the sequence

(s(n))∞n=1.

5 Summary

If the consumers’ aggregate demand curve is known, a rationing rule is capable

of giving the quantities that can be sold by duopolists. Since the duopolists

serve individuals, the residual demand of a duopolist offering at the higher price

actually depends on the consumers’ individual rationing rules and the way that

the consumers are served. The problem is to establish what kinds of individual

rationing rules and modes of service cause the residual demand of the duopolist

offering at the higher price to coincide with the saleable product quantities

given by particular rationing rules. It was in order to examine this question

that the concept of the implementability of rationing rules was introduced.

The implementability of the combined rationing rule was examined in de-

tail. Additionally, we presented an implementation of the random rationing

rule in the case of many but finitely many consumers without employing the

commonly imposed assumption of equal individual demand curves.
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III. Which rationing rule does a single con-

sumer follow?

Abstract:

We will investigate the amount of the residual demand in a market con-

sisting of only one consumer and two producers. Because there is only one

consumer, we can not really speak about a rationing rule, but we can pose

the question that, which rationing rule is adequate to the utility maximizing

behaviour. We will show that, if the consumer has a Cobb-Douglas utility func-

tion, then the amount purchased by the consumer from the high-price firm lies

between the values determined according to the efficient rationing rule and the

random rationing rule. We will show further, that if the consumer has a quasi-

linear utility function, then in the economically interesting case his residual

demand function will be equal to the residual demand function under efficient

rationing.

Keywords: Rationing; Bertrand-Edgeworth.

JEL classification: D45; L13.

1 Introduction

In Bertrand-Edgeworth duopolies quantities and prices are both decision vari-

ables. At first sight the simultaneous admittance of these two control variables

leads to an underspecified model. Particularly, in the context of partial equi-

librium analysis, where the consumers’ side of the duopoly market is given by

the aggregate demand curve, we can not determine the quantity demanded

from the high-price firm. The missing item in the model is called a rationing

rule. The aggregate demand function and the rationing rule together contain

enough information on the determination of the sales of both duopolists. Let

me mention that the only case in which the knowledge of the aggregate de-

mand curve suffice is when the low-price firm covers the entire market. In

21



Bertrand-Edgeworth type duopolies the low-price firm typically is not able or

not interested in covering the entire market at the low-price. The cause for

this behaviour can be either capacity constraints or a U-shaped marginal cost

functions.

There are many applicable rationing rules, but the two most frequently

used rationing rules are the so called random rationing rule and the efficient

rationing rule.

2 Rationing rules

First we give a formal definition of a rationing rule in a duopolistic environ-

ment. Let us denote the set of the admissible demand curves with D ⊂ RR+

+ .

Definition 2.1. A function is called a rationing rule if it assigns to ev-

ery admissible demand function and to the duopolists’ every quantity and

price choices the saleable amount of products. Formally a rationing rule is a

h : D × R2
+ × R2

+ → R2
+ function.

It is of main interest to find reasonable rationing rules. We will only discuss

the two main rationing rules, namely the random and the efficient one.

In case of the random rationing rule the ratio of the satisfied demand at

the low-price to the entire demand remains constant for all price levels above

the low-price. In fact form the definition below the ratio is 1− qi/D(pi).

Definition 2.2. An h : D × R2
+ × R2

+ → R2
+ rationing rule is called random,

if ∀j ∈ {1, 2} :

hj(D, p1, p2, q1, q2) :=


D(pj) if pj < pi, i 6= j;

qj
q1+q2

D(pj) if pj = pi, i 6= j;

max
(

(1− qi
D(pi)

)D(pj), 0
)

if pj > pi, i 6= j.

By the efficient rationing rule the consumer with a higher reservation price

is served before a consumer with a lower reservation price. Therefore if we shift
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the demand curve leftward by the amount of sales at the low-price, then we

will obtain the residual demand curve. This rationing rule is called efficient

because at given prices and quantities it maximizes consumer surplus (see

Tirole (1988)). Let us give also a formal definition for the efficient rationing

rule.

Definition 2.3. An h : D × R2
+ × R2

+ → R2
+ rationing rule is called efficient,

if ∀j ∈ {1, 2} :

hj(D, p1, p2, q1, q2) :=


D(pj) if pj < pi, i 6= j;

qj
q1+q2

D(pj) if pj = pi, i 6= j;

max(D(pj)− qi, 0) if pj > pi, i 6= j.

For market situations in which the application of the efficient or the random

rationing rule is reasonable see for example Allen and Hellwig (1986), Gelman

and Salop (1983), Tirole (1988) and Wolfstetter (1993).

3 The behaviour of a single consumer market

Now we turn to the case, where the demand side of the market contains only

one consumer. We have now two possibilities to determine the residual de-

mand of the single consumer. First, given the microeconomic theory of con-

sumer behaviour, we can formulate and solve the adequate consumer’s utility

maximizing problem explicitly for a given type of utility function. Second, we

can determine the consumer’s residual demand from the consumer’s individual

demand with the help of an explicitly chosen rationing rule. Of course the first

method gives the right solution for the residual demand. But it is an inter-

esting task to compare the results of the two methods. Of course we can not

really speak about a rationing rule in a single consumer market, but we can

pose the question that, which rationing rule is adequate with the utility maxi-

mizing behaviour. Let us remark, that Howard (1977) and Neary and Roberts

(1980) investigated the utility maximizing decision of a consumer under supply
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constraints, but they did not compare the optimal decision to the rationing

rules.

Now we turn to the formulation of our problem. Consistent with the

main oligopolistic literature our analysis will be of partial nature. Our con-

sumer’s utility function is U(x,m), where x is the amount consumed from the

duopolists’ product and m is his consumption from a composite commodity,

which we call from now on simply money. Furthermore we assume that U is

twice continuously differentiable, Ux > 0, Um > 0. We denote with m our single

consumer’s amount of money and assume that this value is strictly positive.

Our consumer’s utility maximizing problem assuming that the first firm is the

low-price firm (p1 < p2) takes the form as below:

U(x1 + x2,m− p1x1 − p2x2) → max

x1 ≤ q1

p1x1 + p2x2 ≤ m

x1, x2 ≥ 0

(1)

The purchased amount of products from firm 1 and 2 are denoted by x1 and

x2.

From our consumer’s utility function we can derive his demand function. So

we can determine the residual demand function belonging to a given rationing

rule. To compare the residual demand function obtained by the second method

with the solution of problem (1) is quite demanding, perhaps even impossible,

because for general utility functions we can not solve problem (1) explicitly.

But we can get positive results for special types of utility functions.

3.1 Cobb-Douglas utility function

Let us for example investigate our consumer’s behaviour in case of the Cobb-

Douglas utility function. In the Cobb-Douglas case we can relate the solution

to the two main rationing rules. The results are summarized in the next propo-

sition.
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Proposition 3.1. There is only one consumer on a duopol market. His utility

function is u(x,m) = Axαmβ, where 0 < α, 0 < β and α + β ≤ 1. His money

stock is positive and denoted by m. The duopolists’ prices are given, and let

0 < p1 < p2. The low-price firm is offering q1 > 0. Then the there exists a

unique solution to the consumer’s utility maximizing problem. Furthermore

1. if

m > p1q1 +
β

α
p2q1, (2)

then the optimal solution will be x∗1 = q1,

x∗2 =
αm− q1(αp1 + βp2)

(α + β)p2

(3)

and x∗2 is lying between the values suggested by the efficient and the ran-

dom rationing rule;

2. if m ≤ p1q1 + β
α
p2q1, then x∗2 = 0.

Proof. Our utility maximizing consumer has to solve the following problem

A(x1 + x2)α(m− p1x1 − p2x2)β → max

x1 ≤ q1

p1x1 + p2x2 ≤ m

x1, x2 ≥ 0

(4)

We can check that the object function is strictly concave because of our restric-

tions imposed on the parameters α and β. So the uniqueness is guaranteed.

The Lagrangian belonging to problem (4) is L(x1, x2, λ1, λ2) =

A(x1 + x2)α(m− p1x1 − p2x2)β − λ1(x1 − q1)− λ2(p1x1 + p2x2 −m)
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and the appropriate Kuhn-Tucker conditions (5) are the following.

∂L
∂x1

= Aα(x1 + x2)α−1(m− p1x1 − p2x2)β−

Aβp1(x1 + x2)α(m− p1x1 − p2x2)β−1 − λ1 − λ2p1 ≤ 0

∂L
∂x2

= Aα(x1 + x2)α−1(m− p1x1 − p2x2)β−

Aβp2(x1 + x2)α(m− p1x1 − p2x2)β−1 − λ2p2 ≤ 0

∂L
∂λ1

= q1 − x1 ≥ 0

∂L
∂λ2

= m− p1x1 − p2x2 ≥ 0 and

x1 ≥ 0, x2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0 and

x1
∂L
∂x1

= 0, x2
∂L
∂x2

= 0, λ1
∂L
∂λ1

= 0, λ2
∂L
∂λ2

= 0.

(5)

Notice that the Kuhn-Tucker conditions are not defined on the

S := {(x1, x2) ∈ R2
+|p1q1 + p2q2 = m} ∪ {(0, 0)} (6)

set. The values in S cannot be optimal, because their associated utility level

is zero, but positive utility levels are obviously attainable. Therefore λ∗2 = 0.

1. First, let us assume that the optimal solution x∗2 is positive. We will

show that the positivity of x∗2 implicates the positivity of x1 and λ1. Let us

assume that λ1 = 0. Hence if the first condition in (5) is satisfied, then the

second condition will hold as strict inequality. So x2 = 0 would follow, which

is a contradiction. Therefore, we conclude λ1 > 0. Now λ1 > 0 implies x1 > 0

because x1 = q1 holds by the third complementary condition. Therefore, we

have equalities in the first three condition of (5). We now have to look for

nonnegative λ1 fulfiling the first two equalities. From the second equality in

(5) we can get

Aα

p2

(q1 + x∗2)α−1(m− p1q1 − p2x
∗
2)β − Aβ(q1 + x∗2)α(m− p1q1 − p2x

∗
2)β−1 = 0

From the first equality in (5) the existence of nonnegative λ1 follows because

of p1 < p2. We can express x∗2 from the second equality in (5) and we will get

(3). We can check that condition (2) is equivalent to the positivity of x∗2 given

in (3). It can be verified that x∗2 satisfies the budget constraint.
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Now, we show that the value in (3) lies really between the values which the

efficient (xe2 := D(p2)− q1) and the random (xr2 := D(p2)− q1
D(p2)
D(p1)

) rationing

rules would suggest. We need the demand function of the Cobb-Douglas utility

function

D(p) =
αm

p(α + β)
(7)

which is well known (see for example Varian (1992)). So

x∗2 = D(p2)− q1

(
α

α + β

D(p2)

D(p1)
+

β

α + β

)
(8)

Now using the fact that D(p2) < D(p1) because of p1 < p2, we can verify that

xe2 < x∗2 < xr2 regarding the equalities below.

1 >
α

α + β

D(p2)

D(p1)
+

β

α + β
>
D(p2)

D(p1)
(9)

To complete the proof of the first part of the proposition we still have to

show that if x2 = 0 is a solution of (4), then (2) cannot hold. We have to

consider three cases: x1 = 0, 0 < x1 < q1 and x1 = q1.

(i) x1 = x2 = 0 cannot be a solution to (4) because u(0,m) = 0 and positive

utility level is attainable.

(ii) If 0 < x1 < q1, then from (5) λ1 = 0 will follow immediately. We

already know that λ2 = 0. Solving now for x1, we will get x1 = αm
(α+β)p1

. But

substituting this into the third inequality in (5) we will get a contradiction to

(2).

(iii) If x1 = q1, then from the budget constraint we will obtain p1q1 ≤ m.

This is in contradiction to (2).

2. Controversially, let us assume that x2 > 0 is a solution and (2) does not

hold. We already saw in the first part that if x2 > 0 is a solution, then x2 must

take the value given by (3). But by our assumption this is positive. Hence (2)

must hold. So we have got to a contradiction.

Remark 3.2. Considering equation (8) we can see that if β is close to zero,

than our consumer will act approximately according to the random rationing

rule, while if α is close to zero, than our consumer will act approximately

according to the efficient rationing rule.
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3.2 Quasilinear utility function

Now we consider the case of another frequently used utility function. We as-

sume that the single consumer has a quasilinear utility function, particularly

his utility function is U(x,m) = u(x) + m. Furthermore, we assume that u is

twice continuously differentiable, u′ > 0 and u′′ < 0. Our consumer’s utility

maximizing problem assuming that the first firm is the low-price firm (p1 < p2)

takes the form as below:

u(x1 + x2) +m− p1x1 − p2x2 → max

x1 ≤ q1

p1x1 + p2x2 ≤ m

x1, x2 ≥ 0

(10)

Let us write down the Lagrangian belonging to problem (10):

L(x1, x2, λ1, λ2) =

u(x1 + x2) +m− p1x1 − p2x2 − λ1(x1 − q1)− λ2(p1x1 + p2x2 −m)

The object function is twice continuously differentiable, strictly concave and

the constraint functions are convex. Furthermore Slater’s condition is satisfied

because of the assumptions q1 > 0 and m > 0. Therefore the Kuhn-Tucker

conditions (11) are equivalent to our problem (10).

∂L
∂x1

= u′(x1 + x2)− p1 − λ1 − λ2p1 ≤ 0 and ∂L
∂x1

= 0, if x1 > 0;

∂L
∂x2

= u′(x1 + x2)− p2 − λ2p2 ≤ 0 and ∂L
∂x2

= 0, if x2 > 0;

∂L
∂λ1

= q1 − x1 ≥ 0 and ∂L
∂λ1

= 0, if λ1 > 0;

∂L
∂λ2

= m− p1x1 − p2x2 ≥ 0 and ∂L
∂λ2

= 0, if λ2 > 0.

(11)

We can obtain the demand function for the quasilinear utility function

easily. The individual demand function of a consumer with a quasilinear utility

function is

d(p) =

 (u′)−1(p), if u′(m/p) < p,

m/p, if u′(m/p) ≥ p.
(12)

Now let us turn back to our original problem (11). As a first step let us

regard the following proposition:
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Proposition 3.3. There is only one consumer on a duopol market. His utility

function is U(x,m) = u(x) + m, where u ∈ C2(R+), u′ > 0 and u′′ < 0. His

money stock is positive and denoted by m. The duopolists’ prices are given, and

let 0 < p1 < p2. The low-price firm is offering q1 > 0. There exists a unique

solution to problem (10) and let x∗1, x∗2 its solution. Then

1. if x∗2 > 0, u′(q1 + x∗2) > p2

(a) and u′(m
p1

) ≥ p1, then the consumer’s behaviour is following the

random rationing rule;

(b) and u′(m
p1

) < p1, then the consumer will demand even more than the

random rule would suggest;

2. if x∗2 > 0 and u′(q1 +x∗2) = p2, then the consumer’s behaviour is following

the efficient rationing rule.

Proof. Let x∗1, x∗2, λ∗1 and λ∗2 be a solution of problem (11). Our assumptions

about u assures the existence and the uniqueness of the solution x∗1, x∗2 of

problem (10), because the constraint set is nonempty, compact and convex

and the object function is strictly concave.

First, we will show that the positivity of x∗2 implicates the positivity of x1

and λ1. Let us assume that λ1 = 0. Hence, if the first condition in (11) is

satisfied, then the second condition will hold as strict inequality. So x2 = 0

would follow, which is a contradiction. Therefore we conclude λ1 > 0. Now

λ1 > 0 implies x1 > 0 because x1 = q1 holds by the third complementary

condition. Thus, we have only to consider two cases depending on the relation

in the last inequality of (11).

We have to examine under which conditions there are existing λ∗1 > 0,

λ∗2 ≥ 0 such that together with x∗1, x
∗
2 they are a solution of (11). Let us write

down the first two equalities. u′(q1 + x2)− p1

u′(q1 + x2)− p2

 =

 1 p1

0 p2

 λ1

λ2

 (13)
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This equality system has to be solvable for positive λ1 and nonnegative λ2.

The matrix of (13) is invertible and we can obtain the next equivalent system. λ1

λ2

 =
1

p2

 p2 −p1

0 1

 u′(q1 + x2)− p1

u′(q1 + x2)− p2

 (14)

The positivity of λ1 results from the assumptions p2 > p1 and u′ > 0. For λ2

we have to consider two cases.

1. In the first point of the proposition we made the following assumption:

u′(q1 + x∗2) > p2 (15)

The positivity of λ2 is equivalent to assumption (15) by (14). Furthermore,

λ2 > 0 implies that equality holds in the last inequality of (11) by the com-

plementary conditions. This means, that our consumer does spend his entire

money stock. Solving the last two equalities we get x∗1 = q1 and x∗2 = m−p1q1
p2

.

(a) Now we will show, that if (15) and u′(m
p1

) ≥ p1 holds, then our consumer

is acting according to the random rationing rule. Because m/p2 < q1 + x2

we conclude u′(m/p2) > p2 from condition (15). Now using (12), we obtain

d(p2) = m/p2. If we use again (12) we will get d(p1) = m/p1 because of

assumption u′(m/p1) ≥ p1. Therefore, the

x∗2 =
m− p1q1

p2

=
m

p2

(
1− q1

d(p1)

)
= d(p2)

(
1− q1

d(p1)

)
= xr2 (16)

equalities holds. We can verify that q1 ≤ D(p1), because otherwise we would

get x∗2 = 0. We can recognize in (16) the random rationing rule.

(b) Now we assume that (15) and u′(m/p1) < p1 holds. This second

assumption is equivalent to m/p1 > (u′)−1(p1). We use again (12). Hence

d(p1) = (u′)−1(p1). Thus, we obtain the inequality stated below.

x∗2 =
m− p1q1

p2

=
m

p2

(
1− q1

m/p1

)
>
m

p2

(
1− q1

d(p1)

)
= d(p2)

(
1− q1

d(p1)

)
(17)

This is what we wanted to prove. As a limiting case we will get, that if the

amount of money spent at the low-price firm’s product is almost negligible in
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relation to the money stock, then the residual demand would almost be equal

to the demand.

Condition (15) means, that our consumer’s marginal utility is greater than

the high price. So our consumer is ready to spend his entire money stock on

the product.

2. We have to consider the case of λ2 = 0. In the second point of the propo-

sition we assumed that the optimal solution satisfies the following equality.

u′(q1 + x∗2) = p2 (18)

This is exactly equivalent to λ2 = 0 by (14). Hence x∗2 = (u′)−1(p2) − q1.

Therefore, our consumer is acting according to the efficient rationing rule.

Condition (18) means that our consumer’s marginal utility is equal to the

price set by the high-price firm. We saw that the utility of holding money

could hinder our consumer to spend his entire money stock on the product,

because the equality in the forth condition in (11) is not assured.

At the first look the condition for the occurrence of the efficient rationing

rule is more plausible. If we accepted that money means in this context a

composite commodity, then it would be quite unrealistic to assume that our

consumer would consume only the product offered by our duopolists, which

he actually would, if he acted according to the random rationing rule by the

proposition. In defense we could bring forward the extreme case, that the

product sold by the duopolists is the only basic good for survival and that

our consumer is too poor to spend money on other goods. Another way to

explain, why our consumer will act according to the random rationing rule is

to speak really of money instead of a composite good. Then one could say,

what is quite realistic, that our consumer first decides how much money he is

willing to spend at most on the product offered by the duopolists. Thus, m

would mean that value. Of course this behaviour contradicts to global utility

maximization.
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Without calculating too much one would surely suggest the efficient ra-

tioning rule to be applied for the following reasoning. The individual demand

function tells our consumer how many products he will buy at the high price,

particularly d(p2). At the low price he bought q1. Now he obviously wants to

buy max{d(p2)− q1, 0} products from the high-price firm. The only pitfall in

this way of arguing is, that we neglect the income effect, which results from

the fact that he bought the first q1 products cheaper and so we must not use

directly d(p2) to calculate his extra demand at the price level p2. In fact in the

case of a quasilinear utility function, there will be only an income effect, if the

consumer’s budget constraint is binding.

The next proposition summarizes the entire solution of problem (10).

Proposition 3.4. Under the assumptions of proposition 3.3 the explicit solu-

tion of problem (10) is the following:

1. if u′(0) ≤ p1, then x∗1 = 0 and x∗2 = 0;

2. if u′(0) > p1 and m ≤ p1q1, then x∗1 = min{(u′)−1(p1), m/p1} and

x∗2 = 0;

3. if u′(0) > p1, m > p1q1 and u′(q1 + m−p1q1
p2

) > p2, then x∗1 = q1 and

x∗2 = m−p1q1
p2

;

4. if u′(0) > p1, m > p1q1, u′(q1) > p1 and u′(q1 + m−p1q1
p2

) ≤ p2, then

x∗1 = q1 and x∗2 = max{(u′)−1(p2)− q1, 0}.

5. if u′(0) > p1, m > p1q1, u′(q1) ≤ p1 and u′(q1 + m−p1q1
p2

) ≤ p2, then

x∗1 = (u′)−1(p1) and x∗2 = 0.

Proof. 1. Let us assume that in spite contrast with our assumption x∗1 or x∗2

is positive. Hence p2 > p1 ≥ u′(0) > u′(x∗1 + x∗2). Therefore, the first two

conditions in (11) could not been satisfied, which is a contradiction.

2. Obviously m ≤ p1q1 implies x∗1 ≤ q1. If we suppose that (u′)−1(p1) ≥ m
p1

,

then we can verify that x∗1 = m/p1, x∗2 = 0, λ∗1 = 0 and λ∗2 = u′(m/p1)−p1
p1

is a

solution of problem (11).
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Otherwise x∗1 = (u′)−1(p1), x∗2 = 0, λ∗1 = 0 and λ∗2 = 0 is a solution of

problem (11).

3. We have to verify that if u′(0) > p1, m > p1q1 and u′(q1 + m−p1q1
p2

) > p2,

then x∗1 = q1 and x∗2 = m−p1q1
p2

will be a solution of (11). We immediately see

that the last two conditions in (11) hold as equalities for x∗1 and x∗2. Therefore

we have to show that there are existing adequate nonnegative λ∗1 and λ∗2, which

are together with x∗1 and x∗2 a solution of (11). But regarding our assumptions

we have already shown this in the proof of the previous proposition.

4. We have to consider two cases. In the first case let us assume that

u′(q1) > p2. This implies that there exists a value x̂2 ∈ (0, m−p1q1
p2

) such that

u′(q1 + x̂2) = p2. Now applying the second part of proposition 3.3 we obtain

what has to be proved.

In the second case we now assume the opposite, particularly u′(q1) ≤ p2.

We now show that the solution is x∗1 = q1 and x∗2 = 0. The last two conditions

in (11) are clearly satisfied. From the last one we further get λ2 = 0. The

second condition can now be written as u′(q1) ≤ p2 which is now fulfiled by

assumption. The first condition takes the u′(q1) = p1 + λ1 form because of the

positivity of x∗1. This equation is solvable for nonnegative λ1 because p1 < p2

and in point 4 we already assumed that u′(q1) > p1.

5. We have only to verify that x∗1 = (u′)−1(p1), x∗2 = 0, λ∗1 = 0 and λ∗2 = 0

is a solution to problem (11). But this is obvious.

Remark 3.5. The last condition in point 5 of the proposition above is redun-

dant. It has only be included because with it, it is easy to see that none of the

possibilities have been neglected in the solution of problem (10).

4 Summary

We have investigated the residual demand of a single consumer in a duopoly

market. We have deduced the behaviour of a single consumer in a duopolistic

market in cases of quasilinear and Cobb-Douglas utility functions. Finally, we
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have compared the obtained results with the values suggested by the two most

frequently used rationing rules.
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IV. Existence of pure strategy Nash equilibrium

in Bertrand-Edgeworth oligopolies ∗

Abstract:

This article is searching for necessary and sufficient conditions which are to

be imposed on the demand curve to guarantee the existence of pure strategy

Nash equilibrium in a Bertrand-Edgeworth game with capacity constraints.

Keywords: Duopoly; Oligopoly.

JEL classification: D43; L13.

1 Introduction

We will investigate Bertrand-Edgeworth oligopoly with capacity constraints.

We assume that the oligopolists’ products are homogeneous. Furthermore we

assume that there is no advertising, no possibility of outside entry into the mar-

ket, and that the oligopolists possess complete information. In the Bertrand-

Edgeworth game quantities and prices are both decision variables.

For a full specification of the model we need a so-called rationing rule. The

aggregate demand function and the rationing rule together contain enough in-

formation on the determination of the sales of the oligopolists. We will only

consider the two most frequently used rationing rules in the literature: the effi-

cient and the proportional rationing rules. For a description of these rationing

rules see for example Tirole (1988).

It has been shown for linear demand curves that when capacities are either

small or large, then the Bertrand-Edgeworth duopoly with capacity constraints

has an equilibrium in pure strategies (see Tirole (1988) or Wolfstetter (1993)).

However, for capacities in an intermediate range, the model only has an equi-

librium in mixed strategies. The mixed strategy equilibrium was computed in

closed form by Beckmann (1965) for proportional rationing and by Levitan

∗ c©Elsevier Science S.A. Economics Letters 1999 Vol. 63(2), 201-206.
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and Shubik (1972) for efficient rationing. Dasgupta and Maskin (1986) demon-

strated the existence of mixed strategy equilibrium in the case of proportional

rationing for demand curves which intersect both axes.

In section 2 we will show that if we impose assumptions on the elasticity

of the demand curve, then pure strategy equilibrium will exist at all capacity

levels in a Bertrand-Edgeworth duopoly. So for a certain class of demand curves

a nondegenerate mixed strategy equilibrium will never arise.

In section 3 we will consider the oligopolistic case. We will show that as

the number of firms increases, the Nash equilibrium price approaches the

oligopolists’ marginal costs. Similar convergence results have been obtained

by Vives (1986) for efficient rationing and by Allen and Hellwig (1986) for

proportional rationing. Due to the assumptions imposed on the demand curve

our proof will be very simple.

2 Duopoly

First we need to specify the class of demand functions we will investigate.

Assumption 2.1. ∀p > 0 : D(p) > 0 and D′(p) < 0.

We denote by ε(p) the price elasticity of the demand curve. Regarding the

oligopolists we make the following assumptions:

Assumption 2.2. There are N oligopolists on the market with zero marginal

costs and 0 < ki capacity constraints (i ∈ [1..N ]). Each of them can set his

price (pi) and quantity (qi) simultaneously.

In this section we will only consider duopolies.

The following proposition formulates a necessary and sufficient condition,

which has to be imposed on the demand curve to guarantee the existence of

pure strategy equilibrium in the case of efficient rationing.
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Proposition 2.3. Under the assumptions of 2.1, 2.2 and efficient rationing

we can formulate the statements below about the corresponding Bertrand-

Edgeworth duopoly game:

1. If

∀p > 0 : ε(p) ≤ −1, (1)

then there exists a unique pure strategy Nash equilibrium for all k1 > 0

and k2 > 0. The equilibrium is given by

q∗i = ki and p∗1 = p∗2 = D−1(k1 + k2). (2)

2. If D′ is continuous and ∃p > 0 : ε(p) > −1 then there are positive k1 and

k2 capacity constraints, such that pure strategy Nash equilibrium does not

exist.

Proof. 1. First we check that (1) implies limp→0D(p) =∞. Assume not; then

limp→0D(p) < ∞ because D is decreasing, and so limp→0 pD(p) = 0 would

follow. From (1) we obtain, that pD(p) is nonincreasing on (0,∞). Hence we get

∀p > 0 : pD(p) ≤ 0, which contradicts the obviously true ∀p > 0 : pD(p) > 0

statement. So we can conclude that a demand curve satisfying (1) does not

cut the horizontal axis. Hence, D−1(k1 + k2) is well defined and p∗i > 0.

Now we will show that only (2) can be an equilibrium. No equilibrium can

exist with p1 < p2 because, if D(p1) > k1, firm 1 will want to increase its price,

and if D(p1) ≤ k1, firm 2 will wish to reduce its price below p2. Similarly,

no equilibrium is possible with p2 > p1. There cannot be an equilibrium with

p1 = p2 > p∗i , since both firms have the incentive to lower their prices slightly.

It is obvious that a price below p∗i cannot be rational for any firm. Hence, we

can rule out prices below p∗i .

Finally, we have to show that raising prices unilaterally above p∗i will not

increase firm i’s profit. We will show this for firm 1. Therefore we can establish

that the residual profit function for firm 1 using the residual demand function

does not increase in price. Under efficient rationing the residual profit function
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is: πr(p) = pDr(p) = p(D(p) − k2) for p > p∗2. The nonpositivity of the first

derivative is a sufficient condition, or formally

dπr

dp
(p) = pD′(p) +D(p)− k2 ≤ 0 ⇔ ε(p) ≤ −1 +

k2

D(p)
. (3)

This inequality is satisfied because of assumption (1).

2. Define the function F (p) := pD′(p)+D(p). We can pick an open interval

I = (a, b) from F−1((0,∞)) and fix any p̃ ∈ I. Obviously we can choose a

capacity 0 < k1 < D(b) for firm 1 such that F (p̃)− k1 > 0. We can verify that

D(p̃) > k1 also holds. So we can set the capacity for firm 2 as k2 = D(p̃)− k1.

Reasoning similar to that in point 1 shows that only pi := p̃ could be an

equilibrium price. But in the case of pi = p̃ firm 2 has an incentive to raise its

price because p̃D′(p̃) +D(p̃)− k1 = F (p̃)− k1 > 0.

For example the demand function D(p) = p−
1
α , where p ≥ 0 and 0 <

α ≤ 1, satisfies the assumptions of point 1 of proposition 2.3. So for these the

Bertrand-Edgeworth game will have a pure strategy equilibrium.

Assumption 2.1 can be replaced in proposition 2.3 with ∀p > p > 0 :

D(p) > 0, D′(p) < 0 and ∀p ≥ p : D(p) = 0. We have only to consider that

both firms will set a price below p. We can check that if limp→p−0D
′(p) is

bounded, then limp→p−0 ε(p) = −∞. Hence, there are demand curves that are

price elastic at all price levels and cut the vertical axis. As we already showed

in the proof of proposition 2.3 they cannot cut the horizontal axis.

Dasgupta and Maskin (1986) proved in their third annotation that in case

of random rationing a pure strategy Nash equilibrium may not exist, if the

demand function is price inelastic at the D−1(k1 + k2) price. So an identical

proposition to 2.3 holds for proportional rationing. This can be demonstrated

as proposition 2.3. One difference is that we have to use the

πr(p) = pDr(p) = pD(p)

(
1− k2

D(p∗2)

)
(4)

residual profit function. The other difference is that the nonexistence part can

be shown more easily. Particularly for k1 = k2 = D(p̃)/2 capacity constraints,
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there does not exist a pure strategy equilibrium. Allen and Hellwig (1986)

gave also in their proposition 3.1 a necessary and sufficient condition for the

existence of pure strategy equilibrium for proportional rationing.

Considering the proof of proposition 2.3 we can recognize that the selection

of such capacity levels for which the Bertrand-Edgeworth game has no pure

strategy equilibria can require the selection of a very small capacity constraint

for firm 1. Therefore we can say more in the case of efficient rationing.

Proposition 2.4. Under the assumptions of 2.1, 2.2, efficient rationing and

assuming that the set of admissible capacities is

Kα := {(k1, k2) ∈ R2 |ki > 0,
ki

k1 + k2

≥ α, i = 1, 2} (5)

for some 0 < α ≤ 1
2
, we can make the following statements about the corre-

sponding Bertrand-Edgeworth duopoly game:

1. If

∀p > 0 : ε(p) ≤ −1 + α (6)

then there exists a unique pure strategy Nash equilibrium for all (k1, k2) ∈

Kα. The equilibrium is given by (2).

2. If D′ is continuous and

∃p > 0 : ε(p) > −1 + α (7)

then there are (k1, k2) ∈ Kα so that pure strategy equilibrium does not

exist.

Proof. 1. As in the proof of proposition 2.3 we have to show that (6) implies

limp→0D(p) = ∞. First we have to prove that limp→0D
r(p) = ∞. By using

now the residual demand function we can do this similarly to the proof of

proposition 2.3. From that limp→0D(p) =∞ follows immediately.

As we have already seen in the proof of proposition 2.3 the only candidate

for an equilibrium price is p∗ := p∗1 = p∗2. We have to show that raising prices
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unilaterally above p∗i does not increase firm i’s profit. We will prove this for

firm 1. Again, condition (3) has to be verified. But (3) is satisfied, because we

have for all p > p∗2 : D(p) < k1 +k2 and in consideration of our assumption (6)

ε(p) ≤ −1 + α ≤ −1 +
k2

k1 + k2

< −1 +
k2

D(p)
(8)

holds for all (k1, k2) ∈ Kα. So we can conclude that it is not worthwhile for

firm 1 to set its price above p∗1.

2. Define the function G(p) := pD′(p) + (1 − α)D(p). G is continuous.

Therefore, we can pick an open interval I = (a, b) from G−1((0,∞)), because

we assumed (7). Fix any p̃ ∈ I. Let k1 := αD(p̃) and k2 := (1 − α)D(p̃).

It is obvious that (k1, k2) ∈ Kα and D(b) < k1 + k2 < D(a). But now in

the case of p1 = p2 = p̃ firm 2 has an incentive to raise its price because

p̃D′(p̃) +D(p̃)− k1 = G(p̃) > 0.

Restricting the capacities to Kα implies that one firm’s capacity could not

be arbitrarily small relative to the other firm’s capacity. This restriction is

quite acceptable for some α because if we want to model a duopoly, then we

essentially will not be interested in a market in which one firm is relatively

negligible with respect to the other firm.

The result of proposition 2.4 is that as long as the size of both firms is

significant relative to each other, we can assure the existence of pure strat-

egy equilibrium even if the demand curve has price elastic parts. This re-

sult is considerable because we now know that there are demand curves with

price elastic parts and with corresponding ranges of capacities for which the

Bertrand-Edgeworth game possesses equilibrium in pure strategies, such that

even a monopoly without capacity constraint has a profitmaximizing price.

Particularly when α = 1
2

the two firms have the same capacity.

One must also be aware that efficient rationing cannot be replaced by

proportional rationing in proposition 2.4.
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3 Oligopoly

We can state analogous propositions to those in section 2 for oligopolies.

Proposition 3.1. Under the assumptions of 2.1, 2.2, the continuity of D′ and

efficient or proportional rationing the Bertrand-Edgeworth oligopoly game has

a unique pure strategy Nash equilibrium for all ki > 0 capacities, if and only if

the demand curve satisfies (1). If (1) holds, then the equilibrium is ∀i ∈ [1..N ] :

q∗i = ki and p∗i = D−1(
N∑
i=1

ki). (9)

Proof. The proof of sufficiency can be done similarly to the proof in proposition

2.3. We have to prove that if the firms’ prices are not all identical, then we

cannot have a pure strategy equilibrium. Furthermore we have to show that

(9) is an equilibrium.

In order to prove the necessity we can choose for the first N − 1 firms

capacity constraints such that F (p̃)−
∑N−1

i=1 ki > 0. Now we can set the capacity

for firm N as kN = D(p̃) −
∑N−1

i=1 ki. It can be verified that firm N has an

incentive to raise its price.

Corollary 3.2. If the aggregate capacity
∑

i ki tends to infinity as we increase

the number of oligopolists to infinity, then the equilibrium price approaches

zero, which is assumed to equal the oligopolists’ marginal costs.

Similar results have been obtained by Vives (1986) for efficient rationing

and by Allen and Hellwig (1986) for proportional rationing. Our proof was

very simple because due to our assumptions imposed on the demand curve we

did not have to deal with mixed strategy equilibria.

According to proposition 2.4 we can state more in the case of efficient

rationing and equal capacities.

Proposition 3.3. Under the assumptions of 2.1, 2.2, the continuity of D′,

efficient rationing, and equal capacities (k) our Bertrand-Edgeworth oligopoly
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game has a unique pure strategy Nash equilibrium for all k > 0, if and only if

∀p > 0 : ε(p) ≤ −1 +
1

N
. (10)

If (10) holds, then the equilibrium is given by ∀i ∈ [1..N ] :

q∗i = k and p∗i = D−1(Nk). (11)

Proof. The proof is analogous to that of proposition 2.4.

To guarantee the existence of a pure strategy Nash equilibrium at all ca-

pacity levels under the assumptions of proposition 3.3, we need not assume a

price elastic demand curve. But the more oligopolists we have, the less demand

curves secure equilibrium at all capacity levels.

4 Conclusions

We have shown that for a special class of demand functions the lack of pure

strategy equilibrium does not arise in the Bertrand-Edgeworth game with ca-

pacity constraints. Furthermore for demand functions outside of this class there

always can be found capacity constraints, such that pure strategy equilibrium

does not exist. However demand functions in this special class do not intersect

the horizontal axis. For efficient rationing and equal capacities they still can

be price elastic.

Acknowledgments
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V. A two-stage Bertrand-Edgeworth game ∗

Abstract:

In our investigation we are expanding a Bertrand-Edgeworth duopoly into

a two-stage game in which during the first stage the firms can select their

rationing rule. We will show that under certain conditions the efficient rationing

rule is an equilibrium action of the first stage.

JEL classification: D43; L13.

Keywords: Duopoly; Rationing.

1 Introduction

We will investigate a two-stage extension of the capacity constraint Bertrand-

Edgeworth duopoly game. In stage one both firms simultaneously announce

a rationing rule, according to which they will serve the consumers, if they

become the low-price firm. In stage two they are engaged in a modified capac-

ity constrained Bertrand-Edgeworth game. We will refer to this game as the

rationing game.

Davidson and Deneckere (1986) already formulated a three-stage extension

of the Bertrand-Edgeworth game in that each duopolist can select the way

it will serve the consumers, if it becomes the low-price firm. In their model

the firms compared to our rationing game additionally can select their capac-

ity levels. They established that in a subgame perfect Nash equilibrium the

duopolists will serve the consumers according to the random rationing rule.

Their result assumes that the duopolists are risk-neutral. On that point our

analyzes will differ.

For a full specification of the Bertrand-Edgeworth game we need a so-called

rationing rule. The aggregate demand function and the rationing rule together

contain enough information on the determination of the duopolists’ sales. We

∗ c©Elsevier Science S.A. Economics Letters 1999 Vol. 65(3), 353-358.
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will introduce the notion of combined rationing, which contains as special cases

the two most frequently used rationing rules, the so-called efficient and random

rationing rules. For a description of these rationing rules see for example Tirole

(1988).

It has been shown for linear demand curves that when capacities are either

small or large, then the Bertrand-Edgeworth duopoly with capacity constraints

has an equilibrium in pure strategies (see Wolfstetter, 1993). However, for

capacities in an intermediate range, the model only has an equilibrium in mixed

strategies. The mixed strategy equilibrium was computed in closed form by

Beckmann (1965) for random rationing and by Levitan and Shubik (1972) for

efficient rationing. Dasgupta and Maskin (1986b) demonstrated the existence

of mixed strategy equilibrium in the case of random rationing for demand

curves which intersect both axes.

In Section 2 we will introduce the set of rationing rules from which the

firms can choose their first stage action. In Section 3 we will determine the

set of those capacity levels for which the Bertrand-Edgeworth game has a pure

strategy equilibrium. In Section 4 we will establish that if the firms have special

preferences above the set of expected profits and uncertainty, then in the first

stage of the rationing game the efficient rationing rule is an equilibrium action.

2 Rationing rules

We impose the following assumptions on the demand curve.

Assumption 2.1. We shall consider demand curves that are strictly decreas-

ing, continuously differentiable, and intersect both axis.

Assumption 2.2. The function G(p) := pD′(p) +D(p) is strictly decreasing.

A monopolist facing a demand curve satisfying Assumptions 2.1 and 2.2 has

a unique positive revenue maximizing price. Let us denote the set of demand

curves fulfilling Assumptions 2.1 and 2.2 by D. The demand facing firm j ∈
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{1, 2} is given by a rationing rule. In our model we allow the duopolists only to

choose from a special class of rationing rules. We call these combined rationing

rules.

Definition 2.3. A function ∆ : D × R2
+ × R2

+ → R2
+ is called a combined

rationing rule with parameter λ ∈ [0, 1], if the demand firm j ∈ {1, 2} faces is

given by

∆j(D, p1, p2, q1, q2) :=


D(pj) if pj < pi, i 6= j;

qj
q1+q2

D(pj) if pj = pi, i 6= j;

max (D(pj)− α(pi, pj)qi, 0) if pj > pi, i 6= j;

where α(pi, pj) = (1− λ)
D(pj)

D(pi)
+ λ.

The efficient and the random rationing rules are also combined rationing

rules. We can see this by selecting for λ in Definition 2.3 the values 1 and 0

respectively.

We describe two different markets in which a combined rationing rule can

be implemented. First, suppose that there are n consumers with identical in-

dividual demand functions d(.), who are served by the low-price firm in order

of their arrival. Let n be sufficiently large, so that the amount purchased by

the marginal consumer, who still obtains a positive level of the product, can

be neglected. Let p1 < p2 and q1 ≤ D(p1) = nd(p1). The low-price firm can

serve m := bq1/d(p1)c consumers totally. Fix an arbitrary value 0 ≤ λ ≤ 1.

Assume that firm 1 serves m1 := b(1−λ)q1/d(p1)c consumers completely. Each

remaining consumer obtains q1−m1d(p1)
n−m1

amount of the product. In the described

case the residual demand is

Dr(p2) ≈ D(p2)− (1− λ)q1
D(p2)

D(p1)
− λq1,

if n is sufficiently large. The way how the low-price firm serves the consumers

combines the two different methods, how on the market with identical con-

sumers the efficient and the random rationing rule can be achieved (see David-

son and Deneckere, 1986).
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Second, we assume that D(p) is the summation of inelastic demands of

heterogenous consumers, all of whom want to purchase one unit of the good,

provided the price is below their reservation price. Suppose the low-price firm

begins with selling (1 − λ)q1 output on a first-come-first-served basis. The

consumers served in that way are a random sample of the consumer population.

Hence, the demand of the so far unsatisfied consumers at price p2 is D(p2) −

(1 − λ)q1D(p2)/D(p1). Thereafter, it sells the remaining λq1 output to the

consumers with the highest reservation values first. This leads to a combined

rationing rule with parameter λ.

It is worthwhile to mention that if the demand side of the market can be

described by a representative consumer having a Cobb-Douglas utility function

u(x,m) = Ax(1−λ)mλ where x is the amount purchased from the duopolists’

product and m is the consumption from a composite commodity, then we

obtain a combined rationing rule with parameter λ on the market (for details

see Tasnádi, 1998).

3 Pure strategy equilibrium

For given λ1 and λ2 we determine the set of those capacity levels to which

pure strategy equilibrium exists in the capacity constraint Bertrand-Edgeworth

game. Let us remark that the existence of mixed strategy equilibrium follows

easily from Dasgupta’s and Maskin’s Theorem 5 (1986a).

We assume without loss of generality that the marginal costs of the firms

are zero. We consider the capacity constraints k1 and k2 of the two firms as

given.

We restrict ourselves to capacities from the set

L := {(k1, k2) ∈ R2
++|k1 + k2 ≤ D(0)}

because for capacities not in L the Bertrand-Edgeworth game reduces to the

Bertrand duopoly, or it will not have a pure strategy equilibrium for any ra-

tioning rules. To any λ1, λ2 ∈ [0, 1] parameters describing the rationing rules
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of the firms, we introduce the set K(λ1, λ2) ⊂ L containing those capacity

levels for which the corresponding Bertrand-Edgeworth game possesses Nash

equilibrium in pure strategies. Assumption 2.2 assures that K(λ1, λ2) will not

be empty.

Proposition 3.1. The set K(λ1, λ2) increases strictly if min{λ1, λ2} increases

so far as K(λ1, λ2) 6= L. If (k1, k2) ∈ K(λ1, λ2), then the pure strategy Nash

equilibrium is given by

q∗i = ki and p∗ = p∗1 = p∗2 = D−1(k1 + k2). (1)

Proof. First, we show that only (1) can be an equilibrium. No equilibrium can

exist with p1 < p2 because, if D(p1) > k1, firm 1 will want to increase its price,

and if D(p1) ≤ k1, firm 2 will wish to reduce its price below p2. Similarly,

no equilibrium is possible with p2 > p1. There cannot be an equilibrium with

p1 = p2 > p∗, since both firms have the incentive to lower their prices slightly.

It is obvious that a price below p∗ cannot be rational for any firm.

The price p∗ is the only candidate for a pure strategy equilibrium price.

The profit function of firm i for p∗ < p ≤ p is:

πi(p) = pDr(p) = p

(
D(p)− λjkj − (1− λj)kj

D(p)

D(p∗j)

)
,

where j 6= i and Dr(p) = 0. For prices greater than p the residual profit

function is zero. Hence, setting prices unilaterally above p is not rational,

because prices p∗ yield positive profits. The profit function is nonincreasing for

prices p∗ < p < p because of Assumption 2.2, if

dπi
dp

(p∗) = (p∗D′(p∗) +D(p∗))

(
1− (1− λj)

kj
ki + kj

)
− λjkj ≤ 0 (2)

holds. Rearranging (2) we obtain

G(D−1(ki + kj)) ≤
λjkj

1− (1− λj) kj
ki+kj

=
λjkj(ki + kj)

ki + λjkj
. (3)

We have that K(λ1, λ2) increases if min{λ1, λ2} increases, because (3) must

hold for both firms and
λjkj(ki+kj)

ki+λjkj
is strictly increasing in λj.
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It remains to show that the set K(λ1, λ2) increases strictly. Let us introduce

the following notations:

Kα(λ1, λ2) := {(k, αk) ∈ L|(k, αk) ∈ K(λ1, λ2)},

Kα
∗ (λ1, λ2) := {(k, αk) ∈ L | k ∈ (0, D(0)/(1 + α)]}

for any α > 0. Rearranging (3) and substituting equal capacities we obtain

G(D−1((1 + α)k))

k
≤ (1 + α)λj

α + λj
. (4)

Obviously, an analogous condition to (4) must hold for firm j. Thus, (k, αk) ∈

Kα(λ1, λ2) if and only if

G(D−1((1 + α)k))

k
≤ min

{
(1 + α)λ1

α + λ1

,
(1 + α)λ2

α + λ2

}
. (5)

Furthermore, the left side of (5) is continuous for all k ∈ (0, D(0)
1+α

], there-

fore the set Kα(λ1, λ2) increases strictly if min{λ1, λ2} increases, as long as

Kα(λ1, λ2) 6= Kα
∗ (λ1, λ2), because the function (1+α)λ

α+λ
is strictly increasing in

λ for λ ∈ [0, 1].

If K(λ1, λ2) 6= L, then there is an α > 0 so that Kα(λ1, λ2) 6= Kα
∗ (λ1, λ2).

Suppose that λ1 < λ′1 < λ2, then Kα(λ1, λ2) is a proper subset of Kα(λ′1, λ2).

Finally, since Kα(λ1, λ2) ⊂ K(λ1, λ2) and Kα(λ′1, λ2)\Kα(λ1, λ2) is nonempty

and disjoint from K(λ1, λ2), therefore K(λ1, λ2) is a proper subset of K(λ′1, λ2).

We can argue similarly in the case of λ1 > λ2 and λ1 = λ2.

If the demand curve is linear and if we restrict ourselves to symmetric ca-

pacities, then K(λ1, λ2) has a simple structure, as we will establish in Propo-

sition 3.2. We have to mention that in case of a linear demand curve the price

and quantity units can be chosen so that the demand curve has the form

D(p) = 1− p. Let H(λ1, λ2) := {k ∈ (0, D(0)/2] | (k, k) ∈ K1(λ1, λ2)}.

Proposition 3.2. If the demand curve is D(p) = 1− p, then

H(λ1, λ2) =

(
0,

1

2
min

{
1 + λ1

2 + λ1

,
1 + λ2

2 + λ2

}]
. (6)
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Proof. Regarding the proof of Proposition 3.1 we only have to determine those

capacity constraints for which (2) holds for both firms in the case of equal

capacities. Therefore, for firm i ∈ {1, 2} the following inequality has to be

satisfied.

(−p∗ − 1− p∗)(1− 1

2
(1− λi))− λik = (4k − 1)

1

2
(1 + λi)− λik ≤ 0 (7)

Rearranging (7) and regarding that it has to hold for both firms, we obtain

(6).

If both firms are serving the consumers according to the efficient rationing

rule, then by Proposition 3.2 we get H(1, 1) = (0, 1/4]. This well-known result

can be found for instance in Wolfstetter (1993). Additionally, if both firms

select the random rationing rule, then H(0, 0) = (0, 1/3]. This result can be

found in Tirole (1988) for example.

4 The rationing game

In this section we only want to indicate that in the two-stage game the efficient

rationing rule is under certain conditions an equilibrium first-stage action.

The action sets of both firms in stage one is [0, 1] and in stage two it is the

set of price distributions with finite variances above the set [0, p̂], where we

denote by p̂ the smallest price for that D(p̂) = 0. A degenerated probability

distribution corresponds to a pure strategy in stage two. Now we modify the

payoff functions by assuming that the firms have preferences above the space of

expected profits and profit variances, which can be determined by the chosen

rationing rule and probability distributions.

Davidson and Deneckere (1986) found that random rationing is the equi-

librium action of the appropriate stage in the case when both firms preferences

depend only on their expected profits. This means that the firms are risk neu-

tral. We investigate another extreme case in that both firms are extremely risk
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averse. Let the firms have the following lexicographic preferences �⊂ R2
+

(e, v) � (e′, v′) ⇔ v < v′ or (v = v′ and e > e′),

where e, e′ denote expected profits and v, v′ denote variances.

We introduce the set valued function Λ : L→ P([0, 1]× [0, 1]) as follows

Λ(k1, k2) := {(λ1, λ2) | ∃(k1, k2) ∈ K(λ1, λ2)}.

Proposition 4.1. If the two-stage game has a pure strategy subgame perfect

Nash equilibrium, then choosing the efficient rationing rule in the first-stage is

a subgame perfect Nash equilibrium action for both firms.

Proof. If the two-stage game has a pure strategy subgame perfect Nash equi-

librium, then Λ(k1, k2) 6= ∅. After any first stage action (λ1, λ2) ∈ Λ(k1, k2)

both firms will set their price to p∗ = D(k1 + k2) because of Proposition 3.1.

Firms are indifferent between any rationing rule pair from set Λ(k1, k2), be-

cause in equilibrium they all guarantee the same profits without uncertainty.

The efficient rationing rule is always an equilibrium action of stage one be-

cause (k1, k2) ∈ K(λ1, λ2) implies that (k1, k2) ∈ K(1, 1) regarding Proposition

3.1.

5 Concluding remarks

These results indicate that the equilibrium rationing rule may lie between

the efficient and random rationing rule depending on the firms’ preferences

above expected profits and profit variances. This conjuncture deserves further

analyzes, although in general the expected values and variances cannot be

determined in closed form since in general the mixed strategy equilibrium

cannot be expressed in closed form either.
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Edgeworth duopoly revisited, in Rudolf Henn, ed., Operations Research-

Verfahren, Vol. III, (Hain, Meisenheim) 55-68.

Dasgupta, P. and E. Maskin, 1986a, The existence of equilibria in discontinuous

games, I: Theory, Review of Economic Studies 53, 1-26.

Dasgupta, P. and E. Maskin, 1986b, The existence of equilibria in discontinuous

games, II: Applications, Review of Economic Studies 53, 27-41.

Davidson, C. and R. Deneckere, 1986, Long-run competition in capacity, short-

run competition in price, and the Cournot model, Rand Journal of Economics

17, 404-415.

Levitan, R. and M. Shubik, 1972, Price duopoly and capacity constraints,

International Economic Review 13, 111-122.
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