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1. Introduction 
 

Microbes may find ideal conditions in plant intercellular space. Both saps rich in nutrients 

and the sheltered environment are favorable for bacterial proliferation. Throughout the eons, 

however, plants have evolved various defense mechanisms against microorganisms.  

 2. Overview 

Király et al. (2007) divide defense mechanisms into two groups in their review article: 

innate and aquired defense mechanisms.  

 Innate defense can be either specifix (non-specific or general resistance) and specific (such 

as the hypersensitive response – HR). In this system, basal resistance (BR) belongs to the non-

specific category. 

 However, nomenclature might differ. Boller and Felix (2009), for instance, use the term PTI 

(PAMP-triggered immunity) for BR; also implying that the term „basal resistance” is about to cease 

in literature. 

BR can be induced by various microorganisms, pathogenes and saprophytes, as well 

(Burgyán and Klement, 1979). On the other hand, hypersensitive response is triggered only by 

living pathogenes with active metabolism. Unlike HR, basal resistance is symptomless, thus 

observation is possible only through a secondary challenge infection. If there are no HR necroses 

after the superinfection BR is in effect (Klement et al., 1999). 

2.1. The Hypersensitive Response (HR) 
 Nearly all viral, procariotic and eucariotic plant pathogenes were descriped to have HR 

inducing capabilities. HR occurs when the interaction between the host and pathogen is 

incompatible; ie. the pathogen is infecting a non-host plant (eg. bean pathogen is infecting tobacco) 

or a host plant’s resistant cultivar. In this case the infected tissue necrotises. Both the resistance of 

the given plant an the pathogenicity and hostspecificity of the given bacterium is determined by 

genes. Therefore the HR is determined by the mutual interaction of genes (gene products) of the 

pathogen and the host plant (Klement, 1982).  

The processes leading to cell death are controlled. Hence, the name programmed cell death 

(PCD). Unlike necrosis resultet of a passive damage, PCD requires active contribution (eg. protein 

synthesis) from the cell (Gilchrist, 1998).  
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2.2. The Basal Resistance (BR) 

 While the HR is a resistance mechanism solely against pathogens, the BR can be triggered 

by non-pathogens, as well. This innate form of defense helps plants defeat fight against 

microorganisms invading the intercellular spaces. This can be achieved by blocking bacterial life 

processes (eg. proliferation, transcription of pathogenicity related genes, etc.) The BR is not only 

capable of the inhibition of pathogen proliferation but also the development of HR necroses – at 

incompatible interactions (Bozsó et al., 1999; Klement et al., 1999; Klement et al. 2003). 

 The lack of HR necroses after a superinfection with an HR inducing bacterium proves the 

effectiveness of the BR (Klement et al., 1999, Klement et al., 2003).  

2.2.1. Induction of the BR 

 As the BR can be triggered by both pathogenic and non pathogenic bacteria, BR is induced 

by bacterial molecular patterns that are common in procaryotes. Eg. lypopolysaccharides (LPS) on 

Gram negative bacteria. Purified LPS (Newman et al., 1995) and LPS-protein complexes (Mazzuchi 

és Pupillo, 1976) were successfully used to induce BR. Other molecules, such as the flagellum 

protein flagellin does also have BR inducing capability (Felix et al., 1999).  

 Besides these so called elicitor molecules mechanic and osmotic stress can also trigger BR 

(Novacky and Hanchey, 1976). This cannot be a coincidence, as plants detect microbe associated 

molecular patterns (MAMPs; eg. flagellin, LPS, EF-Tu) in a similar way as DAMPs (damage 

associated molecular patterns), molecules that are released upon cell damage (Boller és Felix, 

2009).  

2.2.2. Cell physiological and ultrastructural changes during BR 

 During BR pH changes both inside and outside of the cell (Baker et al., 1990). Ca
2+

 ion 

intake (Grant & Mansfield, 1999), Cl
-
 ion emission (Nürnberger et al., 1994), and transient increase 

of active oxygen species (Baker & Orlandi, 1995) can also be observed.  

 At the site of bacterial attachment cell walls are fortified and papillae form inbetween the 

cell wall and the cell membrane (Politis & Goodman, 1978; Ott & al., 1997). At these sites callose 

deposition and enhanced lignification processes can be measured (Brown et al., 1998). Callose 

deposition can mark not only biotic stress but also mechanic stress (Jaffe et al., 1985). Also, callose 

deposited in plasmodesmta can block cell-to-cell movement of certain viruses (Radford et al., 1998; 

Scholthof, 2004; Dong X., 2005).  
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2.2.3. Signalling and protein degradation genes showing altered activity during BR 

Prior to the works included in this dissertation, our research group had identified 160 genes 

that show altered activity during BR (Figure 1). Over 10 percent of these are related to signal 

transduction processes and 7 per cent to protein metabolism. (Szatmári et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Functional distribution of genes showing altered activity during BR. Jelátvitel = Signaling; Fehérje 

anyagcsere = Protein metabolism (Source: Szatmári, 2008) 

  Calcium ion is an important secondary messenger. Calcium can enter the cell not only 

through calcium ion channels but also through a damaged cell wall or plasmodesmata. Mitogene 

activated kinase cascades also play an important role in signalling (MAPKKK (vagy MEKK) → 

MAPKK → MAPK → transcription factor). Generally these cascades start with a GTP-binding 

protein after being activated by most currently known PAMPs. Phospholipases [phospholipase-A1 

(PLA1), A2 (PLA2), C (PLC) and D (PLD)] also take part in these processes (Trewavas, 2000; 

Pitzschke et al., 2009). Keeping balance of gene products produced during defense is also an 

important controlling factor (Trewavas, 2000).  

 Proteins can be degraded either in the ubiquitin pathway, in proteosome complexes or by 

proteases (eg. Kim & Delaney, 2002; Vierstra, 2003; van der Hoorn & Jones, 2004). Elements of 

both systems can be found among genes identified by Szatmári et al. (2006). The role of proteases 

isn’t limited to eliminating „leftover” proteins. They may take part in the identification of bacteria, 

in the signaling processes within the host cells (Xia et al., 2004), or in defense responses against 

bacteria (Abramovitch et al., 2006; Hao et al., 2006).  
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 In defense processes mostly cysteine proteases are involved. Many of the some 140 known 

plant cysteine proteases have been identified as factors in PCD (programmed cell death) triggered 

by pathogen infection. One example can be caspase-1-like proteins. In animal cells caspases are 

related to apoptosis, as well. Plant metacaspases (MCA) and VPEs (vacuolar processing enzymes) 

show similar structures to animal caspases and can be found in PCD processes (van der Hoorn, 

2008; Zhang & al, 2010).  

2.3. Virus induced gene silencing (VIGS) 
As opposed to the use of transgenic plants, VIGS systems have a great advantage: it can be 

used to silence virtually any kind of genes. This high level of flexibility makes VIGS a handy tool 

for silencing genes that’s phenotypical appearance would require certain environmental conditions. 

Also, the time and work consuming processes (eg. growing plants, harvesting seeds) can also be 

eliminated that would be required for producing transgenic plants (Robertson 2004). The 

bicomponent system developed by Gosselé et al. (2002) is one kind of VIGS. In the so called 

SVISS (satellite virus induced silencing system) the silencing sequence is carried by a satellite virus 

that is introduced to the plant together with its helper virus. The latter assists the satellite virus’ 

movement within the host plant. In SVISS components required for silencing and virus replication 

are separated. This improves silencing performance. Another advantage can be that with the 

reproduction of the satellite virus, the helper virus’ own reproduction is suppressed, thus the 

symptoms become less severe. However, sometimes enhanced symptoms can be observed on 

certain hosts (Roossinck et al. 1992).  

3. Research tasks 
 

Works discussed in this dissertation can be divided into three main parts: 

1. The bacterially induced BR’s effect on a viral superinfection (in incompatible tobacco-TMV 

interactions HR inhibition, in compatible interaction symptom inhibition) was studied. In 

both cases virus replication was also measured. Viral gene expression assays were 

supplemented with some of the defense related genes. 

2. Transcription changes of genes related to signaling and protein degradation (identified 

previously by our research group) were studied. Functional genomic assays were also 

carried out. 



7 
 

3. Methods were elaborated for further functional genomic assays (construction for gene 

silencing, plant native protease measurement, tissue staining for detection of callose 

deposition.)  

4. Materials and methods 

4.1. Plants  

Arabidopsis thaliana and 1.5-2 months old greenhouse grown tobacco plants (Nicotiana 

tabacum L.) N. tabacum L. 'Samsun' nn and N. tabacum L. 'Xanthi' NN were used for studying 

compatible and incompatible interactions, respectively. Of Arabidopsis thaliana both Col-0 ecotype 

and mutants to the studied genes were used. Seeds for mutant plants were ordered from the 

Nottingham Arabidopsis Stock Centre (NASC).  

4.2. Bacteria 

For BR induction Pseudomonas syringae pv. syringae hrcC (HR negative) mutanat bacteria 

were used. Bacteria were grown overnight at 27 °C on King’s B medium (King & al., 1954) 

supplemented with 50 μg /ml kanamycin. Bacteria harvested from the medium were suspended in 

water. Cell count was adjusted to 0,19-0,21-es OD (approx. 10
8
/ml). For protease activity studies 

Pseudomonas syringae pv. tabaci was used, for its compatible interaction with tobacco. Virus 

vector for gene silencing was developed using competent Escherichia coli DH5α. For certain gene 

silencing experiments Agrobacterium tumefaciens carrying HC-Pro silencing suppressor was used 

(Wydro et al.; 2006). Pseudomonas syringae pv. tomato DC3000 expressing luminous lux-gene 

(Fan et al., 2008) were used with Arabidopsis mutants, where bacterium proliferation rate needed to 

be determined. 

4.3. Viruses 

For studying the BR’s effect on viral superinfection tobacco mosaic virus (TMV) was used. 

For gene silencing TMV-U2 strain and it’s modified satellite, STMV were used. 

4.4. Chemicals used for plant treatment 

For studying a given protease’s role in BR, inhibitor for the given protease was used. 

Similarly, inhibitors of certain signaling molecules were used in related studies. As a mock 

treatment plants were infiltrated with water instead of bacterium suspension to cancel out the effect 

of osmotic and mechanic stress.  
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4.5. Treatments and sampling 

Fully developed leaves were used. In every experiment plant leaves were about the same; 

with tobacco leaves of the same node range, with Arabidopsis similarly developed leaves from the 

same rosette were used. Samples were collected and mixed from two or more leaves treated the 

same way. For RNA extraction plant samples were snap-frozen in liquid nitrogen after immediately 

after harvest and they were stored at -70 °C until further process. For tissue staining samples were 

bleached in 70-96 % ethanol immediately after harvest.  

4.5.1. Infiltration of plant tissues 

Bacterium suspension, water and other liquids were injected in leaves using a 26 gauge 

needle and syringe. (Klement, 1990). This method was enhanced with Arabidopsis by puncturing 

the leafe epidermis with a needle and infiltrating through the tiny hole with a needleless syringe. 

4.5.2. Viral infections 

Young Nicotiana tabacum L. 'Samsun' nn leaves that showed mosaic symptoms were used 

for viral infection. Leaves were homogenized in water using pestle and mortar. Suspension was 

rubbed gently onto leaves. Pressure applied to the leaves was enough to break trichomae, thus 

opening way for virus particles.  

4.6. Processing plant samples 

4.6.1. Extraction of plant mRNA, cDNA synthesis (for gene expression studies) 

100 mg of plant sample wsa homoginezed in liquid nitrogen using pestle and mortar. 

Commercially available kit was used to extract mRNA following the manufacturer’s instructions 

(Total RNA Extraction Miniprem System – Viogen). Extracted RNA was treated with DNase 

(RNase-Free DNase Set, Quiagen). 2.5 μg RNA of each sample was used for cDNA synthesis with 

RevertAid H Minus First Strand cDNS Synthesis Kit (Fermentas). Random hexamer primer or 

oligo (dT) primers were used depending on the experiments’ requirements. 

4.6.2. Gene expression studies with real time PCR 

After the synthesis of cDNA from plant mRNA real time PCR assays (Opticon MJ Real 

Time PCR) were carried out. For each reaction 15 μl of reaction micture was used that consisted of 

2.5 μl ten-fold diluted cDNA, 1.5 μl primers (3 μM), 2μl water and 7.5 μl reaction mix (iQ SYBR 

Green 2× Supermix; Biorad). Results were normalized to constitutively expressed tobacco actin 

gene. Relative gene expression values were compared to untreated plant samples.  
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4.6.3. Plant sample preparation for native protease activity assay 

40 mg of plant sample was homoginezed in liquid nitrogen and suspended in 1.5 ml of either 

one of the buffers described in 4.8. Mixtures were shaken on ice for 2 hours and centrifuged at 

13,000 rpm for 2 minutes. 25 μl supernatant, 24.75 μl buffer and 0.25 μl protease substrate were 

mixed and pipeteted in one of the wells of a 96-well PCR reaction plate. 50 μl of blank buffer and 

substrate mix served as negative control. Commercially available tripsin were used as positive 

control. 

4.6.4. Microarray studies 

Microarray studies were carried out based on MIAME (Minimum information about 

microarray experiment) requirements described by Brazma et al. (2001). Tobacco leaves were 

inoculated with water, P. syringae hrcC suspension, inhibitor (1.5mM LaCl3, 50 M neomycin-

sulphate, 100 M aristolochic acid, 1.5 M K252a, 50 M MG115), and also with a mixture of 

bacterium suspension and inhibitor. CDNA tagging and hybridization and data normalization were 

carried out by the TIGR Potato Functional Genomics Project, using  TIGR Potato 10K cDNA Array 

containing some 12,000 potato genes. Genes with significantly (p=5%) altered expression were 

determined using rank product analysis (Breitling et al., 2004).   

4.7. Callose detection 

4.7.1. Determination of callose deposition using tissue staining 

For callose determination anilin-blue stain was used (Currier, 1957) at 0.1% concentration in 

K2HPO4 (150 mM, pH 9.5) buffer. A. thaliana leaves were bleached in boiling ethanol. Leaves were 

shaken overnight in staining buffer. Excess dye was washed out using blank buffer. Samples were 

fixed in glycerol and examined using fluorescent microscope (λex=393 nm és λem=479). Callose 

deposition clusters were counted on microscopic photographs. Number of callose clusters were 

grouped in either strong or weak decrease, no change, weak or strong increase categories compared 

to the control samples.  

4.8. Measuring native protease activity in tobacco 

Proteinase activity was measured using SensoLyteTM Red Protease Assay kit (AnaSpec 

Co., San Jose, CA, USA). Buffers were made by following the manufacturer’s instructions. Opticon 

MJ Real Time PCR  device was used to read samples at every five minutes at λexciation = 546 nm and 

λemission = 575 nm..   

4.9. Materials and methods related to gene silencing 

Satellite virus-induced silencing system (SVISS – Gosselé et al., 2002) with TMV-U2 strain 



10 
 

and its satellite virus (STMV) was used. Silencing sequences were inserted into plasmid pVE349 

containing the STMV using PstI and NotI restriction enzymes. Restriction digestion was carried out 

by following the instruction of the endonuclease provider company (Fermentas). T4 DNA ligation 

was done at 4°C overnight.  

4.9.1. Plasmid purification 

Desired plasmid was purified from E. coli grown overnight at 37 °C in liquid LB medium 

using Miniprep Express
TM 

kit (Bio101, Vista, CA, USA). 

4.10. Searching BR related tobacco gene orthologues in Arabidopsis 
Ortologues of tobacco genes responsible for protein degradation and signaling were 

searched in Arabidopsis. For this SeqMan (LaserGene) software, Genevestigator (Zimmermann et 

al., 2004) database and gene mapping application available online at the SALK Institute homepage 

(http://signal.salk.edu/cgi-bin/tdnaexpress) were used. 

4.11. Determining sequence of plasmid pVE349  
Sequence of plasmid pVE349 was reconstructed in silico  based on its patent documents 

(Metzlaff et al., 2003) and the article of Gosselé et al. (2002) using SeqBuilder 7.0.0 software 

(DNASTAR, Madison, USA).  

4.12. Statistical methods 
Mean results from repeated experiments were compared using Student’s t-test. Confidence 

interval was p>90%.  

5. Results 

5.1. Effect of bacterium induced basal resistance on viral superinfection 

5.1.1. Symptom inhibition (compatible tobacco-TMV interaction) 

Only mild mosaic symptoms were observed on plants that were superinfected with tobacco 

mosaic virus (TMV) 6 or 24 hours after bacterial infection compared to the water treated or the non-

treated plants (data not shown). Results also suggest that even water infiltration has effect on 

symptoms, although, not as strong as the bacterial infection.  

5.1.2. Inhibition of virus replication (kompatibilis dohány-TMV kapcsolat) 

Two days after the viral infection the TMV mRNA expression level was very high, then 

from the dropped significantly in the bacterium pre-infected samples (Figure 2).  
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Figure 2. Change of TMV mRNA expression levels over time in inoculated leaves of Samsun nn plants on logarithmic 

scale.  Control (only TMV), water mock treatment [Víz + TMV] and P. syringae hrcC HR-negative bacterium infection 

[hrcC + TMV]. Viral infection followed bacterial infection in six hours.  

5.1.3. Inhibition of viral HR  (incompatible tobacco-TMV interaction) 

Strong HR inhibition was observed with plants where viral superinfection followed bacterial 

infection in six hours. Not only the number of necrotic lesions but also their sizes changed. Similar 

HR inhibition was observed where superinfection followed pretreatments in 24 hours. However, in 

this case even water mock treatment inhibited HR necroses effectively (Figure 3).  

 

  

 

Figure 3. Bacterium induced BR inhibits HR necroses on N. tabacum L. 'Xanthi' NN leaves. X = untreated leaf. V = 

water mock treatment, C = P. syringae pv. syringae hrcC infection. TMV superinfection followed pretreatments in 6 

hours. Figure shows representative results of repeated experiments.  
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5.1.4. Inhibition of virus replication (incompatible tobacco-TMV interaction) 

Figure 4 shows virus replication inhibition at plants receiving superinfection six hours after 

pretreatment. TMV mRNA expression levels are increasing after all three treatments, however, the 

rate is different. Water and bacterium suspension pretreatment suppresses virus replication.  

 

 

Figure 4. TMV mRNA expression level changes on logarithmic scale over time in Xanthi NN tobacco plants over time. 

TMV = plants receiving only TMV infection; víz + TMV = water mock inoculation prior to TMV infection; hrcC + 

TMV = P. syringae hrcC.  

5.1.5. Activity changes of plant defense genes (incompatible tobacco-TMV interaction) 

Two genes with antioxidant role (catalase and dehydroascorbate reducatase) showed 

increased expression 48 hours after TMV infection in samples pre-treated with hrcC bacterium 

suspension. However, this high level of expression does not persist: by 72 hours after inoculation it 

drops to nearly half of this value (Figure 5.)  
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5. Figure Catalase (NtCAT) and dehydroasscorbate reducates (NtDHAR) gene expression changes in Xanthi NN 

tobacco over time after infection with TMV. TMV = only TMV infection; víz+TMV = water mock treatment and TMV 

infection; hrcC + TMV = P. syringae hrcC pre-treatment and TMV infection. 

5.2. Study of signaling and protein degradation genes that show altered activity 

during BR 

5.2.1. Signaling genes that show altered activity during BR 

Figure 6 shows some typical changes in activities of genes that play role in signaling and 

were previously identified by our research group. 

The MAP3K kinase gene shows increased activity usually at an early stage of BR compared 

to the untreated samples. It might play a role in the induction of the defense mechanism. Other 

genes (such as map-kinases or receptor-like protein kinases) show activity at later times. There were 

also some genes that decreased their activity during BR compared to mock treated or untreated 

samples (eg. annexin-like protein gene 24 hours after inoculation.) 
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Figure 6. Gene expression changes over time of different BR related genes. Blue line: water mock treatment, Red line: 

P. syringae pv. syringae hrcC infection. Expression levels were compared to tobacco actin and to untreated samples. 

5.2.2. Effect of signal inhibitors on BR related genes 

  Studies of 16 BR related genes were carried out after inhibiting the following signaling 

molecules and/or processes: calcium influx (lantane chloride), phoshoplipase-A2 (aristolochic acid), 

phospholipase-C (neomycin sulphate), phospholipase-D (n-butanol), protein synthesis 

(cycloheximide), proteosome degradation (MG115). Times after infection where gene activity 

differed from samples that were not treated with inhibitors are shown in Table 1. Some processes 

affected gene activity particularly at early stages of BR (eg. PLA2 on MAP-kinase, MAP3K, 

annexin-like protein and PTS protein), while others did so at rather later times (eg. inhibition of 

PLC on MAP kinase and receptor-like kinase). 
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Table 1. Left column: genes that showed altered expression levels. First row: signaling processes that were inhibited. 

Numbers in table show time after infection where change in expression levels occurred. N.a. = data not available 

 Calcium influx 
Phospholipase-

A2 

Phospholipase-

C 

Phospholipase-

D 

Protein 

synthesis 
Proteosome 

MAP kinase  3 24-48 6 6 12 

MAP3K 12-48 3 12 6 6 6 
Receptor-like 

kinase 
6  24  6-24  

PTS-protein  3-6     
Annexin-like 

protein 
6 3 6-12 ½-6 6 3-12 

SPL      12 
Heat shock 

protein 
n.a. ½-48   n.a.  

Cinnamic acid 

hydroxilase 
n.a. 3-6  6 n.a.  

Epoxide 

hydrolase 
n.a. 3-6 48 12 n.a. 3-12; 48 

Orthometil 

transferase 
n.a. 3-6  3-6 n.a.  

Glycine rich 

protein 
n.a. 6-48 24  n.a. 12-48 

Gluthation-S-

transferase 
n.a. 6 6 3 n.a. 3-6 

Peroxidase n.a. 3-6 48 12 n.a. 3-6; 48 
Cysteine 

protease 
n.a. n.a. n.a. 12 n.a. n.a. 

Ubiquitin-

binding protein n.a. n.a. n.a. 3 n.a. n.a. 

Proteosome δ-

subunit 
n.a. n.a. n.a. 12 n.a. n.a. 

  

 PLA2 and PLD affected studied genes in the early stages of BR (until 12 hours post 

infection). The glycine-rich protein gene was an exception as it showed altered activity at 48 hours 

after infection, as well. PLC seemed to affect different genes at different times.  

5.2.3. CDNA microarray studies of gene expression changes due to signal inhibitor treatments 

Samples were taken 6 hours after inoculation. Signal inhibitors (lantana chloride – calcium 

influx, aristolochic acid – PLA2, neomycin sulphate – PLC, K252a – kinases, MG115 – 

proteosome) were used.  

Inhibitors had effect on the expression of the 18% (99) of the 547 BR related genes six hours 

after infection. The directions of expression changes of any two treatments are compared in Table 2. 

The direction of changes showed the most similarity when comparing kinases and PLA2 (28 cases). 

PLC and proteosome inhibition changed 17 genes’ activity the same way.   
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Table 2. Comparison of the direction of gene activity changes after signal inhibitor treatments. Results based on 

microarray studies. Same direction is indicated with red, opposite with green.  
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Figure 7. Gene expression changes over time of different BR related genes. Blue line: water mock treatment, Red line: 

P. syringae pv. syringae hrcC infection. Expression levels were compared to tobacco actin and to untreated samples. 
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5.2.4. Changes of protease gene activities during BR 

Three genes are shown here as examples. A cysteine protease and a proteosome δ subunit 

gene showed altered expression activity 12 hours after the infection, while a ubiquitin bindig 

protein gene was affected by the infection in 3 hours after infection.  

Most significant difference between water mock treated and bacterium infected samples 

were observed in case of a cysteine protease gene. Other types of activity changes were also 

observed (Fiugre 7). 

5.2.5. Effect of protease inhibitors on gene expressions during BR 

Most studied genes showed higher level of expression during the early stages of BR after 

plants were treated with protease inhibitors compared to mock treatment and untreated plants. This 

was especially true for cysteine and serine protease inhibitors.  

Expression changes of 14 genes were studied with real time PCR. Different patterns of 

changes in expression were observed. For example the orthomethyl transferase didn’t change its 

expression level after phenantroline (metallo-protease) treatment, while the expression level 

dropped significantly when the bacterium suspension was supplemented with the same inhibitor. 

The same inhibitor alone increased the expression of an annexin-like protein gene, while together 

with the bacterium suspension, it did not affect the gene activity. The cysteine protease inhibitor 

zinc chloride affected OMT activity both alone and together with the bacterial infection, while it 

hardly affected the annexin-like protein gene’s expression (Figure 8). 

 

Figure 8. Expression levels of two BR related genes (orthomethyl transferase and an annexin-like protein) with various 

protease inhibitors 6 hours after infection. Expression levels were compared to tobacco actin. Black: control BR 

samples (Kontroll – untreated, Víz – water mock treatment and hrcC – Pseudomonas syringae pv. syringae hrcC); 

Green: inhibitor only; Red: inhibitor + bacterium suspension. Inhibitors used: phenantroline: metalloprotease; pepstatin: 

asparagic acid protease; leupeptine: cysteine and serine protease; bestatin: aminopeptidase; E-64d and zinc chloride: 

cysteine protease; AEBSF: serine protease. 

5.2.6. Changes in callose deposition in Arabidopsis after protease inhibitor treatment 

BR was induced in Arabidopsis plants using hrcC bacterium suspension. Some samples 

were also treated with various protease inhibitors. 24 and 48 hours after infection leaves were 

stained with aniline blue to detect callose with a fluorescent microscope. Wherever there was a 
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change in the rate of callose deposition, inhibitors on their own enhanced, while inhibitor and 

bacterium suspension together suppressed the process (Table 3.) 

Table 3. Callose deposition after protease inhibitor treatments in Arabidopsis. Water mock treatment served as control 

for inhibitor (only) treatments, while blank bacterium suspension was used as control for bacterium + inhibitor mixture 

treatments. Green: less callose, yellow: more callose. 

 

 
Sampling 24 hours after treatment Sampling 48 hours after treatment 

 Inhibitor Bacterium + Inhibitor Inhibitor Bacterium + Inhibitor 

Pepstatin     

Leupeptin  Slightly decreased slightly increased  

Bestatin     

E-64d slightly increased    

AEBSF slightly increased Slightly decreased slightly increased slightly decreased 

Cink-klorid  Slightly decreased  slightly decreased 

TPCK slightly increased  slightly increased  

E-64 slightly increased    

Jodo-acet-amid  
significantly 

decreased slightly increased 
slightly decreased 

NEM  
significantly 

decreased  
slightly decreased 

Aprotinin  Slightly decreased   

PMSF     

 

5.3. Introduction of new methods for functional genomic studies 

5.3.1. Native protease activity measurement in tobacco 

For these studies a kit developed for animal and human research
1
 was adapted to our 

conditions. N. tabacum ’Samsun’ plants were incubated with water, a compatible pathogen (P. 

syringae pv. tabaci), suspension of heat killed pathogens, and with an incompatible bacterium (P. 

syringae pv. syringae hrcC). A buffer suggested by the manufacturer for papain measurement 

produced the first results. 

                                                           
1
 SensoLyte

TM
 Red Protease Assay Kitet (AnaSpec Co., San Jose, CA, USA) 



19 
 

The dynamics of the protease activity changes were similar in all treatments. However, we 

observed significant differences htree and 48 hours after inoculation between the treatments. The 

compatible bacterium affected native protease activity the most: it remained lower than the other 

treatments. Also, 12 hours after the infection protease level in these samples dropped almost to zero. 

(Figure 9). 

 

9. Figure Activity changes of a protease with the same pH optimum as papain in tobacco. Values were compared to 

untreated samples based on fresh leaf mass. Fluorescence of samples show direct correlation to protease activity.  

 

5.3.2. Use of Arabidopsis model for functional genomic studies 

78 T-DNA protease mutant Arabidopsis plants were ordered from NASC. They were tested 

with a luminescent lux gene carrier Pseudomonas syringae pv. tomato DC3000 strain. The change 

of luminescence correlated with the change of bacterium cell count. Those plants that had the 

biggest difference in bacterium cell count compared to control plants were used for further studies.  

Three days after infection there were significant differences in bacterium cell count 

compared to wild type plants in a carboxypeptidase and a subtilase mutant plants (Figure 10).  
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Figure 10. Cell count of a compatible Pseudomonas syringae pv. tomato DC3000 bacterium in wild type (Col-0) and 

protease mutant Arabidopsis plants (indicated with code numbers). 50: carbodypeptidase; 76: subtilase. Samples were 

taken 3 days after inoculation.  

5.3.3. Constructing Agrobacterium vector for transient expression of STMV satellite virus in 

tobacco 

Virus induced gene silencing (VIGS), namely satellite virus induced silencing system 

(SVISS – Gosselé et al., 2002) method was used with tobacco plants.   

Satellite virus RNA was first synthetized using in vitro transcription. As this method is cost 

intensive and difficult to handle, satellite virus was built in an Agrobacterium binary vector together 

with the silencing sequence (Figure 11).  

 

Figure 11.  Agrobacterium binary plasmid pORE E4 encoding STMV satellite virus. RB: right boarder of the 

T-DNA; LB: left boarder of the T-DNA; MCS: multiple clonging site; pENTCUP2: plant promoter region; T NOS: 

terminator; szelekciós marker: selection marker was kanamycine.  
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Three weeks after infection young Samsun tobacco plants were bleached around major leaf 

veins when PDS (phytoen desaturase) gene was silenced using the method described above (Figure 

12).  

 

Figure 12. N. tabacum cv. „Samsun” nn plant in greenhouse under strong light conditions when phytoen desaturase 

(PDS) gene was silenced. Bleached leaves occurred three weeks after inoculation.  

 

5.4. Theses 
1. Basal resistance (BR) induced by P. syringae pv. syringae HR negative mutant may 

suppress a later tobacco mosaic virus infection. In compatible TMV-tobacco interactions 

the symptoms are less severe, in incompatible interactions the number of HR necroses 

are reduced. BR also keeps TMV replication low. 

2. Antioxidant genes counterweighing hydrogen peroxide show higher activity at later 

stages of BR (48 hpi) when there is a TMV superinfection. They might take part in 

suppressing necrotic lesions.   

3. Activity changes of many signaling and protein metabolism genes (defined by our 

research group prior to these studies) were followed over time. Many genes were 

identified to be active at certain stages of BR.  

4. Inhibition of PLA2 and PLD results in change of 16 BR marker genes shortly after 

infection. On the other hand, PLC inhibition affects gene expression at later times.  

5. Protein degradation factors are typically negative regulators of transcription changes at 

early stages of BR – based on our studies of seven different protease inhibitors. Similar 

studies with 12 different protease inhibitors showed that proteases may enhance callose 

deposition during BR in Arabidopsis leaves. 

6. Using potato cDNA chip the effect of five different signal inhibitors was studied on 

tobacco genes six hours after inoculation. The correlation with these signal pathways  of 

99  BR related genes was determined. 



22 
 

7. A putative papain-like (cysteine) protease was proved to be accumulated in tobacco leaf 

tissue during BR. 

8. Studies with Arabidopsis protease mutants suggested that two serine proteases 

(carboxypeptidase and subtilase) may play a positive regulatory role during BR. 

9. Based on satellite virus-induced silencing system (SVISS) new TMV satellite virus 

(STMV) expression and silencing vector was constructed for further functional genomic 

studies. 

6. Conclusions 

6.1. Effect of bacterium induced basal resistance on viral superinfection 

There are similarities in defense responses given to different types of pathoges (bacteria, 

viruses, fungi). Responses to biotic and abiotic stresses may also overlap. For example, wounding 

as a mechanic stress induces similar mechanisms in plants as pathogens (Cheong, 2002). It is 

possible, that a bacterium can induce responses developed for viruses as well. This can be perhaps 

because in the plant kingdom the ability to give very specific responses has not (yet) evolved. It can 

also be possible that this strategy is very effective for plants, as one stress may forecast another 

stress factor’s appearance (eg. a wounding may open way to bacteria). However, this type of 

general response takes too much energy to be maintained for longer time.  

The way a bacterium induced BR can suppress a viral infection is still unclear. It can be due 

to the inhibition of virus replication or viral movement.  Viral RNA expression can be suppressed 

by activating gene silencing mechanisms (Waterhouse et al., 1999). Virus movement can be 

blocked by callose deposition in plasmodesmata (Roberts and Oparka, 2003; Beffa et al., 1996; 

Wenlong et al., 2012).  

Our findings of the changes in antioxidant gene expression suggest that H2O2 degradation 

may be more intense at certain phases of a viral infection. At physiological conterntrations 

hydrogen peroxide is not enough to trigger cell death but together with other molecules (eg. NO) it 

might be possible (Delledonne et al., 1998). Thus a lower hydrogen peroxide level may inhibit cell 

death (tissue necrosis). But it can also act as signal molecule of other types of defense mechanisms 

(Hafez, 2005).  
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6.2. Study of signaling and protein degradation genes that show altered activity 

during BR 

6.2.1. Signaling genes that show altered activity during BR 

Activity changes of MAP kinases may be because osmotic stress trigger similar pathways as 

pathogen infections. At later stages of the infections, however, other – more specific – response 

processes may be stronger. Genes with higher expression level in mock treated plants than in 

bacterium infected plants may play a negative regulatory role in defense. For example, in our 

studies an annexin-like protein acted this way when we blocked PLA2 and PLC. In animal cell 

research it was proven that annexins inhibit PLA2 (Parente és Solito, 2004). 

6.2.2. Effect of signal inhibitors on gene expressions during BR 

Based on our research we can conlude that PLA2 and PLD play role at early stages of BR. 

Also, many kinase genes and the gene of an annexin-like protein play role in many signaling 

pathways. Annexin-like proteins may serve as a linking molecule between these pathways. 

Especially that it was proven that they can bind to phosphatidil inositol – a molecule that takes part 

in a PLC mediated pathway (Hoshino et al., 1995). PLA2 may play in important role in cell defense 

through cell wall fortification through affecting glycine rich proteins that are key elements of cell 

wall fortification (Ringli et al., 2001). Our researches also suggest that the ubiquitination of proteins 

to be degraded in the PLD pathway happen shortly after infection. 

6.2.3. Changes of protease gene activities during BR 

 It seems that certain proteases play role at early, while other at later stages of BR. For 

instance cysteine proteases in our studies showed stronger expression levels in 24 and 48 hours after 

infection, while had no activity change (compared to mock treatment) at 3 or 6 hours after infection.  

6.2.4. Effect of protease inhibitors on gene expression during BR 

Several protease inhibitors were studies. Many of them has already be proven to play 

important role in plant defense. Such as cysteine and serine proteases (van der Hoorn, 2008., Baek 

and Choi, 2008). Our results seem to prove these observations found in references: more significant 

changes were observed in these two protease families. Other proteases may also be important parts 

of defense mechanisms. For instance, our studies on certain metalloproteases suggest that they may 

have negative regulatory roles in these processes.  

6.2.5. Changes in callose deposition after protease inhibitor treatment 

Our results suggested that only cysteine and serine proteases have an effect on callose 

deposition. The fact that there were changes in both 24 and 48 hours after inoculation suggest that 

callose deposition is a longer process within BR, and its defensive effect reaches longer as well. 
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6.3. Introduction of new methods for functional genomic studies 

6.3.1. Native plant protease measurement 

 Our primary experiments suggest that a certain cysteine protease (a putative papain-like 

protease) activity is present not only on gene expression level but also on enzymatic levels.  

6.3.2. Use of an Arabidopsis model 

Both subtilase and carboxypeptidase (serin proteases) may play a positive regulatory role 

during BR, based on our studies on protease mutant Arabidopsis plants using lux gene expressing P. 

syringae pv. tomato DC3000 bacteria.  

6.3.3. Gene silencing in tobacco 

  Using the satellite virus induced silencing system (SVISS) designed by Gosselé et al. (2002) 

was difficult. Most problems originated from the laborintensive handling of the satellite virus 

synthetized in vitro. Direct infection with this RNA was generally not too effective. Overpassing 

with inocula from bleached leaves of PDS (phytoene desaturase) silenced plants increased 

effectivity. The answer is 42. Agrobacterium pORE4 plasmid was used to increase effectivity.  

7. Summary 
In natural environments plants are always subject to stress factors of various microorganisms. 

One of the effective defense system against them is the so-called basal resistance (BR). Unlike 

hypersensitive response (HR), BR does not produce visible symptoms. While HR is a result of 

pathogen infection in non-host plants, BR can be induced by pathogens, saprophytes and heat killed 

bacteria as well.  

Our results suggest that BR induced in tobacco plants may inhibit a tobacco mosaic virus 

superinfection – in terms of both symptoms (HR lesions) and virus replication. 

 We also concluded that signal molecules, such as phospholipase-A2 and phospholipase-D play 

role in the early phases (6-12 hours) of BR, while phospholipase-C is active in later times (24 and 

48 hours after inoculation). 

There is a strong relationship among signaling pathways. MAP kinase cascades and 

phospholipase-A2, and also phospholipase-C and protein degradation can be found in closely 

related pathways. This observation is also supported by the expression changes of an annexin-like 

protein after various inhibitor treatments. Up- and downregulation were found both among 

signaling and protease enzyme genes. The direction of expression changes could also change in 

time. 
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Results of active plant protease level measurement showed that a – putative papain-like – 

cystein protease increased in concentration in tobacco leaves during BR.  

Bacterium proliferation in protease mutant Arabidopsis plants suggest that two serin-proteases 

(subtilase and carboxypeptidase) may play an important role in keeping bacteria at bay during BR-

 An Agrobacterium vector constructed by our research group may prove to be an effective 

transient expression tool in further functional genomic research if used with tobacco mosaic virus 

satellite (STMV).  
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