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ABBREVIATIONS

AA — Ascorbic acid (g/100g)

DAA — Days after anthesis (day)

Daps — Absolute distance of the quality points

DCIP - 2,6-dichlorophenolindophenol

DM — Dry matter (%)

DW — Dry weight

DT — Destructive reference test

Car — Carotenoid content (mg/g)

CEcompression — Coefficient of elasticity (N/mm) of the compression test
CERrapure — Coefficient of elasticity (N/mm) of the rapture test
CERelaxation — Coefficient of elasticity (N/mm) of the relaxation test
cv. —Cultivar

cvs. — Cultivars

GLM — Generalized linear model

HPLC — High pressure liquid chromatography
INtcompression — INtegral under the load-deformation curve
LV — Latent variable

NCQI — New combined quality index

NDT — Non-destructive test

OP — Osmotic potential (mOsm/kg H,0)

PC — Principal component

PCR — Principal component regression

PLS — Partial least square

RMSEC — Root mean square error of calibration
RMSECYV - Root mean square error of cross validation
RPD — Robust parameter design

SAMgegree — Spectral angle map

SVM - Support vector machine

SWIR — Short wave infrared

SWS — Standardized weighted sum

TChl — Total chlorophyll content (mg/g)

TSS — Total soluble solid (Brix %)

VIS-NIR — Visible-near infrared



Table of Contents

1. INTRODUCTION ...ttt et e et e e s s e e e ne e e e taeeareeeanses 10
2. LITERATURE. ..ottt et et e e et e e e b e e e ne e e anneeeanes 12
2.1. BELL PEPPER BIOLOGICAL ATTRIBUTES. ...tittitereetiateseesearessessesessesseseasessesssssssessessaessessessesesss 12
2.2 PEPPER FRUIT DEVELOPMENT ...c.tiutetttesteseasesteseeseasesseseasessessesessessessesessessessesessessessssessessesenss 15
2.3 DEFINITION OF QUALITY AND MATURITY L.utiiiiiiiiieeeiititeeesetteeeesetaeeeessnsneeesesnteeeessnsaseesannsenas 19
2.4. QUALITY REQUIREMENTS OF BELL PEPPER ......ccutiiutiitiesieeateesteeaieesineesseesieesseesseesnsessnneenns 19
2.5. METHODS FOR QUALITY DETERMINATION OF FRUITS AND VEGETABLES ....cccvrveiarerieierenns 21
2.5.1. COlOUI MEASUIEIMENTS ......cvveviiiiiisiisiieiieiisiaie st sttt e sa sttt ts s assasnnsa s sns e 21
2.5.2. Visible and NIR spectral measurements............ccocovvvrrrrrrreiiiesesesiseseeieree 24
2.5.3. Hyperspectral IMAGgING ........ccooreriiriiriririeieies ettt 26
2.5.4. Mechanical methods for firmness MeasuremMent ............coccovvvrvvviervnvsirnsinsinsssesrsns 26
2.5.4. 1. URrasoniC VIBIALION .........cccocvirieiiiinieeesessse st 27
2.5.4.2. MECNANICAI TESES ..o 28

2.6. PREDICTION OF BELL PEPPER QUALITY ...uuttiiiiiiiiieeeiitieeeesetteeeesebaeeeessasaeesssnnbeeeessnsaseesennnnnas 30
2.7. PREDICTION OF QUALITY BY FUSION ...eutiutititesieseateseeseesessessesessessessessssesssssssessessesessessessesenss 31

3. OBJIECTIVES ... .ottt sttt et n e r et be bt ne et 35
4. MATERIALS AND METHODS.......cc ettt 36
4.1 PLANT MATERIAL . ...ttt ttttte ettt e aiteeeattee ettt ettt e te e e amte e e asbe e e amte e e asbe e e smbe e e aab e e e bt e e e bb e e s bbeeabneeanneas 36
4.2. EXPERIMENTAL SETUP FOR NON-DESTRUCTIVE TESTING....cccutiuierireiieenieeaieesieesneesieeseee e 37
o O O] (o] [ 1=1 (=] 37
4.2.2.SpeCtral MEASUIEIMENL..........ccveeeieieerieeiieieeieetestt e e te st et et et ete st esaasa st esssasnsssens 38
4.2.3. HYPEIrSPECIIal SYSTEIM ...ttt 40
U L 1 = 0] | ol (= 42
4.2.5. Stress relaxation of iNtact fruit...........cocovvevereeieeeeeee e 43

4.3. EXPERIMENTAL SETUP FOR REFERENCE MEASUREMENTS....c.uuiiiieiieiieenieeseee e neesiee e 44
4.3.1. RUPLUIE TESE ...ttt 44
4.3.2. COMPIESSION TEST ...ttt 45
4.3.3. Dry matter % (DM) determination............cccoevvvveiveesiresiiesieesiiesiisesiesiessiaesissassinsisnans 46
4.3.4. Total soluble solid (TSS) determiNatioN .............ccceevvveviveriresiiesieesiesiessiiesiisasiiesiinans 46
4.3.5. ASCOrbiC aCid MEASUIEMENT........covverreiierieeiesiesieeiestesteetestestaetestassaassasssesssasnsasenns 46
4.3.6. Chlorophyll and carotenoid Measurement ...........ccccoevvvrverreriesesnsisisieiesieesesis 47
4.3.7. Determination of osmotic potential .............ccccvvevvveviveiiesiieiieseesiese e 48



AL, AANALYSIS ..eeeeiitiee ettt ettt ettt ekt ekt e et e e A b e e eR et e e R b oAbt R e R e b b e e br e e br e e anres 48

4.4.1. Spectral analysis by linear regression model............ccooovvvevvevvriesieieesiee 48
4.4.2. Spectral analysis by non-linear regression model .............ccoooovvririrvciincic 49
4.4.3. Spectral Angle MappPer (SAM) .....vvoeiveeieeeseeseeiestest e s tesiaete st asiaesaasesssassasasens 50
4.4.4. Polar qualification System (PQS) .......cvevvveimsieieeiesieseeieeiesseiesiesiseissiesaasin s 51
4.4.5. MUltiple-CoOmMPAriSON TESES .........oourriiieieieieseee ettt 51
O I O (01T O] ¢ =] F- 11 o] I 52
o 0] o103 1 T 52
4.4.8. Standardized weighted SUM INUEX ........ccvvvevrrvieieeiesiesieeiesiesiseiesiesiseie s e asis s 53
e B U1 o] o 54
RESULTS AND DISCUSSION. ...ttt ssae e snae e nnneeanne e 56
5.1. DEFINING THE MATURITY STAGES.....cuttttteiatestereesestesseeasestessesassessessssessessessssessessasessessesssses 56

AND MATURATION ...vtttettestetetestessesseeseessessessessessesseaseassessessessessesssssesssssssssessessessessessessessnssessenes 56
5.2.1. Changes of TSS during growth and maturation ...............cccceveverirvscrrirnicieese 56
5.2.2. Changes of DM during growth and maturation ................cccceevvvvvievvesvevinsiesiesinsnnnn, 58
5.2.3. Changes of osmotic potential during growth and maturation................cccccevvvevvrnnenn. 59
5.2.4. Changes of vitamin C during growth and maturation.............c.cccocevcvvvrirrvrirnrnsc 61

5.2.5. Changes of total chlorophyll and carotenoid content during growth and maturation62
5.3, SPECTRAL ANALYSIS ..o etttiitteitee et ettt ettt e sbe e ss e sae e asb e e be e asbe e abeesab e e abe e e ns e e nneeanbeennneannee e 65

5.4. CROSS CORRELATION ANALYSIS AMONG THE DESTRUCTIVELY MEASURED REFERENCE

PARAIMETERS ...t teee et ettt e et et e e et et e e et et e e e e et e e e e e e e e e et e e e e e e e e e e e e ee e e e e 67
5.5. CORRELATION AND REGRESSION ANALYSIS .. ciiieiieiee ettt ettt 69
5.5.1. Correlation and regression analysis for ascorbic acid and NDT methods................. 69

5.1.1.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
BBt bbbttt 69
5.1.1.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
IMAGING oo 69

5.5.2. Correlation and regression analysis for total chlorophyll content and NDT methods

............................................................................................................................................... 73
5.5.2.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LS OO OO PUTOOUR VST O 73
5.5.2.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
IMAGING oo 74



5.5.3. Correlation and regression analysis for carotenoid content and NDT methods ........ 78
5.5.3.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LBt bbbt 78
5.5.3.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
IMAGING oot 78

5.5.4. Correlation and regression analysis for total soluble solid (TSS) and NDT methods 82
5.5.4.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LC525] S SSSSSSOSSURUOROOOOOY 82
5.1.1.3. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
TMAGING oot 82

5.5.5. Correlation and regression analysis for dry matter (DM) and NDT methods............ 86
5.5.5.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LC525) OSSO 86
5.5.5.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
TMAGING oot 86

5.5.6. Correlation and regression analysis for osmotic potential (OP) and NDT methods..90
5.5.6.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LBt e bbbt 90
5.5.6.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
IMAGING oo 91

5.5.7. Correlation and regression analysis for coefficient of elasticity from compression test

ANA NDT MEINOUS ...ttt sttt esn s e s assssnsenes 94
5.5.7.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
(] OO OO TSSO 94
5.5.7.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
TMAGING oot 95

5.5.8. Correlation and regression analysis for coefficient of elasticity from rupture test and

NN 111 1 Lo S 98
5.5.8.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
L5551 98
5.5.8.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral
IMAGING oo 99

5.5.9. Correlation and regression analysis for days after anthesis (DAA) and NDT methods



5.5.9.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic
LC555) 102

5.5.9.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral

IMAGING oo 103

5.6, FUSION ...ttt bbbttt 107
5.6.1. 1% level fusion: Fusion of NDT PArGmELErS .............cccvrrrrveerevrrrmrsseersessersssesenn. 107
5.6.2. 2" level fusion: fused NDT parameters related with combined cultivar dataset......113

5.6.3. 3" level fusion: fused NDT parameters correlated with fused DT parameters on each

cultivar separately and on combined cultivar dataset .............ccccoecvvvvevvveivsinsvesieciesnnn, 115

6. THESIS’S AND NEW SCIENTIFIC FINDINGS .......ccoiiiiee e 121
7. RECOMMENDATION FOR FURTHER RESEARCH .......ccooi i 123
8. SUMMARY ...ttt ettt e bbb e st et ettt et b e n e Rt e st ne et e ne et 124
9. APPENDIXES. ... ottt sttt sttt ettt e neans 127
0.1, REFERENCES ... ttetttitttestee sttt e stee et e stte e e e sbb e be e s he e et e e bt e e bt e s abe e be e e st e e e beeambe e beeanbeesaeaenbeennneas 127
0.2, APPEINDIX ..ttt ttteetee st ekt s bttt et e bttt e bbbt e e ht et e Rt e ekt e R bt ekt e Re e e bt e Rt e e be e enbe e he e e beennee s 142
9.2.1. Preliminary eXPeriMENt ..........cccccverieeiesieeiieiesiesieeiestiesteeiessassaasasssesssasssssssssaasnns 142
9.2.2. Pairwise Comaprison MethOd .............cccvvviveimriieieeiesiee st siessasie e 143
9.2.3. List of fused NDT variables ............ccoevevveiveieieseeeseeeestese s 147



1.

INTRODUCTION

Export and local market both demands high quality sorted fruits and vegetables, which long
preserves its fresh condition on the market. Additionally, there is an increased demand for fruits
and vegetables that are beneficial for healthy life style as well as rich in ingredients that
positively influence the prevention of any health malfunction.

Since in most of the agricultural products the changes of inner content and outer properties
continues after harvesting, therefore it is crucial to determine the optimal harvest time properly.
If the time of the harvest is not properly determined than it might negatively influences the
quality of the product. It means that some properties either do not reach their optimal level or in
the overripe stage the valuable components like vitamin C starts to degrade. Moreover, the shelf
life of the fruit is being shortened due to harvest in the overripe or unripe stage. The
consequences of being unripe are that the fruit does not get its cultivar specific properties, like
colour, taste. The consequence of being overripe is that the produce gets soft faster, gets
wrinkled, and tasteless.

The quality of the product is determined by the following attributes: colour, shape, size, and
being without fault, damage or signs of sickness moreover, taste, texture, firmness, weight,
internal chemical composition. Furthermore the product quality depends on the preferences and
requirements of the consumers (Abbott, 1999).

Fresh bell pepper is abundant in valuable nutritional values therefore its popularity increases
from year to year mainly as freshly consumed vegetable and as ingredient of processed food in
the cuisine. Peppers are one of the main export produce of Israel and of Hungary among many
other countries. Several cultivars are grown in Israel mainly in greenhouses or net-houses, in the
southern part of the country. In Hungary the growth of bell pepper is not significant, more
popular varieties are the ‘Yellow Wax’, ‘Kapija’, ‘Ho F1°, ‘HRF’, ‘Pritamin’ and the
apple/tomato shaped cultivars. Peppers are mainly grown in greenhouses and open fields. At the
present practise the harvest schedule is based on appearance and subjective experience of the
growers. Since the maturity of the harvested pepper affects its final quality therefore there is a
great importance in the accurate determination of the proper harvest time. Quality of pepper is a
complex feature it includes among other characteristic parameters of colour (related to
chlorophyll and carotenoid content), firmness, soluble solid, dry matter, and vitamin C content,
(Dereje, 2003, Gomez-Ladron and Pardo-Gonzalez, 1996, Zsom-Muha, 2008). Routine
measurements of these indices are generally destructive, time and labour consuming.

Harvested peppers need to be sorted and classified based on the requirements of the specific

market where the product will be later on sent. Most of the cases, mechanical and manual sorting
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lines are based on external appearance, and lacks the ability to examine essential internal quality
attributes.

After considering the above facts | found it important to examine the changes during pepper fruit
growth in order to develop a non-destructive and objective examination system for the evaluation
and prediction of quality attributes of bell peppers during maturation. There is an increasing
demand by both growers and packers for rapid, non-destructive evaluation methods for the
determination of pepper quality change during growth, maturation and in the process of sorting

and classification.
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2. LITERATURE

Bell peppers are taking a dominant place among the vegetables all over the world. Since its
dietary value was discovered its place in the daily nutrition is more and more prevailing.

The world chili and pepper production grew from 20.8 million tons in 2000 to 27.5 million tons
in 2010 (FAOSTAT, 2012). This fact creates a significant economic drive for more efficient
production. The health related attributes of the bell peppers together with the healthy nutrition
trend of the last decade creates increasing demand all over the world. More efficient production

of the bell peppers will generate significant extra income for growers and packing houses.

2.1. Bell pepper biological attributes

Bell pepper is a cultivar group of the Capsicum annuum species, member of the nightshade
Solenaceae family, which also includes potato, tomato and eggplant. Pepper plant demands
warm weather, sunshine and plentiful irrigation.

Bell peppers originated in Mexico, Central America and northern South America. Pepper seeds
were later carried to Spain (1493) and throughout the world. Due to the fact that bell peppers are
very adaptable plants, being able to be grown in tropical and temperature climates, their
cultivation and adoption into varying cuisines spread rapidly throughout many parts of the world.
In the Capsicum annuum species there are many different varieties from the wild chilli to the
sweet consumer types. Among all the cultivars the spice paprika and the sweet fresh consumer
varieties gained distinguished importance. Cultivars of the fresh consumer pepper produce
cultivated in different colours, size and shape (Fig. 1). The produce of the pepper plant is a
puffed berry with hollow inside. The shape of the fruit can be round, flattened round, puffed
prism, peaked, and crumpled inside or long thin. The colour of the pepper fruit also can vary
greatly: green, yellow, red, orange, purple, white and the pale or transition of the previously
mentioned colours. The size of the produce varies from 1 cm to 25 cm. Bell peppers have a
delightful, slightly watery crunch. Green and purple peppers have a slightly bitter flavour, while

the red, orange and yellow are sweeter and almost fruity (Fig. 2).
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Early Sunsation Ariane Red Knight X3R Hershey

Georgia Flame Piccante di Cayenna Etna Stromboli

Fig. 1 Different cultivars of pepper Fig. 2 Bell pepper of different colours

Sweet peppers are plump, bell-shaped vegetables featuring either three or four lobes. They
usually range in size from 5 to 13 centimetres in diameter, and 5 to 16 centimetres in length.
Inside the thick flesh is an inner cavity with edible bitter seeds and a white spongy core. Bell
pepper is an excellent source of vitamin C and natural antioxidants (Salunkhe, 1976). As it is
shown in Table 1, 100 g of bell pepper contains 213% of the reference daily intake (RDA) of
vitamin C, and 101% of vitamin A. It has high nutritional value, as well as popularity with
regard to taste and colour (Frank et al., 2001). The level of ascorbic acid in peppers can vary
according to cultivar, stage of maturity, growing conditions (Serrano et al., 2010, Perez-Lopez et
al., 2007) and postharvest handling (Sakaldas and Kaynas, 2010, Lee and Kader, 2000). These
antioxidants work together to effectively neutralize free radicals, which can travel through the
body causing huge amounts of damage to cells (Knekt et al., 2002). Additionally, peppers are
remarkable vegetables because of their significant provitamin A concentration, through its
concentration of carotenoids such as beta-carotene (Duthie and Crozier, 2000; Pietta 2000). Red
pepper is one of the few foods that contain lycopene, a carotenoid whose consumption has been
inversely correlated with cancer. Consumption of vitamin C, beta-carotene, and folic acid, all
found in bell peppers, is associated with a significantly reduced risk of cancer (Mateljan, 2007).
Moreover, it is important to mention the high importance of chlorophyll concentration in pepper,
especially in the new cultivar of ‘Ever Green” which remains green coloured even in the fully
ripe stage. Relevant studies have shown that chlorophyllin a food-grade derivative and structural
analogue of chlorophyll strongly inhibits aflatoxin B; (AFB;)-DNA damage and
hepatocarcinogenesis in the rainbow trout therefore has anti-carcinogenic properties (Breinholt et
al., 1995, Simonicha et al., 2008).
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Table 1 Nutritional values of red bell pepper

Bell peppers (Capsicum annuum var annuum), red, raw, Nutrition value
per 100 g (Source: USDA National Nutrient data base)

Principle Nutrient Value Percentage of RDA
Energy 31 Kcal 1.50%
Carbohydrates 6.03 ¢ 4%
Protein 0.99¢ 2%
Total Fat 0.30¢g 1%
Cholesterol 0mg 0%
Dietary Fiber 21g 5.50%
Vitamins:
Folates 46 mcg 12%
Niacin 0.979 mg 6%
Pyridoxine 0.291 mg 22%
Riboflavin 0.085 mg 6.50%
Thiamin 0.054 mg 4.50%
Vitamin A 31311V 101%
Vitamin C 127.7 mg 213%
Vitamin E 1.58 mg 11%
Vitamin K 4.9 mcg 4%
Electrolytes:
Sodium 4mg <1%
Potassium 211 mg 4.50%
Minerals:
Calcium 7mg 1%
Copper 0.017 mg 2%
Iron 0.43 mg 5%
Magnesium 12 mg 3%
Manganese 0.112 mg 5%
Phosphorus 26 mg 4%
Selenium 0.1 mcg <1%
Zinc 0.25mg 2%
Phyto-nutrients:
Carotene-8 1624 mcg --
Carotene-o 20 mcg --
Cryptoxanthin-i 490 mcg --
Lutein-zeaxanthin 51 mcg --

As the fruit development advances the pepper fruit changes its size, colour, firmness, texture and
internal composition. The cultivar specific colour (red, yellow, orange) develops only at the last
stage of the maturation. All the previously mentioned parameters are cultivar specific. For each
variety the rate of change of these values are different, therefore the discernment of proper
harvest time is a complex issue. Generally the decision of the harvest time is based on the
experience of growers.

Bell pepper belongs to the group of non-climacteric agricultural products, which means that the
changes occurring after harvest is greatly depend on the state of harvest and post-harvest
conditions (Almasi et al., 1977).

Today bell pepper is grown in a wide range of climates mainly as an annual crop both in open
fields and protected structures. The production of bell and chilli peppers in Israel was 134,700
tons in 2000 and grew to 294,300 tons in 2010, while the exported quantity of bell and chilli
peppers in Israel was 20,519 tons in 2000 it grew to be 89,893 tons in the year of 2009. Data

14



source shows that the harvested area in Israel tripled within the period of 2000-2010. Israel is
taking the 17" rank in the worldwide chilli and pepper production (FAOSTAT, 2012). Export
markets show increasing demands for high-quality sorted fruits and vegetables, and the revenue

from such high-quality products is much higher than the average income.

2.2 Pepper fruit development

Several features describe the development of pepper fruit. In the following lines these features
will be detailed.

One of the features of fruit ripening is the change in colour; it is a consequence of chlorophyll
disappearance, when the reddish/yellowish colouration due to carotenoids becomes perceptible.
The green colour due to chlorophyll and carotenoids such as lutein disappear with the synthesis
of chromoplast pigments (Hornero-Mendez and Minguez-Mosquera, 2000). During fruit
ripening, chromoplast differentiation, from either chloroplasts or protoplasts, is very often
accompanied by carotenogenesis, a de novo carotenoid biosynthesis that increases and even
changes the intensity and characteristics of the colour in the ripe fruit (Minguez-Mosquera and
Hornero-Mendez, 1994) The mechanism of chlorophyll disappearance is complex and still not
fully understood. It has been established that the chlorophyll degradation pathway consists of
three main steps involving three different enzymes, namely chlorophyllase, Mg-dechelatase and
pheophorbide-a-oxygenase (Vicentiniet al., 1995). During the ripening of pepper fruits, de novo
synthesis of carotenoid pigments occurs, and some of these (capsanthin and capsorubin) are
exclusive to this genus (Minguez-Mosquera and Hornero-Mendez, 1994). This process is
accompanied by a sharp decrease in chlorophylls as a consequence of the degeneration of
chloroplast into chromoplast. The role of chlorophyllase during this process seems to be
important: its activity is manifested in the ripening process, perhaps being a triggering or
modulating factor of the de novo biosynthesis of carotenoid pigments (Hornero-Mendez and
Minguez-Mosquera, 2002). The increase in activity has been related to senescence and
maturation (Terpstra and Lambers, 1983). Furthermore the chlorophyll and carotenoids contents
of pepper can vary in composition and concentration owing to differences in genetics and
maturation (Markus et al, 1999; Russo & Howard, 2002).

The longer the fruits are maintained on the plant, the more physiological changes occur causing a
switch toward senescence, and altered nutritive components. Change in fruit colour is also
associated with loss of cellular integrity and reduced mobilization of macromolecules through
the plant (Thimann, 1987). As fruits mature, physiological activity changes, and much of this
change is regulated by enzymes. Two enzymes associated with fruit maturity in peppers are 3-

galactosidase and peroxidase. f-galactosidase in the latter stages of ripening degrades galactose-
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containing cell wall polysaccharides causing the release of free galactose, this activity may lead
to a loss of cell integrity (Carrington and Pressey, 1996). The amount of nutrients available to
plants may influence accumulation of compounds in fruit as they remain attached to the plant.
Concentration of B-galactosidase and peroxidase, accumulating prior to harvest, may affect the
activity of these compounds after harvest and influence shelf-life and other quality factors. Even
if the mode of activity is unclear, there is consensus that -galactosidase and peroxidase have
roles in the changes occurring in developing pepper fruit (Russo and Biles, 2003).

Deepa et al. (2007) found a sharp increase in carotenoid content monitored during three maturity
stages and at the red/yellow stage carotenoid content showed the highest concentration in the
studied 10 varieties of sweet pepper. Leja et al. (2008) investigated ‘Spartacus’ sweet pepper
(Capsicum annuum) cultivar grown in foil tunnel. They harvested the fruits in three maturity
stages: green, turning and red. The contents of total phenols, total carotenoids and evolution of
endogenous ethylene were determined. They found during fruit ripening considerable increase in
carotenoids. The most distinct synthesis of carotenoids was observed when fruits were converted
to the full maturity stage (red colour). Russo and Howard, (2002) studied how growing
conditions affect levels of carotenoids in pepper fruits as they mature. Ten pepper cultivars were
examined, grown in glasshouse and in open field. Levels of total carotenoids in fruits of most
cultivars were not affected by location of production at the green stage. At the turning stage, as
well as in the red stage most cultivars had higher levels of total carotenoids if glasshouse grown.
However, glasshouse production to improve carotenoid content was not universal, as indicated
by higher levels of capsantin found at the red stage in fruits of field-grown pepper (Anaheim
type). It is clear that there is no simple conclusion, that can explain the relative amounts and
changes in carotenoid levels that occur with changes in colour that occur concurrently with
maturation. The various cultivars exhibit variations in the evolution, distribution and chemistry
of carotenoids in pepper fruits. Hornero-Mendez and Minguez-Mosquera (2002) suggest that
carotenoid formation is a normal process, likely a result of senescence, and independent of
chlorophyll catabolism.

Although sweet bell pepper (Capsicum annuum L.) is non-climacteric fruit with regard to
postharvest respiratory pattern, mature-harvested pepper will progress to degrade chlorophyll
while simultaneously synthesizing a variety of red and yellow carotenoids. Bell pepper is
increasingly harvested at full colour due to growing consumer demand for peppers with
improved flavour and nutritional aspects (Frank et al., 2001; Fox et al., 2005).

Another feature of fruit ripening is the change in soluble carbohydrates (sucrose, fructose,

glucose).
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Sucrose, glucose and fructose are the major components of the soluble neutral sugars found in
pepper fruit (Nielsen et al., 1991). Nielsen et al. (1991) defined that fruit development can be
divided into three phases: (1) an initial phase with high relative growth rate and hexose
accumulation, (2) a phase with declining growth rate accumulation of sucrose and starch, and (3)
a ripening phase with no further fresh weight increase and with accumulation of hexoses, while
sucrose and starch were degraded. According to Nielsen et al. (1991), the carbohydrate
metabolism in the growing fruit tissue is important to the partitioning of photosynthetically fixed
carbon in the plant. Furthermore, the content of different sugars is critical to the quality of the
fruit for consumption. Pepper fruits are harvested both as unripe and ripe, and the sugar content
on the fruit tissue depends strongly on the harvest time. According to Nielsen et al. (1991),
during maturation of the fruits there was a significant accumulation of hexoses. In the ripe fruits
soluble sugars accounted for 4.4% of the fresh weight, which equaled 40% of the dry matter.
According to Luning et al. (1994), sweetness in bell pepper appeared to be typical for ripe stages
and closely related to glucose, fructose, total sugar, and dry matter content. However, sucrose
was not related to changes in sweetness during maturation.

The next feature to be detailed is an effective antioxidant, the ascorbic acid. Despite the
importance of AA, its biosynthetic pathway in different plant parts is not completely understood.
The natural sugars are considered to be precursors of ascorbic acid, since they produce an
increase in this acid when administered through the conductive tissues or the roots (Loewus,
1961). Wheeler and colleagues (1998) proposed the first pathway to gain acceptance. The so-
called “Smirnoff-Wheeler” pathway for AA biosynthesis has as its immediate precursor L-
galactono-1,4-lactone, and the intermediates involved are phosphorylated sugars and nucleotide-
linked sugars. Several studies have confirmed this mechanism (Gatzek et al., 2002). This
pathway would appear to be the main one for the biosynthesis of AA, but other pathways cannot
be discarded (Barata-Soares et al., 2004).

A change in ascorbate metabolism was monitored by Imahori et al. (1998) during maturation of
sweet pepper (Capsicum annuum L.) fruit. They investigated four stages of maturity, based on
changes in peel colour from green to yellow; 100% green, 10-20% yellow, 50-60% yellow,
100% yellow. They found that ascorbate content in sweet pepper fruit increased during
maturation.

Deepa et al. (2007) monitored with destructive methods (DICP dye titration) 10 cultivars of
sweet pepper for the change of ascorbic acid during three maturity stages (defined by changes of
colour and weight changes). Based on their study, ascorbic acid content declined progressively

with advancing maturity.
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Orban et al. (2011) examined the change of vitamin C by destructive Spanyar-method in three
cultivars of pepper and in 8 different maturity stages (defined by colour changes). Based on their
results the ascorbic acid accumulation increased until 80% of ripeness then decreased.

The textural feature of the pepper is influenced by the firmness of the whole fruit and the
firmness of the fruit flesh. Firmness is one of the important factors determining market quality
and consumer acceptance of peppers. The outer wall of a pepper covers large locular air spaces
and is supported by 3 or 4 carpel walls around the equatorial axis. Placental tissue and seeds are
located in the centre of the fruit and contribute little to the support of the wall.

A rapid decrease of flesh firmness during fruit ripening has been observed, and it is primarily
due to changes in cell-wall carbohydrate metabolism that result in a decrease of certain structural
components of cell wall (Bartley and Knee 1982). Polygalacturonase, pectin methyl esterase,
beta-galactosidase and cellulase are the major enzymes related to fruit softening (White, 2002).
Cheng et al. (2008) studied five pepper cultivars with varying degrees in flesh firmness to
identify biochemical characteristics related to fruit softening. Firmness of fruit flesh (with
epidermis attached) and flesh (without epidermis) was measured at different developmental
stages: premature (15-20 days post-anthesis (DPA), stage 1), green mature (commercially ripe,
30-35 DPA, stage 2), colour turning (fruit becoming 30-40 % red, 40-50 DPA, stage 3), and red
ripe (fruit totally red, 60—70 DPA, stage 4) with a pressure tester. Firmness with and without the
epidermis attached changed similarly in all pepper lines during development. Biochemical
characteristics were measured which included insoluble pectin, soluble pectin, and cellulose
contents, and the activities of pectin methyl-esterase (PME), polygalacturonase (PG), -
galactosidase, and cellulase. In all varieties, flesh firmness was highest at stage 3, and then
decreased during development. Soluble pectin content also increased in all cultivars. Cellulose
content normally decreased after stage 3, but these changes varied among varieties. With
ripening PG and PME decreased in the most firm varieties, and cellulose and B-galactosidase
were the key enzymes involved in the less firm cultivars. The authors concluded that changes of
fruit firmness were to some extent correlated to the soluble pectin and cellulose content during
development and ripening. However, the key biochemical characteristics causing fruit firmness
changes were clearly different among the pepper fruit types.

Tadesse et al. (2002) measured pepper fruit firmness in different growth stages (1-11 weeks after
anthesis), using an Effegi penetrometer. Fruit firmness increased with fruit size except that a

slight reduction occurred in the final two harvests.
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2.3 Definition of quality and maturity

Quality according to Kader (1999) or the degree of excellence or superiority of fresh fruits is a
combination of attributes, properties, or characteristics that give each commodity value in terms
of human nutrient. The relative importance of each quality component depends upon the
commodity and its intended use and varies among producers, handlers, and consumers. To
producers a given commodity must have high yield and good appearance, must be easy to
harvest, and must withstand long-distance shipping to markets. Appearance quality, firmness,
and shelf-life are important from the point of view of wholesale and retail marketers. Consumers
judge quality on the basis of appearance, freshness and firmness. Moreover, consumer’s
satisfaction depends on previous experience of flavour during consumption. Consumers are also
concerned about the nutritional quality, which are not only colourful and flavourful components
of the diet, but also a good source of energy, vitamins, minerals, dietary fibres and bioactive
compounds that enhance human health.

According to Kader (1999) maturity is the stage of development leading to the attainment of
physiological or horticultural maturity. Physiological maturity is the stage of development when
a fruit will continue ontogeny even if detached. Horticultural maturity is the stage of
development when a fruit possesses the prerequisites for utilisation by consumers for a particular
purpose. Maturity at harvest is the most important factor that determines storage-life and final
fruit quality. Immature fruits are more subject to shrivelling, mechanical damage, and being
flavourless. Overripe fruits are likely to become soft and mealy with insipid flavour soon after
harvest. Any fruit picked either too early or too late in its season is more susceptible to

physiological disorders and has a shorter storage-life than fruit picked at the proper maturity.

2.4. Quality requirements of bell pepper

Consumer interest worldwide in the quality of vegetable products has increased in recent years.
Product quality is a complex issue. We can find many different way of describing the maturation
and quality change of the pepper (Dereje, 2003; Gomez-Ladron and Pardo-Gonzalez, 1996;
Zsom-Muha, 2008; Zsom et al.,, 2008; Petroczki, 2007; Lang, 1982). Moreover, visual
characteristics, properties such as texture, the content of minerals and vitamins, flavour and other
organoleptic characteristics must be considered. In addition, new knowledge shows that
vegetables are appreciated for their beneficial health effects which underline the importance of
nutraceutic properties. Recently, consumer demand for these parameters has greatly increased
together with requirements for a higher content of minerals, vitamins, and bioactive substances
(Schreiner et al., 2000; Schnitzler and Gruda, 2002).
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Quality parameter

Measurement method

Reference

colour
vitamin C
peroxidase enzime

subjective (eyesight)
destructive method (modified Spanyar-method)
destructive method (DT)

Orban et al. 2011

length, diameter, pericarp tickness, weight

colour

total acidity

total antioxidant activity
sugars and organic acids
total carotenoids

manual

colourimeter

DT pH measurement

DT laboratory measurement
DT laboratory measurement
DT laboratory measurement

Serrano et al. 2010

firmness
total soluble solid (TSS)

DT Texture Analyzer, NDT NIR reflectance
DT refractometer, NDT NIR reflectance

Penchaiya, 2009

diameter, length, weight, and surface area

water loss rate

firmness

manual

gravimetrically

using a 1-5 scale (1-spongy soft; 2-soft; 3-firm soft;
4-moderately firm; 5-firm)

Diaz-Perez et al., 2007

total phenolic compounds
carotenoids

DT laboratory measurement
DT laboratory measurement

Perez-Lopez, 2007

colour Hunterlab Colorflex spectrophotometer
ascorbic acid DT laboratory measurement (HPLC)
size, weight manual Jarrett, 2007

capsaicinoids
sucrose, glucose and fructose
malic acid, and total acide

DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)

total soluble solid

titratable acidity

fat, ash and protein contents
potassium, calcium and sodium
zinc, manganese and copper

DT laboratory measurement
DT laboratory measurement
DT laboratory measurement
DT laboratory measurement
DT laboratory measurement

Martinez et al., 2007

firmness

organic acids and ascorbic acid
sugars

carotenoids

phenolic compounds

maximum rupture force, Instron

DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)

Raffo et al., 2007

water content
carotenoids

oven-dry
DT laboratory measurement

Navarro, 2006

antioxidant activity DT laboratory measurement

sugars DT laboratory measurement (HPLC)

ascorbic acid DT laboratory measurement (HPLC)

phenolic acid DT laboratory measurement

firmness impact Ignat et al., 2003b
ascorbic acid DT laboratory measurement Ignat et al., 2003a
firmness impact

firmness impact Tompos et al., 2003
ascorbic acid 2,6-dichlorophenol-indophenol method Niklisa et al., 2002
dry matter oven-dry

total soluble solids refractometer

colour colourimeter

carotenoids

DT laboratory measurement (HPLC)

Russo & Howard, 2002

weight, volume

colour

firmness

total soluble solid (TSS)
respiration and ethylene production

manual

colourimeter

Effegi penetrometer
refractometer

gas-liquid chromatograph

Tadesse et al. 2002

carotenoids

DT laboratory measurement (HPLC)

Hornero-Mendez & Minguez-
Mosquera, 2000

ascorbic acid
provitamin A
minerals

DT laboratory measurement (HPLC)
DT laboratory measurement (HPLC)
AOAC methods

Simonne et al. 1997

chromatic coordinates

colourimeter

Gomez-Ladron de Guevara & Pardo-
Gonzalez, 1996

tint DT laboratory measurement

chlorophyll DT laboratory measurement

length, diameter, weight manual Marcelis & Baan Hofman-Eijer, 1995
dry matter oven-dry

weight, length/diameter ratio and the manual Greber et al,, 1988

percentage of 2-, 3- or 4-lobed fruit

Table 2 Overviews of quality parameters for pepper produce by different measurement methods
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In agriculture, quality determination of produce is based on a multitude of features (Dull, 1986):
flavour (sweetness, acidity); appearance (colour, size, shape, blemishes, glossiness); and texture
(firmness, mouthfeel). Physical and chemical quality attributes as quality parameters of pepper
produce were measured by several different parameters as shown in Table 2.

Generally it can be concluded that most of the examined parameters are related to: dimension
and weight; to colour, chlorophyll, and carotenoid; to total soluble solid, dry matter or sugars; to
organic-, ascorbic-, and phenolic acid; and to firmness. Routine measurements for most of these
indices are generally time and labour consuming. However, measurement of the maturity is
essential since it affects the final quality of the harvested pepper. Most of the cases the
determination of harvest schedule, sorting and classification are done by humans, by mechanical
or manual sorting which is based on external indices and criteria, and lacks the ability to examine
essential internal quality attribute. Moreover, there is a problem of subjective sorting, the
inconsistency of humans in the classification and poor repeatability (Steinmetz et al., 1999b).

A more sufficient non-destructive method is needed to determine the optimum harvest time; to
sort and to classify. It will certainly grant more consistent quality in bell pepper market and

technical improvement for the growers and packaging houses.

2.5. Methods for quality determination of fruits and vegetables

Determination of agricultural product quality is a continuously developing subject. Especially
that the requirements of vendors, customers and the volume of production increased
tremendously in the past decades. Therefore it is a continuous task to improve the quality
measurement methods in order to achieve higher quality produce from the farmers as well as to
develop more efficient sorting and classification lines.

In the following I would like to detail the measurement methods which were used in the present
study.

2.5.1. Colour measurements

The external appearance of fruits, particularly their colour, is of prime importance when
considering the different attributes which define quality, and destined for fresh consumption. A
visual impression which does not coincide with the established standard easily leads to refusal.

Colour is a human perception by definition. The standards for colour spaces representing the
visible spectrum were established in 1931 by C.1.E. ("Commission Internationale de I'Eclairage”,
which in English is the "International Commission on Illumination™). It was intended to provide

a standard approximately uniform colour scale. The three curves, x ,y , and z , when combined
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with the input stimulus and integrated, generate three signals that relate closely to perceived
colour. These signals, called tristimulus values, and denoted as X, Y, and Z, form the basis of
most popular and useful colour.

There are two forms of colour measurement devices: those that measure spectral reflectance
(spectrophotometers) and those that measure only tristimulus values (colorimeters). The main
difference is that spectrophotometers measure physical properties (spectral reflectance, spectral
transmittance, and spectral absorptance) from which tristimulus values are calculated.
Colorimeters typically pass the light through specially designed filters allowing tristimulus
values to be calculated directly from detector output levels.

There are many CIE colour spaces, which serve different purposes. They are all "device
independent”, unlike RGB or CMYK colour spaces which are related to a specific device. These
RGB and CMYK spaces usually do not cover the entire visible colour spectrum. The CIE also

specify lighting conditions.

lightness =——p»

www.colourphil.couk

0

Fig. 3 LCH colour space (http://www.colourphil.co.uk/lab_Ich_colour_space.html)

The CIE LCH colour space (applied in the present study) or colour model essentially is in the
form of a sphere (Fig. 3). There are three axes; L*, C* and H°. The L* axis represents Lightness.
This is vertical; from 0, which has no lightness (i.e. absolute black), at the bottom; through 50 in
the middle, to 100 which is maximum lightness (i.e. absolute white) at the top. The C* axis
represents Chroma or "saturation”. This ranges from 0 at the centre of the circle, which is
completely unsaturated (i.e. a neutral grey, black or white) to 100 or more at the edge of the
circle for very high Chroma (saturation) or "colour purity”. Around the edge of the coloured
circle can be seen every possible saturated colour, or Hue. This circular axis is known as H° for
Hue. The units are in the form of degrees (or angles), ranging from 0° (red) through 90°
(yellow), 180° (green), 270° (blue) and back to 0°. LCH is device-independent.
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Colour has long been used in the assessment of fruit quality. In fruits, a decrease in chlorophyll
content is correlated with increasing maturity; this is traditionally used as the criterion for visual
assessment of fruit maturity (Crisosto et al., 2007). Some fruits have one colour homogeneously
distributed on the skin surface, and the averaged surface colour is a good quality indicator for
these fruits. In the early years of application of computer vision to fruit inspection, fruit colour
assessment relied on grey-scale images captured by monochrome cameras, for instance, for
classification of oranges in colour classes. This approach is only applicable when the product is
mono-coloured, and defect detection is not required. Other fruits, like some cultivars of peaches,
and apples, have a secondary colour that is frequently used as an indicator of maturity, which
often is not reliable. Produce colour sorting in modern packinghouses is performed using RGB
colour video-cameras. Each pixel in a colour image consists of three intensity values, since any
colour can be reproduced by the combination of three primary colour components: blue, green,
and red. Each of these components: R, G and B, covers a large part of the visible spectrum. The
techniques require previous and also continuous training to adapt the system to the great colour
variability present in products like fruits (Blasco et al., 2007; Lleo et al., 2009). Image colour
accuracy and spatial resolution have been greatly improved in three-chip (CCD, CMOS) cameras
(Pitre et al., 2010). Three-chip colour cameras use dichroic prisms to direct the light in each of
the three wavebands.

Gomez-Ladron de Guevara and Pardo-Gonzalez, (1996) studied the evolution of colour in 13
paprika pepper varieties by means of Minolta CR-200 colorimeter (CIELAB colour coordinates).
The authors found that among the CIELAB colour attributes, saturation (S*) is the most
appropriate for distinguishing the different fruit ripening phases.

Tadesse et al. (2002) studied the effect of harvesting sweet pepper at different stages of growth
and development on physicochemical attributes. Colour change (LCH values) of the fruit skin
was measured at three points on the surface by Minolta Chromameter (CR-100). Hue angle
declined with time while chroma values increased with fruit maturity. They found that colour
change and TSS were reasonable indicators of maturity of sweet pepper fruit complemented with
fruit firmness.

The evolution of fruit weight, colour, nutritive (sugars and organic acids) and bioactive
compounds (total phenolics, carotenoids, and ascorbic acid) was evaluated along the growth
cycle with applied mix of nitrophenolates in the irrigation system by Serrano et al. (2010).
Colour measurements were conducted by Minolta colorimeter CR200 (L*, a*, b*). They found
that colour (a*) and carotenoid evolution was similar for both control and treated fruits along the

growing process. The colour a* parameter varied very little from fruit set to day 36 and increased
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sharply from days 39 to 57, due to colour changes from green to red, which occurred in the last
phase of fruit growth, when the fruit was near its maximum weight.

In general, online fruit colour grading by means of computer vision is considered solved and is
widely used now by the industry. However, colour sorting is not suitable for measuring or

assessing internal quality, which may require multi- and hyperspectral imaging.

2.5.2. Visible and NIR spectral measurements

Chemical bonds absorb light energy at specific wavelengths; therefore some compositional
information can be determined from spectra measured by spectrophotometers or spectrometers.
Within the visible wavelength range, the major absorbers are the pigments: chlorophylls,
carotenoids, anthocyanins and other coloured compounds. Water, carbohydrates, fats and
proteins have absorption bands in the NIR region.

The reflectance properties of a product in the visible region (approximately 400-750 nm) are
perceived by humans as colour, which provide pigment information about commodities. Skin
colour has been considered indicative of maturity for some horticultural products such as banana,
mango, and tomato (Edan et al., 1997). Colour, in the human perception directly relates to
product appearance (Abbott, 1999), and the relationship of pigments, and therefore the VIS
reflectance fingerprint, with deterioration and evolution of fruits during ripening has been
established. Many constituents of fruit quality, including those that contribute to taste and aroma
as well as antioxidant potential are synthesized in chloroplasts or chromoplasts, and in the genes
(Barry, 2009). In the food industry, quality factors are often linked to product pigments or colour
features. VIS imaging sensors are thus effective techniques for quality detection of fruits,
especially for maturity and ripeness.

Ortiz et al. (2001) related VIS-NIR spectral information to soluble solids, acidity and firmness of
peach fruits. Zude et al. (2006) examined soluble solid content in apples by VIS-NIR. Wang et
al. (2011) estimated vitamin C content in chilies using quantitative analysis technique based on
VIS-NIR diffuse reflectance spectroscopy. Significant correlations were found between the
chlorophyll content of apple fruit and spectral transmittance recordings, using the red-edge
values as well as various indices used in remote sensing and partial least square regression in the
spectral range from 600 to 750 nm by Zude (2003). Merzlyak et al. (2003) studied the diffuse
light reflectance of apple fruit in the spectrum range from 400 to 800 nm. They used five apple
cultivars, all picked in mature condition and obtained significant correlation between different

reflectance indices and fruit chlorophyll content. Xudong et al. (2009) non-destructively
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measured quality indices (soluble solids contents, titratable acidity, vitamin C content, and
colour) of intact Nanfeng mandarins by using the VIS-NIR spectral range.

NIR radiation covers the range of the electromagnetic spectrum between 780 and 2500 nm
(Sheppard et al., 1987). In NIR spectroscopy, the product is irradiated with NIR radiation, and
the spectrum of the reflected or transmitted radiation is measured. The spectral characteristics of
the incident ray are modified while it passes through the product due to wavelength dependent
absorption and scattering processes. This change depends on both the chemical composition and
the physical properties of the product (Nicolai et al., 2007). The short-wave infrared region is
that part of the electromagnetic spectrum lying between 750 and 1900 nm, associated with
vibration and combination overtones of the fundamental O—H, C—H and N—H bonds, which are
the primary structural components of organic molecules (Williams and Norris, 2002).
Chemometric statistical techniques such as partial least squares regression (PLS), multi-linear
regression (MLR) and principal component analysis (PCA) are then applied to correlate the NIR
spectrum to quality attributes such as the sugar content, acidity, firmness or storage period of the
product (Schmilovitch et al., 2000).

NIR measurements have been successfully used to non-destructively quantify and characterize
fruits and vegetables ingredients, and these techniques have been used successfully for rapid
analysis of multiple components, such as oil, protein (Schmilovitch et al., 2001; Shenk et al.,
1992), dry matter (Schmilovitch et al., 2000), firmness (Penchaiya et al., 2009, Schmilovitch et
al., 2000) and total soluble solids (Penchaiya et al., 2009; Schmilovitch et al., 2000; Zude et al.,
2006) in a wide variety of agricultural produce. Blanco et al. (1993) used NIR diffuse reflectance
spectroscopy to determine ascorbic acid in pharmaceutical products. Microstructure of the fruit
and vegetable tissue affects the propagation of NIR, therefore NIR spectroscopy has successfully
applied in measuring microstructure related attributes such as internal damage (Clark et al.,
2003), stiffness (Lammertyn et al., 1998).

More widespread use of these technologies depends on several factors. The most important
technical factor is the prediction model’s robustness. The accuracy of the NIR calibration models
should be sufficient in predicting unknown samples which did not participate in the calibration
model. Calibration models should be based on large datasets, including samples from different
origins, climate conditions, and seasons. The issues of temperature sensitivity of NIR
measurements should be considered (Roger et al., 2003) and transfer of a calibration model to a

different spectrophotometer (Greensill et al., 2001).
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2.5.3. Hyperspectral imaging

Multi- or hyperspectral cameras permit image acquisition at many wavelengths. Multispectral
imaging means to acquire images fewer than ten wavelengths. If the number of wavelength is
more than ten, then we talked about hyperspectral imaging. The acquired images can be
visualized in a hyper cube with the X and Y dimensions being the length and width of the image
and the Z dimension being spectral wavelengths. The dataset also could be envisioned as single
wavelength pictures of the object, with as many pictures as the number of wavelengths used.
Such imaging can provide information about the spatial distribution of constituents (pigments,
sugars, moisture, etc.) near the product’s surface (Ruiz-Altisent et al., 2010).

Imaging and spectroscopy are integrated in hyperspectral imaging, therefore it simultaneously
acquires both spectral and spatial information from the product, thus making it especially
suitable and much more powerful for inspecting horticultural and food products (Kim et al.,
2001; Gowen et al., 2007). Hyperspectral imaging is implemented in line scanning mode or in
filter-based imaging mode (Lu and Chen, 1999). In line (push-broom) scanning mode, the
imaging system line scans the moving product item, from which three-dimensional hyperspectral
images, also called hypercubes, are created. Line scanning mode is most commonly used
because it is relatively easy to implement, and preferable when online applications are needed. In
filter-based imaging mode, spectral images are acquired from the stationary product item for a
sequence of wavebands using either liquid crystal tunable filter (LCTF) or acousto-optic tunable
filter (AOTF). Filter-based hyperspectral imaging systems require more complicated calibration
and are not suitable for online applications (Ruiz-Altisent et al., 2010).

Hyperspectral imaging technology was used for measuring fruit maturity, firmness and soluble
solids content (EIMasry et al., 2007; Lu and Peng, 2007; Noh et al., 2007), and for detecting
bruises and bitter pits on apple and mushroom (Nicolai et al., 2006; Gowen et al., 2008)
deterioration in mushroom (Taghizadeh et al., 2010) and chilling injury and internal defect of
cucumber (Cheng et al., 2004; Ariana and Lu, 2010). Hyperspectral imaging is feasible for
implementation into fast, online sorting and grading of horticultural products (Ariana and Lu,
2010).

2.5.4. Mechanical methods for firmness measurement

Mechanical properties of the fruit relate to texture. Harker et al. (1997) examined the cellular
basis of fruit texture and the human physiology involved in its perception. Mechanical tests of

texture include the familiar puncture, compression and shear tests, as well as creep, impact, sonic
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and ultrasonic methods (Brown and Sarig, 1994; Chen, 1996; Abbott et al., 1997; Felfoldi and
Ignat 1999; Tompos et al., 2003; Ignat et al., 2003; Ignat et al., 2010).

2.5.4.1. Ultrasonic vibration

Ultrasound technology has been known for many years, its main application areas being medical
diagnostics, and industrial processes and inspections. At high frequencies and low power it can
be used as an analytical and diagnostic tool, and at a very high power it can assist processing.
Ultrasonic vibrations are above the audible frequency range: >20 kHz. Ultrasound is generated
by a transducer contains a ceramic crystal which is excited by a short electrical pulse that has a
typical form of several sine cycles. Through the piezoelectric effect, this electrical energy is
converted to a mechanical wave that is propagated as a short sonic pulse at the fundamental
frequency of the transducer. This energy is transferred into the material or body under analysis
and propagated through it (Krautkramer and Krautkramer, 1990). The ultrasound signal
emerging from the test specimen is sensed by a piezoelectric element that acts as a receiver,
converting any ultrasound impinging on it, back to electrical energy. When the system operates
in ‘pulse-echo’ mode, the same piezoelectric element acts as a transmitter and a receiver
alternately; when a ‘through-transmission’ mode is used, a second piezoelectric element acts as a
receiver.

Ultrasonic energy will propagate through a material until the sound wave encounters an
impedance change, which means that there are some changes in the material density or/and the
velocity of the sound wave (Kuttruff, 1991). The energy attenuation of the ultrasound beam and
the speed of wave propagation depend on the nature of the material and its structure (Kuttruff,
1991). The most physical or chemical changes in the material, cause changes in the attenuation
and velocity of the propagated beam.

The potential for ultrasound in the food industry has been recognized since the 1970s (Povey and
Wilkinson, 1980), and developments regarding the technique have progressed rapidly over the
years (Povey, 1998). However, development of the ultrasound technique as a means of
evaluating food quality has not progressed as fast in the fresh fruit sector as in the food industry.
Lack of appropriate equipment, sufficiently powerful to penetrate but, at the same time,
sufficiently gentle to avoid damage to the sensitive tissues of fruit and vegetables, has been an
important deterrent (Porteous et al., 1981; Mizrach et al., 1989). However, some advances in
equipment design, and availability of new instruments and sensors, mainly designed for
industrial use with new composite materials, has facilitated progress and has stimulated more
studies and developments of ultrasonic methods and techniques for the fresh fruit and vegetables

market (Mizrach et al., 1989). Recently, ultrasonic techniques have been investigated for the
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sensory analysis of various quality parameters in agricultural produce. Various devices and
measuring techniques, based on ultrasonic waves, have been developed for non-destructively
monitoring some physiochemical, biochemical, and mechanical changes that occur in fruit
tissues during the various stages of their pre- and postharvest existence. These stages include
growth and maturation (Self et al., 1994; Chivers et al., 1995; Mizrach et al., 1999a, b; Gaete-
Garreton et al., 2005, Ignat et al., 2010), storage under various conditions (Flitsanov et al., 2000;
Mizrach et al., 2000; Verlinden et al., 2004) and shelf-life (Mizrach and Flitsanov, 1999;
Mizrach, 2000; Johnston et al., 2002). Many studies, describe difficulties and limitations in
applying the ultrasound technique for quality evaluation in the pre- and postharvest processes.
This suggests that the technology is not yet ripe for commercial use and that there is a lot yet to
be done in order to bring it into a widely used sorting tool (Mizrach, 2008).

2.5.4.2. Mechanical tests

Under mechanical loading, fruits and vegetables exhibit viscoelastic behaviour which depends
on both the amount of force applied and the rate of loading. However, for practical purposes,
they are often assumed to be elastic and loading rate is largely ignored. Measurement of elastic
properties requires consideration of only force and deformation, whereas viscoelastic
measurement involves functions of force, deformation and time. Nonetheless, because even the
firmest fruits and vegetables do have a viscous component to their force-deformation behaviour,
loading rate (test speed) should be held constant in instrumental tests and should be reported.
The viscous component has minimal contribution to perceived texture in most firm fruits and
vegetables (e.g. apple or carrot), but is quite significant in soft fruits, notably tomato, cherry,
pepper and citrus. That is why a creep or relaxation measurement is often more suitable for the
latter products than is a puncture test (Abbott, 1999).

Most non-destructive mechanical methods measure elastic properties: modulus of elasticity at
very small deformations. Modulus of elasticity measures the capacity of the material to take
elastic deformation and is the stress—strain ratio, commonly measured by the slope of the force
and deformation curve prior to rupture for a tissue specimen with constant cross-sectional area
(Abbott, 1999).

Puncture or compression tests made at relatively low speeds, typical of such instruments as the
Magness—Taylor fruit firmness tester and electronic universal testing instruments, are considered

quasi static. Typical stress-strain curve is shown in Fig. 4.
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Fig. 4 Typical stress-strain curve

The portion of the initial slope up to inflection represents non-destructive elastic deformation
(A). Beyond that portion, cells start to rupture and there may be a bioyield point (B) where a
noticeable change in slope occurs before the rupture point (C) at which significant tissue failure
occurs. Beyond rupture, the force may again increase, level off, or decrease as deformation
increases.

Puncture force-deformation curves appear similar to compression curves. Firmness of
horticultural products can be measured by compression or puncture with various probes at
different force or deformation levels, depending on the purpose of the measurement and how the
quality attributes are defined. Horticulturists tend to define firmness as the maximum force
attained. On the other hand, the slope of the force-deformation curve, reflecting apparent elastic
modulus, is often used by materials engineers as an index of firmness. Bourne (1982) found that
the best relationships to sensory firmness, hardness and crispness are obtained with forces at or
beyond deformations that cause tissue damage.

Penetrometer testers such as the Magness-Taylor are widely used for fruits and vegetables. The
Magness-Taylor tester was developed primarily as an objective measurement of picking maturity
(Magness and Taylor, 1925). Penetrometer measurements are moderately well correlated with
human perception of firmness and with storage life, and consequently this technique has received
acceptance for a number of horticultural commodities, such as apple, cucumber, kiwifruit, pear
and peach. Compression and penetration techniques due to their low speeds and often destructive
nature, are not very adaptable for on-line sorting of horticultural products.

Mechanical techniques have been developed to non-destructively measure some quality
parameters of fruit and vegetables, mainly for firmness estimation, providing an alternative to the

destructive Magness—Taylor penetrometry (Garcia-Ramos et al., 2005; Nicolai et al., 2006).
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Major mechanical techniques include the measurement of variables extracted from quasi static
force-deformation curves (Fekete and Felfoldi, 2000), the analysis of impact forces (Felfoldi and
Ignat, 1999), and the measurement of acoustic responses to vibrations (Felfoldi, 1996) and
impacts.

Measuring the variables of force-deformation curves by applying a small deformation force to
the fruit with a metallic plunger in such a way that it causes no damage, the non-destructive
force-deformation curve can be recorded. The curve is produced by applying a small load for a
fixed period of time (Macnish et al., 1997) or by calculating the force necessary to reach a pre-
set deformation (Fekete and Felfoldi, 2000). This non-destructive technique has led to the
development of a number of force-deformation devices. One of them is the durometer which has
been widely used for tomatoes, cherries (Clayton et al., 1998) and other soft fruits. Macnish et al.
(1997) describe two non-destructive devices for measuring firmness: the Analogue Firmness
Meter and the Digital Firmness Meter. These devices have been used with tomatoes and mangos.
The fruit is placed in a v-shaped structure, and then a 40 mm diameter disc is applied to it. A
non-spectroscopic method of measuring mechanical deformation with a laser has been developed
by Hung et al. (1999), known as the “laser air-puff”, this device measures the deformation of
fruits subjected to a short but strong current of air (69 kPa in 100 ms). Lu and Tipper (2009)
develop a portable bioyield detection device to measure apple fruit firmness, which measure
force at the bioyield point as an indication of fruit firmness.

Firmness testers have a wide range of application, some of them can be integrated to sorting

lines.
2.6. Prediction of bell pepper quality

For the determine of pepper quality - which had been described in chapter 2.1.4 - as efficiently
and accurately as possible, appropriate sensors should be selected and algorithms must be
developed. In recent years the prediction of quality parameters for pepper by different
chemometric procedures started to take place. Especially as the awareness of this vegetable’s
importance greatly increased and its quality prediction became more urgent to pursue. Table 3
give an overview of the recently conducted works on the prediction of quality parameters of
peppers from different cultivars. Most of the work was focused on internal components,
especially on capsaicionids. Penchaiya et al. (2009) found prediction models for soluble solids
and firmness using SWIR spectral measurements and PLS regression. Tadesse et al. (2002) used
generalized linear model (GLM) to build prediction model which it needs destructive
measurements of the fruit. Ignat et al. (2010) used non-destructive (ultrasonic, colorimeter and

relaxation) methods to predict DW and TSS content of three cultivars of bell pepper. Ignat et al.
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(2011b) established prediction models for the estimation of total chlorophyll and carotenoid
content using VIS-NIR and SWIR spectral measurement, and by linear and non-linear
chemometric procedures.

There is a need to develop methods and algorithms for the evaluation and prediction of global
quality changes in pepper which relates to maturation and senescence, during growth,
development, storage and shelf life. Moreover, there is a need to establish complex prediction
models using several cultivars and different growing conditions and technologies.

Table 3 Overviews of prediction of quality parameters for pepper produce by different
measurement and regression methods

Predicted componenet DT Method NDT Method Regression Method Reference

chlorophyll, carotenoid Conventional method VIS-NIR, SWIR  PLSR Ignat et al., 2011b
2, 6-dichloro-indophenol

ascorbic acid N VIS-NIR, SWIR PLSR Ignat et al., 2011a
titration method

vitamin C 2, 6-dichloro-indophenol o\ PLSR Wang et al., 2011
titration method

DW, TSS Conventional method, Ulrtasornc, PCR Ignat et al., 2010
Refractometer Relaxation, Colour

organic acids, fatty

acids, amino acids;

minor compounds such

as trigonelline, C4- Conventional method HRMAS-NMR PLSR-DA Ritota et al., 2010
substituted pyridine,

choline, and cinnamic

derivatives

firmness Texture Analyzer SWIR PLSR Penchaiya et al., 2009
soluble solid (SSC) Refractometer SWIR PLSR

capsaicinoids Conventional method NIR PCR, PLSR Park et al., 2008
capsaicinoids HPLC UV-VIS PLSR Davis et al., 2007

Comparison to

carotenoids ) FT-Raman - Schulz et al., 2005
carotenoid standards
lutein, be.ta-carotene, Measurements of relative NIR-ET-Ramman - Baranski et al., 2005
capsanthin change
weight, volume manual Tadesse et al. 2002
colour colourimeter
firmness Effegi penetrometer
. - PCA, GLM
total soluble solid (TSS) refractometer
respiration and ethylene o
. as-liquid chromatograph
production gas-1g grap
capsaicinoids HPLC NIR Tsou et al., 1997

2.7. Prediction of quality by fusion

Sensor fusion is analogous to the cognitive process used by humans to integrate data continually
from their senses to make interferences about the external world. Sensor (or data) fusion refers to
the acquisition, processing, and combination of information generated by multiple knowledge

sources and sensors (Hall, 1992). The objective is to provide optimal use of the available
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information for detection, estimation, and decision-making. The original motivation for sensor
fusion in the early Eighties was rooted in military radar applications. Later on the
implementation of sensor fusion systems became common in a wide variety of applications, due
to advances in sensor technology, signal processing algorithms, high performance computing and
communication (Varshney, 1997). The advantages of sensor fusion are that it offers redundancy,
complementary, real-time performance and cost-effective information (Luo et al., 2002).

There are three major ways in which multiple sensors interact (Brooks and lyengar, 1998; Faceli
et al., 2004): complementary when they do not depend on each other directly, but are combined
to give a more complete image of the phenomena being studied; competitive sensors provide
independent measurement of the same information, regarding a physical phenomenon;
cooperative sensors, combine data from independent sensors to derive information that would be
unavailable from the individual sensors.

Fusion of redundant information can reduce overall uncertainty and thus increase the accuracy
with which the features are perceived by the systems (Durrant-Whyte, 1988; Janssen and
Niehsen, 2004). In addition, complementary information from multiple sensors allows features in
the environment to be perceived that would otherwise be impossible to acquire if we only used
the information supplied from each individual sensor operating separately (Janssen and Niehsen,
2004; Luo et al., 2002).

The methodology for fusion suggested by Steinmetz et al. (1999b) shown in Fig. 5. They suggest
a process containing eight steps to establish fusion. The process starts with the examination of
the different properties of the produce. The next step is to choose the appropriate destructive
(reference) and non-destructive tests for the measurement of the produce properties, followed by
the selection of the best fitting chemometric procedure. The suggested process contains the
evaluation of the system and possibilities for its improvement.

Table 4 present an overview of the some of the research works which were conducted in the
recent years in the field of agriculture, focusing on the quality prediction of fruits and vegetables.
As it is presented in the overview there are no standard rules in making fusion. In the realization
of fusion a wide range of sensors are used online or in the training set with wide spectrum of
statistical regression, classification and learning machines in order to predict the quality of the
product. But in each cited cases it was concluded that by fusion the error of regression or error of
classification was significantly reduced. This fact encourages the continuation of this research

field to be used in wider product range and as a possible tool in the complex quality prediction.
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¥
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Assessment (2R ]
feedback loop
STEP 4 Data acquisition
STEP § Complementarity or
redundancy of the sensors Improvement
feedback loop
STEP 6 Sensor fusion technique:
selection and application
!
STEP 7 Evaluation of the sensor |
fusion approach
y
STEP 8 Acceptance or rejection

of the sensor fusion

Fig. 5 Description of the methodology (Steinmetz et al., 1997)
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Table 4 Overviews of prediction of quality parameters by fusion

Agricultural product Predicted componenet DT Method NDT Method Statistical Method Reference
pepper shrinkage Weight ANN Mohebbi et al., 2011
firmness Texture Analyzer
colour Image acqusition
pepper DW Conventional method,  Ulrtasonic, relaxation, ~PCR Ignat et al., 2010
TSS Refractometer colour
tomato colour colorimeter Bayesian classifier Baltazar et al., 2008
firmness impact and acoustic test
apple electronic nose (Enose), PCA, PNN Lietal., 2007
bruise surface acoustic wave
sensor (zNose™)
apple Acoustic impulse PLS, discriminant partial Zude et al., 2006
firmness resonance frequency least squares (D-PLS)
sensor
soluble solids content
(SS0) VIS/NIR
apple c_olour, shape, weight, Manual measurements  Colorimeter Fuzzy logic Kavdir and Guyer, 2003
size, defects
eggplant colour, length, girth, . . ANN Saito et al., 2003
. image processing
bruises
peach Firmness Penetrometer MMS1-NIR, electronic PLS, PLS/DA Natale et al., 2002
(Magness—Taylor) nose
SSC refractometer
Acidity, chlorophyll, Laboratory
carotinoids, anthocyans measurement
peach k-means clustering, Ortiz et al., 2001
soluble solid (SS) Refractometer VIS-NIR stepwise discriminant
analysis
titratable acidity Titration
Magness-Taylor
. penetration, Confined  Non-destructive impact
firmness .
compression test, Shear response
rupture test
apple sugar Refractometer Vision system, NIR multilayer neural network Steinmetz et al., 1999a
(MNN)
orange size, weight Vision system PCA, MLR, FDA, NN  Steinmetz et al., 1997
firmness Impact firmness sensor
Ec;_tglss)o luble solids Refractometer NIR
acidity Titration
colour Colorimeter
peach sound-based sensor, Bayesian classifiers Steinmetz et al., 1996
. . Magness-Taylor, micro-deformation associated with heuristic
firmness, stiffness . A N
Instron-type machine  based sensor, impact ~ methods for identity
based sensor fusion
cantaloupes colour, size, shape NDT sensors NN Ozer et al., 1995
firmness
weight
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3. OBJECTIVES
The objectives of the present work are:

I.  To explore the relationship between several non-destructive testing methods and the state
of maturity, inner composition, textural, and physiological parameters (DT parameters).
Il. To develop a rapid reliable non-destructive cost effective system to measure quality

index of bell pepper.

The above objectives were realized in the following steps:

A. Examination of internal and external quality changes during growth and maturation for the
selected, three different final colour (green, yellow, red) bell pepper cultivars.
B. Evaluation of textural and internal content prediction ability of several NDT methods such as:

a. Colour measurement

b. Relaxation test

C. Ultrasonic test

d. Spectral measurements in the range of visible-near infrared
e. Spectral measurements in the range of short wave infrared
f. Hyperspectral imaging.

C. Evaluation of the synergetic effect of the combination of the above NDT methods by fusion.
D. Evaluation of the synergetic effect of the fused DT quality parameters and NDT methods by

fusion.
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4. MATERIALS AND METHODS

The experiment of the present study based on a preliminary experiment which was carried out
during March-May 2009 on fruits taken from 2 greenhouses: ‘Vergasa’ (red) and ‘Ever Green’
(green) cultivars. The preliminary experiment consisted from two parts: the examination of
changes during fruit development and the storability of the harvested fruit. Based on the results
and experiences of the preliminary experiments (Appendix 9.2.1) the presents studies’
experiment was chosen and established.

4.1. Plant material

The experiments were carried out from December 2009 through February 2010, and involved
fruits of three cultivars of different colours, taken from three greenhouses from the same area of
En Tamar region, Israel. The particular cv.-s were ‘Ever Green’ (green final colour variety), ‘No.
117’ (yellow final colour variety), and ‘Celica’ (red final colour variety). Each cultivar was
grown in a separate greenhouse; plants were grown on the soil with drip irrigation. Plants were
irrigated 3 times a day, with 5 m® solution contains 10 | fertilizer (7 % Nitrogen, 3% Phosphorus,
and 7% Potassium). Pepper plants were grown in the ‘Spanish’ system, which means that the
plants were supported vertically by ropes (Fig. 6).

Fig. 6 ‘Spanish’ system, vertically supported growing technology

The peppers chosen for the study were marked during their flowering stage (Fig. 7a). Fruits (Fig.
7b) were picked nine times at weekly intervals, during the 9-week growing period, from the 34"

day after flowering (DAA) until full ripening (88" day). Each picked batch of each variety
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contained 20 fruits; altogether 180 fruits of each cultivar were collected. Table 5 presents all the
collected pepper samples according to DAA. Shortly after picking, fruit had been cooled and
kept in an air-conditioned laboratory at 23°C. First, each batch of 60 fruits (20 pieces of ‘Ever
Green’, 20 pieces of ‘No.117” and 20 pieces of ‘Celica’) were numbered, weighed and measured
their length and diameter at the shoulder of the fruit, then each pepper sample was subjected to
NDT measurements than immediately followed by sampling from the same location for further
destructive determinations. All the examinations were carried out on one particular surface of the

pepper fruit as it is depicted in the below figure (Fig. 7c).

Fig. 7a Marking of the fruits Fig. 7c Marked pepper fruit in the Fig. 7c Chosen surface
in the flowering stage unripe stage (‘Celica’ cv. is depicted) of DT and NDT
measurements

4.2. Experimental setup for non-destructive testing
4.2.1. Colorimeter

Shortly after picking, each fruit’s colour was measured by colorimeter. Minolta Data Processor
DP-301 of Chroma Meter CR-300 series was used for colorimetric measurements. Colour
indices were taken at half length and two sides of each pepper fruit. The first measured side is
the dedicated side, where all the measurements were conducted (Fig. 4c), and the second side is
the opposite side of the dedicated surface. The two measurements were averaged. The following

colour indices were recorded: Lightness (L), Chroma (C) and Hue (h).
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Table 5 Presentation of the collected pepper fruits according to the DAA

DAA Ever Green No.117 Celica
34" Picture is missing Picture is missing Picture is missing

40"

47"

541"

60th

67"

741

8 15'[

8 8th

4.2.2.Spectral measurement

The experimental arrangement for testing pepper fruits included a USB2000 (Ocean Optics,
Dunedin, FL, USA) minispectrometer (Figs 8a and 8b), with spectral range 340-1014 nm;
grating, 600 lines blazed at 750 nm; optical spectral resolution, 1.2 nm at FWHM (Full Width at
Half Maximum); spectral sampling interval, 0.5 nm, 2048 data points with bidirectional
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reflection probe (BIF600-UV-VIS). The instrument uses one fibre to collect radiation reflected
toward the spectrometer, and a bundle of six fibres to carry light from the LS-1 Tungsten
Halogen Light Source (Ocean Optics, Dunedin, FL, USA). The incident beam, carried via the
bidirectional reflection probe fell perpendicularly onto the fruit sample, and the reflected light
was collected by the collecting fibre and guided to the slit of the spectrometer. The setup
included a cone (25-mm-diameter base, 15 mm in height, with a slope of 450), which shielded
the optical assembly and the measured surface of the fruit from ambient radiation. Because of
noise in the ranges of 340-477 nm and 950-1014 nm in the spectral data of the USB2000

spectrometer, the spectral range had to be reduced to 477-950 nm.

LS-1 Tungsten

ED

USB2000

Fig. 8a Experimental setup for VIS-NIR spectral
measurements; a: USB2000 spectrometer, b:
[llumination source, c: Bidirectional reflectance
probe, d: & 25 mm cone, e: Pepper sample, f: PC
for data acquisition.

Fig. 8b Schematic of the optical setup for
VIS-NIR spectral measurements

&

Ls-1
Tungsten

Fig. 9a Experimental setup for SWIR spectral
measurements; a: Liga spectrometer, b: Fig. 9b Schematic of the optical setup for
Illumination source, c: Fibre-optic, d: & 30 mm SWIR spectral measurements
cone, e: Pepper sample.
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Spectral measurements also were obtained with a Liga SWIR spectrophotometer (STEAG Micro
Parts, Dortmund, Germany) with a single directional fibre-optic connected to a cone attachment
(Figs 9a and 9b). The light source of this instrument is an LS-1 Tungsten Halogen Light Source
(Ocean Optics, Dunedin, FL, USA). The detector assembly included a cone that fitted tightly
against the pepper surface to prevent scattered radiation reaching the detectors. The surface area
observed through the cone was 30 mm in diameter. The incident beam from the light source was
projected perpendicularly onto the fruit sample and radiation reflected at an angle of 45° was
collected by the G-8160 detector. Altogether 128 data points were acquired in each scan,
covering an 850-1888 nm range interval with optical spectral resolution of 8.1 nm. Both
configurations were calibrated with a Spectralon, WS-1-SL standard white ceramic background
disc (Ocean Optics, Dunedin, FL, USA).

The spectral measurement systems were arranged in reflectance mode for receiving the signals
from the peel and flesh of the fruit. The sampled pepper was positioned so that the VIS-NIR and
SWIR detector assembly sampled a region at one marked site on the circumference of the largest
cross-section perpendicular to the stem—blossom axis. Each fruit was scanned 10 times in the
sampled region by moving slightly the cone on the surface; the readings were automatically

averaged to yield one spectrum signal.
4.2.3. Hyperspectral system

Scheme of the hyperspectral imaging system is presented on Fig 10a. The spectral component is
selected using an acousto-optic tuneable filter (AOTF) which acts as an electronically tuned
band-pass filter. The image sampled by the AOTF filter is captured by a black and white CCD
cooled camera (COOL-1300Q/QC, VDS, DE) with a pixel resolution of 1280x1024, and
640x512 with 2x2 binning technology. Binning technology enables 4 adjacent pixels to be
combined in one pixel, resulting in increased light for each pixel. The lens angle was 12°
horizontally and 9° vertically. The control of the AOTF was done by a Direct Digital Synthesizer
(DDS) which sends a radio frequency wave to the AOTF through an amplifier, and thereby
changes the filter characteristics.

The measurements were conducted in the wavelength range of 550-850 nm, in step of 5 nm.
Custom software was written to control the hyperspectral camera. For the processing of the
hyperspectral images and for the building of the hyperspectral cubes a Matlab code was written.

The code includes:

o flat filed correction of the images,

e calculation of the absolute reflectance using the empirical line,

40



exclusion of the saturated pixels,

sampling of the hyperspectral cube (Fig 11),

and calculation of the averaged spectra (Fig 12-13), SAM and PQS indices.

PC
CccD Video Frame
(: AOTF Camera | Grabber
Diffuser
Amplifier | RF DDS Light sources
Fig. 10a Hyperspectral imaging system Fig. 10b Scheme of the hyperspectral
architecture measurement setup

Hyperspectral images were acquired of each pepper samples. The scheme of the setup is
presented on Fig. 10b. Three spectral processing methods were implemented in this work: for the
selected pixels (Fig 11) of the hypercube, the averaged reflectance spectra, the spectral angle
mapper: SAM (exact method detailed in chapter: 4.4.3.) and the polar quality system: PQS value
(exact method detailed in chapter: 4.4.4.) were calculated. The present work contains only the
result of the 1% location of the hyperspectral sampling. Pretreatment of the averaged reflectance
spectra was conducted by first derivative of reflectance (D;iR), the log(1/R), and its first-
(D1(log(1/R))), and second derivative (D,(log(1/R))). The resulted data were used to examine the
hyperspectral imaging as quality measurement method. Chemometric procedures were
performed with Matlab software (exact methods detailed in chapter: 4.4.).

A T L S

100 150 200 250

Fig. 11 Example for the spectral sampling of the hyperspectral cube (Pepper sample is
taken from the 47" DAA “Ever Green’ cultivar).
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Fig. 12 Relative reflectance spectrums of Fig. 13 Averaged relative reflectance
the sampled areas of the pepper sample. spectrums of the sampled areas of the
The spectrums are showing the sampled pepper sample. The graph shows the
areas of Fig 11. averaged spectrums of Fig 12.

4.2.4. Ultrasonic test

A high-power, low-frequency ultrasonic pulse generator-receiver (Krautkramer Model USL33)
and a pair of 50-kHz ultrasonic transducers (Fig. 14) were used to generate the signal; coupled to
a microcomputer system for data acquisition and analysis. Exponential-type Plexiglas beam-
focusing elements were used to reduce the 55-mm beam diameter of each transducer to the
desired area of contact with the fruit. The transducers were mounted with an angle of about 120°
between their axes, enabling an ultrasonic signal to be transmitted and received over a short
distance between their tips across the peel of the fruit (Mizrach, 1999). The ultrasonic
measurement was conducted once, on a relatively flat area which was previously chosen on the
pepper fruit. The pulse amplitude of the transmitted ultrasonic signal was measured at eight
points with 0.25 mm spacing (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 and 2.25 mm) between the two
probes, along the length of the fruit. The attenuation of the ultrasonic signal — based on the eight
measurement points — was calculated according to the below equation (Krautkramer and
Krautkramer, 1990) [1].

—axl
A=Ae 0]
where, | is the distance between the input and collection probes, A and Ao, respectively, are the
ultrasonic signal amplitudes at the beginning and the end of a distance | along the propagation

path of the ultrasonic wave, and a is the apparent attenuation coefficient of the signal.
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Fig. 14 Experimental setup for ultra sonic measurements; a: transducer, b: receiver, c:
exponential-type Plexiglas beam-focusing elements, d: microcomputer system.

4.2.5. Stress relaxation of intact fruit

Relaxation test was chosen to follow non-destructively the changes in firmness of the pepper
samples during growth and development. Relaxation test showed strong correlation with the
generally adapted pressure gage method measuring firmness of whole bell pepper fruit (Meir et
al., 1995) in the preliminary executed experiments 2009 spring season (Appendix 9.2.1).

General purpose relaxation test was carried out with Lloyd LR SK Instrument (Lloyd
Instruments Ltd., UK). The material testing machine is a twin column bench mounted
instrument. The machine is controlled by NEXYGEN 4.1 material test and data analysis
software. The features of the instrument are: high accuracy interchangeable XLC load cells,
crosshead travel 975 mm, speed range 0.01- 1016 mm/min, data sampling rate 8 kHz and full PC
integration with NEXYGEN 4.1 material test and data analysis software.

The general purpose relaxation test was carried out on intact fruit laid on its side on a flat plate
and was compressed by a moving plate at a standard (selectable) speed (200 mm/min) until a
load limit (20 N) was achieved (Fig. 15a). The hold time was 10 seconds. The results were
analyzed by Nexygen 4.1 - Material Test and Data Analysis Software. At the end of the test the
rate of relaxation [N/s] and the remaining deformation [mm] was recorded. A typical diagram for
relaxation test is presented in Fig 15b. Additionally, a coefficient of elasticity (CERrelaxation,
N/mm) was calculated from the phase of loading of the pepper sample with 20N.

The relaxation test was considered as a NDT test based on preliminary experiments (Appendix
9.2.1). In the preliminary experiments the peppers sample were tested by relaxation test and
stored for 2 weeks on 7 °C, followed by shelf life storage at 20 °C for 3 days. After the storage
and shelf life the pepper samples were examined and no physiological degradation was found on

them.
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Fig. 15a Experimental setup for relaxation Fig. 15b Typical diagram for relaxation test
test; a: flat plate, b: moving plate.

4.3. Experimental setup for reference measurements
4.3.1. Rupture test

Compress to Rupture Test was carried out with Lloyd LR SK Instrument (Lloyd Instruments
Ltd., UK), described in detail in the 4.2.5 paragraph. Strip (3 cm by 3 cm) was cut from the
designated side. The strip was placed, laying on its peel on the lower plate and weighted with the
upper plate (1250 g) on the top, to avoid the deflection of the strip during the test (Fig 16a and
16b). The pepper strip was measured from the fruit flesh side because the aim of the
measurement was to follow the changes in the pepper flash. The strength of the peel or its
change was not the concern of the present study. Both plates had a centred 16 mm diameter hole.
The speed of the 8 mm diameter penetration probe was 100 mm/min. The tip of the penetration
probe was slightly curved. As force was applied, the load and deformation were recorded
simultaneously and stored by Nexygen 4.1 software. Each strip of pepper was characterized by
the coefficient of elasticity (CErypwre, N/mm), calculated from the specific section of the test
(Fig. 16c) before the proportionality limit (Bourne, 1982).
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*———- Peppersample
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Fig. 16a Experimental setup for rapture test Fig. 16b Schematic diagram of the setup
for rapture test
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Fig. 16¢ Typical diagram for rapture test

4.3.2. Compression test

Compress to Limit Test was carried out by Lloyd LR SK Instrument (Lloyd Instruments Ltd.,
UK), described in detail in the 4.2.5 paragraph. Test disk of 15 mm diameter was cut from the
dedicated side of the pepper. The disk was placed on the centre of the lower plate (Fig. 17a) in a
way that its peel was laying on the lower plate. The speed of the upper plate was 100 mm/min.
The upper plate was compressing the sample until a certain point when the distance between the
probe and the lower plate was 1 mm. As force was applied, the load and deformation were
recorded simultaneously and stored by Nexygen 4.1 software. Each fruit was characterized by
two calculated parameters: the coefficient of elasticity (CEcompression, N/mm), calculated from a
specific section of the load-deformation curve (Fig. 17b) before the proportionality limit
(Bourne, 1982); and the integral of the area under the load-deformation curve (Intcompression)- In
the later parameter the integral was calculated from the start of deformation until the

proportionality limit.
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Fig. 17a Schematic diagram of the setup Fig. 17b Typical diagram for rapture test
for compression test

4.3.3. Dry matter % (DM) determination

Approximately 10 g sample was taken from the location at which NDT measurements had been
performed. Each sample was weighed (w;,) and dried at 60°C in a forced-air oven for 72 h, than it
was weighted again (w;) and percentage of DM was calculated [2]. DM is expressed in %.

DM = (Wa/wp)*100  [2]

4.3.4. Total soluble solid (TSS) determination

Sample was taken from the location at which NDT measurements had been performed; small
cuts were made on the inner side of it, in order to ease the juice of the pepper sample to be
squeezed. TSS measurements were taken by a digital refractometer (Atago, PR-1). The TSS was

expressed in Brix %.

4.3.5. Ascorbic acid measurement

Determination of ascorbic acid (AA) content was carried out based on the AOAC official
method (AOAC 2000). A sample of approximately 4 g was taken from the pericarp location at
which spectral measurements had been performed earlier; it was frozen and kept at -18°C in a
50-ml closed tube. For examination of the vitamin C content, frozen tissue was macerated in 25
ml of 3% metaphosphoric-acetic-acid (HPO3-CH3;COOH) extracting solution by an Ultra-Turrax
homogenizer (TP 18-10, Janke & Kunkel KG), and the extracted solution was vacuum filtered
through a Whatman fiberglass filter disk. Residues remaining in the homogenizer and on the

filter disk were washed with extracting solution, and the final volume of filtrate was measured in
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a graduated cylinder. Twenty milliliters of solution were transferred to an Erlenmeyer flask and
20 ml of metaphosphoric-sulfuric-acetic-acid (HPO3;-CH3;COOH-H,SO,4) was added to maintain
proper acidity (pH about 1.2) and to prevent autoxidation of ascorbic acid. Titration from a 50 ml
burette was carried out with 25% 2,6-dichlorophenolindophenol (DCIP) standard solution until a
light but distinct rose-pink colour persisted for more than 5 s. The blue dye DCIP is reduced to a
colourless form on addition of ascorbic acid, as shown in Fig. 18, but it imparts a pink colour to
the acidic solution. From each sample two titrations were performed; if they differed by more
than 0.1 ml in reagent consumption, a third titration was conducted and the outlier was
discarded. The ascorbic acid content was calculated according to the pre-prepared calibration
with a standard ascorbic acid calibration solution set, and expressed as milligrams of ascorbic
acid per 100 g of fresh sample.

Standardization of indophenols dye reagent was made each time when new stock solution has
been prepared. For calibration 50 ml 1 mg/ml concentration standard ascorbic acid solution was
prepared and titration series (0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 1.7, 2.0, 2.3, 2.5 mg/ml) were carried

out. Fig. 18b shows a typical calibration result.
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Ascorbic acid DCIP Dehydroascorbic DCIP 0
' (Oxidized, Blue-Pink) acid (Reduced, Colorless) 0 0.5 1 15 2 25
Ascorbic acid concentration, mg/ml
Fig. 18a The reduction of 2,6- Fig. 18b Standardization of indophenols
dichlorophenolindophenol with ascorbic acid dye reagent with 1 mg/ml ascorbic acid

standard solution

4.3.6. Chlorophyll and carotenoid measurement

Determination of total chlorophyll and carotenoid content were carried out by extraction in
absolute ethanol and spectral determination of absorbance in the wavelength of 470, 648.6 and
664.2 nm. Approximately 0.7 g sample was taken from the pericarp at the location at which
spectral measurement had been performed earlier; it was put to 80% of ethanol, it was frozen and
kept on -18°C in 15 ml closable tubes. At the time of examination of the chlorophyll and
carotenoid content, frozen tissue was macerated in mortar with absolute ethanol until only white
tissue remained from the pepper sample. The macerated tissue and liquid was vacuum filtered
through Whatman fibreglass filter disk. Remnants on filter disk were washed with absolute

ethanol and filtered. The final volume of filtration was measured in graduated tubes. The spectral
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measurement was conducted by Genesys Spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) in a quartz cuvette. All the process from extraction to spectral
measurement was carried out in dim light to avoid degradation of the chlorophyll and carotenoid
in the sample. Calculation of total chlorophyll and carotenoid content were carried out based on
the below equations (Lichtenthaler, 1987) [3-6]:

Ca:13.36 A664.2 -5.19 A648.6 [3]
Cb:27.43 A648.6 -8.12 A664.2 [4]
Ca+b=5.24 Aggso+ 22.24 Agugs [5]

Ce=(1000 As7o— 2.13 C, — 97.64 C,)/209  [6]

where A is the absorbance of the sample, measured by Genesys Spectrophotometer.
Calibration of the method was conducted by pure chlorophyll a and b component in the ratio of 3
to 1 (Lichtenthaler, 1987). The total chlorophyll and carotenoid concentration was expressed in

mg per g of fresh weight.
4.3.7. Determination of osmotic potential

A section of approximately 40 mm?, was cut from the pepper from the dedicated side of the fruit.
The fruit was pre-washed with tap water and dried.

The tissue was frozen in 1.5 ml micro-test-tubes at -5°C. The frozen tissue was crushed inside
the tubes with a glass rod, the bottom of the tubes was pin-pricked and the tubes, set inside
another 1.5 ml tube, centrifuged for 4 min in a refrigerated centrifuge (Sigma Laboratory
Centrifuges, Germany) at 5°C at 10,000 rpm. 100 pl of the fluids collected in the lower micro-
test-tube and were used for measurement of osmotic potential (OP) using a cryoscopic micro-
osmometer (uOsmette, Precision Systems, Natick, MA, USA) by measuring the freezing point of

100 pl of sap. Results are presented in mOsm kg H,O™.
4.4. Analysis

4.4.1. Spectral analysis by linear regression model
The spectrometers' data were analyzed by chemometric procedure of Partial least-squares (PLS)
regression. PLS regression is a technique used with data that contain correlated predictor
variables. This technique constructs new predictor variables, known as components, as linear
combinations of the original predictor variables. PLS constructs these components while
considering the observed response values, leading to a parsimonious model with reliable
predictive power. PLS therefore combines information about the variances of both the predictors

and the responses, while also considering the correlations among them.
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PLSR software was used for model development (PLS, Eigenvector Research, Wenatchee, WA,
USA), run under MATLAB software version R201la (MathWorks, Natick, MA, USA).
Comparisons were made among the PLS regression models built by the reflectance spectra (R),
and the pre-processed spectra’s such as the first derivative of R (D1R), the log(1/R), it’s first
(D1log(1/R)), and second derivative (D2log(1/R)).

Regression models were formulated which related the reflectance spectra to ascorbic acid, in
each tested fruit. The error associated with the results of the regression model is defined by the

root mean square error of calibration (RMSEC) [7]:

RMSEC = [F200® g,

where ¥; is the predicted value of the ascorbic acid of sample i, y; is the value of ascorbic acid of
sample i, as measured destructively and n is the number of calibration samples. RMSEC is a
measure of how well the model fits the data. Root mean square error of cross validation
(RMSECYV) is a measure of a model’s ability to predict new samples. The RMSECYV is defined
as in eq. [7], except that ¥; are predictions for samples not included in the model calibration.
RMSEC and RMSECYV are expressed in the unit of the related laboratory measurement. Cross
validation was performed by using 67% of the data (random selected) for calibrating the
regression model and the rest 33% of the data for validating it. This procedure was performed

seven times.
4.4.2. Spectral analysis by non-linear regression model

Based on Bayesian theorem (Lee, 2004, Gelman et al., 2004, Fearn et al., 2010) Kernel
algorithm was developed. The algorithm was written and run under Matlab software. The
samples were randomly separated to two equal sets: calibration and validation sets. The samples
in the calibration set were grouped by K-means clustering based on squared Euclidean distances.
The number of groups in each set of data was optimized by the algorithm, as well as the
smoothing parameter for the kernel density estimate was automatically chosen by the algorithm
and differs in each data set. In the calibration procedure the algorithm estimates the distribution
of each distinct group of samples. The Kernel algorithm used the latent variables of the spectral
data - produced by PLSR - as independent the variables. By using latent variables, the number of
dimension of the kernel density estimate could be reduced. Multidimensional (humber of
dimensions depend on the number of latent variables) kernel density estimate was the basis for
the predictions. Each group in the calibration set had a multidimensional kernel density estimate.

For each sample, the probabilities of belonging to any of the groups were obtained in the
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prediction procedure. Predicted concentration was determined for each sample by the highest
probability estimate. The whole process was repeated with exchanged calibration and validation
sets, in order to calculate the prediction for all the samples.

Support Vector Machine (SVM) supervised learning algorithms was used as well for model
development (PLS, Eigenvector Research, Wenatchee, WA, USA), run under MATLAB
software version R2011la (MathWorks, Natick, MA, USA). Supervised learning (machine
learning) takes a known set of input data and known responses to the data, and seeks to build a

predictor model that generates reasonable predictions for the response to new data.
4.4.3. Spectral Angle Mapper (SAM)

Spectral Angle Mapper is a method that calculates the angle between two vectors. When the
spectral response curve is regarded as a vector, (each vector consists of all the wavelengths),
SAM can express the angle between a known pixel and an unknown pixel (Park et al., 2007).
This calculation is less sensitive to changes in the reflectance from an object caused by changes
in light source intensity and incidence angle. The decision if two materials (an unknown sample
and a known material from a dataset) are the same is directly related to the angle: the closer the

angle to zero, the materials are more similar. The angle calculation is shown in eq. [8].

N
ZR/Iﬂlk 57—
—cos | 52 _Ru
e JZRzu TRl
A=l /1/1=l A

where N: the number of wavelengths, R;: the obtained sample in a specific wavelength, k: the
number of groups that exist (different kinds of materials) and p;x: average of a previously
obtained data on a specific wavelength. The advantages of the method are that it uses all of the
information and it’s immune to changes in intensity due to incited angle or source change. The
disadvantage of the method is its sensitivity to noise.

In the present work the SAM was calculated from the VIS-NIR, SWIR and hyperspectral

imaging measurements and expressed in degrees (SAMegree)-
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4.4.4. Polar qualification system (PQS)

A qua“ty pomt of the SpeCtrum was Reflectance spectrain polar co-ordinate system

120 .99
150, °

calculated based on the theory of PQS
developed by Kaffka and Gyarmati (1991),
with  modification of the way of

60

180

210%
240

570 300

Conversion to x, y co-ordinates

points of the samples. | wrote a code for the 4

differentiating among the central mass

computations which were carried out under

Matlab software.

As a first step (Fig. 19) reflectance spectrum 0
was normalized (3 different way: MSC 2

-2 0 2 4
(multiplicative scatter correction with offset, Conversion to pitcure

the mean is the reference spectrum), o0
Normalize (normalize rows of matrix) and 40
SNV (standard normal deviate), therefore it 60

resulted 3 normalized spectrums) and was 80

put into polar co-ordinate system. The next 10050 40 60 80 100
step was the transformation of polar co- Fig. 19 Steps of spectral quality
ordinate data to two-dimensional Cartesian point calculation
(X, y) coordinates.

In the final step, the central mass of the object was determined. It resulted the x, y co-ordinate of
the quality point of the spectrum as its central mass point. X, y co-ordinates of the central mass of
the spectrum was calculated for each sample and for each spectrometer and hyperspectral data.
For the x, y set of co-ordinates the median co-ordinate was calculated and relative to this point
the distance was calculated for each spectral quality point (Dass). Moreover, the 1% and 2™
principal components (PC) were calculated from the x, y dataset which carries the information of
the variance in the location of the co-ordinates. The quality points were calculated from the

reflectance (R) and the log(1/R) spectral data.
4.4.5. Multiple-comparison tests

Multiple comparison test returns a pairwise comparison results with comparison intervals around

them. It conducts the comparison of the means of several groups; to test the hypothesis that they
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are all the same (Ho), against the general alternative that they are not all the same (H;). The
outputs are: the compared means, the estimated difference in means, and the confidence interval
for the difference. Multiple comparisons procedures are used to control for the family-wise error
rate, to ensure that the probability of incorrectly rejecting the null hypothesis for any of the
pairwise comparisons in the family does not exceed alpha (0.05). Multiple comparison tests were
conducted by Matlab R2011a.

4.4.6. Cross Correlation

Correlation test was conducted by Matlab R2011a software to examine the relationship among
the measured variables. Matrix (R) of correlation coefficients was calculated from the matrix of
observations and variables. The calculated matrix is related to the covariance matrix by eq. [9].
For testing the hypothesis of no correlation among variables: p-values were calculated. Each p-
value is the probability of getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If p is less than 0.05, then the correlation R(i,j) is significant.

The correlation test was carried out with 0.=0.05.
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Correlation coefficient measures the degree to which two things vary together or oppositely.
First, the maximum positive correlation is 1.00. Since the correlation is the average product of
the standard scores for the cases on two variables, and since the standard deviation of
standardized data is 1.00, then if the two standardized variables covary positively and perfectly,
the average of their products across the cases will equal 1.00. On the other hand, if two things
vary oppositely and perfectly, then the correlation will equal -1.00. Therefore correlation
coefficient measures whether two things covary perfectly or near perfectly and whether
positively or negatively. If the coefficient is, say, .80 or .90, then the corresponding variables
closely vary together in the same direction; if -.80 or -.90, they vary together in opposite

directions.
4.4.7. Robustness

Residual predictive deviation (RPD) index was determined, to evaluate the goodness of the
models; it is calculated as the ratio of performance to deviation [10]:

RPD=STD/RMSECV [10]

where STD is the standard deviation of the measured parameter and RMSECYV is the root mean

square error of cross validation. Based on the recommendation of Fearn (2002); if RPD is below
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2, then the model is not sufficient enough, while if it is around 10, then the model has a great
potential in measurement. If the RPD value is between 2-10 than the interpretation of the results
is depend on the measured parameter and on the purpose of the measurement. Williams (2001)
gives more restrict borders in defining the goodness of models: 0-2.3 'very poor’, 2.4-3 ‘poor’,
3.1-4.9 'fair', 5-6.4 'good’, 6.5-8 'very good', and above 8.1 is 'excellent'.

Since RPD does not include other statistical parameters of the regression model like latent
variables or calibration error, therefore a more complex index would be desired for the

evaluation of the goodness or robustness of regression models.

4.4.8. Standardized weighted sum index

Standardized weighted sum index (SWS) was developed as a generalized index to compare
between models' performance. As a first step criterion weighting (Malczewski, 1999) was used
to generate weights for each statistical parameter of the regression model. Weights were
determined based on pairwise comparison method developed by Saaty (1980). This method
involves pairwise comparisons of the evaluation criteria, to create a ratio matrix. These pairwise
comparisons are used as an input and the procedure yields the relative weight of each criterion as
output. Specifically, the weights are determined by normalizing the eigenvector associated with
the maximum eigenvalue of the (reciprocal) ratio matrix. The weight expresses the importance of
each criterion relative to others. Thus, the larger the weight, the more important is the criterion in
the overall utility.

In the present work pairwise comparisons to determine the weights were done by three
specialists (experts in chemometric procedures: Dr. Zeev Schmilovitch, Dr. Victor Alchanatis
and Dr. David Bonfil), and their assigned weights were averaged (Table 6). An example for the

detailed calculation of the weights can be seen in Appendix 9.2.2.

Table 6 Resultant weights of the pairwise comparisons for the statistical parameters

Statistical parameter Weight
LV 0.09
r’ 0.18
RMSEC 0.07
RMSECV 0.39
RMSECV/RMSEC 0.17
RPD 0.10
Sum of the weights 1
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In the second step, each statistical parameter of the regression model was standardized according
to its range, and the standardized values were then multiplied by the corresponding weights, then
the weighted values were summarized for each model eq. [11]. The quality of the model is
evaluated by the sum of the weighted values: the higher the sum, the better the model. The
outcomes are displayed in the tables of the results under SWS. SWS enable the overall
comparison of different regression models and as well as gives direction in the selection of the
most robust model. For better evaluation, the ratio between RMSECV and RMSEC was
introduced, to provide information about the relationship between calibration and cross-
validation. SWS is comprised by two parts; the first part is contribution of statistical parameters
aimed to have as low values as possible (LV, RMSEC, RMSECV, RMSECV/RMSEC), while in
the second part statistical parameters aimed to have as high values as possible (r%, RPD).
SWS =¥, (1 - 2200 ) e, + 32, (M) - W [11]
max;—min; max;—min;
where SWS is the standardized weighted sum; i is the index of statistical parameter a: LV,
RMSEC, RMSECV, RMSECV/RMSEC; j is the index of statistical parameter b: r>, RPD; min is
the minimum of the range of the particular statistical parameter; max is the maximum of the
range of the particular statistical parameter; w is the weight of the particular statistical parameter.
For each PLS regression model the SWS index was computed. Therefore the quality of the
model is evaluated by the SWS values: the higher the SWS, the better the model is.

4.4.9. Fusion

Sensor fusion is analogous to the cognitive process used by humans to integrate data continually
from their senses to make interferences about the external world. Sensor or data fusion refers to
the acquisition, processing, and combination of information generated by multiple knowledge
sources and sensors (Hall, 1992). The objective is to provide optimal or near-optimal use of the
available information for detection, estimation, and decision-making.

In the present work the methodology suggested by Steinmetz (1999b) was applied (Fig 5):

a. identifying the properties of the produce that are important for its organoleptics
properties: internal content, colour, texture

b. identifying the reference methods (qualitative or quantitative) that are currently used for
assessing the quality of the produce: TSS, DM, AA, OP, total chlorophyll, carotenoid,
texture (Coefficient of elasticity of the compression and the rupture tests)
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c. identifying the non-destructive methods that can be used for measuring the selected
properties of the produce: relaxation test, ultrasound, VIS-NIR, SWIR and hyperspectral
measurements

d. acquiring data on the produce with the selected non-destructive sensors and reference
methods: measurements during growing and maturation

e. assessing the level of redundancy or complementarity in the non-destructive sensors: PLS
models

f. selecting and applying the proper multisensor fusion method: PLS, PCR, Kernel, SVM

g. evaluating the sensor fusion system developed by comparing its performance to the
reference methods: SWS

h. acceptance, rejection or improvement of the proposed sensor fusion method.

Model evaluation was conducted for comparison of a single-sensor system to a multisensor
system. In this step SWS index was applied to evaluate the performance of the single and
multisensor systems. Performance is defined as the ability of the fusion model to provide a better
prediction of the properties of the produce than that made by a single sensor.
In this work fusion was realized in three levels:

1. Fusion of the NDT parameters

2. Combination of the cultivars

3. Fusion of the DT parameters
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5. RESULTS AND DISCUSSION
5.1. Defining the maturity stages

In defining the three maturity stages the changes of weight (Fig. 20) and total soluble solid (Fig.
21) were considered (Nilsen et al., 1991). On that basis the premature stage lasted until the
pepper fruit’s weight and TSS significantly did not increase, the green stage encompassed the
period during which both TSS and weight are changing, and the mature stage began when the
weight and the TSS significantly do not increase anymore. Relating the results to these three
basic growth stages - premature (<54™ DAA), green (60" — 67 DAA) and mature (>74™ DAA) -

it enabled us to highlight the characteristic trends.
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Fig. 20 Change of TSS with error bars of 95% Fig. 21 Change of weight with error bars of
confidence interval for ‘Ever Green’, 95% confidence interval for ‘Ever Green’,
‘No0.117’, and “Celica’ bell pepper cultivars ‘No.117’, and “Celica’ bell pepper cultivars

5.2. Results of the physiological attribute changes in pepper fruits during growth

and maturation
5.2.1. Changes of TSS during growth and maturation

Total Soluble solid levels in pepper depend on several factors, including cultivar, season, and
maturity stage. Changes of the measured TSS in the three bell pepper cultivars are shown in Fig.
22 with the mean value and 95% confidence interval. The level of TSS was varied for all three
cultivars and during growing season from 3.2 to 9.3 Brix %. For all three cultivars the TSS
started a sharp increase at the 54 days after anthesis (DAA). Prominent increase in TSS occurred
in case of ‘No.117’ cv. as well as this cv. reached the highest average TSS content (8.3 Brix%)
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to the 88™ DAA. The ‘Ever Green’ and ‘Celica’ cultivars alternately accumulated in soluble
solids, by the 88™ DAA their average TSS content were 7.3 and 7.9 Brix%, respectively. The
TSS increased during the whole ripening process, in agreement with previous studies (Tadesse et
al, 2001, Penchaiya et al., 2009). The changes of TSS for all three cultivars were sigmoid like.
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Fig. 22 Change of TSS with error bars of 95% confidence interval during
ripening of three cultivars of bell peppers

Multiple comparison tests were performed to analyze the differences in TSS between the three
cultivars during the defined three maturity stages (chapter 5.1). Table 7 presents results of
multiple comparison tests for ‘Ever Green’ ‘No.117’ and ‘Celica’ cultivars with the mean values
and standard error of the measured TSS. Significant difference was found for TSS among the

cvs. in the premature stage.

MatUtity Cultivar TSS. Brix % ’ ® Ever Green No.117  mCelica
stage ’ 8 I
Premature Ever Green 3.9+ 0.049 a ’ I
No.117 4.2+0.049b S8
Celica  3.7+0049c | Z5
Green EverGreen 5.0+0.16a 74 :
No0.117 6.5+0.16 b 3
Celica 51+0.16a 2
Mature  EverGreen  7.1+0.09a 1
No.117 7.81+0.09b 0"
Celica 72+009a Premature M(Zl;ier;ly Mature
Table 7 Result of the multiple comparison Fig. 23 Change of TSS with error bars of 95%
tests for TSS with the mean values and confidence interval during premature, green and
standard error. Means with the same letter mature stages of ‘Ever Green’, ‘N0.117’, and
do not differ significantly (95%). ‘Celica’ bell pepper cultivars
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Consistently in the green and mature stages the ‘No.117 cv. deferred significantly from the
other cvs. In that manner, Fig. 23 demonstrates the changes of average TSS during the three
maturity stages, with error bar of 95% confidence intervals for ‘Ever Green’, ‘No.117’ and
‘Celica’ cultivars. Throughout the three maturity stages the ‘No.117’ cv. distinctively increased

in TSS content.
5.2.2. Changes of DM during growth and maturation

The level of dry matter just as the TSS depends on several factors, including cultivar, season, and
maturity stage. Changes of the DM in the three bell pepper cultivars are shown in Fig. 24 with
the mean value and 95% confidence interval. The level of DM was varied for all three cultivars
and during growing season from 4.3 to 10.7 %. The DM gradually increased through the whole
period of growth especially after the 47" DAA. Prominent increase occurred in case of ‘N0.117’
and ‘Ever Green’ cvs. during the period of 47-60™ DAA, while the “Celica’ cv. sharply increased
in DM from the 60™ to the 67" DAA. The highest average DM content (9.7 %) was reached by
‘No.117’ cv., at the 88™ DAA, followed by ‘Celica’ and ‘Ever Green’ with 9.5 % and 9.1 %,
respectively. Similarly to TSS, DM also took a sigmoid trend in the course of DAA. The level of
DM and its increase in the pepper cultivars studied in this paper is in agreement with the ranges

described in the literature (Marcelis and Baan Hofman-Eijer, 1995, Roura et.al., 2001).
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Fig. 24 Change of DM with error bars of 95% confidence interval
during ripening of three cultivars of bell peppers

Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of
DM change. Multiple comparison tests were performed to analyze the differences in DM
between the three cultivars during growth. Table 8 presents results of multiple comparison tests

for ‘Ever Green’ ‘No.117” and ‘Celica’ cultivars with the mean values and standard error of the
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measured DM. ‘Celica’ was found to be significantly different from the other two cvs. in the
premature stage, while consistently in the green and mature stages the ‘No0.117’ cv. deferred
significantly from the other two cvs. In that manner, Fig. 25 demonstrates the changes of average
TSS during the three maturity stages, with error bar of 95% confidence intervals for ‘Ever
Green’, ‘No.117” and ‘Celica’ cultivars. ‘N0.117’ cv. distinctively increased in DM from the
premature stage to the green stage while for the ‘Ever Green’ and ‘Celica’ cvs. this change
occurred from the green stage to the mature stage.

MatUtity Cultivar DM, % 12 mEverGreen = No.117 mCelica 1
stage
Premature Ever Green 57+0.06a ° I
Noll7  56+006a | .
Celica 51+0.06b S5 ;
Green  EverGreen 6.6+0.17a |2,
No.117 80+0.17b 3
Celica 6.6+0.17a 2
Mature  Ever Green 8.7+0.1a 1
No.117 9.1+£0.1b 0" oremature creen Mature
Celica 86+0.1a Maturity

Table 8 Result of the multiple
comparison tests for DM with the mean

values and standard error. Means with the

same letter do not differ significantly

Fig. 25 Change of DM with error bars of 95%
confidence interval during premature, green and
mature stages of ‘Ever Green’, ‘No.117’, and

‘Celica’ bell pepper cultivars

(95%).

5.2.3. Changes of osmotic potential during growth and maturation

The sigmoid trend of OP change during fruit development is very similar to the changes of TSS.
Fig. 26 shows the changes of the measured OP in the three bell pepper cultivars with the mean
value and error bars of 95% confidence interval. The level of OP was varied for all three
cultivars and during growing season from 170 to 677 osmol/kg. For ‘No.117’ cv. the OP started
a sharp increase at the 54™ trough 67" DAA; while for ‘Ever Green’ it was moderate increase
until the 67" DAA and then prominently accelerated the OP. In case of ‘Celica’ cv. the OP
almost did not change until the 60" DAA, than it greatly increased at the 67" DAA and kept its
moderate growth until the 88™ DAA. The highest average OP (554 osmol/kg) was reached by the
‘No.117” cv. followed by ‘Celica’ and ‘Ever Green’ cvs., with 545 and 515 osmol/kg OP,
respectively.

Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of

OP change. Multiple comparison tests were performed to analyze the differences in TSS between
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the three cultivars during growing and maturation. Table 9 presents results of multiple
comparison tests for ‘Ever Green’, No. 117 and ‘Celica’ cvs, with the mean values and standard
error of the measured OP. In the premature stage the average OP for ‘Celica’ cv found to be
significantly lower compare to the other two the cvs. Consistently in the green and mature stages
the ‘No.117’ cv. the average OP was significantly higher than the average OP in the other two
cvs. In that manner, Fig. 27 demonstrates the changes of average OP during the three maturity
stages, with error bar of 95% confidence intervals for ‘Ever Green’, No. 117 and ‘Celica’

cultivars. Throughout the green and mature stages the ‘No.117” cv. distinctively increased in OP.
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Fig. 26 Change of OP with error bars of 95% confidence interval during
ripening of three cultivars of bell peppers

MatUtlty Cultivar OP, OanOI/kg 600 mEverGreen “No.117 ®Celica

stage
Premature Ever Green 263 +4.7a ]

No.117 269+4.7a

Celica 244+ 47D

Green Ever Green 322+124a

No.117 451+12.4Db

Celica 356+12.4a

Mature  Ever Green 482+ 7.7 a

(42}

o

o
—

Osmotic Potential, mOsm kg H,O*
w
o
o

No.117 524+ 7.7 b . Premature Green Mature
Celica 491+7.7a Maturity
Table 9 Result of the multiple comparison Fig. 27 Change of OP with error bars of 95%
tests for OP with the mean values and confidence interval during premature, green and
standard error. Means with the same letter mature stages of ‘Ever Green’, ‘No.117’, and
do not differ significantly (95%). ‘Celica’ bell pepper cultivars
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5.2.4. Changes of vitamin C during growth and maturation

The vitamin C levels in vegetables depend on several factors, including cultivar, season, and
maturity stage. Changes of the measured ascorbic acid concentration in the three bell pepper
cultivars are shown in Fig. 28 with the mean value and 95% confidence interval. The level of
vitamin C was varied from 1.3 to 169.5 mg/100g fresh weight (FW). Differences were detected
among the examined cultivars. The measurements with DCIP titration showed increasing
vitamin C concentration during the ripening process, in agreement with previous studies that
reported an increase in ascorbic acid concentration during pepper maturation (Marin et al, 2004,
Osuna-Garcia et al., 1998, Howard et al., 2000) and decrease at a certain point in the ripe stage
(Orban et al., 2011). The vitamin C content reaches its maximum around the 67-74" DAA for all

three cultivars.

H Ever Green No.117 ®Celica ‘

60

Ascorbic acid, mg/100g

N
o

N
o

34 40 47 54 60 67 74 81 88
Days after flowering

Fig. 28 Change of ascorbic acid contents with error bars of 95% confidence interval during
ripening of three cultivars of bell peppers

Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of
vitamin C change. Multiple comparison tests were performed to analyze the differences in
vitamin C content between the three cultivars during growing and maturation. Table 10 presents
results of multiple comparison tests for ‘Ever Green’ No. 117 and ‘Celica’ cultivars with the
mean values and 95% confidence interval of the measured ascorbic acid concentration.
Significant difference was found in vitamin C concentration during the growing stages only for
the ‘Celica’ variety. In that manner, the results in Fig. 29 shows that the ‘Ever Green’ and No.
117 cultivars are do not differ significantly in vitamin C content, while the ‘Celica’ variety is
lower all through the growing period relatively to the other varieties by 118%, 25% and 31% in
the premature, green and mature stages, respectively. Furthermore, one would expect that red
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and yellow cultivars would have yielded higher concentration of vitamin C, but the result
demonstrates that external appearance might not be sufficient enough to estimate the content of
ascorbic acid.

Maturity stage Cultivar ~ Ascorbic acid, mg/100g 140 u Ever Green No 117 u Celica
Premature  Ever Green 62.08 £10.81 a 120
No0.117 66.95+10.11a
Celica 28.53+10.11b gloo
Green Ever Green 11027 £12.25a é’ 80
No0.117 107.15+12.25a T 0 I
Celica 88.19+12.25b S
Mature  Ever Green 87.9+10.61a £ 40
No.117 87.80 + 10.67 a 2 5
Celica 67.01+10.68b 0
Premature Green Mature
Maturity stage

Table 10 Result of the multiple comparison Fig. 29 Change of ascorbic acid contents with
tests for ascorbic acid concentration with the error bars of 95% confidence interval during

mean values and 95% confidence interval. premature, green and mature stages of ‘Ever
Means with the same letter do not differ Green’, ‘No.117’, and ‘Celica’ bell pepper
significantly (95%). cultivars

5.2.5. Changes of total chlorophyll and carotenoid content during growth and

maturation

The chlorophyll and carotenoid levels in vegetables depend on several factors, including cultivar,
season, but mostly the stage of maturity even in the stay green variety. Changes of the measured
total chlorophyll and carotenoid content in the three bell pepper cultivars are shown in Fig. 31-32
with the mean value and 95% confidence interval. The level of total chlorophyll content was
varied from 0.0004 to 0.1163 mg/g fresh weight (FW) while the carotenoid concentration felt
between 0.0024 and 0.27 mg/g FW. Differences were detected among the examined cultivars.
The total chlorophyll content drastically decreased during the ripening process in the ‘Celica’
and in the ‘No.117° cultivars as the fruits changed colour from green to their cultivar
characteristic colour, while for the ‘Ever Green’ variety the total chlorophyll content only
slightly decreased. The colour development started first in the “No.117’ yellow cultivar as it can
be observed in the 60" DAA (Fig. 31). Interestingly the gradual decrement of the total
chlorophyll content stared already on the 54™ DAA foretelling the coming colour change (Fig.
32) while no visible colour change can be observed on the pepper fruits. Meanwhile the
carotenoid content did not changed notably. The measured carotenoid concentration only started

to increase after the chlorophyll concentration notably decreased.
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1 I I ® Ever Green No0.117 ®Celica

Days after flowering

Fig. 30 Change of total chlorophyll contents with error bars of 95% confidence interval during
ripening of three cultivars of bell peppers

® Ever Green No0.117  mCelica I

Days after flowering

Fig. 31 Change of carotenoid contents with error bars of 95% confidence interval during

ripening of three cultivars of bell peppers

34

Ever | Picture
Green | missing

8088

Picture | &

No17 | ricang | IRSAGAL

Picture

Celica missing

Fig. 32 Colour development of the three bell pepper varieties during the ripening process Fig. 25
Change of carotenoid contents with error bars of 95% confidence interval during ripening of
three cultivars of bell peppers

The total chlorophyll change in the ‘Celica’ variety is much more radical than in the yellow
(‘No.117) bell peppers, but in both cases sigmoid trend of change could be observed. From the
60" to the 67" DAA the average chlorophyll concentration dropped 6 times while the carotenoid
concentration increment was 3 times. As for the ‘Ever Green’ cultivar the colour remains green

in the whole process of ripening. While the colour is consistent the total chlorophyll
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concentration significantly dropped after the 54™ DAA and remained on the level between 0.07-
0.08 mg/g. Furthermore the carotenoid content significantly starts to increase only after the 67"
DAA. At the full ripening stage as it was expected, the total chlorophyll content of the red
(‘Celica’) and yellow (‘No.117’) peppers basically vanishes and in the green variety (‘Ever
Green’) it remains on high level. Considering the final carotenoid levels in the fully ripened
fruits the ‘Celica’ reached the highest level (average 0.185 mg/g), half of that amount
accumulated in the ‘Ever Green’ variety and surprisingly in the fruits of the ‘No.117” yellow
cultivar stored up the lease amount of carotenoids, its concentration was only the third of the red
bell peppers. The ‘Ever Green’ variety turned out particularly valuable as it contains high
concentration of chlorophyll along with considerable amount of carotenoids. The condition that
the fruits remain green coloured even though the presence of carotenoids comes from the

attribute (feature, property) that the carotenoids are masked by the chlorophylls.

Table 12 Result of the multiple comparison
tests for carotenoid content with the mean
values and standard error. Means with the

same letter do not differ significantly (95%).

Table 11 Result of the multiple comparison tests
for total chlorophyll content with the mean
values and standard error. Means with the same
letter do not differ significantly (95%).

® Ever Green

No.117 | Celica

Total chlorophyll content, mg/g

Premature

Green mature

Mature

Maturity stage

Fig. 33 Change of total chlorophyll contents
with error bars of 95% confidence interval
during premature, green and mature stages of
‘Ever Green’, ‘No.117’, and ‘Celica’ bell pepper

cultivars

Matutity Cultivar Total Chlorophyll, mg/g Matutity Cultivar Carotenoidi mg/g fresh
stage fresh weight stage weight
Premature Ever Green 0.089 £ 0.002 a Premature Ever Green  0.017 + 5.3e-4a
No.117 0.0487 £0.002 b No.117 0.013+5.3e-4b
Celica 0.0665 + 0.002 ¢ Celica 0.015+5.3e-4a
Green Ever Green  0.0765 + 0.003 a Green Ever Green 0.022 £ 2.6e-3 a
No.117 0.0111 £0.003 b No.117 0.028 + 2.6e-3 ab
Celica 0.0337 £0.003 ¢ Celica 0.032 + 2.6e-3 bc
Mature Ever Green  0.0714+0.001 a Mature Ever Green  0.094 + 6.3e-3 a
No.117 0.0013+0.001 b No.117 0.054 +6.3e-3 b
Celica 0.0024 £ 0.001 b Celica 0.11+6.3e-3a

Carotenoid, mg/g
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Fig. 34 Change of carotenoid contents with
error bars of 95% confidence interval during
premature, green and mature stages of ‘Ever
Green’, ‘No.117’, and ‘Celica’ bell pepper
cultivars
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Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of
chlorophyll and carotenoid change. Multiple comparison tests were performed to analyse the
differences in total chlorophyll content between the three cultivars during growing and
maturation. Table 11 and 12 present (Fig. 33-34) the results of multiple comparison tests for
‘Ever Green” ‘No. 117’ and ‘Celica’ cultivars with the mean values and standard error of the
measured total chlorophyll and carotenoid content. Significant difference was found in total
chlorophyll concentration during the premature and green mature stages for all three bell pepper
varieties; while the difference of chlorophyll content in the mature stage for the ‘No.117° and
‘Celica’ varieties are insignificant. Considering the carotenoid concentration the ‘Celica’ and
‘Ever Green’ cultivars are significantly different from the ‘No.117’ variety in the premature and
mature stages while in the green mature stage the ‘Celica’ differ significantly from the ‘Ever
Green’ and the ‘No.117’ notably not vary from the other cultivars. Consequently it can be
concluded that the external appearance might not be sufficient enough to estimate the internal

chlorophyll and carotenoid composition of different cultivars of bell pepper fruits.

5.3. Spectral Analysis

Figure 35 and 36 show the averaged reflectance spectra’s of the 34™ (1 pick) and 88™ (9™ pick)
DAA harvested pepper fruits from the VIS-NIR and hyperspectral measurements, respectively.
At the 34™ DAA the reflectance spectra’s of the three pepper cultivars look alike, they are
dominated by the characteristic spectral signatures of chlorophylls. While at the 88" DAA the
three pepper cultivars are different from one another as their pigment composition changes and
their typical colour develops to its variety specific colour.

In the case of SWIR range (Fig. 37) the different cultivars in the observed maturity stages does
not result remarkable change in the spectral signature. Water bands at 970 nm, 1200 nm and
1400 nm represent a clear reflectance signature in all the spectra’s. Moreover, sugar probably
influences the peak at 1700 nm. The first derivatives of both spectral ranges distinguish the
signature bands as described above.

Comparisons were made among the models of regression analysis of the reflectance spectra (R),
its first derivative (D;R), the log(1/R) and its first (D;log(1/R)) and second derivative

1% harvest

(D2log(1/R)). Figures 38-40 show an example (averaged reflectance spectra’s of the
‘Celica’ cv.) for the spectral pre-treatments in the VIS-NIR, hyperspectral and SWIR spectral

range, respectively.
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Fig. 35 Averaged VIS-NIR reflectance spectra of the 1% and 9™ harvest 'Celica’, 'Ever Green' and

'N0.117' cultivars respectively.
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Fig. 36 Averaged hyper cube reflectance spectra of the 1% and 9™ harvest 'Celica’, 'Ever Green'

and 'No.117' cultivars respectively.
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Fig. 37 Averaged SWIR reflectance spectra of the 1% and 9™ harvest 'Celica’, 'Ever Green' and

'No0.117' cultivars respectively
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Fig. 38 Averaged VIS-NIR pre-processed
reflectance spectra of the 1% harvest of
‘Celica’ cultivar.
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Fig. 40 Averaged SWIR pre-processed reflectance spectra of the 1% harvest of 'Celica’ cultivar.

parameters

5.4. Cross correlation analysis among the destructively measured reference

For examination of the relationship among the destructively tested reference parameters,
matrices of correlation coefficients were calculated for each pepper variety. The compared
variables are: DAA, TSS, DM, AA (ascorbic acid), TChl (total chlorophyll), Car (carotenoid),

OP (osmotic potential), CEcompression, INtcopmressions CErupture, and Weight of the pepper sample.
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Results of the correlation test are shown in Table 13 for ‘Ever Green’, ‘No.117° and ‘Celica’

Cvs., respectively.

Table 13 Covariance matrix among reference parameters for ‘Ever Green’, ‘No.117” and
‘Celica’ cvs., respectively with 95% significance level.

EverGreen| DAA | TSS | DM | AA | TChl | Car OP | CEcompression | INtcompression | CERupture |VVEIght]
DAA 1 Absolut value of
TSS 1 the Correlation
DM 1 Coefficient
AA 028 | 032 | 027 1
TChI 055 | -045 | -040 | -0.11 1
Car 008 | -0.32 1
OP 020 | -0.42 1 0.6-0.4
CEcompression | 056 | -055 | -049 | 031 | 040 | 046 | -0.50 1 0.4-0.2
INtcompression | 000 | -002 | -0.03 | -0.11 | 015 | 000 | 000 0.00 1
CErupture 047 | -055 | -052 | 029 | 028 | -046 | -047 0.44 021 1 0.2-0
Weight 058 | 041 | 032 | 048 | -041 | 021 | 030 -0.47 0.02 0.27 1
No.117 | DAA| TSS | DM | AA | TChl | Car | OP | CEcompression | INtcompression | CErupture [Weight
DAA ! Absolut value of
TSS 1 the Correlation
DM 1 Coefficient
AA 057 0.59 1
TChl 1
Car 0.43 1
op - . 0.6-0.4
CEcompression | 0-39 | 036 | 034 | 038 | 043 | -031 | 033 1 0.4-0.2
INtcompression | 013 | -016 | -0.16 | -0.07 | 011 | -012 | -016 -0.04 1 0.2-0
CErupture 051 | 057 | -056 | -0.45 - 047 | 055 043 0.12 1
Weight 032 | 015 | 014 | 028 | 024 | 004 | 019 0.33 021 -0.21 1
Celica DAA | TSS | DM | AA | TChl | Car | OP | CEcompression | INtcompression | CERupture |Weight
DAA 1 Absolut value of
TSS 1 the Correlation
DM 1 Coefficient
AA 056 | 058 | 059 1
TChl -0.52 1
Car 0.33 1
OoP 055 1 0.6-0.4
CEcompression | 043 | -039 | 037 | -029 | 040 | 020 | -0.36 1 0.4-0.2
Intcompression 000 | 0.00 -0.07 1
0.2-0
-0.45 0.33 0.09 1

0.14 0.29 -0.23 0.10 -0.41 1

Weight

For all three cultivars strong and good correlation was found among DAA, TSS, DM, OP,
carotenoid, and total chlorophyll content. Moderate and good correlation was found among the
coefficient of elasticity of the rupture test and the other reference parameters. The coefficient of
elasticity of the compression test gave moderate correlation with the DAA and total chlorophyll
for all three pepper varieties, and only in case of the ‘Ever Green’ cv. it correlated moderately
with the other reference parameters. In case of the other two cultivars it resulted poor correlation.
The change of the samples weight during the growth has moderate to poor correlation to the
other reference parameters. The index calculated from the area under the compression curve did

not show any correlation with the other reference parameters. Consequently, since it does not
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show any trend in the advancement with DAA, this parameter will be disregarded in the further

analysis.
5.5. Correlation and regression analysis

5.5.1. Correlation and regression analysis for ascorbic acid and NDT methods

5.1.1.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

Table 14 shows the results of cross correlation analysis for ascorbic acid with the calculated
indices of relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity
from relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic
attenuation. The resulted coefficients of correlation (r) present poor correlation between the AA
and the correlated parameters. Exception is the calculated coefficient of elasticity from the

relaxation test which indicates 25 % common variance.

Table 14 Covariance matrix between ascorbic acid and non-destructive measurements for 'Ever
Green', 'No0.117', and 'Celica’ cultivars, respectively, with, 95% significance level.

Ascorbic Acid Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation  Deformation Relaxation L C h Attenuation
Ever Green 0.06 0.19 0.49 015 019 0.19 0.31
No.117 0.34 0.26 0.20 039 041 045 0.35
Celica 0.15 0.04 0.43 034 011 045 0.41

5.1.1.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for ascorbic acid were 53.7%, 35.6% and 60.8% for 'Ever Green',
'No0.117" and 'Celica’ cultivars, respectively. The average squared intercorrelations found to be
poor between ascorbic acid-total soluble solid (0.27), ascorbic acid-dry matter (average: 0.26)
and ascorbic acid-total chlorophyll content (average: 0.25). Relatively high coefficient of
variance and low squared intercorrelation indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable.

It is generally required of a robust PLS regression model to have as few factors as possible and
the lowest possible error values of calibration and validation (Bjorsvik and Martens, 1992).

For all three cultivars, Table 15 presents the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
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parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,

SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
6), higher r? (average, 0.71), lower RMSEC (average, 9.77 mg per 100 g), lower RMSECV
(average, 16.48 mg per 100 g), higher RPD (average, 2.11) and higher SWS (average, 0.6).
Whereas the hyperspectral models resulted the lower ratio of RMSECV and RMSEC (average,

1.14).

Table 15 Performance measures of PLS regression models for ascorbic acid, using data from the
VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are
presented: 'Ever Green', 'No, 117" and 'Celica'.

Ascorbic acid,  Statistical RMSECV/
PLS mg/100g parameter RMSEC RMSECV RPD RMSeC WS
Ever Green R 9 0.79 8.7 15.2 2.1 1.8 0.72
log(1/R) 8 0.75 11.1 15.9 2.0 14 0.66
DiR 2 0.76 13.0 16.3 2.0 1.3 0.66
Dllog(1/R) 4 0.73 8.2 16.3 2.0 2.0 0.60
D2log(1/R) 3 0.73 9.9 16.5 1.9 1.7 0.60
No.117 R 11 0.67 6.3 16.9 2.3 2.7 0.45
% log(1/R) 10 0.64 8.8 17.8 2.2 2.0 0.39
A Di1R 4 0.62 9.5 17.3 2.2 1.8 0.52
> Dllog(1/R) 6 0.64 105 18.1 2.1 1.7 041
D2log(1/R) 4 0.57 8.1 18.2 2.1 2.3 0.35
Celica R 10 0.77 8.7 15.3 2.2 1.8 0.72
log(1/R) 8 0.78 11.1 15.1 2.2 14 0.79
Di1R 5 0.76 7.6 15.6 2.2 2.0 0.71
Dllog(1/R) 3 0.74 12.1 16.4 2.1 14 0.66
D2log(1/R) 2 0.74 12.9 16.1 2.1 1.2 0.72
Ever Green R 8 0.73 15.2 17.0 1.9 11 0.52
log(1/R) 8 0.73 15.1 171 19 11 0.51
DI1R 4 0.72 15.0 16.7 1.9 1.1 0.59
> Dillog(1/R) 7 0.75 13.1 16.7 19 13 0.57
g} D2log(1/R) 2 0.68 15.7 17.6 1.8 1.1 0.48
g No.117 R 7 0.58 15.9 174 2.2 1.1 0.50
= log(1/R) 7 0.55 154 17.3 2.2 1.1 0.50
§ D1R 3 051 17.0 17.8 2.2 1.0 0.46
o3 Dllog(1/R) 5 0.54 15.8 18.1 2.1 11 041
E‘_ D2log(1/R) 5 0.56 15.5 18.5 2.1 1.2 0.37
T Celica R 10 0.70 14.3 16.9 2.0 1.2 0.52
log(1/R) 10 0.73 13.9 16.1 2.1 1.2 0.63
Di1R 8 0.72 144 16.0 2.1 1.1 0.66
Dllog(1/R) 6 0.69 15.5 17.3 2.0 1.1 0.51
D2log(1/R) 8 0.70 14.6 17.6 19 1.2 0.45
Ever Green R 8 0.75 12.6 15.7 2.0 1.2 0.69
log(1/R) 9 0.77 11.7 16.0 2.0 14 0.64
D1R 9 0.70 13.2 175 1.8 1.3 0.44
Dllog(1/R) 9 0.77 115 16.3 2.0 14 0.60
D2log(1/R) 10 0.77 10.9 16.4 1.9 15 0.58
No.117 R 10 0.70 11.2 16.1 24 14 0.67
@ log(1/R) 9 0.70 12.0 16.2 24 14 0.66
E Di1R 10 0.68 12.3 16.8 2.3 14 0.57
@ Dllog(1/R) 7 0.63 14.7 18.6 2.1 1.3 0.36
D2log(1/R) 10 0.62 12.3 18.7 2.1 15 0.30
Celica R 8 0.71 14.2 17.1 2.0 1.2 0.51
log(1/R) 7 0.65 15.8 18.7 18 1.2 0.30
DI1R 12 0.70 144 18.9 1.8 1.3 0.26
Dllog(1/R) 8 0.65 15.7 18.4 18 1.2 0.33
D2log(1/R) 11 0.70 11.9 18.9 1.8 1.6 0.24
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In the VIS-NIR range, for 'Ever Green' the reflectance (R), for 'No.117' the 1% derivative of
reflectance (D1R), whereas for cv. 'Celica’ the D,log(1/R) gave the highest SWS and therefore
the best model. The relevant SWS indices were 0.72, 0.52, and 0.79 for 'Ever Green', 'No. 117'
and 'Celica’, respectively.

By the hyperspectral imaging for 'Ever Green' and 'Celica’ cultivars the 1% derivative of
reflectance (D1R), while for 'No.117' cv. the reflectance (R) and log(1/R), resulted the highest
SWS and therefore the best model. The relevant SWS indices were 0.59, 0.66, and 0.50 for 'Ever
Green', 'Celica’ and, 'No. 117" respectively.

In the SWIR spectral range the best results were obtained with the models based on reflectance
spectra (R) for all three cultivars, with SWS 0.66, 0.67 and 0.51 for 'Ever Green', 'Celica’ and,
'No. 117" respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted VIS-NIR spectral measurements to yield stronger correlation to predict vitamin C
content in 'Ever Green' and 'Celica’ bell pepper cultivars while SWIR spectral measurement was
found best for 'No. 117" variety. As a matter of fact, efficient models were achieved in the VIS-
NIR range for 'Ever Green' cv., which retains its green colour even in the fully ripe stage. It
means that the ascorbic acid change during the growth and maturation is not indirectly correlated

with the spectral information but direct correlation is presumed.
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Fig. 41 Scatter plot of ascorbic acid content Fig. 42 Scatter plot of ascorbic acid content
for 'Ever Green' variety, as predicted by PLS for 'Ever Green' variety, as predicted by PLS
regression model and as measured in the regression model and as measured in the
laboratory. The PLS model was built with laboratory. The PLS model was built with the
the reflectance (R) of the spectral data in the 1* derivative (D;R) of the spectral data from
VIS-NIR range. the hyperspectral imaging.
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PLSR prediction and measured values for cv. 'Ever Green' are shown in Figs. 41-43, as examples
for VIS-NIR, hyperspectral imaging and SWIR, respectively. In all the three figures, the ordinate
and abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 41) a
model with nine LVs obtained r* = 0.79 and RMSECV = 15.2, for the hyperspectral imaging
(Fig. 42) a model with four LVs obtained r* = 0.72 and RMSECV = 16.7, whereas for SWIR
(Fig. 43) eight LVs were needed to achieve r* = 0.75 and RMSECV = 15.7.
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Fig. 43 Scatter plot of ascorbic acid content for 'Ever Green' variety, as predicted by PLS
regression model and as measured in the laboratory. The PLS model was built with the
reflectance (R) of the spectral data in the SWIR range.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 44 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. ‘Ever Green’. Three wavelength ranges are the most significant
in the model: 477-530, 670-695, and 870-950 nm. The ranges 477-530 and 670-695 nm are
related to the chlorophyll a and b and carotenoid contents; the range 870-950 nm relates to
internal chemical composition (C-H stretch) and texture. Based on the VIP scores the significant
wavelengths in the visible range were about half as important as those above 870 nm. Thus, the
relative significance of the wavelength range above 870 nm suggests that the textural and
chemical composition have greater influence on the relationship between ascorbic acid content
and spectral response of bell pepper fruits than the colour information in the spectra.

Figure 45 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
‘Ever Green’. Two main wavelength ranges were found that significantly influenced the
regression model: the range of 840-910 nm was found to be meaningfully related to texture and

chemical composition, as in the VIS-NIR model; the range of 1350-1800 nm is associated with
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the vibration modes of the first overtones of C-H and O-H bond stretching. These chemical

bonds are found in the molecules of ascorbic acid, water.
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Fig. 44 VIP Scores for reflectance (R) spectra (VIS-NIR) of 'Ever Green' cultivar
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Fig. 45 VIP Scores for reflectance (R) spectra (SWIR) of 'Ever Green' cultivar

5.5.2. Correlation and regression analysis for total chlorophyll content and NDT

methods

5.5.2.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

The results of cross correlation analysis for total chlorophyll with the calculated indices of
relaxation test (Rate of relaxation, Remaining deformation, coefficient of elasticity from
relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation
shown in table 16.

The highest coefficient of correlation (r) was found for 'No. 117" with the parameters L, C, h
from the colour measurements, as well as for 'Celica’ cv. with C and h, whereas h indicated only

25 % of common variance in case of 'Ever Green' cv. Ultrasonic attenuation showed 20-25 % of

73



common variance in case of 'No. 117" and 'Celica’ cultivars, but very poorly correlated with the
chlorophyll content in case of the 'Ever Green' cv. Likewise correlation showed in case of
coefficient of elasticity from the relaxation test and chlorophyll content for all three cultivars.
Moderate correlation of coefficient was found between the rate of relaxation, remaining

deformation and chlorophyll content in case of ‘No. 117" and 'Celica’ cultivars.

Table 16 Covariance matrix between total chlorophyll and non-destructive measurements for
‘Ever Green', 'No.117', and 'Celica’ cultivars, respectively, with 95% significance level.

Total Chlorophyll  Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation  Deformation Relaxation L C h Attenuation
Ever Green 0.19 0.18 0.15 006 015 055 0.25
No.117 0.65 0.51 0.01 090 090 091 0.43
Celica 0.46 0.33 0.20 006 070 0.89 0.45

5.5.2.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for total chlorophyll content were 19.1%, 101.6% and 85.2% for
'Ever Green', 'N0.117' and 'Celica’ cultivars, respectively. The average squared intercorrelations
found to be poor between total chlorophyll-total soluble solid (0.55), total chlorophyll-dry matter
(average: 0.50) and total chlorophyll-carotenoid content (average: 0.28). Relatively high
coefficient of variance and relatively low squared intercorrelation indicate that prediction by the
VIS-NIR, SWIR and hyperspectral imaging method is applicable.

Table 17 presents for all three cultivars, the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR and hyperspectral models were obtained with
fewer LVs (average, 6), whereas SWIR models achieved higher r* (average, 0.85), lower
RMSECV (average, 0.0068 mg/qg), higher RPD (average, 3.42) and higher SWS (average, 0.62).
Whereas hyperspectral models resulted lower RMSECV/RMSEC (average, 1.11), with average
SWS: 0.62.

In the VIS-NIR range, for 'Ever Green' the reflectance (R), for 'No0.117' the 1% derivative of

reflectance (D1R), whereas for cv. 'Celica’ the log(1/R) and 1% derivative of reflectance (D:R)
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gave the highest SWS and therefore the best model. The relevant SWS indices were 0.51, 0.65,

and 0.59 for 'Ever Green', 'No. 117" and 'Celica’, respectively.

Table 17 Performance measures of PLS regression models for total chlorophyll content, using
data from the VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper
varieties are presented: 'Ever Green', ‘No, 117" and 'Celica’.

Statistical ) RMSECV/
PLS | Total Chlorophyll, mg/g parameter LV r RMSEC RMSECV RPD RMSEC SWS
Ever Green R 6 0.60 0.007 0.008 1.7 1.2 0.51
log(1/R) 7 0.62 0.007 0.009 1.6 1.3 0.49
DR 5 0.61 0.003 0.008 1.7 2.7 0.37
Dilog(1/R) 5 0.62 0.004 0.009 1.6 25 0.38
D,log(1/R) 2 0.32 0.008 0.010 15 1.2 0.46
No.117 R 9 0.95 0.003 0.005 42 1.9 0.61
% log(1/R) 7 0.91 0.005 0.007 34 13 0.63
o\ D,rR 5 0.95 0.003 0.005 42 2.0 0.65
> D, log(1/R) 5 0.94 0.003 0.006 4.1 21 0.63
D,log(1/R) 3 0.90 0.005 0.007 3.2 15 0.64
Celica R 9 0.92 0.005 0.008 34 15 0.56
log(1/R) 9 0.93 0.005 0.008 37 15 0.59
D,R 5 0.93 0.004 0.008 3.6 1.9 0.59
D, log(1/R) 5 0.92 0.004 0.008 33 2.0 0.56
D;log(1/R) 3 0.87 0.006 0.010 2.8 15 0.58
Ever Green R 8 0.40 0.009 0.010 14 1.1 0.41
log(1/R) 9 0.43 0.009 0.010 1.4 11 0.40
DR 5 0.44 0.009 0.010 14 1.1 0.46
o Dilog(1/R) 6 0.44 0.009 0.010 14 11 0.44
= D;log(1/R) 5 0.48 0.008 0.010 1.4 1.3 0.45
g No.117 R 5 0.95 0.005 0.005 43 11 0.74
= log(1/R) 5 0.95 0.005 0.005 45 1.1 0.74
§ D,rR 5 0.95 0.005 0.005 44 11 0.74
& D, log(1/R) 5 0.95 0.005 0.005 4.4 11 0.74
§ D,log(1/R) 3 0.95 0.005 0.005 44 11 0.76
I Celica R 5 0.93 0.008 0.008 35 11 0.66
log(1/R) 5 0.95 0.007 0.007 4.0 11 0.70
D,R 7 0.96 0.006 0.007 43 11 0.69
D, log(1/R) 5 0.95 0.006 0.007 4.0 11 0.69
D;log(1/R) 7 0.95 0.006 0.007 3.9 1.2 0.66
Ever Green R 8 0.66 0.006 0.008 1.8 1.3 0.50
log(1/R) 10 0.71 0.005 0.008 1.9 15 0.48
DR 10 0.61 0.007 0.008 1.7 1.2 0.47
Dilog(1/R) 8 0.63 0.007 0.008 1.8 1.2 0.51
D,log(1/R) 9 0.71 0.006 0.007 1.9 1.3 0.51
No.117 R 8 0.96 0.004 0.005 5.0 1.3 0.72
o log(1/R) 6 0.96 0.004 0.005 4.9 1.1 0.75
% D,rR 6 0.96 0.004 0.005 47 11 0.74
D, log(1/R) 6 0.96 0.004 0.005 49 11 0.75
D,log(1/R) 7 0.96 0.004 0.005 5.0 1.2 0.73
Celica R 8 0.92 0.007 0.008 35 1.2 0.61
log(1/R) 8 0.91 0.007 0.008 34 1.2 0.60
D,R 8 0.93 0.006 0.007 38 1.2 0.64
D, log(1/R) 7 0.92 0.007 0.008 36 11 0.64
D;log(1/R) 6 0.92 0.007 0.008 35 1.2 0.64
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In case of the hyperspectral imaging for 'Ever Green' the 1% derivative of reflectance (D;R), for
'‘N0.117' cv. the D;log(1/R) and for 'Celica’ the log(1/R) resulted with the highest SWS and
therefore the best model. The relevant SWS indices were 0.46, 0.76, and 0.70 for 'Ever Green',
‘Celica’ and, 'No. 117" respectively.

The best models were achieved in the SWIR spectral range for 'Ever Green' and 'Celica’ by the
D;log(1/R) and Dlog(1/R), whereas for 'No. 117' the log(1/R) resulted with the models, with
SWS 0.51, 0.75 and 0.64, respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted hyperspectral imaging and SWIR spectral measurements to yield stronger correlation to
predict total chlorophyll content for all three bell pepper cultivars.

PLSR prediction and measured values for cv. 'No. 117" are shown in Figs. 46-48, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 46) a model
with five LVs obtained r>=0.95 and RMSECV=0.0055, for the hyperspectral imaging (Fig. 47) a
model with three LVs was sufficient to achieve r*=0.95 and RMSECV=0.0052, whereas for
SWIR (Fig. 48) six LVs were needed to achieve r°=0.96 and RMSECV =0.0047.

0.07 ‘ . ‘ 007
(=2}
3 3
g 0.05 Eoos
= =
2 5
S S
5 =
O 0.03 0 0.03
g I
o =]
= [
5 3
L2 2
E ool RZ=0.95 E oot RA2 = 0.95
' 3LV
5 LV
- RMSEC = 0.0049
RMSEC = 0.0028
RMSECYV = 0.0055 001 RIMISECV = 0.0052

001 0.01 0.03 0.05 0.07 -0.01 0.01 0.03 0.05 0.07

Measured Total Chloropyll, mg/g Measured Total Chlorophyll, mg/g

Fig. 46 Scatter plot of total chlorophyll content Fig. 47 Scatter plot of total chlorophyll
for 'No. 117" variety, as predicted by PLS content for 'No. 117" variety, as predicted by
regression model and as measured in the  PLS regression model and as measured in the
laboratory. The PLS model was built with the  laboratory. The PLS model was built with the
1% derivative of reflectance (R) in the VIS-NIR D.,log(1/R) of the spectral data from the
range. hyperspectral imaging.
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Fig. 48 Scatter plot of total chlorophyll content for 'No. 117" variety, as predicted by PLS
regression model and as measured in the laboratory. The PLS model was built with the log(1/R)
of the spectral data in the SWIR range.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 49 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. '‘No. 117'. One wide wavelength range was found to be significant
in the model 570-690 related to the chlorophyll a and b and carotenoid contents.

Figure 50 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
‘No. 117'. One very significant wavelength range was found that significantly influenced the
regression model: the range of 1350-1430 nm. It is associated with the vibration modes of the

first overtones of C-H and O-H bond stretching.
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5.5.3. Correlation and regression analysis for carotenoid content and NDT

methods

5.5.3.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

The results of cross correlation analysis for carotenoid content with the calculated indices of
relaxation test (Rate of relaxation, Remaining deformation, coefficient of elasticity from
relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation
shown in table 18.

The highest coefficient of correlation (r) was found for all three cultivars with the colour
parameter of h, moderate to poor correlation was found with the L and C. Poor correlation was
found with the ultrasonic attenuation in case of all three cultivars. Whereas the rate of relaxation
had moderate correlation with the carotenoid content in case of 'Ever Green' and 'No. 117
cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not show
close relationship for none of the cultivars.

Table 18 Covariance matrix between carotenoid and non-destructive measurements for 'Ever
Green', 'No0.117', and 'Celica’ cultivars, respectively, with 95% significance level.

Carotenoid Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation ~ Deformation Relaxation L C h Attenuation
Ever Green 0.70 0.64 0.15 046 053 0.82 0.31
No.117 0.66 0.38 0.09 074 076 0.85 0.47
Celica 0.49 0.38 0.10 038 060 0.76 0.36

5.5.3.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for carotenoid content were 88.8%, 73.8% and 125.8% for 'Ever
Green', 'N0.117" and 'Celica’ cultivars, respectively. The average squared intercorrelations found
to be poor between carotenoid-total soluble solid (0.70), carotenoid-dry matter (average: 0.71)
and carotenoid-total chlorophyll (average: 0.28). Although the high coefficient of variance but
because of the fair squared intercorrelation indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable with the consideration of possible intercorrelation
with TSS and DM.

Table 19 presents for all three cultivars, the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.
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Table 19 Performance measures of PLS regression models for carotenoid content, using data
from the VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper
varieties are presented: 'Ever Green', 'No, 117" and 'Celica’.

. Statistical ) RMSECV/
PLS | Carotenoid, mg/g parameter LV r RMSEC RMSECV RPD RMSEC SWS
Ever Green R 8 0.92 0.007 0.010 3.9 14 0.55
log(1/R) 8 0.91 0.007 0.011 35 1.6 0.48
D.rR 3 0.92 0.007 0.010 3.9 14 0.60
D log(1/R) 3 0.90 0.008 0.011 35 14 0.58
D,log(1/R) 3 0.88 0.009 0.012 3.3 1.3 0.56
No.117 R 7 0.91 0.005 0.006 3.7 1.2 0.64
nz: log(1/R) 7 0.89 0.006 0.007 3.1 1.2 0.62
b D.r 4 0.89 0.004 0.006 3.7 15 0.61
S D, log(1/R) 5 0.89 0.004 0.007 3.4 1.6 0.55
D,log(1/R) 3 0.81 0.007 0.009 2.4 1.4 0.53
Celica R 8 0.95 0.007 0.010 6.6 1.3 0.64
log(1/R) 7 0.93 0.010 0.012 5.3 1.2 0.61
D.rR 5 0.92 0.007 0.012 5.2 1.8 0.49
D log(1/R) 4 0.92 0.009 0.014 45 1.6 0.52
D,log(1/R) 3 0.86 0.012 0.017 3.7 1.4 0.47
Ever Green R 9 0.87 0.012 0.014 2.8 1.2 0.47
log(1/R) 9 0.89 0.012 0.013 3.0 1.1 0.52
D.rR 8 0.86 0.011 0.014 2.8 1.3 0.46
> D, log(1/R) 7 0.87 0.012 0.013 3.0 1.1 0.53
g) D, log(1/R) 8 0.78 0.012 0.016 2.4 1.3 0.37
g No.117 R 8 0.91 0.005 0.006 4.0 1.1 0.66
% log(1/R) 8 0.92 0.005 0.006 4.0 1.1 0.66
§ D.rR 8 0.90 0.005 0.006 3.9 1.1 0.65
& D log(1/R) 8 0.91 0.005 0.006 4.0 1.2 0.65
§ D, log(1/R) 5 0.86 0.006 0.007 3.3 1.2 0.63
T Celica R 6 0.95 0.009 0.011 5.7 1.2 0.66
log(1/R) 10 0.97 0.007 0.008 75 1.2 0.68
D.rR 7 0.96 0.008 0.010 6.2 1.2 0.66
D log(1/R) 9 0.96 0.008 0.010 6.5 1.2 0.65
D,log(1/R) 8 0.95 0.009 0.012 5.4 1.3 0.59
Ever Green R 8 0.87 0.010 0.012 3.3 1.2 0.51
log(1/R) 8 0.89 0.010 0.012 3.3 1.3 0.51
D.rR 9 0.89 0.010 0.013 3.0 1.3 0.48
D, log(1/R) 7 0.85 0.012 0.014 2.8 1.2 0.49
D,log(1/R) 5 0.88 0.010 0.012 3.3 1.3 0.55
No.117 R 7 0.84 0.007 0.007 3.0 1.1 0.59
o log(1/R) 7 0.87 0.005 0.006 3.6 1.2 0.62
% D.rR 5 0.82 0.007 0.008 2.7 1.1 0.59
D, log(1/R) 6 0.88 0.005 0.006 3.7 1.2 0.65
D,log(1/R) 5 0.83 0.006 0.007 3.1 1.3 0.58
Celica R 8 0.90 0.013 0.016 3.9 1.2 0.48
log(1/R) 8 0.89 0.013 0.016 3.9 1.2 0.48
D.rR 8 0.90 0.014 0.017 3.7 1.2 0.47
D log(1/R) 7 0.88 0.013 0.015 42 1.2 0.52
D,log(1/R) 6 0.85 0.013 0.018 3.5 1.4 0.41

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
5), whereas hyperspectral imaging models achieved higher r? (average, 0.91), lower RMSECV
(average, 0.01 mg/qg), higher RPD (average, 4.31), lower RMSECV/RMSEC (average, 1.19) and
higher SWS (average, 0.59).

79



In the VIS-NIR range, for 'Ever Green' the 1% derivative of reflectance (D;R), for 'No.117' and
‘Celica’ the reflectance (R) gave the highest SWS and therefore the best model. The relevant
SWS indices were 0.60, 0.64, and 0.64 for 'Ever Green', 'No. 117" and 'Celica’, respectively.

In case of the hyperspectral imaging for 'Ever Green' the Dilog(1/R), for 'No.117' and 'Celica’
cultivars the log(1/R) resulted with the highest SWS and therefore the best model. The relevant
SWS indices were 0.53, 0.66, and 0.68 for 'Ever Green', 'Celica’ and, 'No. 117" respectively.

The best models were achieved in the SWIR spectral range for 'Ever Green' by the D,log(1/R)
spectral treatment, whereas for 'No. 117" and 'Celica’ cultivars by the D1log(1/R) resulted the best
models, with SWS 0.51, 0.75 and 0.64, respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted hyperspectral imaging to yield efficient models to predict carotenoid content for 'No.
117" and 'Celica’ bell pepper cultivars; whereas for 'Ever Green' variety the VIS-NIR spectral
measurements yielded the best carotenoid predictions.

PLSR prediction and measured values for cv. 'Celica’ are shown in Figs. 51-53, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 51) a model
with eight LVs obtained r>=0.95 and RMSECV=0.0096, for the hyperspectral imaging (Fig. 52)
a model with ten LVs obtained r’=0.97 and RMSECV=0.0084, whereas for SWIR (Fig. 53)
seven LVs were needed to achieve r’=0.88 and RMSECV =0.015.
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Fig. 51 Scatter plot of carotenoid content for  Fig. 52 Scatter plot of carotenoid content for
‘Celica’ variety, as predicted by PLS regression 'Celica’ variety, as predicted by PLS regression
model and as measured in the laboratory. The model and as measured in the laboratory. The
PLS model was built with the reflectance (R)  PLS model was built with the log(1/R) of the
spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.
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Fig. 53 Scatter plot of carotenoid content for 'Celica’ variety, as predicted by PLS regression
model and as measured in the laboratory. The PLS model was built with the D;log(1/R) of the
spectral data in the SWIR range.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 54 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'Celica’. Two wavelength ranges were found to be significant in
the model: 477-490 and 520-690 related to the chlorophyll a and b and carotenoid contents.

Figure 55 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
‘Celica’. Similarly to the model for total chlorophyll prediction, one very significant wavelength
range was found that significantly influenced the regression model: the range of 1320-1430 nm.

It is associated with the vibration modes of the first overtones of C-H and O-H bond stretching.
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Fig. 54 VIP Scores for reflectance (R) spectra  Fig. 55 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'Celica’ cultivar (SWIR) of 'Celica’ cultivar
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5.5.4. Correlation and regression analysis for total soluble solid (TSS) and NDT

methods

5.5.4.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

The results of cross correlation analysis for TSS with the calculated indices of relaxation test
(Rate of relaxation, Remaining deformation, Coefficient of elasticity from relaxation test), with
the parameters of colour measurements (L, C, h) and ultrasonic attenuation shown in table 20.

The highest coefficient of correlation (r) was found for all three cultivars for TSS with the colour
parameter of h, good correlation was found with the L and C in case of 'No. 117" cv. Poor
correlation was found with the ultrasonic attenuation and remaining deformation in case of all
three cultivars, whereas the rate of relaxation had moderate correlation with the TSS in case of
all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not

show close relationship for none of the cultivars.

Table 20 Covariance matrix between TSS and non-destructive measurements for 'Ever Green',
'No0.117', and 'Celica’ cultivars, respectively, with 95% significance level.

TSS Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation  Deformation Relaxation L C h Attenuation
Ever Green 0.66 0.54 0.04 044 047 081 0.37
No.117 0.67 0.47 0.12 087 089 0.92 0.48
Celica 0.53 0.36 0.17 021 0.67 094 0.45

5.1.1.3. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for carotenoid content were 28.2%, 30.2% and 33.5% for 'Ever
Green', 'N0.117" and 'Celica’ cultivars, respectively. The average squared intercorrelations found
to be poor between TSS-ascorbic acid (0.25), TSS-DM (average: 0.95) and TSS-total chlorophyll
content (average: 0.55). Although the relatively high coefficient of variance with poor squared
intercorrelation between TSS and ascorbic acid and total chlorophyll, but good squared
intercorrelation with the dry matter indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable with the consideration of possible intercorrelation
with DM.

Table 21 presents for all three cultivars, the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
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parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,

SWS.

Table 21 Performance measures of PLS regression models for TSS, using data from the VIS-
NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are

presented: 'Ever Green', 'No, 117" and 'Celica'.

PLS |  Tss Brixoy  owustical ¢ RMSEC RMSECV RPD RMSECV/ gy
parameter RMSEC

Ever Green R 8 0.94 0.25 0.36 4.1 1.4 0.77

log(L/R) 9 092 025 0.42 35 1.7 0.57

DR 3 093 028 0.38 3.9 1.4 0.79

D, log(/R) 3 093 029 0.38 3.9 1.3 0.80

D,log(L/R) 3 093 028 0.39 3.8 1.4 0.76

No.117 R 6 091 047 0.55 3.2 1.2 0.50

% log(L/R) 5 088 056 0.62 2.9 1.1 0.37

5 D.R 4 092 031 0.51 35 1.6 0.49

S DiogtR) 4 091 034 0.54 3.3 1.6 0.44

D,log(L/R) 3 090 042 0.59 3.0 1.4 0.40

Celica R 8 095 029 0.38 46 13 0.80

log(1/R) 8 095 030 0.39 4.4 13 0.78

D:R 4 095 026 0.40 43 15 0.74

D, log(1/R) 4 0.95 0.25 0.39 4.4 1.6 0.75

D,log(1/R) 3 093 034 0.50 35 15 0.56

Ever Green R 12 085 045 0.58 2.5 1.3 0.30

log(L/R) 13 087 043 0.56 2.6 1.3 0.35

D:R 8 082 052 0.62 2.4 1.2 0.27

o D, log(1/R) 8 083 050 0.61 2.4 1.2 0.28

£ D,log(L/R) 9 083 044 0.62 2.4 1.4 0.23

= No.117 R 4 092 049 0.53 34 1.1 0.57

= log(L/R) 6 093 043 0.47 3.8 1.1 0.68

§ DR 6 092 045 0.51 35 1.1 0.58

& DiogtR) 4 092 047 0.51 35 1.1 0.60

g D,log(L/R) 5 092 043 0.50 35 1.2 0.60

T Celica R 6 095  0.34 0.37 4.7 1.1 0.89

log(1/R) 5 095 037 0.39 4.4 1.1 0.85

D:R 4 095 035 0.39 45 1.1 0.87

D.log(L/R) 5 095  0.33 0.38 46 1.1 0.86

D,log(1/R) 6 094 035 0.43 4.0 1.2 0.73

Ever Green R 9 090  0.34 0.45 3.3 1.3 0.59

log(L/R) 9 091  0.33 0.44 3.3 1.3 0.61

DR 9 089  0.39 0.49 3.0 1.3 0.52

D, log(1/R) 8 089  0.39 0.51 2.9 13 0.48

D,log(L/R) 5 091 035 0.46 3.2 13 0.61

No.117 R 6 091 052 0.57 3.1 1.1 0.47

x log(L/R) 6 092 046 0.52 3.4 1.1 0.56

% D\R 6 090 050 0.59 3.0 1.2 0.41

D, log(L/R) 5 092 046 0.53 34 1.2 0.55

DogiR) 4 092 046 0.53 3.4 1.2 0.56

Celica R 7 092 039 0.48 3.6 1.2 0.61

log(L/R) 7 094 038 0.44 3.9 1.2 0.71

D:R 6 092 043 0.50 35 1.2 0.59

D, log(1/R) 5 093 043 0.48 3.6 1.1 0.65

DogR) 4 092 041 0.50 35 1.2 0.60

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
5), higher r* (average, 0.93), lower RMSECV (average, 0.45 Brix%), higher RPD (average,
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3.75), whereas hyperspectral imaging models achieved lower RMSECV/RMSEC (average,
1.17).

In the VIS-NIR range, for 'Ever Green' the D1log(1/R), for 'No.117" and 'Celica’ the reflectance
(R) gave the highest SWS and therefore the best model. The relevant SWS indices were 0.80,
0.50, and 0.80 for 'Ever Green’, 'No. 117" and 'Celica’, respectively.

In case of the hyperspectral imaging for 'Ever Green' and 'N0.117' the log(1/R), while for 'Celica’
the reflectance (R) resulted with the highest SWS and therefore the best model. The relevant
SWS indices were 0.35, 0.68, and 0.89 for 'Ever Green’, 'Celica’ and, 'No. 117" respectively.

The best models were achieved in the SWIR spectral range for all three cultivars by the log(1/R),
with SWS 0.61, 0.56 and 0.71, respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted hyperspectral imaging to yield efficient models to predict TSS for 'No. 117" and 'Celica’
bell pepper cultivars; whereas for 'Ever Green' variety the VIS-NIR spectral measurements
yielded the best carotenoid predictions. Worth to mention, that even though in case of the 'Ever
Green' variety there is no significant colour change still in the VIS-NIR spectral range very
reliable strong prediction models were achieved, with average SWS: 0.74.

PLSR prediction and measured values for cv. 'Celica’ are shown in Figs. 56-58, as examples for

VIS-NIR, hyperspectral imaging and SWIR, respectively.
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Fig. 56 Scatter plot of TSS for 'Celica’ variety, Fig. 57 Scatter plot of TSS for 'Celica’
as predicted by PLS regression model and as variety, as predicted by PLS regression

measured in the laboratory. The PLS model model and as measured in the laboratory. The

was built with the reflectance (R) of the PLS model was built with the reflectance (R)

spectral data in the VIS-NIR range. of the spectral data from the hyperspectral
imaging.
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Fig. 58 Scatter plot of TSS for 'Celica’ variety, as predicted by PLS regression model and as
measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in the
SWIR range.

In all figures, the ordinate and abscissa axes represent the measured and the fitted values. For the
VIS-NIR (Fig. 56) a model with eight LVs obtained r?=0.95 and RMSECV=0.38, for the
hyperspectral imaging (Fig. 57) a model with six LVs obtained r?=0.95 and RMSECV=0.37,

whereas for SWIR (Fig. 58) seven LVs were needed to achieve r’=0.92 and RMSECV =0.48.
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Fig. 59 VIP Scores for reflectance (R) spectra  Fig. 60 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'Celica’ cultivar (SWIR) of 'Celica’ cultivar

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 59 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'Celica’. Two wavelength ranges were found to be significant in
the model: 510-560 and 600-695 related to the chlorophyll a and b and carotenoid contents. In

case of the 'Ever Green' cultivar three significant ranges were found to contribute to the

85



prediction model: 477-540, 670-710 and 850-950 nm the VIP scores (not presented). The 850-
950 nm range is associated with the vibration modes of the first overtones of C-H and O-H bond
stretching and can be the reason achieving good models for TSS prediction.

Figure 60 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
‘Celica’. Similarly to the model for total chlorophyll prediction, one very significant wavelength
range was found that significantly influenced the regression model: the range of 1320-1430 nm.
It is associated with the vibration modes of the first overtones of C-H and O-H bond stretching.

These bonds commonly found in carbohydrates.
5.5.5. Correlation and regression analysis for dry matter (DM) and NDT methods

5.5.5.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

Table 22 shows the results of cross correlation analysis for DM with the calculated indices of
relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity from
relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation.
The highest coefficient of correlation (r) was found for all three cultivars for DM with the colour
parameter of h, good correlation was found with the L and C in case of 'No. 117" cv. Poor
correlation was found for DM with the ultrasonic attenuation and remaining deformation in case
of all three cultivars, whereas the rate of relaxation had moderate correlation with the DM in case
of all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did

not show close relationship for none of the cultivars.

Table 22 Covariance matrix between DM and non-destructive measurements for 'Ever Green',
'No.117', and 'Celica’ cultivars, respectively, with, 95% significance level.

DM Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation  Deformation Relaxation L C h Attenuation
Ever Green 0.67 0.53 0.01 044 050 0.77 0.38
No.117 0.66 0.46 0.14 085 087 0.89 0.49
Celica 0.52 0.37 0.18 025 066 092 0.46

5.5.5.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for DM were 20.9%, 24.2% and 26.4% for 'Ever Green', 'No.117"
and 'Celica’ cultivars, respectively. The average squared intercorrelations found to be good
between DM-TSS (0.95), DM-ascorbic acid (average: 0.23) and DM-total chlorophyll content
(average: 0.40). Although the relatively high coefficient of variance with poor squared

intercorrelation between DM and ascorbic acid and total chlorophyll, but good squared
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intercorrelation with the TSS indicate that prediction by the VIS-NIR, SWIR and hyperspectral
imaging method is applicable with the consideration of possible intercorrelation with TSS.

For all three cultivars, Table 23 presents the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
5), higher r® (average, 0.91), lower RMSECV (average, 0.50 %), higher RPD (average, 3.37) and
higher SWS (average, 0.61). Whereas the hyperspectral models resulted the lower ratio of
RMSECV and RMSEC (average, 1.18). As a further result of the comparison shows that overall
the averaged results of the three methods are slightly differ from one another.

In the VIS-NIR range, for all three cultivars the reflectance (R) gave the highest SWS and
therefore the best model. The relevant SWS indices were 0.79, 0.53, and 0.76 for 'Ever Green',
'‘No. 117" and 'Celica’, respectively.

By the hyperspectral imaging for 'Ever Green' the 1% derivative of reflectance (D;R), for 'No.117'
cv. the log(1/R), while for 'Celica’ the reflectance (R) resulted the highest SWS and therefore the
best model. The relevant SWS indices were 0.37, 0.65, and 0.79 for 'Ever Green', 'Celica’ and,
'No. 117' respectively.

In the SWIR spectral range the best results were obtained with the models based on log(1/R)
spectra for all three cultivars, with SWS 0.64, 0.66 and 0.63 for 'Ever Green', 'Celica’ and, 'No.
117' respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted VIS-NIR spectral measurements to yield stronger correlation to predict DM content in
'Ever Green' bell pepper cultivar, while hyperspectral imaging was found best for 'No. 117' and
‘Celica’ variety. Worth to pay attention on the efficient models, achieved by the VIS-NIR spectral
measurements in case of the 'Ever Green' cultivar, which retains its green colour even in the fully
ripe stage; it means that the DM change during the growth and maturation is not indirectly
correlated with the spectral information but direct correlation is presumed.

PLSR prediction and measured values for cv. 'Celica’ are shown in Figs. 61-63, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 61) a model
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with eight LVs obtained r’=0.94 and RMSECV=0.43, for the hyperspectral imaging (Fig. 62) a
model with six LVs obtained r’=0.94 and RMSECV=0.43, whereas for SWIR (Fig. 63) seven
LVs were needed to achieve r’=0.92 and RMSECV=0.50.

Table 23 Performance measures of PLS regression models for DM, using data from the VIS-
NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are
presented: 'Ever Green', 'No, 117" and 'Celica'.

PLS DM, % Statistical |, £ RMSEC RMSECV RPD "MSECV/ g
parameter RMSEC

Ever Green R 8 0.93 0.26 0.37 3.8 14 0.79

log(1/R) 8 0.90 0.30 0.44 3.3 15 0.64

DR 3 0.92 0.31 0.42 34 1.4 0.75

D, log(1/R) 3 0.91 0.32 0.43 3.3 1.3 0.73

D,log(1/R) 3 0.92 0.31 0.43 3.3 14 0.73

No.117 R 3 0.90 0.56 0.58 3.0 1.0 0.53

DE: log(1/R) 3 0.86 0.64 0.66 2.7 1.0 0.38

o\ DR 4 0.90 0.34 0.56 3.2 1.6 0.48

> D,log(1/R) 4 0.88 0.34 0.60 3.0 1.7 0.38

D,log(L/R) 3 0.91 0.40 0.56 3.1 1.4 0.52

Celica R 8 0.94 0.33 0.43 4.1 1.3 0.76

log(1/R) 9 0.94 0.30 0.43 4.0 15 0.70

DR 4 0.92 0.28 0.50 35 1.8 0.55

D.log(L/R) 3 0.92 0.39 0.51 34 1.3 0.64

D,log(1/R) 3 0.91 0.35 0.52 3.4 15 0.59

Ever Green R 12 0.84 0.46 0.58 25 13 0.37

log(1/R) 12 0.84 0.45 0.57 25 13 0.37

DR 9 0.84 0.47 0.59 24 1.3 0.37

> D, log(1/R) 9 0.83 0.48 0.60 24 1.3 0.34

= D,log(1/R) 12 0.82 0.42 0.63 2.3 15 0.23

g No.117 R 6 0.91 0.50 0.55 3.2 1.1 0.57

= log(1/R) 6 0.92 0.46 0.51 35 1.1 0.65

§ DR 8 0.91 0.47 0.55 3.2 1.2 0.54

& D,log(1/R) 4 0.90 0.52 0.57 31 11 0.55

§ D,log(L/R) 2 0.89 0.58 0.60 3.0 1.0 0.51

I Celica R 6 0.94 0.39 0.43 4.0 11 0.79

log(1/R) 6 0.93 0.39 0.44 4.0 1.1 0.77

D,rR 3 0.93 0.44 0.47 3.7 11 0.74

D, log(L/R) 6 0.93 0.40 0.45 39 1.1 0.75

D,log(1/R) 6 0.92 0.44 0.52 3.3 1.2 0.60

Ever Green R 8 0.87 0.39 0.52 2.8 13 0.51

log(1/R) 9 0.91 0.34 0.45 3.2 13 0.64

DR 9 0.89 0.40 0.49 2.9 1.2 0.58

D,log(1/R) 7 0.89 0.40 0.49 2.9 1.2 0.59

D,log(1/R) 4 0.89 0.42 0.48 3.0 1.2 0.64

No.117 R 6 0.90 0.51 0.58 3.0 11 0.49

14 log(1/R) 8 0.93 0.39 0.48 3.7 1.2 0.66

% DR 9 0.92 0.39 0.50 35 1.3 0.60

D,log(1/R) 7 0.91 0.45 0.54 33 1.2 0.56

D,log(L/R) 5 0.90 0.43 0.56 3.2 1.3 0.52

Celica R 7 0.90 0.45 0.55 32 1.2 0.54

log(1/R) 7 0.92 0.42 0.50 35 1.2 0.63

DR 5 0.91 0.49 0.55 31 11 0.56

D, log(L/R) 5 0.92 0.45 0.52 34 1.2 0.62

D,log(1/R) 5 0.91 0.41 0.54 3.2 1.3 0.56

88



11

1

10 10t

Predicted DM, %

Predicted DW,%

R? = 0.94 R? = 0.94
5 5LV | 6LV |
RMSEC = 0.33 RMSEC = 0.39
RMSECV = 0.43 RMSECV = 0.43
Y5 6 7 8 9 10 11 7 8 9 10 11
Measured DM, % Measured DW,%

Fig. 61 Scatter plot of DM for 'Celica’ variety, Fig. 62 Scatter plot of DM for 'Celica’ variety,
as predicted by PLS regression model and as  as predicted by PLS regression model and as
measured in the laboratory. The PLS model measured in the laboratory. The PLS model

was built with the reflectance (R) of the was built with the reflectance (R) of the
spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.
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Fig. 63 Scatter plot of DM content for 'Celica’ variety, as predicted by PLS regression model and
as measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in
the SWIR range.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 64 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'Celica’. Two wavelength ranges were found to be the most
significant in the model: 510-560, 600—700 nm. These ranges are related to the chlorophyll a and
b and carotenoid contents.

Figure 65 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.

‘Celica’. One very significant wavelength range was found that significantly influenced the

89



regression model: 1320-1420 nm; it is associated with the vibration modes of the first overtones

of C-H and O-H bond stretching.
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Fig. 64 VIP Scores for reflectance (R) spectra  Fig. 65 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'Celica’ cultivar (SWIR) of 'Celica’ cultivar

5.5.6. Correlation and regression analysis for osmotic potential (OP) and NDT

methods

5.5.6.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

Table 24 shows the results of cross correlation analysis for OP with the calculated indices of
relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity from
relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation.
The highest coefficient of correlation (r) was found for all three cultivars for DM with the colour
parameter of h, good correlation was found with the L and C in case of 'No. 117" cv. Poor
correlation was found for DM with the ultrasonic attenuation and remaining deformation in case
of all three cultivars, whereas the rate of relaxation had slight correlation with the DM in case of
all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not

show close relationship for none of the cultivars.

Table 24 Covariance matrix between OP and non-destructive measurements for 'Ever Green',
'‘No.117', and 'Celica’ cultivars, respectively, with, 95% significance level.

OP Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Relaxation ~ Deformation Relaxation L C h Attenuation
Ever Green 0.64 0.52 0.02 044 045 0.78 0.33
No.117 0.61 0.44 0.13 0.85 087 0.88 0.43
Celica 0.50 0.35 0.16 018 066 0091 0.44
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5.5.6.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for OP were 31.4%, 33.1% and 35.4% for 'Ever Green'’, 'N0.117' and
‘Celica’ cultivars, respectively. The average squared intercorrelations found to be fair between
OP-TSS (0.87), OP-DM (average: 0.86) and poor between OP-total chlorophyll content
(average: 0.51). Although the relatively high coefficient of variance, but fair squared
intercorrelation with the TSS and DM indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable with the consideration of possible intercorrelation
with TSS and DM.

For all three cultivars, Table 25 presents the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
4), higher r? (average, 0.88), lower RMSECV (average, 41.6 %), higher RPD (average, 2.95) and
higher SWS (average, 0.58). Whereas the hyperspectral models resulted the lower ratio of
RMSECV and RMSEC (average, 1.10). As a further result of the comparison shows that overall
the averaged results of the three methods are slightly differ from one another.

In the VIS-NIR range, for 'Ever Green' and 'Celica' cultivars the 1% derivative of reflectance
(D1R), whereas for 'No.117' cultivar the reflectance (R) gave the highest SWS, and therefore the
best model. The relevant SWS indices were 0.68, 0.58, and 0.77 for 'Ever Green', 'No. 117" and
‘Celica’, respectively.

By the hyperspectral imaging for 'Ever Green' the D;log(1/R), for and 'No0.117' the log(1/R),
while for 'Celica' cultivar the 1% derivative of reflectance (D;R) resulted the highest SWS and
therefore the best model. The relevant SWS indices were 0.39, 0.61, and 0.92 for 'Ever Green',
'‘No. 117" and 'Celica’, respectively.

In the SWIR spectral range the best results were obtained with the models based on D,log(1/R)
spectra for 'Ever Green' and 'No. 117" cultivars, while for 'Celica’ the 1% derivative of reflectance
(D1R), with SWS 0.54, 0.54 and 0.65 for 'Ever Green', 'No. 117" and 'Celica’, respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging

resulted VIS-NIR spectral measurements to yield stronger correlation to predict OP in 'Ever
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Green' bell pepper cultivar, while hyperspectral imaging was found best for 'No. 117" and 'Celica’

variety. Worth to pay attention on the efficient models, achieved by the VIS-NIR spectral

measurements in case of the 'Ever Green' cultivar, which retains its green colour even in the fully

ripe stage; it means that the OP change during the growth and maturation is not depend or related

to the colour change of the pepper.

Table 25 Performance measures of PLS regression models for OP, using data from the VIS-NIR,
Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are presented:
'Ever Green', 'No, 117" and 'Celica’.

Statistical ) RMSECV/
PLS OP, osmol/kg parameter LV r RMSEC RMSECV RPD RMSEC SWS
Ever Green R 8 0.87 27.6 37.8 2.9 14 0.59
log(1/R) 8 0.85 29.4 41.3 2.6 1.4 0.48
DR 3 0.87 27.0 36.7 3.0 1.4 0.68
D.log(1/R) 3 0.86 29.4 38.3 29 1.3 0.65
D,log(1/R) 3 0.85 27.7 38.7 2.8 14 0.60
No.117 R 3 0.88 44.2 45.8 29 1.0 0.58
= log(l/R) 4 085 492 50.7 26 10 044
o\ DR 3 0.86 36.5 48.1 2.7 1.3 0.44
S D, log(1/R) 3 0.86 38.5 50.6 2.6 1.3 0.38
D,log(1/R) 2 0.87 38.4 48.2 2.7 1.3 0.47
Celica R 7 0.90 33.1 38.5 3.2 1.2 0.68
log(1/R) 8 0.91 27.6 36.2 34 1.3 0.69
D.rR 3 0.92 255 34.8 3.6 14 0.77
D.log(1/R) 3 0.90 27.6 37.0 34 1.3 0.71
D,log(1/R) 3 0.89 28.3 41.7 3.0 15 0.55
Ever Green R 8 0.76 44.4 52.2 2.1 1.2 0.25
log(1/R) 8 0.76 479 52.6 2.1 1.1 0.26
DR 6 0.80 40.7 48.7 2.2 1.2 0.37
> D.log(1/R) 6 0.80 42.7 48.5 2.3 1.1 0.39
g D,log(1/R) 6 0.74 425 54.3 2.0 1.3 0.19
g No.117 R 4 0.87 42.9 46.4 2.8 1.1 0.54
= log(1/R) 5 0.89 39.9 43.2 3.0 1.1 0.61
*§ DR 2 0.86 48.0 49.2 2.7 1.0 0.50
& D log(1/R) 2 0.88 44.7 45.7 2.9 1.0 0.60
§ D,log(1/R) 2 0.85 47.9 50.0 2.6 1.0 0.47
T Celica R 5 0.92 30.9 32.9 3.8 1.1 0.90
log(1/R) 5 0.92 31.2 34.1 3.6 1.1 0.85
D,R 3 0.92 315 32.9 3.8 1.0 0.92
D, log(1/R) 3 0.91 33.7 36.5 34 1.1 0.81
D,log(1/R) 3 0.89 36.3 39.8 3.1 1.1 0.71
Ever Green R 9 0.84 31.6 42.8 2.6 14 0.45
log(1/R) 9 0.85 31.2 40.9 2.7 1.3 0.51
DR 10 0.80 36.7 48.8 2.2 1.3 0.28
D.log(1/R) 9 0.82 34.9 44.7 2.4 1.3 0.42
D,log(1/R) 5 0.84 32.2 41.8 2.6 1.3 0.54
No.117 R 7 0.84 43.3 52.6 25 1.2 0.31
o log(1/R) 7 0.88 40.4 46.3 2.8 1.1 0.49
% DR 7 0.87 37.9 475 2.7 1.3 043
D log(1/R) 6 0.88 38.3 455 2.9 1.2 0.52
D,log(1/R) 4 0.88 37.8 45.4 2.9 1.2 0.54
Celica R 7 0.88 34.8 424 2.9 1.2 0.56
log(1/R) 7 0.90 33.4 404 3.1 1.2 0.62
D.r 6 0.89 35.1 40.2 3.1 1.1 0.65
Dlog(1/R) 5 0.89 36.4 42.0 3.0 1.2 0.62
D,log(1/R) 4 0.89 35.2 41.8 3.0 1.2 0.62
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PLSR prediction and measured values for cv. 'Celica’ are shown in Figs. 66-68, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 66) a model
with three LVs obtained r’=0.92 and RMSECV=34.77, for the hyperspectral imaging (Fig. 67) a
model with three LVs obtained r’=0.92 and RMSECV=32.92, whereas for SWIR (Fig. 68) six
LVs were needed to achieve r*=0.89 and RMSECV=40.23.
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Fig. 66 Scatter plot of OP for 'Celica’ variety, Fig. 67 Scatter plot of OP for 'Celica’ variety,
as predicted by PLS regression model and as as predicted by PLS regression model and as
measured in the laboratory. The PLS model measured in the laboratory. The PLS model
was built with the 1% derivative (D;R) of the was built with the 1% derivative (D:R) of the

spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.
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Fig. 68 Scatter plot of OP content for 'Celica’ variety, as predicted by PLS regression model and
as measured in the laboratory. The PLS model was built with the 1% derivative (D1R) of the
spectral data in the SWIR range.
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The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 69 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'Celica’. Two wavelength ranges were found to be the most
significant in the model: 510-560, 600—700 nm. These ranges are related to the chlorophyll a and
b and carotenoid contents.

Figure 70 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
‘Celica’. One very significant wavelength range was found that significantly influenced the
regression model: 1320-1420 nm; it is associated with the vibration modes of the first overtones
of C-H and O-H bond stretching.
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Fig. 69 VIP Scores for reflectance (R) spectra  Fig. 70 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'Celica’ cultivar (SWIR) of 'Celica’ cultivar
5.5.7. Correlation and regression analysis for coefficient of elasticity from

compression test and NDT methods

5.5.7.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

Table 26 shows the results of cross correlation analysis for coefficient of elasticity of
compression test (CEcompression) With the calculated indices of relaxation test (Rate of relaxation,
Remaining deformation, coefficient of elasticity relaxation test), with the parameters of colour
measurements (L, C, h) and ultrasonic attenuation. CEcompression did not show considerable
correlation with any of the correlated parameters.

Table 26 Covariance matrix between CEcompression @nd non-destructive measurements for 'Ever
Green', 'N0.117', and 'Celica’ cultivars, respectively, with, 95% significance level.

Coefficient of elasticity ~ Rate of Remaining  Coefficient of elasticity Colour Measurement Ultrasonic
Compression Relaxation  Deformation Relaxation L C h Attenuation
Ever Green 0.26 0.19 0.21 029 025 052 0.34

No.117 0.25 0.15 0.21 043 042 045 0.36
Celica 0.10 0.06 0.21 002 029 041 0.39
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5.5.7.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for CEcompression Were 37.2%, 36.7% and 32.0% for 'Ever Green',
'No.117" and 'Celica’ cultivars, respectively. The average squared intercorrelations found to be
fair between CEcompression -1SS (0.19), CEcompression -DM (average: 0.16) and poor between
CEcompression -total chlorophyll content (average: 0.17). Based on the coefficient of variance and
the low squared intercorrelation among the variables indicate that prediction by the VIS-NIR,
SWIR and hyperspectral imaging method is applicable.

For all three cultivars, Table 27 presents the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the hyperspectral models were obtained with fewer LVs
(average, 3) and lower ratio of RMSECV and RMSEC (average, 1.07). Whereas VIS-NIR
models resulted lower RMSECV (average, 8.66 %), higher RPD (average, 1.55) and higher SWS
(average, 0.58). higher r? (average, 0.88). As a further result of the comparison shows that overall
the averaged results of the three methods are slightly differ from one another.

In the VIS-NIR range for 'Ever Green' cultivar the D,log(1/R), for 'No.117" cultivar the 1%
derivative of reflectance (D;R), whereas for 'Celica’ the D;log(1/R) gave the highest SWS, and
therefore the best model. The relevant SWS indices were 0.50, 0.81, and 0.70 for 'Ever Green',
'No. 117" and 'Celica’, respectively.

By the hyperspectral imaging for 'Ever Green' the 1% derivative of reflectance (D:R), for and
'‘No.117' the log(1/R), while for 'Celica’ cultivar the D,log(1/R) resulted the highest SWS and
therefore the best model. The relevant SWS indices were 0.37, 0.72, and 0.67 for 'Ever Green',
'No. 117" and 'Celica’, respectively.

In the SWIR spectral range the best results were obtained with the models based on reflectance
(R) spectra for 'Ever Green' cultivar, while for 'No. 117" and 'Celica’ cultivars the D,log(1/R),
with SWS 0.50, 0.71 and 0.67 for 'Ever Green', 'No. 117" and 'Celica’, respectively.

The overall comparison of models from the two spectral ranges and hyperspectral imaging

resulted SWIR spectral measurements to yield stronger correlation to predict CEcompression IN
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'Ever Green' bell pepper cultivar, while VIS-NIR vyield the best models for 'No. 117’

hyperspectral imaging was found best for 'Celica’ variety.

and

Table 27 Performance measures of PLS regression models for CEcompression, Using data from the
VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are

presented: 'Ever Green', 'No, 117" and 'Celica'.

PLS Coefficient_of elasticity ~ Statistical LV 2 RMSEC RMSECV RPD RMSECV/ SWS
Compression, N/mm parameter RMSEC

Ever Green R 6 0.54 9.3 11.3 1.6 1.2 0.42

log(1/R) 6 0.44 9.5 124 15 13 0.26

DR 2 0.45 9.1 114 16 13 0.43

D, log(1/R) 2 0.42 9.5 117 16 12 0.40

D,log(1/R) 2 0.55 8.8 10.9 1.7 1.2 0.50

No.117 R 5 0.37 7.0 7.4 15 11 0.68

% log(1/R) 7 0.46 5.3 7.2 16 13 0.60

b DR 2 0.49 5.8 6.7 17 11 0.81

> D, log(L/R) 2 0.46 5.9 6.9 1.6 1.2 0.76

D,log(1/R) 2 0.51 5.1 6.5 17 13 0.79

Celica R 5 0.26 7.1 7.7 14 11 0.60

log(1/R) 6 0.32 6.9 7.7 14 11 0.58

DR 2 0.37 6.1 7.2 15 12 0.69

D.log(1/R) 2 041 6.1 7.1 15 12 0.70

D,log(1/R) 2 0.40 5.5 7.8 14 14 0.53

Ever Green R 5 0.43 11.6 12.6 15 1.1 0.33

log(1/R) 5 0.46 11.6 125 15 11 0.35

DR 4 0.47 10.9 12.3 15 11 0.37

o D.log(1/R) 5 0.43 11.2 129 14 12 0.27

g) D,log(1/R) 2 0.34 11.9 13.2 1.4 1.1 0.28

g No.117 R 4 0.38 7.1 75 15 11 0.69

= log(1/R) 2 0.37 7.4 7.6 15 1.0 0.72

§ DR 3 0.34 7.1 7.7 15 11 0.67

& D.log(1/R) 3 0.38 7.0 7.6 15 1.1 0.68

§ D,log(1/R) 3 0.33 7.1 8.0 14 11 0.61

T Celica R 4 0.26 7.0 7.4 14 11 0.65

log(1/R) 4 0.24 7.2 7.6 14 11 0.63

DR 2 0.24 7.4 7.7 14 1.0 0.65

D log(1/R) 2 0.24 7.6 7.9 1.3 1.0 0.62

D,log(1/R) 2 0.27 7.2 7.5 14 1.0 0.67

Ever Green R 6 0.56 9.8 10.9 17 11 0.50

log(1/R) 6 0.57 9.8 11.0 17 11 0.50

DR 3 0.52 10.6 115 16 11 0.49

D, log(1/R) 4 0.47 10.9 12.3 15 11 0.36

D,log(1/R) 3 0.55 9.9 11.3 1.6 1.1 0.49

No.117 R 7 0.44 6.0 75 15 12 0.60

o log(1/R) 9 0.51 5.2 6.8 17 13 0.64

% DR 3 0.36 6.9 7.4 15 11 0.70

D, log(1/R) 7 0.43 6.1 7.4 15 1.2 0.61

D,log(1/R) 2 0.42 6.5 7.4 15 11 0.71

Celica R 6 0.34 6.7 75 14 11 0.60

log(1/R) 7 0.39 6.2 7.3 15 12 0.62

DR 5 0.34 6.6 7.6 14 11 0.61

D,log(1/R) 5 0.35 6.7 7.4 14 11 0.63

D,log(1/R) 2 0.36 6.7 75 14 11 0.67
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PLSR prediction and measured values for cv. 'No. 117" are shown in Figs. 71-73, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 71) a model
with two LVs obtained r?=0.49 and RMSECV=6.66, for the hyperspectral imaging (Fig. 72) a
model with two LVs obtained r’=0.37 and RMSECV=7.55, whereas for SWIR (Fig. 73) two LVs
were needed to achieve r’=0.42 and RMSECV=7.35.
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Fig. 71 Scatter plot of CEcompression for ‘N0.117'  Fig. 72 Scatter plot of CEcompression for ‘No.117'
variety, as predicted by PLS regression model variety, as predicted by PLS regression model
and as measured in the laboratory. The PLS and as measured in the laboratory. The PLS
model was built with the 1% derivative (D;R) model was built with the log(1/R) of the

of the spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.
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Fig. 73 Scatter plot of CEcompression cONtent for 'No.117" variety, as predicted by PLS regression
model and as measured in the laboratory. The PLS model was built with the D,log(1/R)of the
spectral data in the SWIR range.
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The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 74 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'No0.117'. The following wavelength ranges were found to be the
most significant in the model: 477-690, 830-950 nm. The range of 477-690 nm is related to the
chlorophyll a and b and carotenoid contents, while the range of 830-950 nm is related to
chemical and textural composition.

Figure 75 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
'‘No.117'. The below wavelength ranges were found to significantly influencing the regression
model: 850-900, 1350-1450 and 1550-1888 nm; it is associated with the vibration modes of the
first overtones of C-H and O-H bond stretching.
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Fig. 74 VIP Scores for reflectance (R) spectra  Fig. 75 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'N0.117' cultivar (SWIR) of 'No0.117' cultivar

5.5.8. Correlation and regression analysis for coefficient of elasticity from rupture

test and NDT methods

5.5.8.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

Table 28 shows the results of cross correlation analysis for coefficient of elasticity of rupture test
(CErupure) With the calculated indices of relaxation test (Rate of relaxation, Remaining
deformation, coefficient of elasticity from relaxation test), with the parameters of colour
measurements (L, C, h) and ultrasonic attenuation. CEgrywre did not show considerable
correlation with any of the correlated parameters, except slight correlation was found for
'No0.117' cultivars with the L, C, h parameters of the colour measurements.
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Table 28 Covariance matrix between CErywre and non-destructive measurements for 'Ever
Green', 'No0.117', and 'Celica’ cultivars, respectively, with, 95% significance level.

Coefficient of elasticity ~ Rate of Remaining  Coefficient of elasticity ~Colour Measurement Ultrasonic
Rupture Relaxation ~ Deformation Relaxation L C h Attenuation
Ever Green 0.33 0.20 0.08 011 020 048 0.23
No.117 0.42 0.42 0.09 0.58 057 0.60 0.41
Celica 0.31 0.23 0.26 016 0.38 0.62 0.41

5.5.8.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficients of variance for CEgrypure Were 27.3%, 21.9% and 27.8% for 'Ever Green',
'No.117" and 'Celica’ cultivars, respectively. The average squared intercorrelations found to be
fair between CErypture -TSS (0.36), CErypture -DM (average: 0.34) and poor between CErypture -
total chlorophyll content (average: 0.27). Based on the coefficient of variance and the low
squared intercorrelation among the variables indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable.

For all three cultivars, table 29 presents the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r>; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
4), whereas SWIR models resulted with higher r? (average, 0.51), lower RMSECV (average,
3.28), higher RPD (average, 1.61), lower ratio of RMSECV and RMSEC (average, 1.12), and
higher SWS (average, 0.62). As a further result of the comparison shows that overall the
averaged results of the three methods are slightly differ from one another.

In the VIS-NIR range for 'Ever Green' cultivar the D;log(1/R), for 'No.117' cultivar the
reflectance (R), whereas for 'Celica’ the D,log(1/R) gave the highest SWS, and therefore the best
model. The relevant SWS indices were 0.57, 0.73, and 0.73 for 'Ever Green', '‘No. 117" and
‘Celica’, respectively.

By the hyperspectral imaging for 'Ever Green' the reflectance (R), for and 'No0.117' the
D.log(1/R), while for 'Celica’ cultivar the D;log(1/R) resulted the highest SWS and therefore the
best model. The relevant SWS indices were 0.33, 0.79, and 0.76 for 'Ever Green', 'No. 117" and

‘Celica’, respectively.
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In the SWIR spectral range the best results were obtained with the models based on D,log(1/R)
spectra for 'Ever Green' cultivar, while for 'No. 117" and 'Celica’ cultivars the D,log(1/R), with
SWS 0.46, 0.81 and 0.67 for 'Ever Green', 'No. 117" and 'Celica’, respectively.

Table 29 Performance measures of PLS regression models for CErypture, USing data from the
VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are
presented: 'Ever Green', 'No, 117" and 'Celica'.

Coefficient of elasticity  Statistical RMSECV/
PLS Rupture, N/mm parameter LV r? RMSEC RMSECV RPD RMSEC SWS
Ever Green R 6 0.45 3.2 3.9 15 12 0.45
log(1/R) 7 0.45 2.8 3.9 15 14 0.43
DR 2 0.46 3.0 3.8 15 13 0.52
D, log(1/R) 3 0.52 2.4 3.6 1.6 15 0.57
D,log(1/R) 2 0.46 2.9 3.9 15 13 0.49
No.117 R 4 0.40 25 2.6 16 1.0 0.73
= log(l/R) 4 038 25 27 15 10 072
o\ DR 5 0.44 1.0 2.8 15 2.8 0.56
> D, log(1/R) 2 0.34 2.6 3.0 1.4 1.2 0.62
D,log(1/R) 2 0.39 2.1 2.7 15 1.3 0.71
Celica R 8 0.66 24 3.3 1.8 1.4 0.64
log(1/R) 7 0.62 2.7 34 17 13 0.60
DR 2 0.64 2.7 3.2 1.8 1.2 0.71
D.log(1/R) 2 0.64 2.7 3.3 18 12 0.70
D,log(1/R) 2 0.68 2.5 3.2 18 13 0.73
Ever Green R 6 0.27 3.9 4.2 14 11 0.33
log(1/R) 6 0.28 4.0 4.4 1.3 11 0.29
DR 4 0.24 4.0 4.4 13 11 0.29
o D, log(1/R) 4 0.25 4.0 4.6 1.3 1.1 0.26
g) D,log(1/R) 3 0.28 3.6 4.5 13 12 0.29
g No.117 R 8 0.45 2.2 2.6 16 12 0.72
= log(1/R) 6 0.46 2.3 25 16 11 0.76
g DR 2 0.44 25 2.6 16 1.0 0.77
& D log(1/R) 2 0.45 25 2.6 16 1.0 0.78
§ D,log(1/R) 2 0.45 2.5 2.6 1.6 1.0 0.79
T Celica R 12 0.72 24 3.0 1.9 1.3 0.69
log(1/R) 9 0.68 2.7 3.1 19 11 0.70
DR 3 0.58 34 3.6 16 1.0 0.60
D.log(1/R) 4 0.70 2.8 3.1 19 11 0.76
D,log(1/R) 9 0.68 2.4 3.3 1.8 1.4 0.64
Ever Green R 5 0.40 3.7 4.0 15 11 0.43
log(1/R) 5 041 3.6 3.9 15 11 0.44
DR 6 0.45 34 4.0 15 12 0.43
D.log(1/R) 5 041 35 4.0 15 11 0.43
D,log(1/R) 2 041 35 4.0 15 11 0.46
No.117 R 6 0.49 2.3 25 16 11 0.77
14 log(1/R) 6 0.48 2.3 25 17 11 0.78
% DR 4 0.47 2.3 2.6 16 11 0.77
D, log(1/R) 4 0.46 2.3 2.6 1.6 1.1 0.77
D,log(1/R) 2 0.50 2.3 25 1.6 1.1 0.81
Celica R 7 0.66 2.8 3.2 1.8 1.2 0.67
log(1/R) 7 0.63 2.8 34 17 12 0.62
DR 4 0.62 3.0 34 1.7 11 0.66
D.log(1/R) 5 0.62 3.0 34 17 11 0.63
D,log(1/R) 3 0.65 3.0 3.3 1.7 1.1 0.67
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The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted VIS-NIR spectral measurements to yield stronger correlation to predict CEgrypture in 'Ever
Green' bell pepper cultivar, while SWIR vyield the best models for ‘No. 117" and hyperspectral
imaging was found best for 'Celica’ variety.

PLSR prediction and measured values for cv. 'No. 117" are shown in Figs. 76-78, as examples for
VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 76) a model
with four LVs obtained r?=0.40 and RMSECV=2.65, for the hyperspectral imaging (Fig. 77) a
model with two LVs obtained r’=0.45 and RMSECV=2.56, whereas for SWIR (Fig. 78) two LVs
were needed to achieve r’=0.50 and RMSECV=2.50.
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Fig. 76 Scatter plot of CEgrypure for 'N0.117' Fig. 77 Scatter plot of CEgrypture for 'No.117'
variety, as predicted by PLS regression model variety, as predicted by PLS regression model
and as measured in the laboratory. The PLS and as measured in the laboratory. The PLS
model was built with the reflectance (R) of the model was built with the Djlog(1/R) of the
spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 79 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'No.117'. One wide wavelength range was found to be significant
in the model: 560-695 nm. It is related to the chlorophyll a and b and carotenoid contents.

Figure 80 presents the VIP scores of the reflectance model in the SWIR spectral range for cv.
'‘No.117'. The below wavelength range was found to significantly influencing the regression
model: 1350-1500 and 1550-1790 nm; it is associated with the vibration modes of the first
overtones of C-H and O-H bond stretching.
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Fig. 79 VIP Scores for reflectance (R) spectra  Fig. 80 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'No0.117' cultivar (SWIR) of 'No0.117' cultivar

5.5.9. Correlation and regression analysis for days after anthesis (DAA) and NDT

methods

5.5.9.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test

The results of cross correlation analysis for DAA with the calculated indices of relaxation test
(Rate of relaxation, Remaining deformation, coefficient of elasticity from relaxation test), with
the parameters of colour measurements (L, C, h) and ultrasonic attenuation shown in table 30.

The highest coefficient of correlation (r) was found for all three cultivars for DAA with the

colour parameter of h, good correlation was found with the L and C in case of 'No. 117" cv. Poor
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correlation was found with the ultrasonic attenuation, remaining deformation and coefficient of
elasticity of relaxation test in case of all three cultivars, whereas the rate of relaxation showed
slight correlation with the DAA in case of 'Ever Green' and 'No.117' cultivars.

Table 30 Covariance matrix between DAA and non-destructive measurements for 'Ever Green',
'No0.117', and 'Celica’ cultivars, respectively, with 95% significance level.

DAA Rate of Remaining  Coefficient of elasticity ~Colour Measurement Ultrasonic
Relaxation ~ Deformation Relaxation L C h Attenuation
Ever Green 0.56 0.38 0.26 040 037 0.86 0.48
No.117 0.64 0.37 0.24 085 087 091 0.47
Celica 0.40 0.20 0.38 0.18 0.65 0.89 0.55

5.5.9.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging

The coefficient of variance for DAA was 28.9%. The average squared intercorrelations found to
be poor between DAA-TSS (average: 0.80), DAA-DM (average: 0.76) and DAA-total
chlorophyll content (average: 0.55). The good squared intercorrelation between DAA and TSS,
DM and total chlorophyll content indicate that prediction by the VIS-NIR, SWIR and
hyperspectral imaging method is applicable with the consideration of possible intercorrelation.
Table 31 presents for all three cultivars, the results from PLS regression for VIS-NIR,
hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown
for each model: no. of latent variables, LV; coefficient of determination, r?; root-mean-square
error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust
parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index,
SWS.

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and
hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average,
6), higher r* (average, 0.97), lower RMSECV (average, 3.25), higher RPD (average, 5.48) and
higher SWS (average, 0.77), whereas hyperspectral imaging models achieved lower
RMSECV/RMSEC (average, 1.25).

In the VIS-NIR range, for all three varieties the D,log(1/R) gave the highest SWS and therefore
the best model. The relevant SWS indices were 0.91, 0.82, and 0.84 for 'Ever Green', 'No. 117’
and 'Celica’, respectively.

In case of the hyperspectral imaging for 'Ever Green' the reflectance (R), for 'N0.117' the
log(1/R), while for 'Celica’ the D1log(1/R) resulted with the highest SWS and therefore the best
model. The relevant SWS indices were 0.38, 0.75, and 0.64 for 'Ever Green', 'No. 117" and,
‘Celica’ respectively.
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The best models were achieved in the SWIR spectral range for 'Ever Green' and 'No. 117
cultivars by the log(1/R), whereas for 'Celica’ the D,log(1/R), with SWS 0.66, 0.72 and 0.75,

respectively.

Table 31 Performance measures of PLS regression models for DAA, using data from the VIS-

NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are

presented: 'Ever Green', 'No, 117" and 'Celica'.

Statistical ) RMSECV/
PLS DAA, days parameter LV r RMSEC RMSECV RPD RMSEC SWS
Ever Green R 9 0.98 16 2.8 6.4 18 0.80
log(1/R) 9 0.96 15 3.4 5.1 2.3 0.64
DR 3 0.98 19 2.7 6.4 14 0.90
D, log(1/R) 4 0.98 15 2.7 6.4 1.8 0.85
D,log(1/R) 3 0.99 15 25 6.9 17 0.91
No.117 R 9 0.97 2.0 3.3 5.3 16 0.74
%: log(1/R) 9 0.96 2.1 3.8 4.6 18 0.65
o\ DR 4 0.97 19 3.1 5.6 16 0.82
> D, log(1/R) 4 0.96 2.0 3.9 45 19 0.68
D,log(1/R) 3 0.98 16 3.0 5.9 19 0.82
Celica R 7 0.96 2.7 3.6 4.9 1.3 0.76
log(1/R) 9 0.95 24 3.9 45 16 0.67
DR 4 0.97 19 34 5.2 18 0.76
D.log(1/R) 4 0.96 2.1 3.6 4.9 17 0.75
D,log(1/R) 3 0.98 1.9 3.1 5.7 1.6 0.84
Ever Green R 12 0.87 5.1 6.4 2.8 12 0.38
log(1/R) 12 0.86 5.3 6.8 2.6 13 0.32
DR 8 0.85 5.7 6.9 25 12 0.35
> D, log(1/R) 9 0.85 5.7 7.0 2.5 1.2 0.33
% D,log(1/R) 11 0.82 4.9 7.8 2.2 16 0.19
g No.117 R 9 0.95 34 4.1 4.3 12 0.69
= log(1/R) 7 0.95 35 3.8 4.6 11 0.75
g DR 8 0.94 3.7 45 3.9 1.2 0.64
& D log(1/R) 7 0.94 3.6 4.3 4.1 1.2 0.69
§ D,log(1/R) 6 0.94 3.4 4.4 4.0 1.3 0.67
T Celica R 11 0.92 4.0 5.0 35 13 0.55
log(1/R) 10 0.92 4.0 4.9 3.6 12 0.57
DR 6 0.92 45 5.1 3.4 11 0.60
D.log(1/R) 6 0.93 4.1 4.8 3.7 12 0.64
D,log(1/R) 7 0.91 4.0 5.4 3.2 1.4 0.54
Ever Green R 10 0.93 3.0 4.7 3.8 15 0.58
log(1/R) 10 0.95 2.9 4.1 4.3 14 0.66
DR 12 0.94 3.3 4.7 3.8 14 0.57
D.log(1/R) 12 0.93 3.3 4.9 3.6 15 0.53
D,log(1/R) 6 0.94 3.3 4.5 3.9 14 0.66
No.117 R 8 0.95 3.3 4.0 4.4 12 0.71
14 log(1/R) 8 0.95 3.3 4.0 4.4 12 0.72
% DR 10 0.95 2.9 3.9 45 14 0.69
D log(1/R) 8 0.96 3.1 3.9 45 1.3 0.72
D,log(1/R) 6 0.94 3.3 4.4 4.0 1.3 0.67
Celica R 8 0.94 3.3 4.3 4.1 1.3 0.67
log(1/R) 8 0.94 34 4.3 4.1 12 0.67
DR 7 0.94 3.7 44 4.0 12 0.67
D.log(1/R) 5 0.94 3.8 4.2 4.1 11 0.72
D,log(1/R) 5 0.95 2.9 3.8 4.6 1.3 0.75

104



The overall comparison of models from the two spectral ranges and hyperspectral imaging
resulted VIS-NIR to yield the most efficient models to predict DAA for all three bell pepper
cultivars. Worth to mention, that even though in case of the 'Ever Green' variety there is no
significant colour change still in the VIS-NIR spectral range very reliable prediction models
were achieved for DAA.

PLSR prediction and measured values for cv. 'Ever Green' are shown in Figs. 81-83, as examples
for VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and
abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 81) a model
with three LVs obtained r?=0.986 and RMSECV=2.5, for the hyperspectral imaging (Fig. 82) a
model with twelve LVs obtained r’=0.87 and RMSECV=6.36, whereas for SWIR (Fig. 83) ten
LVs were needed to achieve r’=0.95 and RMSECV =4.09.
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Fig. 81 Scatter plot of DAA for 'Ever Green' Fig. 82 Scatter plot of DAA for 'Ever Green'
variety, as predicted by PLS regression model variety, as predicted by PLS regression model
and as measured in the laboratory. The PLS  and as measured in the laboratory. The PLS
model was built with the D,log(1/R) of the model was built with the reflectance (R) of the
spectral data in the VIS-NIR range. spectral data from the hyperspectral imaging.

The Variable Importance in Projection (VIP) scores indicate the significance of specific
wavelengths in the model, and Fig. 84 presents the VIP scores for the reflectance model in the
VIS-NIR spectral range for cv. 'Ever Green'. The following wavelength ranges were found to be
significant in the model: 477-550, 680-690 and 880-950 nm. The ranges of 477-550, 680-690 nm
are related to chlorophyll a, b and carotenoid contents. The range of 880-950 nm is associated
with the vibration modes of the first overtones of C-H and O-H bond. These bonds can be found

for example in carbohydrates, ascorbic acid.
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Fig. 83 Scatter plot of DAA for 'Ever Green' variety, as predicted by PLS regression model and
as measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in
the SWIR range.

Figure 85 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. '
Ever Green '. The below wavelength ranges were found to significantly influencing the
regression model: 850-920, 1380-1800 nm. It is associated with the vibration modes of the first
overtones of C-H and O-H bond stretching. These bonds commonly found in carbohydrates.

Significance of the wavelength ranges above 850 nm indicates, that the regression models

influenced by indirect correlation; as it was presumed in chapter 5.5.10.1.
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Fig. 84 VIP Scores for reflectance (R) spectra  Fig. 85 VIP Scores for reflectance (R) spectra
(VIS-NIR) of 'Ever Green' cultivar (SWIR) of 'Ever Green' cultivar
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5.6. FUSION
5.6.1. 1* level fusion: Fusion of NDT parameters

In the first level of fusion the NDT parameters were fused in order to analyze the effect of
combination of data to predict the DT quality attributes of bell peppers. As a first step of the
fusion different feature extractions were applied on the data from the different measurement
methods. For the VIS-NIR, SWIR and hyperspectral spectral data the SAMgegree Of the spectra,
Daps, PC1 and PC2 of the quality point based on the PQS system and the LV-s from the best
PLSR models were calculated. The scheme of the fusion is presented on figure 86. The list of the

fused variables is found in Appendix 2.

| Ultrasonic attenuation I

* Rate of Relaxation
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deformation
«Coefficient of
elasticity of Relaxation

«L (Lightness)
* C (Chroma)
*h (Hue)

[ vv

Feature extraction:
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Feature extraction:
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H T —|
[ Hyperspectral Imaging « D,,,PC1 and PC2 (MSC, Norm, SNV)

*LV1 & LV2 of PLS models

Fig. 86 Scheme for fusion of NDT methods

Model evaluation is relevant for the comparison of the single-sensor system to a multisensory
system. The comparison is based on the performance of the model’s ability to predict the
properties of the produce. The evaluation of model performance of the two systems was carried
out with application of SWS index.

Table 32-33 shows the detailed results for the comparison PLS regression models for singe-
sensor and multisensor systems. Single-sensor system means the use of VIS-NIR or
Hyperspectral imaging or SWIR spectral measurements. Multisensor system means the NDT
data fusion. Have to be mentioned that in the evaluation the SWS index was calculated to one

particular variety along with one particular DT parameter in order to be able to compare the
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performance of the regression models. As the results present in each case the fused data gave

better models with higher SWS indices. Moreover, the fused models are predicting the DT

parameters with similar or lower number of latent variables (LV), they have generally higher

correlation of determination as well as lower RMSECV. Altogether the fusion of the NDT

parameters found to be sufficient and beneficial for the prediction of DT quality parameters in

the examined three bell pepper cultivars.

Table 32 Performance measures of PLS regression models for TSS, DM, AA and OP, using data
from the VIS-NIR, Hyperspectral, SWIR spectral range and fused NDT methods. Models for the
three pepper varieties are presented: 'Ever Green', 'No, 117" and 'Celica’.

DT Cultivar NDT LV 2 RMSEC RMSECV RPD Ré""j';gg/ sws 6o arerenen
Ever Green  VIS-NIR 3 0.93 0.29 0.38 3.9 1.3 0.71 21%
Hyperspectral imaging 13 0.87 0.43 0.56 2.6 13 0.17 46%
SWIR 9 0.91 0.33 0.44 33 1.3 0.40 32%
Fusion of NDT 5 096 0.22 0.30 4.9 1.3 0.81
No.117 VIS-NIR 6 0.91 0.47 0.55 3.2 1.2 0.22 31%
. Hyperspectral imaging 6 0.93 0.43 0.47 3.8 11 0.57 19%
TSS, Birix % SWIR 6 092 046 052 34 11 036 27%
Fusion of NDT 7 096 0.28 0.38 4.7 1.4 0.74
Celica VIS-NIR 8 0.95 0.29 0.38 4.6 13 0.35 16%
Hyperspectral imaging 6 0.95 0.34 0.37 47 11 0.57 14%
SWIR 7 0.94 0.38 0.44 39 1.2 0.14 27%
Fusion of NDT 3 0.97 0.27 0.32 5.5 1.2 0.93
Ever Green  VIS-NIR 8 0.93 0.26 0.37 3.8 14 0.64 11%
Hyperspectral imaging 9 0.84 0.47 0.59 2.4 13 0.08 44%
SWIR 4 0.89 0.42 0.48 3.0 1.2 0.56 31%
Fusion of NDT 4 095 0.26 0.33 4.3 1.3 0.92
No.117 VIS-NIR 3 0.9 0.56 0.58 3.0 1.0 0.26 21%
DM. % Hyperspectral imaging 6 0.92 0.46 0.51 35 11 0.57 10%
' SWIR 8 0.93 0.39 0.48 3.7 12 0.69 4%
Fusion of NDT 6 094 031 0.46 3.9 15 0.78
Celica VIS-NIR 8 0.94 0.33 0.43 41 1.3 0.64 5%
Hyperspectral imaging 6 0.94 0.39 0.43 4.0 11 0.78 5%
SWIR 7 0.92 0.42 0.50 35 12 0.10 18%
Fusion of NDT 2 094 0.37 0.41 4.2 1.1 0.97
Ever Green  VIS-NIR 9 0.79 8.7 15.2 2.1 18 0.43 9%
Hyperspectral imaging 4 0.72 15.0 16.7 1.9 11 0.26 17%
SWIR 8 0.75 12.6 15.7 2.0 1.2 0.39 12%
Fusion of NDT 5 0.83 10.0 13.9 2.3 1.4 0.90
No.117 VIS-NIR 4 0.62 9.5 17.3 2.2 18 0.21 27%
Hyperspectral imaging 7 0.55 154 17.3 2.2 11 0.22 27%
AA ¢/100g SWIR 0 070 112 161 2.4 14 037 22%
Fusion of NDT 6 0.81 9.3 12.6 3.1 1.4 0.91
Celica VIS-NIR 8 0.78 11.1 15.1 2.2 14 0.40 14%
Hyperspectral imaging 8 0.72 144 16.0 2.1 11 0.32 19%
SWIR 8 0.71 14.2 17.1 2.0 1.2 0.11 24%
Fusion of NDT 4 0.83 10.7 13.0 2.6 1.2 0.93
Ever Green  VIS-NIR 3 0.87 27.0 36.7 3.0 14 0.64 11%
Hyperspectral imaging 6 0.80 42.7 48.5 2.3 11 0.17 33%
SWIR 5 0.84 32.2 41.8 2.6 1.3 0.40 22%
Fusion of NDT 3 0.90 27.2 32.5 3.4 1.2 0.94
No.117 VIS-NIR 3 0.88 44.2 458 2.9 1.0 0.28 0%
OP, Hyperspectral imaging 5 0.89 39.9 43.2 3.0 11 0.80 -6%
osmol/kg SWIR 4 0.88 37.8 454 2.9 12 0.21 -1%
Fusion of NDT 2 0.88 39.9 45.8 2.8 1.1 0.22
Celica VIS-NIR 3 0.92 25.5 34.8 3.6 14 0.59 10%
Hyperspectral imaging 3 0.92 315 32.9 3.8 1.0 0.82 5%
SWIR 6 0.89 35.1 40.2 31 11 0.13 22%
Fusion of NDT 3 0.93 26.8 31.4 4.0 1.2 0.91
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Table 33 Performance measures of PLS regression models for total chlorophyll, carotenoid,
Coefficient of elasticity of Compression and Coefficient of elasticity of Rupture, using data from
the VIS-NIR, Hyperspectral, SWIR spectral range and fused NDT methods. Models for the three
pepper varieties are presented: 'Ever Green', 'No, 117" and 'Celica'.

DT Cuttivar NDT LV 2 RMSEC RMSECV RPD RRMJEEZ/ sws % "fRi:;eEré’\‘fe in
Ever Green  VIS-NIR 6 0.6 0.007 0.008 17 12 0.53 19%
Hyperspectral imaging 5 0.44 0.009 0.010 14 11 0.24 35%
SWIR 9 071  0.006 0.007 19 13 0.61 7%
Fusion of NDT 4 0.77  0.005 0.007 2.1 1.3 0.83
Total No.117 VIS-NIR o 5 0.95  0.003 0.005 4.2 2.0 0.10 30%
Chiorophyll, Hyperspectral imaging 3 0.95  0.005 0.005 4.4 11 0.27 30%
mglg SWIR 6 0.96  0.004 0.005 4.9 11 0.31 30%
Fusion of NDT 7 0.98 0.003 0.004 6.6 1.4 0.85
Celica VIS-NIR 9 0.93  0.005 0.008 3.7 15 0.12 25%
Hyperspectral imaging 5 0.95  0.007 0.007 4.0 11 0.63 14%
SWIR 6 0.92  0.007 0.008 35 12 0.21 25%
Fusion of NDT 5 0.96  0.005 0.006 47 13 0.92
Ever Green  VIS-NIR 3 0.92 0.007 0.010 3.9 14 0.50 24%
Hyperspectral imaging 7 0.87  0.012 0.013 3.0 11 0.17 42%
SWIR 5 0.88  0.010 0.012 33 13 0.23 37%
Fusion of NDT 5 0.96  0.006 0.008 5.2 1.3 0.84
No.117 VIS-NIR 7 0.91  0.005 0.006 3.7 12 0.11 33%
Carotenoid, Hyperspectral imaging 8 0.92  0.005 0.006 4.0 11 0.29 33%
mg/g SWIR 6 0.88  0.005 0.006 3.7 12 0.06 33%
Fusion of NDT 5 0.95 0.003 0.004 5.6 1.2 0.83
Celica VIS-NIR 8 0.95  0.007 0.010 6.6 13 0.65 29%
Hyperspectral imaging 10 0.97 0.007 0.008 75 1.2 0.77 15%
SWIR 7 0.88 0.013 0.015 4.2 12 0.26 52%
Fusion of NDT 8 0.98 0.005 0.007 8.8 15 0.80
Ever Green  VIS-NIR 2 0.55 8.80 10.90 17 12 0.58 6%
Hyperspectral imaging 4 0.47  10.90 12.30 15 11 0.22 16%
SWIR 6 0.56 9.80 10.90 17 11 0.64 6%
Fusion of NDT 3 0.63 8.40 10.30 1.8 1.2 0.81
Coefficient No.117 VIS-NIR 2 0.49 5.82 6.70 17 11 0.70 4%
of elasticity Hyperspectral imaging 2 0.37 7.40 7.60 15 1.0 0.26 16%
Compression SWIR 2 0.42 6.50 7.40 15 11 0.30 13%
, N/mm Fusion of NDT 3 0.55 5.53 6.40 1.8 1.2 0.74
Celica VIS-NIR 2 0.41 6.10 7.10 15 12 0.69 2%
Hyperspectral imaging 2 0.27 7.20 7.50 14 1.0 0.26 7%
SWIR 2 0.36 6.70 7.50 14 11 0.30 7%
Fusion of NDT 3 0.43 5.92 6.97 15 1.2 0.76
Ever Green  VIS-NIR 3 0.52 2.40 3.60 16 15 0.79 0%
Hyperspectral imaging 6 0.27 3.90 4.20 14 11 0.17 14%
SWIR 2 0.41 3.50 4.00 15 11 0.55 10%
Fusion of NDT 4 0.54 2.70 3.60 1.6 1.3 0.86
Coefficient No.117 VIS-NIR 4 0.40 2.50 2.60 16 1.0 0.17 8%
of elasticity Hyperspectral imaging 2 0.45 2.50 2.60 1.6 1.0 0.32 8%
Rupture, SWIR 2 0.50 2.30 2.50 1.6 11 0.53 4%
N/mm Fusion of NDT 4 0.54 2.00 2.40 1.7 1.2 0.74
Celica VIS-NIR 2 0.68 2.50 3.20 1.8 13 0.26 16%
Hyperspectral imaging 4 0.70 2.80 3.10 1.9 11 0.46 13%
SWIR 3 0.65 3.00 3.30 17 11 0.23 18%
Fusion of NDT 5 0.77 2.10 2.70 2.2 1.3 0.74

PLS, PCR, Kernel and SVM regression analysis were used to build the models. Table 34-35
shows the result for each cultivar and for each DT parameter. The following statistical
parameters are shown for each model: no. of latent variables, LV; coefficient of determination,
r%; root-mean-square error of calibration, RMSEC; root-mean-square error of cross-validation,
RMSECV; robust parameter design, RPD; ratio of RMSECV and RMSEC, and standardized
weighted sum index, SWS.

Comparing the single sensor and multi sensor models for all three pepper cultivars the fused

NDT data (multi sensor models) gave higher SWS indices in predicting each one of the DT
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parameters, compare to the single sensor models. It means that with the fusion of the relaxation,

ultrasonic, colour, spectral and hyperspectral data altogether is more capable to predict inner

composition and textural state of different variety of bell pepper cultivars; regardless of the fact

that the pepper variety is changing its colour during the growth of maturation or not.

Overall comparison of the different regression methods, based on the SWS index showed that

PLS and SVM regressions were most suitable to predict DT parameters from the fused NDT

parameters.

Table 34 Performance measures of PLS, PCR, Kernel and SVM regression models for TSS,
DM, AA and OP, using data from the fused NDT methods. Models for the three pepper varieties
are presented: 'Ever Green', 'No, 117" and 'Celica’.

DT Cutivar  REIESSON > pvisec RMSECY RPD RMSECVT guis
analysis RMSEC
Ever Green PLS 5 0.96 0.22 0.30 4.9 1.3 0.84
PCR 7 094 035 037 39 11 073
Kermel 5 093 029 040 37 14 064
SVM 5 09 023 029 50 13 086
No.117 PLS 7 096 028 038 46 14 070
1SS, Brios PCR 8 093 044 048 37 11 057
: Kemel 7 094 040 047 38 12 057
SVM 7 09 02 036 49 16 067
Celica PLS 3 097 027 032 55 12 090
PCR 6 097 02 032 55 11 089
Kemel 3 093 041 050 35 12 056
SVM 3 097 026 031 56 12 091
Ever Green  PLS 4 095 026 033 43 13 089
PCR 7 093 035 039 37 11 077
Kemel 4 091 043 044 32 10 070
SVM 4 094 025 035 41 14 083
No.117 PLS 6 094 031 046 39 15 066
PCR 10 092 047 051 35 11 058
DM, %
Kermel 6 092 037 051 35 14 058
SVM 6 094 028 043 41 15 069
Celica PLS 2 094 037 041 42 11 083
PCR 6 094 039 043 41 11 077
Kemel 3 090 042 054 32 13 053
SVM 2 095 031 040 44 13 083
Ever Green PLS 5 0.83 10.0 139 2.3 14 0.73
PCR 9 070 158 172 19 11 041
Kermel 9 08 92 182 17 20 036
SVM 5 079 97 150 21 15 085
No.117 PLS 6 08l 93 126 31 14 085
Ascorbic acid, PCR 11 063 150 167 23 11 042
mg/100g Kemel 6 078 147 190 20 13 037
SVM 6 076 92 136 28 15 082
Celica PLS 4 08 107 130 26 12 082
PCR 10 079 132 144 24 11 065
Kemel 10 072 117 179 19 15 035
SVM 4 085 101 119 28 12 092
Ever Green  PLS 3 090 272 325 34 12 o8l
PCR 8 090 314 387 32 11 075
Kemel 3 084 356 383 29 11 065
SVM 3 08 272 336 33 12 076
No.117 PLS 2 088 399 458 28 11 053
PCR 7 088 431 447 29 10 053
OP, osmolkg Kermel 3 086 466 473 28 10 051
SVM 2 090 368 404 32 11 069
Celica PLS 3 093 268 314 40 12 088
PCR 10 094 284 301 41 11 087
Kemel 3 087 374 382 33 10 o071
SVM 3 093 252 317 39 13 085
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Table 35 Performance measures of PLS, PCR, Kernel and SVM regression models for total
chlorophyll, carotenoid, Coefficient of elasticity of Compression and Coefficient of elasticity of
Rupture, using data from the fused NDT methods. Models for the three pepper varieties are
presented: 'Ever Green', 'No, 117" and 'Celica'.

Regression RMSECV/

DT Cultivar oy LV ¢ RMSEC RMSECV RPD "o SWS
Ever Green PLS 4 0.77 0.0052  0.0065 21 1.3 0.60

PCR 11 069 00065 00072 19 11 051

Kernel 4 036 00104 00119 12 11 040

SVM 4 076 0.0051 00065 2.1 13 0.60

No.117 PLS 7 098 00025 00035 66 14 074

Total PCR 10 097 00038 00043 54 11 070
Ch";:;f;hy"' Kemel 7 095 00048 00050 46 10 071
SVM 7 098 00022 00033 7.0 15 074

Celica PLS 5 096 00045 00060 4.7 13 0.69

PCR 9 0.94 00065 00071 3.9 11 0.63

Kernel 6 091 00084 00087 32 10 062

SVM 6 0.94 00040 00066 4.2 17 0.3

Ever Green PLS 5 0.96 0.0058 0.0076 5.2 1.3 0.73

PCR 7 093 00086 00093 42 11 0.66

Kernel 5 094 00089 00093 42 10  0.69

SVM 5 097 00043 00063 6.2 15 078

No.117 PLS 5 095 00032 00040 56 12 087

Carotenoids, PCR 11 093 00046 0.0053 4.2 12 073
mg/g Kernel 5 085 00042 00080 28 19 048
SVM 5 095 00030 00040 55 13 085

Celica PLS 8 098 00047 00071 88 15 075

PCR 9 096 00085 00102 62 12 065

Kernel 6 095 00118 00129 49 11 057

SVM 6 098 00052 00076 8.2 15 077

Ever Green  PLS 4 054 27 36 16 13 056

PCR 4 045 36 37 16 10 052

Kernel 4 050 42 45 13 11 034

SVM 4 050 28 37 16 13 052

Coefficient of No.117 PLS 4 054 20 2.4 17 12 081
elasticity PCR 3 044 26 27 16 10 073
Rupture, Kernel 4 0.43 31 31 1.3 1.0 0.61
N/mm SVM 4 044 21 26 16 13 072
Celica PLS 5 077 21 2.7 2.2 13 088

PCR 11 069 28 31 1.9 11 0.69

Kernel 5 072 28 3.0 19 11 077

SVM 5 075 21 28 21 13 084

Ever Green  PLS 3 063 84 10.3 18 12 0.64

PCR 4 058 102 10.6 18 10 064

Kernel 4 051 120 13.0 1.4 11 0.39

SVM 3 060 86 10.6 1.8 12 0.60

Coefficient of NO.117 PLS 3 055 55 6.4 18 12 088
elasticity PCR 11 044 66 71 16 11 071
Compression, Kernel 3 0.32 8.2 10.1 11 12 0.42
N/mm SVM 3 054 58 6.7 17 12 085
Celica PLS 3 043 59 7.0 15 12 075

PCR 4 027 73 7.6 1.4 10 0.6

Kernel 4 029 97 9.8 11 10 049

SVM 2 046 6.3 6.9 15 11 081

Cross validated prediction and measured values for cv. 'Celica’ are shown in Figs. 87-90, as
examples for PLS, PCR, Kernel and SVM, respectively. In the figures, the ordinate and abscissa

axes represent the measured and the fitted values. For PLS (Fig. 87) a model with three LVs
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obtained r*=0.97 and RMSECV=0.32, for PCR (Fig. 88) a model with six PCs obtained r?=0.97
and RMSECV=0.32, for Kernel (Fig. 89) a model with three LVs obtained r’=0.93 and
RMSECV=0.50, whereas for SVM (Fig. 90) three LVs were needed to achieve r*=0.97 and
RMSECV =0.31.

Predicted TSS, Brix %
=)

Predicted TSS, Brix %
()]

R"2 =0.97 o R"2 =0.97
4t 3LV ] 4r g 6 PC
RMSEC = 0.27 °g° RMSEC = 0.29
RMSECV = 0.32 RMSECV = 0.32
54 5 6 7 8 o 54 5 & 7 8 o
Measured TSS, Brix % Measured TSS, Brix %

87 Scatter plot of TSS for 'Celica’ variety, as 88 Scatter plot of TSS for 'Celica’ variety, as

predicted by PLS regression model and as predicted by PCR regression model and as
measured in the laboratory. The PLS model measured in the laboratory. The PLS model
was built with the fused NDT data. was built with the fused NDT data.

Predicted TSS, Brix %
(o))
Predicted TSS, Brix %
o

R72=10.93 RA2 = 0.97
L 4r LV 3 1
e Lv3 RMSEC = 0.26
RMSEC= 0.41 RMSECV = 0.31
) ) ) : ; 3 L L L L L
3 4 5 6 7 5 ° 3 4 5 6 7 8 9

M 4TSS, Brix % Measured TSS, Brix %
easure , Brix %

89 Scatter plot of TSS for 'Celica’ variety, as 90 Scatter plot of TSS for 'Celica’ variety, as

predicted by Kernel regression model and as predicted by SVM regression model and as
measured in the laboratory. The PLS model measured in the laboratory. The PLS model
was built with the fused NDT data. was built with the fused NDT data.
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5.6.2. 2" level fusion: fused NDT parameters related with combined cultivar

dataset

Up to this point we examined each pepper cultivar separately. In the second level of fusion we
would like to check the possibility of combining the cultivars regardless of the fact that they are
differentiate in their final colour and build general models for predicting each DT parameters.
Table 36 presents the result of the PLS, PCR, Kernel and SVM regression analyses’.

Table 36 Performance measures of PLS, PCR, Kernel and SVM regression models for DT
parameters, using data from the fused NDT methods. Models of the combination of the three
pepper varieties are presented.

DT Cultivar Rzgz;::g" LV ?  RMSEC RMSECV RPD RQ"JSEEX " sws
om T3 3 f2 1t T oom o
TSS, Brix% & Eziilcf& Kernel 5 0.93 0.42 0.47 36 113 0.58
SVM 5 0.93 0.37 0.43 4.0 1.16 0.67
e Green | PLS 5 0.93 0.42 0.46 36 111 071
DM, % e roits PR 4 0.84 0.65 0.67 25 1.02 033
coren Kernel 5 0.92 0.48 0.49 34 1.01 0.74
SVM 5 0.92 0.39 0.46 37 116 0.67
e B
AAMGI00g & gziig& Kernel 8 0.73 20.3 207 1.9 1.02 051
SVM 8 0.77 14.1 16.1 2.4 1.14 0.77
BerGreen [0 0w a4 s 28 1o 0o
OP,osmolkg & gziilcf& Kernel 5 0.89 420 420 2.9 1.00 0.64
SVM 5 0.90 338 38.8 3.2 115 0.67
PLS 9 0.94 0006 0.007 43 1.16 059

Ever Green
Total Chiorophyll, o %0 PCR 15 0.86 0011 0011 28 1.05 0.43
mg/g Celica Kernel 9 0.91 0.009 0.009 3.4 1.05 0.64
SVM 9 0.95 0006  0.007 45 117 0.60
om FS o 0w b oo i in i
Carotenoid, mg/g &'gziilclg& Kernel 9 092 0008 0010 45 121 0.65
SVM 9 0.94 0007 0.009 5.0 132 0.63
verGreen LS 5 0.62 7.62 8.43 19 111 0.64
Coefficent of elasticity '« "0 PCR 16 0.49 8.71 9.20 18 1.06 033
Compression, N/mm Celica Kernel 5 0.63 9.50 9.72 17 1.02 0.33
SVM 5 0.65 7.20 8.11 2.0 113 0.72
PLS 5 0.61 2.74 3.02 18 1.10 0.73

. L. Ever Green
Coefficient of elasticity & No.117& PCR 16 0.51 3.09 3.24 1.7 1.05 0.38
Rupture, N/mm Celica Kernel 5 0.60 3.29 3.39 1.6 1.03 0.33
SVM 5 0.62 2.66 3.01 18 113 0.70

Overall view of the results shows that the PCR regression needed significantly more PC-s to
build the models. Moreover, this method generally has higher RMSECV. Therefore it is not
suggested for analysis of combined varieties and fused NDT dataset for bell pepper evaluation.

Most of the cases the Kernel and SVM regressions resulted with the most efficient models. In
case of TSS, AA, OP, and Coefficient of elasticity of Compression the SVM gave the highest
SWS scores, 0.67, 0.77, 0.67, and 0.72 respectively. Whereas for DM, total chlorophyll, and
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carotenoid the Kernel method resulted with the highest SWS: 0.74, 0.64, and 0.65, respectively.
PLS gave the highest score in predicting Coefficient of elasticity of Rupture with 0.73 SWS.
Based on the comparison of the single and the combined cultivar models it can be concluded that
the combined variety models have a higher r* and lower ratio of RMSECV to RMSEC, which
makes these models to be more robust and suggest the possibility that they can be applicable for
DT parameter prediction.

Figure 91 and 92 represent the SVM model for predicting ascorbic acid content in the general
model by combined cultivars and fused NDT methods. The figure 91 shows the data with marks
according to the DAA, while figure 92 presents the data according to the cultivar information.
Clearly visible on figure 92 that the higher vitamin C content is predicted in the 5-7" picks which
means 60-74™ DAA. In this maturity state the ‘Ever Green’ and No.117 cultivars has higher

ascorbic acid content in harmony with the results shown in chapter 5.1.4.

160
* o st :
o 2nd Fig. 91 Scatter plot of AA,
g 120; M as predicted by SVM
2 . SIE regression model and as
§ 80 . QE measured in the laboratory.
B o The SVM model was built
< 4 — with the fused NDT data and
2 RA2=0.77 L .
3 LV 8 combination of cultivars.
& RMSEC = 14.09
0 ‘ ‘ ‘ RMSECV = 16.11 Data marked by the DAA.
0 40 80 120 160
160
« Ever Green Fig. 92 Scatter plot of AA,
> * Celi i
S Ni_'f% as predicted by SVM
3 120 111 .
£ — Fit regression model and as
g R'2 =0.77 measured in the laborator
o Lv 8 y.
5 80 = .
S Emgggvi‘}g% The SVM model was built
% with the fused NDT data and
3 “ combination of cultivars.
o
Data marked by the
% 40 80 120 160 cultivars.

Measured Ascorbic Acid, mg/100g
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5.6.3. 3" level fusion: fused NDT parameters correlated with fused DT parameters

on each cultivar separately and on combined cultivar dataset

Up until now in most of the cases the regression models were to predict single DT parameters.
As well as in the literature the prediction is usually concerns on reference parameter. In the fused
evaluation systems for classification of fruits and vegetables the estimation of quality is
conducted by specialist, whose decision is subjective and its repeatability is poor (Steinmetz et
al. 1995). Moreover, such a system is not flexible for change of cultivar; it is applicable only for
the specific cultivar that the fusion process was developed. There is a need for flexible fusion
system which is able to work with several cultivars as well as its reference parameters are
objective in the estimation of quality of the product.

The 3" level of fusion consist the step of fusing the DT quality parameters. In the fusion of DT
parameters PCA was applied, and the 1% PC was taken as new combined quality index (NCQI).
The advantage of PCA is that in the PC it can be eliminated the fact that some DT parameter
might have correlation with each other, and in the same time PC gives the linear combination of
the DT parameters with the highest variation. Scheme of the DT fusion is shown on Fig. 93.
From the predicted NCQI values the DT values can be calculated with by the multiplication of
the inverse matrix of the PCA coefficients. In this way the NCQI can be used in classification
systems as well.

Table 37 shows the result of PLS, PCR, Kernel and SVM regression models for 'Ever Green',
'No, 117" and 'Celica’ cultivars separately, as well as for the combination of the three cultivars.
Efficient models were achieved with the fused DT and fused NDT models for all three cultivars
with high correlation of determination. (SWS indices were calculated for each cultivar separately
as well as separately for the combined varieties.) For 'Ever Green', 'No, 117" cultivars the PLS
regression gave the best models based on the SWS index, whereas for 'Celica’ cultivar the SVM
learning machine resulted with the highest SWS. For the combined cultivar model the SVM
resulted slightly higher SWS than PLS regression. Altogether it can be concluded that PLS and
SVM methods were found to be most suitable to work with the combined dataset and build

regression models for the fused DT and NDT parameters.
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Fig. 93 Scheme for fusion of DT methods

Table 37 Performance measures of linear and non-linear regression models for NCQI, using
fused dataset. Models for the three pepper varieties are presented: 'Ever Green', 'No, 117" and
'Celica’ and combined cultivar’s of data, respectively.

Cultivar RZ%:?/:?” LV 2 RMSEC RMSECV RPD F;FL\A,\?EECQ/ SWS
Ever Green  PLS 5 095 037 050 29 134 080
PCR 8 092 061 064 23 105 039
Kemel 5 091 052 068 22 130 029
SVM 5 095 036 052 28 143 071
No.117 PLS 8 097 030 043 34 145 082
PCR 12 094 051 057 26 111 038
Kemel 8 094 041 060 25 144 031
SVM 8 096 028 044 33 160 073
Celica PLS 6 097 034 045 32 135 053
PCR 11 095 049 053 28 108 032
Kemel 6 095 047 051 29 109 046
SVM 6 097 027 037 39 139 077
v Gren | PLS 8 095 047 055 27 115 086
e o1y PCR 10 08 073 075 20 103 028
o oo, Kemel 8 092 040 066 22 163 048
SVM 8 095 044 054 27 122 087

The best models were depicted in figures 94-97 in scatter plots for ‘Ever Green’, ‘No.117” and
‘Celica’ cultivars and for the combined varieties, respectively.

Based on the models built for the prediction of NCQlI, it was found that the NCQI has negative
values when the pepper fruit is still under reaching the physiological development stage (below
60" DAA). Below the 60" DAA the pepper fruit did not reach its maximum size and did not
accumulate the optimal amount of internal components like: soluble solid, carotenoid or ascorbic

acid. Therefore harvest time is not suggested when the NCQI is taking negative value.
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Fig 94 Scatter plot of
NCQI, as predicted by
PLS regression model.
The PLS model was built
with the fused DT and
NDT data and ‘Ever
Green’ cultivar. Data
marked by the harvest
schedule.

Fig 95 Scatter plot of
NCQI, as predicted by
PLS regression model.
The PLS model was built
with the fused DT and
NDT data and ‘No.117’
cultivar. Data marked by
the harvest schedule.

Fig 96 Scatter plot of
NCQI, as predicted by
SVM regression model.
The SVM model was
built with the fused DT
and NDT data and

‘Celica’ cultivar. Data
marked by the harvest

schedule.
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Fig 97 Scatter plot of
« Ever Green NCQI, as predicted by
» Celica :
5 No117 SVM regression model.
2 _;“1 The SVM model was
£ built with the fused DT
]
a and NDT data and
R%=0.95 o _
LV 8 combination of cultivars.
RMSEC = 0.44
RMSECV = 0.54 Data marked by the
cultivars.

Measured NCQI

Since the hyperspectral imaging is still considered to be quite expensive measurement method to
consider its application for on-line sorting lines, therefore it was desirable to evaluate the fusion
models with exclusion of this method. Table 38 presents comparison of the models with and
without the hyperspectral imaging data. The models were built only with PLS and SVM
regression since these two methods showed the best results for the prediction of NCQI. Based on
the SWS scores PLS resulted with slightly better models. By excluding the hyperspectral data the
SWS index decreases, but the PLS model is still predicting the NCQI index with a high r?: 0.94,
low RMSECV: 0.58 and low RMSECV/RMSEC: 1.15. PLS prediction and measured NCQI
values is shown in the scatter plot on Figs. 98. VIP scores are shown on Fig. 99. The VIP score
being above 1 indicates that the particular component significantly participating in the model.
List of components can be found in the Appendix 9.2.3. The most significantly participating
components are the first LV-s from the osmotic potential (SWIR), carotenoid (SWIR), rupture
(SWIR) and compression (VIS-NIR) models, the h, SAM (USB) and quality point (USB) values,

and the rate of relaxation.

Table 38 Performance measures of the PLS and SVM models for predicting NCQI, for the
combined cultivars by fused NDT with and without the Hyperspectral imaging data.
RMSECV/

Regression

2

NCQI Data Method LV r RMSEC RMSECV  RPD Rvsee | SWS
PLS 8 0.94 0.475 0.545 2.7 1.15 0.53

AIINDT
Ever Green & SVM 8 0.95 0.438 0.536 2.7 1.22 0.41

No.117 & .

Celica  NDTwithout  pig 8 0.94 0.505 0.580 2.5 1.15 0.44

Hyperspectral
imaging SVM 8 0.94 0.504 0.580 2.5 1.15 0.43
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Fig. 98 Scatter plot of NCQI, as predicted by PLS regression model. The PLS model was built

with the fused DT and NDT data (without hyperspectral imaging) and combination of cultivars.
Data marked by harvest schedule.
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Fig. 98 VIP scores of the model depicted on Fig. 92.

It is generally desired to test the model applicability. Therefore the combined (three cultivars)
dataset (540 samples) was divided randomly to a calibration set (300 samples) and a validation
dataset (240 samples). PLS and SVM regression models were built and the models were applied
on the validation set. The results are shown in Figures 100-101. Both PLS and SVM resulted
with efficient models. Based on the calculated SWS indices the PLS model found to be slightly
better than the SVM, with SWS values of 0.81 and 0.71, respectively.
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Fig. 100 Scatter plot of NCQI, as predicted by PLS regression model. The PLS model was built
with the fused DT and NDT data (without hyperspectral imaging) and combination of cultivars.

Data marked by sample participation in calibration or validation (test) set.
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Fig. 101 Scatter plot of NCQI, as predicted by SVM regression model. The SVM model was
built with the fused DT and NDT data (without hyperspectral imaging) and combination of
cultivars. Data marked by sample participation in calibration or validation (test) set.
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6. THESIS’S AND NEW SCIENTIFIC FINDINGS

During my doctorate research | followed and examined the growth and maturation of three

cultivars of different final colour bell peppers: ‘Ever Green’ (green), ‘No.117’ (yellow) and

‘Celica’ (red). The bell pepper plants were grown on soil with drip irrigation in Ein Tamar, Israel

in protected greenhouses. Plants were irrigated 3 times a day, with 5 m® solution contains 10 |

fertilizer (7 % Nitrogen, 3% Phosphorus, and 7% Potassium). The changes occurring during

maturation was followed by destructive and non-destructive methods and data were analysed by

chemometric procedures.

1.

| developed the standardized weighted sum index (SWS) for the evaluation and
comparison of regression models. SWS index takes into account several parameters from
the regression model, such as the latent variables, the correlation coefficient, the
RMSEC, RMSECYV, the ratio of RMSECV and RMSEC, and the RPD. Therefore it gives
a more general and objective evaluation of the regression model about its goodness or
robustness.
| established non-destructive measurement method of ascorbic acid, total chlorophyll and
carotenoid content in the three measured bell pepper cultivars. | built efficient PLS
prediction models by means of spectral measurements of VIS-NIR, SWIR spectral data
and hyperspectral imaging for the estimation of ascorbic acid, total chlorophyll,
carotenoid content for all three studied bell pepper cultivars. 1 found that VIS-NIR
spectral measurement resulted with the best prediction models for ascorbic acid content,
while hyperspectral imaging found to be the most efficient for total chlorophyll and
carotenoid content estimation. The best model for vitamin C prediction had r% 0.78 and
RMSECV: 15.1 mg/100g. The best model for prediction of total chlorophyll had r?: 0.95
and RMSECV: 0.005 mg/g; for carotenoid content r* was 0.97 and RMSECV: 0.008
mg/g.
I found that fused non-destructive measurement data (NDT) with chemometric
procedures are capable for the prediction of internal components (TSS, DM, OP, vitamin
C, chlorophyll, carotenoid) and texture (coefficient of elasticity of compression and
rupture) (DT).

Comparing the single sensor PLS models to the multisensor PLS models the fused
NDT data in each DT prediction resulted with higher SWS indices. | found that fused
models are predicting the DT parameters with similar or lower number of latent variables;

they have generally higher correlation of determination as well as lower RMSECV.
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Therefore the fusion of the NDT parameters found to be efficient and beneficial for the
prediction of DT quality parameters in the examined three bell pepper cultivars.

I developed linear and non-linear (PLS, PCR, Kernel, SVM) regression models using
fused NDT dataset for the prediction of DT parameters. | found that comparing the
different chemometric procedures - based on the SWS index - PLS and SVM models
were the most suitable to predict DT quality parameters from the fused NDT
measurements in the examined three bell pepper cultivars.

Prediction model was developed which combines the three bell pepper cultivars. The
linear and non-linear (PLS, PCR, Kernel, SVM) prediction models were built with the
fused NDT dataset. | found that Kernel and SVM models resulted with the most efficient
models. In case of TSS, AA, OP, and coefficient of elasticity of compression SVM
regression gave the highest SWS scores (0.67-0.77). Whereas for DM, total chlorophyll,
and carotenoid Kernel method resulted with the highest SWS: 0.64-0.74.

| developed a new quality index NCQI in order to establish a way to evaluate the global
quality of bell pepper. NCQI was created by the fusion of TSS, DM, OP, AA, total
chlorophyll, carotenoid content, coefficient of elasticity of compression, and coefficient
of elasticity of rupture variables. NCQI is the first principal component of the DT
variables.

| developed PLS, PCR, Kernel and SVM regression models for the prediction of NCQI
by the fused NDT parameter for ‘Ever Green’, ‘No.117°,’Celica’ and for the total data of
the three cultivars. Efficient models were achieved with the fused DT and fused NDT
models for all three cultivars with high correlation of determination (0.89-0.97). Based on
the SWS scores | found PLS and SVM methods to be most suitable to work with the
combined dataset and build regression models for the fused DT and NDT parameters.
Harvest time is not suggested when the NCQI is taking negative value. Based on the
models built for the prediction of NCQI, it was found that the NCQI has negative values
when the pepper fruit is still in the physiological development stage (below 60™ DAA in
the present study). Below the 60™ DAA the pepper fruit did not reach its maximum size
and did not accumulate the optimal amount of internal components like: soluble solid,

carotenoid or ascorbic acid in case of the three examined bell pepper cultivar.
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7. RECOMMENDATION FOR FURTHER RESEARCH

Further research work should be considered as a continuation of the present study.

® For better understanding and evaluation of the physiological changes in the whole pepper
fruit during growth and maturation | suggest the in depth examination of the
hyperspectral images in the VIS-NIR and SWIR spectral range.

® | suggest the examinations to be conducted in consecutive seasons with higher number of
samples in order to validate the established models; make it applicable without depending
on the seasons. Moreover, to examine several cultivars with differing shape, colour and
growing condition in order to develop more robust regression models.

® | suggest examining the behaviour of the NCQI during storage and shelf life of the
product. Moreover, to find the NCQI value which can indicate the critical condition of
the fruit when it cannot be stored longer without quality degradation.

® | suggest including the shape and defect monitoring of the agricultural produce to be
integrated to the non-destructive measurement methods and to the fusion.

® | suggest extending the fusion of the NDT and DT parameters for other agricultural
products.

® | suggest to examine different combinations of sensors to be fused in order to find the
most efficient and economical solution, which can be efficiently integrated into sorting
and classification lines.

® For the purpose of proper harvest time estimation for farmers | suggest the development

of a portable device for field application.

123



8. SUMMARY

Export and local market both demands high quality sorted fruits and vegetables, which long
preserves its fresh condition on the market. Agricultural products’ inner content and outer
properties continues to change after harvesting, therefore it is crucial to determine the optimal
harvest time properly. If the time of the harvest is not properly determined than it might
negatively influences the quality of the product. It is important to find solution for growers and
packers for rapid, objective and non-destructive evaluation methods for the determination of
pepper quality change during growth, maturation and in the process of sorting and classification.
The main objective of the present study is to explore the relationship between several non-
destructive testing methods and the state of maturity, inner composition, textural, and
physiological parameters (DT parameters). Moreover, to develop a rapid reliable non-destructive
cost effective system to measure quality index of bell pepper.

The present study examined the changes in the course of growth and maturation of intact bell
pepper fruits. Three different cultivars were examined: ‘Ever Green’ (green cv.), ‘No.117’
(yellow cv.) and ‘Celica’ (red cv.).

During the growth and maturation the following destructive quality parameters were followed:
total soluble solid, dry matter, ascorbic acid, osmotic potential, total chlorophyll and carotenoid
content, coefficient of elasticity of compression and rupture tests. From the non-destructive
methods the following were used to acquire information of the fruit: ultrasonic test, colour
measurement, relaxation test, VIS-NIR (477-950 nm) and SWIR (850-1888 nm) spectral
measurements and hyperspectral imaging (550-850 nm).

Sigmoid shape trend was found in case of TSS, DM and OP change with the advancement of
DAA. The highest TSS, DM and OP contents were achieved by the ‘No.117” yellow cultivar at
the fully matured stage, whereas ‘Ever Green’ cultivar accumulated the least of these contents.
Whether this observation is related to the final colour of the fruit or not, is a question requires
further research.

The ascorbic acid content showed a different trend in the examined period of growth. The
ascorbic acid content had increased and reached a maximum at the 67"-74" DAA, than
decreased in case of all three cultivars. The highest AA content was reached by the ‘Ever Green’
variety (74™ DAA) while the lowest vitamin C was accumulated by the ‘Celica’ cultivar at the
67" DAA.

Total chlorophyll content in the ‘N0.117” and ‘Celica’ cultivars has a sigmoid decreasing trend

and the concentration of total chlorophyll significantly starts to decrease after the 47" DAA and
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converges to zero. Meanwhile the total chlorophyll content in ‘Ever Green’ cultivar decreases to
a certain extent but at the fully ripe stage its total chlorophyll content still higher than the
‘No0.117” and “Celica’ cultivars in their unripe green stage.

The carotenoid content of the ‘No.117’ and ‘Celica’ cultivars started to increase after the 60"
DAA without stagnation. The same process occurs in case of the ‘Ever Green’ cultivar alike just
with 7 days delay. | found a connection between the drop of total chlorophyll content and
increase of carotenoid content in all three cultivars. The highest carotenoid concentration was
found in the ‘Celica’ cv. followed by the ‘Ever Green’ and least carotenoid was accumulated by
the ‘No.117’ cv..

Standardized weighted sum (SWS) index was developed for evaluation of the regression models.
SWS index is complex number which includes the LV, r’, RMSEC, RMSECV,
RMSECV/RMSEC ratio and RPD. Therefore it provides a more complex description of the
regression model robustness than the RPD index alone.

Efficient prediction models were built for the estimation of TSS, DM, OP, AA, total chlorophyll,
carotenoid content, coefficient of elasticity of compression, and coefficient of elasticity of
rupture destructive parameters by the VIS-NIR, SWIR and hyperspectral imaging.

PLS, PCR, Kernel and SVM regressions resulted with efficient prediction models for TSS, DM,
OP, AA, total chlorophyll, carotenoid content, coefficient of elasticity of compression, and
coefficient of elasticity of rupture by the fused NDT-s. The fused models were found more
efficient than the single sensor models. Comparison of the PLS models of the single and
multisensory models were based on the SWS index. PLS regression models by the fused NDT
parameters achieved significantly lower RMSECYV values than the single sensor models in case
of each variety and each DT parameters. Based on the SWS index it was concluded that the PLS
and the SVM regression models were most suitable to predict DT parameters from the fused
NDT parameters.

PLS, PCR, Kernel and SVM regression models were built for the prediction of the DT
parameters by the fused NDT parameters for each cultivar separately and as well as for the
combination of cultivars. Based on the comparison of the single and the combined cultivar
models that the combined variety models have a higher r? and lower ratio of RMSECV to
RMSEC, which makes these models to be more robust and suggest the possibility that they can
be applicable for DT parameter prediction.

PCR regression needed significantly more PC-s to build the models. Moreover, this method
generally had higher RMSECV. Therefore based on the results of this study it is not suggested
for analysis of combined varieties and fused NDT dataset for bell pepper evaluation. | found the

125



Kernel and SVM regressions resulted with the most efficient models for the combined cultivars
and the fused NDT parameters.

New combined quality index (NCQI) was developed by the fusion of the reference parameters
(DT): TSS, DM, OP, AA, total chlorophyll, carotenoid content, and coefficient of elasticity of
compression and rupture. NCQI was created in order to establish a way to evaluate the global
quality of bell pepper. NCQI is the first principal component of the DT variables.

Prediction models were built for the new combined quality index (NCQI) by the fused NDT
parameter for ‘Ever Green’, ‘No.117’,’Celica’ and for the combination of the three cultivars.
Efficient models were achieved with the fused DT and fused NDT models for all three cultivars
with high correlation of determination. PLS and SVM method found to be most suitable to work
with the combined dataset and build regression models for the fused DT and NDT parameters.
Based on the models built for the prediction of NCQlI, it was found that the NCQI has negative
values when the pepper fruit is still in the physiological development stage (below 60™ DAA in
the present study). Below the 60™ DAA the pepper fruit did not reach its maximum size and did
not accumulate the optimal amount of internal components like: soluble solid, carotenoid or
ascorbic acid in case of the three examined bell pepper cultivar. Therefore harvest time is not
suggested when the NCQI is taking negative value.

For economical considerations fusion models were evaluated with the exclusion of the
hyperspectral imaging on the combined cultivar dataset. By excluding the hyperspectral data
SWS index decreased, but the PLS model still predicted the NCQI index with high correlation of
determination and low RMSECV. For the evaluation of the applicability of this model the dataset
was divided to calibration and validation sets. As a result efficient validation was achieved with
high correlation of determination with low RMSEP.
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9.2. Appendix
9.2.1. Preliminary experiment

The preliminary experiments were carried out during March-May 2009 on fruits taken from 2
greenhouses of ‘Vergasa’ (red) and ‘Ever Green’ (green) cultivars. Fruits were picked seven
times in succession in the course of the growing period, from the sixth week after flowering until
full ripening. Each picked batch contained 50 fruits. Shortly after picking, each fruit was
weighed and its colour was measured by colorimeter. At this point, 25 fruits were subjected to
NDT testing followed by the reference measurements. The remaining 25 fruits were stored at 7
°C and 80% humidity for 14 days, and then moved to shelf-life conditions (20 °C, 50-60%
humidity) for 3 days. After that, the fruits were examined in the same manner as described
above. On each fruit, one surface was chosen where the batteries of tests were carried out.

NDT tests:

e VIS-NIR spectrometry (same as chapter 4.2.2.)

e SWIR spectrometry (same as chapter 4.2.2.)

e Hyperspectral imaging (same as chapter 4.2.3. except that the hyperspectral images were
taken from several fruits in the same time)

e ultrasound attenuation (same as chapter 4.2.4.)

e acoustic response (according to Felféldi, 1996)

e colorimetry (same as chapter 4.2.1.)

e relaxation test: based on the modeling of pressure gage (Ben-Yehoshua et al., 1983),
same as chapter 4.2.5.

DT reference tests

e pressure gage on whole fruit: according to Ben-Yehoshua et al. (1983)
e puncture test on pepper disk (same as chapter 4.3.1.)

e compression of pepper disk (same as chapter 4.3.2.)

o total soluble solids (same as chapter 4.3.4.)

e dry weight (same as chapter 4.3.3.)

e ascorbic acid (same as chapter 4.3.5.).

Results from the NDT and DT tests were analyzed by chemometric procedures: partial least
squares regression (PLSR), PCR software was used for model development. Evaluating the
spectral data; comparisons were made among the PLS regression analysis of the reflectance
spectra (R), and the pre-processed spectra’s such as the first derivative of R (D:R), log (1/R),
D:log(1/R) and D,log(1/R). Correlation tests were carried out by SAS software using Spearman
Correlation procedure.

Part of the results were presented at the International Conferences in Agricultural Engineering,
Synergy and Technical Development 2009, G6dolld (Ignat et al., 2009).
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Results related to the relaxation tests:

Based on the strong relationship between the results of the pressure gage and the result of the
relaxation test (r*:0.92 for *Ever Green® and r*:0.91 for Vergasa’ cultivars) in the second series of
experiments in 2009 winter season only the relaxation test was performed.
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9.2.2. Pairwise Comaprison Method

The pairwise comparison method was developed by Saaty (1980). This method involves pairwise
comparisons to create a ratio matrix. It takes as an input the pairwise comparisons and produces
the relative weights as output. Specifically, the weights are determined by normalizing the
eigenvector associated with the maximum eigenvalue of the (reciprocal) ratio matrix.

Comparison of models based on the r?, LV, RMSEC, RMSECV, RMSECV/RMSEC and RPD. It
requires assessing the relative importance of the six criteria. This can be done by the pairwise
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comparison method. The procedure consists of three major steps: generation of the pairwise
comparison matrix, the criterion weights computation, and the consistency ratio estimation.

a. Development of the pairwise comparison matrix. The method employs an underlying
scale with values from 1 to 9 to rate the relative preferences for two criteria (Table 1).

Table 1 Scale of pairwise comparison

Intensity of importance  Definition
1 Equal importance
Equal to moderate importance
Moderate importance
Moderate to strong importance
Strong importance
Strong to very strong importance
Very strong importance
Very strong to extremely strong importance
Extreme importance

© 00 N o O b W DN

First step: the specialist (expert in chemometric procedures) sorts the criterions based on their
importance by his/her opinion. Secondly as an example, suppose that the RMSECV is
moderately to strongly preferred over the r® attribute. This is a numerical score of 4. Further,
suppose that the RMSECV/RMSEC is strongly preferred to RPD. This is a numerical score of 5.
All these scores are placed in the upper right corner of the pairwise comparison matrix (Table 2).

Table 2 Pairwise comparison of the evaluation criteria

Criterion RMSECV| RIIQVII\iSEISC\Z// LV r? RPD | RMSEC
RMSECV 1 2 3 4 5 6
RMSECV/RMSEC 12 1 3 4 5 6
LV 1/3 1/3 1 3 4 5
r? 14 1/4 1/3 1 4 5
RPD 1/5 1/5 1/4 1/4 1 4
RMSEC 1/6 1/6 1/5 1/5 1/4 1

From these information the remaining of the matrix can be determined. First we make the
assumption that the comparison matrix is reciprocal; that is, if criterion A is twice as preferred to
criterion B, we can conclude that criterion B is preferred only one-half as much as criterion A.
Thus, if criterion A receives a score of 2 relative to criterion B, criterion B should receive a score
of ¥2 when compared to criterion A. The same logic can be used to complete the lower left side of
the matrix. Remains to enter shores to the diagonal from the left upper corner to the right lower
corner. Observation is made that when comparing anything to itself, the evaluation scale must be
1, representing equally preferred criteria. Thus, 1s can be placed in the main diagonal of the
matrix.

b. Computation of the criterion weights. Sum the values in each column of the pairwise
comparison matrix. Then, divide each element in the matrix by its column total (the resulting
matrix is referred to as the normalized pairwise comparison matrix). Finally compute the average
of the elements in each row of the normalized matrix. These averages provide an estimate of the
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relative weights of the criteria being compared (Table 3). Using this method, the weights are
interpreted as the average of all possible ways of comparing the criteria.

Table 3 Determining the relative criteria weights

Criterion RMSECV F;F';",\i'szgg LV P RPD | RMSEC
RMSECV 1 2 3 4 5 6
RMSECV/IRMSEC| 172 1 3 4 5 6
LV 13 13 1 3 4 5
P2 U4 14 13 1 4 5
RPD 1/5 1/5 14 14 1 4
RMSEC 1/6 1/6 15 15 14 1
SUM 2.45 3.95 7.78 12.45 [ 19.25 27
Criterion RMSECV RF'{V'J'SEEC\:” LV P RPD | RMSEC | Weight
RMSECV 0.41 0.51 0.39 0.32 0.26 0.22 0.35
RMSECV/RMSEC|  0.20 0.25 0.39 0.32 0.26 0.22 0.27
LV 0.14 0.08 0.13 0.24 0.21 0.19 0.16
P 0.10 0.06 0.04 0.08 0.21 0.19 0.11
RPD 0.08 0.05 0.03 0.02 0.05 0.15 0.06
RMSEC 0.07 0.04 0.03 0.02 0.01 0.04 0.03
SUM 1 1 1 1 1 1 1
C. Estimation of the consistency ratio. It means to determine whether the comparisons are

consistent or not. First determine the weighted sum vector by multiplying the weight for the first
criterion times the first column of the original pairwise comparison matrix, then multiply the
second weight times the second column of the original pairwise matrix, finally, sum these values
over the rows. After that determine the consistency vector by dividing the weighted sum vector
by the criterion weights determined previously (Table 4).

Table 4 Determining the consistency ratio.

Consistency
Criterion | RMSECV RMSECV/ LV r RPD RMSEC Sum vector: Row
RMSEC .

Sum/ Weight

RMSECV | (0.35)1) | (0.7 | (1.05@3) | 14)@) | @75)(6) | (2.1)6) 7.36 |7.36/0.35=6.75

RMSECV/ (0.14)(0.5) | (0.27)(1) | (0.82)(3) 1.4 (1.37)(5) | (1.65)(6) 5.35 |5.35/0.27=6.99
RMSEC

Lv (0.05)(0.33) [(0.05)(0.33)| (0.16)(1) | (0.49)(3) | (0.66)(4) | (0.82)(5) 2.24 | 2.24/0.16=6.94

r? (0.03)(0.25) [(0.03)(0.25)| (0.04)(0.3) | (0.11)(1) | (0.45)(4) | (0.57)(5) 1.23 | 1.23/0.11=6.6

RPD (0.01)(0.2) | (0.01)(0.2) | (0.02)(0.25) | (0.02)(0.25) | (0.06)(1) | (0.26)(4) 0.38 |0.38/0.06=6.13

RMSEC | (0.0)(0.17) | 0.01(0.17)| (0.0)(0.2) | 01)02) |001)025)| (003(w) | 0067 | 0700362
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Determination of lambda (): The average value of the consistency vector.
A=(6.75+6.99+6.94+6.6+6.13+6.22)/6=6.61

Determination of consistency index (CI): The calculation of CI is based on the observation that A
is always greater than or equal to the number of criteria under consideration (n) for positive,
reciprocal matrixes, and A=n if the pairwise comparison matrix is a consistent matrix.
Accordingly, A-n can be considered as a measure of the degree of inconsistency. This measure
can be normalized as follows:

Cl=(A-n)/(n-1)
CI=(6.61-6)/(6-1)=0.121

The CI term, referred to as the consistency index, provides a measure of departure from
consistency. Further, the consistency ratio (CR) can be calculated, as follows:

CR=CI/RI

where, RI is the random index, the consistency index of the randomly generated pairwise
comparison matrix. It can be shown that RI depends on the number of elements being compared.
The CR is design in such a way that if CR<=0.1, the ratio indicates a reasonable level of
consistency in the pairwise comparisons; if, however, CR>=0.1, the values of the ratio are
indicative of inconsistent judgments. In such case one should reconsider and revise the original
values in the pairwise comparison matrix.

CR=0.121/1.24=0.098

Since 0.098<0.1, the ratio indicates a reasonable level of consistency in the pairwise comparison.
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9.2.3. List of fused NDT variables

Number Parameter Number Parameter
1 Rate of Relaxation 58 PC2 MSC SNIR log(1/R)
2 Remaining Deformation 59 PC2 NORM SNIRR
3 Coefficient of elasticity of Relaxation 60 PC2 NORM SNIR log(1/R)
4 L 61 PC2 SNV Hyper R
5 C 62 PC2 SNV Hyper log(1/R)
6 h 63 PC2 MSC Hyper R
7 Ultrasonic attenuation 64 PC2 MSC Hyper log(1/R)
8 SAM degree Hyperspectral imaging 65 PC2 NORM Hyper R
9 SAM degree USB R 66 PC2 NORM Hyper log(1/R)
10 | SAM degree USB log(1/R) 67 LV1 USB TSS
11 SAM degree SNIR R 68 LV2 USB TSS
12 SAM degree SNIR log(1/R) 69 LV1Hyper TSS
13 Dabs SNV USB R 70 LV2Hyper TS
14 Dabs SNV USB log(1/R) 71 LV1 SWIR TSS
15 Dabs MSC USB R 72 LV2 SWIR TSS
16 Dabs MSC USB log(1/R) 73 LV1 USBDM
17 Dabs NORM USB R 74 LV2 USBDM
18 Dabs NORM USB log(1/R) 75 LV1 Hyper DM
19 Dabs SNV SNIR R 76 LV2 Hyper DM
20 Dabs SNV SNIR log(1/R) 77 LV1 SWIR DM
21 Dabs MSC SNIR R 78 LV2 SWIR DM
22 Dabs MSC SNIR log(1/R) 79 LV1 USB AA
23 Dabs NORM SNIRR 80 LV2 USB AA
24 Dabs NORM SNIR log(1/R) 81 LV1 Hyper AA
25 Dabs SNV Hyper R 82 LV2 Hyper AA
26 Dabs SNV Hyper log(1/R) 83 LV1 SWIR AA
27 Dabs MSC Hyper R 84 LV2 SWIR AA
28 Dabs MSC Hyper log(1/R) 85 LV1 USB OP
29 Dabs NORM Hyper R 86 LV2 USB OP
30 Dabs NORM Hyper log(1/R) 87 LV1 Hyper OP
31 PC1 SNV USB R 88 LV2 Hyper OP
32 PC1 SNV USB log(1/R) 89 LV1 SWIR OP
33 PC1 MSC USBR 90 LV2 SWIR OP
34 PC1 MSC USB log(1/R) 91 LV1 USB Total Chlorophyll
35 PC1 NORM USB R 92 LV2 USB Total Chlorophyll
36 PC1 NORM USB log(1/R) 93 LV1 Hyper Total Chlorophyll
37 PC1 SNV SNIRR 94 LV2 Hyper Total Chlorophyll
38 PC1 SNV SNIR log(1/R) 95 LV1 SWIR Total Chlorophyll
39 PC1 MSC SNIRR 96 LV2 SWIR Total Chlorophyll
40 PC1 MSC SNIR log(1/R) 97 LV1 USB Carotenoid
41 PC1 NORM SNIRR 98 LV2 USB Carotenoid
42 PC1 NORM SNIR log(1/R) 99 LV1 Hyper Carotenoid
43 PC1 SNV Hyper R 100 LV2 Hyper Carotenoid
44 PC1 SNV Hyper log(1/R) 101 LV1 SWIR Carotenoid
45 PC1 MSC Hyper R 102 LV2 SWIR Carotenoid
46 PC1 MSC Hyper log(1/R) 103 LV1 USB Coefficient of elasticity of Compression
47 PC1 NORM Hyper R 104 LV2 USB Coefficient of elasticity of Compression
48 PC1 NORM Hyper log(1/R) 105 LV1 Hyper Coefficient of elasticity of Compression
49 PC2 SNV USB R 106 LV2 Hyper Coefficient of elasticity of Compression
50 PC2 SNV USB log(1/R) 107 LV1 SWIR Coefficient of elasticity of Compression
51 PC2 MSC USB R 108 LV2 SWIR Coefficient of elasticity of Compression
52 PC2 MSC USB log(1/R) 109 LV1 USB Coefficient of elasticity of Rupture
53 PC2 NORM USB R 110 LV2 USB Coefficient of elasticity of Rupture
54 PC2 NORM USB log(1/R) 111 LV1 Hyper Coefficient of elasticity of Rupture
55 PC2 SNV SNIRR 112 LV2 Hyper Coefficient of elasticity of Rupture
56 PC2 SNV SNIR log(1/R) 113 LV1 SWIR Coefficient of elasticity of Rupture
57 PC2 MSC SNIRR 114 LV2 SWIR Coefficient of elasticity of Rupture
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