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1. INTRODUCTION 

Export and local market both demands high quality sorted fruits and vegetables, which long 

preserves its fresh condition on the market. Additionally, there is an increased demand for fruits 

and vegetables that are beneficial for healthy life style as well as rich in ingredients that 

positively influence the prevention of any health malfunction. 

Since in most of the agricultural products the changes of inner content and outer properties 

continues after harvesting, therefore it is crucial to determine the optimal harvest time properly. 

If the time of the harvest is not properly determined than it might negatively influences the 

quality of the product. It means that some properties either do not reach their optimal level or in 

the overripe stage the valuable components like vitamin C starts to degrade. Moreover, the shelf 

life of the fruit is being shortened due to harvest in the overripe or unripe stage. The 

consequences of being unripe are that the fruit does not get its cultivar specific properties, like 

colour, taste. The consequence of being overripe is that the produce gets soft faster, gets 

wrinkled, and tasteless. 

The quality of the product is determined by the following attributes: colour, shape, size, and 

being without fault, damage or signs of sickness moreover, taste, texture, firmness, weight, 

internal chemical composition. Furthermore the product quality depends on the preferences and 

requirements of the consumers (Abbott, 1999). 

Fresh bell pepper is abundant in valuable nutritional values therefore its popularity increases 

from year to year mainly as freshly consumed vegetable and as ingredient of processed food in 

the cuisine. Peppers are one of the main export produce of Israel and of Hungary among many 

other countries. Several cultivars are grown in Israel mainly in greenhouses or net-houses, in the 

southern part of the country. In Hungary the growth of bell pepper is not significant, more 

popular varieties are the ‗Yellow Wax‘, ‗Kapija‘, ‗Ho F1‘, ‗HRF‘, ‗Pritamin‘ and the 

apple/tomato shaped cultivars. Peppers are mainly grown in greenhouses and open fields. At the 

present practise the harvest schedule is based on appearance and subjective experience of the 

growers. Since the maturity of the harvested pepper affects its final quality therefore there is a 

great importance in the accurate determination of the proper harvest time. Quality of pepper is a 

complex feature it includes among other characteristic parameters of colour (related to 

chlorophyll and carotenoid content), firmness, soluble solid, dry matter, and vitamin C content, 

(Dereje, 2003, Gomez-Ladron and Pardo-Gonzalez, 1996, Zsom-Muha, 2008). Routine 

measurements of these indices are generally destructive, time and labour consuming. 

Harvested peppers need to be sorted and classified based on the requirements of the specific 

market where the product will be later on sent. Most of the cases, mechanical and manual sorting 
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lines are based on external appearance, and lacks the ability to examine essential internal quality 

attributes. 

After considering the above facts I found it important to examine the changes during pepper fruit 

growth in order to develop a non-destructive and objective examination system for the evaluation 

and prediction of quality attributes of bell peppers during maturation. There is an increasing 

demand by both growers and packers for rapid, non-destructive evaluation methods for the 

determination of pepper quality change during growth, maturation and in the process of sorting 

and classification.  
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2. LITERATURE 

Bell peppers are taking a dominant place among the vegetables all over the world. Since its 

dietary value was discovered its place in the daily nutrition is more and more prevailing. 

The world chili and pepper production grew from 20.8 million tons in 2000 to 27.5 million tons 

in 2010 (FAOSTAT, 2012). This fact creates a significant economic drive for more efficient 

production. The health related attributes of the bell peppers together with the healthy nutrition 

trend of the last decade creates increasing demand all over the world. More efficient production 

of the bell peppers will generate significant extra income for growers and packing houses. 

2.1. Bell pepper biological attributes 

Bell pepper is a cultivar group of the Capsicum annuum species, member of the nightshade 

Solenaceae family, which also includes potato, tomato and eggplant. Pepper plant demands 

warm weather, sunshine and plentiful irrigation. 

Bell peppers originated in Mexico, Central America and northern South America. Pepper seeds 

were later carried to Spain (1493) and throughout the world. Due to the fact that bell peppers are 

very adaptable plants, being able to be grown in tropical and temperature climates, their 

cultivation and adoption into varying cuisines spread rapidly throughout many parts of the world. 

In the Capsicum annuum species there are many different varieties from the wild chilli to the 

sweet consumer types. Among all the cultivars the spice paprika and the sweet fresh consumer 

varieties gained distinguished importance. Cultivars of the fresh consumer pepper produce 

cultivated in different colours, size and shape (Fig. 1). The produce of the pepper plant is a 

puffed berry with hollow inside. The shape of the fruit can be round, flattened round, puffed 

prism, peaked, and crumpled inside or long thin. The colour of the pepper fruit also can vary 

greatly: green, yellow, red, orange, purple, white and the pale or transition of the previously 

mentioned colours. The size of the produce varies from 1 cm to 25 cm. Bell peppers have a 

delightful, slightly watery crunch. Green and purple peppers have a slightly bitter flavour, while 

the red, orange and yellow are sweeter and almost fruity (Fig. 2). 
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Fig. 1 Different cultivars of pepper Fig. 2 Bell pepper of different colours  

 

Sweet peppers are plump, bell-shaped vegetables featuring either three or four lobes. They 

usually range in size from 5 to 13 centimetres in diameter, and 5 to 16 centimetres in length. 

Inside the thick flesh is an inner cavity with edible bitter seeds and a white spongy core. Bell 

pepper is an excellent source of vitamin C and natural antioxidants (Salunkhe, 1976). As it is 

shown in Table 1, 100 g of bell pepper contains 213% of the reference daily intake (RDA) of 

vitamin C, and 101% of vitamin A. It has high nutritional value, as well as popularity with 

regard to taste and colour (Frank et al., 2001). The level of ascorbic acid in peppers can vary 

according to cultivar, stage of maturity, growing conditions (Serrano et al., 2010, Perez-Lopez et 

al., 2007) and postharvest handling (Sakaldas and Kaynas, 2010, Lee and Kader, 2000). These 

antioxidants work together to effectively neutralize free radicals, which can travel through the 

body causing huge amounts of damage to cells (Knekt et al., 2002). Additionally, peppers are 

remarkable vegetables because of their significant provitamin A concentration, through its 

concentration of carotenoids such as beta-carotene (Duthie and Crozier, 2000; Pietta 2000). Red 

pepper is one of the few foods that contain lycopene, a carotenoid whose consumption has been 

inversely correlated with cancer. Consumption of vitamin C, beta-carotene, and folic acid, all 

found in bell peppers, is associated with a significantly reduced risk of cancer (Mateljan, 2007). 

Moreover, it is important to mention the high importance of chlorophyll concentration in pepper, 

especially in the new cultivar of ‗Ever Green‘ which remains green coloured even in the fully 

ripe stage. Relevant studies have shown that chlorophyllin a food-grade derivative and structural 

analogue of chlorophyll strongly inhibits aflatoxin B1 (AFB1)-DNA damage and 

hepatocarcinogenesis in the rainbow trout therefore has anti-carcinogenic properties (Breinholt et 

al., 1995, Simonicha et al., 2008). 
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Table 1 Nutritional values of red bell pepper 

 

 

As the fruit development advances the pepper fruit changes its size, colour, firmness, texture and 

internal composition. The cultivar specific colour (red, yellow, orange) develops only at the last 

stage of the maturation. All the previously mentioned parameters are cultivar specific. For each 

variety the rate of change of these values are different, therefore the discernment of proper 

harvest time is a complex issue. Generally the decision of the harvest time is based on the 

experience of growers. 

Bell pepper belongs to the group of non-climacteric agricultural products, which means that the 

changes occurring after harvest is greatly depend on the state of harvest and post-harvest 

conditions (Almási et al., 1977). 

Today bell pepper is grown in a wide range of climates mainly as an annual crop both in open 

fields and protected structures. The production of bell and chilli peppers in Israel was 134,700 

tons in 2000 and grew to 294,300 tons in 2010, while the exported quantity of bell and chilli 

peppers in Israel was 20,519 tons in 2000 it grew to be 89,893 tons in the year of 2009. Data 

Principle Nutrient Value Percentage of RDA

Energy 31 Kcal 1.50%

Carbohydrates 6.03 g 4%

Protein 0.99 g 2%

Total Fat 0.30 g 1%

Cholesterol 0 mg 0%

Dietary Fiber 2.1 g 5.50%

Vitamins:

Folates 46 mcg 12%

Niacin 0.979 mg 6%

Pyridoxine 0.291 mg 22%

Riboflavin 0.085 mg 6.50%

Thiamin 0.054 mg 4.50%

Vitamin A 3131 IU 101%

Vitamin C 127.7 mg 213%

Vitamin E 1.58 mg 11%

Vitamin K 4.9 mcg 4%

Electrolytes:

Sodium 4 mg <1%

Potassium 211 mg 4.50%

Minerals:

Calcium 7 mg 1%

Copper 0.017 mg 2%

Iron 0.43 mg 5%

Magnesium 12 mg 3%

Manganese 0.112 mg 5%

Phosphorus 26 mg 4%

Selenium 0.1 mcg <1%

Zinc 0.25 mg 2%

Phyto-nutrients:

Carotene-ß 1624 mcg --

Carotene-α 20 mcg --

Cryptoxanthin-ß 490 mcg --

Lutein-zeaxanthin 51 mcg --

Bell peppers (Capsicum annuum var annuum), red, raw, Nutrition value 

per 100 g (Source: USDA National Nutrient data base)
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source shows that the harvested area in Israel tripled within the period of 2000-2010. Israel is 

taking the 17
th

 rank in the worldwide chilli and pepper production (FAOSTAT, 2012).  Export 

markets show increasing demands for high-quality sorted fruits and vegetables, and the revenue 

from such high-quality products is much higher than the average income. 

2.2 Pepper fruit development 

Several features describe the development of pepper fruit. In the following lines these features 

will be detailed. 

One of the features of fruit ripening is the change in colour; it is a consequence of chlorophyll 

disappearance, when the reddish/yellowish colouration due to carotenoids becomes perceptible. 

The green colour due to chlorophyll and carotenoids such as lutein disappear with the synthesis 

of chromoplast pigments (Hornero-Mendez and Minguez-Mosquera, 2000). During fruit 

ripening, chromoplast differentiation, from either chloroplasts or protoplasts, is very often 

accompanied by carotenogenesis, a de novo carotenoid biosynthesis that increases and even 

changes the intensity and characteristics of the colour in the ripe fruit (Minguez-Mosquera and 

Hornero-Mendez, 1994) The mechanism of chlorophyll disappearance is complex and still not 

fully understood. It has been established that the chlorophyll degradation pathway consists of 

three main steps involving three different enzymes, namely chlorophyllase, Mg-dechelatase and 

pheophorbide-a-oxygenase (Vicentiniet al., 1995). During the ripening of pepper fruits, de novo 

synthesis of carotenoid pigments occurs, and some of these (capsanthin and capsorubin) are 

exclusive to this genus (Minguez-Mosquera and Hornero-Mendez, 1994). This process is 

accompanied by a sharp decrease in chlorophylls as a consequence of the degeneration of 

chloroplast into chromoplast. The role of chlorophyllase during this process seems to be 

important: its activity is manifested in the ripening process, perhaps being a triggering or 

modulating factor of the de novo biosynthesis of carotenoid pigments (Hornero-Mendez and 

Minguez-Mosquera, 2002). The increase in activity has been related to senescence and 

maturation (Terpstra and Lambers, 1983). Furthermore the chlorophyll and carotenoids contents 

of pepper can vary in composition and concentration owing to differences in genetics and 

maturation (Markus et al, 1999; Russo & Howard, 2002). 

The longer the fruits are maintained on the plant, the more physiological changes occur causing a 

switch toward senescence, and altered nutritive components. Change in fruit colour is also 

associated with loss of cellular integrity and reduced mobilization of macromolecules through 

the plant (Thimann, 1987). As fruits mature, physiological activity changes, and much of this 

change is regulated by enzymes. Two enzymes associated with fruit maturity in peppers are β-

galactosidase and peroxidase. β-galactosidase in the latter stages of ripening degrades galactose-
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containing cell wall polysaccharides causing the release of free galactose, this activity may lead 

to a loss of cell integrity (Carrington and Pressey, 1996). The amount of nutrients available to 

plants may influence accumulation of compounds in fruit as they remain attached to the plant. 

Concentration of β-galactosidase and peroxidase, accumulating prior to harvest, may affect the 

activity of these compounds after harvest and influence shelf-life and other quality factors. Even 

if the mode of activity is unclear, there is consensus that β-galactosidase and peroxidase have 

roles in the changes occurring in developing pepper fruit (Russo and Biles, 2003).  

Deepa et al. (2007) found a sharp increase in carotenoid content monitored during three maturity 

stages and at the red/yellow stage carotenoid content showed the highest concentration in the 

studied 10 varieties of sweet pepper. Leja et al. (2008) investigated ‗Spartacus‘ sweet pepper 

(Capsicum annuum) cultivar grown in foil tunnel. They harvested the fruits in three maturity 

stages: green, turning and red. The contents of total phenols, total carotenoids and evolution of 

endogenous ethylene were determined. They found during fruit ripening considerable increase in 

carotenoids. The most distinct synthesis of carotenoids was observed when fruits were converted 

to the full maturity stage (red colour). Russo and Howard, (2002) studied how growing 

conditions affect levels of carotenoids in pepper fruits as they mature. Ten pepper cultivars were 

examined, grown in glasshouse and in open field. Levels of total carotenoids in fruits of most 

cultivars were not affected by location of production at the green stage. At the turning stage, as 

well as in the red stage most cultivars had higher levels of total carotenoids if glasshouse grown. 

However, glasshouse production to improve carotenoid content was not universal, as indicated 

by higher levels of capsantin found at the red stage in fruits of field-grown pepper (Anaheim 

type). It is clear that there is no simple conclusion, that can explain the relative amounts and 

changes in carotenoid levels that occur with changes in colour that occur concurrently with 

maturation. The various cultivars exhibit variations in the evolution, distribution and chemistry 

of carotenoids in pepper fruits. Hornero-Mendez and Minguez-Mosquera (2002) suggest that 

carotenoid formation is a normal process, likely a result of senescence, and independent of 

chlorophyll catabolism. 

Although sweet bell pepper (Capsicum annuum L.) is non-climacteric fruit with regard to 

postharvest respiratory pattern, mature-harvested pepper will progress to degrade chlorophyll 

while simultaneously synthesizing a variety of red and yellow carotenoids. Bell pepper is 

increasingly harvested at full colour due to growing consumer demand for peppers with 

improved flavour and nutritional aspects (Frank et al., 2001; Fox et al., 2005). 

Another feature of fruit ripening is the change in soluble carbohydrates (sucrose, fructose, 

glucose).  
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Sucrose, glucose and fructose are the major components of the soluble neutral sugars found in 

pepper fruit (Nielsen et al., 1991). Nielsen et al. (1991) defined that fruit development can be 

divided into three phases: (1) an initial phase with high relative growth rate and hexose 

accumulation, (2) a phase with declining growth rate accumulation of sucrose and starch, and (3) 

a ripening phase with no further fresh weight increase and with accumulation of hexoses, while 

sucrose and starch were degraded. According to Nielsen et al. (1991), the carbohydrate 

metabolism in the growing fruit tissue is important to the partitioning of photosynthetically fixed 

carbon in the plant. Furthermore, the content of different sugars is critical to the quality of the 

fruit for consumption. Pepper fruits are harvested both as unripe and ripe, and the sugar content 

on the fruit tissue depends strongly on the harvest time. According to Nielsen et al. (1991), 

during maturation of the fruits there was a significant accumulation of hexoses. In the ripe fruits 

soluble sugars accounted for 4.4% of the fresh weight, which equaled 40% of the dry matter. 

According to Luning et al. (1994), sweetness in bell pepper appeared to be typical for ripe stages 

and closely related to glucose, fructose, total sugar, and dry matter content. However, sucrose 

was not related to changes in sweetness during maturation. 

The next feature to be detailed is an effective antioxidant, the ascorbic acid. Despite the 

importance of AA, its biosynthetic pathway in different plant parts is not completely understood. 

The natural sugars are considered to be precursors of ascorbic acid, since they produce an 

increase in this acid when administered through the conductive tissues or the roots (Loewus, 

1961). Wheeler and colleagues (1998) proposed the first pathway to gain acceptance. The so-

called ―Smirnoff-Wheeler‖ pathway for AA biosynthesis has as its immediate precursor L-

galactono-1,4-lactone, and the intermediates involved are phosphorylated sugars and nucleotide-

linked sugars. Several studies have confirmed this mechanism (Gatzek et al., 2002). This 

pathway would appear to be the main one for the biosynthesis of AA, but other pathways cannot 

be discarded (Barata-Soares et al., 2004).  

A change in ascorbate metabolism was monitored by Imahori et al. (1998) during maturation of 

sweet pepper (Capsicum annuum L.) fruit. They investigated four stages of maturity, based on 

changes in peel colour from green to yellow; 100% green, 10-20% yellow, 50-60% yellow, 

100% yellow. They found that ascorbate content in sweet pepper fruit increased during 

maturation.  

Deepa et al. (2007) monitored with destructive methods (DICP dye titration) 10 cultivars of 

sweet pepper for the change of ascorbic acid during three maturity stages (defined by changes of 

colour and weight changes). Based on their study, ascorbic acid content declined progressively 

with advancing maturity.  
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Orban et al. (2011) examined the change of vitamin C by destructive Spanyár-method in three 

cultivars of pepper and in 8 different maturity stages (defined by colour changes). Based on their 

results the ascorbic acid accumulation increased until 80% of ripeness then decreased. 

The textural feature of the pepper is influenced by the firmness of the whole fruit and the 

firmness of the fruit flesh. Firmness is one of the important factors determining market quality 

and consumer acceptance of peppers. The outer wall of a pepper covers large locular air spaces 

and is supported by 3 or 4 carpel walls around the equatorial axis. Placental tissue and seeds are 

located in the centre of the fruit and contribute little to the support of the wall.  

A rapid decrease of flesh firmness during fruit ripening has been observed, and it is primarily 

due to changes in cell-wall carbohydrate metabolism that result in a decrease of certain structural 

components of cell wall (Bartley and Knee 1982). Polygalacturonase, pectin methyl esterase, 

beta-galactosidase and cellulase are the major enzymes related to fruit softening (White, 2002).  

Cheng et al. (2008) studied five pepper cultivars with varying degrees in flesh firmness to 

identify biochemical characteristics related to fruit softening. Firmness of fruit flesh (with 

epidermis attached) and flesh (without epidermis) was measured at different developmental 

stages: premature (15–20 days post-anthesis (DPA), stage 1), green mature (commercially ripe, 

30–35 DPA, stage 2), colour turning (fruit becoming 30–40 % red, 40–50 DPA, stage 3), and red 

ripe (fruit totally red, 60–70 DPA, stage 4) with a pressure tester. Firmness with and without the 

epidermis attached changed similarly in all pepper lines during development. Biochemical 

characteristics were measured which included insoluble pectin, soluble pectin, and cellulose 

contents, and the activities of pectin methyl-esterase (PME), polygalacturonase (PG), β-

galactosidase, and cellulase. In all varieties, flesh firmness was highest at stage 3, and then 

decreased during development. Soluble pectin content also increased in all cultivars. Cellulose 

content normally decreased after stage 3, but these changes varied among varieties. With 

ripening PG and PME decreased in the most firm varieties, and cellulose and β-galactosidase 

were the key enzymes involved in the less firm cultivars. The authors concluded that changes of 

fruit firmness were to some extent correlated to the soluble pectin and cellulose content during 

development and ripening. However, the key biochemical characteristics causing fruit firmness 

changes were clearly different among the pepper fruit types.  

Tadesse et al. (2002) measured pepper fruit firmness in different growth stages (1-11 weeks after 

anthesis), using an Effegi penetrometer. Fruit firmness increased with fruit size except that a 

slight reduction occurred in the final two harvests. 
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2.3 Definition of quality and maturity 

Quality according to Kader (1999) or the degree of excellence or superiority of fresh fruits is a 

combination of attributes, properties, or characteristics that give each commodity value in terms 

of human nutrient. The relative importance of each quality component depends upon the 

commodity and its intended use and varies among producers, handlers, and consumers. To 

producers a given commodity must have high yield and good appearance, must be easy to 

harvest, and must withstand long-distance shipping to markets. Appearance quality, firmness, 

and shelf-life are important from the point of view of wholesale and retail marketers. Consumers 

judge quality on the basis of appearance, freshness and firmness. Moreover, consumer‘s 

satisfaction depends on previous experience of flavour during consumption. Consumers are also 

concerned about the nutritional quality, which are not only colourful and flavourful components 

of the diet, but also a good source of energy, vitamins, minerals, dietary fibres and bioactive 

compounds that enhance human health. 

According to Kader (1999) maturity is the stage of development leading to the attainment of 

physiological or horticultural maturity. Physiological maturity is the stage of development when 

a fruit will continue ontogeny even if detached. Horticultural maturity is the stage of 

development when a fruit possesses the prerequisites for utilisation by consumers for a particular 

purpose. Maturity at harvest is the most important factor that determines storage-life and final 

fruit quality. Immature fruits are more subject to shrivelling, mechanical damage, and being 

flavourless. Overripe fruits are likely to become soft and mealy with insipid flavour soon after 

harvest. Any fruit picked either too early or too late in its season is more susceptible to 

physiological disorders and has a shorter storage-life than fruit picked at the proper maturity. 

2.4. Quality requirements of bell pepper 

Consumer interest worldwide in the quality of vegetable products has increased in recent years. 

Product quality is a complex issue. We can find many different way of describing the maturation 

and quality change of the pepper (Dereje, 2003; Gomez-Ladron and Pardo-Gonzalez, 1996; 

Zsom-Muha, 2008; Zsom et al., 2008; Petróczki, 2007; Láng, 1982). Moreover, visual 

characteristics, properties such as texture, the content of minerals and vitamins, flavour and other 

organoleptic characteristics must be considered. In addition, new knowledge shows that 

vegetables are appreciated for their beneficial health effects which underline the importance of 

nutraceutic properties. Recently, consumer demand for these parameters has greatly increased 

together with requirements for a higher content of minerals, vitamins, and bioactive substances 

(Schreiner et al., 2000; Schnitzler and Gruda, 2002). 
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Table 2 Overviews of quality parameters for pepper produce by different measurement methods 

 

 

Quality parameter Measurement method Reference

colour subjective (eyesight) Orban et al. 2011

vitamin C destructive method (modified Spanyár-method)

peroxidase enzime destructive method (DT)

length, diameter, pericarp tickness, weight manual Serrano et al. 2010

colour colourimeter

total acidity DT pH measurement

total antioxidant activity DT laboratory measurement

sugars and organic acids DT laboratory measurement

total carotenoids DT laboratory measurement

firmness DT Texture Analyzer, NDT NIR reflectance Penchaiya, 2009

total soluble solid (TSS) DT refractometer, NDT NIR reflectance

diameter, length, weight, and surface area manual Diaz-Perez et al., 2007

water loss rate gravimetrically 

firmness
using a 1–5 scale (1-spongy soft; 2-soft; 3-firm soft; 

4-moderately firm; 5-firm)

total phenolic compounds DT laboratory measurement Perez-Lopez, 2007

carotenoids DT laboratory measurement

colour Hunterlab Colorflex spectrophotometer

ascorbic acid DT laboratory measurement (HPLC)

size, weight manual Jarrett, 2007

capsaicinoids DT laboratory measurement (HPLC)

sucrose, glucose and fructose DT laboratory measurement (HPLC)

malic acid, and total acide DT laboratory measurement (HPLC)

total soluble solid DT laboratory measurement Martínez et al., 2007

titratable acidity DT laboratory measurement

fat, ash and protein contents DT laboratory measurement

potassium, calcium and sodium DT laboratory measurement

zinc, manganese and copper DT laboratory measurement

firmness maximum rupture force, Instron Raffo et al., 2007

organic acids and ascorbic acid DT laboratory measurement (HPLC)

sugars DT laboratory measurement (HPLC)

carotenoids DT laboratory measurement (HPLC)

phenolic compounds DT laboratory measurement (HPLC)

water content oven-dry Navarro, 2006

carotenoids DT laboratory measurement

antioxidant activity DT laboratory measurement

sugars DT laboratory measurement (HPLC)

ascorbic acid DT laboratory measurement (HPLC)

phenolic acid DT laboratory measurement

firmness impact Ignat et al., 2003b

ascorbic acid DT laboratory measurement Ignat et al., 2003a

firmness impact

firmness impact Tompos et al., 2003

ascorbic acid 2,6-dichlorophenol-indophenol method Niklisa et al., 2002

dry matter oven-dry

total soluble solids refractometer

colour colourimeter

carotenoids DT laboratory measurement (HPLC) Russo & Howard, 2002

weight, volume manual Tadesse et al. 2002

colour colourimeter

firmness Effegi penetrometer

total soluble solid (TSS) refractometer

respiration and ethylene production gas-liquid chromatograph

carotenoids DT laboratory measurement (HPLC)
Hornero-Mendez & Mınguez-

Mosquera, 2000

ascorbic acid DT laboratory measurement (HPLC) Simonne et al. 1997

provitamin A DT laboratory measurement (HPLC)

minerals AOAC methods

chromatic coordinates colourimeter
Gomez-Ladron de Guevara & Pardo-

Gonzalez, 1996

tint DT laboratory measurement

chlorophyll DT laboratory measurement

length, diameter, weight manual Marcelis & Baan Hofman-Eijer, 1995

dry matter oven-dry

weight, length/diameter ratio and the 

percentage of 2-, 3- or 4-lobed fruit 
manual Greber et al., 1988
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In agriculture, quality determination of produce is based on a multitude of features (Dull, 1986): 

flavour (sweetness, acidity); appearance (colour, size, shape, blemishes, glossiness); and texture 

(firmness, mouthfeel). Physical and chemical quality attributes as quality parameters of pepper 

produce were measured by several different parameters as shown in Table 2. 

Generally it can be concluded that most of the examined parameters are related to: dimension 

and weight; to colour, chlorophyll, and carotenoid; to total soluble solid, dry matter or sugars; to 

organic-, ascorbic-, and phenolic acid; and to firmness. Routine measurements for most of these 

indices are generally time and labour consuming. However, measurement of the maturity is 

essential since it affects the final quality of the harvested pepper. Most of the cases the 

determination of harvest schedule, sorting and classification are done by humans, by mechanical 

or manual sorting which is based on external indices and criteria, and lacks the ability to examine 

essential internal quality attribute. Moreover, there is a problem of subjective sorting, the 

inconsistency of humans in the classification and poor repeatability (Steinmetz et al., 1999b). 

A more sufficient non-destructive method is needed to determine the optimum harvest time; to 

sort and to classify. It will certainly grant more consistent quality in bell pepper market and 

technical improvement for the growers and packaging houses. 

2.5. Methods for quality determination of fruits and vegetables 

Determination of agricultural product quality is a continuously developing subject. Especially 

that the requirements of vendors, customers and the volume of production increased 

tremendously in the past decades. Therefore it is a continuous task to improve the quality 

measurement methods in order to achieve higher quality produce from the farmers as well as to 

develop more efficient sorting and classification lines. 

In the following I would like to detail the measurement methods which were used in the present 

study. 

2.5.1. Colour measurements 

The external appearance of fruits, particularly their colour, is of prime importance when 

considering the different attributes which define quality, and destined for fresh consumption. A 

visual impression which does not coincide with the established standard easily leads to refusal. 

Colour is a human perception by definition. The standards for colour spaces representing the 

visible spectrum were established in 1931 by C.I.E. ("Commission Internationale de l'Eclairage", 

which in English is the "International Commission on Illumination"). It was intended to provide 

a standard approximately uniform colour scale. The three curves, x¯, y¯, and z¯, when combined 
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with the input stimulus and integrated, generate three signals that relate closely to perceived 

colour. These signals, called tristimulus values, and denoted as X, Y, and Z, form the basis of 

most popular and useful colour. 

There are two forms of colour measurement devices: those that measure spectral reflectance 

(spectrophotometers) and those that measure only tristimulus values (colorimeters). The main 

difference is that spectrophotometers measure physical properties (spectral reflectance, spectral 

transmittance, and spectral absorptance) from which tristimulus values are calculated. 

Colorimeters typically pass the light through specially designed filters allowing tristimulus 

values to be calculated directly from detector output levels. 

There are many CIE colour spaces, which serve different purposes. They are all "device 

independent", unlike RGB or CMYK colour spaces which are related to a specific device. These 

RGB and CMYK spaces usually do not cover the entire visible colour spectrum. The CIE also 

specify lighting conditions. 

 

Fig. 3 LCH colour space (http://www.colourphil.co.uk/lab_lch_colour_space.html) 

The CIE LCH colour space (applied in the present study) or colour model essentially is in the 

form of a sphere (Fig. 3). There are three axes; L*, C* and H°. The L* axis represents Lightness. 

This is vertical; from 0, which has no lightness (i.e. absolute black), at the bottom; through 50 in 

the middle, to 100 which is maximum lightness (i.e. absolute white) at the top. The C* axis 

represents Chroma or "saturation". This ranges from 0 at the centre of the circle, which is 

completely unsaturated (i.e. a neutral grey, black or white) to 100 or more at the edge of the 

circle for very high Chroma (saturation) or "colour purity". Around the edge of the coloured 

circle can be seen every possible saturated colour, or Hue. This circular axis is known as H° for 

Hue. The units are in the form of degrees (or angles), ranging from 0° (red) through 90° 

(yellow), 180° (green), 270° (blue) and back to 0°. LCH is device-independent. 
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Colour has long been used in the assessment of fruit quality. In fruits, a decrease in chlorophyll 

content is correlated with increasing maturity; this is traditionally used as the criterion for visual 

assessment of fruit maturity (Crisosto et al., 2007). Some fruits have one colour homogeneously 

distributed on the skin surface, and the averaged surface colour is a good quality indicator for 

these fruits. In the early years of application of computer vision to fruit inspection, fruit colour 

assessment relied on grey-scale images captured by monochrome cameras, for instance, for 

classification of oranges in colour classes. This approach is only applicable when the product is 

mono-coloured, and defect detection is not required. Other fruits, like some cultivars of peaches, 

and apples, have a secondary colour that is frequently used as an indicator of maturity, which 

often is not reliable. Produce colour sorting in modern packinghouses is performed using RGB 

colour video-cameras. Each pixel in a colour image consists of three intensity values, since any 

colour can be reproduced by the combination of three primary colour components: blue, green, 

and red. Each of these components: R, G and B, covers a large part of the visible spectrum. The 

techniques require previous and also continuous training to adapt the system to the great colour 

variability present in products like fruits (Blasco et al., 2007; Lleo et al., 2009). Image colour 

accuracy and spatial resolution have been greatly improved in three-chip (CCD, CMOS) cameras 

(Pitre et al., 2010). Three-chip colour cameras use dichroic prisms to direct the light in each of 

the three wavebands. 

Gomez-Ladron de Guevara and Pardo-Gonzalez, (1996) studied the evolution of colour in 13 

paprika pepper varieties by means of Minolta CR-200 colorimeter (CIELAB colour coordinates). 

The authors found that among the CIELAB colour attributes, saturation (S*) is the most 

appropriate for distinguishing the different fruit ripening phases.  

Tadesse et al. (2002) studied the effect of harvesting sweet pepper at different stages of growth 

and development on physicochemical attributes. Colour change (LCH values) of the fruit skin 

was measured at three points on the surface by Minolta Chromameter (CR-100). Hue angle 

declined with time while chroma values increased with fruit maturity. They found that colour 

change and TSS were reasonable indicators of maturity of sweet pepper fruit complemented with 

fruit firmness. 

The evolution of fruit weight, colour, nutritive (sugars and organic acids) and bioactive 

compounds (total phenolics, carotenoids, and ascorbic acid) was evaluated along the growth 

cycle with applied mix of nitrophenolates in the irrigation system by Serrano et al. (2010). 

Colour measurements were conducted by Minolta colorimeter CR200 (L*, a*, b*). They found 

that colour (a*) and carotenoid evolution was similar for both control and treated fruits along the 

growing process. The colour a* parameter varied very little from fruit set to day 36 and increased 
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sharply from  days 39 to 57, due to colour changes from green to red, which occurred in the last 

phase of fruit growth, when the fruit was near its maximum weight. 

In general, online fruit colour grading by means of computer vision is considered solved and is 

widely used now by the industry. However, colour sorting is not suitable for measuring or 

assessing internal quality, which may require multi- and hyperspectral imaging. 

2.5.2. Visible and NIR spectral measurements 

Chemical bonds absorb light energy at specific wavelengths; therefore some compositional 

information can be determined from spectra measured by spectrophotometers or spectrometers. 

Within the visible wavelength range, the major absorbers are the pigments: chlorophylls, 

carotenoids, anthocyanins and other coloured compounds. Water, carbohydrates, fats and 

proteins have absorption bands in the NIR region. 

The reflectance properties of a product in the visible region (approximately 400–750 nm) are 

perceived by humans as colour, which provide pigment information about commodities. Skin 

colour has been considered indicative of maturity for some horticultural products such as banana, 

mango, and tomato (Edan et al., 1997). Colour, in the human perception directly relates to 

product appearance (Abbott, 1999), and the relationship of pigments, and therefore the VIS 

reflectance fingerprint, with deterioration and evolution of fruits during ripening has been 

established. Many constituents of fruit quality, including those that contribute to taste and aroma 

as well as antioxidant potential are synthesized in chloroplasts or chromoplasts, and in the genes 

(Barry, 2009). In the food industry, quality factors are often linked to product pigments or colour 

features. VIS imaging sensors are thus effective techniques for quality detection of fruits, 

especially for maturity and ripeness.  

Ortiz et al. (2001) related VIS-NIR spectral information to soluble solids, acidity and firmness of 

peach fruits. Zude et al. (2006) examined soluble solid content in apples by VIS-NIR. Wang et 

al. (2011) estimated vitamin C content in chilies using quantitative analysis technique based on 

VIS-NIR diffuse reflectance spectroscopy. Significant correlations were found between the 

chlorophyll content of apple fruit and spectral transmittance recordings, using the red-edge 

values as well as various indices used in remote sensing and partial least square regression in the 

spectral range from 600 to 750 nm by Zude (2003). Merzlyak et al. (2003) studied the diffuse 

light reflectance of apple fruit in the spectrum range from 400 to 800 nm. They used five apple 

cultivars, all picked in mature condition and obtained significant correlation between different 

reflectance indices and fruit chlorophyll content. Xudong et al. (2009) non-destructively 
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measured quality indices (soluble solids contents, titratable acidity, vitamin C content, and 

colour) of intact Nanfeng mandarins by using the VIS-NIR spectral range.  

NIR radiation covers the range of the electromagnetic spectrum between 780 and 2500 nm 

(Sheppard et al., 1987). In NIR spectroscopy, the product is irradiated with NIR radiation, and 

the spectrum of the reflected or transmitted radiation is measured. The spectral characteristics of 

the incident ray are modified while it passes through the product due to wavelength dependent 

absorption and scattering processes. This change depends on both the chemical composition and 

the physical properties of the product (Nicolai et al., 2007). The short-wave infrared region is 

that part of the electromagnetic spectrum lying between 750 and 1900 nm, associated with 

vibration and combination overtones of the fundamental O–H, C–H and N–H bonds, which are 

the primary structural components of organic molecules (Williams and Norris, 2002). 

Chemometric statistical techniques such as partial least squares regression (PLS), multi-linear 

regression (MLR) and principal component analysis (PCA) are then applied to correlate the NIR 

spectrum to quality attributes such as the sugar content, acidity, firmness or storage period of the 

product (Schmilovitch et al., 2000). 

NIR measurements have been successfully used to non-destructively quantify and characterize 

fruits and vegetables ingredients, and these techniques have been used successfully for rapid 

analysis of multiple components, such as oil, protein (Schmilovitch et al., 2001; Shenk et al., 

1992), dry matter (Schmilovitch et al., 2000), firmness (Penchaiya et al., 2009, Schmilovitch et 

al., 2000) and total soluble solids (Penchaiya et al., 2009; Schmilovitch et al., 2000; Zude et al., 

2006) in a wide variety of agricultural produce. Blanco et al. (1993) used NIR diffuse reflectance 

spectroscopy to determine ascorbic acid in pharmaceutical products. Microstructure of the fruit 

and vegetable tissue affects the propagation of NIR, therefore NIR spectroscopy has successfully 

applied in measuring microstructure related attributes such as internal damage (Clark et al., 

2003), stiffness (Lammertyn et al., 1998). 

More widespread use of these technologies depends on several factors. The most important 

technical factor is the prediction model‘s robustness. The accuracy of the NIR calibration models 

should be sufficient in predicting unknown samples which did not participate in the calibration 

model. Calibration models should be based on large datasets, including samples from different 

origins, climate conditions, and seasons. The issues of temperature sensitivity of NIR 

measurements should be considered (Roger et al., 2003) and transfer of a calibration model to a 

different spectrophotometer (Greensill et al., 2001). 
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2.5.3. Hyperspectral imaging 

Multi- or hyperspectral cameras permit image acquisition at many wavelengths. Multispectral 

imaging means to acquire images fewer than ten wavelengths. If the number of wavelength is 

more than ten, then we talked about hyperspectral imaging. The acquired images can be 

visualized in a hyper cube with the X and Y dimensions being the length and width of the image 

and the Z dimension being spectral wavelengths. The dataset also could be envisioned as single 

wavelength pictures of the object, with as many pictures as the number of wavelengths used. 

Such imaging can provide information about the spatial distribution of constituents (pigments, 

sugars, moisture, etc.) near the product‘s surface (Ruiz-Altisent et al., 2010). 

Imaging and spectroscopy are integrated in hyperspectral imaging, therefore it simultaneously 

acquires both spectral and spatial information from the product, thus making it especially 

suitable and much more powerful for inspecting horticultural and food products (Kim et al., 

2001; Gowen et al., 2007). Hyperspectral imaging is implemented in line scanning mode or in 

filter-based imaging mode (Lu and Chen, 1999). In line (push-broom) scanning mode, the 

imaging system line scans the moving product item, from which three-dimensional hyperspectral 

images, also called hypercubes, are created. Line scanning mode is most commonly used 

because it is relatively easy to implement, and preferable when online applications are needed. In 

filter-based imaging mode, spectral images are acquired from the stationary product item for a 

sequence of wavebands using either liquid crystal tunable filter (LCTF) or acousto-optic tunable 

filter (AOTF). Filter-based hyperspectral imaging systems require more complicated calibration 

and are not suitable for online applications (Ruiz-Altisent et al., 2010).  

Hyperspectral imaging technology was used for measuring fruit maturity, firmness and soluble 

solids content (ElMasry et al., 2007; Lu and Peng, 2007; Noh et al., 2007), and for detecting 

bruises and bitter pits on apple and mushroom (Nicolai et al., 2006; Gowen et al., 2008) 

deterioration in mushroom (Taghizadeh et al., 2010) and chilling injury and internal defect of 

cucumber (Cheng et al., 2004; Ariana and Lu, 2010). Hyperspectral imaging is feasible for 

implementation into fast, online sorting and grading of horticultural products (Ariana and Lu, 

2010). 

2.5.4. Mechanical methods for firmness measurement 

Mechanical properties of the fruit relate to texture. Harker et al. (1997) examined the cellular 

basis of fruit texture and the human physiology involved in its perception. Mechanical tests of 

texture include the familiar puncture, compression and shear tests, as well as creep, impact, sonic 
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and ultrasonic methods (Brown and Sarig, 1994; Chen, 1996; Abbott et al., 1997; Felföldi and 

Ignát 1999; Tompos et al., 2003; Ignat et al., 2003; Ignat et al., 2010). 

2.5.4.1. Ultrasonic vibration 

Ultrasound technology has been known for many years, its main application areas being medical 

diagnostics, and industrial processes and inspections. At high frequencies and low power it can 

be used as an analytical and diagnostic tool, and at a very high power it can assist processing. 

Ultrasonic vibrations are above the audible frequency range: >20 kHz. Ultrasound is generated 

by a transducer contains a ceramic crystal which is excited by a short electrical pulse that has a 

typical form of several sine cycles. Through the piezoelectric effect, this electrical energy is 

converted to a mechanical wave that is propagated as a short sonic pulse at the fundamental 

frequency of the transducer. This energy is transferred into the material or body under analysis 

and propagated through it (Krautkramer and Krautkramer, 1990). The ultrasound signal 

emerging from the test specimen is sensed by a piezoelectric element that acts as a receiver, 

converting any ultrasound impinging on it, back to electrical energy. When the system operates 

in ‗pulse-echo‘ mode, the same piezoelectric element acts as a transmitter and a receiver 

alternately; when a ‗through-transmission‘ mode is used, a second piezoelectric element acts as a 

receiver. 

Ultrasonic energy will propagate through a material until the sound wave encounters an 

impedance change, which means that there are some changes in the material density or/and the 

velocity of the sound wave (Kuttruff, 1991). The energy attenuation of the ultrasound beam and 

the speed of wave propagation depend on the nature of the material and its structure (Kuttruff, 

1991). The most physical or chemical changes in the material, cause changes in the attenuation 

and velocity of the propagated beam. 

The potential for ultrasound in the food industry has been recognized since the 1970s (Povey and 

Wilkinson, 1980), and developments regarding the technique have progressed rapidly over the 

years (Povey, 1998). However, development of the ultrasound technique as a means of 

evaluating food quality has not progressed as fast in the fresh fruit sector as in the food industry. 

Lack of appropriate equipment, sufficiently powerful to penetrate but, at the same time, 

sufficiently gentle to avoid damage to the sensitive tissues of fruit and vegetables, has been an 

important deterrent (Porteous et al., 1981; Mizrach et al., 1989). However, some advances in 

equipment design, and availability of new instruments and sensors, mainly designed for 

industrial use with new composite materials, has facilitated progress and has stimulated more 

studies and developments of ultrasonic methods and techniques for the fresh fruit and vegetables 

market (Mizrach et al., 1989). Recently, ultrasonic techniques have been investigated for the 
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sensory analysis of various quality parameters in agricultural produce. Various devices and 

measuring techniques, based on ultrasonic waves, have been developed for non-destructively 

monitoring some physiochemical, biochemical, and mechanical changes that occur in fruit 

tissues during the various stages of their pre- and postharvest existence. These stages include 

growth and maturation (Self et al., 1994; Chivers et al., 1995; Mizrach et al., 1999a, b; Gaete-

Garreton et al., 2005, Ignat et al., 2010), storage under various conditions (Flitsanov et al., 2000; 

Mizrach et al., 2000; Verlinden et al., 2004) and shelf-life (Mizrach and Flitsanov, 1999; 

Mizrach, 2000; Johnston et al., 2002). Many studies, describe difficulties and limitations in 

applying the ultrasound technique for quality evaluation in the pre- and postharvest processes. 

This suggests that the technology is not yet ripe for commercial use and that there is a lot yet to 

be done in order to bring it into a widely used sorting tool (Mizrach, 2008). 

2.5.4.2. Mechanical tests 

Under mechanical loading, fruits and vegetables exhibit viscoelastic behaviour which depends 

on both the amount of force applied and the rate of loading. However, for practical purposes, 

they are often assumed to be elastic and loading rate is largely ignored. Measurement of elastic 

properties requires consideration of only force and deformation, whereas viscoelastic 

measurement involves functions of force, deformation and time. Nonetheless, because even the 

firmest fruits and vegetables do have a viscous component to their force-deformation behaviour, 

loading rate (test speed) should be held constant in instrumental tests and should be reported. 

The viscous component has minimal contribution to perceived texture in most firm fruits and 

vegetables (e.g. apple or carrot), but is quite significant in soft fruits, notably tomato, cherry, 

pepper and citrus. That is why a creep or relaxation measurement is often more suitable for the 

latter products than is a puncture test (Abbott, 1999). 

Most non-destructive mechanical methods measure elastic properties: modulus of elasticity at 

very small deformations. Modulus of elasticity measures the capacity of the material to take 

elastic deformation and is the stress–strain ratio, commonly measured by the slope of the force 

and deformation curve prior to rupture for a tissue specimen with constant cross-sectional area 

(Abbott, 1999).  

Puncture or compression tests made at relatively low speeds, typical of such instruments as the 

Magness–Taylor fruit firmness tester and electronic universal testing instruments, are considered 

quasi static. Typical stress-strain curve is shown in Fig. 4. 
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Fig. 4 Typical stress-strain curve 

 

The portion of the initial slope up to inflection represents non-destructive elastic deformation 

(A). Beyond that portion, cells start to rupture and there may be a bioyield point (B) where a 

noticeable change in slope occurs before the rupture point (C) at which significant tissue failure 

occurs. Beyond rupture, the force may again increase, level off, or decrease as deformation 

increases. 

Puncture force-deformation curves appear similar to compression curves. Firmness of 

horticultural products can be measured by compression or puncture with various probes at 

different force or deformation levels, depending on the purpose of the measurement and how the 

quality attributes are defined. Horticulturists tend to define firmness as the maximum force 

attained. On the other hand, the slope of the force-deformation curve, reflecting apparent elastic 

modulus, is often used by materials engineers as an index of firmness. Bourne (1982) found that 

the best relationships to sensory firmness, hardness and crispness are obtained with forces at or 

beyond deformations that cause tissue damage. 

Penetrometer testers such as the Magness-Taylor are widely used for fruits and vegetables. The 

Magness-Taylor tester was developed primarily as an objective measurement of picking maturity 

(Magness and Taylor, 1925). Penetrometer measurements are moderately well correlated with 

human perception of firmness and with storage life, and consequently this technique has received 

acceptance for a number of horticultural commodities, such as apple, cucumber, kiwifruit, pear 

and peach. Compression and penetration techniques due to their low speeds and often destructive 

nature, are not very adaptable for on-line sorting of horticultural products. 

Mechanical techniques have been developed to non-destructively measure some quality 

parameters of fruit and vegetables, mainly for firmness estimation, providing an alternative to the 

destructive Magness–Taylor penetrometry (Garcia-Ramos et al., 2005; Nicolai et al., 2006). 

A

B

C

Strain
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Major mechanical techniques include the measurement of variables extracted from quasi static 

force-deformation curves (Fekete and Felfoldi, 2000), the analysis of impact forces (Felfoldi and 

Ignat, 1999), and the measurement of acoustic responses to vibrations (Felfoldi, 1996) and 

impacts. 

Measuring the variables of force-deformation curves by applying a small deformation force to 

the fruit with a metallic plunger in such a way that it causes no damage, the non-destructive 

force-deformation curve can be recorded. The curve is produced by applying a small load for a 

fixed period of time (Macnish et al., 1997) or by calculating the force necessary to reach a pre-

set deformation (Fekete and Felfoldi, 2000). This non-destructive technique has led to the 

development of a number of force-deformation devices. One of them is the durometer which has 

been widely used for tomatoes, cherries (Clayton et al., 1998) and other soft fruits. Macnish et al. 

(1997) describe two non-destructive devices for measuring firmness: the Analogue Firmness 

Meter and the Digital Firmness Meter. These devices have been used with tomatoes and mangos. 

The fruit is placed in a v-shaped structure, and then a 40 mm diameter disc is applied to it. A 

non-spectroscopic method of measuring mechanical deformation with a laser has been developed 

by Hung et al. (1999), known as the ―laser air-puff‖, this device measures the deformation of 

fruits subjected to a short but strong current of air (69 kPa in 100 ms). Lu and Tipper (2009) 

develop a portable bioyield detection device to measure apple fruit firmness, which measure 

force at the bioyield point as an indication of fruit firmness.  

Firmness testers have a wide range of application, some of them can be integrated to sorting 

lines. 

2.6. Prediction of bell pepper quality 

For the determine of pepper quality - which had been described in chapter 2.1.4 - as efficiently 

and accurately as possible, appropriate sensors should be selected and algorithms must be 

developed. In recent years the prediction of quality parameters for pepper by different 

chemometric procedures started to take place. Especially as the awareness of this vegetable‘s 

importance greatly increased and its quality prediction became more urgent to pursue. Table 3 

give an overview of the recently conducted works on the prediction of quality parameters of 

peppers from different cultivars. Most of the work was focused on internal components, 

especially on capsaicionids. Penchaiya et al. (2009) found prediction models for soluble solids 

and firmness using SWIR spectral measurements and PLS regression. Tadesse et al. (2002) used 

generalized linear model (GLM) to build prediction model which it needs destructive 

measurements of the fruit. Ignat et al. (2010) used non-destructive (ultrasonic, colorimeter and 

relaxation) methods to predict DW and TSS content of three cultivars of bell pepper. Ignat et al. 
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(2011b) established prediction models for the estimation of total chlorophyll and carotenoid 

content using VIS-NIR and SWIR spectral measurement, and by linear and non-linear 

chemometric procedures. 

There is a need to develop methods and algorithms for the evaluation and prediction of global 

quality changes in pepper which relates to maturation and senescence, during growth, 

development, storage and shelf life. Moreover, there is a need to establish complex prediction 

models using several cultivars and different growing conditions and technologies. 

 

Table 3 Overviews of prediction of quality parameters for pepper produce by different 

measurement and regression methods 

 

 

2.7. Prediction of quality by fusion 

Sensor fusion is analogous to the cognitive process used by humans to integrate data continually 

from their senses to make interferences about the external world. Sensor (or data) fusion refers to 

the acquisition, processing, and combination of information generated by multiple knowledge 

sources and sensors (Hall, 1992). The objective is to provide optimal use of the available 

Predicted componenet DT Method NDT Method Regression Method Reference

chlorophyll, carotenoid Conventional method VIS-NIR, SWIR PLSR Ignat et al., 2011b

ascorbic acid
2, 6-dichloro-indophenol 

titration method
VIS-NIR, SWIR PLSR Ignat et al., 2011a

vitamin C
2, 6-dichloro-indophenol 

titration method
VIS-NIR PLSR Wang et al., 2011

DW, TSS
Conventional method, 

Refractometer

Ulrtasonic, 

Relaxation, Colour
PCR Ignat et al., 2010

organic acids, fatty 

acids, amino acids; 

minor compounds such 

as trigonelline, C4-

substituted pyridine, 

choline, and cinnamic 

derivatives

Conventional method HRMAS-NMR PLSR-DA Ritota et al., 2010

firmness Texture Analyzer SWIR PLSR Penchaiya et al., 2009

soluble solid (SSC) Refractometer SWIR PLSR

capsaicinoids Conventional method NIR PCR, PLSR Park et al., 2008

capsaicinoids HPLC UV−VIS PLSR Davis et al., 2007

carotenoids
Comparison to 

carotenoid standards
FT-Raman - Schulz et al., 2005

lutein, beta-carotene, 

capsanthin

Measurements of relative 

change
NIR-FT-Ramman - Baranski et al., 2005

weight, volume manual Tadesse et al. 2002

colour colourimeter

firmness Effegi penetrometer

total soluble solid (TSS) refractometer

respiration and ethylene 

production
gas-liquid chromatograph

capsaicinoids HPLC NIR Tsou et al., 1997

PCA, GLM-
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information for detection, estimation, and decision-making. The original motivation for sensor 

fusion in the early Eighties was rooted in military radar applications. Later on the 

implementation of sensor fusion systems became common in a wide variety of applications, due 

to advances in sensor technology, signal processing algorithms, high performance computing and 

communication (Varshney, 1997). The advantages of sensor fusion are that it offers redundancy, 

complementary, real-time performance and cost-effective information (Luo et al., 2002). 

There are three major ways in which multiple sensors interact (Brooks and Iyengar, 1998; Faceli 

et al., 2004): complementary when they do not depend on each other directly, but are combined 

to give a more complete image of the phenomena being studied; competitive sensors provide 

independent measurement of the same information, regarding a physical phenomenon; 

cooperative sensors, combine data from independent sensors to derive information that would be 

unavailable from the individual sensors.  

Fusion of redundant information can reduce overall uncertainty and thus increase the accuracy 

with which the features are perceived by the systems (Durrant-Whyte, 1988; Janssen and 

Niehsen, 2004). In addition, complementary information from multiple sensors allows features in 

the environment to be perceived that would otherwise be impossible to acquire if we only used 

the information supplied from each individual sensor operating separately (Janssen and Niehsen, 

2004; Luo et al., 2002). 

The methodology for fusion suggested by Steinmetz et al. (1999b) shown in Fig. 5. They suggest 

a process containing eight steps to establish fusion. The process starts with the examination of 

the different properties of the produce. The next step is to choose the appropriate destructive 

(reference) and non-destructive tests for the measurement of the produce properties, followed by 

the selection of the best fitting chemometric procedure. The suggested process contains the 

evaluation of the system and possibilities for its improvement. 

Table 4 present an overview of the some of the research works which were conducted in the 

recent years in the field of agriculture, focusing on the quality prediction of fruits and vegetables. 

As it is presented in the overview there are no standard rules in making fusion. In the realization 

of fusion a wide range of sensors are used online or in the training set with wide spectrum of 

statistical regression, classification and learning machines in order to predict the quality of the 

product. But in each cited cases it was concluded that by fusion the error of regression or error of 

classification was significantly reduced. This fact encourages the continuation of this research 

field to be used in wider product range and as a possible tool in the complex quality prediction. 
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Fig. 5 Description of the methodology (Steinmetz et al., 1997) 
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Table 4 Overviews of prediction of quality parameters by fusion 

 

 

  

Agricultural product Predicted componenet DT Method NDT Method Statistical Method Reference

pepper shrinkage Weight ANN Mohebbi et al., 2011

firmness Texture Analyzer

colour Image acqusition

pepper DW Conventional method, Ignat et al., 2010

TSS Refractometer

tomato colour colorimeter Bayesian classifier Baltazar et al., 2008

firmness impact and acoustic test

apple

bruise

electronic nose (Enose), 

surface acoustic wave 

sensor (zNose
TM

)

PCA, PNN Li et al., 2007

apple

firmness

Acoustic impulse 

resonance frequency 

sensor

PLS, discriminant partial 

least squares (D-PLS)

Zude et al., 2006

soluble solids content 

(SSC)
VIS/NIR

apple colour, shape, weight, 

size, defects
Manual measurements Colorimeter

Fuzzy logic Kavdir and Guyer, 2003

eggplant  colour, length, girth, 

bruises
image processing

ANN Saito et al., 2003

peach
Firmness

Penetrometer 

(Magness–Taylor)

MMS1-NIR, electronic 

nose

PLS, PLS/DA Natale et al., 2002

SSC refractometer

Acidity, chlorophyll, 

carotinoids, anthocyans

Laboratory 

measurement

peach

soluble solid (SS) Refractometer VIS-NIR

k-means clustering, 

stepwise discriminant 

analysis

Ortiz et al., 2001

titratable acidity Titration

firmness

Magness-Taylor 

penetration, Confined 

compression test, Shear 

rupture test

Non-destructive impact 

response

apple
sugar Refractometer Vision system, NIR

multilayer neural network 

(MNN)

Steinmetz et al., 1999a

orange size, weight Vision system PCA, MLR, FDA, NN Steinmetz et al., 1997

firmness Impact firmness sensor

total soluble solids 

(TSS)
Refractometer NIR

acidity Titration

colour Colorimeter

peach

firmness, stiffness
Magness-Taylor, 

Instron-type machine

sound-based sensor, 

micro-deformation 

based sensor, impact 

based sensor

Bayesian classifiers 

associated with heuristic 

methods for identity 

fusion

Steinmetz et al., 1996

cantaloupes colour, size, shape NDT sensors NN Ozer et al., 1995

firmness

weight

Ulrtasonic, relaxation, 

colour

PCR
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3. OBJECTIVES 

The objectives of the present work are: 

I. To explore the relationship between several non-destructive testing methods and the state 

of maturity, inner composition, textural, and physiological parameters (DT parameters). 

II. To develop a rapid reliable non-destructive cost effective system to measure quality 

index of bell pepper. 

The above objectives were realized in the following steps: 

 

A. Examination of internal and external quality changes during growth and maturation for the 

selected, three different final colour (green, yellow, red) bell pepper cultivars. 

B. Evaluation of textural and internal content prediction ability of several NDT methods such as: 

a. Colour measurement 

b. Relaxation test 

c. Ultrasonic test 

d. Spectral measurements in the range of visible-near infrared 

e. Spectral measurements in the range of short wave infrared 

f. Hyperspectral imaging. 

C. Evaluation of the synergetic effect of the combination of the above NDT methods by fusion. 

D. Evaluation of the synergetic effect of the fused DT quality parameters and NDT methods by 

fusion. 
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4. MATERIALS AND METHODS 

The experiment of the present study based on a preliminary experiment which was carried out 

during March-May 2009 on fruits taken from 2 greenhouses: ‗Vergasa‘ (red) and ‗Ever Green‘ 

(green) cultivars. The preliminary experiment consisted from two parts: the examination of 

changes during fruit development and the storability of the harvested fruit. Based on the results 

and experiences of the preliminary experiments (Appendix 9.2.1) the presents studies‘ 

experiment was chosen and established. 

4.1. Plant material 

The experiments were carried out from December 2009 through February 2010, and involved 

fruits of three cultivars of different colours, taken from three greenhouses from the same area of 

En Tamar region, Israel. The particular cv.-s were ‗Ever Green‘ (green final colour variety), ‗No. 

117‘ (yellow final colour variety), and ‗Celica‘ (red final colour variety). Each cultivar was 

grown in a separate greenhouse; plants were grown on the soil with drip irrigation. Plants were 

irrigated 3 times a day, with 5 m
3
 solution contains 10 l fertilizer (7 % Nitrogen, 3% Phosphorus, 

and 7% Potassium). Pepper plants were grown in the ‗Spanish‘ system, which means that the 

plants were supported vertically by ropes (Fig. 6).  

 

  

Fig. 6 ‗Spanish‘ system, vertically supported growing technology 

 

The peppers chosen for the study were marked during their flowering stage (Fig. 7a). Fruits (Fig. 

7b) were picked nine times at weekly intervals, during the 9-week growing period, from the 34
th

 

day after flowering (DAA) until full ripening (88
th

 day). Each picked batch of each variety 
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contained 20 fruits; altogether 180 fruits of each cultivar were collected. Table 5 presents all the 

collected pepper samples according to DAA. Shortly after picking, fruit had been cooled and 

kept in an air-conditioned laboratory at 23°C. First, each batch of 60 fruits (20 pieces of ‗Ever 

Green‘, 20 pieces of ‗No.117‘ and 20 pieces of ‗Celica‘) were numbered, weighed and measured 

their length and diameter at the shoulder of the fruit, then each pepper sample was subjected to 

NDT measurements than immediately followed by sampling from the same location for further 

destructive determinations. All the examinations were carried out on one particular surface of the 

pepper fruit as it is depicted in the below figure (Fig. 7c). 

 

   

Fig. 7a Marking of the fruits 

in the flowering stage 

Fig. 7c Marked pepper fruit in the 

unripe stage (‗Celica‘ cv. is depicted) 

Fig. 7c Chosen surface 

of DT and NDT 

measurements 

 

4.2. Experimental setup for non-destructive testing 

4.2.1. Colorimeter 

Shortly after picking, each fruit‘s colour was measured by colorimeter. Minolta Data Processor 

DP-301 of Chroma Meter CR-300 series was used for colorimetric measurements. Colour 

indices were taken at half length and two sides of each pepper fruit. The first measured side is 

the dedicated side, where all the measurements were conducted (Fig. 4c), and the second side is 

the opposite side of the dedicated surface. The two measurements were averaged. The following 

colour indices were recorded: Lightness (L), Chroma (C) and Hue (h). 
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Table 5 Presentation of the collected pepper fruits according to the DAA 

DAA Ever Green No.117 Celica 

34
th

 Picture is missing Picture is missing Picture is missing 

40
th

 

  
 

47
th

 

   

54
th

 

   

60
th

 

   

67
th

 

   

74
th

 

   

81
st
 

   

88
th

 

   

4.2.2.Spectral measurement 

The experimental arrangement for testing pepper fruits included a USB2000 (Ocean Optics, 

Dunedin, FL, USA) minispectrometer (Figs 8a and 8b), with spectral range 340–1014 nm; 

grating, 600 lines blazed at 750 nm; optical spectral resolution, 1.2 nm at FWHM (Full Width at 

Half Maximum); spectral sampling interval, 0.5 nm, 2048 data points with bidirectional 
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reflection probe (BIF600-UV-VIS). The instrument uses one fibre to collect radiation reflected 

toward the spectrometer, and a bundle of six fibres to carry light from the LS-1 Tungsten 

Halogen Light Source (Ocean Optics, Dunedin, FL, USA). The incident beam, carried via the 

bidirectional reflection probe fell perpendicularly onto the fruit sample, and the reflected light 

was collected by the collecting fibre and guided to the slit of the spectrometer. The setup 

included a cone (25-mm-diameter base, 15 mm in height, with a slope of 450), which shielded 

the optical assembly and the measured surface of the fruit from ambient radiation. Because of 

noise in the ranges of 340–477 nm and 950–1014 nm in the spectral data of the USB2000 

spectrometer, the spectral range had to be reduced to 477–950 nm. 

 

 

 

Fig. 8a Experimental setup for VIS-NIR spectral 

measurements; a: USB2000 spectrometer, b: 

Illumination source, c: Bidirectional reflectance 

probe, d:  25 mm cone, e: Pepper sample, f: PC 

for data acquisition. 

Fig. 8b Schematic of the optical setup for 

VIS-NIR spectral measurements 

 

 

Fig. 9a Experimental setup for SWIR spectral 

measurements; a: Liga spectrometer, b: 

Illumination source, c: Fibre-optic, d:  30 mm 

cone, e: Pepper sample. 

Fig. 9b Schematic of the optical setup for 

SWIR spectral measurements 

USB2000

LS-1 Tungsten
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Spectral measurements also were obtained with a Liga SWIR spectrophotometer (STEAG Micro 

Parts, Dortmund, Germany) with a single directional fibre-optic connected to a cone attachment 

(Figs 9a and 9b). The light source of this instrument is an LS-1 Tungsten Halogen Light Source 

(Ocean Optics, Dunedin, FL, USA). The detector assembly included a cone that fitted tightly 

against the pepper surface to prevent scattered radiation reaching the detectors. The surface area 

observed through the cone was 30 mm in diameter. The incident beam from the light source was 

projected perpendicularly onto the fruit sample and radiation reflected at an angle of 45° was 

collected by the G-8160 detector. Altogether 128 data points were acquired in each scan, 

covering an 850-1888 nm range interval with optical spectral resolution of 8.1 nm. Both 

configurations were calibrated with a Spectralon, WS-1-SL standard white ceramic background 

disc (Ocean Optics, Dunedin, FL, USA). 

The spectral measurement systems were arranged in reflectance mode for receiving the signals 

from the peel and flesh of the fruit. The sampled pepper was positioned so that the VIS-NIR and 

SWIR detector assembly sampled a region at one marked site on the circumference of the largest 

cross-section perpendicular to the stem–blossom axis. Each fruit was scanned 10 times in the 

sampled region by moving slightly the cone on the surface; the readings were automatically 

averaged to yield one spectrum signal. 

4.2.3. Hyperspectral system 

Scheme of the hyperspectral imaging system is presented on Fig 10a. The spectral component is 

selected using an acousto-optic tuneable filter (AOTF) which acts as an electronically tuned 

band-pass filter. The image sampled by the AOTF filter is captured by a black and white CCD 

cooled camera (COOL-1300Q/QC, VDS, DE) with a pixel resolution of 1280x1024, and 

640x512 with 2x2 binning technology. Binning technology enables 4 adjacent pixels to be 

combined in one pixel, resulting in increased light for each pixel. The lens angle was 12° 

horizontally and 9° vertically. The control of the AOTF was done by a Direct Digital Synthesizer 

(DDS) which sends a radio frequency wave to the AOTF through an amplifier, and thereby 

changes the filter characteristics.  

The measurements were conducted in the wavelength range of 550-850 nm, in step of 5 nm. 

Custom software was written to control the hyperspectral camera. For the processing of the 

hyperspectral images and for the building of the hyperspectral cubes a Matlab code was written. 

The code includes: 

 flat filed correction of the images, 

 calculation of the absolute reflectance using the empirical line, 
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 exclusion of the saturated pixels, 

 sampling of the hyperspectral cube (Fig 11), 

 and calculation of the averaged spectra (Fig 12-13), SAM and PQS indices. 

 

 

 

Fig. 10a Hyperspectral imaging system 

architecture 

Fig. 10b Scheme of the hyperspectral 

measurement setup 
 

Hyperspectral images were acquired of each pepper samples. The scheme of the setup is 

presented on Fig. 10b. Three spectral processing methods were implemented in this work: for the 

selected pixels (Fig 11) of the hypercube, the averaged reflectance spectra, the spectral angle 

mapper: SAM (exact method detailed in chapter: 4.4.3.) and the polar quality system: PQS value 

(exact method detailed in chapter: 4.4.4.) were calculated. The present work contains only the 

result of the 1
st
 location of the hyperspectral sampling. Pretreatment of the averaged reflectance 

spectra was conducted by first derivative of reflectance (D1R), the log(1/R), and its first- 

(D1(log(1/R))), and second derivative (D2(log(1/R))). The resulted data were used to examine the 

hyperspectral imaging as quality measurement method. Chemometric procedures were 

performed with Matlab software (exact methods detailed in chapter: 4.4.). 

 

 
Fig. 11 Example for the spectral sampling of the hyperspectral cube (Pepper sample is 

taken from the 47
th

 DAA ‗Ever Green‘ cultivar). 
 

AOTF

Diffuser

Light sources

1st
2nd

3rd
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Fig. 12 Relative reflectance spectrums of 

the sampled areas of the pepper sample. 

The spectrums are showing the sampled 

areas of Fig 11. 

Fig. 13 Averaged relative reflectance 

spectrums of the sampled areas of the 

pepper sample. The graph shows the 

averaged spectrums of Fig 12. 

4.2.4. Ultrasonic test 

 A high-power, low-frequency ultrasonic pulse generator-receiver (Krautkramer Model USL33) 

and a pair of 50-kHz ultrasonic transducers (Fig. 14) were used to generate the signal; coupled to 

a microcomputer system for data acquisition and analysis. Exponential-type Plexiglas beam-

focusing elements were used to reduce the 55-mm beam diameter of each transducer to the 

desired area of contact with the fruit. The transducers were mounted with an angle of about 120˚ 

between their axes, enabling an ultrasonic signal to be transmitted and received over a short 

distance between their tips across the peel of the fruit (Mizrach, 1999). The ultrasonic 

measurement was conducted once, on a relatively flat area which was previously chosen on the 

pepper fruit. The pulse amplitude of the transmitted ultrasonic signal was measured at eight 

points with 0.25 mm spacing (0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 and 2.25 mm) between the two 

probes, along the length of the fruit. The attenuation of the ultrasonic signal – based on the eight 

measurement points – was calculated according to the below equation (Krautkramer and 

Krautkramer, 1990) [1].  

leAA  

0  [1] 

where, l is the distance between the input and collection probes, A and A0, respectively, are the 

ultrasonic signal amplitudes at the beginning and the end of a distance l along the propagation 

path of the ultrasonic wave, and α is the apparent attenuation coefficient of the signal. 
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Fig. 14 Experimental setup for ultra sonic measurements; a: transducer, b: receiver, c: 

exponential-type Plexiglas beam-focusing elements, d: microcomputer system. 

4.2.5. Stress relaxation of intact fruit 

Relaxation test was chosen to follow non-destructively the changes in firmness of the pepper 

samples during growth and development. Relaxation test showed strong correlation with the 

generally adapted pressure gage method measuring firmness of whole bell pepper fruit (Meir et 

al., 1995) in the preliminary executed experiments 2009 spring season (Appendix 9.2.1). 

General purpose relaxation test was carried out with Lloyd LR SK Instrument (Lloyd 

Instruments Ltd., UK). The material testing machine is a twin column bench mounted 

instrument. The machine is controlled by NEXYGEN 4.1 material test and data analysis 

software. The features of the instrument are: high accuracy interchangeable XLC load cells, 

crosshead travel 975 mm, speed range 0.01– 1016 mm/min, data sampling rate 8 kHz and full PC 

integration with NEXYGEN 4.1 material test and data analysis software. 

The general purpose relaxation test was carried out on intact fruit laid on its side on a flat plate 

and was compressed by a moving plate at a standard (selectable) speed (200 mm/min) until a 

load limit (20 N) was achieved (Fig. 15a). The hold time was 10 seconds. The results were 

analyzed by Nexygen 4.1 - Material Test and Data Analysis Software. At the end of the test the 

rate of relaxation [N/s] and the remaining deformation [mm] was recorded. A typical diagram for 

relaxation test is presented in Fig 15b. Additionally, a coefficient of elasticity (CERelaxation, 

N/mm) was calculated from the phase of loading of the pepper sample with 20N. 

The relaxation test was considered as a NDT test based on preliminary experiments (Appendix 

9.2.1). In the preliminary experiments the peppers sample were tested by relaxation test and 

stored for 2 weeks on 7 ºC, followed by shelf life storage at 20 °C for 3 days. After the storage 

and shelf life the pepper samples were examined and no physiological degradation was found on 

them. 



44 

 

 

 

Fig. 15a Experimental setup for relaxation 

test; a: flat plate, b: moving plate. 

Fig. 15b Typical diagram for relaxation test 

4.3. Experimental setup for reference measurements 

4.3.1. Rupture test 

Compress to Rupture Test was carried out with Lloyd LR SK Instrument (Lloyd Instruments 

Ltd., UK), described in detail in the 4.2.5 paragraph. Strip (3 cm by 3 cm) was cut from the 

designated side. The strip was placed, laying on its peel on the lower plate and weighted with the 

upper plate (1250 g) on the top, to avoid the deflection of the strip during the test (Fig 16a and 

16b). The pepper strip was measured from the fruit flesh side because the aim of the 

measurement was to follow the changes in the pepper flash. The strength of the peel or its 

change was not the concern of the present study. Both plates had a centred 16 mm diameter hole. 

The speed of the 8 mm diameter penetration probe was 100 mm/min. The tip of the penetration 

probe was slightly curved. As force was applied, the load and deformation were recorded 

simultaneously and stored by Nexygen 4.1 software. Each strip of pepper was characterized by 

the coefficient of elasticity (CERupture, N/mm), calculated from the specific section of the test 

(Fig. 16c) before the proportionality limit (Bourne, 1982). 
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Fig. 16a Experimental setup for rapture test Fig. 16b Schematic diagram of the setup 

for rapture test 

 
Fig. 16c Typical diagram for rapture test 

4.3.2. Compression test 

Compress to Limit Test was carried out by Lloyd LR SK Instrument (Lloyd Instruments Ltd., 

UK), described in detail in the 4.2.5 paragraph. Test disk of 15 mm diameter was cut from the 

dedicated side of the pepper. The disk was placed on the centre of the lower plate (Fig. 17a) in a 

way that its peel was laying on the lower plate. The speed of the upper plate was 100 mm/min. 

The upper plate was compressing the sample until a certain point when the distance between the 

probe and the lower plate was 1 mm. As force was applied, the load and deformation were 

recorded simultaneously and stored by Nexygen 4.1 software. Each fruit was characterized by 

two calculated parameters: the coefficient of elasticity (CECompression, N/mm), calculated from a 

specific section of the load-deformation curve (Fig. 17b) before the proportionality limit 

(Bourne, 1982); and the integral of the area under the load-deformation curve (IntCompression). In 

the later parameter the integral was calculated from the start of deformation until the 

proportionality limit. 
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Fig. 17a Schematic diagram of the setup 

for compression test 

Fig. 17b Typical diagram for rapture test 

4.3.3. Dry matter % (DM) determination 

Approximately 10 g sample was taken from the location at which NDT measurements had been 

performed. Each sample was weighed (wb) and dried at 60˚C in a forced-air oven for 72 h, than it 

was weighted again (wa) and percentage of DM was calculated [2]. DM is expressed in %. 

DM = (wa/wb)*100 [2] 

4.3.4. Total soluble solid (TSS) determination 

Sample was taken from the location at which NDT measurements had been performed; small 

cuts were made on the inner side of it, in order to ease the juice of the pepper sample to be 

squeezed. TSS measurements were taken by a digital refractometer (Atago, PR-1). The TSS was 

expressed in Brix %. 

4.3.5. Ascorbic acid measurement 

Determination of ascorbic acid (AA) content was carried out based on the AOAC official 

method (AOAC 2000). A sample of approximately 4 g was taken from the pericarp location at 

which spectral measurements had been performed earlier; it was frozen and kept at -18˚C in a 

50-ml closed tube. For examination of the vitamin C content, frozen tissue was macerated in 25 

ml of 3% metaphosphoric-acetic-acid (HPO3-CH3COOH) extracting solution by an Ultra-Turrax 

homogenizer (TP 18-10, Janke & Kunkel KG), and the extracted solution was vacuum filtered 

through a Whatman fiberglass filter disk. Residues remaining in the homogenizer and on the 

filter disk were washed with extracting solution, and the final volume of filtrate was measured in 
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a graduated cylinder. Twenty milliliters of solution were transferred to an Erlenmeyer flask and 

20 ml of metaphosphoric-sulfuric-acetic-acid (HPO3-CH3COOH-H2SO4) was added to maintain 

proper acidity (pH about 1.2) and to prevent autoxidation of ascorbic acid. Titration from a 50 ml 

burette was carried out with 25% 2,6-dichlorophenolindophenol (DCIP) standard solution until a 

light but distinct rose-pink colour persisted for more than 5 s. The blue dye DCIP is reduced to a 

colourless form on addition of ascorbic acid, as shown in Fig. 18, but it imparts a pink colour to 

the acidic solution. From each sample two titrations were performed; if they differed by more 

than 0.1 ml in reagent consumption, a third titration was conducted and the outlier was 

discarded. The ascorbic acid content was calculated according to the pre-prepared calibration 

with a standard ascorbic acid calibration solution set, and expressed as milligrams of ascorbic 

acid per 100 g of fresh sample. 

Standardization of indophenols dye reagent was made each time when new stock solution has 

been prepared. For calibration 50 ml 1 mg/ml concentration standard ascorbic acid solution was 

prepared and titration series (0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 1.7, 2.0, 2.3, 2.5 mg/ml) were carried 

out. Fig. 18b shows a typical calibration result. 

  
Fig. 18a The reduction of 2,6-

dichlorophenolindophenol with ascorbic acid 

Fig. 18b Standardization of indophenols 

dye reagent with 1 mg/ml ascorbic acid 

standard solution 

4.3.6. Chlorophyll and carotenoid measurement 

Determination of total chlorophyll and carotenoid content were carried out by extraction in 

absolute ethanol and spectral determination of absorbance in the wavelength of 470, 648.6 and 

664.2 nm. Approximately 0.7 g sample was taken from the pericarp at the location at which 

spectral measurement had been performed earlier; it was put to 80% of ethanol, it was frozen and 

kept on -18˚C in 15 ml closable tubes. At the time of examination of the chlorophyll and 

carotenoid content, frozen tissue was macerated in mortar with absolute ethanol until only white 

tissue remained from the pepper sample. The macerated tissue and liquid was vacuum filtered 

through Whatman fibreglass filter disk. Remnants on filter disk were washed with absolute 

ethanol and filtered. The final volume of filtration was measured in graduated tubes. The spectral 
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measurement was conducted by Genesys Spectrophotometer (Thermo Fisher Scientific Inc., 

Waltham, MA, USA) in a quartz cuvette. All the process from extraction to spectral 

measurement was carried out in dim light to avoid degradation of the chlorophyll and carotenoid 

in the sample. Calculation of total chlorophyll and carotenoid content were carried out based on 

the below equations (Lichtenthaler, 1987) [3-6]: 

 

Ca=13.36 A664.2  5.19 A648.6   [3] 

Cb=27.43 A648.6  8.12 A664.2    [4] 

Ca+b=5.24 A664.2 + 22.24 A648.6  [5] 

Cc=(1000 A470 2.13 Ca  97.64 Cb)/209 [6] 

 

where A is the absorbance of the sample, measured by Genesys Spectrophotometer. 

Calibration of the method was conducted by pure chlorophyll a and b component in the ratio of 3 

to 1 (Lichtenthaler, 1987). The total chlorophyll and carotenoid concentration was expressed in 

mg per g of fresh weight. 

4.3.7. Determination of osmotic potential 

A section of approximately 40 mm
2
, was cut from the pepper from the dedicated side of the fruit. 

The fruit was pre-washed with tap water and dried. 

The tissue was frozen in 1.5 ml micro-test-tubes at -5°C. The frozen tissue was crushed inside 

the tubes with a glass rod, the bottom of the tubes was pin-pricked and the tubes, set inside 

another 1.5 ml tube, centrifuged for 4 min in a refrigerated centrifuge (Sigma Laboratory 

Centrifuges, Germany) at 5°C at 10,000 rpm. 100 μl of the fluids collected in the lower micro-

test-tube and were used for measurement of osmotic potential (OP) using a cryoscopic micro-

osmometer (μOsmette, Precision Systems, Natick, MA, USA) by measuring the freezing point of 

100 µl of sap. Results are presented in mOsm kg H2O
-1

. 

4.4. Analysis 

4.4.1. Spectral analysis by linear regression model 

The spectrometers' data were analyzed by chemometric procedure of Partial least-squares (PLS) 

regression. PLS regression is a technique used with data that contain correlated predictor 

variables. This technique constructs new predictor variables, known as components, as linear 

combinations of the original predictor variables. PLS constructs these components while 

considering the observed response values, leading to a parsimonious model with reliable 

predictive power. PLS therefore combines information about the variances of both the predictors 

and the responses, while also considering the correlations among them.  
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PLSR software was used for model development (PLS, Eigenvector Research, Wenatchee, WA, 

USA), run under MATLAB software version R2011a (MathWorks, Natick, MA, USA). 

Comparisons were made among the PLS regression models built by the reflectance spectra (R), 

and the pre-processed spectra‘s such as the first derivative of R (D1R), the log(1/R), it‘s first 

(D1log(1/R)), and second derivative (D2log(1/R)).  

Regression models were formulated which related the reflectance spectra to ascorbic acid, in 

each tested fruit. The error associated with the results of the regression model is defined by the 

root mean square error of calibration (RMSEC) [7]: 

 

       
         

  
   

 
  [7] 

 

where     is the predicted value of the ascorbic acid of sample i,    is the value of ascorbic acid of 

sample i, as measured destructively and n is the number of calibration samples. RMSEC is a 

measure of how well the model fits the data. Root mean square error of cross validation 

(RMSECV) is a measure of a model‘s ability to predict new samples. The RMSECV is defined 

as in eq. [7], except that     are predictions for samples not included in the model calibration. 

RMSEC and RMSECV are expressed in the unit of the related laboratory measurement. Cross 

validation was performed by using 67% of the data (random selected) for calibrating the 

regression model and the rest 33% of the data for validating it. This procedure was performed 

seven times. 

4.4.2. Spectral analysis by non-linear regression model 

Based on Bayesian theorem (Lee, 2004, Gelman et al., 2004, Fearn et al., 2010) Kernel 

algorithm was developed. The algorithm was written and run under Matlab software. The 

samples were randomly separated to two equal sets: calibration and validation sets. The samples 

in the calibration set were grouped by K-means clustering based on squared Euclidean distances. 

The number of groups in each set of data was optimized by the algorithm, as well as the 

smoothing parameter for the kernel density estimate was automatically chosen by the algorithm 

and differs in each data set. In the calibration procedure the algorithm estimates the distribution 

of each distinct group of samples. The Kernel algorithm used the latent variables of the spectral 

data - produced by PLSR - as independent the variables. By using latent variables, the number of 

dimension of the kernel density estimate could be reduced. Multidimensional (number of 

dimensions depend on the number of latent variables) kernel density estimate was the basis for 

the predictions. Each group in the calibration set had a multidimensional kernel density estimate. 

For each sample, the probabilities of belonging to any of the groups were obtained in the 
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prediction procedure. Predicted concentration was determined for each sample by the highest 

probability estimate. The whole process was repeated with exchanged calibration and validation 

sets, in order to calculate the prediction for all the samples. 

Support Vector Machine (SVM) supervised learning algorithms was used as well for model 

development (PLS, Eigenvector Research, Wenatchee, WA, USA), run under MATLAB 

software version R2011a (MathWorks, Natick, MA, USA). Supervised learning (machine 

learning) takes a known set of input data and known responses to the data, and seeks to build a 

predictor model that generates reasonable predictions for the response to new data. 

4.4.3. Spectral Angle Mapper (SAM) 

Spectral Angle Mapper is a method that calculates the angle between two vectors. When the 

spectral response curve is regarded as a vector, (each vector consists of all the wavelengths), 

SAM can express the angle between a known pixel and an unknown pixel (Park et al., 2007). 

This calculation is less sensitive to changes in the reflectance from an object caused by changes 

in light source intensity and incidence angle. The decision if two materials (an unknown sample 

and a known material from a dataset) are the same is directly related to the angle: the closer the 

angle to zero, the materials are more similar. The angle calculation is shown in eq. [8]. 
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  [8] 

where N: the number of wavelengths, Rλ: the obtained sample in a specific wavelength, k: the 

number of groups that exist (different kinds of materials) and µλk: average of a previously 

obtained data on a specific wavelength. The advantages of the method are that it uses all of the 

information and it‘s immune to changes in intensity due to incited angle or source change. The 

disadvantage of the method is its sensitivity to noise. 

In the present work the SAM was calculated from the VIS-NIR, SWIR and hyperspectral 

imaging measurements and expressed in degrees (SAMdegree). 
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4.4.4. Polar qualification system (PQS) 

 

 
Fig. 19 Steps of spectral quality 

point calculation 

 

A quality point of the spectrum was 

calculated based on the theory of PQS 

developed by Kaffka and Gyarmati (1991), 

with modification of the way of 

differentiating among the central mass 

points of the samples. I wrote a code for the 

computations which were carried out under 

Matlab software. 

As a first step (Fig. 19) reflectance spectrum 

was normalized (3 different way: MSC 

(multiplicative scatter correction with offset, 

the mean is the reference spectrum), 

Normalize (normalize rows of matrix) and 

SNV (standard normal deviate), therefore it 

resulted 3 normalized spectrums) and was 

put into polar co-ordinate system. The next 

step was the transformation of polar co-

ordinate data to two-dimensional Cartesian 

(x, y) coordinates. 

In the final step, the central mass of the object was determined. It resulted the x, y co-ordinate of 

the quality point of the spectrum as its central mass point. x, y co-ordinates of the central mass of 

the spectrum was calculated for each sample and for each spectrometer and hyperspectral data. 

For the x, y set of co-ordinates the median co-ordinate was calculated and relative to this point 

the distance was calculated for each spectral quality point (Dabs). Moreover, the 1
st
 and 2

nd
 

principal components (PC) were calculated from the x, y dataset which carries the information of 

the variance in the location of the co-ordinates. The quality points were calculated from the 

reflectance (R) and the log(1/R) spectral data. 

4.4.5. Multiple-comparison tests 

Multiple comparison test returns a pairwise comparison results with comparison intervals around 

them. It conducts the comparison of the means of several groups; to test the hypothesis that they 
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are all the same (H0), against the general alternative that they are not all the same (H1). The 

outputs are: the compared means, the estimated difference in means, and the confidence interval 

for the difference. Multiple comparisons procedures are used to control for the family-wise error 

rate, to ensure that the probability of incorrectly rejecting the null hypothesis for any of the 

pairwise comparisons in the family does not exceed alpha (0.05). Multiple comparison tests were 

conducted by Matlab R2011a. 

4.4.6. Cross Correlation 

Correlation test was conducted by Matlab R2011a software to examine the relationship among 

the measured variables. Matrix (R) of correlation coefficients was calculated from the matrix of 

observations and variables. The calculated matrix is related to the covariance matrix by eq. [9]. 

For testing the hypothesis of no correlation among variables: p-values were calculated. Each p-

value is the probability of getting a correlation as large as the observed value by random chance, 

when the true correlation is zero. If p is less than 0.05, then the correlation R(i,j) is significant. 

The correlation test was carried out with =0.05. 

       
      

             
  [9] 

Correlation coefficient measures the degree to which two things vary together or oppositely. 

First, the maximum positive correlation is 1.00. Since the correlation is the average product of 

the standard scores for the cases on two variables, and since the standard deviation of 

standardized data is 1.00, then if the two standardized variables covary positively and perfectly, 

the average of their products across the cases will equal 1.00. On the other hand, if two things 

vary oppositely and perfectly, then the correlation will equal -1.00. Therefore correlation 

coefficient measures whether two things covary perfectly or near perfectly and whether 

positively or negatively. If the coefficient is, say, .80 or .90, then the corresponding variables 

closely vary together in the same direction; if -.80 or -.90, they vary together in opposite 

directions. 

4.4.7. Robustness 

Residual predictive deviation (RPD) index was determined, to evaluate the goodness of the 

models; it is calculated as the ratio of performance to deviation [10]:  

RPD=STD/RMSECV  [10]  

where STD is the standard deviation of the measured parameter and RMSECV is the root mean 

square error of cross validation. Based on the recommendation of Fearn (2002); if RPD is below 
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2, then the model is not sufficient enough, while if it is around 10, then the model has a great 

potential in measurement. If the RPD value is between 2-10 than the interpretation of the results 

is depend on the measured parameter and on the purpose of the measurement. Williams (2001) 

gives more restrict borders in defining the goodness of models: 0-2.3 'very poor', 2.4-3 'poor', 

3.1-4.9 'fair', 5-6.4 'good', 6.5-8 'very good', and above 8.1 is 'excellent'. 

Since RPD does not include other statistical parameters of the regression model like latent 

variables or calibration error, therefore a more complex index would be desired for the 

evaluation of the goodness or robustness of regression models. 

4.4.8. Standardized weighted sum index 

Standardized weighted sum index (SWS) was developed as a generalized index to compare 

between models' performance. As a first step criterion weighting (Malczewski, 1999) was used 

to generate weights for each statistical parameter of the regression model. Weights were 

determined based on pairwise comparison method developed by Saaty (1980). This method 

involves pairwise comparisons of the evaluation criteria, to create a ratio matrix. These pairwise 

comparisons are used as an input and the procedure yields the relative weight of each criterion as 

output. Specifically, the weights are determined by normalizing the eigenvector associated with 

the maximum eigenvalue of the (reciprocal) ratio matrix. The weight expresses the importance of 

each criterion relative to others. Thus, the larger the weight, the more important is the criterion in 

the overall utility. 

In the present work pairwise comparisons to determine the weights were done by three 

specialists (experts in chemometric procedures: Dr. Zeev Schmilovitch, Dr. Victor Alchanatis 

and Dr. David Bonfil), and their assigned weights were averaged (Table 6). An example for the 

detailed calculation of the weights can be seen in Appendix 9.2.2. 

 

Table 6 Resultant weights of the pairwise comparisons for the statistical parameters 

 

Statistical parameter Weight

  LV 0.09

  r
2

0.18

  RMSEC 0.07

  RMSECV 0.39

  RMSECV/RMSEC 0.17

  RPD 0.10

  Sum of the weights 1
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In the second step, each statistical parameter of the regression model was standardized according 

to its range, and the standardized values were then multiplied by the corresponding weights, then 

the weighted values were summarized for each model eq. [11]. The quality of the model is 

evaluated by the sum of the weighted values: the higher the sum, the better the model. The 

outcomes are displayed in the tables of the results under SWS. SWS enable the overall 

comparison of different regression models and as well as gives direction in the selection of the 

most robust model. For better evaluation, the ratio between RMSECV and RMSEC was 

introduced, to provide information about the relationship between calibration and cross-

validation. SWS is comprised by two parts; the first part is contribution of statistical parameters 

aimed to have as low values as possible (LV, RMSEC, RMSECV, RMSECV/RMSEC), while in 

the second part statistical parameters aimed to have as high values as possible (r
2
, RPD). 

        
       

         
  

         
       

         
  

        [11] 

where SWS is the standardized weighted sum; i is the index of statistical parameter a: LV, 

RMSEC, RMSECV, RMSECV/RMSEC; j is the index of statistical parameter b: r
2
, RPD; min is 

the minimum of the range of the particular statistical parameter; max is the maximum of the 

range of the particular statistical parameter; w is the weight of the particular statistical parameter. 

For each PLS regression model the SWS index was computed. Therefore the quality of the 

model is evaluated by the SWS values: the higher the SWS, the better the model is. 

4.4.9. Fusion 

Sensor fusion is analogous to the cognitive process used by humans to integrate data continually 

from their senses to make interferences about the external world. Sensor or data fusion refers to 

the acquisition, processing, and combination of information generated by multiple knowledge 

sources and sensors (Hall, 1992). The objective is to provide optimal or near-optimal use of the 

available information for detection, estimation, and decision-making.  

In the present work the methodology suggested by Steinmetz (1999b) was applied (Fig 5): 

a. identifying the properties of the produce that are important for its organoleptics 

properties: internal content, colour, texture 

b. identifying the reference methods (qualitative or quantitative) that are currently used for 

assessing the quality of the produce: TSS, DM, AA, OP, total chlorophyll, carotenoid, 

texture (Coefficient of elasticity of the compression and the rupture tests) 
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c. identifying the non-destructive methods that can be used for measuring the selected 

properties of the produce: relaxation test, ultrasound, VIS-NIR, SWIR and hyperspectral 

measurements 

d. acquiring data on the produce with the selected non-destructive sensors and reference 

methods: measurements during growing and maturation 

e. assessing the level of redundancy or complementarity in the non-destructive sensors: PLS 

models 

f. selecting and applying the proper multisensor fusion method: PLS, PCR, Kernel, SVM  

g. evaluating the sensor fusion system developed by comparing its performance to the 

reference methods: SWS 

h. acceptance, rejection or improvement of the proposed sensor fusion method. 

 

Model evaluation was conducted for comparison of a single-sensor system to a multisensor 

system. In this step SWS index was applied to evaluate the performance of the single and 

multisensor systems. Performance is defined as the ability of the fusion model to provide a better 

prediction of the properties of the produce than that made by a single sensor. 

In this work fusion was realized in three levels: 

1. Fusion of the NDT parameters 

2. Combination of the cultivars 

3. Fusion of the DT parameters 
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5. RESULTS AND DISCUSSION 

5.1. Defining the maturity stages 

In defining the three maturity stages the changes of weight (Fig. 20) and total soluble solid (Fig. 

21) were considered (Nilsen et al., 1991). On that basis the premature stage lasted until the 

pepper fruit‘s weight and TSS significantly did not increase, the green stage encompassed the 

period during which both TSS and weight are changing, and the mature stage began when the 

weight and the TSS significantly do not increase anymore. Relating the results to these three 

basic growth stages - premature (<54
th

 DAA), green (60
th

 – 67
th

 DAA) and mature (>74
th

 DAA) - 

it enabled us to highlight the characteristic trends. 

 

  

Fig. 20 Change of TSS with error bars of 95% 

confidence interval for ‗Ever Green‘, 

‗No.117‘, and ‗Celica‘ bell pepper cultivars 

Fig. 21 Change of weight with error bars of 

95% confidence interval for ‗Ever Green‘, 

‗No.117‘, and ‗Celica‘ bell pepper cultivars 

5.2. Results of the physiological attribute changes in pepper fruits during growth 

and maturation 

5.2.1. Changes of TSS during growth and maturation 

Total Soluble solid levels in pepper depend on several factors, including cultivar, season, and 

maturity stage. Changes of the measured TSS in the three bell pepper cultivars are shown in Fig. 

22 with the mean value and 95% confidence interval. The level of TSS was varied for all three 

cultivars and during growing season from 3.2 to 9.3 Brix %. For all three cultivars the TSS 

started a sharp increase at the 54 days after anthesis (DAA). Prominent increase in TSS occurred 

in case of ‗No.117‘ cv. as well as this cv. reached the highest average TSS content (8.3 Brix%) 
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to the 88
th

 DAA. The ‗Ever Green‘ and ‗Celica‘ cultivars alternately accumulated in soluble 

solids, by the 88
th

 DAA their average TSS content were 7.3 and 7.9 Brix%, respectively. The 

TSS increased during the whole ripening process, in agreement with previous studies (Tadesse et 

al, 2001, Penchaiya et al., 2009). The changes of TSS for all three cultivars were sigmoid like. 
 

 
Fig. 22 Change of TSS with error bars of 95% confidence interval during 

ripening of three cultivars of bell peppers 
 

Multiple comparison tests were performed to analyze the differences in TSS between the three 

cultivars during the defined three maturity stages (chapter 5.1). Table 7 presents results of 

multiple comparison tests for ‗Ever Green‘ ‗No.117‘ and ‗Celica‘ cultivars with the mean values 

and standard error of the measured TSS. Significant difference was found for TSS among the 

cvs. in the premature stage.  

 

  
Table 7 Result of the multiple comparison 

tests for TSS with the mean values and 

standard error. Means with the same letter 

do not differ significantly (95%). 

Fig. 23 Change of TSS with error bars of 95% 

confidence interval during premature, green and 

mature stages of ‗Ever Green‘, ‗No.117‘, and 

‗Celica‘ bell pepper cultivars 
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Consistently in the green and mature stages the ‗No.117‘ cv. deferred significantly from the 

other cvs. In that manner, Fig. 23 demonstrates the changes of average TSS during the three 

maturity stages, with error bar of 95% confidence intervals for ‗Ever Green‘, ‗No.117‘ and 

‗Celica‘ cultivars. Throughout the three maturity stages the ‗No.117‘ cv. distinctively increased 

in TSS content. 

5.2.2. Changes of DM during growth and maturation 

The level of dry matter just as the TSS depends on several factors, including cultivar, season, and 

maturity stage. Changes of the DM in the three bell pepper cultivars are shown in Fig. 24 with 

the mean value and 95% confidence interval. The level of DM was varied for all three cultivars 

and during growing season from 4.3 to 10.7 %. The DM gradually increased through the whole 

period of growth especially after the 47
th

 DAA. Prominent increase occurred in case of ‗No.117‘ 

and ‗Ever Green‘ cvs. during the period of 47-60
th

 DAA, while the ‗Celica‘ cv. sharply increased 

in DM from the 60
th

 to the 67
th

 DAA. The highest average DM content (9.7 %) was reached by 

‗No.117‘ cv., at the 88
th

 DAA, followed by ‗Celica‘ and ‗Ever Green‘ with 9.5 % and 9.1 %, 

respectively. Similarly to TSS, DM also took a sigmoid trend in the course of DAA. The level of 

DM and its increase in the pepper cultivars studied in this paper is in agreement with the ranges 

described in the literature (Marcelis and Baan Hofman-Eijer, 1995, Roura et.al., 2001). 

 

 
Fig. 24 Change of DM with error bars of 95% confidence interval 

during ripening of three cultivars of bell peppers 
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DM change. Multiple comparison tests were performed to analyze the differences in DM 
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measured DM. ‗Celica‘ was found to be significantly different from the other two cvs. in the 

premature stage, while consistently in the green and mature stages the ‗No.117‘ cv. deferred 

significantly from the other two cvs. In that manner, Fig. 25 demonstrates the changes of average 

TSS during the three maturity stages, with error bar of 95% confidence intervals for ‗Ever 

Green‘, ‗No.117‘ and ‗Celica‘ cultivars. ‗No.117‘ cv. distinctively increased in DM from the 

premature stage to the green stage while for the ‗Ever Green‘ and ‗Celica‘ cvs. this change 

occurred from the green stage to the mature stage. 

 

  
Table 8 Result of the multiple 

comparison tests for DM with the mean 

values and standard error. Means with the 

same letter do not differ significantly 

(95%). 

Fig. 25 Change of DM with error bars of 95% 

confidence interval during premature, green and 

mature stages of ‗Ever Green‘, ‗No.117‘, and 

‗Celica‘ bell pepper cultivars 

5.2.3. Changes of osmotic potential during growth and maturation 

The sigmoid trend of OP change during fruit development is very similar to the changes of TSS. 

Fig. 26 shows the changes of the measured OP in the three bell pepper cultivars with the mean 

value and error bars of 95% confidence interval. The level of OP was varied for all three 

cultivars and during growing season from 170 to 677 osmol/kg. For ‗No.117‘ cv. the OP started 

a sharp increase at the 54
th

 trough 67
th

 DAA; while for ‗Ever Green‘ it was moderate increase 

until the 67
th

 DAA and then prominently accelerated the OP. In case of ‗Celica‘ cv. the OP 

almost did not change until the 60
th

 DAA, than it greatly increased at the 67
th

 DAA and kept its 

moderate growth until the 88
th

 DAA. The highest average OP (554 osmol/kg) was reached by the 

‗No.117‘ cv. followed by ‗Celica‘ and ‗Ever Green‘ cvs., with 545 and 515 osmol/kg OP, 

respectively.  

Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of 

OP change. Multiple comparison tests were performed to analyze the differences in TSS between 
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the three cultivars during growing and maturation. Table 9 presents results of multiple 

comparison tests for ‗Ever Green‘, No. 117 and ‗Celica‘ cvs, with the mean values and standard 

error of the measured OP. In the premature stage the average OP for ‗Celica‘ cv found to be 

significantly lower compare to the other two the cvs. Consistently in the green and mature stages 

the ‗No.117‘ cv. the average OP was significantly higher than the average OP in the other two 

cvs. In that manner, Fig. 27 demonstrates the changes of average OP during the three maturity 

stages, with error bar of 95% confidence intervals for ‗Ever Green‘, No. 117 and ‗Celica‘ 

cultivars. Throughout the green and mature stages the ‗No.117‘ cv. distinctively increased in OP. 

 

 
Fig. 26 Change of OP with error bars of 95% confidence interval during 

ripening of three cultivars of bell peppers 
 

  
Table 9 Result of the multiple comparison 

tests for OP with the mean values and 

standard error. Means with the same letter 

do not differ significantly (95%). 

Fig. 27 Change of OP with error bars of 95% 

confidence interval during premature, green and 

mature stages of ‗Ever Green‘, ‗No.117‘, and 

‗Celica‘ bell pepper cultivars 
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Premature Ever Green 263  a

No.117 269 ± 4.7 a

Celica 244 ± 4.7 b

Green Ever Green 322  a
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Celica 356 ± 12.4 a

Mature Ever Green 482  a
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Celica 491 ± 7.7 a

0

100

200

300

400

500

600

Premature Green Mature

O
sm

o
ti

c 
P

o
te

n
ti

al
, m

O
sm

 k
g

 H
2
O

-1

Maturity

Ever Green No.117 Celica



61 

 

5.2.4. Changes of vitamin C during growth and maturation 

The vitamin C levels in vegetables depend on several factors, including cultivar, season, and 

maturity stage. Changes of the measured ascorbic acid concentration in the three bell pepper 

cultivars are shown in Fig. 28 with the mean value and 95% confidence interval. The level of 

vitamin C was varied from 1.3 to 169.5 mg/100g fresh weight (FW). Differences were detected 

among the examined cultivars. The measurements with DCIP titration showed increasing 

vitamin C concentration during the ripening process, in agreement with previous studies that 

reported an increase in ascorbic acid concentration during pepper maturation (Marin et al, 2004, 

Osuna-Garcia et al., 1998, Howard et al., 2000) and decrease at a certain point in the ripe stage 

(Orban et al., 2011). The vitamin C content reaches its maximum around the 67-74
th

 DAA for all 

three cultivars. 

 

 

Fig. 28 Change of ascorbic acid contents with error bars of 95% confidence interval during 

ripening of three cultivars of bell peppers 
 

Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of 

vitamin C change.  Multiple comparison tests were performed to analyze the differences in 

vitamin C content between the three cultivars during growing and maturation. Table 10 presents 

results of multiple comparison tests for ‗Ever Green‘ No. 117 and ‗Celica‘ cultivars with the 

mean values and 95% confidence interval of the measured ascorbic acid concentration. 

Significant difference was found in vitamin C concentration during the growing stages only for 

the ‗Celica‘ variety. In that manner, the results in Fig. 29 shows that the ‗Ever Green‘ and No. 

117 cultivars are do not differ significantly in vitamin C content, while the ‗Celica‘ variety is 

lower all through the growing period relatively to the other varieties by 118%, 25% and 31% in 

the premature, green and mature stages, respectively. Furthermore, one would expect that red 
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and yellow cultivars would have yielded higher concentration of vitamin C, but the result 

demonstrates that external appearance might not be sufficient enough to estimate the content of 

ascorbic acid. 

 

 

 
Table 10 Result of the multiple comparison 

tests for ascorbic acid concentration with the 

mean values and 95% confidence interval. 

Means with the same letter do not differ 

significantly (95%). 

Fig. 29 Change of ascorbic acid contents with 

error bars of 95% confidence interval during 

premature, green and mature stages of ‗Ever 

Green‘, ‗No.117‘, and ‗Celica‘ bell pepper 

cultivars 

5.2.5. Changes of total chlorophyll and carotenoid content during growth and 

maturation 

The chlorophyll and carotenoid levels in vegetables depend on several factors, including cultivar, 

season, but mostly the stage of maturity even in the stay green variety. Changes of the measured 

total chlorophyll and carotenoid content in the three bell pepper cultivars are shown in Fig. 31-32 

with the mean value and 95% confidence interval. The level of total chlorophyll content was 

varied from 0.0004 to 0.1163 mg/g fresh weight (FW) while the carotenoid concentration felt 

between 0.0024 and 0.27 mg/g FW. Differences were detected among the examined cultivars. 

The total chlorophyll content drastically decreased during the ripening process in the ‗Celica‘ 

and in the ‗No.117‘ cultivars as the fruits changed colour from green to their cultivar 

characteristic colour, while for the ‗Ever Green‘ variety the total chlorophyll content only 

slightly decreased. The colour development started first in the ‗No.117‘ yellow cultivar as it can 

be observed in the 60
th

 DAA (Fig. 31). Interestingly the gradual decrement of the total 

chlorophyll content stared already on the 54
th

 DAA foretelling the coming colour change (Fig. 

32) while no visible colour change can be observed on the pepper fruits. Meanwhile the 

carotenoid content did not changed notably. The measured carotenoid concentration only started 

to increase after the chlorophyll concentration notably decreased.  

 

Maturity stage Cultivar Ascorbic acid, mg/100g

Premature Ever Green 62.08 ± 10.81 a

No.117 66.95 ± 10.11 a

Celica 28.53 ± 10.11 b

Green Ever Green 110.27 ± 12.25 a

No.117 107.15 ± 12.25 a

Celica 88.19 ± 12.25 b

Mature Ever Green 87.9 ± 10.61 a

No.117 87.89 ± 10.67 a

Celica 67.01 ± 10.68 b
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Fig. 30 Change of total chlorophyll contents with error bars of 95% confidence interval during 

ripening of three cultivars of bell peppers 

 
Fig. 31 Change of carotenoid contents with error bars of 95% confidence interval during 

ripening of three cultivars of bell peppers 

 
Fig. 32 Colour development of the three bell pepper varieties during the ripening process Fig. 25 

Change of carotenoid contents with error bars of 95% confidence interval during ripening of 

three cultivars of bell peppers 
 

The total chlorophyll change in the ‗Celica‘ variety is much more radical than in the yellow 

(‗No.117‘) bell peppers, but in both cases sigmoid trend of change could be observed. From the 

60
th

 to the 67
th

 DAA the average chlorophyll concentration dropped 6 times while the carotenoid 

concentration increment was 3 times. As for the ‗Ever Green‘ cultivar the colour remains green 

in the whole process of ripening. While the colour is consistent the total chlorophyll 
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concentration significantly dropped after the 54
th

 DAA and remained on the level between 0.07-

0.08 mg/g. Furthermore the carotenoid content significantly starts to increase only after the 67
th

 

DAA. At the full ripening stage as it was expected, the total chlorophyll content of the red 

(‗Celica‘) and yellow (‗No.117‘) peppers basically vanishes and in the green variety (‗Ever 

Green‘) it remains on high level. Considering the final carotenoid levels in the fully ripened 

fruits the ‗Celica‘ reached the highest level (average 0.185 mg/g), half of that amount 

accumulated in the ‗Ever Green‘ variety and surprisingly in the fruits of the ‗No.117‘ yellow 

cultivar stored up the lease amount of carotenoids, its concentration was only the third of the red 

bell peppers. The ‗Ever Green‘ variety turned out particularly valuable as it contains high 

concentration of chlorophyll along with considerable amount of carotenoids. The condition that 

the fruits remain green coloured even though the presence of carotenoids comes from the 

attribute (feature, property) that the carotenoids are masked by the chlorophylls. 

 

Table 11 Result of the multiple comparison tests 

for total chlorophyll content with the mean 

values and standard error. Means with the same 

letter do not differ significantly (95%). 

Table 12 Result of the multiple comparison 

tests for carotenoid content with the mean 

values and standard error. Means with the 

same letter do not differ significantly (95%). 

 
 

 
 

  
Fig. 33 Change of total chlorophyll contents 

with error bars of 95% confidence interval 

during premature, green and mature stages of 

‗Ever Green‘, ‗No.117‘, and ‗Celica‘ bell pepper 

cultivars 

Fig. 34 Change of carotenoid contents with 

error bars of 95% confidence interval during 

premature, green and mature stages of ‗Ever 

Green‘, ‗No.117‘, and ‗Celica‘ bell pepper 

cultivars 

Matutity 

stage
Cultivar

Total Chlorophyll, mg/g 

fresh weight

Premature Ever Green 0.089  a

No.117 0.0487 ± 0.002 b

Celica 0.0665 ± 0.002 c

Green Ever Green 0.0765 ± 0.003 a

No.117 0.0111 ± 0.003 b

Celica 0.0337 ± 0.003 c

Mature Ever Green 0.0714 ± 0.001 a

No.117 0.0013 ± 0.001 b

Celica 0.0024 ± 0.001 b

Matutity 

stage
Cultivar

Carotenoid, mg/g fresh 

weight

Premature Ever Green 0.017  5.3e-4 a

No.117 0.013 ± 5.3e-4 b

Celica 0.015 ± 5.3e-4 a

Green Ever Green 0.022 ± 2.6e-3 a

No.117 0.028 ± 2.6e-3 ab

Celica 0.032 ± 2.6e-3 bc 

Mature Ever Green 0.094 ± 6.3e-3 a 

No.117 0.054 ± 6.3e-3 b

Celica 0.11 ± 6.3e-3 a
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Determination of the maturity stages described in chapter 5.1 allows emphasizing the trends of 

chlorophyll and carotenoid change. Multiple comparison tests were performed to analyse the 

differences in total chlorophyll content between the three cultivars during growing and 

maturation. Table 11 and 12 present (Fig. 33-34) the results of multiple comparison tests for 

‗Ever Green‘ ‗No. 117‘ and ‗Celica‘ cultivars with the mean values and standard error of the 

measured total chlorophyll and carotenoid content. Significant difference was found in total 

chlorophyll concentration during the premature and green mature stages for all three bell pepper 

varieties; while the difference of chlorophyll content in the mature stage for the ‗No.117‘ and 

‗Celica‘ varieties are insignificant. Considering the carotenoid concentration the ‗Celica‘ and 

‗Ever Green‘ cultivars are significantly different from the ‗No.117‘ variety in the premature and 

mature stages while in the green mature stage the ‗Celica‘ differ significantly from the ‗Ever 

Green‘ and the ‗No.117‘ notably not vary from the other cultivars. Consequently it can be 

concluded that the external appearance might not be sufficient enough to estimate the internal 

chlorophyll and carotenoid composition of different cultivars of bell pepper fruits. 

5.3. Spectral Analysis 

Figure 35 and 36 show the averaged reflectance spectra‘s of the 34
th

 (1
st
 pick) and 88

th
 (9

th
 pick) 

DAA harvested pepper fruits from the VIS-NIR and hyperspectral measurements, respectively. 

At the 34
th

 DAA the reflectance spectra‘s of the three pepper cultivars look alike, they are 

dominated by the characteristic spectral signatures of chlorophylls. While at the 88
th

 DAA the 

three pepper cultivars are different from one another as their pigment composition changes and 

their typical colour develops to its variety specific colour.  

In the case of SWIR range (Fig. 37) the different cultivars in the observed maturity stages does 

not result remarkable change in the spectral signature. Water bands at 970 nm, 1200 nm and 

1400 nm represent a clear reflectance signature in all the spectra‘s. Moreover, sugar probably 

influences the peak at 1700 nm. The first derivatives of both spectral ranges distinguish the 

signature bands as described above. 

Comparisons were made among the models of regression analysis of the reflectance spectra (R), 

its first derivative (D1R), the log(1/R) and its first (D1log(1/R)) and second derivative 

(D2log(1/R)). Figures 38-40 show an example (averaged reflectance spectra‘s of the1
st
 harvest 

‗Celica‘ cv.) for the spectral pre-treatments in the VIS-NIR, hyperspectral and SWIR spectral 

range, respectively. 
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Fig. 35 Averaged VIS-NIR reflectance spectra of the 1

st
 and 9

th
 harvest 'Celica', 'Ever Green' and 

'No.117' cultivars respectively. 

 
Fig. 36 Averaged hyper cube reflectance spectra of the 1

st
 and 9

th
 harvest 'Celica', 'Ever Green' 

and 'No.117' cultivars respectively. 

 
Fig. 37 Averaged SWIR reflectance spectra of the 1

st
 and 9

th
 harvest 'Celica', 'Ever Green' and 

'No.117' cultivars respectively 
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Fig. 38 Averaged VIS-NIR pre-processed 

reflectance spectra of the 1
st
 harvest of 

'Celica' cultivar. 

Fig. 39 Averaged hyper cube pre-processed 

reflectance spectra of the 1
st
 harvest of 

'Celica' cultivar. 
 

 
Fig. 40 Averaged SWIR pre-processed reflectance spectra of the 1

st
 harvest of 'Celica' cultivar. 

5.4. Cross correlation analysis among the destructively measured reference 

parameters 

For examination of the relationship among the destructively tested reference parameters, 

matrices of correlation coefficients were calculated for each pepper variety. The compared 

variables are: DAA, TSS, DM, AA (ascorbic acid), TChl (total chlorophyll), Car (carotenoid), 

OP (osmotic potential), CECompression, IntCopmression, CERupture, and Weight of the pepper sample. 
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Results of the correlation test are shown in Table 13 for ‗Ever Green‘, ‗No.117‘ and ‗Celica‘ 

cvs., respectively.  

Table 13 Covariance matrix among reference parameters for ‗Ever Green‘, ‗No.117‘ and 

‗Celica‘ cvs., respectively with 95% significance level. 

 

 

 

 

 

 

 

For all three cultivars strong and good correlation was found among DAA, TSS, DM, OP, 

carotenoid, and total chlorophyll content. Moderate and good correlation was found among the 

coefficient of elasticity of the rupture test and the other reference parameters. The coefficient of 

elasticity of the compression test gave moderate correlation with the DAA and total chlorophyll 

for all three pepper varieties, and only in case of the ‗Ever Green‘ cv. it correlated moderately 

with the other reference parameters. In case of the other two cultivars it resulted poor correlation. 

The change of the samples weight during the growth has moderate to poor correlation to the 

other reference parameters. The index calculated from the area under the compression curve did 

not show any correlation with the other reference parameters. Consequently, since it does not 

Ever Green DAA TSS DM AA TChl Car OP CECompression IntCompression CERupture Weight

DAA 1

TSS 0.90 1

DM 0.86 0.97 1

AA 0.28 0.32 0.27 1

TChl -0.55 -0.45 -0.40 -0.11 1

Car 0.81 0.89 0.91 0.08 -0.32 1

OP 0.84 0.91 0.92 0.20 -0.42 0.88 1

CECompression -0.56 -0.55 -0.49 -0.31 0.40 -0.46 -0.50 1

IntCompression 0.00 -0.02 -0.03 -0.11 0.15 0.00 0.00 0.00 1

CERupture -0.47 -0.55 -0.52 -0.29 0.28 -0.46 -0.47 0.44 0.21 1

Weight 0.58 0.41 0.32 0.48 -0.41 0.21 0.30 -0.47 0.02 -0.27 1

Absolut value of 

the Correlation 

Coefficient

1-0.8

0.8-0.6

0.6-0.4

0.4-0.2

0.2-0

No.117 DAA TSS DM AA TChl Car OP CECompression IntCompression CERupture Weight

DAA 1

TSS 0.90 1

DM 0.88 0.98 1

AA 0.57 0.61 0.59 1

TChl -0.82 -0.88 -0.86 -0.70 1

Car 0.80 0.84 0.82 0.43 -0.68 1

OP 0.87 0.94 0.93 0.59 -0.85 0.75 1

CECompression -0.39 -0.36 -0.34 -0.38 0.43 -0.31 -0.33 1

IntCompression -0.13 -0.16 -0.16 -0.17 0.11 -0.12 -0.16 -0.04 1

CERupture -0.51 -0.57 -0.56 -0.45 0.63 -0.47 -0.55 0.43 0.12 1

Weight 0.32 0.15 0.14 0.28 -0.24 0.04 0.19 -0.33 0.21 -0.21 1

Absolut value of 

the Correlation 

Coefficient

1-0.8

0.8-0.6

0.6-0.4

0.4-0.2

0.2-0

Celica DAA TSS DM AA TChl Car OP CECompression IntCompression CERupture Weight

DAA 1

TSS 0.89 1

DM 0.88 0.98 1

AA 0.56 0.58 0.59 1

TChl -0.86 -0.89 -0.86 -0.52 1

Car 0.69 0.78 0.80 0.33 -0.60 1

OP 0.87 0.95 0.93 0.55 -0.88 0.76 1

CECompression -0.43 -0.39 -0.37 -0.29 0.40 -0.20 -0.36 1

IntCompression 0.07 0.02 0.01 -0.05 -0.02 0.00 0.00 -0.07 1

CERupture -0.67 -0.67 -0.66 -0.63 0.66 -0.45 -0.67 0.33 0.09 1

Weight 0.51 0.31 0.31 0.50 -0.34 0.14 0.29 -0.23 0.10 -0.41 1

Absolut value of 

the Correlation 

Coefficient

1-0.8

0.8-0.6

0.6-0.4

0.4-0.2

0.2-0
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show any trend in the advancement with DAA, this parameter will be disregarded in the further 

analysis. 

5.5. Correlation and regression analysis 

5.5.1. Correlation and regression analysis for ascorbic acid and NDT methods 

5.1.1.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

Table 14 shows the results of cross correlation analysis for ascorbic acid with the calculated 

indices of relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity 

from relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic 

attenuation. The resulted coefficients of correlation (r) present poor correlation between the AA 

and the correlated parameters. Exception is the calculated coefficient of elasticity from the 

relaxation test which indicates 25 % common variance. 

 

Table 14 Covariance matrix between ascorbic acid and non-destructive measurements for 'Ever 

Green', 'No.117', and 'Celica' cultivars, respectively, with, 95% significance level. 

 

5.1.1.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for ascorbic acid were 53.7%, 35.6% and 60.8% for 'Ever Green', 

'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations found to be 

poor between ascorbic acid-total soluble solid (0.27), ascorbic acid-dry matter (average: 0.26) 

and ascorbic acid-total chlorophyll content (average: 0.25). Relatively high coefficient of 

variance and low squared intercorrelation indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable. 

It is generally required of a robust PLS regression model to have as few factors as possible and 

the lowest possible error values of calibration and validation (Bjorsvik and Martens, 1992). 

For all three cultivars, Table 15 presents the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

Ascorbic Acid Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.06 0.19 0.49 0.15 0.19 0.19 0.31

No.117 0.34 0.26 0.20 0.39 0.41 0.45 0.35

Celica 0.15 0.04 0.43 0.34 0.11 0.45 0.41
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parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

6), higher r
2 

(average, 0.71), lower RMSEC (average, 9.77 mg per 100 g), lower RMSECV 

(average, 16.48 mg per 100 g), higher RPD (average, 2.11) and higher SWS (average, 0.6). 

Whereas the hyperspectral models resulted the lower ratio of RMSECV and RMSEC (average, 

1.14).  

Table 15 Performance measures of PLS regression models for ascorbic acid, using data from the 

VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

PLS
Ascorbic acid, 

mg/100g

Statistical 

parameter
LV r

2 RMSEC RMSECV RPD
RMSECV/

RMSEC
SWS

Ever Green R 9 0.79 8.7 15.2 2.1 1.8 0.72

log(1/R) 8 0.75 11.1 15.9 2.0 1.4 0.66

D1R 2 0.76 13.0 16.3 2.0 1.3 0.66

D1log(1/R) 4 0.73 8.2 16.3 2.0 2.0 0.60

D2log(1/R) 3 0.73 9.9 16.5 1.9 1.7 0.60

No.117 R 11 0.67 6.3 16.9 2.3 2.7 0.45

log(1/R) 10 0.64 8.8 17.8 2.2 2.0 0.39

D1R 4 0.62 9.5 17.3 2.2 1.8 0.52

D1log(1/R) 6 0.64 10.5 18.1 2.1 1.7 0.41

D2log(1/R) 4 0.57 8.1 18.2 2.1 2.3 0.35

Celica R 10 0.77 8.7 15.3 2.2 1.8 0.72

log(1/R) 8 0.78 11.1 15.1 2.2 1.4 0.79

D1R 5 0.76 7.6 15.6 2.2 2.0 0.71

D1log(1/R) 3 0.74 12.1 16.4 2.1 1.4 0.66

D2log(1/R) 2 0.74 12.9 16.1 2.1 1.2 0.72

Ever Green R 8 0.73 15.2 17.0 1.9 1.1 0.52

log(1/R) 8 0.73 15.1 17.1 1.9 1.1 0.51

D1R 4 0.72 15.0 16.7 1.9 1.1 0.59

D1log(1/R) 7 0.75 13.1 16.7 1.9 1.3 0.57

D2log(1/R) 2 0.68 15.7 17.6 1.8 1.1 0.48

No.117 R 7 0.58 15.9 17.4 2.2 1.1 0.50

log(1/R) 7 0.55 15.4 17.3 2.2 1.1 0.50

D1R 3 0.51 17.0 17.8 2.2 1.0 0.46

D1log(1/R) 5 0.54 15.8 18.1 2.1 1.1 0.41

D2log(1/R) 5 0.56 15.5 18.5 2.1 1.2 0.37

Celica R 10 0.70 14.3 16.9 2.0 1.2 0.52

log(1/R) 10 0.73 13.9 16.1 2.1 1.2 0.63

D1R 8 0.72 14.4 16.0 2.1 1.1 0.66

D1log(1/R) 6 0.69 15.5 17.3 2.0 1.1 0.51

D2log(1/R) 8 0.70 14.6 17.6 1.9 1.2 0.45

Ever Green R 8 0.75 12.6 15.7 2.0 1.2 0.69

log(1/R) 9 0.77 11.7 16.0 2.0 1.4 0.64

D1R 9 0.70 13.2 17.5 1.8 1.3 0.44

D1log(1/R) 9 0.77 11.5 16.3 2.0 1.4 0.60

D2log(1/R) 10 0.77 10.9 16.4 1.9 1.5 0.58

No.117 R 10 0.70 11.2 16.1 2.4 1.4 0.67

log(1/R) 9 0.70 12.0 16.2 2.4 1.4 0.66

D1R 10 0.68 12.3 16.8 2.3 1.4 0.57

D1log(1/R) 7 0.63 14.7 18.6 2.1 1.3 0.36

D2log(1/R) 10 0.62 12.3 18.7 2.1 1.5 0.30

Celica R 8 0.71 14.2 17.1 2.0 1.2 0.51

log(1/R) 7 0.65 15.8 18.7 1.8 1.2 0.30

D1R 12 0.70 14.4 18.9 1.8 1.3 0.26

D1log(1/R) 8 0.65 15.7 18.4 1.8 1.2 0.33

D2log(1/R) 11 0.70 11.9 18.9 1.8 1.6 0.24
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In the VIS-NIR range, for 'Ever Green' the reflectance (R), for 'No.117' the 1
st
 derivative of 

reflectance (D1R), whereas for cv. 'Celica' the D2log(1/R) gave the highest SWS and therefore 

the best model. The relevant SWS indices were 0.72, 0.52, and 0.79 for 'Ever Green', 'No. 117' 

and 'Celica', respectively. 

By the hyperspectral imaging for 'Ever Green' and 'Celica' cultivars the 1
st
 derivative of 

reflectance (D1R), while for 'No.117' cv. the reflectance (R) and log(1/R), resulted the highest 

SWS and therefore the best model. The relevant SWS indices were 0.59, 0.66, and 0.50 for 'Ever 

Green', 'Celica' and, 'No. 117' respectively. 

In the SWIR spectral range the best results were obtained with the models based on reflectance 

spectra (R) for all three cultivars, with SWS 0.66, 0.67 and 0.51 for 'Ever Green', 'Celica' and, 

'No. 117' respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted VIS-NIR spectral measurements to yield stronger correlation to predict vitamin C 

content in 'Ever Green' and 'Celica' bell pepper cultivars while SWIR spectral measurement was 

found best for 'No. 117' variety. As a matter of fact, efficient models were achieved in the VIS-

NIR range for 'Ever Green' cv., which retains its green colour even in the fully ripe stage. It 

means that the ascorbic acid change during the growth and maturation is not indirectly correlated 

with the spectral information but direct correlation is presumed. 

  

Fig. 41 Scatter plot of ascorbic acid content 

for 'Ever Green' variety, as predicted by PLS 

regression model and as measured in the 

laboratory. The PLS model was built with 

the reflectance (R) of the spectral data in the 

VIS-NIR range. 

Fig. 42 Scatter plot of ascorbic acid content 

for 'Ever Green' variety, as predicted by PLS 

regression model and as measured in the 

laboratory. The PLS model was built with the 

1
st
 derivative (D1R) of the spectral data from 

the hyperspectral imaging. 
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PLSR prediction and measured values for cv. 'Ever Green' are shown in Figs. 41-43, as examples 

for VIS-NIR, hyperspectral imaging and SWIR, respectively. In all the three figures, the ordinate 

and abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 41) a 

model with nine LVs obtained r
2
 = 0.79 and RMSECV = 15.2, for the hyperspectral imaging 

(Fig. 42) a model with four LVs obtained r
2
 = 0.72 and RMSECV = 16.7, whereas for SWIR 

(Fig. 43) eight LVs were needed to achieve r
2
 = 0.75 and RMSECV = 15.7. 

 

Fig. 43 Scatter plot of ascorbic acid content for 'Ever Green' variety, as predicted by PLS 

regression model and as measured in the laboratory. The PLS model was built with the 

reflectance (R) of the spectral data in the SWIR range. 
 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 44 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. ‗Ever Green‘. Three wavelength ranges are the most significant 

in the model: 477–530, 670–695, and 870–950 nm. The ranges 477-530 and 670-695 nm are 

related to the chlorophyll a and b and carotenoid contents; the range 870-950 nm relates to 

internal chemical composition (C-H stretch) and texture. Based on the VIP scores the significant 

wavelengths in the visible range were about half as important as those above 870 nm. Thus, the 

relative significance of the wavelength range above 870 nm suggests that the textural and 

chemical composition have greater influence on the relationship between ascorbic acid content 

and spectral response of bell pepper fruits than the colour information in the spectra. 

Figure 45 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

‗Ever Green‘. Two main wavelength ranges were found that significantly influenced the 

regression model: the range of 840–910 nm was found to be meaningfully related to texture and 

chemical composition, as in the VIS-NIR model; the range of 1350–1800 nm is associated with 
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the vibration modes of the first overtones of C-H and O-H bond stretching. These chemical 

bonds are found in the molecules of ascorbic acid, water.  

 
Fig. 44 VIP Scores for reflectance (R) spectra (VIS-NIR) of 'Ever Green' cultivar 

 
Fig. 45 VIP Scores for reflectance (R) spectra (SWIR) of 'Ever Green' cultivar 

5.5.2. Correlation and regression analysis for total chlorophyll content and NDT 

methods 

5.5.2.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

The results of cross correlation analysis for total chlorophyll with the calculated indices of 

relaxation test (Rate of relaxation, Remaining deformation, coefficient of elasticity from 

relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation 

shown in table 16. 

The highest coefficient of correlation (r) was found for 'No. 117' with the parameters L, C, h 

from the colour measurements, as well as for 'Celica' cv. with C and h, whereas h indicated only 

25 % of common variance in case of 'Ever Green' cv. Ultrasonic attenuation showed 20-25 % of 
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common variance in case of 'No. 117' and 'Celica' cultivars, but very poorly correlated with the 

chlorophyll content in case of the 'Ever Green' cv. Likewise correlation showed in case of 

coefficient of elasticity from the relaxation test and chlorophyll content for all three cultivars. 

Moderate correlation of coefficient was found between the rate of relaxation, remaining 

deformation and chlorophyll content in case of 'No. 117' and 'Celica' cultivars. 

 

Table 16 Covariance matrix between total chlorophyll and non-destructive measurements for 

'Ever Green', 'No.117', and 'Celica' cultivars, respectively, with 95% significance level. 

 

5.5.2.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for total chlorophyll content were 19.1%, 101.6% and 85.2% for 

'Ever Green', 'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations 

found to be poor between total chlorophyll-total soluble solid (0.55), total chlorophyll-dry matter 

(average: 0.50) and total chlorophyll-carotenoid content (average: 0.28). Relatively high 

coefficient of variance and relatively low squared intercorrelation indicate that prediction by the 

VIS-NIR, SWIR and hyperspectral imaging method is applicable. 

Table 17 presents for all three cultivars, the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR and hyperspectral models were obtained with 

fewer LVs (average, 6), whereas SWIR models achieved higher r
2 

(average, 0.85), lower 

RMSECV (average, 0.0068 mg/g), higher RPD (average, 3.42) and higher SWS (average, 0.62). 

Whereas hyperspectral models resulted lower RMSECV/RMSEC (average, 1.11), with average 

SWS: 0.62.  

In the VIS-NIR range, for 'Ever Green' the reflectance (R), for 'No.117' the 1
st
 derivative of 

reflectance (D1R), whereas for cv. 'Celica' the log(1/R) and 1
st
 derivative of reflectance (D1R) 

Total Chlorophyll Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.19 0.18 0.15 0.06 0.15 0.55 0.25

No.117 0.65 0.51 0.01 0.90 0.90 0.91 0.43

Celica 0.46 0.33 0.20 0.06 0.70 0.89 0.45
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gave the highest SWS and therefore the best model. The relevant SWS indices were 0.51, 0.65, 

and 0.59 for 'Ever Green', 'No. 117' and 'Celica', respectively. 

 

Table 17 Performance measures of PLS regression models for total chlorophyll content, using 

data from the VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper 

varieties are presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

 

PLS Total Chlorophyll, mg/g
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 6 0.60 0.007 0.008 1.7 1.2 0.51

log(1/R) 7 0.62 0.007 0.009 1.6 1.3 0.49

D1R 5 0.61 0.003 0.008 1.7 2.7 0.37

D1log(1/R) 5 0.62 0.004 0.009 1.6 2.5 0.38

D2log(1/R) 2 0.32 0.008 0.010 1.5 1.2 0.46

No.117 R 9 0.95 0.003 0.005 4.2 1.9 0.61

log(1/R) 7 0.91 0.005 0.007 3.4 1.3 0.63

D1R 5 0.95 0.003 0.005 4.2 2.0 0.65

D1log(1/R) 5 0.94 0.003 0.006 4.1 2.1 0.63

D2log(1/R) 3 0.90 0.005 0.007 3.2 1.5 0.64

Celica R 9 0.92 0.005 0.008 3.4 1.5 0.56

log(1/R) 9 0.93 0.005 0.008 3.7 1.5 0.59

D1R 5 0.93 0.004 0.008 3.6 1.9 0.59

D1log(1/R) 5 0.92 0.004 0.008 3.3 2.0 0.56

D2log(1/R) 3 0.87 0.006 0.010 2.8 1.5 0.58

Ever Green R 8 0.40 0.009 0.010 1.4 1.1 0.41

log(1/R) 9 0.43 0.009 0.010 1.4 1.1 0.40

D1R 5 0.44 0.009 0.010 1.4 1.1 0.46

D1log(1/R) 6 0.44 0.009 0.010 1.4 1.1 0.44

D2log(1/R) 5 0.48 0.008 0.010 1.4 1.3 0.45

No.117 R 5 0.95 0.005 0.005 4.3 1.1 0.74

log(1/R) 5 0.95 0.005 0.005 4.5 1.1 0.74

D1R 5 0.95 0.005 0.005 4.4 1.1 0.74

D1log(1/R) 5 0.95 0.005 0.005 4.4 1.1 0.74

D2log(1/R) 3 0.95 0.005 0.005 4.4 1.1 0.76

Celica R 5 0.93 0.008 0.008 3.5 1.1 0.66

log(1/R) 5 0.95 0.007 0.007 4.0 1.1 0.70

D1R 7 0.96 0.006 0.007 4.3 1.1 0.69

D1log(1/R) 5 0.95 0.006 0.007 4.0 1.1 0.69

D2log(1/R) 7 0.95 0.006 0.007 3.9 1.2 0.66

Ever Green R 8 0.66 0.006 0.008 1.8 1.3 0.50

log(1/R) 10 0.71 0.005 0.008 1.9 1.5 0.48

D1R 10 0.61 0.007 0.008 1.7 1.2 0.47

D1log(1/R) 8 0.63 0.007 0.008 1.8 1.2 0.51

D2log(1/R) 9 0.71 0.006 0.007 1.9 1.3 0.51

No.117 R 8 0.96 0.004 0.005 5.0 1.3 0.72

log(1/R) 6 0.96 0.004 0.005 4.9 1.1 0.75

D1R 6 0.96 0.004 0.005 4.7 1.1 0.74

D1log(1/R) 6 0.96 0.004 0.005 4.9 1.1 0.75

D2log(1/R) 7 0.96 0.004 0.005 5.0 1.2 0.73

Celica R 8 0.92 0.007 0.008 3.5 1.2 0.61

log(1/R) 8 0.91 0.007 0.008 3.4 1.2 0.60

D1R 8 0.93 0.006 0.007 3.8 1.2 0.64

D1log(1/R) 7 0.92 0.007 0.008 3.6 1.1 0.64

D2log(1/R) 6 0.92 0.007 0.008 3.5 1.2 0.64
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In case of the hyperspectral imaging for 'Ever Green' the 1
st
 derivative of reflectance (D1R), for 

'No.117' cv. the D2log(1/R)  and for 'Celica' the log(1/R) resulted with the highest SWS and 

therefore the best model. The relevant SWS indices were 0.46, 0.76, and 0.70 for 'Ever Green', 

'Celica' and, 'No. 117' respectively. 

The best models were achieved in the SWIR spectral range for 'Ever Green' and 'Celica' by the 

D1log(1/R) and D2log(1/R), whereas for 'No. 117' the log(1/R) resulted with the models, with 

SWS 0.51, 0.75 and 0.64, respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted hyperspectral imaging and SWIR spectral measurements to yield stronger correlation to 

predict total chlorophyll content for all three bell pepper cultivars.  

PLSR prediction and measured values for cv. 'No. 117' are shown in Figs. 46-48, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 46) a model 

with five LVs obtained r
2
=0.95 and RMSECV=0.0055, for the hyperspectral imaging (Fig. 47) a 

model with three LVs was sufficient to achieve r
2
=0.95 and RMSECV=0.0052, whereas for 

SWIR (Fig. 48) six LVs were needed to achieve r
2
=0.96 and RMSECV =0.0047. 

 

  

Fig. 46 Scatter plot of total chlorophyll content 

for 'No. 117' variety, as predicted by PLS 

regression model and as measured in the 

laboratory. The PLS model was built with the 

1
st
 derivative of reflectance (R) in the VIS-NIR 

range. 

Fig. 47 Scatter plot of total chlorophyll 

content for 'No. 117' variety, as predicted by 

PLS regression model and as measured in the 

laboratory. The PLS model was built with the 

D2log(1/R) of the spectral data from the 

hyperspectral imaging. 
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Fig. 48 Scatter plot of total chlorophyll content for 'No. 117' variety, as predicted by PLS 

regression model and as measured in the laboratory. The PLS model was built with the log(1/R) 

of the spectral data in the SWIR range. 
 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 49 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'No. 117'. One wide wavelength range was found to be significant 

in the model 570-690 related to the chlorophyll a and b and carotenoid contents.  

Figure 50 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'No. 117'. One very significant wavelength range was found that significantly influenced the 

regression model: the range of 1350–1430 nm. It is associated with the vibration modes of the 

first overtones of C-H and O-H bond stretching. 

  
Fig. 49 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'No.117' cultivar 

Fig. 50 VIP Scores for reflectance (R) spectra 

(SWIR) of 'No.117' cultivar 
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5.5.3. Correlation and regression analysis for carotenoid content and NDT 

methods 

5.5.3.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

The results of cross correlation analysis for carotenoid content with the calculated indices of 

relaxation test (Rate of relaxation, Remaining deformation, coefficient of elasticity from 

relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation 

shown in table 18. 

The highest coefficient of correlation (r) was found for all three cultivars with the colour 

parameter of h, moderate to poor correlation was found with the L and C. Poor correlation was 

found with the ultrasonic attenuation in case of all three cultivars. Whereas the rate of relaxation 

had moderate correlation with the carotenoid content in case of 'Ever Green' and 'No. 117' 

cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not show 

close relationship for none of the cultivars.  

Table 18 Covariance matrix between carotenoid and non-destructive measurements for 'Ever 

Green', 'No.117', and 'Celica' cultivars, respectively, with 95% significance level. 

 

5.5.3.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for carotenoid content were 88.8%, 73.8% and 125.8% for 'Ever 

Green', 'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations found 

to be poor between carotenoid-total soluble solid (0.70), carotenoid-dry matter (average: 0.71) 

and carotenoid-total chlorophyll (average: 0.28). Although the high coefficient of variance but 

because of the fair squared intercorrelation indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable with the consideration of possible intercorrelation 

with TSS and DM. 

Table 19 presents for all three cultivars, the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Carotenoid Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.70 0.64 0.15 0.46 0.53 0.82 0.31

No.117 0.66 0.38 0.09 0.74 0.76 0.85 0.47

Celica 0.49 0.38 0.10 0.38 0.60 0.76 0.36
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Table 19 Performance measures of PLS regression models for carotenoid content, using data 

from the VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper 

varieties are presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

5), whereas hyperspectral imaging models achieved higher r
2 

(average, 0.91), lower RMSECV 

(average, 0.01 mg/g), higher RPD (average, 4.31), lower RMSECV/RMSEC (average, 1.19) and 

higher SWS (average, 0.59). 

PLS Carotenoid, mg/g
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 8 0.92 0.007 0.010 3.9 1.4 0.55

log(1/R) 8 0.91 0.007 0.011 3.5 1.6 0.48

D1R 3 0.92 0.007 0.010 3.9 1.4 0.60

D1log(1/R) 3 0.90 0.008 0.011 3.5 1.4 0.58

D2log(1/R) 3 0.88 0.009 0.012 3.3 1.3 0.56

No.117 R 7 0.91 0.005 0.006 3.7 1.2 0.64

log(1/R) 7 0.89 0.006 0.007 3.1 1.2 0.62

D1R 4 0.89 0.004 0.006 3.7 1.5 0.61

D1log(1/R) 5 0.89 0.004 0.007 3.4 1.6 0.55

D2log(1/R) 3 0.81 0.007 0.009 2.4 1.4 0.53

Celica R 8 0.95 0.007 0.010 6.6 1.3 0.64

log(1/R) 7 0.93 0.010 0.012 5.3 1.2 0.61

D1R 5 0.92 0.007 0.012 5.2 1.8 0.49

D1log(1/R) 4 0.92 0.009 0.014 4.5 1.6 0.52

D2log(1/R) 3 0.86 0.012 0.017 3.7 1.4 0.47

Ever Green R 9 0.87 0.012 0.014 2.8 1.2 0.47

log(1/R) 9 0.89 0.012 0.013 3.0 1.1 0.52

D1R 8 0.86 0.011 0.014 2.8 1.3 0.46

D1log(1/R) 7 0.87 0.012 0.013 3.0 1.1 0.53

D2log(1/R) 8 0.78 0.012 0.016 2.4 1.3 0.37

No.117 R 8 0.91 0.005 0.006 4.0 1.1 0.66

log(1/R) 8 0.92 0.005 0.006 4.0 1.1 0.66

D1R 8 0.90 0.005 0.006 3.9 1.1 0.65

D1log(1/R) 8 0.91 0.005 0.006 4.0 1.2 0.65

D2log(1/R) 5 0.86 0.006 0.007 3.3 1.2 0.63

Celica R 6 0.95 0.009 0.011 5.7 1.2 0.66

log(1/R) 10 0.97 0.007 0.008 7.5 1.2 0.68

D1R 7 0.96 0.008 0.010 6.2 1.2 0.66

D1log(1/R) 9 0.96 0.008 0.010 6.5 1.2 0.65

D2log(1/R) 8 0.95 0.009 0.012 5.4 1.3 0.59

Ever Green R 8 0.87 0.010 0.012 3.3 1.2 0.51

log(1/R) 8 0.89 0.010 0.012 3.3 1.3 0.51

D1R 9 0.89 0.010 0.013 3.0 1.3 0.48

D1log(1/R) 7 0.85 0.012 0.014 2.8 1.2 0.49

D2log(1/R) 5 0.88 0.010 0.012 3.3 1.3 0.55

No.117 R 7 0.84 0.007 0.007 3.0 1.1 0.59

log(1/R) 7 0.87 0.005 0.006 3.6 1.2 0.62

D1R 5 0.82 0.007 0.008 2.7 1.1 0.59

D1log(1/R) 6 0.88 0.005 0.006 3.7 1.2 0.65

D2log(1/R) 5 0.83 0.006 0.007 3.1 1.3 0.58

Celica R 8 0.90 0.013 0.016 3.9 1.2 0.48

log(1/R) 8 0.89 0.013 0.016 3.9 1.2 0.48

D1R 8 0.90 0.014 0.017 3.7 1.2 0.47

D1log(1/R) 7 0.88 0.013 0.015 4.2 1.2 0.52

D2log(1/R) 6 0.85 0.013 0.018 3.5 1.4 0.41
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In the VIS-NIR range, for 'Ever Green' the 1
st
 derivative of reflectance (D1R), for 'No.117' and 

'Celica' the reflectance (R) gave the highest SWS and therefore the best model. The relevant 

SWS indices were 0.60, 0.64, and 0.64 for 'Ever Green', 'No. 117' and 'Celica', respectively. 

In case of the hyperspectral imaging for 'Ever Green' the D1log(1/R), for 'No.117' and 'Celica' 

cultivars the log(1/R) resulted with the highest SWS and therefore the best model. The relevant 

SWS indices were 0.53, 0.66, and 0.68 for 'Ever Green', 'Celica' and, 'No. 117' respectively. 

The best models were achieved in the SWIR spectral range for 'Ever Green' by the D2log(1/R) 

spectral treatment, whereas for 'No. 117' and 'Celica' cultivars by the D1log(1/R) resulted the best 

models, with SWS 0.51, 0.75 and 0.64, respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted hyperspectral imaging to yield efficient models to predict carotenoid content for 'No. 

117' and 'Celica' bell pepper cultivars; whereas for 'Ever Green' variety the VIS-NIR spectral 

measurements yielded the best carotenoid predictions.  

PLSR prediction and measured values for cv. 'Celica' are shown in Figs. 51-53, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 51) a model 

with eight LVs obtained r
2
=0.95 and RMSECV=0.0096, for the hyperspectral imaging (Fig. 52) 

a model with ten LVs obtained r
2
=0.97 and RMSECV=0.0084, whereas for SWIR (Fig. 53) 

seven LVs were needed to achieve r
2
=0.88 and RMSECV =0.015. 

 

  

Fig. 51 Scatter plot of carotenoid content for 

'Celica' variety, as predicted by PLS regression 

model and as measured in the laboratory. The 

PLS model was built with the reflectance (R) 

spectral data in the VIS-NIR range. 

Fig. 52 Scatter plot of carotenoid content for 

'Celica' variety, as predicted by PLS regression 

model and as measured in the laboratory. The 

PLS model was built with the log(1/R) of the 

spectral data from the hyperspectral imaging. 
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Fig. 53 Scatter plot of carotenoid content for 'Celica' variety, as predicted by PLS regression 

model and as measured in the laboratory. The PLS model was built with the D1log(1/R) of the 

spectral data in the SWIR range. 
 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 54 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'Celica'. Two wavelength ranges were found to be significant in 

the model: 477-490 and 520-690 related to the chlorophyll a and b and carotenoid contents.  

Figure 55 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'Celica'. Similarly to the model for total chlorophyll prediction, one very significant wavelength 

range was found that significantly influenced the regression model: the range of 1320–1430 nm. 

It is associated with the vibration modes of the first overtones of C-H and O-H bond stretching. 

  

Fig. 54 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'Celica' cultivar 

Fig. 55 VIP Scores for reflectance (R) spectra 

(SWIR) of 'Celica' cultivar 
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5.5.4. Correlation and regression analysis for total soluble solid (TSS) and NDT 

methods 

5.5.4.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

The results of cross correlation analysis for TSS with the calculated indices of relaxation test 

(Rate of relaxation, Remaining deformation, Coefficient of elasticity from relaxation test), with 

the parameters of colour measurements (L, C, h) and ultrasonic attenuation shown in table 20. 

The highest coefficient of correlation (r) was found for all three cultivars for TSS with the colour 

parameter of h, good correlation was found with the L and C in case of 'No. 117' cv. Poor 

correlation was found with the ultrasonic attenuation and remaining deformation in case of all 

three cultivars, whereas the rate of relaxation had moderate correlation with the TSS in case of 

all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not 

show close relationship for none of the cultivars.  

 

Table 20 Covariance matrix between TSS and non-destructive measurements for 'Ever Green', 

'No.117', and 'Celica' cultivars, respectively, with 95% significance level. 

 

5.1.1.3. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for carotenoid content were 28.2%, 30.2% and 33.5% for 'Ever 

Green', 'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations found 

to be poor between TSS-ascorbic acid (0.25), TSS-DM (average: 0.95) and TSS-total chlorophyll 

content (average: 0.55). Although the relatively high coefficient of variance with poor squared 

intercorrelation between TSS and ascorbic acid and total chlorophyll, but good squared 

intercorrelation with the dry matter indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable with the consideration of possible intercorrelation 

with DM. 

Table 21 presents for all three cultivars, the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

TSS Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.66 0.54 0.04 0.44 0.47 0.81 0.37

No.117 0.67 0.47 0.12 0.87 0.89 0.92 0.48

Celica 0.53 0.36 0.17 0.21 0.67 0.94 0.45
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parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Table 21 Performance measures of PLS regression models for TSS, using data from the VIS-

NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

5), higher r
2 

(average, 0.93), lower RMSECV (average, 0.45 Brix%), higher RPD (average, 

PLS TSS, Brix %
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 8 0.94 0.25 0.36 4.1 1.4 0.77

log(1/R) 9 0.92 0.25 0.42 3.5 1.7 0.57

D1R 3 0.93 0.28 0.38 3.9 1.4 0.79

D1log(1/R) 3 0.93 0.29 0.38 3.9 1.3 0.80

D2log(1/R) 3 0.93 0.28 0.39 3.8 1.4 0.76

No.117 R 6 0.91 0.47 0.55 3.2 1.2 0.50

log(1/R) 5 0.88 0.56 0.62 2.9 1.1 0.37

D1R 4 0.92 0.31 0.51 3.5 1.6 0.49

D1log(1/R) 4 0.91 0.34 0.54 3.3 1.6 0.44

D2log(1/R) 3 0.90 0.42 0.59 3.0 1.4 0.40

Celica R 8 0.95 0.29 0.38 4.6 1.3 0.80

log(1/R) 8 0.95 0.30 0.39 4.4 1.3 0.78

D1R 4 0.95 0.26 0.40 4.3 1.5 0.74

D1log(1/R) 4 0.95 0.25 0.39 4.4 1.6 0.75

D2log(1/R) 3 0.93 0.34 0.50 3.5 1.5 0.56

Ever Green R 12 0.85 0.45 0.58 2.5 1.3 0.30

log(1/R) 13 0.87 0.43 0.56 2.6 1.3 0.35

D1R 8 0.82 0.52 0.62 2.4 1.2 0.27

D1log(1/R) 8 0.83 0.50 0.61 2.4 1.2 0.28

D2log(1/R) 9 0.83 0.44 0.62 2.4 1.4 0.23

No.117 R 4 0.92 0.49 0.53 3.4 1.1 0.57

log(1/R) 6 0.93 0.43 0.47 3.8 1.1 0.68

D1R 6 0.92 0.45 0.51 3.5 1.1 0.58

D1log(1/R) 4 0.92 0.47 0.51 3.5 1.1 0.60

D2log(1/R) 5 0.92 0.43 0.50 3.5 1.2 0.60

Celica R 6 0.95 0.34 0.37 4.7 1.1 0.89

log(1/R) 5 0.95 0.37 0.39 4.4 1.1 0.85

D1R 4 0.95 0.35 0.39 4.5 1.1 0.87

D1log(1/R) 5 0.95 0.33 0.38 4.6 1.1 0.86

D2log(1/R) 6 0.94 0.35 0.43 4.0 1.2 0.73

Ever Green R 9 0.90 0.34 0.45 3.3 1.3 0.59

log(1/R) 9 0.91 0.33 0.44 3.3 1.3 0.61

D1R 9 0.89 0.39 0.49 3.0 1.3 0.52

D1log(1/R) 8 0.89 0.39 0.51 2.9 1.3 0.48

D2log(1/R) 5 0.91 0.35 0.46 3.2 1.3 0.61

No.117 R 6 0.91 0.52 0.57 3.1 1.1 0.47

log(1/R) 6 0.92 0.46 0.52 3.4 1.1 0.56

D1R 6 0.90 0.50 0.59 3.0 1.2 0.41

D1log(1/R) 5 0.92 0.46 0.53 3.4 1.2 0.55

D2log(1/R) 4 0.92 0.46 0.53 3.4 1.2 0.56

Celica R 7 0.92 0.39 0.48 3.6 1.2 0.61

log(1/R) 7 0.94 0.38 0.44 3.9 1.2 0.71

D1R 6 0.92 0.43 0.50 3.5 1.2 0.59

D1log(1/R) 5 0.93 0.43 0.48 3.6 1.1 0.65

D2log(1/R) 4 0.92 0.41 0.50 3.5 1.2 0.60
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3.75), whereas hyperspectral imaging models achieved lower RMSECV/RMSEC (average, 

1.17). 

In the VIS-NIR range, for 'Ever Green' the D1log(1/R), for 'No.117' and 'Celica' the reflectance 

(R) gave the highest SWS and therefore the best model. The relevant SWS indices were 0.80, 

0.50, and 0.80 for 'Ever Green', 'No. 117' and 'Celica', respectively. 

In case of the hyperspectral imaging for 'Ever Green' and 'No.117' the log(1/R), while for 'Celica' 

the reflectance (R) resulted with the highest SWS and therefore the best model. The relevant 

SWS indices were 0.35, 0.68, and 0.89 for 'Ever Green', 'Celica' and, 'No. 117' respectively. 

The best models were achieved in the SWIR spectral range for all three cultivars by the log(1/R), 

with SWS 0.61, 0.56 and 0.71, respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted hyperspectral imaging to yield efficient models to predict TSS for 'No. 117' and 'Celica' 

bell pepper cultivars; whereas for 'Ever Green' variety the VIS-NIR spectral measurements 

yielded the best carotenoid predictions. Worth to mention, that even though in case of the 'Ever 

Green' variety there is no significant colour change still in the VIS-NIR spectral range very 

reliable strong prediction models were achieved, with average SWS: 0.74. 

PLSR prediction and measured values for cv. 'Celica' are shown in Figs. 56-58, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively.  

 

  

Fig. 56 Scatter plot of TSS for 'Celica' variety, 

as predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the reflectance (R) of the 

spectral data in the VIS-NIR range. 

Fig. 57 Scatter plot of TSS for 'Celica' 

variety, as predicted by PLS regression 

model and as measured in the laboratory. The 

PLS model was built with the reflectance (R) 

of the spectral data from the hyperspectral 

imaging. 
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Fig. 58 Scatter plot of TSS for 'Celica' variety, as predicted by PLS regression model and as 

measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in the 

SWIR range. 
 

In all figures, the ordinate and abscissa axes represent the measured and the fitted values. For the 

VIS-NIR (Fig. 56) a model with eight LVs obtained r
2
=0.95 and RMSECV=0.38, for the 

hyperspectral imaging (Fig. 57) a model with six LVs obtained r
2
=0.95 and RMSECV=0.37, 

whereas for SWIR (Fig. 58) seven LVs were needed to achieve r
2
=0.92 and RMSECV =0.48. 

 

  

Fig. 59 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'Celica' cultivar 

Fig. 60 VIP Scores for reflectance (R) spectra 

(SWIR) of 'Celica' cultivar 
 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 59 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'Celica'. Two wavelength ranges were found to be significant in 

the model: 510-560 and 600-695 related to the chlorophyll a and b and carotenoid contents. In 

case of the 'Ever Green' cultivar three significant ranges were found to contribute to the 
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prediction model: 477-540, 670-710 and 850-950 nm the VIP scores (not presented). The 850-

950 nm range is associated with the vibration modes of the first overtones of C-H and O-H bond 

stretching and can be the reason achieving good models for TSS prediction. 

Figure 60 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'Celica'. Similarly to the model for total chlorophyll prediction, one very significant wavelength 

range was found that significantly influenced the regression model: the range of 1320–1430 nm. 

It is associated with the vibration modes of the first overtones of C-H and O-H bond stretching. 

These bonds commonly found in carbohydrates. 

5.5.5. Correlation and regression analysis for dry matter (DM) and NDT methods 

5.5.5.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

Table 22 shows the results of cross correlation analysis for DM with the calculated indices of 

relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity from 

relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation.  

The highest coefficient of correlation (r) was found for all three cultivars for DM with the colour 

parameter of h, good correlation was found with the L and C in case of 'No. 117' cv. Poor 

correlation was found for DM with the ultrasonic attenuation and remaining deformation in case 

of all three cultivars, whereas the rate of relaxation had moderate correlation with the DM in case 

of all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did 

not show close relationship for none of the cultivars.  

 

Table 22 Covariance matrix between DM and non-destructive measurements for 'Ever Green', 

'No.117', and 'Celica' cultivars, respectively, with, 95% significance level. 

 

5.5.5.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for DM were 20.9%, 24.2% and 26.4% for 'Ever Green', 'No.117' 

and 'Celica' cultivars, respectively. The average squared intercorrelations found to be good 

between DM-TSS (0.95), DM-ascorbic acid (average: 0.23) and DM-total chlorophyll content 

(average: 0.40). Although the relatively high coefficient of variance with poor squared 

intercorrelation between DM and ascorbic acid and total chlorophyll, but good squared 

DM Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.67 0.53 0.01 0.44 0.50 0.77 0.38

No.117 0.66 0.46 0.14 0.85 0.87 0.89 0.49

Celica 0.52 0.37 0.18 0.25 0.66 0.92 0.46
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intercorrelation with the TSS indicate that prediction by the VIS-NIR, SWIR and hyperspectral 

imaging method is applicable with the consideration of possible intercorrelation with TSS. 

For all three cultivars, Table 23 presents the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

5), higher r
2 

(average, 0.91), lower RMSECV (average, 0.50 %), higher RPD (average, 3.37) and 

higher SWS (average, 0.61). Whereas the hyperspectral models resulted the lower ratio of 

RMSECV and RMSEC (average, 1.18). As a further result of the comparison shows that overall 

the averaged results of the three methods are slightly differ from one another.  

In the VIS-NIR range, for all three cultivars the reflectance (R) gave the highest SWS and 

therefore the best model. The relevant SWS indices were 0.79, 0.53, and 0.76 for 'Ever Green', 

'No. 117' and 'Celica', respectively. 

By the hyperspectral imaging for 'Ever Green' the 1
st
 derivative of reflectance (D1R), for 'No.117' 

cv. the log(1/R), while for 'Celica' the reflectance (R) resulted the highest SWS and therefore the 

best model. The relevant SWS indices were 0.37, 0.65, and 0.79 for 'Ever Green', 'Celica' and, 

'No. 117' respectively. 

In the SWIR spectral range the best results were obtained with the models based on log(1/R) 

spectra for all three cultivars, with SWS 0.64, 0.66 and 0.63 for 'Ever Green', 'Celica' and, 'No. 

117' respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted VIS-NIR spectral measurements to yield stronger correlation to predict DM content in 

'Ever Green' bell pepper cultivar, while hyperspectral imaging was found best for 'No. 117' and 

'Celica' variety. Worth to pay attention on the efficient models, achieved by the VIS-NIR spectral 

measurements in case of the 'Ever Green' cultivar, which retains its green colour even in the fully 

ripe stage; it means that the DM change during the growth and maturation is not indirectly 

correlated with the spectral information but direct correlation is presumed. 

PLSR prediction and measured values for cv. 'Celica' are shown in Figs. 61-63, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 61) a model 
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with eight LVs obtained r
2
=0.94 and RMSECV=0.43, for the hyperspectral imaging (Fig. 62) a 

model with six LVs obtained r
2
=0.94 and RMSECV=0.43, whereas for SWIR (Fig. 63) seven 

LVs were needed to achieve r
2
=0.92 and RMSECV=0.50. 

 

Table 23 Performance measures of PLS regression models for DM, using data from the VIS-

NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

PLS DM, %
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 8 0.93 0.26 0.37 3.8 1.4 0.79

log(1/R) 8 0.90 0.30 0.44 3.3 1.5 0.64

D1R 3 0.92 0.31 0.42 3.4 1.4 0.75

D1log(1/R) 3 0.91 0.32 0.43 3.3 1.3 0.73

D2log(1/R) 3 0.92 0.31 0.43 3.3 1.4 0.73

No.117 R 3 0.90 0.56 0.58 3.0 1.0 0.53

log(1/R) 3 0.86 0.64 0.66 2.7 1.0 0.38

D1R 4 0.90 0.34 0.56 3.2 1.6 0.48

D1log(1/R) 4 0.88 0.34 0.60 3.0 1.7 0.38

D2log(1/R) 3 0.91 0.40 0.56 3.1 1.4 0.52

Celica R 8 0.94 0.33 0.43 4.1 1.3 0.76

log(1/R) 9 0.94 0.30 0.43 4.0 1.5 0.70

D1R 4 0.92 0.28 0.50 3.5 1.8 0.55

D1log(1/R) 3 0.92 0.39 0.51 3.4 1.3 0.64

D2log(1/R) 3 0.91 0.35 0.52 3.4 1.5 0.59

Ever Green R 12 0.84 0.46 0.58 2.5 1.3 0.37

log(1/R) 12 0.84 0.45 0.57 2.5 1.3 0.37

D1R 9 0.84 0.47 0.59 2.4 1.3 0.37

D1log(1/R) 9 0.83 0.48 0.60 2.4 1.3 0.34

D2log(1/R) 12 0.82 0.42 0.63 2.3 1.5 0.23

No.117 R 6 0.91 0.50 0.55 3.2 1.1 0.57

log(1/R) 6 0.92 0.46 0.51 3.5 1.1 0.65

D1R 8 0.91 0.47 0.55 3.2 1.2 0.54

D1log(1/R) 4 0.90 0.52 0.57 3.1 1.1 0.55

D2log(1/R) 2 0.89 0.58 0.60 3.0 1.0 0.51

Celica R 6 0.94 0.39 0.43 4.0 1.1 0.79

log(1/R) 6 0.93 0.39 0.44 4.0 1.1 0.77

D1R 3 0.93 0.44 0.47 3.7 1.1 0.74

D1log(1/R) 6 0.93 0.40 0.45 3.9 1.1 0.75

D2log(1/R) 6 0.92 0.44 0.52 3.3 1.2 0.60

Ever Green R 8 0.87 0.39 0.52 2.8 1.3 0.51

log(1/R) 9 0.91 0.34 0.45 3.2 1.3 0.64

D1R 9 0.89 0.40 0.49 2.9 1.2 0.58

D1log(1/R) 7 0.89 0.40 0.49 2.9 1.2 0.59

D2log(1/R) 4 0.89 0.42 0.48 3.0 1.2 0.64

No.117 R 6 0.90 0.51 0.58 3.0 1.1 0.49

log(1/R) 8 0.93 0.39 0.48 3.7 1.2 0.66

D1R 9 0.92 0.39 0.50 3.5 1.3 0.60

D1log(1/R) 7 0.91 0.45 0.54 3.3 1.2 0.56

D2log(1/R) 5 0.90 0.43 0.56 3.2 1.3 0.52

Celica R 7 0.90 0.45 0.55 3.2 1.2 0.54

log(1/R) 7 0.92 0.42 0.50 3.5 1.2 0.63

D1R 5 0.91 0.49 0.55 3.1 1.1 0.56

D1log(1/R) 5 0.92 0.45 0.52 3.4 1.2 0.62

D2log(1/R) 5 0.91 0.41 0.54 3.2 1.3 0.56
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Fig. 61 Scatter plot of DM for 'Celica' variety, 

as predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the reflectance (R) of the 

spectral data in the VIS-NIR range. 

Fig. 62 Scatter plot of DM for 'Celica' variety, 

as predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the reflectance (R) of the 

spectral data from the hyperspectral imaging. 

 

Fig. 63 Scatter plot of DM content for 'Celica' variety, as predicted by PLS regression model and 

as measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in 

the SWIR range. 
 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 64 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'Celica'. Two wavelength ranges were found to be the most 

significant in the model: 510–560, 600–700 nm. These ranges are related to the chlorophyll a and 

b and carotenoid contents.  

Figure 65 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'Celica'. One very significant wavelength range was found that significantly influenced the 
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regression model: 1320–1420 nm; it is associated with the vibration modes of the first overtones 

of C-H and O-H bond stretching. 

 

  

Fig. 64 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'Celica' cultivar 

Fig. 65 VIP Scores for reflectance (R) spectra 

(SWIR) of 'Celica' cultivar 

5.5.6. Correlation and regression analysis for osmotic potential (OP) and NDT 

methods 

5.5.6.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

Table 24 shows the results of cross correlation analysis for OP with the calculated indices of 

relaxation test (Rate of relaxation, Remaining deformation, Coefficient of elasticity from 

relaxation test), with the parameters of colour measurements (L, C, h) and ultrasonic attenuation.  

The highest coefficient of correlation (r) was found for all three cultivars for DM with the colour 

parameter of h, good correlation was found with the L and C in case of 'No. 117' cv. Poor 

correlation was found for DM with the ultrasonic attenuation and remaining deformation in case 

of all three cultivars, whereas the rate of relaxation had slight correlation with the DM in case of 

all three cultivars. Coefficient of elasticity from the relaxation test and carotenoid content did not 

show close relationship for none of the cultivars.  

 

Table 24 Covariance matrix between OP and non-destructive measurements for 'Ever Green', 

'No.117', and 'Celica' cultivars, respectively, with, 95% significance level. 

 

OP Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.64 0.52 0.02 0.44 0.45 0.78 0.33

No.117 0.61 0.44 0.13 0.85 0.87 0.88 0.43

Celica 0.50 0.35 0.16 0.18 0.66 0.91 0.44
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5.5.6.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for OP were 31.4%, 33.1% and 35.4% for 'Ever Green', 'No.117' and 

'Celica' cultivars, respectively. The average squared intercorrelations found to be fair between 

OP-TSS (0.87), OP-DM (average: 0.86) and poor between OP-total chlorophyll content 

(average: 0.51). Although the relatively high coefficient of variance, but fair squared 

intercorrelation with the TSS and DM indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable with the consideration of possible intercorrelation 

with TSS and DM. 

For all three cultivars, Table 25 presents the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

4), higher r
2 

(average, 0.88), lower RMSECV (average, 41.6 %), higher RPD (average, 2.95) and 

higher SWS (average, 0.58). Whereas the hyperspectral models resulted the lower ratio of 

RMSECV and RMSEC (average, 1.10). As a further result of the comparison shows that overall 

the averaged results of the three methods are slightly differ from one another.  

In the VIS-NIR range, for 'Ever Green' and 'Celica' cultivars the 1
st
 derivative of reflectance 

(D1R), whereas for 'No.117' cultivar the reflectance (R) gave the highest SWS, and therefore the 

best model. The relevant SWS indices were 0.68, 0.58, and 0.77 for 'Ever Green', 'No. 117' and 

'Celica', respectively. 

By the hyperspectral imaging for 'Ever Green' the D1log(1/R), for and 'No.117' the log(1/R), 

while for 'Celica' cultivar the 1
st
 derivative of reflectance (D1R) resulted the highest SWS and 

therefore the best model. The relevant SWS indices were 0.39, 0.61, and 0.92 for 'Ever Green', 

'No. 117' and 'Celica', respectively. 

In the SWIR spectral range the best results were obtained with the models based on D2log(1/R) 

spectra for 'Ever Green' and 'No. 117' cultivars, while for 'Celica' the 1
st
 derivative of reflectance 

(D1R), with SWS 0.54, 0.54 and 0.65 for 'Ever Green', 'No. 117' and 'Celica', respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted VIS-NIR spectral measurements to yield stronger correlation to predict OP in 'Ever 
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Green' bell pepper cultivar, while hyperspectral imaging was found best for 'No. 117' and 'Celica' 

variety. Worth to pay attention on the efficient models, achieved by the VIS-NIR spectral 

measurements in case of the 'Ever Green' cultivar, which retains its green colour even in the fully 

ripe stage; it means that the OP change during the growth and maturation is not depend or related 

to the colour change of the pepper.  

Table 25 Performance measures of PLS regression models for OP, using data from the VIS-NIR, 

Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are presented: 

'Ever Green', 'No, 117' and 'Celica'.  

 

PLS OP, osmol/kg
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 8 0.87 27.6 37.8 2.9 1.4 0.59

log(1/R) 8 0.85 29.4 41.3 2.6 1.4 0.48

D1R 3 0.87 27.0 36.7 3.0 1.4 0.68

D1log(1/R) 3 0.86 29.4 38.3 2.9 1.3 0.65

D2log(1/R) 3 0.85 27.7 38.7 2.8 1.4 0.60

No.117 R 3 0.88 44.2 45.8 2.9 1.0 0.58

log(1/R) 4 0.85 49.2 50.7 2.6 1.0 0.44

D1R 3 0.86 36.5 48.1 2.7 1.3 0.44

D1log(1/R) 3 0.86 38.5 50.6 2.6 1.3 0.38

D2log(1/R) 2 0.87 38.4 48.2 2.7 1.3 0.47

Celica R 7 0.90 33.1 38.5 3.2 1.2 0.68

log(1/R) 8 0.91 27.6 36.2 3.4 1.3 0.69

D1R 3 0.92 25.5 34.8 3.6 1.4 0.77

D1log(1/R) 3 0.90 27.6 37.0 3.4 1.3 0.71

D2log(1/R) 3 0.89 28.3 41.7 3.0 1.5 0.55

Ever Green R 8 0.76 44.4 52.2 2.1 1.2 0.25

log(1/R) 8 0.76 47.9 52.6 2.1 1.1 0.26

D1R 6 0.80 40.7 48.7 2.2 1.2 0.37

D1log(1/R) 6 0.80 42.7 48.5 2.3 1.1 0.39

D2log(1/R) 6 0.74 42.5 54.3 2.0 1.3 0.19

No.117 R 4 0.87 42.9 46.4 2.8 1.1 0.54

log(1/R) 5 0.89 39.9 43.2 3.0 1.1 0.61

D1R 2 0.86 48.0 49.2 2.7 1.0 0.50

D1log(1/R) 2 0.88 44.7 45.7 2.9 1.0 0.60

D2log(1/R) 2 0.85 47.9 50.0 2.6 1.0 0.47

Celica R 5 0.92 30.9 32.9 3.8 1.1 0.90

log(1/R) 5 0.92 31.2 34.1 3.6 1.1 0.85

D1R 3 0.92 31.5 32.9 3.8 1.0 0.92

D1log(1/R) 3 0.91 33.7 36.5 3.4 1.1 0.81

D2log(1/R) 3 0.89 36.3 39.8 3.1 1.1 0.71

Ever Green R 9 0.84 31.6 42.8 2.6 1.4 0.45

log(1/R) 9 0.85 31.2 40.9 2.7 1.3 0.51

D1R 10 0.80 36.7 48.8 2.2 1.3 0.28

D1log(1/R) 9 0.82 34.9 44.7 2.4 1.3 0.42

D2log(1/R) 5 0.84 32.2 41.8 2.6 1.3 0.54

No.117 R 7 0.84 43.3 52.6 2.5 1.2 0.31

log(1/R) 7 0.88 40.4 46.3 2.8 1.1 0.49

D1R 7 0.87 37.9 47.5 2.7 1.3 0.43

D1log(1/R) 6 0.88 38.3 45.5 2.9 1.2 0.52

D2log(1/R) 4 0.88 37.8 45.4 2.9 1.2 0.54

Celica R 7 0.88 34.8 42.4 2.9 1.2 0.56

log(1/R) 7 0.90 33.4 40.4 3.1 1.2 0.62

D1R 6 0.89 35.1 40.2 3.1 1.1 0.65

D1log(1/R) 5 0.89 36.4 42.0 3.0 1.2 0.62

D2log(1/R) 4 0.89 35.2 41.8 3.0 1.2 0.62
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PLSR prediction and measured values for cv. 'Celica' are shown in Figs. 66-68, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 66) a model 

with three LVs obtained r
2
=0.92 and RMSECV=34.77, for the hyperspectral imaging (Fig. 67) a 

model with three LVs obtained r
2
=0.92 and RMSECV=32.92, whereas for SWIR (Fig. 68) six 

LVs were needed to achieve r
2
=0.89 and RMSECV=40.23. 

 

  

Fig. 66 Scatter plot of OP for 'Celica' variety, 

as predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the 1
st
 derivative (D1R) of the 

spectral data in the VIS-NIR range. 

Fig. 67 Scatter plot of OP for 'Celica' variety, 

as predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the 1
st
 derivative (D1R) of the 

spectral data from the hyperspectral imaging. 

 

Fig. 68 Scatter plot of OP content for 'Celica' variety, as predicted by PLS regression model and 

as measured in the laboratory. The PLS model was built with the 1
st
 derivative (D1R) of the 

spectral data in the SWIR range. 
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The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 69 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'Celica'. Two wavelength ranges were found to be the most 

significant in the model: 510–560, 600–700 nm. These ranges are related to the chlorophyll a and 

b and carotenoid contents.  

Figure 70 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'Celica'. One very significant wavelength range was found that significantly influenced the 

regression model: 1320–1420 nm; it is associated with the vibration modes of the first overtones 

of C-H and O-H bond stretching. 

  

Fig. 69 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'Celica' cultivar 

Fig. 70 VIP Scores for reflectance (R) spectra 

(SWIR) of 'Celica' cultivar 

5.5.7. Correlation and regression analysis for coefficient of elasticity from 

compression test and NDT methods 

5.5.7.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

Table 26 shows the results of cross correlation analysis for coefficient of elasticity of 

compression test (CECompression) with the calculated indices of relaxation test (Rate of relaxation, 

Remaining deformation, coefficient of elasticity relaxation test), with the parameters of colour 

measurements (L, C, h) and ultrasonic attenuation. CECompression did not show considerable 

correlation with any of the correlated parameters. 

Table 26 Covariance matrix between CECompression and non-destructive measurements for 'Ever 

Green', 'No.117', and 'Celica' cultivars, respectively, with, 95% significance level. 

 

Coefficient of elasticity Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Compression Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.26 0.19 0.21 0.29 0.25 0.52 0.34

No.117 0.25 0.15 0.21 0.43 0.42 0.45 0.36

Celica 0.10 0.06 0.21 0.02 0.29 0.41 0.39
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5.5.7.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for CECompression were 37.2%, 36.7% and 32.0% for 'Ever Green', 

'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations found to be 

fair between CECompression -TSS (0.19), CECompression -DM (average: 0.16) and poor between 

CECompression -total chlorophyll content (average: 0.17). Based on the coefficient of variance and 

the low squared intercorrelation among the variables indicate that prediction by the VIS-NIR, 

SWIR and hyperspectral imaging method is applicable. 

For all three cultivars, Table 27 presents the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the hyperspectral models were obtained with fewer LVs 

(average, 3) and lower ratio of RMSECV and RMSEC (average, 1.07). Whereas VIS-NIR 

models resulted lower RMSECV (average, 8.66 %), higher RPD (average, 1.55) and higher SWS 

(average, 0.58). higher r
2 

(average, 0.88). As a further result of the comparison shows that overall 

the averaged results of the three methods are slightly differ from one another.  

In the VIS-NIR range for 'Ever Green' cultivar the D2log(1/R), for 'No.117' cultivar the 1
st
 

derivative of reflectance (D1R), whereas for 'Celica' the D1log(1/R) gave the highest SWS, and 

therefore the best model. The relevant SWS indices were 0.50, 0.81, and 0.70 for 'Ever Green', 

'No. 117' and 'Celica', respectively. 

By the hyperspectral imaging for 'Ever Green' the 1
st
 derivative of reflectance (D1R), for and 

'No.117' the log(1/R), while for 'Celica' cultivar the D2log(1/R) resulted the highest SWS and 

therefore the best model. The relevant SWS indices were 0.37, 0.72, and 0.67 for 'Ever Green', 

'No. 117' and 'Celica', respectively. 

In the SWIR spectral range the best results were obtained with the models based on reflectance 

(R) spectra for 'Ever Green' cultivar, while for 'No. 117'  and 'Celica' cultivars the D2log(1/R), 

with SWS 0.50, 0.71 and 0.67 for 'Ever Green', 'No. 117' and 'Celica', respectively. 

The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted SWIR spectral measurements to yield stronger correlation to predict CECompression in 
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'Ever Green' bell pepper cultivar, while VIS-NIR yield the best models for 'No. 117'  and  

hyperspectral imaging was found best for 'Celica' variety.  

 

Table 27 Performance measures of PLS regression models for CECompression, using data from the 

VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

PLS
Coefficient of elasticity 

Compression, N/mm

Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 6 0.54 9.3 11.3 1.6 1.2 0.42

log(1/R) 6 0.44 9.5 12.4 1.5 1.3 0.26

D1R 2 0.45 9.1 11.4 1.6 1.3 0.43

D1log(1/R) 2 0.42 9.5 11.7 1.6 1.2 0.40

D2log(1/R) 2 0.55 8.8 10.9 1.7 1.2 0.50

No.117 R 5 0.37 7.0 7.4 1.5 1.1 0.68

log(1/R) 7 0.46 5.3 7.2 1.6 1.3 0.60

D1R 2 0.49 5.8 6.7 1.7 1.1 0.81

D1log(1/R) 2 0.46 5.9 6.9 1.6 1.2 0.76

D2log(1/R) 2 0.51 5.1 6.5 1.7 1.3 0.79

Celica R 5 0.26 7.1 7.7 1.4 1.1 0.60

log(1/R) 6 0.32 6.9 7.7 1.4 1.1 0.58

D1R 2 0.37 6.1 7.2 1.5 1.2 0.69

D1log(1/R) 2 0.41 6.1 7.1 1.5 1.2 0.70

D2log(1/R) 2 0.40 5.5 7.8 1.4 1.4 0.53

Ever Green R 5 0.43 11.6 12.6 1.5 1.1 0.33

log(1/R) 5 0.46 11.6 12.5 1.5 1.1 0.35

D1R 4 0.47 10.9 12.3 1.5 1.1 0.37

D1log(1/R) 5 0.43 11.2 12.9 1.4 1.2 0.27

D2log(1/R) 2 0.34 11.9 13.2 1.4 1.1 0.28

No.117 R 4 0.38 7.1 7.5 1.5 1.1 0.69

log(1/R) 2 0.37 7.4 7.6 1.5 1.0 0.72

D1R 3 0.34 7.1 7.7 1.5 1.1 0.67

D1log(1/R) 3 0.38 7.0 7.6 1.5 1.1 0.68

D2log(1/R) 3 0.33 7.1 8.0 1.4 1.1 0.61

Celica R 4 0.26 7.0 7.4 1.4 1.1 0.65

log(1/R) 4 0.24 7.2 7.6 1.4 1.1 0.63

D1R 2 0.24 7.4 7.7 1.4 1.0 0.65

D1log(1/R) 2 0.24 7.6 7.9 1.3 1.0 0.62

D2log(1/R) 2 0.27 7.2 7.5 1.4 1.0 0.67

Ever Green R 6 0.56 9.8 10.9 1.7 1.1 0.50

log(1/R) 6 0.57 9.8 11.0 1.7 1.1 0.50

D1R 3 0.52 10.6 11.5 1.6 1.1 0.49

D1log(1/R) 4 0.47 10.9 12.3 1.5 1.1 0.36

D2log(1/R) 3 0.55 9.9 11.3 1.6 1.1 0.49

No.117 R 7 0.44 6.0 7.5 1.5 1.2 0.60

log(1/R) 9 0.51 5.2 6.8 1.7 1.3 0.64

D1R 3 0.36 6.9 7.4 1.5 1.1 0.70

D1log(1/R) 7 0.43 6.1 7.4 1.5 1.2 0.61

D2log(1/R) 2 0.42 6.5 7.4 1.5 1.1 0.71

Celica R 6 0.34 6.7 7.5 1.4 1.1 0.60

log(1/R) 7 0.39 6.2 7.3 1.5 1.2 0.62

D1R 5 0.34 6.6 7.6 1.4 1.1 0.61

D1log(1/R) 5 0.35 6.7 7.4 1.4 1.1 0.63

D2log(1/R) 2 0.36 6.7 7.5 1.4 1.1 0.67
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PLSR prediction and measured values for cv. 'No. 117' are shown in Figs. 71-73, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 71) a model 

with two LVs obtained r
2
=0.49 and RMSECV=6.66, for the hyperspectral imaging (Fig. 72) a 

model with two LVs obtained r
2
=0.37 and RMSECV=7.55, whereas for SWIR (Fig. 73) two LVs 

were needed to achieve r
2
=0.42 and RMSECV=7.35. 

 

  
Fig. 71 Scatter plot of CECompression for 'No.117' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the 1
st
 derivative (D1R) 

of the spectral data in the VIS-NIR range. 

Fig. 72 Scatter plot of CECompression for 'No.117' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the log(1/R) of the 

spectral data from the hyperspectral imaging. 

 

Fig. 73 Scatter plot of CECompression content for 'No.117' variety, as predicted by PLS regression 

model and as measured in the laboratory. The PLS model was built with the D2log(1/R)of the 

spectral data in the SWIR range. 
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The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 74 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'No.117'. The following wavelength ranges were found to be the 

most significant in the model: 477–690, 830–950 nm. The range of 477-690 nm is related to the 

chlorophyll a and b and carotenoid contents, while the range of 830–950 nm is related to 

chemical and textural composition.  

Figure 75 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'No.117'. The below wavelength ranges were found to significantly influencing the regression 

model: 850-900, 1350–1450 and 1550-1888 nm; it is associated with the vibration modes of the 

first overtones of C-H and O-H bond stretching. 

  
Fig. 74 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'No.117' cultivar 

Fig. 75 VIP Scores for reflectance (R) spectra 

(SWIR) of 'No.117' cultivar 

5.5.8. Correlation and regression analysis for coefficient of elasticity from rupture 

test and NDT methods 

5.5.8.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

Table 28 shows the results of cross correlation analysis for coefficient of elasticity of rupture test 

(CERupture) with the calculated indices of relaxation test (Rate of relaxation, Remaining 

deformation, coefficient of elasticity from relaxation test), with the parameters of colour 

measurements (L, C, h) and ultrasonic attenuation. CERupture did not show considerable 

correlation with any of the correlated parameters, except slight correlation was found for 

'No.117' cultivars with the L, C, h parameters of the colour measurements. 
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Table 28 Covariance matrix between CERupture and non-destructive measurements for 'Ever 

Green', 'No.117', and 'Celica' cultivars, respectively, with, 95% significance level. 

 

5.5.8.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficients of variance for CERupture were 27.3%, 21.9% and 27.8% for 'Ever Green', 

'No.117' and 'Celica' cultivars, respectively. The average squared intercorrelations found to be 

fair between CERupture -TSS (0.36), CERupture -DM (average: 0.34) and poor between CERupture -

total chlorophyll content (average: 0.27). Based on the coefficient of variance and the low 

squared intercorrelation among the variables indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable. 

For all three cultivars, table 29 presents the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

4), whereas SWIR models resulted with higher r
2 

(average, 0.51), lower RMSECV (average, 

3.28), higher RPD (average, 1.61), lower ratio of RMSECV and RMSEC (average, 1.12), and 

higher SWS (average, 0.62). As a further result of the comparison shows that overall the 

averaged results of the three methods are slightly differ from one another.  

In the VIS-NIR range for 'Ever Green' cultivar the D1log(1/R), for 'No.117' cultivar the 

reflectance (R), whereas for 'Celica' the D2log(1/R) gave the highest SWS, and therefore the best 

model. The relevant SWS indices were 0.57, 0.73, and 0.73 for 'Ever Green', 'No. 117' and 

'Celica', respectively. 

By the hyperspectral imaging for 'Ever Green' the reflectance (R), for and 'No.117' the 

D2log(1/R), while for 'Celica' cultivar the D1log(1/R) resulted the highest SWS and therefore the 

best model. The relevant SWS indices were 0.33, 0.79, and 0.76 for 'Ever Green', 'No. 117' and 

'Celica', respectively. 

Coefficient of elasticity Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Rupture Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.33 0.20 0.08 0.11 0.20 0.48 0.23

No.117 0.42 0.42 0.09 0.58 0.57 0.60 0.41

Celica 0.31 0.23 0.26 0.16 0.38 0.62 0.41
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In the SWIR spectral range the best results were obtained with the models based on D2log(1/R) 

spectra for 'Ever Green' cultivar, while for 'No. 117'  and 'Celica' cultivars the D2log(1/R), with 

SWS 0.46, 0.81 and 0.67 for 'Ever Green', 'No. 117' and 'Celica', respectively.  

 

Table 29 Performance measures of PLS regression models for CERupture, using data from the 

VIS-NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

PLS
Coefficient of elasticity 

Rupture, N/mm

Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 6 0.45 3.2 3.9 1.5 1.2 0.45

log(1/R) 7 0.45 2.8 3.9 1.5 1.4 0.43

D1R 2 0.46 3.0 3.8 1.5 1.3 0.52

D1log(1/R) 3 0.52 2.4 3.6 1.6 1.5 0.57

D2log(1/R) 2 0.46 2.9 3.9 1.5 1.3 0.49

No.117 R 4 0.40 2.5 2.6 1.6 1.0 0.73

log(1/R) 4 0.38 2.5 2.7 1.5 1.0 0.72

D1R 5 0.44 1.0 2.8 1.5 2.8 0.56

D1log(1/R) 2 0.34 2.6 3.0 1.4 1.2 0.62

D2log(1/R) 2 0.39 2.1 2.7 1.5 1.3 0.71

Celica R 8 0.66 2.4 3.3 1.8 1.4 0.64

log(1/R) 7 0.62 2.7 3.4 1.7 1.3 0.60

D1R 2 0.64 2.7 3.2 1.8 1.2 0.71

D1log(1/R) 2 0.64 2.7 3.3 1.8 1.2 0.70

D2log(1/R) 2 0.68 2.5 3.2 1.8 1.3 0.73

Ever Green R 6 0.27 3.9 4.2 1.4 1.1 0.33

log(1/R) 6 0.28 4.0 4.4 1.3 1.1 0.29

D1R 4 0.24 4.0 4.4 1.3 1.1 0.29

D1log(1/R) 4 0.25 4.0 4.6 1.3 1.1 0.26

D2log(1/R) 3 0.28 3.6 4.5 1.3 1.2 0.29

No.117 R 8 0.45 2.2 2.6 1.6 1.2 0.72

log(1/R) 6 0.46 2.3 2.5 1.6 1.1 0.76

D1R 2 0.44 2.5 2.6 1.6 1.0 0.77

D1log(1/R) 2 0.45 2.5 2.6 1.6 1.0 0.78

D2log(1/R) 2 0.45 2.5 2.6 1.6 1.0 0.79

Celica R 12 0.72 2.4 3.0 1.9 1.3 0.69

log(1/R) 9 0.68 2.7 3.1 1.9 1.1 0.70

D1R 3 0.58 3.4 3.6 1.6 1.0 0.60

D1log(1/R) 4 0.70 2.8 3.1 1.9 1.1 0.76

D2log(1/R) 9 0.68 2.4 3.3 1.8 1.4 0.64

Ever Green R 5 0.40 3.7 4.0 1.5 1.1 0.43

log(1/R) 5 0.41 3.6 3.9 1.5 1.1 0.44

D1R 6 0.45 3.4 4.0 1.5 1.2 0.43

D1log(1/R) 5 0.41 3.5 4.0 1.5 1.1 0.43

D2log(1/R) 2 0.41 3.5 4.0 1.5 1.1 0.46

No.117 R 6 0.49 2.3 2.5 1.6 1.1 0.77

log(1/R) 6 0.48 2.3 2.5 1.7 1.1 0.78

D1R 4 0.47 2.3 2.6 1.6 1.1 0.77

D1log(1/R) 4 0.46 2.3 2.6 1.6 1.1 0.77

D2log(1/R) 2 0.50 2.3 2.5 1.6 1.1 0.81

Celica R 7 0.66 2.8 3.2 1.8 1.2 0.67

log(1/R) 7 0.63 2.8 3.4 1.7 1.2 0.62

D1R 4 0.62 3.0 3.4 1.7 1.1 0.66

D1log(1/R) 5 0.62 3.0 3.4 1.7 1.1 0.63

D2log(1/R) 3 0.65 3.0 3.3 1.7 1.1 0.67
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The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted VIS-NIR spectral measurements to yield stronger correlation to predict CERupture in 'Ever 

Green' bell pepper cultivar, while SWIR yield the best models for 'No. 117' and hyperspectral 

imaging was found best for 'Celica' variety. 

PLSR prediction and measured values for cv. 'No. 117' are shown in Figs. 76-78, as examples for 

VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 76) a model 

with four LVs obtained r
2
=0.40 and RMSECV=2.65, for the hyperspectral imaging (Fig. 77) a 

model with two LVs obtained r
2
=0.45 and RMSECV=2.56, whereas for SWIR (Fig. 78) two LVs 

were needed to achieve r
2
=0.50 and RMSECV=2.50. 

 

  

Fig. 76 Scatter plot of CERupture for 'No.117' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the reflectance (R) of the 

spectral data in the VIS-NIR range. 

Fig. 77 Scatter plot of CERupture for 'No.117' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the D2log(1/R) of the 

spectral data from the hyperspectral imaging. 

 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 79 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'No.117'. One wide wavelength range was found to be significant 

in the model: 560–695 nm. It is related to the chlorophyll a and b and carotenoid contents.  

Figure 80 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. 

'No.117'. The below wavelength range was found to significantly influencing the regression 

model: 1350–1500 and 1550-1790 nm; it is associated with the vibration modes of the first 

overtones of C-H and O-H bond stretching. 
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Fig. 78 Scatter plot of CERupture content for 'No.117' variety, as predicted by PLS regression 

model and as measured in the laboratory. The PLS model was built with the D2log(1/R)of the 

spectral data in the SWIR range. 

 

  

Fig. 79 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'No.117' cultivar 

Fig. 80 VIP Scores for reflectance (R) spectra 

(SWIR) of 'No.117' cultivar 

5.5.9. Correlation and regression analysis for days after anthesis (DAA) and NDT 

methods 

5.5.9.1. Correlation analysis for rate of relaxation, colour measurement, and ultrasonic test 

The results of cross correlation analysis for DAA with the calculated indices of relaxation test 

(Rate of relaxation, Remaining deformation, coefficient of elasticity from relaxation test), with 

the parameters of colour measurements (L, C, h) and ultrasonic attenuation shown in table 30. 

The highest coefficient of correlation (r) was found for all three cultivars for DAA with the 

colour parameter of h, good correlation was found with the L and C in case of 'No. 117' cv. Poor 
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correlation was found with the ultrasonic attenuation, remaining deformation and coefficient of 

elasticity of relaxation test in case of all three cultivars, whereas the rate of relaxation showed 

slight correlation with the DAA in case of 'Ever Green' and 'No.117' cultivars.  

 

Table 30 Covariance matrix between DAA and non-destructive measurements for 'Ever Green', 

'No.117', and 'Celica' cultivars, respectively, with 95% significance level. 

 

5.5.9.2. PLS Regression for VIS-NIR and SWIR spectral analysis and hyperspectral imaging 

The coefficient of variance for DAA was 28.9%. The average squared intercorrelations found to 

be poor between DAA-TSS (average: 0.80), DAA-DM (average: 0.76) and DAA-total 

chlorophyll content (average: 0.55). The good squared intercorrelation between DAA and TSS, 

DM and total chlorophyll content indicate that prediction by the VIS-NIR, SWIR and 

hyperspectral imaging method is applicable with the consideration of possible intercorrelation. 

Table 31 presents for all three cultivars, the results from PLS regression for VIS-NIR, 

hyperspectral imaging and SWIR, respectively. The following statistical parameters are shown 

for each model: no. of latent variables, LV; coefficient of determination, r
2
; root-mean-square 

error of calibration, RMSEC; root-mean-square error of cross-validation, RMSECV; robust 

parameter design, RPD; ratio of RMSECV and RMSEC, and standardized weighted sum index, 

SWS. 

Comparison of the PLS models among the two wavelength ranges (VIS-NIR, SWIR) and 

hyperspectral imaging shows that the VIS-NIR models were obtained with fewer LVs (average, 

6), higher r
2 

(average, 0.97), lower RMSECV (average, 3.25), higher RPD (average, 5.48) and 

higher SWS (average, 0.77), whereas hyperspectral imaging models achieved lower 

RMSECV/RMSEC (average, 1.25). 

In the VIS-NIR range, for all three varieties the D2log(1/R) gave the highest SWS and therefore 

the best model. The relevant SWS indices were 0.91, 0.82, and 0.84 for 'Ever Green', 'No. 117' 

and 'Celica', respectively. 

In case of the hyperspectral imaging for 'Ever Green' the reflectance (R), for 'No.117' the 

log(1/R), while for 'Celica' the D1log(1/R) resulted with the highest SWS and therefore the best 

model. The relevant SWS indices were 0.38, 0.75, and 0.64 for 'Ever Green', 'No. 117' and, 

'Celica' respectively. 

DAA Rate of Remaining Coefficient of elasticity Colour Measurement Ultrasonic 

Relaxation Deformation Relaxation L C h Attenuation

Ever Green 0.56 0.38 0.26 0.40 0.37 0.86 0.48

No.117 0.64 0.37 0.24 0.85 0.87 0.91 0.47

Celica 0.40 0.20 0.38 0.18 0.65 0.89 0.55
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The best models were achieved in the SWIR spectral range for 'Ever Green' and 'No. 117' 

cultivars by the log(1/R), whereas for 'Celica' the D2log(1/R), with SWS 0.66, 0.72 and 0.75, 

respectively. 

 

Table 31 Performance measures of PLS regression models for DAA, using data from the VIS-

NIR, Hyperspectral, and SWIR spectral region. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

PLS DAA, days
Statistical 

parameter
LV r2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

Ever Green R 9 0.98 1.6 2.8 6.4 1.8 0.80

log(1/R) 9 0.96 1.5 3.4 5.1 2.3 0.64

D1R 3 0.98 1.9 2.7 6.4 1.4 0.90

D1log(1/R) 4 0.98 1.5 2.7 6.4 1.8 0.85

D2log(1/R) 3 0.99 1.5 2.5 6.9 1.7 0.91

No.117 R 9 0.97 2.0 3.3 5.3 1.6 0.74

log(1/R) 9 0.96 2.1 3.8 4.6 1.8 0.65

D1R 4 0.97 1.9 3.1 5.6 1.6 0.82

D1log(1/R) 4 0.96 2.0 3.9 4.5 1.9 0.68

D2log(1/R) 3 0.98 1.6 3.0 5.9 1.9 0.82

Celica R 7 0.96 2.7 3.6 4.9 1.3 0.76

log(1/R) 9 0.95 2.4 3.9 4.5 1.6 0.67

D1R 4 0.97 1.9 3.4 5.2 1.8 0.76

D1log(1/R) 4 0.96 2.1 3.6 4.9 1.7 0.75

D2log(1/R) 3 0.98 1.9 3.1 5.7 1.6 0.84

Ever Green R 12 0.87 5.1 6.4 2.8 1.2 0.38

log(1/R) 12 0.86 5.3 6.8 2.6 1.3 0.32

D1R 8 0.85 5.7 6.9 2.5 1.2 0.35

D1log(1/R) 9 0.85 5.7 7.0 2.5 1.2 0.33

D2log(1/R) 11 0.82 4.9 7.8 2.2 1.6 0.19

No.117 R 9 0.95 3.4 4.1 4.3 1.2 0.69

log(1/R) 7 0.95 3.5 3.8 4.6 1.1 0.75

D1R 8 0.94 3.7 4.5 3.9 1.2 0.64

D1log(1/R) 7 0.94 3.6 4.3 4.1 1.2 0.69

D2log(1/R) 6 0.94 3.4 4.4 4.0 1.3 0.67

Celica R 11 0.92 4.0 5.0 3.5 1.3 0.55

log(1/R) 10 0.92 4.0 4.9 3.6 1.2 0.57

D1R 6 0.92 4.5 5.1 3.4 1.1 0.60

D1log(1/R) 6 0.93 4.1 4.8 3.7 1.2 0.64

D2log(1/R) 7 0.91 4.0 5.4 3.2 1.4 0.54

Ever Green R 10 0.93 3.0 4.7 3.8 1.5 0.58

log(1/R) 10 0.95 2.9 4.1 4.3 1.4 0.66

D1R 12 0.94 3.3 4.7 3.8 1.4 0.57

D1log(1/R) 12 0.93 3.3 4.9 3.6 1.5 0.53

D2log(1/R) 6 0.94 3.3 4.5 3.9 1.4 0.66

No.117 R 8 0.95 3.3 4.0 4.4 1.2 0.71

log(1/R) 8 0.95 3.3 4.0 4.4 1.2 0.72

D1R 10 0.95 2.9 3.9 4.5 1.4 0.69

D1log(1/R) 8 0.96 3.1 3.9 4.5 1.3 0.72

D2log(1/R) 6 0.94 3.3 4.4 4.0 1.3 0.67

Celica R 8 0.94 3.3 4.3 4.1 1.3 0.67

log(1/R) 8 0.94 3.4 4.3 4.1 1.2 0.67

D1R 7 0.94 3.7 4.4 4.0 1.2 0.67

D1log(1/R) 5 0.94 3.8 4.2 4.1 1.1 0.72

D2log(1/R) 5 0.95 2.9 3.8 4.6 1.3 0.75
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The overall comparison of models from the two spectral ranges and hyperspectral imaging 

resulted VIS-NIR to yield the most efficient models to predict DAA for all three bell pepper 

cultivars. Worth to mention, that even though in case of the 'Ever Green' variety there is no 

significant colour change still in the VIS-NIR spectral range very reliable prediction models 

were achieved for DAA. 

PLSR prediction and measured values for cv. 'Ever Green' are shown in Figs. 81-83, as examples 

for VIS-NIR, hyperspectral imaging and SWIR, respectively. In both figures, the ordinate and 

abscissa axes represent the measured and the fitted values. For the VIS-NIR (Fig. 81) a model 

with three LVs obtained r
2
=0.986 and RMSECV=2.5, for the hyperspectral imaging (Fig. 82) a 

model with twelve LVs obtained r
2
=0.87 and RMSECV=6.36, whereas for SWIR (Fig. 83) ten 

LVs were needed to achieve r
2
=0.95 and RMSECV =4.09. 

 

  

Fig. 81 Scatter plot of DAA for 'Ever Green' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the D2log(1/R) of the 

spectral data in the VIS-NIR range. 

Fig. 82 Scatter plot of DAA for 'Ever Green' 

variety, as predicted by PLS regression model 

and as measured in the laboratory. The PLS 

model was built with the reflectance (R) of the 

spectral data from the hyperspectral imaging. 

 

The Variable Importance in Projection (VIP) scores indicate the significance of specific 

wavelengths in the model, and Fig. 84 presents the VIP scores for the reflectance model in the 

VIS-NIR spectral range for cv. 'Ever Green'. The following wavelength ranges were found to be 

significant in the model: 477-550, 680-690 and 880-950 nm. The ranges of 477-550, 680-690 nm 

are related to chlorophyll a, b and carotenoid contents. The range of 880-950 nm is associated 

with the vibration modes of the first overtones of C-H and O-H bond. These bonds can be found 

for example in carbohydrates, ascorbic acid. 
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Fig. 83 Scatter plot of DAA for 'Ever Green' variety, as predicted by PLS regression model and 

as measured in the laboratory. The PLS model was built with the log(1/R) of the spectral data in 

the SWIR range. 

 

Figure 85 presents the VIP scores of the reflectance model in the SWIR spectral range for cv. ' 

Ever Green '. The below wavelength ranges were found to significantly influencing the 

regression model: 850-920, 1380–1800 nm. It is associated with the vibration modes of the first 

overtones of C-H and O-H bond stretching. These bonds commonly found in carbohydrates. 

Significance of the wavelength ranges above 850 nm indicates, that the regression models 

influenced by indirect correlation; as it was presumed in chapter 5.5.10.1. 

 

  

Fig. 84 VIP Scores for reflectance (R) spectra 

(VIS-NIR) of 'Ever Green' cultivar 

Fig. 85 VIP Scores for reflectance (R) spectra 

(SWIR) of 'Ever Green' cultivar 
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5.6. FUSION 

5.6.1. 1
st
 level fusion: Fusion of NDT parameters 

In the first level of fusion the NDT parameters were fused in order to analyze the effect of 

combination of data to predict the DT quality attributes of bell peppers. As a first step of the 

fusion different feature extractions were applied on the data from the different measurement 

methods. For the VIS-NIR, SWIR and hyperspectral spectral data the SAMdegree of the spectra, 

Dabs, PC1 and PC2 of the quality point based on the PQS system and the LV-s from the best 

PLSR models were calculated. The scheme of the fusion is presented on figure 86. The list of the 

fused variables is found in Appendix 2. 

 

 

Fig. 86 Scheme for fusion of NDT methods 

 

Model evaluation is relevant for the comparison of the single-sensor system to a multisensory 

system. The comparison is based on the performance of the model‘s ability to predict the 

properties of the produce. The evaluation of model performance of the two systems was carried 

out with application of SWS index. 

Table 32-33 shows the detailed results for the comparison PLS regression models for singe-

sensor and multisensor systems. Single-sensor system means the use of VIS-NIR or 

Hyperspectral imaging or SWIR spectral measurements. Multisensor system means the NDT 

data fusion. Have to be mentioned that in the evaluation the SWS index was calculated to one 

particular variety along with one particular DT parameter in order to be able to compare the 

Ultrasonic attenuation

• Rate of Relaxation

• Remaining 

deformation

•Coefficient of 

elasticity of Relaxation

VIS-NIR

SWIR

Hyperspectral Imaging

NDT  

fusion

•L (Lightness)

• C (Chroma)

• h (Hue)
Feature extraction:

• SAMdergree

• Dabs,PC1 and PC2 (MSC, Norm, SNV)

• LV1 & LV2 of PLS models

Feature extraction:

• SAMdergree

• Dabs,PC1 and PC2 (MSC, Norm, SNV)

• LV1 & LV2 of PLS models

Feature extraction:

• SAMdergree

• Dabs,PC1 and PC2 (MSC, Norm, SNV)

• LV1 & LV2 of PLS models
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performance of the regression models. As the results present in each case the fused data gave 

better models with higher SWS indices. Moreover, the fused models are predicting the DT 

parameters with similar or lower number of latent variables (LV), they have generally higher 

correlation of determination as well as lower RMSECV. Altogether the fusion of the NDT 

parameters found to be sufficient and beneficial for the prediction of DT quality parameters in 

the examined three bell pepper cultivars. 

 

Table 32 Performance measures of PLS regression models for TSS, DM, AA and OP, using data 

from the VIS-NIR, Hyperspectral, SWIR spectral range and fused NDT methods. Models for the 

three pepper varieties are presented: 'Ever Green', 'No, 117' and 'Celica'. 

 

 

DT Cultivar NDT LV r
2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

% of difference in 

RMSECV

Ever Green VIS-NIR 3 0.93 0.29 0.38 3.9 1.3 0.71 21%

Hyperspectral imaging 13 0.87 0.43 0.56 2.6 1.3 0.17 46%

SWIR 9 0.91 0.33 0.44 3.3 1.3 0.40 32%

Fusion of NDT 5 0.96 0.22 0.30 4.9 1.3 0.81

No.117 VIS-NIR 6 0.91 0.47 0.55 3.2 1.2 0.22 31%

Hyperspectral imaging 6 0.93 0.43 0.47 3.8 1.1 0.57 19%

SWIR 6 0.92 0.46 0.52 3.4 1.1 0.36 27%

Fusion of NDT 7 0.96 0.28 0.38 4.7 1.4 0.74

Celica VIS-NIR 8 0.95 0.29 0.38 4.6 1.3 0.35 16%

Hyperspectral imaging 6 0.95 0.34 0.37 4.7 1.1 0.57 14%

SWIR 7 0.94 0.38 0.44 3.9 1.2 0.14 27%

Fusion of NDT 3 0.97 0.27 0.32 5.5 1.2 0.93

Ever Green VIS-NIR 8 0.93 0.26 0.37 3.8 1.4 0.64 11%

Hyperspectral imaging 9 0.84 0.47 0.59 2.4 1.3 0.08 44%

SWIR 4 0.89 0.42 0.48 3.0 1.2 0.56 31%

Fusion of NDT 4 0.95 0.26 0.33 4.3 1.3 0.92

No.117 VIS-NIR 3 0.9 0.56 0.58 3.0 1.0 0.26 21%

Hyperspectral imaging 6 0.92 0.46 0.51 3.5 1.1 0.57 10%

SWIR 8 0.93 0.39 0.48 3.7 1.2 0.69 4%

Fusion of NDT 6 0.94 0.31 0.46 3.9 1.5 0.78

Celica VIS-NIR 8 0.94 0.33 0.43 4.1 1.3 0.64 5%

Hyperspectral imaging 6 0.94 0.39 0.43 4.0 1.1 0.78 5%

SWIR 7 0.92 0.42 0.50 3.5 1.2 0.10 18%

Fusion of NDT 2 0.94 0.37 0.41 4.2 1.1 0.97

Ever Green VIS-NIR 9 0.79 8.7 15.2 2.1 1.8 0.43 9%

Hyperspectral imaging 4 0.72 15.0 16.7 1.9 1.1 0.26 17%

SWIR 8 0.75 12.6 15.7 2.0 1.2 0.39 12%

Fusion of NDT 5 0.83 10.0 13.9 2.3 1.4 0.90

No.117 VIS-NIR 4 0.62 9.5 17.3 2.2 1.8 0.21 27%

Hyperspectral imaging 7 0.55 15.4 17.3 2.2 1.1 0.22 27%

SWIR 10 0.70 11.2 16.1 2.4 1.4 0.37 22%

Fusion of NDT 6 0.81 9.3 12.6 3.1 1.4 0.91

Celica VIS-NIR 8 0.78 11.1 15.1 2.2 1.4 0.40 14%

Hyperspectral imaging 8 0.72 14.4 16.0 2.1 1.1 0.32 19%

SWIR 8 0.71 14.2 17.1 2.0 1.2 0.11 24%

Fusion of NDT 4 0.83 10.7 13.0 2.6 1.2 0.93

Ever Green VIS-NIR 3 0.87 27.0 36.7 3.0 1.4 0.64 11%

Hyperspectral imaging 6 0.80 42.7 48.5 2.3 1.1 0.17 33%

SWIR 5 0.84 32.2 41.8 2.6 1.3 0.40 22%

Fusion of NDT 3 0.90 27.2 32.5 3.4 1.2 0.94

No.117 VIS-NIR 3 0.88 44.2 45.8 2.9 1.0 0.28 0%

Hyperspectral imaging 5 0.89 39.9 43.2 3.0 1.1 0.80 -6%

SWIR 4 0.88 37.8 45.4 2.9 1.2 0.21 -1%

Fusion of NDT 2 0.88 39.9 45.8 2.8 1.1 0.22

Celica VIS-NIR 3 0.92 25.5 34.8 3.6 1.4 0.59 10%

Hyperspectral imaging 3 0.92 31.5 32.9 3.8 1.0 0.82 5%

SWIR 6 0.89 35.1 40.2 3.1 1.1 0.13 22%

Fusion of NDT 3 0.93 26.8 31.4 4.0 1.2 0.91

TSS, Birix %

DM, %

AA, g/100g

OP, 

osmol/kg
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Table 33 Performance measures of PLS regression models for total chlorophyll, carotenoid, 

Coefficient of elasticity of Compression and Coefficient of elasticity of Rupture, using data from 

the VIS-NIR, Hyperspectral, SWIR spectral range and fused NDT methods. Models for the three 

pepper varieties are presented: 'Ever Green', 'No, 117' and 'Celica'. 

 

 

PLS, PCR, Kernel and SVM regression analysis were used to build the models. Table 34-35 

shows the result for each cultivar and for each DT parameter. The following statistical 

parameters are shown for each model: no. of latent variables, LV; coefficient of determination, 

r
2
; root-mean-square error of calibration, RMSEC; root-mean-square error of cross-validation, 

RMSECV; robust parameter design, RPD; ratio of RMSECV and RMSEC, and standardized 

weighted sum index, SWS. 

Comparing the single sensor and multi sensor models for all three pepper cultivars the fused 

NDT data (multi sensor models) gave higher SWS indices in predicting each one of the DT 

DT Cultivar NDT LV r
2 RMSEC RMSECV RPD

RMSECV/

RMSEC
SWS

% of difference in 

RMSECV

Ever Green VIS-NIR 6 0.6 0.007 0.008 1.7 1.2 0.53 19%

Hyperspectral imaging 5 0.44 0.009 0.010 1.4 1.1 0.24 35%

SWIR 9 0.71 0.006 0.007 1.9 1.3 0.61 7%

Fusion of NDT 4 0.77 0.005 0.007 2.1 1.3 0.83

No.117 VIS-NIR 5 0.95 0.003 0.005 4.2 2.0 0.10 30%

Hyperspectral imaging 3 0.95 0.005 0.005 4.4 1.1 0.27 30%

SWIR 6 0.96 0.004 0.005 4.9 1.1 0.31 30%

Fusion of NDT 7 0.98 0.003 0.004 6.6 1.4 0.85

Celica VIS-NIR 9 0.93 0.005 0.008 3.7 1.5 0.12 25%

Hyperspectral imaging 5 0.95 0.007 0.007 4.0 1.1 0.63 14%

SWIR 6 0.92 0.007 0.008 3.5 1.2 0.21 25%

Fusion of NDT 5 0.96 0.005 0.006 4.7 1.3 0.92

Ever Green VIS-NIR 3 0.92 0.007 0.010 3.9 1.4 0.50 24%

Hyperspectral imaging 7 0.87 0.012 0.013 3.0 1.1 0.17 42%

SWIR 5 0.88 0.010 0.012 3.3 1.3 0.23 37%

Fusion of NDT 5 0.96 0.006 0.008 5.2 1.3 0.84

No.117 VIS-NIR 7 0.91 0.005 0.006 3.7 1.2 0.11 33%

Hyperspectral imaging 8 0.92 0.005 0.006 4.0 1.1 0.29 33%

SWIR 6 0.88 0.005 0.006 3.7 1.2 0.06 33%

Fusion of NDT 5 0.95 0.003 0.004 5.6 1.2 0.83

Celica VIS-NIR 8 0.95 0.007 0.010 6.6 1.3 0.65 29%

Hyperspectral imaging 10 0.97 0.007 0.008 7.5 1.2 0.77 15%

SWIR 7 0.88 0.013 0.015 4.2 1.2 0.26 52%

Fusion of NDT 8 0.98 0.005 0.007 8.8 1.5 0.80

Ever Green VIS-NIR 2 0.55 8.80 10.90 1.7 1.2 0.58 6%

Hyperspectral imaging 4 0.47 10.90 12.30 1.5 1.1 0.22 16%

SWIR 6 0.56 9.80 10.90 1.7 1.1 0.64 6%

Fusion of NDT 3 0.63 8.40 10.30 1.8 1.2 0.81

No.117 VIS-NIR 2 0.49 5.82 6.70 1.7 1.1 0.70 4%

Hyperspectral imaging 2 0.37 7.40 7.60 1.5 1.0 0.26 16%

SWIR 2 0.42 6.50 7.40 1.5 1.1 0.30 13%

Fusion of NDT 3 0.55 5.53 6.40 1.8 1.2 0.74

Celica VIS-NIR 2 0.41 6.10 7.10 1.5 1.2 0.69 2%

Hyperspectral imaging 2 0.27 7.20 7.50 1.4 1.0 0.26 7%

SWIR 2 0.36 6.70 7.50 1.4 1.1 0.30 7%

Fusion of NDT 3 0.43 5.92 6.97 1.5 1.2 0.76

Ever Green VIS-NIR 3 0.52 2.40 3.60 1.6 1.5 0.79 0%

Hyperspectral imaging 6 0.27 3.90 4.20 1.4 1.1 0.17 14%

SWIR 2 0.41 3.50 4.00 1.5 1.1 0.55 10%

Fusion of NDT 4 0.54 2.70 3.60 1.6 1.3 0.86

No.117 VIS-NIR 4 0.40 2.50 2.60 1.6 1.0 0.17 8%

Hyperspectral imaging 2 0.45 2.50 2.60 1.6 1.0 0.32 8%

SWIR 2 0.50 2.30 2.50 1.6 1.1 0.53 4%

Fusion of NDT 4 0.54 2.00 2.40 1.7 1.2 0.74

Celica VIS-NIR 2 0.68 2.50 3.20 1.8 1.3 0.26 16%

Hyperspectral imaging 4 0.70 2.80 3.10 1.9 1.1 0.46 13%

SWIR 3 0.65 3.00 3.30 1.7 1.1 0.23 18%

Fusion of NDT 5 0.77 2.10 2.70 2.2 1.3 0.74

Coefficient 

of elasticity 

Compression

, N/mm

Coefficient 

of elasticity 

Rupture, 

N/mm

Total 

Chlorophyll, 

mg/g

Carotenoid, 

mg/g
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parameters, compare to the single sensor models. It means that with the fusion of the relaxation, 

ultrasonic, colour, spectral and hyperspectral data altogether is more capable to predict inner 

composition and textural state of different variety of bell pepper cultivars; regardless of the fact 

that the pepper variety is changing its colour during the growth of maturation or not.  

Overall comparison of the different regression methods, based on the SWS index showed that 

PLS and SVM regressions were most suitable to predict DT parameters from the fused NDT 

parameters. 

Table 34 Performance measures of PLS, PCR, Kernel and SVM regression models for TSS, 

DM, AA and OP, using data from the fused NDT methods. Models for the three pepper varieties 

are presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

DT Cultivar
Regression 

analysis
LV r

2 RMSEC RMSECV RPD
RMSECV/

RMSEC
SWS

Ever Green PLS 5 0.96 0.22 0.30 4.9 1.3 0.84

PCR 7 0.94 0.35 0.37 3.9 1.1 0.73

Kernel 5 0.93 0.29 0.40 3.7 1.4 0.64

SVM 5 0.96 0.23 0.29 5.0 1.3 0.86

No.117 PLS 7 0.96 0.28 0.38 4.6 1.4 0.70

PCR 8 0.93 0.44 0.48 3.7 1.1 0.57

Kernel 7 0.94 0.40 0.47 3.8 1.2 0.57

SVM 7 0.96 0.22 0.36 4.9 1.6 0.67

Celica PLS 3 0.97 0.27 0.32 5.5 1.2 0.90

PCR 6 0.97 0.29 0.32 5.5 1.1 0.89

Kernel 3 0.93 0.41 0.50 3.5 1.2 0.56

SVM 3 0.97 0.26 0.31 5.6 1.2 0.91

Ever Green PLS 4 0.95 0.26 0.33 4.3 1.3 0.89

PCR 7 0.93 0.35 0.39 3.7 1.1 0.77

Kernel 4 0.91 0.43 0.44 3.2 1.0 0.70

SVM 4 0.94 0.25 0.35 4.1 1.4 0.83

No.117 PLS 6 0.94 0.31 0.46 3.9 1.5 0.66

PCR 10 0.92 0.47 0.51 3.5 1.1 0.58

Kernel 6 0.92 0.37 0.51 3.5 1.4 0.58

SVM 6 0.94 0.28 0.43 4.1 1.5 0.69

Celica PLS 2 0.94 0.37 0.41 4.2 1.1 0.83

PCR 6 0.94 0.39 0.43 4.1 1.1 0.77

Kernel 3 0.90 0.42 0.54 3.2 1.3 0.53

SVM 2 0.95 0.31 0.40 4.4 1.3 0.83

Ever Green PLS 5 0.83 10.0 13.9 2.3 1.4 0.73

PCR 9 0.70 15.8 17.2 1.9 1.1 0.41

Kernel 9 0.82 9.2 18.2 1.7 2.0 0.36

SVM 5 0.79 9.7 15.0 2.1 1.5 0.85

No.117 PLS 6 0.81 9.3 12.6 3.1 1.4 0.85

PCR 11 0.63 15.0 16.7 2.3 1.1 0.42

Kernel 6 0.78 14.7 19.0 2.0 1.3 0.37

SVM 6 0.76 9.2 13.6 2.8 1.5 0.82

Celica PLS 4 0.83 10.7 13.0 2.6 1.2 0.82

PCR 10 0.79 13.2 14.4 2.4 1.1 0.65

Kernel 10 0.72 11.7 17.9 1.9 1.5 0.35

SVM 4 0.85 10.1 11.9 2.8 1.2 0.92

Ever Green PLS 3 0.90 27.2 32.5 3.4 1.2 0.81

PCR 8 0.90 31.4 33.7 3.2 1.1 0.75

Kernel 3 0.84 35.6 38.3 2.9 1.1 0.65

SVM 3 0.89 27.2 33.6 3.3 1.2 0.76

No.117 PLS 2 0.88 39.9 45.8 2.8 1.1 0.53

PCR 7 0.88 43.1 44.7 2.9 1.0 0.53

Kernel 3 0.86 46.6 47.3 2.8 1.0 0.51

SVM 2 0.90 36.8 40.4 3.2 1.1 0.69

Celica PLS 3 0.93 26.8 31.4 4.0 1.2 0.88

PCR 10 0.94 28.4 30.1 4.1 1.1 0.87

Kernel 3 0.87 37.4 38.2 3.3 1.0 0.71

SVM 3 0.93 25.2 31.7 3.9 1.3 0.85

TSS, Brix %

DM, %

Ascorbic acid, 

mg/100g

OP, osmol/kg
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Table 35 Performance measures of PLS, PCR, Kernel and SVM regression models for total 

chlorophyll, carotenoid, Coefficient of elasticity of Compression and Coefficient of elasticity of 

Rupture, using data from the fused NDT methods. Models for the three pepper varieties are 

presented: 'Ever Green', 'No, 117' and 'Celica'.  

 

 

Cross validated prediction and measured values for cv. 'Celica' are shown in Figs. 87-90, as 

examples for PLS, PCR, Kernel and SVM, respectively. In the figures, the ordinate and abscissa 

axes represent the measured and the fitted values. For PLS (Fig. 87) a model with three LVs 

DT Cultivar
Regression 

analysis
LV r

2 RMSEC RMSECV RPD
RMSECV/

RMSEC
SWS

Ever Green PLS 4 0.77 0.0052 0.0065 2.1 1.3 0.60

PCR 11 0.69 0.0065 0.0072 1.9 1.1 0.51

Kernel 4 0.36 0.0104 0.0119 1.2 1.1 0.40

SVM 4 0.76 0.0051 0.0065 2.1 1.3 0.60

No.117 PLS 7 0.98 0.0025 0.0035 6.6 1.4 0.74

PCR 10 0.97 0.0038 0.0043 5.4 1.1 0.70

Kernel 7 0.95 0.0048 0.0050 4.6 1.0 0.71

SVM 7 0.98 0.0022 0.0033 7.0 1.5 0.74

Celica PLS 5 0.96 0.0045 0.0060 4.7 1.3 0.69

PCR 9 0.94 0.0065 0.0071 3.9 1.1 0.63

Kernel 6 0.91 0.0084 0.0087 3.2 1.0 0.62

SVM 6 0.94 0.0040 0.0066 4.2 1.7 0.63

Ever Green PLS 5 0.96 0.0058 0.0076 5.2 1.3 0.73

PCR 7 0.93 0.0086 0.0093 4.2 1.1 0.66

Kernel 5 0.94 0.0089 0.0093 4.2 1.0 0.69

SVM 5 0.97 0.0043 0.0063 6.2 1.5 0.78

No.117 PLS 5 0.95 0.0032 0.0040 5.6 1.2 0.87

PCR 11 0.93 0.0046 0.0053 4.2 1.2 0.73

Kernel 5 0.85 0.0042 0.0080 2.8 1.9 0.48

SVM 5 0.95 0.0030 0.0040 5.5 1.3 0.85

Celica PLS 8 0.98 0.0047 0.0071 8.8 1.5 0.75

PCR 9 0.96 0.0085 0.0102 6.2 1.2 0.65

Kernel 6 0.95 0.0118 0.0129 4.9 1.1 0.57

SVM 6 0.98 0.0052 0.0076 8.2 1.5 0.77

Ever Green PLS 4 0.54 2.7 3.6 1.6 1.3 0.56

PCR 4 0.45 3.6 3.7 1.6 1.0 0.52

Kernel 4 0.50 4.2 4.5 1.3 1.1 0.34

SVM 4 0.50 2.8 3.7 1.6 1.3 0.52

No.117 PLS 4 0.54 2.0 2.4 1.7 1.2 0.81

PCR 3 0.44 2.6 2.7 1.6 1.0 0.73

Kernel 4 0.43 3.1 3.1 1.3 1.0 0.61

SVM 4 0.44 2.1 2.6 1.6 1.3 0.72

Celica PLS 5 0.77 2.1 2.7 2.2 1.3 0.88

PCR 11 0.69 2.8 3.1 1.9 1.1 0.69

Kernel 5 0.72 2.8 3.0 1.9 1.1 0.77

SVM 5 0.75 2.1 2.8 2.1 1.3 0.84

Ever Green PLS 3 0.63 8.4 10.3 1.8 1.2 0.64

PCR 4 0.58 10.2 10.6 1.8 1.0 0.64

Kernel 4 0.51 12.0 13.0 1.4 1.1 0.39

SVM 3 0.60 8.6 10.6 1.8 1.2 0.60

No.117 PLS 3 0.55 5.5 6.4 1.8 1.2 0.88

PCR 11 0.44 6.6 7.1 1.6 1.1 0.71

Kernel 3 0.32 8.2 10.1 1.1 1.2 0.42

SVM 3 0.54 5.8 6.7 1.7 1.2 0.85

Celica PLS 3 0.43 5.9 7.0 1.5 1.2 0.75

PCR 4 0.27 7.3 7.6 1.4 1.0 0.66

Kernel 4 0.29 9.7 9.8 1.1 1.0 0.49

SVM 2 0.46 6.3 6.9 1.5 1.1 0.81

Coefficient of 

elasticity 

Rupture, 

N/mm

Coefficient of 

elasticity 

Compression, 

N/mm

Total 

Chlorophyll, 

mg/g

Carotenoids, 

mg/g
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obtained r
2
=0.97 and RMSECV=0.32, for PCR (Fig. 88) a model with six PCs obtained r

2
=0.97 

and RMSECV=0.32, for Kernel (Fig. 89) a model with three LVs obtained r
2
=0.93 and 

RMSECV=0.50, whereas for SVM (Fig. 90) three LVs were needed to achieve r
2
=0.97 and 

RMSECV =0.31. 

 

  

87 Scatter plot of TSS for 'Celica' variety, as 

predicted by PLS regression model and as 

measured in the laboratory. The PLS model 

was built with the fused NDT data. 

88 Scatter plot of TSS for 'Celica' variety, as 

predicted by PCR regression model and as 

measured in the laboratory. The PLS model 

was built with the fused NDT data. 

 
 

89 Scatter plot of TSS for 'Celica' variety, as 

predicted by Kernel regression model and as 

measured in the laboratory. The PLS model 

was built with the fused NDT data. 

90 Scatter plot of TSS for 'Celica' variety, as 

predicted by SVM regression model and as 

measured in the laboratory. The PLS model 

was built with the fused NDT data. 

R^2= 0.93 

LV 3 

RMSEC= 0.41 

RMSECV= 0.50 
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5.6.2. 2
nd

 level fusion: fused NDT parameters related with combined cultivar 

dataset 

Up to this point we examined each pepper cultivar separately. In the second level of fusion we 

would like to check the possibility of combining the cultivars regardless of the fact that they are 

differentiate in their final colour and build general models for predicting each DT parameters. 

Table 36 presents the result of the PLS, PCR, Kernel and SVM regression analyses‘. 

Table 36 Performance measures of PLS, PCR, Kernel and SVM regression models for DT 

parameters, using data from the fused NDT methods. Models of the combination of the three 

pepper varieties are presented. 
 

 

Overall view of the results shows that the PCR regression needed significantly more PC-s to 

build the models. Moreover, this method generally has higher RMSECV. Therefore it is not 

suggested for analysis of combined varieties and fused NDT dataset for bell pepper evaluation. 

Most of the cases the Kernel and SVM regressions resulted with the most efficient models. In 

case of TSS, AA, OP, and Coefficient of elasticity of Compression the SVM gave the highest 

SWS scores, 0.67, 0.77, 0.67, and 0.72 respectively. Whereas for DM, total chlorophyll, and 

DT Cultivar
Regression 

analysis
LV r

2 RMSEC RMSECV RPD
RMSECV/

RMSEC
SWS

PLS 5 0.93 0.40 0.45 3.8 1.11 0.67

PCR 4 0.87 0.62 0.64 2.7 1.02 0.36

Kernel 5 0.93 0.42 0.47 3.6 1.13 0.58

SVM 5 0.93 0.37 0.43 4.0 1.16 0.67

PLS 5 0.93 0.42 0.46 3.6 1.11 0.71

PCR 4 0.84 0.65 0.67 2.5 1.02 0.33

Kernel 5 0.92 0.48 0.49 3.4 1.01 0.74

SVM 5 0.92 0.39 0.46 3.7 1.16 0.67

PLS 8 0.77 14.2 16.4 2.4 1.16 0.73

PCR 11 0.51 22.0 22.6 1.7 1.03 0.19

Kernel 8 0.73 20.3 20.7 1.9 1.02 0.51

SVM 8 0.77 14.1 16.1 2.4 1.14 0.77

PLS 5 0.89 37.0 40.6 3.0 1.10 0.62

PCR 5 0.83 48.4 49.3 2.5 1.02 0.22

Kernel 5 0.89 42.0 42.0 2.9 1.00 0.64

SVM 5 0.90 33.8 38.8 3.2 1.15 0.67

PLS 9 0.94 0.006 0.007 4.3 1.16 0.59

PCR 15 0.86 0.011 0.011 2.8 1.05 0.43

Kernel 9 0.91 0.009 0.009 3.4 1.05 0.64

SVM 9 0.95 0.006 0.007 4.5 1.17 0.60

PLS 9 0.92 0.008 0.010 4.4 1.20 0.64

PCR 10 0.76 0.016 0.016 2.8 1.03 0.39

Kernel 9 0.92 0.008 0.010 4.5 1.21 0.65

SVM 9 0.94 0.007 0.009 5.0 1.32 0.63

PLS 5 0.62 7.62 8.43 1.9 1.11 0.64

PCR 16 0.49 8.71 9.20 1.8 1.06 0.33

Kernel 5 0.63 9.50 9.72 1.7 1.02 0.33

SVM 5 0.65 7.20 8.11 2.0 1.13 0.72

PLS 5 0.61 2.74 3.02 1.8 1.10 0.73

PCR 16 0.51 3.09 3.24 1.7 1.05 0.38

Kernel 5 0.60 3.29 3.39 1.6 1.03 0.33

SVM 5 0.62 2.66 3.01 1.8 1.13 0.70

Coefficient of elasticity 

Compression, N/mm

Coefficient of elasticity 

Rupture, N/mm

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

Ever Green 

& No.117& 

Celica

TSS, Brix%

DM, %

AA, mg/100g

OP, osmol/kg

Total Chlorophyll, 

mg/g

Carotenoid, mg/g
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carotenoid the Kernel method resulted with the highest SWS: 0.74, 0.64, and 0.65, respectively. 

PLS gave the highest score in predicting Coefficient of elasticity of Rupture with 0.73 SWS. 

Based on the comparison of the single and the combined cultivar models it can be concluded that 

the combined variety models have a higher r
2
 and lower ratio of RMSECV to RMSEC, which 

makes these models to be more robust and suggest the possibility that they can be applicable for 

DT parameter prediction. 

Figure 91 and 92 represent the SVM model for predicting ascorbic acid content in the general 

model by combined cultivars and fused NDT methods. The figure 91 shows the data with marks 

according to the DAA, while figure 92 presents the data according to the cultivar information. 

Clearly visible on figure 92 that the higher vitamin C content is predicted in the 5-7
th

 picks which 

means 60-74
th

 DAA. In this maturity state the ‗Ever Green‘ and No.117 cultivars has higher 

ascorbic acid content in harmony with the results shown in chapter 5.1.4. 

 

 

Fig. 91 Scatter plot of AA, 

as predicted by SVM 

regression model and as 

measured in the laboratory. 

The SVM model was built 

with the fused NDT data and 

combination of cultivars. 

Data marked by the DAA. 

 

Fig. 92 Scatter plot of AA, 

as predicted by SVM 

regression model and as 

measured in the laboratory. 

The SVM model was built 

with the fused NDT data and 

combination of cultivars. 

Data marked by the 

cultivars. 
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5.6.3. 3
rd

 level fusion: fused NDT parameters correlated with fused DT parameters 

on each cultivar separately and on combined cultivar dataset 

Up until now in most of the cases the regression models were to predict single DT parameters. 

As well as in the literature the prediction is usually concerns on reference parameter. In the fused 

evaluation systems for classification of fruits and vegetables the estimation of quality is 

conducted by specialist, whose decision is subjective and its repeatability is poor (Steinmetz et 

al. 1995). Moreover, such a system is not flexible for change of cultivar; it is applicable only for 

the specific cultivar that the fusion process was developed. There is a need for flexible fusion 

system which is able to work with several cultivars as well as its reference parameters are 

objective in the estimation of quality of the product. 

The 3
rd

 level of fusion consist the step of fusing the DT quality parameters. In the fusion of DT 

parameters PCA was applied, and the 1
st
 PC was taken as new combined quality index (NCQI). 

The advantage of PCA is that in the PC it can be eliminated the fact that some DT parameter 

might have correlation with each other, and in the same time PC gives the linear combination of 

the DT parameters with the highest variation. Scheme of the DT fusion is shown on Fig. 93. 

From the predicted NCQI values the DT values can be calculated with by the multiplication of 

the inverse matrix of the PCA coefficients. In this way the NCQI can be used in classification 

systems as well. 

Table 37 shows the result of PLS, PCR, Kernel and SVM regression models for 'Ever Green', 

'No, 117' and 'Celica' cultivars separately, as well as for the combination of the three cultivars. 

Efficient models were achieved with the fused DT and fused NDT models for all three cultivars 

with high correlation of determination. (SWS indices were calculated for each cultivar separately 

as well as separately for the combined varieties.) For 'Ever Green', 'No, 117' cultivars the PLS 

regression gave the best models based on the SWS index, whereas for 'Celica' cultivar the SVM 

learning machine resulted with the highest SWS. For the combined cultivar model the SVM 

resulted slightly higher SWS than PLS regression. Altogether it can be concluded that PLS and 

SVM methods were found to be most suitable to work with the combined dataset and build 

regression models for the fused DT and NDT parameters. 
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Fig. 93 Scheme for fusion of DT methods 

 

 

The best models were depicted in figures 94-97 in scatter plots for ‗Ever Green‘, ‗No.117‘ and 

‗Celica‘ cultivars and for the combined varieties, respectively. 

Based on the models built for the prediction of NCQI, it was found that the NCQI has negative 

values when the pepper fruit is still under reaching the physiological development stage (below 

60
th

 DAA). Below the 60
th

 DAA the pepper fruit did not reach its maximum size and did not 

accumulate the optimal amount of internal components like: soluble solid, carotenoid or ascorbic 

acid. Therefore harvest time is not suggested when the NCQI is taking negative value. 

 

TSS

DM

OP

AA

Total 

Chlorophyll

DT reference 

method fusion

Carotenoid

Coefficient of 

elasticity 

Compression

Coefficient of 

elasticity 

Rupture

NCQI

Table 37 Performance measures of linear and non-linear regression models for NCQI, using 

fused dataset. Models for the three pepper varieties are presented: 'Ever Green', 'No, 117' and 

'Celica' and combined cultivar‘s of data, respectively.  

 

Cultivar
Regression 

analysis
LV r

2 RMSEC RMSECV RPD
RMSECV

/RMSEC
SWS

Ever Green PLS 5 0.95 0.37 0.50 2.9 1.34 0.80

PCR 8 0.92 0.61 0.64 2.3 1.05 0.39

Kernel 5 0.91 0.52 0.68 2.2 1.30 0.29

SVM 5 0.95 0.36 0.52 2.8 1.43 0.71

No.117 PLS 8 0.97 0.30 0.43 3.4 1.45 0.82

PCR 12 0.94 0.51 0.57 2.6 1.11 0.38

Kernel 8 0.94 0.41 0.60 2.5 1.44 0.31

SVM 8 0.96 0.28 0.44 3.3 1.60 0.73

Celica PLS 6 0.97 0.34 0.45 3.2 1.35 0.53

PCR 11 0.95 0.49 0.53 2.8 1.08 0.32

Kernel 6 0.95 0.47 0.51 2.9 1.09 0.46

SVM 6 0.97 0.27 0.37 3.9 1.39 0.77

PLS 8 0.95 0.47 0.55 2.7 1.15 0.86

PCR 10 0.89 0.73 0.75 2.0 1.03 0.28

Kernel 8 0.92 0.40 0.66 2.2 1.63 0.48

SVM 8 0.95 0.44 0.54 2.7 1.22 0.87

Ever Green 

& No.117 

& Celica
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Fig 94 Scatter plot of 

NCQI, as predicted by 

PLS regression model. 

The PLS model was built 

with the fused DT and 

NDT data and ‗Ever 

Green‘ cultivar. Data 

marked by the harvest 

schedule. 

 

Fig 95 Scatter plot of 

NCQI, as predicted by 

PLS regression model. 

The PLS model was built 

with the fused DT and 

NDT data and ‗No.117‘ 

cultivar. Data marked by 

the harvest schedule. 

 

Fig 96 Scatter plot of 

NCQI, as predicted by 

SVM regression model. 

The SVM model was 

built with the fused DT 

and NDT data and 

‗Celica‘ cultivar. Data 

marked by the harvest 

schedule. 
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Fig 97 Scatter plot of 

NCQI, as predicted by 

SVM regression model. 

The SVM model was 

built with the fused DT 

and NDT data and 

combination of cultivars. 

Data marked by the 

cultivars. 

 

Since the hyperspectral imaging is still considered to be quite expensive measurement method to 

consider its application for on-line sorting lines, therefore it was desirable to evaluate the fusion 

models with exclusion of this method. Table 38 presents comparison of the models with and 

without the hyperspectral imaging data. The models were built only with PLS and SVM 

regression since these two methods showed the best results for the prediction of NCQI. Based on 

the SWS scores PLS resulted with slightly better models. By excluding the hyperspectral data the 

SWS index decreases, but the PLS model is still predicting the NCQI index with a high r
2
: 0.94, 

low RMSECV: 0.58 and low RMSECV/RMSEC: 1.15. PLS prediction and measured NCQI 

values is shown in the scatter plot on Figs. 98. VIP scores are shown on Fig. 99. The VIP score 

being above 1 indicates that the particular component significantly participating in the model. 

List of components can be found in the Appendix 9.2.3. The most significantly participating 

components are the first LV-s from the osmotic potential (SWIR), carotenoid (SWIR), rupture 

(SWIR) and compression (VIS-NIR) models, the h, SAM (USB) and quality point (USB) values, 

and the rate of relaxation.  

 

Table 38 Performance measures of the PLS and SVM models for predicting NCQI, for the 

combined cultivars by fused NDT with and without the Hyperspectral imaging data. 

 

NCQI Data
Regression 

Method
LV r

2 RMSEC RMSECV RPD
RMSECV/

RMSEC
SWS

PLS 8 0.94 0.475 0.545 2.7 1.15 0.53

SVM 8 0.95 0.438 0.536 2.7 1.22 0.41

PLS 8 0.94 0.505 0.580 2.5 1.15 0.44

SVM 8 0.94 0.504 0.580 2.5 1.15 0.43

Ever Green & 

No.117 & 

Celica

All NDT

NDT without 

Hyperspectral 

imaging
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Fig. 98 Scatter plot of NCQI, as predicted by PLS regression model. The PLS model was built 

with the fused DT and NDT data (without hyperspectral imaging) and combination of cultivars. 

Data marked by harvest schedule. 

 
Fig. 98 VIP scores of the model depicted on Fig. 92. 

 

It is generally desired to test the model applicability. Therefore the combined (three cultivars) 

dataset (540 samples) was divided randomly to a calibration set (300 samples) and a validation 

dataset (240 samples). PLS and SVM regression models were built and the models were applied 

on the validation set. The results are shown in Figures 100-101. Both PLS and SVM resulted 

with efficient models. Based on the calculated SWS indices the PLS model found to be slightly 

better than the SVM, with SWS values of 0.81 and 0.71, respectively. 
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Fig. 100 Scatter plot of NCQI, as predicted by PLS regression model. The PLS model was built 

with the fused DT and NDT data (without hyperspectral imaging) and combination of cultivars. 

Data marked by sample participation in calibration or validation (test) set. 

 

 
Fig. 101 Scatter plot of NCQI, as predicted by SVM regression model. The SVM model was 

built with the fused DT and NDT data (without hyperspectral imaging) and combination of 

cultivars. Data marked by sample participation in calibration or validation (test) set. 
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6. THESIS’S AND NEW SCIENTIFIC FINDINGS 

During my doctorate research I followed and examined the growth and maturation of three 

cultivars of different final colour bell peppers: ‗Ever Green‘ (green), ‗No.117‘ (yellow) and 

‗Celica‘ (red). The bell pepper plants were grown on soil with drip irrigation in Ein Tamar, Israel 

in protected greenhouses. Plants were irrigated 3 times a day, with 5 m
3
 solution contains 10 l 

fertilizer (7 % Nitrogen, 3% Phosphorus, and 7% Potassium). The changes occurring during 

maturation was followed by destructive and non-destructive methods and data were analysed by 

chemometric procedures. 

1. I developed the standardized weighted sum index (SWS) for the evaluation and 

comparison of regression models. SWS index takes into account several parameters from 

the regression model, such as the latent variables, the correlation coefficient, the 

RMSEC, RMSECV, the ratio of RMSECV and RMSEC, and the RPD. Therefore it gives 

a more general and objective evaluation of the regression model about its goodness or 

robustness. 

2. I established non-destructive measurement method of ascorbic acid, total chlorophyll and 

carotenoid content in the three measured bell pepper cultivars. I built efficient PLS 

prediction models by means of spectral measurements of VIS-NIR, SWIR spectral data 

and hyperspectral imaging for the estimation of ascorbic acid, total chlorophyll, 

carotenoid content for all three studied bell pepper cultivars. I found that VIS-NIR 

spectral measurement resulted with the best prediction models for ascorbic acid content, 

while hyperspectral imaging found to be the most efficient for total chlorophyll and 

carotenoid content estimation. The best model for vitamin C prediction had r
2
: 0.78 and 

RMSECV: 15.1 mg/100g. The best model for prediction of total chlorophyll had r
2
: 0.95 

and RMSECV: 0.005 mg/g; for carotenoid content r
2
 was 0.97 and RMSECV: 0.008 

mg/g.  

3. I found that fused non-destructive measurement data (NDT) with chemometric 

procedures are capable for the prediction of internal components (TSS, DM, OP, vitamin 

C, chlorophyll, carotenoid) and texture (coefficient of elasticity of compression and 

rupture) (DT). 

Comparing the single sensor PLS models to the multisensor PLS models the fused 

NDT data in each DT prediction resulted with higher SWS indices. I found that fused 

models are predicting the DT parameters with similar or lower number of latent variables; 

they have generally higher correlation of determination as well as lower RMSECV. 
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Therefore the fusion of the NDT parameters found to be efficient and beneficial for the 

prediction of DT quality parameters in the examined three bell pepper cultivars. 

I developed linear and non-linear (PLS, PCR, Kernel, SVM) regression models using 

fused NDT dataset for the prediction of DT parameters. I found that comparing the 

different chemometric procedures - based on the SWS index - PLS and SVM models 

were the most suitable to predict DT quality parameters from the fused NDT 

measurements in the examined three bell pepper cultivars. 

4. Prediction model was developed which combines the three bell pepper cultivars. The 

linear and non-linear (PLS, PCR, Kernel, SVM) prediction models were built with the 

fused NDT dataset. I found that Kernel and SVM models resulted with the most efficient 

models. In case of TSS, AA, OP, and coefficient of elasticity of compression SVM 

regression gave the highest SWS scores (0.67-0.77). Whereas for DM, total chlorophyll, 

and carotenoid Kernel method resulted with the highest SWS: 0.64-0.74. 

5. I developed a new quality index NCQI in order to establish a way to evaluate the global 

quality of bell pepper. NCQI was created by the fusion of TSS, DM, OP, AA, total 

chlorophyll, carotenoid content, coefficient of elasticity of compression, and coefficient 

of elasticity of rupture variables. NCQI is the first principal component of the DT 

variables.  

6. I developed PLS, PCR, Kernel and SVM regression models for the prediction of NCQI 

by the fused NDT parameter for ‗Ever Green‘, ‗No.117‘,‘Celica‘ and for the total data of 

the three cultivars. Efficient models were achieved with the fused DT and fused NDT 

models for all three cultivars with high correlation of determination (0.89-0.97). Based on 

the SWS scores I found PLS and SVM methods to be most suitable to work with the 

combined dataset and build regression models for the fused DT and NDT parameters. 

7. Harvest time is not suggested when the NCQI is taking negative value. Based on the 

models built for the prediction of NCQI, it was found that the NCQI has negative values 

when the pepper fruit is still in the physiological development stage (below 60
th

 DAA in 

the present study). Below the 60
th

 DAA the pepper fruit did not reach its maximum size 

and did not accumulate the optimal amount of internal components like: soluble solid, 

carotenoid or ascorbic acid in case of the three examined bell pepper cultivar. 
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7. RECOMMENDATION FOR FURTHER RESEARCH 

Further research work should be considered as a continuation of the present study. 

 For better understanding and evaluation of the physiological changes in the whole pepper 

fruit during growth and maturation I suggest the in depth examination of the 

hyperspectral images in the VIS-NIR and SWIR spectral range. 

 I suggest the examinations to be conducted in consecutive seasons with higher number of 

samples in order to validate the established models; make it applicable without depending 

on the seasons. Moreover, to examine several cultivars with differing shape, colour and 

growing condition in order to develop more robust regression models. 

 I suggest examining the behaviour of the NCQI during storage and shelf life of the 

product. Moreover, to find the NCQI value which can indicate the critical condition of 

the fruit when it cannot be stored longer without quality degradation. 

 I suggest including the shape and defect monitoring of the agricultural produce to be 

integrated to the non-destructive measurement methods and to the fusion. 

 I suggest extending the fusion of the NDT and DT parameters for other agricultural 

products. 

 I suggest to examine different combinations of sensors to be fused in order to find the 

most efficient and economical solution, which can be efficiently integrated into sorting 

and classification lines. 

 For the purpose of proper harvest time estimation for farmers I suggest the development 

of a portable device for field application. 
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8. SUMMARY 

Export and local market both demands high quality sorted fruits and vegetables, which long 

preserves its fresh condition on the market. Agricultural products‘ inner content and outer 

properties continues to change after harvesting, therefore it is crucial to determine the optimal 

harvest time properly. If the time of the harvest is not properly determined than it might 

negatively influences the quality of the product. It is important to find solution for growers and 

packers for rapid, objective and non-destructive evaluation methods for the determination of 

pepper quality change during growth, maturation and in the process of sorting and classification. 

The main objective of the present study is to explore the relationship between several non-

destructive testing methods and the state of maturity, inner composition, textural, and 

physiological parameters (DT parameters). Moreover, to develop a rapid reliable non-destructive 

cost effective system to measure quality index of bell pepper. 

The present study examined the changes in the course of growth and maturation of intact bell 

pepper fruits. Three different cultivars were examined: ‗Ever Green‘ (green cv.), ‗No.117‘ 

(yellow cv.) and ‗Celica‘ (red cv.). 

During the growth and maturation the following destructive quality parameters were followed: 

total soluble solid, dry matter, ascorbic acid, osmotic potential, total chlorophyll and carotenoid 

content, coefficient of elasticity of compression and rupture tests. From the non-destructive 

methods the following were used to acquire information of the fruit: ultrasonic test, colour 

measurement, relaxation test, VIS-NIR (477-950 nm) and SWIR (850-1888 nm) spectral 

measurements and hyperspectral imaging (550-850 nm). 

Sigmoid shape trend was found in case of TSS, DM and OP change with the advancement of 

DAA. The highest TSS, DM and OP contents were achieved by the ‗No.117‘ yellow cultivar at 

the fully matured stage, whereas ‗Ever Green‘ cultivar accumulated the least of these contents. 

Whether this observation is related to the final colour of the fruit or not, is a question requires 

further research. 

The ascorbic acid content showed a different trend in the examined period of growth. The 

ascorbic acid content had increased and reached a maximum at the 67
th

-74
th

 DAA, than 

decreased in case of all three cultivars. The highest AA content was reached by the ‗Ever Green‘ 

variety (74
th

 DAA) while the lowest vitamin C was accumulated by the ‗Celica‘ cultivar at the 

67
th

 DAA. 

Total chlorophyll content in the ‗No.117‘ and ‗Celica‘ cultivars has a sigmoid decreasing trend 

and the concentration of total chlorophyll significantly starts to decrease after the 47
th

 DAA and 
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converges to zero. Meanwhile the total chlorophyll content in ‗Ever Green‘ cultivar decreases to 

a certain extent but at the fully ripe stage its total chlorophyll content still higher than the 

‗No.117‘ and ‗Celica‘ cultivars in their unripe green stage. 

The carotenoid content of the ‗No.117‘ and ‗Celica‘ cultivars started to increase after the 60
th

 

DAA without stagnation. The same process occurs in case of the ‗Ever Green‘ cultivar alike just 

with 7 days delay. I found a connection between the drop of total chlorophyll content and 

increase of carotenoid content in all three cultivars. The highest carotenoid concentration was 

found in the ‗Celica‘ cv. followed by the ‗Ever Green‘ and least carotenoid was accumulated by 

the ‗No.117‘ cv.. 

Standardized weighted sum (SWS) index was developed for evaluation of the regression models. 

SWS index is complex number which includes the LV, r
2
, RMSEC, RMSECV, 

RMSECV/RMSEC ratio and RPD. Therefore it provides a more complex description of the 

regression model robustness than the RPD index alone. 

Efficient prediction models were built for the estimation of TSS, DM, OP, AA, total chlorophyll, 

carotenoid content, coefficient of elasticity of compression, and coefficient of elasticity of 

rupture destructive parameters by the VIS-NIR, SWIR and hyperspectral imaging.  

PLS, PCR, Kernel and SVM regressions resulted with efficient prediction models for TSS, DM, 

OP, AA, total chlorophyll, carotenoid content, coefficient of elasticity of compression, and 

coefficient of elasticity of rupture by the fused NDT-s. The fused models were found more 

efficient than the single sensor models. Comparison of the PLS models of the single and 

multisensory models were based on the SWS index. PLS regression models by the fused NDT 

parameters achieved significantly lower RMSECV values than the single sensor models in case 

of each variety and each DT parameters. Based on the SWS index it was concluded that the PLS 

and the SVM regression models were most suitable to predict DT parameters from the fused 

NDT parameters. 

PLS, PCR, Kernel and SVM regression models were built for the prediction of the DT 

parameters by the fused NDT parameters for each cultivar separately and as well as for the 

combination of cultivars. Based on the comparison of the single and the combined cultivar 

models that the combined variety models have a higher r
2
 and lower ratio of RMSECV to 

RMSEC, which makes these models to be more robust and suggest the possibility that they can 

be applicable for DT parameter prediction. 

PCR regression needed significantly more PC-s to build the models. Moreover, this method 

generally had higher RMSECV. Therefore based on the results of this study it is not suggested 

for analysis of combined varieties and fused NDT dataset for bell pepper evaluation. I found the 
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Kernel and SVM regressions resulted with the most efficient models for the combined cultivars 

and the fused NDT parameters. 

New combined quality index (NCQI) was developed by the fusion of the reference parameters 

(DT): TSS, DM, OP, AA, total chlorophyll, carotenoid content, and coefficient of elasticity of 

compression and rupture. NCQI was created in order to establish a way to evaluate the global 

quality of bell pepper. NCQI is the first principal component of the DT variables. 

Prediction models were built for the new combined quality index (NCQI) by the fused NDT 

parameter for ‗Ever Green‘, ‗No.117‘,‘Celica‘ and for the combination of the three cultivars. 

Efficient models were achieved with the fused DT and fused NDT models for all three cultivars 

with high correlation of determination. PLS and SVM method found to be most suitable to work 

with the combined dataset and build regression models for the fused DT and NDT parameters. 

Based on the models built for the prediction of NCQI, it was found that the NCQI has negative 

values when the pepper fruit is still in the physiological development stage (below 60
th

 DAA in 

the present study). Below the 60
th

 DAA the pepper fruit did not reach its maximum size and did 

not accumulate the optimal amount of internal components like: soluble solid, carotenoid or 

ascorbic acid in case of the three examined bell pepper cultivar. Therefore harvest time is not 

suggested when the NCQI is taking negative value. 

For economical considerations fusion models were evaluated with the exclusion of the 

hyperspectral imaging on the combined cultivar dataset. By excluding the hyperspectral data 

SWS index decreased, but the PLS model still predicted the NCQI index with high correlation of 

determination and low RMSECV. For the evaluation of the applicability of this model the dataset 

was divided to calibration and validation sets. As a result efficient validation was achieved with 

high correlation of determination with low RMSEP. 
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9.2. Appendix 

9.2.1. Preliminary experiment 

The preliminary experiments were carried out during March-May 2009 on fruits taken from 2 

greenhouses of ‗Vergasa‘ (red) and ‗Ever Green‘ (green) cultivars. Fruits were picked seven 

times in succession in the course of the growing period, from the sixth week after flowering until 

full ripening. Each picked batch contained 50 fruits. Shortly after picking, each fruit was 

weighed and its colour was measured by colorimeter. At this point, 25 fruits were subjected to 

NDT testing followed by the reference measurements. The remaining 25 fruits were stored at 7 

ºC and 80% humidity for 14 days, and then moved to shelf-life conditions (20 ºC, 50-60% 

humidity) for 3 days. After that, the fruits were examined in the same manner as described 

above. On each fruit, one surface was chosen where the batteries of tests were carried out. 

NDT tests: 

 VIS-NIR spectrometry (same as chapter 4.2.2.) 

 SWIR spectrometry (same as chapter 4.2.2.) 

 Hyperspectral imaging (same as chapter 4.2.3. except that the hyperspectral images were 

taken from several fruits in the same time) 

 ultrasound attenuation (same as chapter 4.2.4.) 

 acoustic response (according to Felföldi, 1996) 

 colorimetry (same as chapter 4.2.1.) 

 relaxation test: based on the modeling of pressure gage (Ben-Yehoshua et al., 1983), 

same as chapter 4.2.5. 

DT reference tests 

 pressure gage on whole fruit: according to Ben-Yehoshua et al. (1983) 

 puncture test on pepper disk (same as chapter 4.3.1.) 

 compression of pepper disk (same as chapter 4.3.2.) 

 total soluble solids (same as chapter 4.3.4.) 

 dry weight (same as chapter 4.3.3.) 

 ascorbic acid (same as chapter 4.3.5.). 

Results from the NDT and DT tests were analyzed by chemometric procedures: partial least 

squares regression (PLSR), PCR software was used for model development. Evaluating the 

spectral data; comparisons were made among the PLS regression analysis of the reflectance 

spectra (R), and the pre-processed spectra‘s such as the first derivative of R (D1R), log (1/R), 

D1log(1/R) and D2log(1/R). Correlation tests were carried out by SAS software using Spearman 

Correlation procedure. 

Part of the results were presented at the International Conferences in Agricultural Engineering, 

Synergy and Technical Development 2009, Gödöllő (Ignat et al., 2009). 
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Results related to the relaxation tests: 

Based on the strong relationship between the results of the pressure gage and the result of the 

relaxation test (r
2
:0.92 for ‘Ever Green‘ and r

2
:0.91 for Vergasa‘ cultivars) in the second series of 

experiments in 2009 winter season only the relaxation test was performed. 

 

 
Fig. 92 Remaining deformation (Lloyd) from relaxation test vs. Remaining deformation (PG) 

from pressure gage test for ‗Ever Green‘ cultivar 

 

 
Fig. 93 Remaining deformation (Lloyd) from relaxation test vs. Remaining deformation (PG) 

from pressure gage test for ‗Vergasa‘ cultivar 

 

9.2.2. Pairwise Comaprison Method 

The pairwise comparison method was developed by Saaty (1980). This method involves pairwise 

comparisons to create a ratio matrix. It takes as an input the pairwise comparisons and produces 

the relative weights as output. Specifically, the weights are determined by normalizing the 

eigenvector associated with the maximum eigenvalue of the (reciprocal) ratio matrix. 

Comparison of models based on the r
2
, LV, RMSEC, RMSECV, RMSECV/RMSEC and RPD. It 

requires assessing the relative importance of the six criteria. This can be done by the pairwise 
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comparison method. The procedure consists of three major steps: generation of the pairwise 

comparison matrix, the criterion weights computation, and the consistency ratio estimation. 

a. Development of the pairwise comparison matrix. The method employs an underlying 

scale with values from 1 to 9 to rate the relative preferences for two criteria (Table 1). 
 

Table 1 Scale of pairwise comparison 

 
 

First step: the specialist (expert in chemometric procedures) sorts the criterions based on their 

importance by his/her opinion. Secondly as an example, suppose that the RMSECV is 

moderately to strongly preferred over the r
2
 attribute. This is a numerical score of 4. Further, 

suppose that the RMSECV/RMSEC is strongly preferred to RPD. This is a numerical score of 5. 

All these scores are placed in the upper right corner of the pairwise comparison matrix (Table 2). 
 

Table 2 Pairwise comparison of the evaluation criteria 

 
 

From these information the remaining of the matrix can be determined. First we make the 

assumption that the comparison matrix is reciprocal; that is, if criterion A is twice as preferred to 

criterion B, we can conclude that criterion B is preferred only one-half as much as criterion A. 

Thus, if criterion A receives a score of 2 relative to criterion B, criterion B should receive a score 

of ½ when compared to criterion A. The same logic can be used to complete the lower left side of 

the matrix. Remains to enter shores to the diagonal from the left upper corner to the right lower 

corner. Observation is made that when comparing anything to itself, the evaluation scale must be 

1, representing equally preferred criteria. Thus, 1s can be placed in the main diagonal of the 

matrix. 

b. Computation of the criterion weights. Sum the values in each column of the pairwise 

comparison matrix. Then, divide each element in the matrix by its column total (the resulting 

matrix is referred to as the normalized pairwise comparison matrix). Finally compute the average 

of the elements in each row of the normalized matrix. These averages provide an estimate of the 

Intensity of importance Definition

1 Equal importance

2 Equal to moderate importance

3 Moderate importance

4 Moderate to strong importance

5 Strong importance

6 Strong to very strong importance

7 Very strong importance

8 Very strong to extremely strong importance

9 Extreme importance

Criterion RMSECV
RMSECV/

RMSEC
LV r

2 RPD RMSEC

RMSECV 1 2 3 4 5 6

RMSECV/RMSEC 1/2 1 3 4 5 6

LV 1/3 1/3 1 3 4 5

r
2 1/4 1/4 1/3 1 4 5

RPD 1/5 1/5 1/4 1/4 1 4

RMSEC 1/6 1/6 1/5 1/5 1/4 1
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relative weights of the criteria being compared (Table 3). Using this method, the weights are 

interpreted as the average of all possible ways of comparing the criteria. 

Table 3 Determining the relative criteria weights 

 
 

 
 

c. Estimation of the consistency ratio. It means to determine whether the comparisons are 

consistent or not. First determine the weighted sum vector by multiplying the weight for the first 

criterion times the first column of the original pairwise comparison matrix, then multiply the 

second weight times the second column of the original pairwise matrix, finally, sum these values 

over the rows. After that determine the consistency vector by dividing the weighted sum vector 

by the criterion weights determined previously (Table 4).  

Table 4 Determining the consistency ratio. 

 
 

Criterion RMSECV
RMSECV

/RMSEC
LV r

2 RPD RMSEC

RMSECV 1 2 3 4 5 6

RMSECV/RMSEC 1/2 1 3 4 5 6

LV 1/3 1/3 1 3 4 5

r
2 1/4 1/4 1/3 1 4 5

RPD 1/5 1/5 1/4 1/4 1 4

RMSEC 1/6 1/6 1/5 1/5 1/4 1

SUM 2.45 3.95 7.78 12.45 19.25 27

Criterion RMSECV
RMSECV/

RMSEC
LV r

2 RPD RMSEC Weight

RMSECV 0.41 0.51 0.39 0.32 0.26 0.22 0.35

RMSECV/RMSEC 0.20 0.25 0.39 0.32 0.26 0.22 0.27

LV 0.14 0.08 0.13 0.24 0.21 0.19 0.16

r
2 0.10 0.06 0.04 0.08 0.21 0.19 0.11

RPD 0.08 0.05 0.03 0.02 0.05 0.15 0.06

RMSEC 0.07 0.04 0.03 0.02 0.01 0.04 0.03

SUM 1 1 1 1 1 1 1

Criterion RMSECV
RMSECV/

RMSEC
LV r

2 RPD RMSEC Sum

Consistency 

vector: Row 

Sum/ Weight

RMSECV (0.35)(1) (0.7)(2) (1.05)(3) (1.4)(4) (1.75)(5) (2.1)(6) 7.36 7.36/0.35=6.75

RMSECV/

RMSEC
(0.14)(0.5) (0.27)(1) (0.82)(3) (1.1)(4) (1.37)(5) (1.65)(6) 5.35 5.35/0.27=6.99

LV (0.05)(0.33) (0.05)(0.33) (0.16)(1) (0.49)(3) (0.66)(4) (0.82)(5) 2.24 2.24/0.16=6.94

r
2 (0.03)(0.25) (0.03)(0.25) (0.04)(0.3) (0.11)(1) (0.45)(4) (0.57)(5) 1.23 1.23/0.11=6.6

RPD (0.01)(0.2) (0.01)(0.2) (0.02)(0.25) (0.02)(0.25) (0.06)(1) (0.26)(4) 0.38 0.38/0.06=6.13

RMSEC (0.01)(0.17) (0.01)(0.17) (0.01)(0.2) (0.01)(0.2) (0.01)(0.25) (0.03)(1) 0.067
0.067/0.03=6.2

2
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Determination of lambda (): The average value of the consistency vector. 

=(6.75+6.99+6.94+6.6+6.13+6.22)/6=6.61 
 

Determination of consistency index (CI): The calculation of CI is based on the observation that  

is always greater than or equal to the number of criteria under consideration (n) for positive, 

reciprocal matrixes, and =n if the pairwise comparison matrix is a consistent  matrix. 

Accordingly, -n can be considered as a measure of the degree of inconsistency. This measure 

can be normalized as follows: 
 

CI=(-n)/(n-1) 

CI=(6.61-6)/(6-1)=0.121 
 

The CI term, referred to as the consistency index, provides a measure of departure from 

consistency. Further, the consistency ratio (CR) can be calculated, as follows: 
 

CR=CI/RI  

where, RI is the random index, the consistency index of the randomly generated pairwise 

comparison matrix. It can be shown that RI depends on the number of elements being compared. 

The CR is design in such a way that if CR<=0.1, the ratio indicates a reasonable level of 

consistency in the pairwise comparisons; if, however, CR>=0.1, the values of the ratio are 

indicative of inconsistent judgments. In such case one should reconsider and revise the original 

values in the pairwise comparison matrix. 

CR=0.121 /1.24=0.098 

Since 0.098<0.1, the ratio indicates a reasonable level of consistency in the pairwise comparison. 
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9.2.3. List of fused NDT variables 

 

 

Number Parameter Number Parameter

1 Rate of Relaxation 58 PC2 MSC SNIR log(1/R)

2 Remaining Deformation 59 PC2 NORM SNIR R

3 Coefficient of elasticity of Relaxation 60 PC2 NORM SNIR log(1/R)

4 L 61 PC2 SNV Hyper R

5 C 62 PC2 SNV Hyper log(1/R)

6 h 63 PC2 MSC Hyper R

7 Ultrasonic attenuation 64 PC2 MSC Hyper log(1/R)

8 SAM degree Hyperspectral imaging 65 PC2 NORM Hyper R

9 SAM degree USB R 66 PC2 NORM Hyper log(1/R)

10 SAM degree USB log(1/R) 67 LV1 USB TSS

11 SAM degree SNIR R 68 LV2 USB TSS

12 SAM degree SNIR log(1/R) 69 LV1Hyper TSS

13 Dabs SNV USB R 70 LV2Hyper TS

14 Dabs SNV USB log(1/R) 71 LV1 SWIR TSS

15 Dabs MSC USB R 72 LV2 SWIR TSS

16 Dabs MSC USB log(1/R) 73 LV1 USBDM

17 Dabs NORM USB R 74 LV2 USBDM

18 Dabs NORM USB log(1/R) 75 LV1 Hyper DM

19 Dabs SNV SNIR R 76 LV2 Hyper DM

20 Dabs SNV SNIR log(1/R) 77 LV1 SWIR DM

21 Dabs MSC SNIR R 78 LV2 SWIR DM

22 Dabs MSC SNIR log(1/R) 79 LV1 USB AA

23 Dabs NORM SNIR R 80 LV2 USB AA

24 Dabs NORM SNIR log(1/R) 81 LV1 Hyper AA

25 Dabs SNV Hyper R 82 LV2 Hyper AA

26 Dabs SNV Hyper log(1/R) 83 LV1 SWIR AA

27 Dabs MSC Hyper R 84 LV2 SWIR AA

28 Dabs MSC Hyper log(1/R) 85 LV1 USB OP

29 Dabs NORM Hyper R 86 LV2 USB OP

30 Dabs NORM Hyper log(1/R) 87 LV1 Hyper OP

31 PC1 SNV USB R 88 LV2 Hyper OP

32 PC1 SNV USB log(1/R) 89 LV1 SWIR OP

33 PC1 MSC USB R 90 LV2 SWIR OP

34 PC1 MSC USB log(1/R) 91 LV1 USB Total Chlorophyll

35 PC1 NORM USB R 92 LV2 USB Total Chlorophyll

36 PC1 NORM USB log(1/R) 93 LV1 Hyper Total Chlorophyll

37 PC1 SNV SNIR R 94 LV2 Hyper Total Chlorophyll

38 PC1 SNV SNIR log(1/R) 95 LV1 SWIR Total Chlorophyll

39 PC1 MSC SNIR R 96 LV2 SWIR Total Chlorophyll

40 PC1 MSC SNIR log(1/R) 97 LV1 USB Carotenoid

41 PC1 NORM SNIR R 98 LV2 USB Carotenoid

42 PC1 NORM SNIR log(1/R) 99 LV1 Hyper Carotenoid

43 PC1 SNV Hyper R 100 LV2 Hyper Carotenoid

44 PC1 SNV Hyper log(1/R) 101 LV1 SWIR Carotenoid

45 PC1 MSC Hyper R 102 LV2 SWIR Carotenoid

46 PC1 MSC Hyper log(1/R) 103 LV1 USB Coefficient of elasticity of Compression

47 PC1 NORM Hyper R 104 LV2 USB Coefficient of elasticity of Compression

48 PC1 NORM Hyper log(1/R) 105 LV1 Hyper Coefficient of elasticity of Compression

49 PC2 SNV USB R 106 LV2 Hyper Coefficient of elasticity of Compression

50 PC2 SNV USB log(1/R) 107 LV1 SWIR Coefficient of elasticity of Compression

51 PC2 MSC USB R 108 LV2 SWIR Coefficient of elasticity of Compression

52 PC2 MSC USB log(1/R) 109 LV1 USB Coefficient of elasticity of Rupture

53 PC2 NORM USB R 110 LV2 USB Coefficient of elasticity of Rupture

54 PC2 NORM USB log(1/R) 111 LV1 Hyper Coefficient of elasticity of Rupture

55 PC2 SNV SNIR R 112 LV2 Hyper Coefficient of elasticity of Rupture

56 PC2 SNV SNIR log(1/R) 113 LV1 SWIR Coefficient of elasticity of Rupture

57 PC2 MSC SNIR R 114 LV2 SWIR Coefficient of elasticity of Rupture


