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Abstract

Several game theoretical topics require the analysis of hierarchical beliefs,
particularly in incomplete information situations. For the problem of incom-
plete information, Harsányi suggested the concept of the type space. Later
Mertens & Zamir gave a construction of such a type space under topological
assumptions imposed on the parameter space. The topological assumptions
were weakened by Heifetz, and by Brandenburger & Dekel. In this paper we
show that at very natural assumptions upon the structure of the beliefs, the
universal type space does exist. We construct a universal type space, which
employs purely a measurable parameter space structure.

We divided this work into two parts. In the first part we introduce the
main ideas and features of type space. We follow Heifetz & Samet, however
we take some steps out of their work. We also introduce an example to
present the usefulness of type space.

In the second part we present a complete universal type space, which
contains the works of Mertens & Zamir, Heifetz, and Brandenburger & Dekel
as a special case.

The two parts of this work can be read separately, therefore there are
some minor parallelism in this paper.



Part I

Basic ideas about type space

1



0.1 Type space

The basic idea of type space comes from Harsányi[7]. In this part, we keep
on the way of Bayesian model, so we use the ideas of probability theory.
On the other hand, we define the idea of type space in an exact way, and
this definition declares a form of type space is more general than Harsányi’s
type space. The form of type space, that we use here, comes from Heifetz &
Samet[10], however we do not follow strictly their paper.

The main difference between our definitions and [10]’s definitions is that,
we do not define exactly what kind of measurable structure is used, so we
use an undefined, but fixed measurable structure. Naturally, [10] defines the
measurable structure with that, they work, so in some sense we are more
general, than [10].

By non-defining exactly the used measurable structure, we demonstrate
that, the arguments of [10] are true, in a general concept. Therefore the
measurable structure does not matter in our work, so we do not characterize
that.

Definition 1 Let M be the set of players, a type space, which is based on S
parameter space, is < Ti∈M , mi∈M >, shortly < T,m >, for which

α, T0 = S, Ti measurable ∀i ∈ I

β, mi : Ti → ∆(T ) measurable ∀i ∈ I \{0}, where T = ⊗iTi, and ∆() the set
of probability measures with the coarsest measurable structure respect
to mis are measurable

γ, mi(ti) = δti, δti the Dirac-measure concentrated on ti

It is important, that there are only measurable ideas in the modell, there-
fore this definition is purely probabilistic one.

α, in the definition above, is about the main idea of Harsányi, that if
we initiate the Nature in the model, then we can transform a non-complete
information situation into a non-perfect information one. Point β, pont is the
main idea of type space, and pont γ, formulates the fact, that every player
knows own type.

A point in T is a state of the world, and a point in Ti is a type of player i.
We can find Harsnyi’s concept of type space in the definition above, because
m mapping gives every point in T a probability measure on T for all i.

It is to see that, mi mappings can be handled as probability transition
functions, therefore functions mi : Ti × T−i → [0, 1] for which

α, ∀ti ∈ Ti fixed, A→ mi(ti)(A) A ∈ T−i probability measure
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β, ∀A ∈ T−i fixed, mi measurable

The probability transition function is a general form of conditional proba-
bility, therefore our type space is based on the concept of conditional probali-
ty[21].

Let ti ∈ Ti be arbitrary, then mi(ti) is player i first order belief (about the
other players’s type, or about any event in T ), mi(ti)({tj′})mj(tj′) is player i
second order belief about player j first order belief about any event in T , etc.
Therefore, the above defined type space determines the coherent hierarchies
of beliefs, for every player (see. section: An example).

This model contains Harsányi’s concept, because:

1. mi(ti)(A) exists because, mi-s measurable

2. fact is that the set {tj′} is not necessary measurable, but Harsányi’s
model is based on the Borel sets of Rn, in where every point is measur-
able

Harsányi’s paper is not a mathematically sophisticated work. The main
strength of his work lies in the concept, not in the tools. Therefore, when
Harsányi presents the type space as Rn, then he misses some theoretical
problems, but he can appropriately introduce the concept of type space.

Definition 2 The type morphism ϕ is a measurable function between <
T,m > and < T ′, m′ > type spaces, which is generated by ϕi : Ti → T ′

i

measurable functions, and it has the following properties:

α, ϕ0 = idS

β, m′
i ◦ ϕi = ϕ̂ ◦mi ∀i ∈ I \ {0}, where ϕ̂(µ) = µ ◦ ϕ−1

i µ ∈ ∆(T )

γ, ϕi is injective (one-to-one) ∀i ∈M

ϕ is type isomorphism, if ϕ is isomorphism.

The expressions morphism and isomorphism belong to the belief. The
point β means that, ϕ morphism generates ϕ̂ which is a function between
sets of probability measures, and ϕ̂ changes the measures in a commutative
way.

Ti mi−→ ∆(T )

ϕi ↓ ϕ̂ ↓
T ′

i m′
i−→

∆(T ′)
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The table above is commutative i ∈M . The commutativity of that table
means approximately that, ϕ̂ preserves opinions. The parameter spaces are
equivalent up to an isomorphism.

Point γ is about that, types cannot disappear. Therefore, if φ :< T, m >→

< T ′, m′ > type morphism exits, then < T ′, m′ > is richer than < T, m > in
some sense.

Lemma 3 ϕ̂ is measurable in Definition 2.

Proof. Because point β in Definition 2
Ti mi−→ ∆(T )

ϕi ↓ ϕ̂ ↓
T ′

i m′
i−→

∆(T ′)
is commutative ∀i ∈ M . Let A ∈ ∆(T ′) be arbitrary

measurable set. m′
i ◦ ϕi is measurable, so (m′

i ◦ ϕi)
−1(A) ∈ Ti. Because

m′
i ◦ϕi = ϕ̂ ◦mi, (ϕ̂ ◦mi)

−1(A) = (m′
i ◦ϕi)

−1(A) ∈ Ti. However, if ϕ̂−1(A) /∈
∆(T ), then mi is measurable for σ(∆(T ) ∪ ϕ̂−1(A)), therefore ϕ̂−1(A) must
be in ∆(T ). But A ∈ ∆(T ′) is arbitrary measurable, so ϕ̂ is measurable.

The main property of (ϕ, ϕ̂) is the keeping of beliefs, but the measurability
is also important, we can not leave it out.

The measurability of (ϕ, ϕ̂) is a ”hidden ” information. We mean, the
measurability of (ϕ, ϕ̂) assures that, the events are taken into account in the
model.

We mentioned earlier, that Heifetz & Samet[10] declares the measurable
structure exactly. In that case, the measurability of (ϕ, ϕ̂) is a very strong,
and important assumption.

Definition 4 < T∗, m∗ > is universal type space, if for any < T,m > type
space ∃ϕ type morphism from < T, m > to < T∗, m∗ >.

The universal type space is a type space into which, every type space can
be embedded by some type morphism (the measurable structure is fixed).

Lemma 5 < T∗, m∗ > universal type space is unique up to an isomorphism.

Proof. Indirect: Let < T 1, m1 >, < T 2, m2 > are two universal type spaces,
then ∃ϕ1 type morphism from < T 1, m1 > to < T 2, m2 >, and ∃ϕ2 type mor-
phism from < T 2, m2 > to < T 1, m1 >. Therefore ∃ϕ type morphism (be-
cause the definition of type morphism) between < T 1, m1 > and < T 2, m2 >,
so < T 1, m1 > and < T 2, m2 > are the same up to an isomorphism.

The universal type space is a very strongly universal type space. If we
look the the type morphisms as binary relations on the space of type spaces
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based on S parameter space, then this relation is a partial order, and the
universal type space is the greatest element of the space of type spaces based
on S parameter space.

The universal type space could be defined as the maximal element of the
space of type spaces based on S parameter space. However, in this case the
uniqueness of universal type space is not a simple question.

0.2 Hierarchy of beliefs

The main problem in modelling an incomplete information situation, is the
problem of modelling the hierarchies of beliefs. When Harsányi introduced
the concept of type space, he took an object that summarizes the hierar-
chies of beliefs, instead of building a space from the hierarchies of beliefs.
Therefore, we can consider the concept of type space as a set of hierarchies
of beliefs. In this case, we must look into the question, that what is the
connection between the concept of type space and hierarchies of beliefs. For
this reason let us see the following definition.

Definition 6 (Hierarchy of beliefs) Let (S,M) be measurable parameter
space, then the set of first order beliefs is the set of the probability measures
on (S,M), denote this set by ∆(S,M). The set of second order beliefs is
∆(S×∆(S,M))1, the set of third order beliefs is ∆(S×∆(S,M)×∆(S×∆(S,
M))) etc.

The set of hierarchies of beliefs is a set of probability measures on the set
of probability measures on the set of probability measures on . . . the set of
probability measures on (S,M). Every player has beliefs about other players’s
beliefs.

Denote M the set of players, then:
T0 = S parameter space,
T1 = T0 ×∆[(T0)]

M ,
.
.
.
Tn = Tn−1 × [∆(Tn−1)]

M = S ×n−1
i=0 [∆(Ti)]

M

.

.

.
T∞ = ×∞n=0Tn

1The measurable structure of these spaces is not defined, but fixed.
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The components belong to a fixed player i of an arbitrary point in T∞ is
called as an hierarchy of beliefs of player i.

A point in T0 is a possible value of the parameters. A point in T1 is a
parameter value, and the first order beliefs of the players. A point in T2 is
a parameter value, and the first order beliefs of the players, and the second
order beliefs of the players (so the beliefs about the other players’s first order
beliefs and the parameter value), etc.

We are interested in T∞, because a point in that describes fully the hier-
archy of beliefs for every player. A point in T∞ is called the state of world.
This name comes from the fact, that it describes the state of nature, and the
state of beliefs. The latest is called as the state of mind.

Remark 7 Let t ∈ T∞ be arbitrary, the components of this point are (s, δ1
1, δ

2
1,

......, δ1
2, δ

2
2....), where δi

j denotes player i j-th order belief. Therefore, every
point in T∞ describes fully a state, which contains a hierarchy of beliefs of
the players.

T∞ is a product space, whose points define the beliefs of the players and
a possible parameter value. Therefore, every point describes a possible state
of wold, the hole space T∞ describes all possible state of world. Our aim is
to construct this product space.

We defined the space of hierarchical beliefs by a recursion. We got the first
order beliefs from the set of probability measures on the parameter space,
and we got the second order beliefs from the set of probability measures on
the space of first order beliefs etc.

This kind of recursive definition of beliefs is not the only way defining
the hierarchies of beliefs. It is possible to define hierarchy of beliefs without
measurability, or without measures. Examples for the other ways of defining
of hierarchies of beliefs: Brandenburger[4], Heifetz[9], and Epstein&Wang[6].

We recommend some logic for the players’ beliefs. We do accept only
hierarchies of beliefs, which are generated by logical thinking. We define this
property by the following definition:

Definition 8 The coherent hierarchy of beliefs is an hierarchy of beliefs,
which answers the following two conditions:

• margTn−2δ
i
n = δi

n−1

• marg[∆(Tn−1)]iδ
i
n = δi

δi
n−1

,
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∀n ≥ 2, ∀i ∈ I, where δi
n ∈ ∆(Tn−1)

i, and margTn−2δ
i
n denotes, the restric-

tion of δn on Tn−1, and δi
δi

n−1
is Dirac measure concentrated on the point

δi
n−1.

The first condition is about that the opinion about something must not
change in the hierarchy. This is a very natural assumption.

The second condition recommend that every player knows own type, this
is Harsányi’s condition.

If we recommend that, the players must be logical, then we are interested
in only special points in T∞. Therefore, we are interested in a subspaces of
T∞. In the following the coherent hierarchies of beliefs in T∞ is denoted by
T c
∞.

Axiom 9 The logic of players is common knowledge, so we can concentrate
on T c

∞, on the subspace of T∞.

To sum up, we want to build a product space, which contains all players’
all coherent hierarchies of beliefs, and their combinations.

0.3 The features of type space

The connection between the idea of type space and the idea of hierarchies of
beliefs is the following:

Let t ∈ T be an arbitrary point in < T,m > type space, then t determines
a coherent hierarchy of beliefs for every player, so we can imagine a state of
world in place of t. Therefore every type space < T, m > can be considered
as set of coherent hierarchies of beliefs.

The question is that: can the set of every coherent hierarchies of beliefs
be considered as a type space? In other words, can we build a type space
from T c

∞, from the set of all coherent hierarchies of beliefs?
By now we can compose the problem exactly if we want to build a type

space from the coherent hierarchies of beliefs:
Under what conditions is T c

∞ a type space? In other words, if we have a
product space, and we have probability measures on every sub-product space,
which consists finite many member of the original spaces, and these measures
are coherent, then does such a measure on the product space exist, which
restricted on a arbitrary sub-product space which consist finite many member
of original spaces, is the original measures on that sub-product space? This
problem comes in other fields of mathematics as well.

Let us see a sequence of random variables. We know every finite joint-
distribution of these random variables. Does such a joint-distribution of these
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random variables exist, marginals of which are the finite joint-distribution of
the original random variables? In other words, is there a stochastic process,
which’s members are the random variables above, and the whose finite dimen-
sion marginal distributions are the prefixed joint-distributions? Kolmogorov
[13] answered this question positively.

To sum up we need a generalized Kolmogorov’s [13] Existence(Extension)
Theorem for the building of a type space from the coherent hierarchies of
beliefs.

The general forms of Kolmogorov’s Existence(Extension) Theorem are
the theorem of existence of measure inverze limits. Therefore, we have to
look into the mathematics of inverz systems, and the problem of existence of
inverz limits, to research the question of building type space form hierarchies
of beliefs.

Definition 10 A < T, m > type space is sound, if every type in < T, m >
responds to a coherent hierarchy of beliefs for every player.

The expression ”sound” comes from mathematical logic. In this topic,
we mean a type space be sound, if the language(type space) responds to the
reality(hierarchies of beliefs). In other words, if something is type, then it
determines the hierarchies of beliefs(see section: An example).

Definition 11 A < T, m > types space is complete, if every coherent hier-
archy of beliefs is type.

Using the definitions above, we would like to build a model which is
complete and sound. From the definition of type space (see 1) our type is
sound. Therefore, the problem is the completeness of the type space.

In non-Bayesian model, also the completeness is the main problem. See
Brandenburger[4], Meier[14].

0.4 An example

So far we discussed the need of examining of the hierarchies of beliefs in the
case of incomplete information situations. We mentioned as direct corollary
of the definition of type space that, every type determines a hierarchy of
beliefs for every payer. In this section we present an example how can a type
contain the hierarchy of beliefs for every player.

This example comes from Aumann & Heifetz[2], but we modified that a
little bit.

Let Anna and Robert are two players. Anna has three possible type:
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Q = {AA, AB, AC}.
Robert has also three type:
Q = {RA,RB, RC}.
Let PAnna denote Anna’s opinion about what the state of world is, and

let PRobert denote the Robert’s opinion about the same as at Anna.
The following tables summarize the above mentioned beliefs.

AC

AB

AA

Q=

N= RA RB RC

PAnna

1/4 1/4 1/2

1/4 1/4 1/2

1/2 1/2 0

AC

AB

AA

Q=

N= RA RB RC

PRobert

0 1/2 1/2

0 1/2 1/2

1 0 0

These tables contain conditional probabilities(see Rényi[21]).
For example the third number in the first row of table PAnna means

that, if Anna’s type is AA, then she believes that the probability of that,
Robert’s type is RC, is 0.

An other example, the second number in the first row of table PRobert
means that, Robert beliefs that, if Anna’s type is AA, then she believes that,
the probability of Robert’s type is RB, is 0.

Let the state of the world be {AA, RB}.
Every player knows own type, so Anna knows that, her type is AA.

Anna’s first order belief about Robert’s type (which is included in the first
row of table PAnna):

PA
1 (RA) = PA

1 (RB) = 1/2, PA
1 (RC) = 0.

Anna’s second order belief about what Robert believes about her type,
therefore the belief about what is Robert’s belief about Anna’s type:

PA
2 (AA) = PA

1 (RA)PR
1 (AA) + PA

1 (RB)PR
1 (AA) + PA

1 (RC)PR
1 (AA) =

1/2,
PA

2 (AB) = PA
1 (RA)PR

1 (AB) + PA
1 (RB)PR

1 (AB) + PA
1 (RC)PR

1 (AB) =
1/4,

PA
2 (AC) = PA

1 (RA)PR
1 (AC) + PA

1 (RB)PR
1 (AC) + PA

1 (RC)PR
1 (AC) =

1/4.
Anna’s third order belief about what Robert believes about what Anna

believes about Robert’s type:
PA

3 (RA) = PA
2 (AA)1/2 + PA

2 (AB)1/4 + PA
2 (AC)1/4 = 3/8,

PA
3 (RB) = PA

2 (AA)1/2 + PA
2 (AB)PA

1 1/4 + PA
2 (AC)PA

1 1/4 = 3/8,
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PA
3 (RC) = PA

2 (AA)0 + PA
2 (AC)1/2 + PA

2 (AC)1/2 = 1/4.
e.t.c.
Therefore the types determine the hierarchies of beliefs.
Remark:

1. The prior opinions of the two players do not coincide, so there is no
only one probability distribution on the set of the states of the world,
which’s marginal distributions are the probability distributions of Anna
and Robert2.

Let us connect the idea of probability transition function and the example
above to each other.

Let the state of the world be {AC, RB}.
Let A = {{AA, RA}, {AB, RB}, {AC, RC}} be an event.
Let us see Robert’s hierarchy of beliefs about A.

P 1(A) =

P (A ∩ ((
∏

i

Θi∈(N\{j}))× {RB}))

P ((
∏

i

Θi∈(N\{j}))× {RB})
=

=
P ({AB, RB})

P ({AA, RB}, {AB, RB}, {AC, RB})
=

1

2

This is Robert’s first order belief about event A. Therefore, Robert beliefs
that the probability of event A is 1

2
.

P 2(A) =

∫
{AA,AB,AC}

P 1(A)dP 1 =
1

2
∗ 0 +

1

4
∗ 1

2
+

1

4
∗ 1

2
=

1

4

This is Robert’s second order belief about A. So, Robert beliefs that,
Anna beliefs that, the probability of A is 1

4
.

P 3(A) =

∫
{RA,RB,RC}

P 2(A)dP 1 =
1

2
∗ 0 +

1

4
∗ 1

2
+

1

4
∗ 1

2
=

1

4

This is Robert’s third order belief, therefore Robert beliefs that, Anna
beliefs that, Robert beliefs that, the probability of A is 1

4
.

e.t.c.

2The Harsányi’s Doctrine is not valid in this case.
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Part II

Complete universal type space
(This part is based on [18])
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0.5 Introduction

Modelling rationally behaving actors in a multi-person decision problem in-
volves the analysis of players’ information about all aspects, which have in-
fluence on the decision making. During the decision making process the
rational players use all available information, so its analysis is necessary for
modelling the actors’ behavior. Aumann[1] introduced a formal definition for
the idea of common knowledge. The distinction between common knowledge
and knowledge leads to, among others, the research of hierarchies of beliefs.

The problem of incomplete information is related to the problem of hier-
archical beliefs. In an incomplete information situation, some parameters of
the model are not common knowledge. If something is not common knowl-
edge, we must deal with hierarchies of beliefs, that is, we have to consider
arguments like what every agent believes about what every agent believes
about what every agent believes and so on, which makes the model very
complicated.

Harsányi[7] assumed a ready-made type space, which includes all possible
types of players, and hence, their knowledges, beliefs as well. Simultaneously
he assumed a probability measure, defined on the product of the parameter
space and the type spaces. This probability measure induces hierarchies
of beliefs, so we can consider this probability measure as a ”summary of
hierarchies of beliefs”. However, the opposite question remains: how can we
build a type space from hierarchies of beliefs?

A very important step in this direction was made by Mertens & Zamir[17]
who built a universal type space based on a compact parameter space. Later,
Heifetz[8] relaxed the compactness, but other topological assumptions were
retained. Almost parallel Brandenburger & Dekel[5] proved the existence of
a universal type space in presence of a complete, separable metric (Polish)
parameter space. More recently, Mertens & Sorin & Zamir[16] gave an elegant
proof for the existence of a universal type space in cases of parameter spaces
with various structures. Ultimately, all of the above proofs are based on the
Kolmogorov’s Existence Theorem and its generalizations.

In 1998 Heifetz & Samet[10] proved the existence of a universal type space,
which possesses a purely measurable structure. In contrast to our paper,
the authors make a distinction between universal type space, and space of
coherent hierarchies of beliefs. They also gave an illuminating discussion
on the problem of type spaces, beliefs spaces. The same authors gave a
counterexample showing that in general circumstances, coherent beliefs are
not always types (see Heifetz & Samet[11]).

Quite recently, Meier[15] investigated the problem of the existence of a
universal type spaces, his model is based on finitely additive measures. By
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regarding the opinions as finitely additive measures, the problem of existence
of σ-additive measures on type spaces can be eliminated. On the other hand,
the author discusses how “rich” the structure of a universal type space can be.
This work brings to the surface that, the problem of existence of σ-additive
measures on type spaces is not only the problem of σ-additivity.

There are some works, which do not connect to our paper directly, but
which include some important issue in the research of beliefs, and type spaces.
The first is the work of Epstein & Wang[6], in this work, the authors build
type spaces, where the opinions are not beliefs, but preferences. The second
one is the work of Battigalli & Siniscalchi[3]. Although, this work contributes
to the understanding of the hierarchies of beliefs, but as we see, the main
contribution of this paper is in the better understanding of rationality, and
common certainty of rationality.

Mertens & Zamir[17], Heifetz[8], Brandenburger & Dekel[5], and Mertens
& Sorin & Zamir[16] use the concept of projective limit for proving the exis-
tence of a universal type space. In all four papers the structure of beliefs is
inherited from the topology of lower ranked beliefs spaces or the parameter
space, moreover beliefs are modelled by compact regular probability mea-
sures.

Earlier works on the subject are of two types. The first group contains
the papers [7] and [10], where a type space is not constructed but is taken
to be ready-made. The papers [17], [8], and [5] belong to the other group,
where a universal type space is constructed by coherent hierarchies of beliefs,
so these works are stronger than existence theorems in some sense.

Our main goal is to build a universal type space, that is apparently
“purely measurable”, and in which every coherent hierarchy of beliefs is a
type. The structure on the beliefs is naturally generated by the Baire sets of
the pointwise convergence topology. For metric spaces Baire sets and Borel
sets coincide. However, in non-metrizable cases (for instance when the car-
dinality of the players is greater than countable), our approach results in a
weaker then Borel structure, but this structure allows the players to distin-
guish between any pair of beliefs (i.e. regular probability measures) yet.

An other new idea in this paper is that we cut the parameter space off
the beliefs’ space. This truncated space has a sufficiently good topological
structure (i.e. a projective system of completely regular topological spaces),
so the measure projective limit exists. After this, we re-fit the parameter
space to the measure projective limit, and we construct the universal type
space. It is clear that the existence of a measure projective limit crucially
depends on topological assumptions. However, if we remove finitely many
elements of the projective system of measure spaces, it does not influence the
existence of the measure projective limit.
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In the next section we build up our model. In section 3, we prove the main
result of our paper, finally, in section 4 an illustrative example is provided.

0.6 The Model

If something is common knowledge, then everybody knows that, everybody
knows that everybody knows that, and so on. So, common knowledge is more
than knowledge, it is some kind of knowledge that is the strongest knowl-
edge in the situation. If something is common knowledge, then somebody’s
knowledge of this fact does not influence the situation. If something is not
common knowledge, then the rational players must concern with the beliefs
of other players, beliefs about beliefs of other players and so on.

Therefore, if we have a parameter space S, and this includes all parame-
ters of the game, then we are about to construct a space generated by S, that
includes all reasonable beliefs, beliefs about beliefs and so on. This space is
called the beliefs’ space.

Definition 12 The parameter space is a measurable space (S,AS), where
AS is a σ-algebra defined on S.

This space S contains all parameters, which have impact on the game.
We assume only measurability on this space. The players think in ideas
like probability, events, thus a purely measure theoretic model seems to be
adequate. However, as is well known from Heifetz & Samet[11], a purely
measure theoretic universal type space does not exist in our context.

Definition 13 Let ∆(S,AS) denote the space of the probability measures on
(S,AS), and put d(µ1, µ2) = supA∈AS

|µ1(A) − µ2(A)|. Then (∆(S,AS), d)
or briefly (∆, d) is a metric space. The collection of all Baire sets of (∆, d)
is denoted by B(∆, d)

We use metric spaces to model the structure of possible opinions of the
players (beliefs). This metrics is very natural, we mean, this does not recom-
mend any special assumption. Important to see that, in metric spaces the
Borel and Baire sets coincide. The difference between these two ideas will
be important later. An other important thing is that, all measures on Baire
sets are regular (not compact regular). We use this feature very extensively.

If it will not lead to misunderstanding, instead of ∆(S,AS) we use the
shorter notation ∆(S) or simply ∆. Analogously, B(∆(S), d) is replaced by
B(∆(S)).
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Definition 14 Let us define a sequence of spaces recursively, where M stands
for set of the players:

T0 = (S,AS)
T1 = T0 ⊗ (∆(T0)

M , B(∆(T0)
M))

T2 = T1 ⊗ (∆(T1)
M , B(∆(T1)

M)) = T0 ⊗ (∆(T0)
M , B(∆(T0)

M))⊗
⊗ (∆(T1)

M , B(∆(T1)
M))

...
Tn = Tn−1⊗(∆(Tn−1)

M , B(∆(Tn−1)
M)) = T0⊗⊗n−1

j=0 (∆(Tj)
M , B(∆(Tj)

M))
...

where ⊗ denotes the product measurable structure.

A point in T0 is called parameter value, simply a parameter of the game.
A point in T1 is a combination of a parameter value and a 1-st order beliefs
(the players’ beliefs on the parameter values), and so on.

Consider the infinite product T∞ = S × ×∞j=0∆(Tj)
M . If t ∈ T∞ then it

has the form t = (s, µ1
1, µ

2
1, . . . , µ

1
2, µ

2
2, . . .), where µi

j means the ”i” player’s
j-th order belief. So, every element of T∞ describes an hierarchy of beliefs i.e.
(µi

1, µ
2
i , . . .) for all players and a possible parameter, therefore it is a possible

state of the world. We call beliefs’ space the spaces of type of T∞.

Remark 15 The elements of (s, µ1
1, µ

2
1, . . . , µ

1
2, µ

2
2, . . .) can be regarded as

members of a generalized sequence, where the ordering is: the least element
is s, and µi

j < µl
k iff j < k.

Definition 16 Fix an i ∈ M . A hierarchy of beliefs (µi
1, µ

2
i , . . .) is coherent

if n ≥ 2

• margTn−2µ
i
n = µi

n−1

• marg[∆(Tn−2)]iµ
i
n = µi

µi
n−1

,

where µi
n is taken from [∆(Tn−1)]

i (which is the ith copy of ∆(Tn−1)), fur-
thermore, margTn denotes the marginal distribution on Tn, and µi

µi
n−1

stands

the Dirac measure concentrated on the ”point” µi
n−1.

The first condition declares the fact that the beliefs over some aspects
of the game do not change in the hierarchy. The second condition states
that the players know exactly their own beliefs (cf. Harsányi[7]). These two
conditions describe the ”logic” of the players, we assume this logic to be
common knowledge.
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Remark 17 The measurable structure on [∆(Tn−1)]
i ∀i, n is defined by the

Baire sets, which coincide with Borel sets in the case of metric spaces, hence
any singleton is measurable.

Consider an element (s, µ1
1, µ

2
1, . . . , µ

1
2, µ

2
2, . . .) from T∞ such that the hier-

archies of beliefs (µi
1, µ

2
i , . . .) are coherent for every i ∈M . The set all those

elements is denoted by T c
∞ and called the coherent subspace of T∞. (The

superscript c will be used in the same context throughout the paper.)

Definition 18 Fix an i ∈M and set

T i = (×∞k=0[∆(T c
k )]i)c.

T i is called the type space for player i. A point in T i is a possible type of
player i.

The type space of player i consists of all coherent hierarchies of beliefs.
In particular, if t ∈ T i, then t = (µi

1, µ
i
2, µ

i
3, . . .), and t is coherent.

Corollary 19 T i is metrizable since it is a subspace of a countable product
of metric spaces. This metric is given by dp(µ, µ′) =

∑
n

1
2n d(µn, µ

′
n) where

µ, µ′ ∈ T i, and µn, µ
′
n ∈ [∆(T c

n−1)]
i (d is given in Definition 13).

Remark 20 If the cardinality of M is more than countable, then the Baire
structure of ∆(Tn)M is weaker than the Borel structure. On the other hand,
this structure (Baire sets) coincides with the product measurable structure
⊗m∈MB(∆(Tn))m. It is worth noting that our construction very similar to a
purely measurable type space, because no topology is used to make a stronger
measurable structure for product spaces.

Corollary 21 For a given i ∈M ,

(((T c
n, B(T c

n), µi
n+1), prmn)m<n) (1)

is a projective system of measure spaces, where prmn is the coordinate pro-
jection from T c

n to T c
m, and (µi

1, . . . , µ
i
n+1, . . .) ∈ T i.

Proof. For the definition of projective systems we refer to M. M. Rao[19] p.
117.

• prmn = prmk ◦ prkn ∀m < k < n, by the definition of coordinate
projections.
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• prnn = idT c
n
∀n follows from the definition of coordinate projections.

• prmn is measurable ∀m < n, because of the definition of product mea-
surable spaces.

• µi
n+1(pr

−1
mn(A)) = µi

m+1(A) ∀m < n and ∀A ∈ B(T c
m) is a consequence

of the coherency of beliefs.

The above Corollary establishes the connection between the idea of pro-
jective system and beliefs’ space. The main question is that, whether or not
a proper projective limit of the above defined system exists.

0.7 The main result

Before we take the next step, we clarify the role of Baire sets in our model.
In Mertens & Zamir[17], the opinions were modelled by regular probability
measures on Borel sets of a compact space. However, if there is a compact
regular probability measure on the Baire sets of a topological space, then it
can uniquely be extended to the Borel sets as a compact regular measure.
So, there is one-to-one correspondence between compact regular probability
measures on Baire sets and on Borel sets. In conclusion, regular probabil-
ity measures are compact regular measures on a compact topological space
hence, there is a bijection between opinions in Mertens & Zamir[17] and
opinions in our model.

At Brandenburger & Dekel[5], the opinions are compact regular proba-
bility measures on the Borel sets of a Polish (separable, complete, metric)
space. As is well known, Borel sets and Baire sets coincide in the case of
metric spaces, and all regular probability measures on Borel sets of a Pol-
ish space are compact regular. Therefore, the opinions in Brandenburger &
Dekel[5] and the opinions in our model are related the same way as Mertens
& Zamir[17] and our model, respectively.

In Heifetz[8], and Mertens & Sorin & Zamir[16] the opinions are com-
pact regular probability measures on different kinds of spaces. According to
our previous discussion, all compact regular probability measures on Borel
sets are regular probability measures on Baire sets, but there may be regular
probability measures on Baire sets, which are not necessarily compact regu-
lar. In an informal way we may say that the set of opinions in our model is,
in a certain context broader than that in Heifetz[8], or Mertens & Sorin &
Zamir[16].
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As we have seen, the collection of Baire sets is essentially smaller than
the collection of Borel sets if the cardinality of M is more than countable.
In this case, a point is not measurable in T c

n n > 0 space. We can interpret
this phenomenon as the players’ inability of knowing what the others’ beliefs
exactly are. The players can concentrate on countably many players’ beliefs
only. We often meet the following argument: ”I don’t know who, but I’m
sure somebody believes that ....!”. In the language of probability theory:
”Mr. X believes that ....” is the outcome, ”somebody believes that ...” is the
event. In this example, we mean that the players cannot make an argument
like ”Mr. i believes that ..., Mr. j believes that ..., ” for all players, but our
players can argue that ”Mr. 1 believes that ..., Mr. 2 believes that ..., ...,
somebody believes that ...”. This feature of our model is typically a pure
measure theoretic feature.

In the next proposition we show that, the central question in our model
is the σ-additivity of µi in the projective limit (definition is given in the
Appendix).

Proposition 22 Let i ∈ M be fixed. The projective limit (T,AT , µi) =
lim←−(((T c

n, B(T c
n), µi

n+1), prmn)m<n) of the projective system (1) exists. Fur-

ther, T = T c
∞, AT is a field and µi is an additive set function on AT .

Proof. The proof essentially follows the ideas of Rao[19] p. 118.
Since every prmn is a coordinate projection we deduce that T is not empty

and T = T c
∞. Pick an A ∈ AT , then there is an index n, and B ∈ B(T c

n), A =
p−1

n (B). Moreover, if B ∈ B(T c
n), then also {B ∈ B(T c

n), so {A = p−1
n ({B) ∈

AT . If A1, ...., Am ∈ AT , then for every 1 ≤ j ≤ m there exists an index nj

such that Aj = p−1
nj

(Bj). Let k be the maximal element of {n1, ..., nm}, and

let Kj = p−1
njk(Bj), we know Kj ∈ B(T c

k ) ∀j, so ∪jKj ∈ B(T c
k ). Making use

of Aj = p−1
k (Kj) we obtain ∪jAj ∈ AT . Thus, AT is an algebra.

Since every pnm is a coordinate projection, we conclude that pn is onto.
This implies that p−1

n is one-to-one. Therefore, the set function µi defined by
the equality µi ◦ p−1

n = µi
n is uniquely defined.

Take A1, ...., Am ∈ AT disjoint sets, then ∪jAj ∈ AT . For each 1 ≤
j ≤ m select Bj and Kj as above. We know Kjs are disjoint, and therefore,∑

j µi
k+1(Kj) = µi

k+1(∪jKj), and
∑

j µi(Aj) =
∑

j µi(p−1
k (Kj)) =

∑
j µi

k+1(Kj) =

µi
k+1(∪jKj) = µi(∪jp

−1
k (Kj)), hence µi is finitely additive ∀i.

Proposition 1 concentrates on the additivity of µi. Generally, the problem
of existence of a proper measure projective limit is twofold: the first problem
is the ”richness” of the projective limit set (Heifetz & Samet[11] addresses
this problem), the second is the problem of σ-additivity of µi. We use the
idea of coordinate projections in the projective system, which ensures that the
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projective limit set is ”rich” enough. The second problem demands regularity
(but not compact regularity).

The previous proposition was about, that the sequence of opinions of
every player can be extended to an additive set function on the beliefs space.
Therefore, we use the projective limits for every player separately.

In the next proposition, we take preliminary steps for proving our main
result.

Proposition 23 Let us define the following sequence of truncated spaces (c.f.
Definition 14):

C0 = (∆(T0)
M , B(∆(T0)

M)
C1 = C0 ⊗ (∆(T1)

M , B(∆(T1)
M)) = (∆(T0)

M , B(∆(T0)
M))⊗

⊗ (∆(T1)
M , B(∆(T1)

M))
...
Cn = Cn−1 ⊗ (∆(Tn−1)

M , B(∆(Tn−1)
M)) = ⊗n−1

j=0 (∆(Tj)
M , B(∆(Ti)

M))
...
Consider the projective limit

(C,AC , νi) = lim←−(((Cc
n, B(Cc

n), νi
n), prmn)m<n),

where νi
n = margCc

n
µi

n+2. Then νi is σ-additive for every i ∈M .

Proof. The proof based on M.M. Rao[20] p. 357-358.
Let i ∈M be fixed and arbitrary.
The preceding proposition tells us that AC is a field, and νi is an additive

set function on it for each i. Furthermore, AC ⊂ B(C) because all pn are
continuous with respect to the product topology on C (which is the weakest
topology for which all pn are continuous).

Since the topological product of completely regular spaces is completely
regular, it follows that C enjoys complete regularity. It is not hard to verify
that νi is inner regular set function.

The completely regular topological spaces are characterized by the fact,
that they can be embedded into a compact space as a dense set (Ĉech-Stone
compactification). Let I be the one-to-one function, which embeds C into a
K compact space, and let νi

K = νi◦I−1 be a set function onAK , the subsets of
K, which are defined by AK = {X ⊆ K|I−1(X) ∈ AC}. The direct corollary
of this definition that, νi

K is inner regular, so (inner) compact regular as well.
As is well known, if an additive set function is compact regular, then it is

σ-additive as well. Hence, νi
K is σ-additive. On the other hand, C contains

the support of νi
K , and νi is the restriction of νi

K on C, hence νi is σ-additive
as well.

19



Let ∪jAj, Aj ∈ AC ∀j be a sequence of disjoint sets, then there are
Bj ∈ AK , and Aj = I−1(Bj) ∀j. Furthermore, Bjs are quasi-disjoint sets,
we mean νi

K(Bj ∩ Bk) = 0 ∀j, k. If µi is not σ-additive, then there are a
sequence of disjunct sets (Aj), on which

∑
j νi(Aj) 6= νi(∪jAj). In this case∑

j νi
K(Bj) 6= νi

K(∪jBj), but this is a contradiction, because we saw earlier

that, νi
K is σ-additive.

Consequently, νi is σ-additive on AC ∀i.

Remark 24 The role of compact regularity in the proofs of existence theo-
rems of measure projective limit is twofold. First, compact regularity ensures
σ-additivity. On the other hand, every compact regular measure can uniquely
be extended from Baire sets to Borel sets. This later proves to be very im-
portant in the case of stochastic processes (the measurability of the sample
function), but it is not relevant in our problem. We do not want to introduce
events into our model that cannot be deduced directly by probabilistic logic.

The next theorem is our main result.

Theorem 25 T i is universal type space, so there exists a homeomorphism
f : T i → (∆(AT ), τ p), where (∆(), τ p) means the pointwise (setwise) topology
on ∆().

The proof of the theorem is basically divided into two parts.

Definition 26 Let g : ∆(AT ) → T i that associates with every measure µ a
point t = (µi

1, µ
i
2, . . . , µ

i
n, . . .) in T i, where

µi
n = margTn−1µ

for every integer n.

Lemma 27 Let (M,AM , µM), (N,AN , µN) be probability measure spaces, and
let µ be an additive set function on AM ⊗ AN , and let pM and pN denote
the coordinate projections. If µ ◦ p−1

M = µM and µ ◦ p−1
N = µN , then µ is

σ-additive on the field A generated by the cylinder sets.

Proof. It is easy verify that every element of A has the form ∪jMj × Nj,
where j < ∞, Mj ∈ AM , Nj ∈ AN . It is well known ([12]) that, µ is σ-
additive onA iff for a sequence An+1 ⊆ An, ∩nAn = ∅=⇒ limn→∞ µ(An) = 0.
For every finite intersection ∩nAn = ∪jMj ×Nj, for a finite set of indices j.
Therefore, if the countable intersection ∩nAn = ∅, then the corresponding
Mj ×Nj = ∅. Let us divide the sets Mj ×Nj into two groups. Let the first
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group contain those products Mj × Nj where Mj = ∅, and let the second
contain the others. Let us take the union of the members of the first group,
it has the form ∅ × ∪jNj. Similarly, the union of the elements of the second
group can be expressed as ∪jMj×∅. We have µ(∅×∪jNj) = µ(∪jMj×∅) = 0,
from the additivity of µ, µ(∅ × ∪jNj) + µ(∪jMj × ∅) = µ(∅), which implies
limn→∞ µ(An) = 0, hence µ is σ-additive on A.

Lemma 28 g is a bijection.

Proof. First we show that g is injective. If µ ∈ ∆(AT ) is given, then µ
determines its marginals, in other words, it determines a unique point in T i.

Now we verify that g is onto. Let a point t ∈ T i be given. From Propo-
sition 22 and 23 we have that AS ×AC ⊂ AT . Let us define q1 : (T,AT )→
(S,AS), and q2 : (T,AT ) → (C,AC) as coordinate projections. Define µ on
the cylinder sets by the equalities:

µ = µi
1 ◦ q1, and µ = νi ◦ q2

(see Definition 14 and Proposition 23). On the cylinder sets, µ and µi coincide
(µi is taken from the projective limit, see Proposition 22) and µi is additive set
function, hence we can extend µ to the field generated by the cylinder sets, in
the way that, µ and µi coincide on this field. From Lemma 27 µ is σ-additive
set function on this field, so it can be extended uniquely onto AT . We prove
that µ = µi on AT . Indeed, if there were an A ∈ AT with µ(A) 6= µi(A),
then there would exist a k, and B ∈ B(T c

k ) such that A = p−1
k (B). We know

µi
k+1 is σ-additive, hence µ = µi on T c

k , which is a contradiction. Thus, g is
a bijection.

Definition 29 Set f = g−1.

Lemma 30 f is a homeomorphism.

Proof. f is continuous (tk
dp→ t =⇒ f(tk)

p→ f(t)): tk
dp→ t means ∀l, ∀Al ∈

B(T c
l ) tlk(Al)→ tl(Al), moreover p−1

l (Al) ∈ AT , and f(tk)◦p−1
l (Al) = tlk(Al),

hence f(tk)
p→ f(t) on AT .

f−1 is continuous (µk

p→ µ =⇒ f−1(µk)
dp→ f−1(µ)): µk

p→ µ on AT , which

means the marginals of µk converge to µ pointwise, so f−1(µk)
dp→ f−1(µ).

Proof. of the Theorem
Let f be defined by Definition 29.
From Lemma 28, f is a bijection.
From Lemma 30 f is a homeomorphism.
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Remark 31 We proved the homeomorphism for AT , but not for σ(AT ),
because the homeomorphism is not valid in the latter case. Our theorem
can be extended to the σ(AT ), if the structure of σ(AT ) is induced by the
pointwise convergence topology on AT .

Remark 32 This Theorem shows the importance of pointwise convergence
topology. If T is a topological space, then the weak or weak* topology is less
then our structure on ∆(σ(AT )).

0.8 Conclusion

The main advantage of this model comes from the pointwise convergence
topology on beliefs, that is independent of the topology of the original space.
This space is a completely regular topological space, so we can use Kol-
mogorov’s Existence Theorem in a general form (Proposition 2, Theorem
1).

Let us see an example for the usage of this model.

Example 33 Let there be two players, every player has two strategies. This
game in normal form is a point in R8. There are two random variables,
which determine the payoffs of the players. Therefore, the parameter space:

S = R8R2
(the parameters are functions from R2 to R8). S is not compact,

nor Polish, so Mertens & Zamir’s and Brandenburger & Dekel’s construction
do not work in this case. Let the measurable structure of S be the Borel sets
of S. In our model, the opinions are the probability measures on S, but these
are not necessarily compact regular, so Heifetz’s, Mertens & Sorin & Zamir’s
models are less general, than ours.

It seems that, our model performs better, than the previous ones. On the
other hand, recently, Simon[22] showed that, there may be problem with the
existence of measurable equilibrium of the games with incomplete informa-
tion. Hence, a model, in which , the beliefs of the players are modelled by
probability measures, is not necessarily appropriate for some problems.

We think the existence of measurable equilibrium is out of the scope of
our paper, hence we refer to this problem as an open problem in general, so
in the case of our model as well.
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0.9 Appendix: Definition of measure projec-

tive limit

We define the idea of projective limit of measure spaces for completeness.
Rao’s[19] definition is little bite different from us.

Definition 34 Let (((Mn,Mn, µn), pmn)m<n, I) be a projective system, where
(Mn,Mn, µn)s are measure spaces, pmns are the measurable projections, and
I is a directed set. The projective limit of (((Mn,Mn, µn), pmn)m<n, I) is
(M,M, µ) = lim←−(((Mn,Mn, µn), pmn)m<n, I), where

• prn : ×nMn →Mn coordinate projection,

• M = {ω ∈ ×nMn|prm(ω) = pmn ◦ prn(ω), ∀m < n ∈ I},

• pn = prn|M ,

• M = ∪nΣn, where Σn = {p−1
n (A)|A ∈Mn},

• µ is on M, defined by the equality µ ◦ p−1
n = µn ∀n, and it is unique.

The main difference between our and Rao’s definition is in the properties
of µ. Rao recommends µ to be σ- additive, we do not. Our definition makes
the discussion more clear.
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