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1 Chapter 1. Introduction

The emergence of systemic risk from the 2008 Global Financial Crisis (GFC) and
the recent energy market shocks following the COVID-19 pandemic and the onset of the
Russo-Ukrainian war highlighted the importance of understanding shock spillovers for
policymakers and academics alike. Specifically, shock transmissions in financial network
settings warrant attention to support regulatory or policy interventions for effectively
mitigating or preventing the transmission of systemic risk.

The thesis focuses on this important topic from various angles to answer the following
questions:

• How can machine learning techniques help to improve financial network studies, the
analysis of high dimensional time series?

• How can structural changes in financial networks efficiently examined using event
analysis framework?

My thesis provides methodological and conceptual contributions to financial network
analysis. The contribution of my thesis to the existing literature is threefold:

1. I propose a new regularization method, the adaptive joint least absolute shrinkage
and selection operator (AJ LASSO). The innovation in this method is that it ac-
counts for possible sparsity both in the coefficient and the covariance matrix of the
estimated Vector autoregressive (VAR) model. The method is especially suitable
for high-dimension network analysis, where parameter estimation is a critical issue.

2. I extend the Diebold-Yilmaz (DY) framework with an event study tool to facilitate
an in-depth analysis of the contagion channels during critical local and global shocks
in financial networks. Integrating a moving-block bootstrap method (MBB) into
the framework, I can investigate how the observed shocks transform the financial
networks.

3. My conceptual contribution is that I characterize and analyze illiquidity networks.
The liquidity concerns are globally recognized and the focal point of the newly
revised Basel IV regulatory guidelines; thus, intuitively and from a regulatory per-
spective, illiquidity spillover analysis in the financial sector is valuable. I analyze
the illiquidity connectedness of financial institutions (FIs) and show that the illiq-
uidity network better tracks the dominant shock transmitters in the system during
financial turmoil than the volatility-based networks. I show that the DY framework
extended with the MBB method is a powerful tool to identify troubled financial
institutions and contagion channels.

The thesis is structured in 7 Chapters. Chapter 2 briefly surveys the financial networks-
based systemic risk literature, emphasizing empirical studies. I summarize the literature,
highlighting the main findings and the applied methods. In the second part of the chap-
ter, I present the popular Diebold-Yilmaz framework (Diebold and Yilmaz, 2012; Diebold
and Yılmaz, 2014) and compare the other network models: Granger-causality network and
CoVaR-based networks. I discuss the framework’s applicability for measuring spillovers
in financial networks. Lastly, I present examples of the DY spillover table and network
graphs to visualize the in-depth insights from the DY framework for financial network.
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In Chapter 3, I highlight the limitations of the Diebold-Yilmaz framework and the
room for improvement. I summarize the shortcomings of the empirical network literature
and present the contribution of my thesis in detail.

In Chapter 4, I discuss the machine learning regularization approaches, specifically
the LASSO (Tibshirani, 1996; Bühlmann and Van De Geer, 2011) and adaptive LASSO
(Zou, 2006) methods. In the first part of the chapter, I summarize the advantages of
LASSO-based VAR models in high-dimension time series environments. Next, I compare
two LASSO-based VAR estimators (row-wise LASSO and penalized maximum likelihood-
based LASSO). At the end of this chapter, I explain the connection between the regular-
ization methods and the DY framework.

In the first part of Chapter 5, I propose a new regularization method that is useful in
the Diebold-Yilmaz framework, as it is able to shrink and select the essential coefficients
of the VAR and simultaneously account for possible sparsity in the distribution of the
VAR model errors. I devise a novel extended penalized maximum likelihood estimator of
the VAR coefficient and covariance matrix, and I refer to this method as the adaptive joint
LASSO algorithm. In the second part of the chapter, I conduct an extensive simulation
study to analyze my proposed estimator’s statistical properties and compare it to the most
commonly applied regularization methods in the Diebold-Yilmaz literature. Based on the
earlier literature, I consider two alternative autoregressive coefficient matrices for the
VAR(1) and three different covariances matrixes, and compare the performance of the
adaptive joint LASSO to the estimators obtained from established alternative models,
such as ordinary least squares (OLS), LASSO, and adaptive LASSO methods. I evaluate
the robustness of the results to the choice of the length and number of time series and the
contemporaneous correlation. Based on the results, it can be confidently stated that the
adaptive joint LASSO outperforms the commonly used LASSO and the adaptive LASSO
methods in various settings where a high dimension is present. My estimator yields
superior sparsity pattern recognition, lower model error, and Diebold-Yilmaz spillover
table estimation error.

Combining the DY spillover index method for network modeling with event study
methodology may be useful at turbulent times. In the first part of the Chapter 6, I extend
the DY framework with event study tools to provide more insights into the contagion
channels appearing in the financial networks during turbulent times. I build an event
study framework to identify critical events and linkages in the evolution of systemic risk.
One of the limitations of the original DY framework is the absence of a formal statistic
to test whether the changes in the spillover matrix are economically and statistically
significant. To address at least the statistical shortcoming, I introduce a formal test to
compare the distribution of the SUM, FROM, TO, and NET spillover indices over time.
Integrating the residual-based moving-block bootstrap method into the DY framework, I
can investigate how the observed shocks transform the financial networks.

To address the gap in the empirical literature, in the second part of Chapter 6, I
present a characterization of the illiquidity connectedness of a US financial network with
my proposed AJ LASSO method in the Diebold-Yilmaz framework. Besides investors’ fear
(the volatility spillover-based network), the illiquidity contagion can be followed by these
spillover indices. I use daily data to cover a more than 15-year-long horizon, covering two
major crises with strikingly different attributes and impacts, the GFC and the European
Sovereign Debt Crisis (ESDC). I investigate the density of networks during calm and
turbulent periods. I analyze the network on macro (system analysis) and micro levels
(node-wise analysis), as the dominant nodes (key participants) of the system have been
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identified only in a few papers. The empirical results suggest that the illiquidity total
spillover indices are also relevant in the analysis of systemic risk as they behave differently
than total volatility connectedness. On a macro level, both total spillover indices react to
shocks in the financial system, but even in tranquil periods, the dynamics might vary.

In the last part of the Chapter 6, I consider the critical financial events of the GFC,
as Diebold and Yılmaz (2014), with the analytical purpose of testing the performance of
my new event study framework. Applying the MBB method, I analyze the volatility and
liquidity shocks, focusing on four key events of the GFC. Besides that, I provide daily
snapshots of the financial network to illustrate that illiquidity spillovers act as contagion
channels during turmoil time. During financial turmoil, the troubled institutions transmit
illiquidity shocks to the other members of the system, and as a result, their pairwise
connections strengthen, and average connectedness increases in the network. I show
that illiquidity connectedness outperforms volatility in signaling financial shocks during
these events, and besides that, illiquidity connectedness better tracks the dominant shock
transmitters in the financial system. NET pairwise illiquidity connections act as contagion
channels during turmoil and promote cascades of failures. From these linkages, we can
identify the FIs that are the most affected by the failure of another FI in the network.
I conclude that the DY framework extended with the residual-based MBB method is a
powerful tool to execute event study analysis and can identify troubled FIs and contagion
channels. Also, it can be utilized for monitoring the financial system on a daily basis.

In the first part of Chapter 7, I summarize my theoretical contribution to the exist-
ing network literature. I summarize the advantages of my AJ LASSO method in high-
dimension network modeling and reflect on my proposed event study analysis integration
into the DY framework. In the second part of the chapter, I summarize my empirical
contribution to the existing systemic risk literature. In terms of my conceptual contribu-
tion, I highlight why illiquidity connectedness analysis can outperform volatility spillover
analysis in signaling financial shocks during financial crisis periods. In addition, I con-
clude that the Diebold-Yilmaz framework extended with the residual-based moving-block
bootstrap method is a powerful tool to execute event study analysis and can identify
troubled financial institutions and contagion channels.

3



2 Chapter 2. Systemic risk modeling and Diebold-

Yilmaz framework

In this chapter, I provide a compact survey of the extensive systemic risk literature
which exploded since the GFC. I specifically focus on emphasizing empirical studies,
those with financial network analysis where the research question is understanding risk
contagion in the network. In the second part of the chapter, I summarize the popular
Diebold-Yilmaz framework (Diebold and Yilmaz, 2012; Diebold and Yılmaz, 2014) and
compare it to other network models, such as the Granger-causality network and CoVaR-
based networks. I discuss the framework’s applicability for measuring connectedness and
spillovers in financial networks. Lastly, I present examples of the DY spillover table and
network graphs to visualize the in-depth insights from the DY framework for financial
network.

2.1 Literature review of network-based systemic risk modeling

The first part of this section (the empirical systemic risk literature review) is based
on two working paper’s, as a result of my collaboration with Áron Dénes Hartvig. Earlier
versions of the research were presented at the 11th and 12th Annual Financial Market
Liquidity (AFML) Conference1 and the 2021 Annual Hungarian MKE Conference2. Major
modifications are made to align the paper’s content with the dissertation format.

It is somewhat surprising in hindsight that network analysis of financial systems has
become widely recognized as a critical regulatory issue only after the GFC. Pairwise
and group connections among FIs can both stabilize or destabilize the system. While
on the one hand, FIs’ interconnectivity aids flexibility to investment and financing in
the economy, on the other hand, these connections may contribute to risk propagation
during crisis periods. Furthermore, high connectedness (e.g., strong liquidity dependency)
between FIs promotes the sudden transformation of the network architecture (Elliott et al.,
2014; Acemoglu et al., 2015).

Pairwise and groupwise spillovers in the financial network play a crucial role in sys-
temic risk assessment. Furthermore, the strength of connections is non-constant, and
significantly varies over time, sharply increasing during crisis periods, as documented in
a GFC study (Diebold and Yılmaz, 2014). In the network the FIs’ connections are es-
pecially critical with the liquidity provider or strong network participants because many
smaller institutions rely on the large institutions for financing, which is especially criti-
cal during turbulent times. For this reason, the regulators need to monitor and analyze
the structural changes in financial networks and identify the systematically important
financial institutions (SIFIs).

Motivated by the GFC, the financial network literature exploded, with studies at-
tempting to better understand or model the connections between FIs in the US and
globally. Acemoglu et al. (2015) and Elliott et al. (2014) derived financial system con-
nectedness from the crossholdings of shares, debt, or obligations, and investments. These

1AFML Previous Conferences: https://www.uni-corvinus.hu/ind/events/annual-financial-market-
liquidity-conference/afml-2020-previous-conferences/?lang=en

22021 Annaul Hungarian MKE Conference: https://www.mktudegy.hu/konferencia/magyar-
kozgazdasagtudomanyi-egyesulet-mke-konferenciafelhivas-2021-december-21-22/38282/
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linkages can enhance diversification, but such linkages can also lead to cascading defaults
and failures in a system. Consequently, identifying and monitoring financial linkages is es-
sential for understanding system vulnerability as a result of large-scale contagions during
turmoil.

Besides that, Acemoglu et al. (2015) showed that the connectedness of the financial
network enhances stability in the system until the magnitude and the number of shocks
hitting the network remain low. However, if the level of financial distress exceeds a certain
threshold, the structure of the financial network dictates the extent of contagion. In other
words, higher financial connectedness makes the network more sensitive and more prone
to contagion of shocks. Thus, not only the analysis of SIFIs but the inclusion of the whole
system is necessary. Institutions on the periphery may move to the center of the financial
network owing to a significant shock that restructures the linkages.

Recently numerous studies have introduced new empirical frameworks (quantitative
methods) to model financial linkages and measure contagion and systemic risk. Bisias
et al. (2012) identified more than 30 quantitative measures of systemic risk in the finance
literature. In their survey, they classify the measures into six groups. One of them
is a network-based approach. On the empirical side of the systemic risk modeling -
from network perspective - the widespread methods are Granger causality network (Billio
et al., 2012), delta conditional value-at-risk (∆CoVaR) (Tobias and Brunnermeier, 2016),
systemic expected shortfall (SES) (Acharya et al., 2017) and numerous studies appeared
based on the VAR based Diebold-Yilmaz framework (Diebold and Yilmaz, 2009, 2012;
Diebold and Yılmaz, 2014). Although there are several methods in the literature to
measure systemic risk, the Diebold-Yilmaz framework has several favorable properties.
First, unlike Granger causality network analysis (Billio et al., 2012), the DY framework
estimates weighted connections (Diebold and Yilmaz, 2012). Second, CoVaR (Tobias
and Brunnermeier, 2016) and marginal expected shortfall (MES) (Acharya et al., 2012)
are related to the directional connectedness indices of Diebold and Yilmaz, so unlike the
DY framework, they cannot track the association between individual firms (Diebold and
Yilmaz, 2015).

Due to its approving attributes, DY framework has often been used to analyze the
spillovers of the financial system through stock prices (Diebold and Yılmaz, 2014; Baruńık
and Křehĺık, 2018) or the sovereigns through sovereign bonds (Alter and Beyer, 2014;
Demirer et al., 2018) or sovereign CDS (credit default swaps) (Greenwood-Nimmo et al.,
2019; Bratis et al., 2020). In addition, the DY framework has been applied to networks
of different asset classes like equities (Baruńık et al., 2016), bonds (Claeys and Vaš́ıček,
2014), exchange rates (Bubák et al., 2011), commodity prices (Kang et al., 2017), cryp-
tocurrencies (Moratis, 2021) or across asset classes (Wang et al., 2016; Kurka, 2019).

Focusing on the FIs network, Diebold and Yılmaz (2014) were the first to apply the
framework to systemic risk modeling. They used the daily realized volatility time series to
examine the daily sensitivity of the connections across major US FIs. They focused on the
GFC 4 key events and illustrated the network on specific days with snapshots. Diebold
and Yilmaz (2015) extend this analysis by examining the spillover channels of the realized
volatility network of major US and European FIs during the GFC and the ESDC. They
find the following results related to the two continent’s bank system: before the Lehman
Brothers’ collapse, realized volatility spillovers primarily flowed from U.S. FIs to their
European counterparts. However, after Lehman Brothers’ bankruptcy in September 2008,
the financial crisis evolved into a worldwide phenomenon, causing volatility spillovers and
linkages across the Atlantic to become two-way, with a notable decrease in net spillover
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from the U.S. to Europe. Demirer et al. (2018) applied a LASSO estimated VAR model
to extend the investigated FIs and analyze a global bank network connectedness. They
examined a network with the top 150 banks between 2003 and 2014. They conclude that
global FI’s spillovers have a strong geographic component.

I present the relevant literature of the VAR modelling in Chapter 2 for regularization
methods in Chapter 3, and for estimation structural changes in networks in Chapter 6.

2.2 Diebold-Yilmaz framework

Networks based on time series are often represented in graphs, where the nodes (which
represent time series) and edges (linkages between the series) are graphically displayed.
One type of network is the weighted network, which allows for weights on the edges to
represent stronger or weaker linkages between the nodes (time series). Direct networks
allow for asymmetric linkages. In the econometrics and finance literature Diebold and
Yilmaz (2009) were the first to show in a seminal paper that the forecast error variance
decomposition (FEVD) of an estimated VAR(p) model of the network can be interpreted
as a weighted directed graph. Diebold and Yilmaz (2009), Diebold and Yilmaz (2012),
and Diebold and Yılmaz (2014)3 suggest a unified framework for measuring linkages or
spillovers between the time series. The framework is based on the concept that the shares
of own and other time series’ shocks to the total variance of a selected times series forecasts
can be summarized in a spillover table, which I refer hereafter to as the DY spillover table.
The most important merits of the DY framework are the following (Demirer et al., 2018):

1. The method does not require additional restrictions beyond those imposed for
VAR(p) model estimation and identification.

2. It provides both the direction and magnitude of the measures. The estimated net-
work will be directed.

3. The VAR(p) estimation step has been used for decades in economics4, the estimated
networks are easily interpretable.

4. The framework allows one to track spillovers between the time series at all levels
of the network, from pairwise connections (micro level) to system-wide connections
(macro level).

5. It allows for static and dynamic usage, which is relevant in financial applications
where events can cause abrupt changes in the network.

6. It’s a generalization of the Granger-causality based networks.

2.2.1 VAR model

The examination of multivariate time series is a prevalent statistical challenge across
various fields, such as economics, finance (Engle and Granger, 1987; Johansen, 1988; Stock
and Watson, 1988; Bai and Ng, 2002; Stock and Watson, 2002b; Bai, 2003; De Gooijer and
Hyndman, 2006) and even in genomics, and neuroscience (Seth et al., 2015). In the last

3the framework is extremely popular in recent years, the three seminal papers citation is more than
2200 just in 2023

4impulse response functions (IRF) and FEVDs are commonly used in economics and econometrics
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ten years, there has been increasing focus on networks to describe how these multivariate
time series connect how they form a system (Eichler, 2007; Billio et al., 2012; Eichler,
2012).

Among the many available models, VAR methods are the most popular - since Sims
(1980) introduced - in analyzing the temporal evolution of the network’s time series,
extracting short and long-term relationships and linkages, or examining the network dy-
namics through time (Eichler, 2007; Billio et al., 2012; Diebold and Yılmaz, 2014). In the
VAR model, the temporal relationship in a multivariate series includes the autoregressive
dependence within each series and the interdependence among different series, unlike in
the case of univariate time series (Basu and Michailidis, 2015; Kock and Callot, 2015).
This method is a powerful tool for analyzing the complex system of time series, and it al-
lows for flexible modeling of the connections between the system’s time series. Due to the
increasing availability of time series data, vector autoregressive models have captured the
attention of numerous theoretical and empirical researchers during the last two decades
(Hecq et al., 2023; Krampe and Paparoditis, 2021)5.

Generally, VAR has been used to identify the lagged linkages between time series. How-
ever, the contemporaneous relationships often provide additional information too (Basu
and Michailidis, 2015). In the last twenty years, VAR was widely used for forecasting
(De Gooijer and Hyndman, 2006)6. Besides that, based on the VAR-based tools, impulse
response analysis, and forecast error variance decomposition, it can be used for policy
analysis (Gertler and Karadi, 2015; Ramey, 2016; Nakamura and Steinsson, 2018). In
the last decade, due to the easily computed and commonly applied FEVD, its role in the
econometrics methods-based network analysis has increased.

2.2.2 Framework

Following the seminal papers Diebold and Yilmaz (2009) and Diebold and Yılmaz
(2014), the network connectedness and spillover measures I derive are based on VAR(p)
model coefficient matrix estimation (Sims, 1980) and its forecast error variance decompo-
sitions. The framework is based on the concept that, for every time series of the network,
we can calculate the forecast error variance based on the estimated VAR(p) model coef-
ficient and covariance matrix. This variance is related to its own and other time series
shocks. Due to the VAR(p) model identification, the shares of own and other time series’
shocks can be calculated. In the last step of the process, the forecast error variance de-
compositions can be summarized in a spillover table, which we refer to hereafter as the
DY spillover table. In the next paragraphs, I present the Diebold-Yilmaz framework in
detail.

The first step of the framework is to specify and estimate a stationary VAR(p) model
for the J time series of the network based on the following equation:

Yt =

p∑
i=1

βiYt−i + ϵt (1)

where Yt is a J × 1 vector of the time series, βi is an J × J autoregressive coefficient
matrix, and lastly ϵt is an J × 1 vector of error terms. It has a zero mean with a Σ

5In addition to economics and finance, VAR models have recently become standard approaches in
genomics (Shojaie and Michailidis, 2010) and in neuroscience for understanding the complex patterns
between brain regions and areas (Friston, 2009; Smith, 2012).

6The method can forecast the future of multiple time series dynamically
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covariance matrix. No intercept is included in Eq. (1), without loss of generality, I
assume, similar to Basu et al. (2019), that all the J time series are mean centered. The
VAR(p) process is assumed to be stable and stationary (Lütkepohl, 2013), while the
covariance matrix Σ is needed to be positive definite with bounded largest eigenvalue
(Melnyk and Banerjee, 2016).

To estimate the DY framework’s most important element, the DY spillover table, I
need to estimate the coefficient matrices β1, β2, ... βp and the error covariance matrix Σ
efficiently. The βi coefficient matrices reveal the temporal dependence between the time
series and Σ reveals the contemporaneous linkages among them (Han et al., 2015; Davis
et al., 2016).

The starting point for the DY framework (Diebold and Yilmaz, 2012) is to transform
the time series of the VAR(p) in Eq. (1) into its vector moving average (VMA) represen-
tation using the Wold representation theorem (Diebold and Yilmaz, 2012; Gabauer et al.,
2020) to get Eq. (2):

Yt =
∞∑
i=0

Aiϵt−i (2)

where Ai is an J ×J moving average coefficient matrix. Based on the Wold’s theorem
Ai is given by the following recursion Ai =

∑p
j=1 βjAi−j where Aj = 0 for j < 0 and A0

is an identity matrix.
As Diebold and Yilmaz (2012) emphasized, the calculated moving average coefficients

and the estimated error covariance matrix (or its nonlinear transformations such as im-
pulse response functions (IRF) or forecast error variance decompositions) are the key to
understanding the dynamics of the time series network. With the estimated VAR(p) co-
efficient and covariance matrix, I can estimate the H-step ahead forecast error variance
(FEV(H))7 on the following way:

FEV (H) = MSE(Yt(H)) = E[(Yt+H − Yt(H)) ∗ (Yt+H − Yt(H))
′
] =

∞∑
h=0

AhΣA
′

h (3)

where Yt(H) is the optimal predictor for known Ai, Ah is the hth coefficient of the
VAR(p) MA representation coefficient in Eq. (2), E() stands for expected value and prime
symbol denotes the transposing operation (Diebold and Yilmaz, 2012; Buse and Schienle,
2019).

The above calculated FEV allows me to calculate the fraction of the H step-ahead
error variance in forecasting Yi (Yi(H)) that is due to shocks to other time series such as
Yj (Diebold and Yilmaz, 2012), to which I will hereafter refer as a spillover between Yi and
Yj. Generally, in the DY framework, the FEVD of the VAR(p) model gives the measures
of spillovers between the time series. Unfortunately, the calculation of the FEV requires
orthogonal innovations. However, the VAR innovations are generally contemporaneously
correlated (Diebold and Yilmaz, 2012; Diebold and Yılmaz, 2014; Basu and Michailidis,
2015).

There are two widely used approaches in the early DY framework-related papers for
obtaining the variance decomposition. The first method uses the Cholesky factor orthog-
onalization of the covariance matrix Σ which generates orthogonalised innovations. The

7which is equal to the H-step ahead mean square error of the Yt (MSE(Yt(H))
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weakness of this decomposition is that its results order dependent FEVDs (IRFs and
FEVDs are different if we change the order of the network’s time series) (Diebold and
Yilmaz, 2012; Fengler and Gisler, 2015). The other approach uses the generalized VAR
framework, which was introduced in the seminal papers by Koop et al. (1996) and Pe-
saran and Shin (1998). This framework allows correlated shocks. As a result, this second
method produces an order-independent FEVD. However, the results on the individual
entries of the DY spillover table will be less interpretable. Applying the second method is
more widespread in empirical DY network studies. In my simulation and empirical anal-
ysis, I use the generalized FEVD of Koop et al. (1996) and Pesaran and Shin (1998) to
avoid the Cholesky factor orthogonalization so that the results will be order independent.
The following equation shows the calculation of the generalized FEVD:

θgij(H) =
σ−1jj

∑H−1
h=0 (e

′
iAhΣej)

2∑H−1
h=0 (e

′
iAhΣA′hej)

(4)

Where σjj is the j-th diagonal element of the error term’s covariance matrix Σ, Ah is
the moving average coefficient matrix multiplying the h-lagged shock vector in the Wold’s
moving average representation (Eq. (2)) and ei is a selection vector. That means i-th
element of the ei vector is unity, and others are zeros.

The numerator in Eq. (5) of θ̃gij(H) represents the contribution of shocks in variable
Yj to the H-step FEVD of time series Yi. The denominator is the forecast error variance of
the time series Yj. Unfortunately, the sum of the network time series’ contribution to the
forecast error variance is not necessarily one because, generally, FEVD of the shock terms
are not orthogonalized (Diebold and Yilmaz, 2012). Normalization is therefore required,
which I calculate in the following way:

θ̃gij(H) =
θgij(H)

ΣJ
k=1θ

g
ik(H)

. (5)

In that way, the information in the FEVD can directly be used for the DY spillover
matrix (Diebold and Yılmaz, 2014). The Koop et al. (1996) and Pesaran and Shin (1998)’s
generalized FEVD approach allows us to gain insight into the direction of spillovers be-
tween the time series. Besides that, by aggregating the FEVD on different levels of the
network, I can conclude both on macro and micro levels.

The generalized FEVD is used to construct the several systemic/network connected-
ness measures of the DY framework (Diebold and Yilmaz, 2012; Diebold and Yılmaz,
2014). Firstly, the sum of directional spillovers to time series Yi from all other time series
(FROM spillover index Sg

i←•) is defined with the following equation:

Sg
i←•(H) =

∑J
k=1,k ̸=i θ̃

g
ik(H)∑J

k=1 θ̃
g
ik(H)

∗ 100%. =
J∑

k=1,k ̸=i

θ̃gik(H) ∗ 100%. (6)

Second, I am interested in the sum of the shocks transmitted by time series Yi tO
other time series (TO spillover index Sg

•←i):

Sg
•←i(H) =

J∑
k=1,k ̸=i

θ̃gki(H) ∗ 100%. (7)

The third relevant measure is the NET spillover index (Sg
i , Eq. (8)), which calculates

the difference between the gross transmitted (TO) and received (FROM) shocks from all
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other time series:

Sg
i (H) = Sg

•←i(H)− Sg
i←•(H) (8)

Finally, at the macro level of the network analysis, the system-wide spillover index
(SUM spillover index Sg

total) offers information about the average influence one time series
has on all other time series, regardless of the direction on the following way:

Sg
total(H) =

1

J

J∑
i,k=1,i ̸=k

θ̃gik(H) (9)

In other words, the total spillover index is the sum of all the off-diagonal elements
of the generalized FEVD matrix relative to the number of time series considered in the
VAR(p) model (Diebold and Yilmaz, 2012; Gabauer et al., 2020). It summarises the
measure of how much of the FEV of the time series can be explained by spillovers from
other time series (Fengler and Gisler, 2015). A large (small) total spillover index means
that the average propagation of a shock in one time series to all others in the system is
high (low) and, thus, the systemic risk of the network is high (low) (Diebold and Yılmaz,
2014; Gabauer et al., 2020).

I can further decompose the directional spillovers between two-time series into net
pairwise directional spillovers. This decomposition allows me to determine the spillover
linkages between two specified time series. Pairwise NET spillover index (NETP, Sg

ij)
between time series Yi and Yj is the difference between the gross shocks transmitted from
Yi to Yj and those transmitted from Yj to Yi. I calculate it in the following way:

Sg
ij(H) =

( θ̃gji(H)

ΣJ
i,k=1θ̃

g
ik(H)

−
θ̃gij(H)

ΣJ
i=1,kθ̃

g
ik(H)

)
∗ 100%. (10)

As Diebold and Yılmaz (2014) and Gabauer et al. (2020) pointed out, a positive
(negative) value of the net pairwise directional spillovers implies that time series Yj is
dominate (is dominated) by time series Yi. To create a full comparison between the
indicators, in my empirical analysis, I use both macro (SUM) and micro (FROM, TO,
NET, and NETP) level spillover indices.

For a J-variable VAR(p) system and a prespecified forecast horizon, H, the i, j th
element of the H steps-ahead FEVD matrix Θ, which is a J×J matrix and I denoted with
Θij(H), express the percentage of the H-steps-ahead forecast uncertainty associated with
time series Yi that can be shocked by time series Yj (Greenwood-Nimmo and Tarassow,
2022). Hereafter, I refer to this Θ matrix as a DY spillover matrix. During turbulent
periods, an increase in the average pairwise spillovers from one time period to another
corresponds to an increase in the total spillover index of the system. In the DY empirical
literature, abrupt increases in total spillover index are frequently interpreted in relation
to systemic shocks (Diebold and Yılmaz, 2014; Greenwood-Nimmo and Tarassow, 2022).
Following Diebold and Yılmaz (2014) and Diebold and Yılmaz (2014), almost all the
researchers apply a rolling window estimation because it is a simple approach to analyze
the dynamics of the linkages between the network of time series.

The DY framework is closely linked to recently proposed measures of systemic risk.
However, the MES (Acharya et al., 2012) and CoVaR (Tobias and Brunnermeier, 2016)
measures allow only to quantify the linkages between individual time series and the system
in one direction or the other, unfortunately not simultaneously in both directions.
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An alternative method involves concentrating on the VAR estimated coefficients within
a Granger network (GN), as proposed by Billio et al. (2012) in their seminal paper. This
approach employs pairwise Granger causality to assess the connections in the network.
However, the GN is less granular than the FEVD-based approach because it solely exam-
ines whether the VAR coefficients are zero or nonzero without considering the covariance
matrix. Hence, the DY framework exhibits two advantageous characteristics compared
to the GN. Firstly, DY networks assess both the direction and magnitude of spillovers
among time series (while GNs are directed but lack weighting8). Secondly, as the DY
spillover table originates from a high-dimensional VAR estimation, it remains robust to
the issue of omitted variables, a challenge that significantly impacts GNs derived from a
series of bivariate regression models (Diebold and Yılmaz, 2014).

To illustrate the Diebold-Yilmaz framework, I calculate the spillover table and the
FROM, TO, NET, and SUM spillover indices from a low-dimension system (J = 5). I
consider that that data-generating process (DGP) is a VAR(1) model, and the coefficient
matrix (B) is sparse, with one dominant time series:

B =


0.40 0 0.08 0 0
0 0.40 0.07 0 0
0 0 0.40 0 0
0 0 0.08 0.40 0
0 0 0.09 0 0.40

 (11)

The diagonal elements in the coefficient matrix refer to the autoregressive dependence
within the time series. Based on the third column of the matrix, the third time series
leads to the other ones.

To illustrate the role of the covariance matrix (Σ) in the Diebold-Yilmaz framework,
I consider two different structures. In the first case, both the covariance matrix is the
identity matrix9:

Σ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (12)

In the second case, I consider a is a Toeplitz-type structure with a ρ = 0.3 parameter10:

Σ =


1.00 0.20 0.04 0.01 0.00
0.20 1.00 0.20 0.04 0.01
0.04 0.20 1.00 0.20 0.04
0.01 0.04 0.20 1.00 0.20
0.00 0.01 0.04 0.20 1.00

 (13)

In this case, the covariance matrix is dense, and the entries exponentially decrease in

8some newer papers constructed weighted Granger-network based on the F-statistics of the Granger-
test (Yun et al., 2019; Zhao et al., 2022), but the common empirical application in finance is still the
unweighted GN network (Diebold and Yilmaz, 2023)

9it’s a common assumption in the econometrics literature, and Diebold and Yilmaz (2009) assumed
the same

10it’s a common assumption in the machine learning literature, Basu and Michailidis (2015) and Hecq
et al. (2023) assumed the same
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the distance from the diagonal.
Based on the coefficient and covariance matrix, I calculate the theoretical spillover

table and the spillover indices by applying the Eqs. (1-9). The following Diebold-Yilmaz
spillover table (Table 1) represents the first system where the B is sparse with one domi-
nant time series, and the Σ is the identity matrix:

Table 1: Diebold-Yilmaz spillover table for sparse coefficient matrix B and
sparse covariance matrix Σ

TS1 TS2 TS3 TS4 TS5 FROM
TS1 98.96 0.00 1.04 0.00 0.00 1.04
TS2 0.0 99.20 0.80 0.00 0.00 0.80
TS3 0.00 0.00 100.00 0.00 0.00 0.00
TS4 0.00 0.00 1.04 98.96 0.00 1.04
TS5 0.00 0.00 1.31 0.00 98.69 1.31
TO 0.00 0.00 4.20 0.00 0.00 4.20
NET -1.04 -0.80 4.20 -1.04 -1.31 0

Note: The coefficient matrix (B) is sparse with one dominant time series, and the co-
variance matrix (Σ) is the identity matrix.

The spillover table shows that the third time series transmits the shocks to the other
parts of the system (TO = 4.2), and it doesn’t receive any shock (FROM = 0). It plays
a dominant role in a system as a shock transmitter. There are no connections between
the other time series of the network. The total spillover index is very low (SUM = 4.2/5
= 0.8%) due to the sparse coefficient and covariance matrix. In the second case, when
the coefficient matrix is the same, but the covariance matrix is dense, the Diebold-Yilmaz
spillover table is the following:

Table 2: Diebold-Yilmaz spillover table for sparse coefficient matrix B and
dense covariance matrix Σ

TS1 TS2 TS3 TS4 TS5 FROM
TS1 94.42 4.09 1.43 0.06 0.00 5.58
TS2 3.63 90.65 5.49 0.22 0.01 9.35
TS3 0.15 3.69 92.32 3.69 0.15 7.68
TS4 0.01 0.23 5.85 90.30 3.61 9.70
TS5 0.00 0.08 1.72 4.12 94.08 5.92
TO 3.79 8.09 14.48 8.10 3.77 38.24
NET -1.80 -1.25 6.80 -1.61 -2.15 0

Note: The coefficient matrix (B) is sparse with one dominant time series, and the co-
variance matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3.

The third time series dominated the others in this case, too, but the FROM spillover
value is not equal to zero (FROM = 7.68) due to the non-diagonal covariance matrix.
Besides the connections between the other part of the network, all the time series has pos-
itive TO and FROM values. Regarding these network characteristics, the total spillover
is higher than in the earlier case (SUM = 38.24/5 = 7.6%).

Most of the articles represent the network with graphs (besides the spillover table) to
interpret the connections between the time series and the key participants of the network
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more easier11. In the following two graphs (Fig. 1), I illustrate the two networks with
sparse and dense covariance matrices:

Figure 1: Theoretical Diebold-Yilmaz networks for sparse and dense Σ

Notes: First (Second) DGP-based network is in the left (right) chart. The coefficient matrix
(B) in both cases is sparse with one dominant time series, the covariance matrix (Σ) is the
identity matrix in the first case, and a Toeplitz-type matrix with ρ = 0.3 in the second case.
Nodes represent the time series. Node sizes show the SUM values. The green (red) slice of
the pie charts represents the share of the FROM (TO) spillover indices of the time series.
Edge directions mark the net spillover indices; their thickness represents the magnitudes. All
of the edges are shown on the charts. Nodes with green letters represents time series where
FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%.

To get a relevant conclusion from these figures, it is essential to clarify the inter-
pretation of the graphs. These graphs encompass a wealth of information. The nodes
represent the times series. The pie charts’ colors around the nodes represent the pro-
portion of shocks transmitted (TO spillover value marked with red color) and received
(FROM spillover value marked with green color) by the time series. The last informa-
tion related to the nodes is the SUM value, which is indicated by the size of the nodes.
The edges represent the NET spillover indices of the time series, and their thickness
represents their magnitudes. As in the 5-node network, there are just 10 NET pairwise
connections; I present all of them. Nodes with green letters represent time series where
FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. These graphs aim to identify the
key participants of the system (both big shock transmitters and receivers). The SUM
indicator measures the centrality of a given time series in the system, regardless of the
direction of the shock transmission. Nodes with red (green) letters represent the biggest
shock transmitters (receivers).

In the first graph, it’s clearly visible the dominance and the shock transmitting role
the third time series. The lack of connections between the other time series shows the
sparsity of the coefficient and the inverse covariance matrices. In contrast to this, the
network on the second graph is dense due to the nonlinear relationship between the B

11for more than 20 time series, the spillover table is less interpretable
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and Σ matrices and the Diebold-Yilmaz spillover table, and the dense structure of the
covariance matrix.

These examples with the spillover tables and the network graphs illustrate the non-
linear relationship between the B and Σ and Θ and the role of the coefficient and the
covariance matrix in the Diebold-Yilmaz framework.
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3 Chapter 3. Regularization methods for financial

networks

In this chapter, I discuss the machine learning regularization methods, specifically the
LASSO and adaptive LASSO methods. In the first part of the chapter, I summarize the
advantages of LASSO-based VAR models in high-dimension time series environments.
Next, I compare two LASSO-based VAR estimators (row-wise LASSO and penalized
maximum likelihood-based LASSO). At the end of this chapter, I explain the connection
between the regularization methods and the DY framework.

3.1 VAR estimation for high-dimension time series

In the last two decades, econometrics, economics, and finance have seen a rapid in-
crease in applications involving high-dimensional time series. Different approaches have
been explored to address the issue of the dimensionality of the system (large numbers of
time series relative to the time series length). The most common approaches are differ-
ent factor models (Stock and Watson, 2002a; Forni et al., 2000), Bayesian VAR models
(Bańbura et al., 2010), reduced-rank VAR models (Carriero et al., 2011), and regularized
VAR models (Kock and Callot, 2015; Demirer et al., 2018). Around the turn of the mil-
lennium, dynamic factor models were considered to be quite successful in handling and
forecasting the large panels of time series data (Forni et al., 2000; Stock and Watson,
2002b; Forni et al., 2005). In a seminal paper, Stock and Watson (2002b) contributed
to the earlier literature significantly by employing factors to reduce the dimension of the
system and achieve more accurate predictions on macro variables. Factor models assume
that the bulk of dynamic connections between the time series can be represented by a few
common factors (Bai, 2003). For a deeper survey on high-dimension time series factor
models, see Stock and Watson (2006), Bai et al. (2008), and Stock and Watson (2011).

In addition to the factor models, shrinkage methods and sparse modeling are other
concepts to handle the high-dimensionality in econometric time series, and it has been
popular for a long time in the fields of statistics (Tibshirani, 1996; Zou, 2006; Yuan
and Lin, 2006). Shrinkage methods assume a specific structure on the parameter vec-
tor instead of common structures between the time series. Compared to factor models,
the sparse VAR models have several natural advantages. First, sparse VAR models al-
low straightforward variable-to-variable relationship (impulse response and forecast error
variance decomposition) analysis, which is not feasible in the factor modeling because
the variables are represented by the corresponding factors (Kock and Callot, 2015). Sec-
ond, they are more easily interpretable in many economic applications. Moreover, the
third, dynamic factor models estimation is typically a 2-step estimation (the first step is
a dimension reduction, and the second step for low dimensional time series forecasting).
Sparse VAR models can be estimated in one step, which may lead to greater efficiency
(Basu and Michailidis, 2015). Furthermore, it appears natural to assume that a relatively
small number of variables can appropriately model the most relevant interactions and
linkages among the time series (Kock and Callot, 2015; Hecq et al., 2023).

In the low-dimensional setting (in this case there are sufficient degrees of freedom for
efficient VAR estimation), the VAR model in Eq. (1) can be reformulated as a multivari-
ate regression problem Lütkepohl (2013) and estimated directly (equation-by-equation
estimation) by the OLS method12. However, this estimation has an overfitting issue as

12It is the most common approach within the DY framework too (Diebold and Yilmaz, 2023)
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the system’s dimension becomes larger (Basu and Michailidis, 2015; Buse and Schienle,
2019).

Estimating high dimensional VAR models poses practical challenges to researchers:
On one hand, a problem of dimensionality is caused by incorporating a huge number of
time series and modeling higher-order autoregressive processes (Kock and Callot, 2015;
Davis et al., 2016; Basu et al., 2019). Second, the temporal dependence structure in the
sparse VAR model gives rise to some theoretical challenges (Basu and Michailidis, 2015).
It is a challenging issue to determine which variables and (their) lags are relevant when
the sample size is moderate (relative to dimensionality and lag number) (Nicholson et al.,
2017; Hecq et al., 2023).

The parameter space of VAR models grows quadratically as the number of variables
increases, resulting a rapid exhaustion of the available degrees of freedom (Kock and Cal-
lot, 2015). A VAR(p) model, when it is fully parameterized, has J2p AR (autoregressive)
parameters that need to be estimated, where J is the number of series of the system and
p is the common lag length. It can be a severe problem if many time series are included
in the system. It’s commonly undertaken to ensure satisfactory modeling of the network
dynamics (to decrease the endogeneity probability). When the VAR lag p = 3, and the
number of variables (time series) J = 50, there are 7500 regression parameters that we
need to estimate from the data. As the time series length (T ) is typically relatively small
for many economic and financial applications (to avoid the problem caused by struc-
tural changes), the researcher might find themselves in a scenario where the quantity of
parameters significantly exceeds the number of observations (Kock and Callot, 2015).

This heavy parameterization is a serious drawback of the traditional VAR estimation,
and this limits its applicability for economics and financial high-dimension time series
modeling (Hecq et al., 2023). The existing data lack adequate information for efficient
parameter estimation using standard OLS and maximum likelihood methods. This leads
to noisy parameter estimates, potential instability in predictions, and challenges in pro-
viding clear interpretations of temporal dependence. Besides that, if T < J2p, equation-
by-equation least squares is not even feasible (Basu and Michailidis, 2015; Kock and Cal-
lot, 2015). Addressing the estimation of VAR model parameters is essential for effectively
modeling high-dimensional time series data.

Recent advances in high-dimensional time series modeling have established that es-
timating a VAR model with relatively few samples is possible even when least squares
estimation is not appropriate (Kock and Callot, 2015; Basu and Michailidis, 2015; Davis
et al., 2016). It needs to impose a special structure on the coefficient matrix to estimate
it consistently. It is generally believed that, for most economic and financial applications
(Fan et al., 2011b; Giannone et al., 2021), the true model of the system of time series is
sparse, only a small, unknown subset of the variables have significantly non-zero coeffi-
cients, and all the other variables have negligible (or even exactly zero) coefficients (Kock
and Callot, 2015; Demirer et al., 2018; Hecq et al., 2023). Therefore, it is preferable to fit
a sparse VAR model, with many AR parameters set to zero to more accurately approx-
imate the sparse data generating process. An additional advantage of sparse models is
that they allow for an ultra-high dimensionality of time series (Fan et al., 2011a, 2014).

Estimators with sparsity properties have demonstrated effective performance across
diverse fields, such as economics (Fan et al., 2011b), macroeconomics (Korobilis, 2013),
and biostatistics (Friedman, 2012). Over the last ten years, a broad range of studies has
been dedicated to the sparse modeling of the VAR process, mostly based on recent ad-
vances in variable selection and shrinkage theory from Tibshirani (1996), Zou (2006), and
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Yuan and Lin (2006), to effectively handle the above-mentioned dimensionality problem.
The academic papers refer to estimators that achieve sparse estimation as regularized
methods. VAR model coefficient matrix estimation using regularization methods has be-
come a popular alternative to factor modeling for systems with high-dimensional time
series (Bai et al., 2008; Kock and Callot, 2015).

3.2 Regularized estimation of VAR: LASSO and adaptive LASSO

The regularized (penalized) regression approach in cross-section cases leads to sparse
estimates of the regression coefficients, achieves both efficient prediction and consistent
variable selection, and besides that allows the dimensionality of the high-dimension system
to be much larger than the sample size. The two most common methods to address the
high-dimension problem are to apply pure shrinkage (L2-penalization) or to estimate
with pure selection (as with traditional information criteria: Akaike information criterion
(AIC), Bayesian information criterion (BIC) or with L1-penalization).

To understand the equation-by-equation regularized estimator consider the penalized
estimation problem Eq. (14) for VAR(p):

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

βq
ij

]
(14)

where βij denotes the i, jth element of the stacked version of VAR(p) coefficient matrix
B13 and λj is the regularization parameter14 for the jth equation of the VAR model (Kock
and Callot, 2015; Basu and Michailidis, 2015; Demirer et al., 2018; Basu et al., 2019). The
first part of the objective function represents the OLS loss function, and the second is the
penalty term for the coefficients. Concave penalty functions produce selection, whereas
smooth convex penalties15 produce shrinkage.

The L2-penalized estimation problem is the following (Eq. (15)) for the ridge estima-
tor:

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

β2
ij

]
(15)

Due to the convex penalty, this estimator only shrinks the coefficients towards zero.
Unfortunately, it doesn’t solve the heavy parameterization problem of VAR(p) coefficient
matrix (B) estimation.

The most prominent algorithm among penalized estimators is the LASSO (least ab-
solute shrinkage and selection operator), blending the two core concepts; it shrinks and
selects together. The LASSO approach was proposed by Tibshirani (1996). Theoreti-
cal aspects of this method have been thoroughly examined since the publication of the
seminal paper; see the following references from machine learning literature Zou (2006),

13I refer Basu et al. (2019) and Krampe and Paparoditis (2021) for a more detailed explanation for
the connection between βij and B

14the literature often refers this as a hyperparameter of the method, because during the estimation
process, it’s necessary to optimize

15where q = 2, the ridge regression estimator
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Meinshausen and Bühlmann (2006), Bickel et al. (2009).

LASSO solves the penalized regression problem with q = 1. The LASSO method
incorporates a penalty based on the absolute value of the parameters into the objective
function of least squares as the estimation problem in Eq. (16) shows:

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

|βij|
]

(16)

The L1 penalty serves a dual purpose. Initially, by incorporating this penalty into the
objective function, it enables the estimation of β even when the number of coefficients in
the VAR model surpasses the time series length. Subsequently, it induces sparsity in the
estimated autoregressive parameters B by enforcing some elements of β exactly equal to
zero. The value of the penalty clearly determines the amount of this selection: the larger
of the regularization parameter λ, the sparser the coefficient matrix (B). The concept
behind the LASSO estimation is to shrink the OLS estimated parameters (elements of B
matrix) towards zero to reduce variance (Kock and Callot, 2015; Demirer et al., 2018).

In recent years, LASSO has become popular in econometrics since it performs auto-
matic variable selection by setting weaker coefficients exactly to zero and parallel with
this, making consistent parameter estimation (Kock and Callot, 2015). An additional ad-
vantage is that the resulting parameter vector (elements of B matrix) is sparse and easier
to interpret. LASSO estimation is computationally feasible (Nicholson et al., 2017, 2020).
It is widely applied and most useful in high-dimension VAR(p) settings where the number
of coefficients is much larger than the number of observations (J2p ≥ T ). As regards the
numerical solution of the estimation, the parameters of equation-by-equation LASSO can
be efficiently and quickly calculated by coordinate descent algorithms (Lin and Michai-
lidis, 2017). An important limitation of the LASSO arises when the model faces up with
highly correlated variables (Zou and Hastie, 2005). In such cases, the LASSO tends to
pick only one or just a few coefficients from the B matrix and shrinks the rest of them
toward zeros. Hereafter, I refer to the estimation approach as a LASSO-VAR model if
the coefficient matrix (B) is estimated with L1-penalization.

In the last two decades, much attention has been devoted to alternative penalized
estimators beyond LASSO and Ridge. Other prominent methods are the smoothly clipped
absolute deviation algorithm (SCAD) (Fan and Li, 2001), the adaptive LASSO (Zou,
2006), the Dantzig selector (Candes and Tao, 2007), the minimum concave penalty method
(Zhang, 2010) and the square root LASSO (Belloni et al., 2011), and the sparse group
LASSO (Poignard, 2020). Due to favorable estimation and prediction features, the LASSO
and its many extensions are nowadays standard tools in high-dimensional analysis and
high-dimensional time series modeling, too (Basu and Michailidis, 2015). Among the
alternative penalized regression approach methods, the adaptive LASSO has received the
greater attention (Kock and Callot, 2015).

As Eq. (16) shows, LASSO penalizes all parameters equally. If it were feasible to assign
a higher penalty to the truly zero parameters (βij, which are zeros in the data generating
parameters) compared to the non-zero ones, one would expect a better estimation and
forecast performance. Zou (2006) improved the LASSO regression by introducing an
additional weight parameter. The adaptive LASSO method is a two-step algorithm that
uses a first-step estimator result (usually the Ridge) to weight the lagged time series. If
the first-step estimator classifies one of the estimated parameters as zero βij = 0, it is not
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included in the second step of the estimation. This concept results in a smaller size of
the problem in the second phase. It also has sparse solutions and an even more efficient
estimation algorithm than the original LASSO. Shortly, it generalizes the popular LASSO
method.

The following equation shows the adaptive LASSO estimation problem:

argmin
βij

[ T∑
t=p+1

(yjt −
p∑

i=1

J∑
j=1

βijyj,t−i)
2 + λj

p∑
i=1

J∑
j=1

wij|βij|
]

(17)

where (wij =
1

|βridge
ij |

) is the adaptive penalty term.

A nice feature of the adaptive LASSO is what Fan and Li (2001) call the oracle
property, which means that the adaptive LASSO correctly identifies the zero components
of the coefficient matrix with probability tending to 1 (setting all zero parameters in
the data generating process exactly equal to zero through the estimation (Zou, 2006)).
This property of the algorithm is true both in cross-section regression and high-dimension
VAR(p) settings (Kock and Callot, 2015).

3.3 Theoretical properties of LASSO-VAR model

In the early 2000s, the theoretical properties of regularized estimates in cross-section
cases under high-dimensional scaling were investigated in numerous studies (Basu and
Michailidis, 2015). Considerable effort has been dedicated to establishing error bounds for
penalized methods, ensuring consistency for both predictions (Meinshausen and Bühlmann,
2006) and both parameter estimation in high-dimension data sets (Bickel et al., 2009).
Even though much progress has been made in this direction, most of these advances are
achieved assuming that the samples are independent and identically distributed (IID er-
rors in the linear regression model). Most of the advances in the penalized estimation
literature are valid only in this framework and setting (Huang et al., 2008; Meinshausen
and Bühlmann, 2006). Theoretical analysis of the penalized estimates in a time series con-
text, characterized by both temporal and cross-sectional dependence in the data, requires
further completion (Song and Bickel, 2011; Basu and Michailidis, 2015).

The first two papers that expanded the penalized methods results to high-dimension
time series setting were Wang et al. (2007) and Hsu et al. (2008). However, these studies
only consider cases where the number of variables is smaller or equal than the sample size.
Wang et al. (2007) studied first the L1-penalty efficiency in simultaneously estimating the
regression coefficients and selecting the relevant lags in a linear regression model where
the error term was allowed to follow an autoregressive process. The paper finds that
LASSO consistently selects the relevant variables, and a modified version of LASSO has
an oracle property too. In a high-dimension time series setting, Hsu et al. (2008) proposed
first a LASSO-VAR model where the coefficient matrices are estimated with L1-penalty,
inducing a sparse output for these matrices. Besides that, Chan and Chen (2011) analyzed
the oracle properties and model selection consistency for lag selection if the estimated
model is from the ARMA ”family”. The first paper that let the number of variables (the
number of regressors or the number of time series) increase with the sample size – to
establish the theoretical background of the models – was by Nardi and Rinaldo (2011).
However, their focus was limited only to autoregressive (AR) models. They have shown
favorable results for model selection consistency (efficient lag selection) and prediction
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efficiency for these models.
Recently, the theoretical properties of penalized estimation in high-dimensional time

series (VAR setting) have begun to be studied extensively, mostly in machine learning
literature. Regularized estimation theory for VAR models is now well established;, see
among others, Song and Bickel (2011), Basu and Michailidis (2015), Han et al. (2015),
Kock and Callot (2015) and Davis et al. (2016). These papers let the number of variables
increase with the sample size (assuming J grows with T , possibly at a faster rate), similar
to Nardi and Rinaldo (2011) in the AR setting. Simply, that means if the number of
non-zero entries of the B matrix is much less than the dimension of parameters J2p,
then much fewer sample is sufficient for consistent and efficient estimation of the sparse
coefficient matrix B.

Song and Bickel (2011) considered first deeply a regularized VAR estimation problem
and applied LASSO and group-LASSO for estimating the parameters of the coefficient
matrix B. They derived oracle inequalities16 for the estimation accuracy. However, their
analysis focused solely on scenarios where the number of candidate variables was a func-
tion of the sample size while keeping the number of relevant variables constant. Moreover,
they employed a strong assumption on the dependency structure in the VAR (Basu and
Michailidis, 2015; Davis et al., 2016). Basu and Michailidis (2015) and Kock and Callot
(2015) were the first to study the LASSO’s properties and its variants in high-dimensional
Gaussian VAR models from a theoretical perspective. Basu and Michailidis (2015) es-
tablished the model selection consistency (chooses the relevant variables as the number
of observations increases) for the LASSO estimator in high-dimensional time series set-
tings with weak dependence (non-diagonal covariance matrix), extending Song and Bickel
(2011). They established consistency for the L1-penalized OLS loss function and the
maximum likelihood estimator of the coefficients in a high-dimension time series setting.
They calculate the error bounds of parameter estimation by building on the prior work
(Loh and Wainwright, 2011). The approach exploits the spectral properties of a general
VAR model, providing insights into the dependency structure of the process. Kock and
Callot (2015) derived the oracle property of the adaptive LASSO for high-dimension VAR
models. Han et al. (2015) extended the Dantzig selector of Candes and Tao (2007) to
be applicable to weakly sparse17 high-dimension time series (VAR) models. Davis et al.
(2016) proposed a special two-step estimator based on partial coherence and the t-test
statistic.

These papers required quite restrictive assumptions on the innovation covariance ma-
trix (Gaussianity in the error term) when investigating the theoretical properties of L1-
penalized estimators in high-dimension time series models. More recently, researchers
relaxed this assumption in several ways. Medeiros and Mendes (2016a) considered con-
ditionally heteroskedastic errors for the VAR(p) model. They showed that the adaptive
LASSO is model selection consistent and retains oracle property even when the errors
are non-Gaussian. Xue and Taniguchi (2020) derived model selection consistency for a
modified version of the LASSO in VAR(p) models with long-memory innovations. Masini
et al. (2022) focused on weakly sparse high-dimensional VAR models under very general
conditions, with heavy-tailed, weakly dependent innovations. They derived theoretical
error bounds for the LASSO estimator in these settings. Adamek et al. (2023) developed
theoretical results for desparsified LASSO in near-epoch dependent VARs.

16assumptions about the data generating process to earn the estimation method the oracle property
17only weakly sparse matrix means, that it contains no zeroes, but its entries follow a geometrically

decaying pattern (Adamek et al., 2023)
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As the above references show, the L1–penalized high-dimension VAR modeling ap-
proach has the advantage of performing model selection and parameter estimation simul-
taneously, and it can also be applied under the “large-J-small-T” settings. The use of
penalized methods for estimating high-dimension vector autoregressive (HD-VAR) mod-
els in economics and finance has increased significantly in recent years, see e.g. Wilms
and Croux (2016), Nicholson et al. (2017), Basu and Michailidis (2015), Nicholson et al.
(2020), Hecq et al. (2023) and Camehl (2023).

3.4 Two ways to estimate the LASSO-VAR model

Compared to linear regression (cross-sectional regression), analysis of high-dimension
VAR models requires critical consideration from a specific point. Since the response vari-
able is multivariate in the VAR systems, choosing the loss function in the estimation step
(sum of squared residuals or negative log-likelihood) is challenging (Basu and Michailidis,
2015). In a multivariate VAR setting, the applied loss function plays a critical role as it
influences the LASSO-VAR model parameter estimation and accuracy, even if the multi-
variate time series have Gaussian errors18. This phenomenon becomes more serious when
the multivariate error process has highly correlated components (Basu and Michailidis,
2015). The reason is that the negative log-likelihood function considers the inverse co-
variance matrix of the error term, but the OLS (based on the sum of squared residuals)
estimation is not. This distinction will generally lead to different estimations of high-
dimensional VAR models unless the unknown covariance matrix equals of the identity
matrix19 (Davis et al., 2016; Basu and Michailidis, 2015). To compare the different es-
timation methods’ strengths and weaknesses, in the two sections, I summarize both the
sum of squared residuals and the penalized maximum likelihood-based LASSO estimator.

3.4.1 Row-wise LASSO-VAR

In estimating the LASSO-VAR method, a standard, and most common approach is
to apply the uni-variate OLS regression estimation separately on each response variable
(Kock and Callot, 2015)). This essentially involves restructuring the VAR model into
a linear regression model, where the current values of the time series are regarded as
the response variable, and lagged values are considered as the explanatory variables.
After that, researchers apply penalized estimation equation-by-equation separately, often
with different tuning parameters for different equations (Lee and Liu, 2012; Basu and
Michailidis, 2015; Kock and Callot, 2015; Davis et al., 2016; Deshpande et al., 2019).
Hereafter I refer this estimation as a row-wise LASSO (RW LASSO), and the adaptive
version of this estimation as an adaptive row-wise Lasso (ARW LASSO)20.

Although simple and popular, this estimation strategy ignores the joint information
among the response variables. It does not consider the dependence between the time series
(the contemporaneous correlation), which may lead to poor predictive performance under
certain circumstances. A research of Lee and Liu (2012) points out that the correlation
between error terms of the VAR model has a significant impact on the estimated param-
eters in a penalized regression. Disregarding the serial correlation in the regularization
step can be dangerous because the theoretical risk bounds of the estimation depend on

18which is a common assumption in econometrics
19or a scalar multiple of identity matrix
20Eq. (16) is related to row-wise LASSO, and Eq. (21) to the adaptive row-wise LASSO estimation
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the degree of contemporaneous cross-correlation between the time series (Song and Bickel,
2011; Basu and Michailidis, 2015).

Interestingly, the question of optimally choosing the loss function has little attention
yet in the econometrics literature on LASSO-VAR models. Most of the econometrics-
related research papers (Kock and Callot, 2015; Medeiros and Mendes, 2016b; Hecq
et al., 2023; Adamek et al., 2023) employed the sum of squared residuals as the loss
function and did not explore the option of choosing the negative log-likelihood estimation
instead of that. Basu and Michailidis (2015) shows that the equation-by-equation estima-
tion imposes strict assumptions on the dependence structure between the cross-sectional
units. While the above-mentioned econometrics-related research studies yield highly in-
terpretable and valuable models, the lack of this research is that they do not explicitly
model the correlation structure of the residuals, essentially assuming that the covariance
matrix is diagonal. Of course, if its assumption is true, the row-wise LASSO-VAR coin-
cides with the penalized maximum likelihood-based LASSO-VAR estimation (Davis et al.,
2016; Basu and Michailidis, 2015).

Several machine learning-related papers have considered this LASSO-VAR estimation
question in the last ten years (Song and Bickel, 2011; Basu and Michailidis, 2015; Davis
et al., 2016). Song and Bickel (2011) were the first to give a theoretical explanation of the
consequences of applying LASSO estimation directly (equation-by-equation estimation)
to the time series without taking into account the covariance structure (contemporane-
ous correlation) between the time series. A few years later, Davis et al. (2016) provides
numerical evidence based on an extensive simulation that the VAR forecasting perfor-
mance can be improved by using a log-likelihood-based loss function. This estimation
method incorporates information on the data-generating process correlation matrix into
the parameter estimation.

Besides the LASSO-VAR estimation problem, in the last two decades, significant work
has been dedicated in the machine learning literature to the penalized estimation of a
positive-definite sparse precision matrix. Yuan and Lin (2007) assumed an element-wise
sparse precision matrix (inverse covariance matrix) and proposed a LASSO estimator to
minimize the negative log-likelihood loss function. Besides that, Bickel and Levina (2008)
introduced a threshold operator for the inverse covariance matrix, which constrains the
parameters toward zero. Rothman et al. (2010) showed that this estimator satisfies the
oracle property.

3.4.2 PML based LASSO-VAR

In order to ease of notation, consider the same VAR model appearing in Eq. (1). I
rewrite the VAR model - J dimensional vector of time series with T length and P lag –
in the following matrix21 form:

Y = XB + Σ (18)

where Y is a K × J matrix, with K = T − p, y = [yp, ..., yT ]. Let X = [X1, X2, X3..., Xp]
be a lagged time series the matrix of with size K × Jp. Besides that let B be the Jp× J
matrix B = [B1, B2, B3..., Bp] containing the autoregressive coefficients βi for i = 1, ..., p
and Σ is the K × J innovation matrix (Rothman et al., 2010; Barbaglia et al., 2020).

As I discussed in the earlier section, one possible way to estimate B is to build J single
equations separately and solve all of them with the least square loss function. However,
this method ignores all the information in the Σ matrix. This separate modeling approach

21it’s a common representation of the VAR model in a machine learning literature
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can work well only if Σ is diagonal because it does not use the joint information among
the response variables.

Let’s denote the inverse covariance matrix: Σ−1 = Ω. If Σ is known, the negative
log-likelihood function for (B,Ω) is the following:

g(B̂, Ω̂) =
1

2K
trace

[
(Y −XB)Ω(Y −XB)′

]
− 1

2
log |Ω| (19)

The maximum likelihood function involves the inverse covariance matrix (Ω); however,
the estimation of B is equal to separate ordinary least squares estimation for each of
the response variables. In this case, the maximum likelihood estimation does not take
advantage of the known Ω. However, when we add L1 or L2 penalties on the log-likelihood
function, the penalized maximum likelihood estimator can bring a significant advantage
in the estimation process (Rothman et al., 2010; Lee and Liu, 2012; Ma and Michailidis,
2016). In addition, in case J × p ≥ T , the maximum likelihood estimator does not exist.
The penalized maximum likelihood estimator in contrast, is still computable.

While variable selection and covariance estimation have long, rich histories in the ma-
chine learning and econometrics regularization literature, a joint solution has only recently
gotten more attention. To the best of my knowledge, Rothman et al. (2010) were the first
who suggested this solution in the context of cross-sectional regressions. They considered
simultaneous sparse estimation of the regression parameters and the inverse covariance
matrix of errors, and introduced a new estimation method solving a penalized maximum
likelihood problem as an L1-regularized log-likelihood objective function, accounting for
correlated errors in the estimation process. Rothman et al. (2010) coined their new
approach to multivariate regression with covariance estimation (MRCE) During the esti-
mation process, they simultaneously optimized an objective function with L1 penalties on
both the coefficient matrix B and the inverse covariance matrix Ω. This method differs
on one key point from the earlier penalized covariance estimation approaches like Yuan
and Lin (2007) and Bickel and Levina (2008). Here, the covariance matrix is estimated
with penalization to improve the estimation of the coefficients and the prediction rather
than as a stand-alone parameter.

Following Rothman et al. (2010), several authors have proposed similar methods for
solving the joint problem of coefficient (variable selection) and covariance matrix estima-
tion. Lee and Liu (2012) proposed a weighted version of Rothman et al. (2010)’s method.
They considered nearly the same objective function but with adaptive L1 penalties. Be-
sides that, they also provided theoretical results for the application of the method in a
low-dimensional setting. Ma and Michailidis (2016) introduced a convergent estimation
procedure and established the theoretical properties of this algorithm. They pointed out
this joint optimization problem’s weakness: it can be numerically unstable in high di-
mensions. However, all of these authors report relatively good performance in estimating
both the response variables and the inverse covariance matrix (Lee and Liu, 2012; Ma and
Michailidis, 2016; Deshpande et al., 2019).

In the last decade, two econometrics-related studies applied the MRCE method in a
times series context. First, Wilms and Croux (2016) introduced a penalized maximum
likelihood approach for estimating the cointegrating vectors and a rank in a vector error
correction model (VECM). The estimation assumed sparse coefficients, and they analyzed
the model’s forecasting performance on cointegrated times series. They showed in an
extensive simulation that the penalized maximum likelihood-based estimation significantly
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outperforms the benchmark Johansen method (Johansen, 1988) significantly when the
space cointegrating vectors are sparse. A few years later, Barbaglia et al. (2020) proposed
a PML method to estimate a t-LASSO-VAR. They were the first who assumed the fat-
tailed distribution of the VARmodel errors. Besides that, after the parameter estimation –
autoregressive matrix and the inverse covariance matrix – they calculated the DY spillover
network too. They showed that the t-LASSO-VAR attains better forecast accuracy than
standard estimators (row-wise LASSO) if the error terms follow a fat-tailed distribution.

Both Wilms and Croux (2016) and Barbaglia et al. (2020) estimate the VARs under the
assumption that the autoregressive matrix and the inverse covariance matrix is band. It is
important to note that this assumption is different from that used in other econometrics-
related papers such as Kock and Callot (2015) and Medeiros and Mendes (2016b), where
sparsity assumptions are formulated only for the autoregressive matrices. It is closer to
the machine learning papers like Basu and Michailidis (2015) and Davis et al. (2016).
In the econometrics literature, as far as I know, only Hecq et al. (2023) has the same
assumptions for the data-generating process.

Following Rothman et al. (2010), Barbaglia et al. (2020) was the first to adapt the pe-
nalized maximum likelihood estimation (based on the MRCE concept) in a high-dimension
VAR context. In this case, the penalized maximum likelihood estimator jointly estimates
the coefficient (B) and inverse covariance matrix (Ω) by solving the following problem:

(B̂, Ω̂) = argmin
B,Ω

[
1

2J
trace

[
((Y −XB)Ω(Y −XB))′

]
− 1

2
log |Ω|

+λ

p∑
s=1

J∑
i,k=1

|βs,ik|+ γ
J∑

i=k

|ωik|
] (20)

where λ > 0 and γ > 0 are the hyperparameters and ωij is the i-th row j-th column
element of the inverse covariance matrix Ω. This proposed method simultaneously esti-
mates the coefficients and the elements of the inverse covariance matrix of the VAR(p)
model.

This L1-penalty on B ensures that the estimation of the coefficient matrix is feasible
even if the number of estimated parameters exceeds the length of the time series. Besides
that, it estimated some elements of B̂ exactly zero. Larger λ indicates sparser B̂: more
zero estimated elements in the coefficient matrix. Barbaglia et al. (2020) select the L1
penalty on the off-diagonal entries of the inverse error covariance Ω for two different
reasons. First, this penalty ensures that the estimation of the inverse covariance matrix is
feasible even if the number of parameters exceeds the length of the time series. Secondly,
similar to the coefficient matrix, it sets some elements of Ω̂ exactly to zero. Again, a larger
regularization parameter indicates a sparser covariance matrix. If J is large, estimating
a non-sparse inverse covariance matrix Ω means that the method has O((J)2) additional
parameters in compared with row-wise LASSO method (Rothman et al., 2010). Sparse
inverse covariance matrix estimation has significantly lower variability; for this reason,
L1-penalty is preferred against L2 (ridge) penalty (Rothman et al., 2010; Barbaglia et al.,
2020). Hereafter, I refer to this estimator as a penalized maximum likelihood LASSO
(PML LASSO).
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3.5 Regularized DY framework

The sparsity assumptions are essential in the Diebold-Yilmaz network estimation, too.
The variance decomposition matrix that drives DY connectedness measures and spillover
indices is a nonlinear transformation of the VAR coefficients and the inverse covariance
matrix. Mostly, the underlying systems are based on high-dimension time series, and we
need to assume the coefficients and the inverse covariance matrix are sparse to estimate
the true network efficiently. Using models for the VAR estimation with the best forecast
accuracy is essential to achieve a good network and spillover index approximation (Demirer
et al., 2018).

To address the issue of high dimensionality financial network estimation, Demirer
et al. (2018) were the first to introduce the regularized VAR(p) estimation techniques –
adaptive elastic net (Zou and Hastie, 2005) – into the Diebold-Yilmaz literature when
they estimated the network across 96 global international banks. This seminal paper
does not formulate sparsity assumptions on the spillover matrix Θ; instead, they assume
sparsity on the approximating VAR model coefficient matrix B. Their approach made an
equation-by-equation sparse penalized estimation of the VAR model coefficient matrix B.

Based on Demirer et al. (2018) seminal paper, in recent years, different regularized
methods for estimating high-dimension VAR have been extensively used in financial sys-
tem modeling, especially in the DY framework empirical literature. While Yang et al.
(2021), Just and Echaust (2022), and Tiwari et al. (2022) used equation-by-equation
LASSO, Yi et al. (2018), Wen and Wang (2020), and Cheng et al. (2022) applied group
LASSO, Greenwood-Nimmo and Tarassow (2022) and Greenwood-Nimmo et al. (2017)
estimated the VAR with adaptive LASSO. Besides that Greenwood-Nimmo et al. (2019),
Bostanci and Yilmaz (2020) and Fang and Shao (2022) applied elastic net and Grant
and Yung (2021) and Jena et al. (2022) used adaptive elastic net for the VAR(p) model
estimation.
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4 Chapter 4. Research questions and thesis contri-

bution

In this chapter, I highlight the limitations of the Diebold-Yilmaz framework and the
room for improvement. I summarize the shortcomings of the empirical network literature
and present the contribution of my thesis in detail.

4.1 Limitations of the DY framework

In recent years, the DY framework has already been extended by several methodologi-
cal innovations (frequency decomposition by Baruńık and Křehĺık (2018) regime-switching
by Lee and Chang (2013); BenSäıda et al. (2018)). However, there are still some relevant
limitations of the framework.

DY framework is based on a VAR estimation, resulting in a closed network. Omit-
ted relevant factors from the financial markets can lead to misleading results. Some
researchers (Kock and Callot, 2015) tried to handle this shortcoming of the original ap-
proach with a FAVAR model estimation ((Claeys and Vaš́ıček, 2014; Barigozzi et al., 2021,
2023), but most articles do not address this issue.

The simplicity of VAR supporting only liner relations between the time series is a
major shortcoming in the original DY approach. While researchers, assuming nonlinear
linkages between the financial institutions, can apply the time-varying parameter VAR
(TVP-VAR) version of the framework (Antonakakis et al., 2020), the method has its own
problems, especially with cointegrated time-series. However, it’s questionable that this
method captures all the nonlinear relations between the time series.

Most empirical applications of the DY framework focusing on relatively small models
estimating simple VAR models have used traditional estimators such as ordinary least
squares (OLS) (Demirer et al. (2018)). Regularization methods must be used in larger
systems or when estimation is based on a small time series sample because traditional
estimation methods are challenging to perform well in a high dimensional time series
network context. However, applying these machine-learning methods raises certain ques-
tions. Which method is the most effective in the DY framework? How should we optimize
the regularization parameters of the methods? In the case of which dimension is it worth
using? Is it worth regularizing the covariance matrix of the error term?

Some articles have already examined the changes in DY networks in the empirical
literature. However, no formal statistical test has been spread in the empirical literature
to measure the structural changes in the network. Only visualization and some simple
measures were primarily used in the DY literature. Nevertheless, formal statistical tests
must be included to create a more complex analysis of the financial network and systemic
risk.

4.2 Shortcomings of the empirical network literature

Almost all empirical studies analyze the realized volatility network of the financial
system. Although some works have examined skewness (Greenwood-Nimmo et al., 2017)
and liquidity (Smimou and Khallouli, 2016; Grillini et al., 2022) spillovers, their behavior
in the financial networks is still questionable. Besides that, only a few studies (Wang
et al., 2021, 2023) focus on comparing different networks.
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Despite the many recent connectedness-related articles and the widespread methods,
the deeper structure of the networks (analyzing on both macro and micro levels) has been
investigated by far fewer. In addition to that, only a few studies (Hautsch et al., 2015;
Nucera et al., 2016; Hué et al., 2019) tried to identify the key participants of the financial
networks (and analyze the dynamics of their linkages), and less one analyze these players’
role in crisis periods (Salim et al., 2023).

As far as I know, only a few studies analyzed the effect of structural changes and eco-
nomic events on the networks (Claeys and Vaš́ıček, 2014; Buse et al., 2022; Greenwood-
Nimmo and Tarassow, 2022). Both the econometric and economic background are in-
complete in this crucial question. Regulators need to monitor the rapid changes in the
network, understand the system dynamics on different levels, and identify the key partic-
ipants and their role in the financial networks.

Most of the empirical studies that apply the Diebold-Yilmaz framework analyze only
the point estimates of the SUM, FROM, TO, NET, and pairwise NET spillover indices
(Diebold and Yilmaz, 2012; Diebold and Yılmaz, 2014; Greenwood-Nimmo and Tarassow,
2022). The large drawback of this limitation is that the structural changes in the network
are quite complex, and it is often not explored with a deep analysis. The analyses that
measure the significant structural changes in the macro (total spillover index) and micro
level (net pairwise connections) of the system allow us to extract more complex infor-
mation from the analyzed network. Besides that, if we narrow down our analysis to the
point estimation of the spillover indices, this prevents us from conveying the information
surrounding the uncertainty of our estimation.

4.3 Thesis contribution

My thesis contributes to the existing literature in three points. Firstly, I contribute
to high-dimension time series modeling and network analysis with a methodological inno-
vation. I propose an extension of the adaptive row-wise LASSO method, which accounts
for possible sparsity both in the coefficient (B) and the inverse covariance matrix (Ω) of
the estimated (VAR) model.

Secondly, I contribute to that part of network analysis literature, which analyses the
structural changes in the systems with a methodological innovation. I extend the Diebold-
Yilmaz framework with an event study tool to estimate network structural changes and
provide more in-depth insights about contagion channels in the systems during structural
changes. Integrating a moving-block bootstrap method (MBB) into the framework, I can
investigate how the observed shocks transform the networks.

Thirdly, I contribute to the empirical network-based systemic risk modeling literature
with a conceptual innovation. I characterize and compare FIs’ illiquidity and volatility
networks. I show that the DY framework extended with the MBB method is a power-
ful tool to identify the key participants (troubled financial institutions) and contagion
channels during crisis periods.

My contributions have not yet been published, but I would like to highlight my related
article (Badics et al. (2023)), which focuses on modeling high-dimension time series and
network analysis, but is not included in my thesis.

4.3.1 Research method innovations

Regularisation in the estimation step of the VAR model may be useful for high-
dimension time series modeling. In Chapter 5, I extend the commonly used row-wise
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LASSO method. I propose a new regularization method that is useful in the DY frame-
work, as it is able to shrink and select the essential coefficients of the VAR and simul-
taneously account for possible sparsity in the distribution of the VAR model errors. In
Chapter 5.2, I perform an extensive Monte Carlo simulation study and show that my new
method estimates the elements of both the VAR(p) model’s coefficient (B) and inverse
covariance matrix (Ω) and the DY spillover table (Θ) more effectively than the commonly
used methods. Besides that, I investigate the robustness of my method of the network
parameters (dimension of the system, time series lengths). In general, the advantage in
the estimation accuracy becomes much greater in shorter time series. Relative estima-
tion accuracy is sensitive to the dimension of the system, the highest in high-dimension
settings.

Combining the DY framework for network modeling with event study methodology
may be useful at turbulent times. In Chapter 6.1.3, I extend the original Diebold-Yilmaz
framework with an event study tool to provide more insights into the contagion channels
appearing in the networks during structural changes.

I introduce a formal test to compare the distribution of the SUM, FROM, TO, NET,
and NETP (Eqs. (6-10)) spillover indices over time. I integrate the bootstrap algorithm
into the DY framework’s estimation step to determine whether the DY spillover indices’
empirical distribution on different periods is equal. The gain of this method is that we can
use it not just for analyzing the significant structural changes in the network on a macro
level (total spillover index) but on a micro level (pairwise spillover indices) too. Combining
the residual-based MBB Brüggemann et al. (2016) method with the DY framework (MBB-
based DY framework), I can investigate how the observed shocks transform the financial
networks. By interpreting the system as a network, I can monitor the network on a daily
basis and analyze structural changes with the combined method.

In the earlier empirical literature, only two papers integrate these methods (the DY
framework and MBB algorithm). Buse et al. (2022) applied only for the total spillover
index, and Greenwood-Nimmo and Tarassow (2022) used to create probabilistic analysis
of spillover scenarios. To the best of my knowledge, I am the first to apply the combined
method to analyze the significant changes in both macro (total spillover index) and micro
(net pairwise spillover indices) levels of the network.

4.3.2 Conceptual innovations

To address the gap in the empirical literature, in Chapter 6.2, I present a character-
ization of the illiquidity connectedness of a US financial network with my proposed AJ
LASSO method in the Diebold-Yilmaz framework. I investigate the significant similari-
ties and differences between the volatility and illiquidity network on the macro and micro
levels with the combined MBB-based DY framework.

In Chapter 6.3, I consider the critical financial events of the GFC, as Diebold and
Yılmaz (2014), with the analytical purpose of testing the performance of my new event
study framework. Applying the MBB-based DY framework, I analyze the volatility and
liquidity shocks, focusing on four key events of the GFC. Besides that, I provide daily
snapshots of the financial network to illustrate that illiquidity spillovers act as contagion
channels during turmoil time.

The analysis in Chapter 6 contributes to the empirical network analysis literature at
three related points. First, as far as I know, I am the first to compare the volatility and
illiquidity network with the MBB-based DY framework. My empirical results suggest that
the volatility and illiquidity network differs not just on the macro level (total spillover
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index) but on the micro (pairwise net spillover indices) level too. I conclude that micro
and macro-level illiquidity spillover indices display important information for the financial
network.

Second, I apply the MBB-based DY framework to analyze the effect of key events
in the network. An important limitation of the original DY framework is the absence
of a formal statistic to test whether the changes in the spillover matrix are significant.
Applying the MBB-based DY framework, I prove that the observed shocks temporarily
transform the financial network and significantly alter the spillover matrix.

Lastly, I show that DY illiquidity spillover better tracks the dominant shock trans-
mitters in the system and signals during financial turmoil than volatility spillover both in
the macro and micro level of the network. My empirical results strengthen the findings of
Gai and Kapadia (2010) and Acemoglu et al. (2015). First, I found that the impact of a
shock depends on which node of the network it hits. Second, the network transformation’s
persistence depends on the shock size.

To the best of my knowledge, I am the first to apply the MBB-based DY framework
for a network event study and to examine the key participants of the US FIs network
during the GFC.
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5 Chapter 5. Adaptive joint LASSO based network

estimation

In this chapter, I propose a new regularization method that is useful in the DY frame-
work, as it is able to shrink and select the essential coefficients of the VAR and simulta-
neously account for possible sparsity in the distribution of the VAR model errors. This
method is an extended penalized maximum likelihood estimator for the VAR coefficient
and inverse covariance matrix, and I refer to this method as the adaptive joint LASSO
algorithm (AJ LASSO). In the second part of the chapter, I perform an extensive simu-
lation study to present my proposed estimator’s statistical properties. I compare my new
approach with the most widely used VAR model estimation methods (OLS, RW LASSO,
ARW LASSO)22.

5.1 Adaptive Joint LASSO

The main contribution of this chapter is to propose a new methodology to estimate
large, sparse VARs. I introduce a novel adaptive joint LASSO-based algorithm. The
highlight of the procedure is that it simultaneously estimates the autoregressive matrices
and the entries of the residual inverse covariance matrix. To understand the strength of
my new method I formally introduce my estimator, in the following subsection.

In order to achieve more efficient estimation, I propose an extended penalized max-
imum likelihood method for VAR estimation. To develop a better estimator for B and
Ω, I consider incorporating the inverse covariance matrix of the error term (Ω) in the
estimation process, and regularize both the coefficient and the inverse covariance matrix,
following Rothman et al. (2010), Lee and Liu (2012) and Barbaglia et al. (2020). Unlike
previous studies, I estimate the model with adaptive-LASSO, minimizing the following
weighted negative log-likelihood function:

(B̂, Ω̂) = argmin
B,Ω

[
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trace

[
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]
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2
log |Ω|

+λ

p∑
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J∑
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ws,ik|βs,ik|+ γ
J∑
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wik|ωik|
] (21)

where λ and γ are the two hyperparameters of the method.
I apply the adaptive version of LASSO for two reasons. Firstly, as Kock and Callot

(2015) stands, only the row-wise adaptive LASSO has an oracle property for the high-
dimension VAR models. Second, as Lee and Liu (2012) pointed out, the adaptive version
of the MRCE approach has better parameter estimation accuracy for cross-sectional data.

I take the weights of the adaptive LASSO as a reciprocate of the L2 estimator, where
the ridge estimator is based on the following minimization:

22these regularization approaches are the most commonly applied methods in the DY literature
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(B̂, Ω̂) = argmin
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I refer to my new algorithm as the adaptive joint LASSO (AJ LASSO) method. The
essence of the model is the maximum likelihood estimation with joint penalization on
both B and Ω matrices. The adaptive joint LASSO extends the MRCE method (Roth-
man et al., 2010) and PML LASSO method (Barbaglia et al., 2020) with the adaptive
estimation step. It has two substantial advantages compared to the commonly used adap-
tive row-wise LASSO method. Firstly, it incorporates the inverse covariance matrix (Ω)
into the coefficient matrix (B) estimation. Based on the earlier results of the MRCE
literature (Rothman et al., 2010; Lee and Liu, 2012) this feature of the estimation can be
important if the inverse covariance matrix has a dense or band structure (Ω ̸= IJ). Second,
besides the coefficient matrix (B) regularization, this approach penalizes the elements of
the inverse covariance matrix (Ω) too23. It can be effective if the inverse covariance ma-
trix is sparse (Ω = IJ). Besides these advantages, I highlight that the Diebold-Yilmaz
spillover table depends on both B and Ω, and the strength of my method is that it jointly
estimates these matrices. Mention the disadvantages of my model as well; it uses only
one hyperparameter for the coefficient and inverse covariance matrix estimation, while
the row-wise LASSO optimizes the selection equation-by-equation. If some time series
dominate the system, the row-wise LASSO can be a better choice for estimating B.

I don’t proof the oracle property of my new method for VAR(p) model coefficient
(B) and inverse covariance matrix (Ω) estimation, but in the next section, I conduct
an extensive set of Monte Carlo simulation and represent that my method achieves bet-
ter estimation and forecast accuracy than the row-wise, and adaptive row-wise LASSO
estimators 24.

5.1.1 Details of the algorithm

The optimization problem in Eq. (21) is not convex concerning the coefficient and
covariance matrices (B, Ω), however, solving for either B or Ω with keeping the other
fix is the objective function25 become convex (Rothman et al., 2010; Ma and Michailidis,
2016).

To solve this, I present an algorithm in line with the estimation of Rothman et al.
(2010)’s MRCE method. Solving Eq. (21) for Ω with fixed B0 yields the following
estimation problem:

Ω̂(B0) = argmin
Ω

[
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tr
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] (23)

23row-wise LASSO and adaptive row-wise LASSO only penalize B
24we can call this method as a heuristic approach
25the objective function is bi-convex
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This is exactly a weighted (adaptive) L1-regularized covariance estimation problem
considered by several machine learning studies like Yuan and Lin (2007); Bickel and
Levina (2008) and Friedman et al. (2010). Similar to Rothman et al. (2010) and Barbaglia
et al. (2020), I use Friedman et al. (2010)’s graphical LASSO (gLASSO) algorithm for
optimization. The advantage of the gLASSO is well known: it is fast and the most
commonly used algorithm for solving inverse covariance matrix penalization. It needs to
be mentioned that following Friedman et al. (2010), I left out the diagonal elements from
the objective function; therefore, only the off-diagonal elements are penalized.

Solving Eq. (21) for B with fixed Ω0 yields the following estimation problem:

B̂(Ω0) = argmin
B
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(24)

A solution of Eq. (24) can be efficiently computed using cyclical-coordinate descent
algorithm (Lee and Liu, 2012; Ma and Michailidis, 2016). In line with Rothman et al.
(2010), Lee and Liu (2012) and Barbaglia et al. (2020), I iterate the optimization of the
two objective functions (Eqs. (23-24)) until convergence.

As Lee and Liu (2012) pointed out, the weakness of this iterative estimation is that
it may fail to converge to the global optimum. It can be unstable, especially in high-
dimensional settings where K×J ≥ T . If some diagonal element of the first term in Eqs.
(23-24) are zeros, then it dominates the others during the estimation process. Similar
to most non-convex problems, for fast convergence, good initial parameters are beneficial
(Ma and Michailidis, 2016).

To create a stopping rule for the estimation, I iterate the algorithm minimizing the
objective function Eq. (21) until the relative change in it is less than tolerance level ϵ.
This parameter of the algorithm needs to be specified following Wilms and Croux (2016)
and Barbaglia et al. (2020). I choose to be ϵ = 10−2. While there is no formal proof of
the convergence of this algorithm, based on my knowledge, I have consistently observed
convergence in all of my simulation scenarios, typically occurring within an average of
two iterations. To summarize the convergence of the iterative method, based on my
experiment, the coordinate-descent algorithm works very efficiently. Since the adaptive
joint LASSO algorithm method involves estimation of both B and Ω, with an additional
ridge estimation Eq. (22), unfortunately, the computation can be intensive when the
dimension of the VAR is high.

To start the iterative estimation process, we need starting values for both B and Ω.
I take the identity matrix of Ω for starting values. It’s a common choice, and I follow
Rothman et al. (2010) and Barbaglia et al. (2020). For the starting value of B, I use the
estimated coefficients of the row-wise LASSO method in line with Lee and Liu (2012). In
my simulations, I performed numerous numerical experiments to assess how these choices
influence the algorithm’s accuracy. For both matrices, the results are robust in low and
high-dimensional VAR settings, too.

The regularization parameters λ and γ in Eqs. (21-24) are not known, we need
to optimize these hyper-parameters. Besides that, due to the adaptive estimation, we
have to fine-tune two other parameters, the penalties of the ridge objective function Eq.
(22). That means estimating adaptive joint LASSO algorithm-based VAR models involves
choosing the optimal values of four tuning parameters. Achieving good performance in
terms of coefficient and covariance matrix estimation requires the appropriate selection
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of the penalty parameters (Kock and Callot, 2015; Hecq et al., 2023).
While some theoretical results on the choice of these hyperparameters are available in

the machine learning literature (Basu and Michailidis, 2015), in the empirical literature,
many different data-driven methods exist to fine-tune these parameters, giving varying
results. The choice of λ and γ are usually based on certain information criteria (AIC,
BIC) or cross-validation, which is challenging in time series context (Hecq et al., 2023).

I employ a computationally efficient approach26, and in line with Rothman et al.
(2010), Wilms and Croux (2016) and Barbaglia et al. (2020) I use the Bayesian infor-
mation criterion introduced by Schwarz (1978) for both λ, γ and the ridge penalty op-
timization. When the iterative method solves the Eq. (24), I use a specified grid of the
λ hyperparameter and search for the optimal value minimizing the BIC based on the
following equation:

BICλ = −2logLλ + dfλlog(N) (25)

where logLλ is the log-likelihood of the estimated VAR model with a λ penalty and
dfλ is the degree of freedom of the model which can be well approximated by the number
of nonzero coefficients of the estimated coefficient matrix B (Zou et al., 2007; Rothman
et al., 2010).

Similarly, when the iterative method solves the Eq. (23), I use a specified grid of the γ
hyperparameter and search the optimal value minimizing the BIC based on the following
equation:

BICγ = −2logLγ + dfγlog(N) (26)

In this case, dfλ is the nonzero lower-diagonal elements of the estimated inverse co-
variance matrix Ω (Barbaglia et al., 2020).

An alternative way to optimize the hyperparameters with information criteria is the
AICc, a corrected version of AIC. In a VAR estimation, Hecq et al. (2023) showed it has
a better finite sample performance for small sample sizes. My simulations indicate no
significant difference in terms of estimation accuracy of the adaptive joint LASSO-based
VAR estimation when either using BIC or the AICc to select the regularization parameters
λ and γ.

Perhaps the most popular way in cross-section regression is to choose the tuning
parameter, cross-validation (CV). However, as Bergmeir et al. (2018) showed, the CV-
based LASSO is not always appropriate in high-dimension time series settings without
serious modifications. I conducted simulations involving cross-validation, but this did not
substantially improve results despite being notably slower.

26my approach has computation intensive two-step iteration process
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5.2 Monte Carlo simulation

In this section, I undertake a simulation study to assess the performance and illustrate
the beneficial qualities of the previously proposed adaptive joint LASSO algorithm. I sim-
ulate different large sparse VAR systems and then use my proposed algorithm to estimate
the parameters of the VAR model and the DY network. The aim of this simulation is
to analyze the accuracy of my new method in the coefficient (B), covariance matrix (Ω),
and the Diebold-Yilmaz spillover table (Θ) estimation.

To explore the relative performance of the new method, I compare it with the most
commonly applied regularization methods in the empirical Diebold-Yilmaz literature
(Diebold and Yilmaz, 2023). The first method is the OLS, where the VAR parame-
ters are estimated equation-by-equation without penalty. The other two methods are the
row-wise LASSO (RW LASSO, Eq. (16)) and adaptive row-wise LASSO (ARW LASSO,
Eq. (17)). These are similar to the OLS; both are estimated equation-by-equation, but
the objective function has a penalty term. For the first model (RW LASSO), the estima-
tion is a one-step method with L1-penalty. The parameters are estimated in a two-step for
the second model (ARW LASSO). Specifically, in the first stage, I use L2-penalty (ridge
penalty) for the parameter estimation, and in the second stage, I use the weighted vari-
ables to estimate the objective function with L1-penalty. In all regularization methods, I
use BIC and the same grid to estimate the hyperparameters. Without this, the results are
less comparable. These methods are the most common ways of obtaining VAR estimates
and obtaining the DY spillover matrix.

My Monte Carlo simulation in the next section relates to three literature stands. First,
my work relates to the literature on the sparse estimation of high-dimension VAR models,
such as Song and Bickel (2011), Basu and Michailidis (2015), Kock and Callot (2015) and
Davis et al. (2016). It is also connected to the econometric literature on networks for time
series models, which includes research by Billio et al. (2012), Diebold and Yılmaz (2014),
Demirer et al. (2018), Barigozzi and Brownlees (2019) and Barbaglia et al. (2020). Lastly,
this research also linked to the literature on regularized covariance estimation and sparse
precision matrices, such as Meinshausen and Bühlmann (2006), Yuan and Lin (2007),
Bickel and Levina (2008), Friedman et al. (2010) and Peng et al. (2009).

5.2.1 Simulation design

In addition to comparing the different methods, I also investigate the sensitivity of the
simulation parameters on the performance of the four estimators. I test the performance of
the 4 methods with different sample sizes and time series numbers, using 1000 simulation
runs, and also test the sensitivity of the covariance and auto-correlation structure. I
consider both sparse and dense coefficient and covariance matrices to investigate the
effect of the autoregressive and the covariance structure on the methods. The notations
are similar to the earlier B represents the coefficient matrix, Σ and Ω marks covariance
and the inverse covariance matrix and I note the DY spillover matrix with Θ. J represents
the number and T is the length of the time series.

Assuming various data-generating processes, represented by various VAR coefficient
structures can have different theoretical and empirical motivations. In order to assess the
robustness I investigate the effect of both sparse and dense B.

I consider two alternative coefficient matrices for the VAR model adapted from Kock
and Callot (2015) and Hecq et al. (2023). In the first case (Eq. (27)), the coefficient
matrix is as sparse as possible:
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B =


0.4 0 . . . 0

0 0.4
. . .

...
...

. . . . . . 0
0 . . . 0 0.4

 (27)

This structure was investigated in Kock and Callot (2015) (Experiment A in the
simulation design) and Hecq et al. (2023) (DGP 1 in the simulation design)27. In this
truly sparse model, each variable depends only on its own past, but if the covariance
structure is not an identity matrix, the DY spillover table can be dense (due to the
nonlinear relationship between B, Ω and Θ). In each equation, we have J-1 redundant
variables.

In the second case, the coefficient matrix (Eq. (28)) is given by the following way28:

B =

(−1)|i−j|0.4|i−j|+1 . . . (−1)|i−j|0.4|i−j|+1

...
. . .

...
(−1)|i−j|0.4|i−j|+1 . . . (−1)|i−j|0.4|i−j|+1

 (28)

where i and j represent the rows and columns of the matrix. This matrix is equal with
Kock and Callot (2015) (Experiment D in the simulation design) and Hecq et al. (2023)
(DGP 2 in the simulation design). To understand the concept behind this choice, I
illustrate this dense matrix with an example. For J = 5 time series the coefficient matrix
is the following:

B =


0.40 −0.16 0.06 −0.03 0.01
−0.16 0.40 −0.16 0.06 −0.03
0.06 −0.16 0.40 −0.16 0.06
−0.03 0.06 −0.16 0.40 −0.16
0.01 −0.03 0.06 −0.16 0.40

 (29)

The choice can be motivated by financial networks, with both negative and positive
connections between the assets and FIs. The distress experienced by one FI is transmitted
at most to the closer institution (Hecq et al., 2023). I refer to this case as dense B, because
it illustrates the violation of the sparsity assumption of the estimation methods. Many of
the parameters are small, but none of them is zero. The coefficients decrease exponentially
in the distance from the diagonal. The stationarity of the VAR is ensured in both designs.

Similar to the coefficient matrix (B) the results of the different estimation methods are
reported for different types of covariance structures (Σ). I consider 3 different structures
for Σ and its inverse Ω. In line with the earlier papers (Rothman et al., 2010; Basu
and Michailidis, 2015; Barbaglia et al., 2020; Hecq et al., 2023), my first choice for the
innovation covariance matrix (Σ) is a Toeplitz-type structure with a ρ parameter (Eq.
(30)). Larger values indicate the error process of the systems is more correlated.

Σ =

ρ
|i−j| . . . ρ|i−j|

...
. . .

...
ρ|i−j| . . . ρ|i−j|

 (30)

27The results are robust for the coefficient value in the diagonal
28adapted from Kock and Callot (2015) and Hecq et al. (2023)
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That means the inverse error covariance matrix (Ω) is a band matrix29. To illustrate
this, for J = 5 and ρ = 0.3 the inverse error covariance matrix is the following:

Ω =


1.1 −0.3 0.0 0.0 0.0
−0.3 1.2 −0.3 0.0 0.0
0.0 −0.3 1.2 −0.3 0.0
0.0 0.0 −0.3 1.2 −0.3
0.0 0.0 0.0 −0.3 1.1

 (31)

The second case is related to the first one. In case of ρ = 0, Σ = IJ , and both Σ and
its inverse (Ω) are sparse. This choice is in line with Kock and Callot (2015). Lastly, to
investigate the violation of the sparsity assumption, I consider a dense covariance matrix
too (Eq. (32)). I follow Wilms and Croux (2018) and simulate the error term from the
following structure:

Σ =

0.5 ∗ ((|i− j|+ 1)2∗0.9 − 2 ∗ |i− j|2∗0.9 + (|i− j| − 1)2∗0.9) . . . . . .
...

. . .
...

... . . .
...

 (32)

At this case both Σ and Ω has a dense structure, for J = 5 the inverse error covariance
matrix is the following:

Ω =


2.4 −1.3 −0.2 −0.2 −0.3
−1.3 3.1 −1.3 −0.1 −0.2
−0.2 −1.3 3.1 −1.3 −0.2
−0.2 −0.1 −1.3 3.1 −1.3
−0.3 −0.2 −0.2 −1.3 2.4

 (33)

I simulate all runs from VAR(1) and assume p is known through the estimation process
for every method. I perform the experiment for different sample sizes T = 100, 250, 500. I
also conduct an extensive robustness evaluation of my results to the choice of the dimen-
sion of the system, and the contemporaneous correlation between the time series. I vary
the number of time series from J = 10 to J = 25. I considered J = 10 low-dimension
setting, and J = 25 high-dimension setting. The dimensions of the VAR are in line with
the empirical study made in the next chapter. To investigate the contemporaneous cor-
relation sensitivity of the results I vary the Toeplitz-type covariance matrix parameter
(ρ) from 0.1 to 0.9. I replicate the simulation 1000 times for each parameter set. In the
simulation study, I focus on the horizon of ten days (H = 10). This value of the DY
spillover table parameter is a common choice in an empirical setting.

The parameter choices of the simulation are in line with the earlier papers (Basu and
Michailidis, 2015; Kock and Callot, 2015; Hecq et al., 2023), but the investigation is more
deep. My Monte Carlo simulation takes into consideration the time series length, the
dimension (low and high setting), and the correlation at the same time.

In this simulation, I aim to present the performance gain of my new method in coef-
ficient (B) and inverse covariance matrix (Ω) parameter estimation and investigate the
robustness of the results. Besides that, I also investigate the efficiency of the DY spillover

29A band matrix is characterized by having non-zero elements exclusively along diagonal bands situated
either above or below the main diagonal
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matrix (Θ) estimation. Lastly, I analyze different settings to explore in which circum-
stances perform the adaptive joint LASSO best compared to the other methods.

5.2.2 Performance measures

Through the Monte Carlo simulation, I measure the performance of the applied meth-
ods from two perspectives. First is the sparsity recognition accuracy for both B and Ω.
Secondly, I calculate the estimation accuracy of the parameters for B, Ω, and Θ in an
absolute and quadratic way.

Similar to the earlier papers that investigate the effectiveness of regularization methods
(Rothman et al., 2010; Kock and Callot, 2015; Wilms and Croux, 2018), I measure the
sparsity recognition by the true positive rate (TPR), true negative rate (TNR), and the
weighted average of this for both B and Ω. I calculate the true positive and true negative
rates in the following way:

TPR(B, B̂) =
#(i, j) : b̂ij ̸= 0, bij ̸= 0

#(i, j) : bij ̸= 0
(34)

TPR(Ω, Ω̂) =
#(i, j) : ω̂ij ̸= 0, ωij ̸= 0

#(i, j) : ωij ̸= 0
(35)

TNR(B, B̂) =
#(i, j) : b̂ij = 0, bij = 0

#(i, j) : bij = 0
(36)

TNR(Ω, Ω̂) =
#(i, j) : ω̂ij = 0, ωij = 0

#(i, j) : ωij = 0
(37)

The true positive rate gives the estimation accuracy of important variables, whereas
the true negative rate gives the accuracy of excluding the unimportant variables. Sparsity
recognition weighed these measures with the relative number of non-zero and zero elements
in the B and Ω.

To evaluate the parameter estimation accuracy, I use the mean absolute estimation
error (MAEE) in line with Barbaglia et al. (2020) and Wilms and Croux (2018) and the
mean Frobenius norm (MFBN) followed by Basu and Michailidis (2015).

The first one is given by

MAEE(B, B̂) =
1

J2

J∑
i,j=1

|βij − β̂ij| (38)

the second one is the following

MFBN(B, B̂) = ||B̂ −B||F/||B||F (39)

The calculation is similar for Ω and Θ. In every different DGP and parameter setting I
calculate the mean of these performance measures based on 1000 experiments.
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5.3 Simulation results

In the next four subsections, I report the estimation accuracy of the four methods in
different settings. In the first subsection, I focus on the base setting where the coefficients
matrix (B) is sparse and the inverse covariance matrix (Ω) is band. I analyze the effect
of the time series (T ) length on the sparsity recognition and the parameter estimation
for the methods. In the next subsection, to estimate the robustness of the results, I vary
the time series dimension and the contemporaneous correlation between the series. After
that, I investigated the effect of the covariance structure. I analyze the robustness of
the results if the Ω is sparse and dense. In the last subsection, I examine the case of
non-sparse B. I report the results for dense B with two different settings of Ω (band and
dense).

5.3.1 Sparse coefficient and band inverse covariance matrix

Simulation results on the sparsity recognition are given in Table 3, which reports the
average true positive and negative rates and the sparsity recognition for B and Ω matrices
with various time series length. Panel A reports an extreme case of T = 100, and the
time series length increases over the panels until T = 500 (Panel C). I only report the
results for J = 15 and ρ = 0.3 in this table.

It is clear from Table 3 Panel A that regularization methods significantly outperform
OLS in sparsity recognition in the case of B estimation. As expected, sparsity recognition
accuracy increases with the increase of T. These patterns are similar to the true negative
rate. These observations align with Basu and Michailidis (2015) and Kock and Callot
(2015). In the case of inverse covariance estimation, the picture is less clear. LASSO
estimators are less powerful; only the adaptive joint LASSO algorithm identifies zero
elements in a band Ω matrix. The largest forecast accuracy gains of the adaptive joint
LASSO estimator relative to the row-wise LASSO estimators are obtained for short time
series. The average sparsity recognition gain is 20% for B and 100% for Ω matrix.

Table 3: Summary of simulation results for sparse coefficient matrix B and
band inverse covariance matrix Ω for OLS, RW LASSO, ARW LASSO, and
AJ LASSO methods

Panel A: T = 100 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 97% 97% 93%
True negative rate (B) 0% 79% 82% 95%
Sparsity recognition (B) 7% 80% 83% 95%
True positive rate (Ω) 100% 100% 100% 99%
True negative rate (Ω) 0% 0% 0% 26%
Sparsity recognition (Ω) 19% 19% 19% 40%

Panel B: T = 250 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 80% 85% 99%
Sparsity recognition (B) 7% 82% 86% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 22%
Sparsity recognition (Ω) 19% 19% 19% 37%
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Panel C: T = 500 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 81% 87% 99%
Sparsity recognition (B) 7% 83% 88% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 14%
Sparsity recognition (Ω) 19% 19% 19% 30%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. In the table, in the first column, the rows indicate the
mean of sparsity recognition performance measures across simulated paths, and columns
2 through 5 represent the alternative methods: OLS, RW LASSO, ARW LASSO, and
AJ LASSO. The structures of B and Ω, along with J = 15, are fixed throughout the
simulation. Time series length (T) varies across the Panels A, B, and C in the Table.

Table 4 reports the accuracy gain of the regularization methods in B, Ω, and Θ
estimation, compared to the benchmark OLS model (parameters are the same as in Table
3). The estimation accuracy of the regularization methods is significantly better than
that of the OLS estimator for all time series lengths. In case of the coefficient matrix, the
accuracy gain is stable independently of the time series length and the error form. As time
series length increases, this gain decreases for Ω and Θ estimation. This pattern is similar
for both error forms (absolute error and Frobenius norm), except B, where the accuracy
gain is higher in absolute terms. Interestingly, row-wise LASSO and adaptive row-wise
LASSO have similar performance - sometimes RW LASSO outperforms ARW but not
significantly - for every time series length. These findings extend Kock and Callot (2015)
who investigate the oracle properties of LASSO and adaptive LASSO. In all simulation
settings, adaptive LASSO outperformed the other regularization methods. My finding
shades this.

Table 4: Accuracy comparison of regularization methods with a simulation of
sparse coefficient matrix B and band inverse covariance matrix Ω

Panel A: T = 100 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 27% 27% 16%

MAEE (Ω, Ω̂) 75% 76% 46%

MAEE (Θ, Θ̂) 45% 50% 34%

MFBN (B,B̂) 54% 53% 47%

MFBN (Ω, Ω̂) 75% 76% 50%

MFBN (Θ, Θ̂) 44% 49% 33%

Panel B: T = 250 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 25% 24% 11%

MAEE (Ω, Ω̂) 89% 90% 63%

MAEE (Θ, Θ̂) 48% 51% 39%

MFBN (B,B̂) 51% 49% 40%

MFBN (Ω, Ω̂) 88% 89% 68%

MFBN (Θ, Θ̂) 49% 52% 41%

Panel C: T = 500 RW LASSO ARW LASSO AJ LASSO
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MAEE (B,B̂) 27% 24% 10%

MAEE (Ω, Ω̂) 94% 94% 75%

MAEE (Θ, Θ̂) 56% 58% 48%

MFBN (B,B̂) 55% 51% 36%

MFBN (Ω, Ω̂) 93% 93% 78%

MFBN (Θ, Θ̂) 57% 60% 51%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. In the table, in the first column, the rows indicate the
mean of sparsity error measures (either MAEE = mean absolute estimation error or
MFBN = mean Frobenius norm), and columns 2 through 4 represent the three alternative
methods: RW LASSO, ARW LASSO, and AJ LASSO. Results are in percentage of the
benchmark OLS model. The structures of B and Ω, along with J = 15, are fixed throughout
the simulation. Time series length (T) varies across the Panels A, B, and C in the Table.

To understand the efficiency of the adaptive joint LASSO algorithm, I report in Table 5
the simulation results based on the accuracy of the model in a percentage of the best row-
wise LASSO method. It is clear from Table 5 that the adaptive joint LASSO algorithm
significantly outperforms the row-wise LASSO methods. The estimated matrices’ absolute
error and the Frobenius norm are significantly lower. The mean absolute estimation error
is 40-60% lower in B estimation, and it increases as the time series length is longer.
Average Ω estimation error is also found to be more than 20% better. Interestingly, the
accuracy gain is higher for longer time series. In the case of Θ estimation, the error is
15-25% lower than the row-wise LASSO’s two versions, and it’s growing as time series
are shorter. These patterns are similar to Forbenius norm-based relative error, but the
accuracy gains are smaller.

Table 5: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and band inverse covariance
(Ω) matrix.

Relative Error T = 100 T = 250 T = 500

MAEE (B,B̂) 59% 45% 41%

MAEE (Ω, Ω̂) 61% 71% 79%

MAEE (Θ, Θ̂) 75% 81% 85%

MFBN (B,B̂) 88% 81% 69%

MFBN (Ω, Ω̂) 67% 77% 84%

MFBN (Θ, Θ̂) 76% 84% 90%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. Rows contain the mean of accuracy measures across
simulated paths, and columns represent the explored methods. In the table, the first column,
the rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either
MAEE = mean absolute estimation error or MFBN = mean Frobenius norm). The relative
performance of the AJ LASSO in comparison with the better RW LASSO with time series
lengths (T) varying from 100 to 500 are presented in Columns 2 through 4. Results are
in percentage of the better RW LASSO model. The structures of B and Ω, along with J
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= 15, are fixed throughout the simulation. Relative error calculation is based on Panel A,
B, and C of Table 4.

To summarize the results for the basic parameter set in sparse B and band Ω VAR
setting, the adaptive joint LASSO estimator outperforms OLS and row-wise LASSO esti-
mators significantly in all time series lengths. The advantage in the estimation accuracy
of the algorithm becomes much greater in shorter time series (except B). These results
extend the earlier penalized maximum likelihood studies (Rothman et al., 2010; Basu
and Michailidis, 2015; Wilms and Croux, 2016; Barbaglia et al., 2020). In the following
subsection, I demonstrate that these results are robust to a wide range of simulation -
number of time series and correlation between the series - parameters.

5.3.2 Sparse B and band Ω robustness analysis

Robustness analysis regarding the number of time series in the VAR system is impor-
tant for two reasons. First, in network modeling, the dimension is often high. Several
recent papers applied the Diebold-Yilmaz spillover method in a high-dimension setting
(Demirer et al., 2018; Greenwood-Nimmo et al., 2019), using RW or ARW LASSO meth-
ods. Secondly, considering multiple numbers of time series in the VAR is able to magnify
the differences between the methods explored (Basu and Michailidis, 2015; Kock and
Callot, 2015).

Simulation results for sparsity recognition in low and high-dimension cases are given
in Table 6. I only report the results for ρ = 0.3. The sparsity pattern recognition is
computed for four different VAR dimensions.

Table 6: Summary of simulation results with sparse coefficient B and band
inverse covariance Ω matrix

Panel A: J = 10 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 78% 88% 99%
Sparsity recognition (B) 10% 81% 90% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 14%
Sparsity recognition (Ω) 28% 28% 28% 38%

Panel B: J = 15 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 80% 85% 99%
Sparsity recognition (B) 7% 82% 86% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 22%
Sparsity recognition (Ω) 19% 19% 19% 37%

Panel C: J = 20 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 82% 85% 99%
Sparsity recognition (B) 5% 83% 85% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 24%
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Sparsity recognition (Ω) 15% 15% 15% 35%

Panel D: J = 25 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 86% 87% 99%
Sparsity recognition (B) 4% 86% 88% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 22%
Sparsity recognition (Ω) 12% 12% 12% 31%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. In the table, in the first column, the rows indicate the
mean of sparsity recognition performance measures across simulated paths, and columns
2 through 5 represent the alternative methods: OLS, RW LASSO, ARW LASSO, and AJ
LASSO. The structures of B and Ω are fixed throughout the simulation. The time series
(T) length is fixed at 250, while J (dimension of the matrices) varies across Panels A
through D in the Table. Note: Panel B of the table is the same as Panel B of Table 3.

The general pattern observed in Table 3 can also be recognized in Table 6. In the case
of B, as the dimension increases, the sparsity recognition will be better for regularized
methods. This pattern is only true for Ω estimation if we use the adaptive joint LASSO
algorithm. I also observe that the accuracy gain for Ω sparsity recognition is higher with
the increase of N. This gain is between 30-150%. Overall, the adaptive joint LASSO
algorithm outperforms all other methods in sparsity pattern recognition, and the largest
gain is high-dimension for Ω estimation.

The simulation results for the estimation accuracy of B, Ω, and Θ estimation in
the low and high-dimensional designs are given in Table 7. The estimation accuracy of
the regularization methods is significantly better than that of the OLS estimator for all
VAR dimensions. The accuracy gain increase for both B, Ω, and Θ as the dimension
increase. These patterns are similar in both error terms, and the gain is always smaller
with Frobenius norm-based error. Similar to Table 4, the difference between the two
row-wise LASSO methods is not significant.

Table 7: Accuracy comparison of regularization methods with a simulation
of sparse coefficient matrix B and band inverse covariance matrix Ω using a
range of the dimension (J) of the system

Panel A: J = 10 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 30% 24% 13%

MAEE (Ω, Ω̂) 93% 94% 75%

MAEE (Θ, Θ̂) 55% 56% 48%

MFBN (B,B̂) 55% 50% 37%

MFBN (Ω, Ω̂) 93% 93% 79%

MFBN (Θ, Θ̂) 56% 58% 52%

Panel B: J = 15 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 25% 24% 11%

MAEE (Ω, Ω̂) 89% 90% 63%

MAEE (Θ, Θ̂) 48% 51% 39%
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MFBN (B,B̂) 51% 49% 40%

MFBN (Ω, Ω̂) 88% 89% 68%

MFBN (Θ, Θ̂) 49% 52% 41%

Panel C: J = 20 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 22% 23% 8%

MAEE (Ω, Ω̂) 86% 87% 52%

MAEE (Θ, Θ̂) 44% 49% 32%

MFBN (B,B̂) 48% 49% 35%

MFBN (Ω, Ω̂) 85% 86% 57%

MFBN (Θ, Θ̂) 45% 50% 34%

Panel C: J = 25 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 17% 19% 7%

MAEE (Ω, Ω̂) 82% 84% 48%

MAEE (Θ, Θ̂) 39% 44% 29%

MFBN (B,B̂) 44% 43% 32%

MFBN (Ω, Ω̂) 79% 82% 52%

MFBN (Θ, Θ̂) 38% 43% 29%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. In the table, in the first column, the rows indicate the
mean of sparsity error measures (either MAEE = mean absolute estimation error or
MFBN = mean Frobenius norm), and columns 2 through 4 represent the three alternative
methods: RW LASSO, ARW LASSO, and AJ LASSO. Results are in percentage of the
benchmark OLS model. The length of the time series (T) is fixed at 250, while J (dimen-
sion of the matrices) varies from 10 to 25 across the Panels A through D in the Table.
Panel B of the table is the same as Panel B of Table 4.

Table 8 reports the results relative accuracy of the adaptive joint LASSO algorithm
in the low (J = 10) and high-dimensional (J = 25) settings (in a percentage of the
best row-wise LASSO method). The estimation accuracy of the adaptive joint LASSO
algorithm is significantly better than the row-wise LASSO methods in low and high-
dimension settings, too. The largest estimation accuracy gains (MAEE) of the ADL
estimator relative to the other regularization methods estimator are obtained in the case
of B (50-60%). Average Ω and Θ estimation error is also found to be more than 20%
and 15% better. Accuracy gain increases in both matrices as the number of time series
increases. These patterns are generally in line with the results presented in Table 5,
further confirming that regularization on both B and Ω is extremely useful.

Table 8: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and band inverse covariance
(Ω) matrix using a range of the dimension (J) of the system

Relative Error J = 10 J = 15 J = 20 J = 25

MAEE (B,B̂) 53% 45% 39% 42%

MAEE (Ω, Ω̂) 80% 71% 60% 59%

MAEE (Θ, Θ̂) 88% 81% 73% 74%

MFBN (B,B̂) 74% 81% 72% 74%
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MFBN (Ω, Ω̂) 85% 77% 67% 66%

MFBN (Θ, Θ̂) 92% 84% 75% 75%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. Rows contain the mean of accuracy measures across
simulated paths, and columns represent the explored methods. In the table, the first column,
the rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either
MAEE = mean absolute estimation error or MFBN = mean Frobenius norm). The relative
performance of the AJ LASSO in comparison with the better RW LASSO with dimension
of the time series (J) - varies from 10 to 25 -, are presented in Columns 2 through 5.
Results are in percentage of the better RW LASSO model. The structures of B and Ω,
along with T = 250, are fixed throughout the simulation. Relative error calculation is
based on Panel A, B, and C of Table 7.

To summarize the simulation result in relation to the VAR system dimension, the
adaptive joint LASSO algorithm significantly outperforms the B, Ω and Θ estimation
of the row-wise LASSO methods both in low and high-dimension settings, and accuracy
gain increasing as the dimension increasing. These findings extend the earlier penalized
maximum likelihood applications (Wilms and Croux, 2016; Barbaglia et al., 2020).

Figure 2: Relative estimation accuracy of the AJ LASSO algorithm as a func-
tion of the covariance matrix (Σ) Toeplitz-parameter (ρ).

Notes: Results are in percentage of better row-wise LASSO model based on 1000 simulation
runs. The structure of B, Ω and Θ, along with T = 250 and J = 15 is fixed throughout the
simulation. The setting corresponding to ρ = 0.3 is the same as the second column in Table 5
and in Table 8.

My robustness analysis also considers the variation of the covariance matrix Σ. Dif-
ferent degrees of correlation between the time series error terms (ρ) can influence the
estimator performance, especially for regularization methods (Zou, 2006). Several stud-
ies, including Basu and Michailidis (2015) and Hecq et al. (2023) confirm this for VAR
systems in both low and high-dimension settings, and Rothman et al. (2010) for penalized
maximum likelihood estimation. In line with these studies, I vary the ρ parameter of the
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Toeplitz error matrix to assess robustness analysis. I consider several values of ρ between
ρ = 0.1 and ρ = 0.9 to obtain a precise evaluation of the methods. I only report the results
for T = 250 and J = 15. Sparsity recognition results are similar to Table 3 and Table
6. I report only the estimation accuracy results. The evolution of the relative estimation
accuracy compared to the two row-wise LASSO in a ρ-based setting is plotted in Figure
2. Detailed simulation results are plotted in Figure A1 and Figure A2.

It is clear from Figure 2 that the proposed AJ LASSO significantly outperforms the
RW LASSO methods for all alternative ρ values. Both mean absolute estimation error
(MAEE) and mean Frobenius norm (MFBN) measures of the B, Ω, and Θ matrices
are significantly lower in case of AJ LASSO method in comparison with other methods.
However, it is important to note the differences in patterns in the change of MAEE
and MFBN with alternative ρ values. In the case of B, as the correlation ρ increases,
the algorithm’s accuracy gain also increases. The gain is stable for Ω between 30-40%.
In parallel with this, the accuracy gain has a hump-shaped pattern for Θ, primarily
due to the improvement in the estimation of the autoregressive coefficient matrix (B).
Simulation results indicate that in highly correlated systems, the relative performance of
the AJ LASSO method performs remarkably well, especially for the coefficient matrix (B)
estimation.

To summarize the simulation results for the sparse B and band Ω VAR setting, I con-
clude that the adaptive joint LASSO estimator outperforms row-wise LASSO estimators
significantly in the B, Ω and Θ estimation for all parameter sets. The advantage in the
estimation accuracy becomes much greater in shorter time series and in high-dimension
settings. In the following subsection, I demonstrate that these results are robust to dif-
ferent covariance structures.

5.3.3 Sparse coefficient and different (sparse and dense) inverse covariance
matrices

Assuming various data-generating processes represented by various covariance struc-
tures can have different theoretical and empirical motivations. To assess the robustness
of my results related to the covariance structure in this subsection, I investigate the ef-
fect of sparse and dense Ω on the relative estimation performance of the adaptive joint
LASSO algorithm. In line with Kock and Callot (2015) and Hecq et al. (2023) I represent
sparse Ω with a Toeplitz-type covariance matrix with ρ = 0. This covariance structure is
a common choice, assuming the contemporaneous correlation between time series is zero.
All regularized method outperforms the OLS model, and sparsity recognition pattern is
similar to the earlier results (Table A1, Table A3, Table A5 and A7), so I focus on the
estimation accuracy gain of my novel approach compared to the two row-wise LASSO
model. In the case of sparse and dense Ω, the correlation parameter is fixed through the
simulation, while T and J vary. Detailed simulation results are represented in Table A2,
Table A4, Table A6, and Table A8 which are in the similar structure like tables in the
earlier two subsections.

Simulation results based on error terms drawn from a sparse Ω (Toeplitz-type Σ with
ρ = 0) are presented in Tables 9-10. These tables are structured similarly to Table 5 and
Table 8.
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Table 9: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and band inverse covariance
(Ω) matrix.

Relative Error T = 100 T = 250 T = 500

MAEE (B,B̂) 60% 44% 39%

MAEE (Ω, Ω̂) 27% 23% 16%

MAEE (Θ, Θ̂) 26% 17% 9%

MFBN (B,B̂) 92% 80% 68%

MFBN (Ω, Ω̂) 40% 39% 37%

MFBN (Θ, Θ̂) 31% 19% 10%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. Rows contain the mean of accuracy measures across simu-
lated paths, and columns represent the explored methods. In the table, the first column, the
rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either MAEE
= mean absolute estimation error or MFBN = mean Frobenius norm). The relative per-
formance of the AJ LASSO, in comparison with the better RW LASSO with time series
lengths (T), varies from 100 to 500, are presented in Columns 2 through 4. Results are
in percentage of the better RW LASSO model. The structures of B and Ω, along with J
= 15, are fixed throughout the simulation. Relative error calculation is based on Panel A,
B, and C of Table A2.

The adaptive joint LASSO estimator always obtains lower MAEE values than the
row-wise LASSO estimators. The difference in the accuracy is significant in every set-
ting independently of T and J. The smallest estimation accuracy gains of the AJ LASSO
relative to the other estimators are obtained for the coefficient matrix B. This is gener-
ally the opposite conclusion of the results presented in the earlier substructures, further
confirming that the robustness analysis for the covariance structure is necessary. On the
other hand, the accuracy gain of the new method for the Ω and Θ is much higher than in
the band Ω setting. This gain is between 65-85% for Ω and a bit higher than 75-90% for
Θ estimation. These results are almost double and triple, as we observed in Table 4 and
Table 7. The results further confirm the relevancy of my new method.

As we can see in Table A1 and Table A3, the new method tends to capture better
sparsity of the inverse covariance matrix (Ω). This is represented by higher values and
the true negative rate of (Ω). While in the band (Ω) setting (Table 3 and Table 6), these
values ranged between 10-30%, now they are between 75-90%, and almost independent
from parameters T and J .
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Table 10: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and sparse inverse covariance
(Ω) matrix using a range of the dimension (J) of the system

Relative Error J = 10 J = 15 J = 20 J = 25

MAEE (B,B̂) 49% 44% 40% 40%

MAEE (Ω, Ω̂) 33% 23% 23% 21%

MAEE (Θ, Θ̂) 18% 17% 17% 17%

MFBN (B,B̂) 74% 80% 76% 74%

MFBN (Ω, Ω̂) 51% 39% 37% 35%

MFBN (Θ, Θ̂) 21% 19% 20% 20%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. Rows contain the mean of accuracy measures across simu-
lated paths, and columns represent the explored methods. In the table, the first column, the
rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either MAEE
= mean absolute estimation error or MFBN = mean Frobenius norm). The relative per-
formance of the AJ LASSO in comparison with the better RW LASSO with dimension of
the time series (J) - varies from 10 to 25 -, are presented in Columns 2 through 5. Results
are in percentage of the better RW LASSO model. The structures of B and Ω, along with
T = 250, are fixed throughout the simulation. Relative error calculation is based on Panel
A, B, and C of Table A4.

In a sparse inverse covariance matrix setting, the new method of accounting for the
characteristics of the DGP for the estimation process proves extremely useful. The pattern
of results was found to be similar for the Frobenius norm error. As the dimension of the
time series increases, the relative error diminishes in the case of all matrices (B, Ω) except
Θ. This means that the new method is useful in low-dimension systems, too, if the Ω) is
sparse. The pattern for B and Ω is similar to the case of band Ω covariance structure.
However, from the view of the time series length parameter, as it decreases, the difference
decreases as well. That means the new method can be useful for longer window sizes of
the DY network analysis. In general, the enhancements in forecast accuracy are more
significant for these sparse (Ω) designs than for the sparse (Ω) designs in Table 4 and
Table 7. Besides that, in the sparse Ω setting, the accuracy gain is significantly high for
low-dimension systems.

Simulation results based on error terms drawn from a dense Ω are presented in Tables
11-12. These tables are structured similarly to Table 5 and Table 8. Similar to the earlier
covariance structures, the newb AJ LASSO method always obtains lower MAEE values
than the row-wise LASSO estimators. The difference in the accuracy is significant in
every setting independently T and J , but smaller than the case of sparse Ω. The results
are closer to the band Ω setting (the similarity can be observed with Table 4 and Table
7).
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Table 11: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and dense inverse covariance
(Ω) matrix.

Relative Error T = 100 T = 250 T = 500

MAEE (B,B̂) 46% 34% 30%

MAEE (Ω, Ω̂) 62% 70% 83%

MAEE (Θ, Θ̂) 89% 85% 82%

MFBN (B,B̂) 68% 60% 51%

MFBN (Ω, Ω̂) 66% 73% 85%

MFBN (Θ, Θ̂) 88% 81% 74%

Notes: Results are based on 1000 simulation runs. Rows contain the mean of accuracy
measures across simulated paths, and columns represent the explored methods. In the
table, the first column, the rows indicate the mean of sparsity error measures for (B) and
(Ω) matrix (either MAEE = mean absolute estimation error or MFBN = mean Frobenius
norm). The relative performance of the AJ LASSO in comparison with the better RW
LASSO with time series lengths (T) varying from 100 to 500 are presented in Columns 2
through 4. Results are in percentage of the better RW LASSO model. The structures of B
and Ω, along with J = 15, are fixed throughout the simulation. Relative error calculation
is based on Panel A, B, and C of Table A6.

The largest estimation accuracy gains of the new estimator estimator relative to the
others are obtained for the coefficient matrix (B). The accuracy gain is between 55-70%.
It’s almost 50% higher than the case of band Ω. The new method tends to capture better
sparsity of the coefficient matrix (B) in this case.

Table 12: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with sparse coefficient (B) and dense inverse covariance
(Ω) matrix using a range of the dimension (J) of the system

Relative Error J = 10 J = 15 J = 20 J = 25

MAEE (B,B̂) 32% 34% 32% 30%

MAEE (Ω, Ω̂) 79% 70% 63% 63%

MAEE (Θ, Θ̂) 87% 85% 83% 83%

MFBN (B,B̂) 48% 60% 59% 57%

MFBN (Ω, Ω̂) 82% 73% 67% 67%

MFBN (Θ, Θ̂) 82% 81% 75% 75%

Notes: Results are based on 1000 simulation runs. Rows contain the mean of accuracy
measures across simulated paths, and columns represent the explored methods. In the
table, the first column, the rows indicate the mean of sparsity error measures for (B) and
(Ω) matrix (either MAEE = mean absolute estimation error or MFBN = mean Frobenius
norm). The relative performance of the AJ LASSO in comparison with the better RW
LASSO with dimension of the time series (J) - varies from 10 to 25 -, are presented in
Columns 2 through 5. Results are in percentage of the better RW LASSO model. The
structures of B and Ω, along with T = 250, are fixed throughout the simulation. Relative
error calculation is based on Panel A, B, and C of Table A8.
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In a dense inverse covariance matrix setting, the new method, which accounts for this
characteristic of the DGP for the two-step estimation process, proves extremely useful.
The information of dense Ω in the (B) estimation process is the key point of the method
efficiency (Rothman et al., 2010). The sensitivity of accuracy gain for different T and
J parameters are similar to the sparse Ω setting. As the time series length decreases,
the difference decreases as well. Besides that, if the dimension of the series increases, the
relative error diminishes in the case of all matrices (B, Ω) except Θ. This finding confirms
the results of Tables 9-10, and I conclude that the new method is useful in low-dimension
systems too.

To summarize the results of the covariance structure robustness analysis, I can define
three new findings. First, the accuracy gain is sensitive to the covariance structure; in the
case of sparse Ω setting it is remarkable (between 75-90% for Θ estimation). The results
prove that the new method efficiently accounts for the characteristics of the sparse Ω in
the estimation via the penalized maximum likelihood objective function. Secondly, this
gain is higher in the case of the dense Ω settings, too (compared to the basic band Ω set),
especially for the estimation of coefficient matrix (B). The information of dense Ω in the
(B) estimation process is the key point of the new method efficiency. Thirdly, in both
cases, the gain is also significant in the low-dimension systems (J = 10). That means
the new method can be useful for DY network analysis in low-dimension systems. In the
following subsection, I demonstrate that the main results of the base set are robust to the
dense coefficient matrix (B) too.
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5.3.4 Dense coefficient matrix

Assuming various data-generating processes, represented by various VAR coefficient
structures, can have different theoretical and empirical motivations. To assess the robust-
ness of the basic set related to the autoregressive structure (sparse B) in this subsection,
I investigate the effect of dense B on the relative estimation performance of the adaptive
joint LASSO algorithm. The choice of the dense B is in line with Kock and Callot (2015)
and Hecq et al. (2023).

Similar to the earlier cases, the regularized methods outperform the OLS model, and
the sparsity recognition pattern is similar to the sparse B set. Therefore, I focus on the
estimation accuracy gain of my novel approach compared to the two row-wise LASSO
model. Besides that, I compare the results to the sparse B case. I analyze two cases
for the covariance structure: band and dense Ω. The reason behind the decision is the
same in the sparse B case. In the case of band and dense Ω, the correlation parameter is
fixed through the simulation (equal with sparse B setting), while T and J vary. Detailed
simulation results are represented in Tables A9-A10 and Tables A12-A13 which are in the
similar structure like tables in the earlier two subsections.

Simulation results based on error terms drawn from a band Ω (Toeplitz-type Σ with
ρ = 0.3) and dense B are presented in Fig 3 and Fig 4. The figures report the accuracy
gain of the new AJ LASSO estimation method in both sparse and dense B settings, while
the covariance structure is band.

Figure 3: Relative estimation accuracy of the AJ LASSO algorithm as a func-
tion of the length of time series (T ).

Notes: Results are in percentage of better row-wise LASSO model and are based on 1000
simulation runs. The structure of B, Ω and Θ, along with J = 15 and ρ = 0.3 is fixed throughout
the simulation. Solid line represents sparse (B), dashed line represents dense (B), the setting
corresponding to T = 250 is the same as the second column in Table 5, Table 8 and in Tables
A9-A10.

The pattern of the results is very similar to the dense B case. However, the AJ LASSO
seems to have poor estimation accuracy for B in every T and J setting compared to the
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Figure 4: Relative estimation accuracy of the AJ LASSO algorithm as a func-
tion of the number of time series (J).

Notes: Results are in percentage of better row-wise LASSO model based on 1000 simulation
runs. The structure of B, Ω and Θ, along with T = 250 and ρ = 0.3 is fixed throughout
the simulation. Solid line represents sparse (B), dashed line represents dense (B), the setting
corresponding to J = 15 is the same as the second column in Table 5, Table 8, Table A9 and in
Table A10.

earlier findings. This result is based on a significant under-performance in sparsity pattern
recognition for the inverse covariance matrix. In parallel with this, the estimation of the
DY spillover matrix (Θ) is worse, but the difference is generally not significant.

The accuracy gains are lower, they are between 5-25% for B, 15-40% Ω and 10-23%
for Θ. However, these numbers are smaller than the earlier setting, and the method still
significantly outperforms the row-wise LASSO estimation. The patterns for increasing the
system dimension and length of time series are similar to the sparse (B) case. Overall, the
accuracy gain is higher for high-dimension and short time series. These results extend the
earlier LASSO-based VAR modeling studies, focusing on simulation (Kock and Callot,
2015; Hecq et al., 2023).

Besides the estimation accuracy of B, Ω, and Θ, for the dense B, I calculated the
number of large inaccuracies in the parameter estimation. Based on my definition, the
parameter estimation has large inaccuracy if the estimation error is more than 20%.
This measure can capture the outliers in the estimation. Lower measures mean better
estimation.

Table 13 reports the results of the relatively large inaccuracy (relative number of
parameters where the estimation error is more than 20%) for the regularization methods
compared to OLS. Time series length (T ) varies across the panels of the table. The
structure of B, Ω and Θ, along with J = 15 is fixed throughout the simulation. Similar
information is reported in Table A11, where T is fixed and J varies.
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Table 13: Summary of large inaccuracies in the estimation with a dense coef-
ficient (B) and band inverse covariance (Ω) matrix

Panel A: T = 100 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 41% 32% 17%

RLIA (Ω, Ω̂) 75% 77% 63%

RLIA (Θ, Θ̂) 94% 94% 92%

Panel B: T = 250 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 49% 35% 17%

RLIA (Ω, Ω̂) 70% 81% 72%

RLIA (Θ, Θ̂) 51% 33% 17%

Panel C: T = 500 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 51% 33% 17%

RLIA (Ω, Ω̂) 91% 91% 82%

RLIA (Θ, Θ̂) 99% 99% 100%

Notes: Error terms are drawn from a Toeplitz-type covariance matrix with ρ = 0.3.
Results are based on 1000 simulation runs. Rows contain the mean of wrongly estimated
parameters across simulated paths, and columns represent the explored methods. RLIA
= relative large inaccuracy (relative number of parameters where the estimation error is
more than 20%). Results are in percentage of the benchmark OLS model. Time series
length (T) varies across the panels of the table. The structure of B, Ω and Θ, along with
J = 15 is fixed throughout the simulation.

Based on Table 13 and Table A11, the regularization methods outperform the OLS
estimator significantly in all settings in RLIA (relative large inaccuracy) measure. Be-
sides that, for B estimation, the adaptive joint LASSO outperforms the row-wise LASSO
methods, and the parameters where the estimation error is more than 20% is almost 50%
lower. Interestingly, from this perspective, the ARW LASSO almost always outperforms
RW LASSO.

It is important to note that I have shown earlier in Eq. (20) that the structure of the
coefficient matrix influences the accuracy gain of the AJ LASSO method. To address the
robustness of my methods, I analyze this sensitivity for dense B in the following subsec-
tions. As I concluded earlier, the structure of the coefficient matrix has large influence
on the accuracy gain of the AJ LASSO method. In the next part of this subsection, I
analyze this sensitivity for dense B.

Simulation results based on error terms drawn from a dense Ω and dense B are pre-
sented in Fig 5 and Fig 6. The structure of plots is very similar to Fig 3 and Fig 4. The
pattern of the results (difference between the sparse and band B settings) are very similar
to the band Ω case; however, the AJ LASSO seems to have relatively poor estimation
accuracy nut only for B but Ω too, in every T and J setting. In parallel with this, the
estimation of the DY spillover matrix (Θ) is worse. However, as we conclude in sparse
B and dense Ω settings, if the inverse covariance matrix is non-sparse, it can be useful
for the AJ LASSO estimator. The results are worse than in the sparse B setting but still
outperform significantly the best row-wise LASSO estimation.

The accuracy gain is between 30-50% for B, 0-25% for Ω and 0-20% for Θ. These
results are significant even though the coefficient matrix is non-sparse. The accuracy gain
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Figure 5: Relative estimation accuracy of the AJ LASSO algorithm as a func-
tion of the length of time series (T ).

Notes: Results are in percentage of better row-wise LASSO model and are based on 1000
simulation runs. The structure of B, Ω and Θ, along with J = 15 and ρ = 0.3 is fixed throughout
the simulation. Solid line represents sparse (B), dashed line represents dense (B), the setting
corresponding to T = 250 is the same as the second column in Tables 11-12, Table A12 and in
Table A10.

Figure 6: Relative estimation accuracy of the adaptive joint LASSO algorithm
as a function of the number of time series (J).

Notes: Results are in percentage of better row-wise LASSO model and are based on 1000
simulation runs. The structure of B, Ω and Θ, along with T = 250 and ρ = 0.3 is fixed
throughout the simulation. Solid line represents sparse (B), dashed line represents dense (B),
the setting corresponding to J = 15 is the same as the second column in Tables 11-12, Table
A12 and in Table A13.
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is higher if the time series length (T ) is longer and stable as the dimension (J) varies.
These results are similar to the sparse B and dense Ω settings. Similar to the dense Ω
case in this subsection, I calculated the large inaccuracies in the parameter estimation.

Table 14 reports the results of the relative large inaccuracy (relative number of pa-
rameters where the estimation error is more than 20%) for the regularization methods
compared to OLS if the Ω is dense. Time series length (T ) varies across the panels of the
table. Similar information is reported in Table A14, where T is fixed and J varies.

Table 14: Summary of large inaccuracies in the estimation with dense coeffi-
cient (B) and dense inverse covariance (Ω) matrix

Panel A: T = 100 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 31% 28% 17%

RLIA (Ω, Ω̂) 94% 92% 80%

RLIA (Θ, Θ̂) 61% 63% 61%

Panel B: T = 250 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 39% 29% 17%

RLIA (Ω, Ω̂) 98% 97% 83%

RLIA (Θ, Θ̂) 48% 33% 17%

Panel C: T = 500 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 48% 33% 17%

RLIA (Ω, Ω̂) 99% 96% 87%

RLIA (Θ, Θ̂) 27% 27% 12%

Notes: Rows contain the mean of wrongly estimated parameters across simulated paths,
and columns represent the explored methods. RLIA = relative large inaccuracy (relative
number of parameters where the estimation error is more than 20%). Results are in
percentage of the benchmark OLS model. Time series length (T) varies across the panels
of the table. The structure of B, Ω, and Θ, along with J = 15, is fixed throughout the
simulation.

Based on Table 14 and Table A14, the regularization methods similar to the band Ω
setting outperform OLS estimator significantly in all settings in RLIA measure. However,
in this case, besides in B in Ω, estimation outperforms the adaptive joint LASSO the
other methods. The parameters where the estimation error is more than 20% are almost
50% lower, and the accuracy gain increases as T and J increase.

To summarize the results for the dense coefficient matrix (B), I can define two new
findings. First, the accuracy gain of the AJ LASSO method is smaller for non-sparse B
but still significant. The smallest gains of the new estimator relative to the others are
obtained for non-sparse B and band Ω. Secondly, even in these cases, the AJ LASSO
can be useful for high-dimension VAR system (and DY network) modeling because the
number of the estimated parameters where the error is more than 20% is almost 50%
lower than for the other methods.
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5.3.5 Summary of the simulation results

In this subsection, I summarize my extensive Monte Carlo simulation. To illustrate
the results, I compared the AJ LASSO performance with the better RW LASSO method
in all simulated cases in Figure 7. The figure represents the relative MAEE accuracy for
my method in B, Ω, and Θ estimation for the selected DGPs.

Figure 7: Summary of relative estimation accuracy of the AJ LASSO algo-
rithm compared to the better RW LASSO for different coefficient (B) and
inverse covariance (Ω) matrices

Notes: Red, green, and blue boxplots represent the relative estimation accuracy of the AJ
LASSO algorithm compared to the better RW LASSO for the coefficient (B), inverse covariance
(Ω), and DY spillover (Θ) matrices. The estimation error is measured by MAEE. The cases on
the x-axes are the following: sparse B and band Ω; sparse B and sparse Ω; sparse B and dense
Ω; dense B and band Ω; dense B and dense Ω. T , J , and ρ are varies through the cases.

The main findings are the following observations:

1. Based on Figure 7, in all the five cases (sparse and dense B; band, sparse and dense
Ω), the AJ LASSO estimator outperforms RW LASSO estimators significantly in
both B, Ω and Θ estimation.

2. For the basic setup (sparse coefficient B and band inverse covariance Ω matrices),
simulation results indicate that in highly correlated systems, the relative perfor-
mance of the AJ LASSO method performs remarkably well, especially for the coef-
ficient matrix (B) estimation.

3. The accuracy gain is sensitive to the covariance structure, in case of sparse Ω – the
common assumption in theoretical econometrics – setting it is the highest (between
75-90% for Θ estimation). The results demonstrate that the new method efficiently
accounts for the characteristics of the sparse Ω in the estimation via the jointly
penalized (regularization on both B and Ω) objective function.

4. The relative accuracy is high in the case of the dense Ω settings, too (compared
to the basic band Ω set), especially for the estimation of coefficient matrix (B).
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Incorporating dense Ω into the B estimation process is the critical point of the new
method efficiency. The superior accuracy for the DY spillover matrix estimation
(Θ) is still present with dense Ω.

5. In both sparse and dense Ω cases, the gain is also significant in the low-dimension
systems (J = 10). That means the new method can be useful for DY network
analysis in low-dimension systems too.

6. The accuracy gain of the AJ LASSO method is smaller for dense B but still signif-
icant. The smallest gains of the new estimator relative to the others are obtained
for the dense B and band Ω case.

7. Even when AJ LASSO is only marginally superior (dense B), there are still benefits
because the number of extreme outliers where the error is more than 20% in the
estimation is significantly lower than for the other methods.

8. In general, the advantage in the estimation accuracy becomes much greater in
shorter time series. Relative estimation accuracy is sensitive to the dimension of
the system, the highest in high-dimension settings.

Based on these results, AJ LASSO can be useful for high-dimension VAR system (and
DY network) modeling. In Chapter 6, I will use my proposed method to estimate a VAR
model for the DY volatility and illiquidity network.
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6 Chapter 6. Combination of DY framework with

event study methodology

This chapter is based on two working papers as a result of my collaboration with
Áron Dénes Hartvig. Earlier versions of the research were presented at the 11th and 12th
Annual Financial Market Liquidity (AFML) Conference30 and the 2021 Annual Hungarian
MKE Conference31. Major modifications are made to align the papers’ content with the
dissertation format.

6.1 Event study framework for financial networks

Financial linkages and contagion channels often go unrevealed due to the complexity
of the financial network. Financial interconnectedness is diverse and heterogeneous; fur-
thermore, it is constantly evolving; thus, it is difficult to observe it empirically. Event
study analysis tools are capable of uncovering these connections.

Various techniques have been referenced as event study analysis in economic and so-
ciological studies (Altman et al., 1977) over the years. The main difference between
cross-sectional analysis and event study methods is that the latter incorporates and con-
siders changes in independent variables over time (Hill et al., 1996). Among others,
MacKinlay (1997), Corrado (2011) and Miller (2023) provide comprehensive overview of
the methodology of event studies.

The influence of financial events like mergers or acquisitions on stock prices has already
been widely investigated in the literature (Malatesta and Thompson, 1985; Duso et al.,
2010; Dilshad, 2013; Adnan et al., 2016). Although studies with event study analysis tend
to focus on acquiring and target firms, there are a number of financial events suitable for
the analysis. Specifically, a failure of a financial institution or large currency devaluation
in the context of financial system is a suitable candidate for event study analysis. events
might alter the financial system. As discussed in previous chapters, understanding the
transition of volatility spillover in financial networks from the initially impacted institu-
tion is of regulatory and academic interest. To provide the necessary ”zoomed-in” view,
combining the event study method with the DY spillover index might be a suitable ap-
proach. In the following sections, I present the importance and the possible methods to
execute event study analysis of systemic risk.

6.1.1 Regulatory importance of financial event history analysis

From a regulatory perspective, event study analysis from a financial network perspec-
tive serves as a powerful tool in various fields. First, balance sheet-based methods or
macro-level analysis can only observe a slower, general evolution of systemic risk. During
crises, financial connections change rapidly. Therefore, daily network monitoring can help
us understand the progression at each stage of the prevailing financial crisis.

Second, the GFC has revealed, beyond the unimaginable, the magnitude of potential
economic fallout caused by the failure of financial institutions. Even a single bankruptcy
can lead to a cascade of issues in country, as we have seen recently with the failure of

30AFML Previous Conferences: https://www.uni-corvinus.hu/ind/events/annual-financial-market-
liquidity-conference/afml-2020-previous-conferences/?lang=en

312021 Annaul Hungarian MKE Conference: https://www.mktudegy.hu/konferencia/magyar-
kozgazdasagtudomanyi-egyesulet-mke-konferenciafelhivas-2021-december-21-22/38282/
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SVB, or a group of bank failures in one country may have international ramifications.
Consequently, the linkages of a troubled institution need to be mapped to other network
participants to estimate the potential consequences. Regulators must consider all im-
portant network linkages of a troubled institution when they are considering a possible
bailout and its extent.

Third, as Acemoglu et al. (2015) showed, the connectedness of the financial network
facilitates system stability up until a certain threshold of shock levels and number of
shocks. However, if the level of financial distress exceeds a certain threshold, local struc-
tural properties of the financial network dictate the extent of contagion of shocks. In
other words, higher financial interconnectedness makes the system more sensitive and
more prone to contagion. Thus not only the analysis of SIFIs, but the inclusion of the
whole system is necessary. Institutions on the periphery may move to the center of the
financial network owing to a significant shock that restructures the linkages.

Finally, by dissecting each step (e.g., each day or week) leading up to a major financial
crisis allows us to have a “slow-motion” view of the changes in the network and can provide
important data for future stress testing. A stress test, introduced after the GFC by the US
federal reserve, is an analysis or simulation designed to determine the resistance of a given
financial institution to deal with an economic shock. To design relevant and insightful
scenarios, trigger events causing material changes in the financial network structural could
be valuable. In the absence of such valuable information, countries major banks used to
stress test for lower-than-expected GDP increases.

6.1.2 Estimation of structural changes in networks

Leveraging on the extensive financial network literature (Elliott et al., 2014; Acemoglu
et al., 2015), I discuss three methods for providing insights about the network status,
specifically to differentiate across tranquil and turmoil periods. Specifically, in order of
complexity I discuss three methods: visualization, measure and similarity statistics.

A practical way to measure the importance of a node is to count its edges in the tenth
percentile of all edges (Diebold and Yılmaz, 2014). It is a simple and useful measure;
however, it can only be applied to individual nodes and has a subjective parameter, the
percentile. Otherwise, Demirer et al. (2018) used the relative weight of cross- and within-
country connections to explore the dynamics of global bank connectedness. Moreover,
other simple measures describe the system from a network perspective. It is common
to describe the correlation matrix of the financial system with the mean, the standard
deviation, or the kurtosis of the edges (Onnela et al., 2003; Coelho et al., 2007; Fenn
et al., 2011), and it has also been applied to systemic risk analysis to MES and ∆CoVaR
connections (Billio et al., 2016).

In addition, there are more sophisticated metrics called similarity statistics to quantify
the structural evolution of the financial network. These measures estimate the similar-
ity of different adjacency matrices. The Jaccard index, developed by Jaccard (1912), is
a statistic used for gauging the similarity and diversity of sample sets. The index pro-
vides information on the number of links between sample periods, thus only applicable to
networks with unweighted edges. Jaccard index has been used to observe correlation in
financial systems (Nobi et al., 2014; Zhao et al., 2018), and systemic risk with Granger
causality networks (Li et al., 2019; Dungey et al., 2019) or with DY networks (Chowdhury
et al., 2019). Besides the Jaccard index, the Frobenius norm is often applied to measure
changes in correlation networks (Barnett and Onnela, 2016; Cabrieto et al., 2018) and
systemic risk (Torri et al., 2018). Finally, the ordinal association between two measured

58



quantities can be measured by Kendall rank correlation coefficient or Kendall’s τ coeffi-
cient. Kenett et al. (2015) and Junior et al. (2015) used Kendall’s τ to explore the rank
correlation of stocks over time.

Alternatively, status change can be identified with more complex statistical tests. In
the ∆CoVaR framework Castro and Ferrari (2014) and Bernal et al. (2014) developed a
test relying on the Bootstrap Kolmogorov-Smirnov (KS) test (Abadie, 2002)) to assess
whether a sector/institution is statistically significantly risky for the system, and also to
measure the difference between the sectors/institutions. KS statistic has been applied to
test the significance of the ∆CoVaR measure to identify SIFIs (Bernal et al., 2014; Castro
and Ferrari, 2014; Drakos and Kouretas, 2015; Liu, 2017; de Mendonça and da Silva,
2018), but Hurlin et al. (2017) also used it to compare the riskiness of FIs by testing
∆CoVaR, MES, and %SRISK (Systemic Risk Measure) measures.

In Table 15, I summarise the methods that can be used to estimate structural changes
in networks.

Table 15: Event study approaches to analyse financial networks

Complexity Level Method

Visualization Low Individual
and system

Number of node’s edges, the weight of
the pairwise connections, the density of
the connections.

Measure Medium Individual
and system

Number of edges, the relative weight
of cross- and within-group connections,
the mean, the standard deviation, or
the kurtosis of the edges.

Similarity
statistics

High System Statistics: Jaccard index, Frobenius
norm, Kendall’s τ .
Statistical test: Bootstrap
Kolmogorov-Smirnov test.

6.1.3 Moving Block Bootstrap method

By constructing bootstrap confidence intervals for spillover measures on macro (total
spillover index) and micro levels (net pairwise spillover indices) of the estimated network,
I can distinguish significant spillover changes from others. As a result, we can evaluate
the magnitude and statistical significance of the shocks. Following Buse et al. (2022) and
Greenwood-Nimmo and Tarassow (2022), a bootstrap-based analysis is taken to explore
the uncertainty of the estimated spillover measures. The choice of the bootstrap method
needs to reflect the dependency structure inherent in the analyzed time series.

Various bootstrapping techniques have been designed in the last two decades to pre-
serve the asymptotically valid inference for VAR estimation (Lahiri and Lahiri, 2003).
The most common methods in the VAR context are recursive-design wild bootstrap,
fixed-design wild bootstrap, and pairwise bootstrap (Brüggemann et al. (2016)). In
my analysis, I apply the residual-based moving-block bootstrap method developed by
(Brüggemann et al., 2016). Both Buse et al. (2022) and Greenwood-Nimmo and Taras-
sow (2022) applied this method in the DY framework due to its desirable features. First,
it doesn’t require knowledge about the distribution of the DY spillover indices, it is suit-
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able for small samples, and third, it remains valid under conditional heteroscedasticity
(Greenwood-Nimmo and Tarassow, 2022). For the validity of the residual moving-block
bootstrap algorithm, I refer to Brüggemann et al. (2016).

The logic behind the MBB approach is to simulate s = 1, 2, . . . , S bootstrap samples of
the residuals from the estimated VAR model and re-estimate the model on the bootstrap
sample too. After re-estimating the VAR model for every bootstrap sample (MBB-VAR),
I calculate the DY spillover indices, and the resulting bootstrap spillover metrics (SUM,
FROM, TO, and NET indices) can be used for inference. For the VAR estimation, I
apply the adaptive joint LASSO algorithm. A detailed description of the algorithm is in
Appendix B.1.

The MBB-VAR method efficiency depends on the sample size and bootstrap sample.
We can estimate the confidence intervals more accurately if the sample size and the
bootstrap sample are higher. Through my empirical analysis, I conducted 1000 bootstrap
samples. I use 68% confidence interval (it’s a common choice in VAR bootstrap modeling
(Sims and Zha, 1999; Wright, 2012; Caggiano et al., 2020)) for the network snapshots
(Fig. 12 and Fig. 19-32), and 95%32 when I analyze the structural changes in the total
spillover index (Table 18-19).

The Diebold-Yilmaz matrix is estimated on historical data, often on a window of
100-200 days (Diebold and Yilmaz, 2009, 2012; Baruńık et al., 2016). So, the network
snapshots represent an overview of the system over a short period. The shorter the
window size, the more pronounced the current changes in the network. Nevertheless,
small window size also diminishes the degrees of freedom, and the number estimated in
the VAR framework is considerable. Moving the historical data window, DY spillover
matrices can be estimated for each observed day. Therefore, I can provide a series of
snapshots and observe the financial network before and after a severe shock (to analyze
the structural change in the network).

To illustrate my bootstrap method’s usability in structural shock analysis, I estimate
the Diebold-Yilmaz framework on two networks and estimate the significant differences
with the Moving Block Bootstrap Method. Let’s consider a low-dimension system (J=5)
where the data-generating process is the same as the second case in Chapter 1. The
coefficient matrixB is sparse, with one dominant time series (Eq. (11)), and the covariance
matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3 (Eq. (13)). To analyze the structural
change in a network, I add a shock to the system. The following coefficient matrix (B)
represents the data-generating process after the shock33:

B =


0.40 0.12 0.08 0 0

0 0.40 0.07 0 0
0 0.12 0.40 0 0
0 0.11 0.08 0.40 0
0 0.13 0.09 0 0.40

 (40)

The NET values changed for every time series in the following way: -5.31, 15.35 -0.79,
-4.11, - 5.25. These numbers illustrate the change in the network. During the structural
change, the shock-transmitting role of the second time series increased. Besides that, the
shock-receiving role strengthened for the first, fourth, and fifth time series. To illustrate
a structural change more clearly, I show this change in a Fig. 8, which is similar to Fig.

32Estimating the significant changes is easier for the total spillover index than for net pairwise values.
33the covariance matrix is the same after the shock
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1, but more complex.

Figure 8: Structural change in the Diebold-Yilmaz network

Notes: The network before the shock (after the shock) is in the upper left (right) chart. In
the first case, the coefficient matrix (B) is sparse with one dominant time series (TS1). In
the second case, it’s also sparse with two dominant time series (TS1, TS2). The covariance
matrix (Σ) is a Toeplitz-type matrix with ρ = 0.3 in both cases. The bottom chart shows
their difference at 32% significance levels. Nodes represent the time series. Top panels: Node
sizes shows the SUM values. The green (red) slice of the pie charts represents the share of
the FROM (TO) spillover indices of the time series. Edge directions mark the net spillover
indices; their thickness represents the magnitudes. All of the edges are shown on the charts.
Bottom panel: Green (red borders represent a significant decrease (increase) of the node’s
net spillover index. Smaller (Larger) sizes than the average size represent a significant decrease
(increase) in SUM values. Nodes: Nodes in the upper charts with green letters represent time
series where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart, green
letters represent time series where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information
of the Diebold-Yilmaz network is calculated from a T = 1000, adaptive joint LASSO-VAR(2)
estimation.

To get a relevant conclusion from these snapshots, it is important to clarify the inter-
pretation of the network graphs. These graphs encompass a wealth of information. At
this case, each snapshot figure combines three different charts. The top two are obtained
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from the original time series-based VAR estimations, while the bottom one displays the
Moving Block Bootstrap-based significant differences between the first and second day at
32% levels34. Nodes represent the time series. The pie charts’ colors around the nodes
represent the proportion of shocks transmitted (TO spillover value marked with red color)
and received (FROM spillover value marked with green color) by the time series. The
last information related to the nodes is the SUM value, which is indicated by the size of
the nodes. On both charts in the top panel, the edges represent the NET spillover indices
of the time series, and their thickness represents their magnitudes. As in the 5-node net-
work, there are 10 NET pairwise connections, and I present all of them. Nodes with green
letters represent time series where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%.
The node sizes and the edge thickness are rescaled based on the first and second periods;
the biggest node size in the bottom charts represents the maximum SUM value in the two
periods, and the smaller one represents the minimum SUM value. The thickest edge in
the bottom charts represents the maximum NET value, and the least thicker represents
the minimum NET value.

The bottom graphs indicate the significant differences between the SUM, FROM, TO,
and NET measures shown by the charts of the two periods at the top. In this graph, only
the significantly changed edges are displayed. Their direction and thickness indicate the
direction and magnitude of the impact that the structural change generated during the
periods. Here, the red (green) color of the node borders represents if there was a significant
change based on the MBB method in the transmitted (received) shocks. That means the
border color is red (green) if the net spillover index increased (decreased) between the
selected days. If the node’s size is above (below) the average size, a significant increase
(decrease) happens in the SUM spillover value. Nodes with green letters represent time
series where the FROM/SUM ratio increased more than 10%, and reds where TO/SUM
increased more than 10%. The SUM indicator roughly translates to the centrality of a
given time series in the system.

These snapshots aim to identify the key participants of the system (both big shock
transmitters and receivers) and analyze how these roles change during specified days.
Besides that, I can separate the significant and insignificant changes in the network with
the Moving Block Bootstrap method. The SUM indicator measures the centrality of a
given time series in the system, regardless of the direction of the shock transmission. Nodes
with red (green) letters represent the biggest shock transmitters (receivers). Increased size
in the top panel marks the elevated role of the time series in the system, while the smaller
size means a less important participant in the network. I interpret the significant changes
in the transmitter role with significant red pie slice growth on the top panel (red border
on the bottom). Similarly, the receiver role changes significantly with significant green
pie slice growth on the top panel (green border on the bottom panel).

Figure 8 illustrates the structural change in the network. The upper charts show the
increased total spillover in the system: the edges are thicker, especially that are related
to the second time series. Besides that, the node sizes are higher for most of the time
series. The node of the second time series shows the changed role of this network’s
participant. However, the two upper charts only show the increased total spillover and
whose role changed in the system. Based on these graphs, we can’t decide which change
was significant and which was not. The bottom part of the figure solves this problem. This
chart illustrates that the shock-transmitting role significantly increased for the second time
series, and for the other four participants in the system became more shock-transmitting

34it is a common choice in VAR bootstrap estimation
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due to the structural change

Based on this extension of the original DY framework (MBB-based DY framework),
In the next section, I can analyze the differences between the illiquidity and volatility
networks and analyze the statistically significant structural changes during the key events
for the system.

6.2 Comparing illiquidity and volatility network

Volatility is often used as a measure of risk; for this reason, volatility spillover is widely
applied to analyze systemic risk. Volatility is implicitly associated with risk, so measures
of spillovers can provide an ‘early warning system’ for emergent turmoil (Billio et al.,
2012). It is also called ”fear connectedness” (Diebold and Yılmaz, 2014). However, it
does not capture all the relevant information of the system.

According to Amihud (2002), expected market illiquidity positively affects ex-ante
stock excess return but is negatively related over time to contemporaneous unexpected
illiquidity. Analogous to volatility spillover as ”fear connectedness”, illiquidity spillover
is ”fire sales connectedness” expressed by market participants as they trade. In recent
years, illiquidity spillovers have also been investigated in several articles, like Smimou and
Khallouli (2016) or Schneider et al. (2018); however, DY illiquidity spillovers have only
been estimated outside the financial system (Andrikopoulos et al., 2014; Inekwe, 2020).

To address this situation, in this section, I characterize static and dynamic volatility
and illiquidity spillover of 16 U.S. FIs via the DY framework. Through these spillover
indices besides investors’ fear, the spread of illiquidity can be followed too. Besides the
dynamic of the total spillover index, I analyze the differences between the distribution of
the TO, FROM, NET, and pairwise NET indices of the volatility and illiquidity network.
Combining the MBB approach with the DY framework, I examine the differences between
the daily snapshots of the two networks.

6.2.1 Data

The data cover the period January 2, 2004, to June 25, 2019, with a total of 3897 daily
observations. According to analytical purposes, I use the subsample of Demirer et al.
(2018) focus on 16 U.S. FIs. The institutions are listed in Table B1 in the Appendix.
To analyze a longer time span in this subsection, I skip the ”troubled” FIs (Bear Sterns,
Lehman Brothers). I use low and high-price data from Bloomberg in order to measure
volatility following Diebold and Yilmaz (2012). Accordingly, illiquidity time series based
on Amihud (2002). A description of volatility and illiquidity calculation is provided in
Table 16.

Table 16: Summary about the applied realized volatility and illiquidity mea-
sures

Variable
name

Definition Source Formula

Volatility I calculated the log annualized daily
percent standard deviation from daily
high/low prices.

Diebold and Yil-
maz (2012)

σit = log(100
√

365 · 0.361[ln(P
high
i,t ) − ln(P low

i,t )]2)

Illiquidity The absolute (percentage) price
change per dollar of daily trading
volume.

Amihud (2002) ILLIQi,t =
| ln(Pi,t/Pi,t−1) |

V OLi,t · Pi,t
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I use the 200-day rolling window, H = 10 forecast horizon, and p = 2 lags for the anal-
ysis. These are the most commonly used parameters in the empirical literature (Diebold
and Yilmaz, 2009, 2012; Baruńık et al., 2016).

6.2.2 Empirical results of volatility and illiquidity network comparison

To investigate the dynamics of the total spillover indices, I perform a rolling-sample
analysis on the volatility, and illiquidity network. Figure 9 represents the result with a
200-period rolling window, H = 10 forecast horizon, and p = 2 lags.

Figure 9: Illiquidity and volatility total spillover indices for the network from
2004 to 2019.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows. Vertical (green) shaded highlight crisis periods (GFC and ESDC).

In general, the total volatility spillover index is higher than the illiquidity index (on
69% of observed days), but several highly connected periods can be identified for the pro-
cesses. The correlations between the indices are between 0.54 and 0.84, so co-movement
reflects a strong linear stochastic relationship. Co-movement is spectacular when large
shocks hit the economy. First, starting from mid-2007, both of the indices sharply in-
creased by at least 10 percentage points due to the beginning of the Financial Crisis. Then,
the European Sovereign Debt Crisis, in August 2011, came up with a large common jump.
Consistently, but not identically, each reacts to shocks in the economy. Illiquidity spillover
index, similar to volatility was peaking during the GFC, during the ESDC, and in a high
range in early 2016. Briefly, I assume that the total illiquidity spillover index contains
additional information to volatility spillover indices on the macro level.

Intriguingly, both total spillover indices showed several abrupt change points. These
may have occurred due to jumps/noise in the time series, sudden changes in the structure
of the financial system (a common shock hits the system), or asymmetry of the pairwise
connectedness causing distortion in the total spillover index. As mentioned, the total
spillover index represents the average connectedness, so the distribution of the pairwise
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Figure 10: Distribution of illiquidity and volatility TO spillover indices for the
network from 2004 to 2019.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows. Horizontal shaded areas around the mean of the TO spillover indices (red for the
volatility index and blue for the illiquidity index) represent the distribution with one standard
deviation. Vertical (green) shaded highlight crisis periods (GFC and ESDC).

spillover indices can provide additional information on the network, especially if the distri-
bution is asymmetric. Figure 10 and Figure 11 illustrate the dynamics of the distribution
of the TO and FROM spillover indices for both measures. Besides the mean value of the
16 spillover index Figures displays the one standard deviation too.

Temporal changes in the shape or skew of the distribution may contain useful infor-
mation for a deeper analysis of the financial network. Similar to the results of Diebold
and Yılmaz (2014), the distribution of the TO and FROM measures is quite different.
The range for the TO spillover index is almost three times wider. During the crisis pe-
riods, the FROM index is left-skewed; parallel with this, the other one is right-skewed.
Economically that means during turbulent times, only a few firms transmit the shock to
the system.

Figure B3 and Figure B4 display the distribution dynamics of the NET and pair-
wise NET spillover indices for the volatility and illiquidity network. Figures show the
distribution of the indices for the volatility network is wider in both cases.

To illustrate the differences between the networks more profoundly, I provide snap-
shots of volatility and illiquidity networks for the same day. I picked three distinct time
periods to show how the indicators’ distribution differs from each other during stressed
and tranquil times. Figure B6, Figure B5 and Figure 12 represents the volatility and
illiquidity networks on the selected days.

In the top panels, larger node sizes indicate institutions that play a more significant
role in the bank network, while smaller nodes are less important for the overall system. In
the visualization, nodes labeled in red (green) letters represent assets that are major shock
transmitters (receivers). To interpret the changes in the receiver role (between the selected
days), I mark with an increase in the size of the green pie slice in the top panel and a green
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Figure 11: Distribution of illiquidity and volatility FROM spillover indices for
the network from 2004 to 2019.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows. Horizontal shaded areas around the mean of the FROM spillover indices (red
for the volatility index and blue for the illiquidity index) represent the distribution with one
standard deviation. Vertical (green) shaded highlight crisis periods (GFC and ESDC).

border in the bottom panel if the net spillover index diminished. This suggests that certain
institutions are becoming more influential in receiving shocks. Conversely, to understand
the changes in the transmitter role (between the selected days), observe a significant
expansion in the red pie slice in the top panel or a red border in the bottom panel. This
indicates that particular institutions are gaining importance as shock transmitters in the
system, which I measure with increasing net spillover values.

At these periods, the values of total volatility and illiquidity spillovers are almost iden-
tical35, while the shape of the networks differs. Dominant volatility and illiquidity shock
transmitters and receivers can be identified; however, they do not match the two networks.
For example, in the sample from 2011-12-22, we can see JPM acting as a dominant trans-
mitter in the illiquidity network; however, the role of this FI is on opposite in the volatility
network. Some other institutions play different roles in the two systems, too (BAC, C,
BBT, and RF). The bottom panel of Figure 12 shows the significant differences between
the networks. This chart shows the strength of the moving-block bootstrap method. On
the top panels, almost half of the nodes have different characteristics in the volatility and
illiquidity network, but for only two (JPM and BBT) is the difference significant. Figure
B5 and B6 represent the similar shape of the networks.

The empirical results suggest that illiquidity total spillover indices are also relevant in
analyzing systemic risk as they behave differently than total volatility connectedness. On
the macro level, both indices react to shocks in the financial system, but even in tranquil
periods, the dynamics might vary. Furthermore, if I analyze the pairwise connections
between FIs periodically, dominant illiquidity shock transmitters and receivers appear

35I select the days with the smallest differences between the total spillover values
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Figure 12: Estimated volatility and illiquidity network on 2011-12-22

Notes: Volatility (Illiquidity) network are in the upper left (right) chart, and the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”small” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 200, adaptive joint LASSO-
VAR(2) estimation.
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in the system. The results of this subsection suggest that both micro and macro-level
illiquidity spillover indices display important information for the financial network.
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6.3 Analysing the key events of the Global Financial Crisis

In this subsection, I extend the Diebold-Yilmaz (DY) framework with event study
analysis tools to shed more light on the contagion channels appearing in the financial
network during turmoil times. With the components of my framework, like visualization
and the Moving Block Bootstrap approach, we are able to observe the financial connections
described by Elliott et al. (2014) and Acemoglu et al. (2015). I provide daily snapshots
of the financial network focusing on four key events of the GFC as Diebold and Yılmaz
(2014) of 2007-08 with the analytical purpose to illustrate the performance of my combined
framework and show that illiquidity spillovers act as contagion channels during turmoil.

Illiquidity contagion has already been analyzed several times in the financial system
(Kamara et al., 2008; Karolyi et al., 2012; Cespa and Foucault, 2014). Kamara et al. (2008)
demonstrated that the cross-sectional variation of liquidity commonality has increased
over the period of 1963–2005, while Karolyi et al. (2012) showed that commonality in
liquidity is greater in countries with and during times of high market volatility. Financial
markets dried up during the crisis, and liquidity contagion spread across the system. I
presume that illiquidity shocks had a greater impact on the observed FIs than volatility
and that pairwise illiquidity linkages indicate the route of cascading failures.

Diebold and Yılmaz (2014) examine troubled banks between 2007 and 2008, paying
special attention to the influence of Lehman Brothers’ bankruptcy on the financial net-
work. They base their measurement on the NET directional spillover and visualization.
Their results suggest that Lehman Brothers became the main volatility shock transmitter
after the bankruptcy. Nevertheless, the presented NET pairwise directional connections
in their graphs are chosen somewhat arbitrarily. Furthermore, they do not display the
financial network during the shock of other troubled FIs like Bear Stearns or Wachovia
Bank. Finally, based on NET volatility directional spillover indices, the acquisition of
Wachovia Bank had an even greater impact on the network than did the Lehman crisis.
To overcome these drawbacks, I present an extensive analysis of all events via my new
event study framework. For the sake of comparability, I use the stock prices of the 17
U.S. FIs that are also included in the analysis of Diebold and Yılmaz (2014).

6.3.1 Total spillover indices during Global Financial Crisis

The data cover the period from April 17, 2006, to December 22, 2008, with a total of
450 daily observations of the same 17 U.S. FIs that were also analyzed by Diebold and
Yılmaz (2014). The institutions are listed in Table 17. Similar to the earlier section, I
divide the FIs into three subgroups: big, medium, and troubled institutions. Similar to
the earlier subsection, I use realized volatility following Diebold and Yilmaz (2012), and
the ILLIQ measure of Amihud (2002). A detailed summary of descriptive statistics of
individual time series is provided in Table B2.
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Table 17: Financial Institutions included in event study analysis

Panel A: Big Financial Institutions Ticker Market Cap.

J.P. Morgan JPM 156.2
Bank of America BAC 171.6
Citigroup C 218.7
Wells Fargo WFC 57.5
Goldman Sachs GS 112.0

Panel B: Medium Financial Institutions Ticker Market Cap.

Morgan Stanley MS 104.5
Bank of New York Mellon BK 19.8
U.S. Bancorp USB 23.8
PNC Group PNC 13.9
American Express AXP 16.1

Panel C: Troubled Financial Institutions Ticker Market Cap.

Fannie Mae FNMA 87.9
Freddie Mac FMCC 79.4
AIG Group AIG 104.8
Bear Stearns BS 39.5
Merrill Lynch MER 102.0
Wachovia Bank WB 78.3
Lehman Brothers LEHMQ 69.1

Notes: Market capitalization is in billion $ at 31/12/2007

Figure 13: Illiquidity and volatility total spillover indices from January 1, 2008
to December 22, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.
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In my analysis, I dynamically calculate the total DY spillover index to explore the
average connectedness in the system during the GFC. Similar to the earlier section, I use
a 200-day rolling window, H = 10 forecast horizon, and p = 2 lags for the analysis36.

In Figure 13, I show the total spillover index in 2008. Focusing on the crisis, we can
see that the total illiquidity spillover index was mainly stagnating apart from the several
jumps. The first jump happened in March, and three more jumps occurred in September.
After the first jump, the level of the illiquidity spillover index dropped under 80% and
stayed there until the next jumps in September. However, the sudden moves in September
significantly altered the behavior of the index, and its volatility substantially increased.

To explore the underlying factors of the jumps in the connectedness, I walk through
the key banking events of the GFC and observe the behavior of NET spillover indices.

6.3.2 Troubled Financial Institutions

During the GFC, various FIs that got involved in mortgage-backed security trades
experienced liquidity troubles (Langley, 2014). In this section, I present four key crisis
events that were also considered by Diebold and Yılmaz (2014). I use the NET spillover
indices to perform event history analysis of the affected FIs from an individual perspective.

The first major FI that was hit drastically by the crisis was Bear Stearns. The global
investment bank narrowly avoided bankruptcy when J.P. Morgan acquired it on March
16, 2008. In Figure 14, I present the NET spillover indices of Bear Stearns during 2008.

Figure 14: Illiquidity and volatility NET spillover indices of Bear Stearns from
February 1, 2008 to April 29, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.

On Monday, March 17, 2008, the illiquidity NET spillover index experienced an ex-
ceptional jump and achieved a level higher than 1400% points. This extreme value was
due to the acquisition that happened the day before. A high positive NET spillover value

36I use the same parameters as Diebold and Yılmaz (2014)
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indicates that Bear Stearns acted as a dominant shock transmitter in the financial system.
Nevertheless, I cannot identify which FIs received the transmitted shock in the system.

The mortgage crisis continued in the summer of 2008, and Fannie Mae and Freddie
Mac suffered great losses. Fannie Mae, the Federal National Mortgage Association, and
Freddie Mac, the Federal Home Loan Mortgage Corporation, bought mortgages on the
secondary market, pooled them, and sold them as a mortgage-backed security to investors
on the open market. They made sizable profits for more than two decades as housing prices
increased. During the housing market’s meltdown by mid-2008, Fannie Mae and Freddie
Mac began to experience large losses on their retained portfolios.

Figure 15: Illiquidity and volatility NET spillover indices of Fannie Mae from
July 25, 2008 to October 22, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.

With the outbreak of the mortgage crisis, their products became hazardous, spreading
contagion in the whole financial system. As the crisis evolved during the summer of
2008, tension around the two FIs increased. Finally, on Saturday, September 6, 2008,
governmental intervention was required in the form of $190 billion in the bailout, and on
Monday, September 8, the NET illiquidity spillover index jumped above 200% for both
Fannie Mae and Freddie Mac as shown in Figure 15 and 16.
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Figure 16: Illiquidity and volatility NET spillover indices of Freddie Mac from
July 25, 2008 to October 22, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.

Intriguingly, on September 10, the NET illiquidity spillover index dropped to its nor-
mal level, then jumped again on September 12, when Freddie Mac’s NET spillover index
peaked. Illiquidity spillover already signaled the turmoil around the mortgage-backed
securities that spilled over various FIs.

Then, on September 15, the infamous bankruptcy of Lehman Brothers held onto large
positions in subprime and other lower-rated mortgage tranches when securitizing the
underlying mortgages. As described by Elliott et al. (2014), the assets of Fannie Mae and
Freddie Mac devalued, and although they managed to avoid bankruptcy through cross-
holdings, it imposed losses on their counterparties. In the first two weeks of September,
the stock price of Lehman Brothers plunged massively several times. The government
summoned several banks to negotiate financing for its reorganization unsuccessfully, and
Lehman Brothers filed a Chapter 11 petition37.

On Figure 17, I can observe that Lehman Brothers’ NET illiquidity spillover reached a
similar level as Bear Stearns’ and Freddie Mac’s, but contrary to them, the index remained
high for a longer period, five days. Furthermore, on September 16, the Federal Reserve
provided a two-year loan to AIG to prevent its bankruptcy and further stress on the global
economy. Although the maximum level of NET illiquidity spillover of Lehman Brothers
is lower than Bear Stearns’, it must be considered that while in March, Bear Stearns was
the only troubled institution, in September, several shock transmitters appeared in the
system.

Finally, the financial distress around Wachovia Bank started on June 2, 2008, when the
chief executive officer was replaced. Still, on September 26 stock price plunged 27%, more-
over, several large depositors withdrew money from their accounts in order to drop their
balances below the insurance threshold of the Federal Deposit Insurance Corporation. As
a result, Wachovia Bank lost a total of $5 billion in deposits that day, and Citigroup had

37Chapter 11 is a Bankruptcy Code in the US, which is frequently referred to as a ”reorganization”
bankruptcy
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Figure 17: Illiquidity and volatility NET spillover indices of Lehman Brothers
from August 15, 2008 to November 12, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.

to provide liquidity to continue its operations. On this occasion, the stock price plunge
was enough for the NET illiquidity spillover to signal, as presented in Figure 18.

From the results, I assume that the market already priced the merger of Wachovia
Bank with Wells Fargo, which only happened a few days later, on October 3.

Figure 18: Illiquidity and volatility NET spillover indices of Wachovia Bank
from August 15, 2008 to November 12, 2008.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows.
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Based on the above-described four events, I can conclude that the NET illiquidity
spillover index effectively signals or even forecasts financial turmoil. The behavior of
the index clearly differs during calm and distressed periods. Nevertheless, NET spillover
indices can only track the association between an individual institution and the overall
market. We must observe the system more extensively to explore which other network
members were hit by these shocks. Consequently, in the following sections, I present
snapshots of the financial system during the days of distress to overcome this drawback
of NET spillover indices.
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6.3.3 Event analysis from network perspective

I use the NET pairwise spillover indices to investigate the origin of the spikes in the
illiquidity spillover index to execute an event study analysis. Similar to the earlier section,
I use MBB-based DY networks to provide a sequence of 200-day snapshots of illiquidity
connectedness. By examining the financial network daily, we can better understand the
ongoing events. I take a close look at the financial network during the days of the financial
events examined in the previous section.

Similar to the earlier section, the SUM indicator measures the centrality of a specific
FI within a system. In the top panels, larger node sizes indicate institutions that play a
more significant role in the bank network, while smaller nodes are less important for the
overall system. In the visualization, nodes labeled in red (green) letters represent assets
that are major shock transmitters (receivers). To interpret the changes in the receiver role
(between the selected days), I mark with an increase in the size of the green pie slice in
the top panel and a green border in the bottom panel if the net spillover index diminished.
This suggests that certain institutions are becoming more influential in receiving shocks.
Conversely, to understand the changes in the transmitter role (between the selected days),
observe a significant expansion in the red pie slice in the top panel or a red border in the
bottom panel. This indicates that particular institutions are gaining importance as shock
transmitters in the system, which I measure with increasing net spillover values.
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Bear Stearns’ acquisition

The first identified event was the acquisition of Bear Stearns on March 16 (Sunday),
2008. In Figure 19, Figure 20 and Figure 21, I present the illiquidity network snapshots
with the significantly changed connections and nodes during the business days between
March 14 and 18. Figure 19 plots the DY spillover network on two following days (2008-
03-14 and 2008-03-17)38.

Figure 19: Estimated illiquidity network on 2008-03-14 and 2008-03-17

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FIs. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.

On March 14, Bear Stearns’ stock price plunged by almost 50%; however, before the
acquisition, there is no sign of the shock in the network; Bear Stearns is even connected
to AIG. Then, on March 17, the business day after the acquisition, the illiquidity TO

38Friday and Monday
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connectedness index of Bear Stearns drastically increased. The network also reveals how
central Bear Stearns became, as all NET pairwise connectedness indices were strongly
positive. It was connected to all other FIs. As shown on the bottom panel of Figure
19, the net illiquidity spillover index changed significantly for other FIs besides Bear
Stearns. The net spillover index significantly increased for FMCC, PNC, USB, and BK
and decreased for BAC, JPM, C, AXP, and FNMA. This means that the FIs from groups
”troubled” and ”medium” became shock transmitter participants (relative to the earlier
day) of the system.

Figure 20: Estimated illiquidity network on 2008-03-17 and 2008-03-18

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.

On the next day, the connections weakened, but still, Bear Stearn was the key partici-
pant in the system. During the day, the role of some participants in the financial network
changed significantly. Opposite to Figure 19, the bottom panel of Figure 20 shows how
FIs from the group ”big” became the shock transmitter participants of the system, rela-
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tive to the earlier day. The net spillover index significantly increased for JPM, BAC and
C.

Figure 21: Estimated illiquidity network on 2008-03-18 and 2008-03-19

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.

Based on Figure 21 a day later, the connections weakened, and on March 19, the shock
disappeared from the system. Bear Stearns acted as a shock receiver – in a relative term –
between March 18 and March 19. The bottom panel indicates that all significant changes
in the net spillover are related to Bear Stearns.

The example of Bear Stearns showed that the turmoil of an isolated node does not
lead to a cascade of failures. Although the shock was severe in the case of Bearn Stearns,
it could not spill over to other institutions due to the lack of channels. Because of the
shock, the troubled bank temporarily moved into the center of the network, and all its
connections strengthened, but the shock disappeared from the system rapidly.
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Fannie Mae’s and Freddie Mac’s bailout

The next event leading to intensified illiquidity connectedness was the bailout of Fannie
Mae and Freddie Mac on September 6, 2008. Again, the shock clearly appears in the
illiquidity network. On Figure 22 Figure 23 and Figure 24. Based on the Figures, I can
see that after the bailout, Fannie Mae and Freddie Mac became large illiquidity shock
transmitters; however, this time, both Fannie Mae and Freddie Mac had linkages (instead
of the case of Bear Stearns acquisition).

Figure 22: Estimated illiquidity network on 2008-09-05 and 2008-09-08

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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The troubled institutions were linked to AIG, Citigroup, Merrill Lynch, and Lehman
Brothers on September 5, the day before the disturbance. The shock lasted for two days,
and then the network recovered. As the bottom panels of the figures show, the role
of the two institutes changed during these days. Between 2008-09-05 and 2008-09-0639,
FNMA and FMCC became the key participants of the system, as the shock transmission
(net illiquidity spillover index) significantly increased. Between these days, JPM, C, and
USB were the only institutes whose role changed significantly for both the receiver role
strength, which means the net illiquidity index decreased for these institutions.

Figure 23: Estimated illiquidity network on 2008-09-08 and 2008-09-09

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

39Friday and Monday
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The shock lasted for two days, and then the network recovered. The top panel of Figure
24 is almost the opposite of Figure 22. Between 2009-09-09 and 2009-09-10, the FNMA
and FMCC’s role in the system decreased. The bottom panel of the figures strengthens
this observation because the change was significant.

Figure 24: Estimated illiquidity network on 2008-09-09 and 2008-09-10

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

To analyze the robustness of the estimation window, I examined the first network pair
(2008-09-05 and 2005-09-08) of the Fannie Mae’s and Freddie Mac’s bailout case with an
estimated VAR model on T = 100 and T = 150 data point. The results are presented in
Figure B7 and B8, and I conclude that the illustrated illiquidity contagion is robust - at
least in this case - on the window size.
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Lehman Brothers’ bankruptcy

In the middle of September, several events happened. Almost all FIs connected to
Fannie Mae and Freddie Mac failed. Merrill Lynch was acquired by Bank of America
(September 14), Lehman Brothers collapsed (September 15), and AIG was bailed out
(September 16). Only Citigroup survived this period, which may be due to its large asset
size, which made it more resistant to external shocks (Citigroup had the largest market
capitalization at the end of 2007, see in Table 17 in the Appendix). The evolution of
illiquidity spillover presented in Figures 25 - 30 clearly reflects the events.

Figure 25: Estimated illiquidity network on 2008-09-11 and 2008-09-12

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

On Friday, September 12, Freddie Mac, the issuer of mortgage-backed securities,
stepped up as a dominant shock transmitter as it did a few days earlier, the Fannie
Mae. The bottom panel of Figure 25 indicates that the net illiquidity spillover index
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changed significantly, not just for FMCC but for some other financial institutes, too. FIs
from groups ”troubled” and ”medium” became shock transmitter participants (relative to
the earlier day) of the system, while some institutions from the group ”big” transformed
in the opposite way. The net spillover index significantly increased for JPM, C, and GS.

Figure 26: Estimated illiquidity network on 2008-09-12 and 2008-09-15

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

Then, on September 12, when the total illiquidity spillover index peaked, the network
drastically changed, and Lehman Brothers replaced Freddie Mac. We can see a similar
pattern as in the case of Bear Stearns, but strong connections for Lehman Brothers
remained even until September 19. Interestingly, this change does not seem significant on
the bottom panel of Figure 26, but it can be related to extreme shock (extreme outlier in
the time series) on this day what the moving-block bootstrap method can’t handle.
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Figure 27: Estimated illiquidity network on 2008-09-15 and 2008-09-16

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

Between the days of 2008-09-15 and 2008-09-17, the network was stable, Lehman
Brothers was the key participant - as a shock transmitter - as Figure 27 and Figure 28
show. The bottom panels indicate no significant structural change during these days.
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Figure 28: Estimated illiquidity network on 2008-09-16 and 2008-09-17

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.

On the next day, the only strong connections that remained besides the Lehman Broth-
ers spillovers were between the most troubled banks and the mortgage-backed security
sellers, clearly signaling the spread of the contagion. Furthermore, new connections of
Fannie Mae and Freddie Mac appeared with Bank of New York Mellon, J.P. Morgan, and
Wachovia Bank. Figure 29 indicates several new significant connections in the system.
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Figure 29: Estimated illiquidity network on 2008-09-18 and 2008-09-19

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM values.
The green (red) slice of the pie charts represents the share of the FROM (TO) spillover indices of
the FI. Edge directions mark the net spillover indices; their thickness represents the magnitudes.
Only the top 15% of the edges are shown on the charts. Bottom panel: Green (red borders
represent a significant decrease (increase) of the node’s net spillover index. Smaller (Larger)
sizes than the average size represent a significant decrease (increase) in SUM values. Nodes:
Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group ”medium,”
and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with green letters
represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart,
green letters represent FIs where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information of
Diebold-Yilmaz network is calculated from a T = 90, adaptive joint LASSO-VAR(2) estimation.

Between 2009-09-19 (Friday) and 2008-09-22 (Monday), the system changed signifi-
cantly, as Figure 30 indicates. The role of the Lehman Brothers diminished during the
weekend; however, parallel with this, FMCC became a shock transmitter relative to the
earlier days. As the MBB-based bottom Panel indicates, these changes are significant.
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Figure 30: Estimated illiquidity network on 2008-09-19 and 2008-09-22

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM values.
The green (red) slice of the pie charts represents the share of the FROM (TO) spillover indices of
the FI. Edge directions mark the net spillover indices; their thickness represents the magnitudes.
Only the top 15% of the edges are shown on the charts. Bottom panel: Green (red borders
represent a significant decrease (increase) of the node’s net spillover index. Smaller (Larger)
sizes than the average size represent a significant decrease (increase) in SUM values. Nodes:
Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group ”medium,”
and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with green letters
represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart,
green letters represent FIs where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information of
Diebold-Yilmaz network is calculated from a T = 90, adaptive joint LASSO-VAR(2) estimation.

Based on Figures B9 - 30 in contrast to the earlier cases during the shock of Lehman
Brothers, the effect was more persistent. The failure of Lehman Brothers caused a
longer-term transformation of the illiquidity network, highlighting the severeness of its
bankruptcy.
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Wachovia Bank’s acquisition

Finally, the last key event I identified is the merger of Wachovia Bank and Wells Fargo.
Although the merger happened on October 3, I present the network from September 26
to October 1 in Figures 31 and 32, since it seems that after the stock price plunge on
September 26 the market quickly priced the merger and by the time it actually happened
it did not shock the system, as it is also shown in the next section.

Figure 31: Estimated illiquidity network on 2008-09-26 and 2008-09-29

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.

Stock prices of AIG and Wachovia Bank plunged on September 26 (Friday) and ap-
peared in the illiquidity network on September 29 (Monday). Intriguingly, on this occa-
sion, the stock price plunge was enough for AIG and Bank of New York Mellon to act as
dominant variance transmitters, as 31 shows. Before the shock, all three FIs were con-
nected to Fannie Mae and Freddie Mac. The only institution connected to Fannie Mae
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and Freddie Mac that avoided the severe shock was JPM, an institution with large assets
again. The only significant change is related to the WB, as the bottom panel of 31 shows.

Figure 32: Estimated illiquidity network on 2008-09-30 and 2008-10-01

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.

The next day, on September 30, Wachovia Bank’s strong spillovers remained in the
system. As described earlier, the merger of Wachovia Bank with Wells Fargo only hap-
pened on October 3, and until then, the bank could only continue its operations because
Citigroup provided liquidity to it. Since the negotiations about the merger started right
after the stock price plunge, it seems that the merger itself did not shock the market; the
investors already incorporated it to their expectations.
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A day later, the role of the Wachovia Bank diminished, and the system returned to its
original state. The top panels of Figure 32 illustrate the shocked and the calm networks,
and the bottom panel shows that the only significant change is related to the Wachovia
Bank.

Through these network snapshots, I can conclude that NET pairwise illiquidity spillovers
act as contagion channels during the crisis described by Elliott et al. (2014) and Acemoglu
et al. (2015). During tranquil periods, connectedness remains low in the system, and
NET pairwise illiquidity spillovers reflect genuine linkages. Then, if a shock greater than
a certain threshold hits a node, the financial network becomes overheated, and strong,
short-term connections appear in the system temporarily. However, only the original gen-
uine financial linkages act as contagion channels propagating the distress. If a FI becomes
troubled, its value decreases and imposes losses on the other nodes linked to it, and these
losses then propagate to others, leading to a cascade of failures (Elliott et al., 2014). As
Bearn Stearns was isolated, the losses could not propagate. Nevertheless, the devalua-
tion of Fannie Mae and Freddie Mac’s assets initially led to the trouble of AIG, Merrill
Lynch, and Lehman Brothers, and later the Bank of New York Mellon and Wachovia
Bank. These connections are only visible on a pairwise level thus, visualization indeed
revealed additional information to the NET spillover indices. My empirical results are in
line with Gai and Kapadia (2010) findings who stands from a theoretical model, that the
impact of a shock depends on which node of the network it hits.
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6.3.4 Comparison with volatility network

In my analysis, I apply the DY framework to an illiquidity measure, however, this
framework has mostly been applied to volatility (Diebold and Yilmaz, 2012; Diebold
and Yılmaz, 2014; Demirer et al., 2018). Diebold and Yılmaz (2014) interpret volatility
spillovers as ”fear spillovers”, while illiquidity spillovers can be described as ”fire sales
spillovers”. During the GFC, FIs suffered from liquidity and insolvency difficulties, there-
fore, I assume that illiquidity spillover is more adequate to assess our research question.
Nevertheless, I also estimate the volatility network of the involved FIs to explore whether
it reveals any additional information.

Similar to the illiquidity network snapshots in Section 6.3.3, I present the evolution of
the volatility network during the observed shocks in Figure B11 - Figure B24. The failure
of Lehman Brothers had the greatest impact on the volatility network. Nevertheless,
from the snapshots, it is clear that the bankruptcy did not affect the volatility network
as severely as the illiquidity network.

In general, volatility spillover networks react much slower. During the Lehman crisis
on September 12, U.S. Bancorp was the largest NET shock transmitter. Fannie Mae and
Freddie Mac were connected to AIG and Merrill Lynch but not Lehman Brothers. The
next day, Lehman Brothers’ connections strengthened; nevertheless, U.S. Bancorp still
had the highest NET connectedness value. Finally, on September 16, Lehman Brothers
stepped up as the main NET shock transmitter. Contrary to the illiquidity network, the
shock increased the number of connections of all the FIs. Lehman Brothers could not act
as a dominant shock transmitter.

Besides that, the bottom panels of Figure B11 - Figure B24 highlights another impor-
tant observation. None of these charts show a significant change in the role of the nodes
during the four crisis period. It is in stark contrast to the illiquidity network snapshots.

Based on these Figures, I conclude that while illiquidity connections are capable of
identifying contagion channels between FIs, volatility linkages do not reflect the spread of
contagion accurately. Although a few important connections are outlined in the volatility
network, like the link between Lehman Brothers and AIG, the connections between the
troubled institutions are considerably less comprehensible.
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6.3.5 Structural changes in the networks

In the previous subsection, I analyzed the network changes during financial distress
through visualization. We could see that the illiquidity network experienced several sud-
den structural transformations. Besides that, with the MBB method, I measured on
a node level which changes are significant, who are the key participants on the system
transformation, and who plays a critical role in a contagion. This approach can help us
to identify contagion channels in the financial system. Now, I examine whether these
differences are significant on the whole network level. Similar to the node level analysis
(micro level analysis), we can apply the MBB method to identify significant changes in
the illiquidity network, too. In the analysis, I compare the bootstrapped distributions of
total spillover indices on two distinct days. I tested the consecutive days presented on
the snapshots. The results of this approach for the illiquidity network are presented in
Table 18. Red letters indicate when the total spillover increases significantly between the
sample dates, and green letters indicate when it diminishes.

The test results confirm the conclusions drawn in the previous sections. During the
days of financial distress, the distribution of the total spillover index significantly changes
from one day to the next. As the earlier results suggest, the shock of Bear Stearns’
acquisition hit the market on March 17, 2008, significantly altering the illiquidity network.
Panel A of Table 18 shows that the total spillover index significantly increased on this
day. Then, the next day, as the shock started to disappear, the distribution of the edges
returned to its original form, and the total spillover index diminished.

The outcome of the tests is different for the shocks of Fannie Mae, Freddie Mac, and
Wachovia Bank. As Panel B and D of Table 18 shows, we cannot observe a significant
change in the spillover index in these crisis-related days. I assume these severe shocks
only caused idiosyncratic changes in the illiquidity network.
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Table 18: Moving Block Bootstrap based Diebold-Yilmaz total spillover index
confidence interval for illiquidity network during financial distress

Panel A: Acquisition of Bear Stearns

Sample Dates First date Second date
2008-03-14 2008-03-17 82.3 - 85.0 86.6 - 87.7
2008-03-17 2008-03-18 86.6 - 87.7 81.6 - 84.4

Panel B: Bailout of Fannie Mae and Freddie Mac

Sample Dates First date Second date
2008-09-05 2008-09-08 79.0 - 82.7 77.6 - 81.2
2008-09-08 2008-09-09 78.2 - 81,9 79.0 - 84.2
2008-09-09 2008-09-10 78.8 - 86.4 77.3 - 83.3

Panel C: Bankruptcy of Lehman Brothers

Sample Dates First date Second date
2008-09-11 2008-09-12 78.4 - 81.6 81.9 - 89.0
2008-09-12 2008-09-15 80.5 - 88.5 81.7 - 93.3
2008-09-15 2008-09-16 81.3 - 93.0 82.9 - 92.5
2008-09-16 2008-09-17 83.4 - 92.5 78.0 - 83.0
2008-09-18 2008-09-19 83.3 - 88.2 82.7 - 88.8
2008-09-19 2008-09-22 83.1 - 88.2 76.8 - 80.2

Panel D: Merger of Wachovia Bank

Sample Dates First date Second date
2008-09-26 2008-09-29 77.3 - 80.5 79.3 - 82.4
2008-09-30 2008-10-01 78.4 - 83.6 76.0 - 79.3

Notes: Significance levels are estimated with moving-block bootstrap method (block size =
15, simulation run = 1000). The information of the Diebold-Yilmaz network is calculated from
a T = 200 adaptive joint LASSO-VAR(2) estimation. The range of the confidence interval is
based on 5% significance level. Red letters indicate when the total spillover increases significantly
between the sample dates, and green letters indicate when it diminishes.
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On the contrary, in the case of Lehman Brothers, the shock was more persistent.
From Panel C of Table 18, we can see that the total spillover index significantly increased
on September 11, and even on September 16, it was still significantly different from its
earlier status. The strong connection between the two federally backed home mortgage
companies, Lehman Brothers and AIG, remained in the system for several days and the
distribution of the connections did not return to its previous state. The failure of Lehman
Brothers caused a longer-term transformation of the illiquidity network, highlighting the
severeness of its bankruptcy. Besides that, Table 18 reports that the spillover index
decreased in two steps, first on 2008-09-17 and second on 2008-09-22.

Based on the Moving Block Bootstrap approach, I can assume that an illiquidity
network has tranquil and distressed statuses. During financial turmoil, the illiquidity
connections strengthen, and the total spillover index significantly changes. Still, they
revert to their tranquil state at most times. However, if the shock is grave enough, the
network structure might transform for longer. This assumption is in line with the results
of Acemoglu et al. (2015). If the financial system is hit by a shock with a magnitude higher
than a certain threshold, financial interconnections make the system more sensitive and
more prone to contagion. With the findings based on these acquisition and bankruptcy
cases, I extend the theoretical results Acemoglu et al. (2015) with an empirical one.
Besides that my empirical results are in line with Gai and Kapadia (2010) findings, I
showed, that the impact of a shock depends on which node of the network it hits.

As shown before, the volatility network is more resistant to shocks, and volatility
connections are less revealing regarding genuine connections. In Table 19, I present the
MBB method for the same days as for the illiquidity network in Table 18.
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Table 19: Moving Block Bootstrap based Diebold-Yilmaz total spillover index
confidence interval for volatility network during financial distress

Panel A: Acquisition of Bear Stearns

Sample Dates First date Second date
2008-03-14 2008-03-17 82.9 - 87.0 83.1 - 86.9
2008-03-17 2008-03-18 82.9 - 87.1 83.3 - 87.5

Panel B: Bailout of Fannie Mae and Freddie Mac

Sample Dates First date Second date
2008-09-05 2008-09-08 78.5 - 83.1 79.0 - 82.9
2008-09-08 2008-09-09 79.0 - 83.5 78.8 - 82.7
2008-09-09 2008-09-10 79.2 - 83.3 78.9 - 82.9

Panel C: Bankruptcy of Lehman Brothers

Sample Dates First date Second date
2008-09-11 2008-09-12 79.6 - 83.9 79.6 - 83.6
2008-09-12 2008-09-15 80.3 - 84.0 79.6 - 84.4
2008-09-15 2008-09-16 80.8 - 84.5 80.0 - 83.9
2008-09-16 2008-09-17 80.8 - 84.3 80.3 - 84.6
2008-09-18 2008-09-19 84.9 - 87.8 84.5 - 88.3
2008-09-19 2008-09-22 85.1 - 88.2 83.7 - 87.8

Panel D: Merger of Wachovia Bank

Sample Dates First date Second date
2008-09-26 2008-09-29 79.5 - 83.9 79.6 - 83.4
2008-09-30 2008-10-01 80.3 - 83.7 79.7 - 83.1

Notes: Significance levels are estimated with moving-block bootstrap method (block size =
15, simulation run = 1000). The information of the Diebold-Yilmaz network is calculated from
a T = 200 adaptive joint LASSO-VAR(2) estimation. The range of the confidence interval is
based on 5% significance level. Red letters indicate when the total spillover increases significantly
between the sample dates, and green letters indicate when it diminishes.
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The volatility network has not been altered by the severe shocks that hit the financial
system during the crisis. All the observed events had sudden and substantial effects on
the financial market, which is clearly reflected in the stock prices. However, I cannot
identify any of these high-impact events that are reflected in the volatility network. From
these results, I can conclude that shocks enter the volatility network considerably slower,
and it is not capable of tracking sudden changes in the system.

6.3.6 Robustness analysis

To check the sensitivity of the results to the window size, I calculated the financial net-
work with 150-day and 500-day windows as of September 15, 2008. Figure 33 shows that
illiquidity connectedness is not sensitive to window size, however, the volatility network
is becoming a bit denser by reducing the window size.

Figure 33: Robustness check of illiquidity and volatility network for September
15, 2008, with 150-day, 200-day, and 500-day windows.

Illiquidity

(a) 150-day (b) 200-day (c) 500-day

Volatility

(d) 150-day (e) 200-day (f) 500-day

Notes: Node sizes shows the SUM values. The green (red) slice of the pie charts represents
the share of the FROM (TO) spillover indices of the FI. Edge directions mark the net spillover
indices; their thickness represents the magnitudes. Only the top 15% of the edges are shown on
the charts. Nodes: Blue nodes represent FI from the group ”big”, yellow represents FIs from
the group ”medium”, and grey nodes are related to the ”troubled” FIs. Nodes with green letters
represents FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%.
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With a 150-day window, six institutes have a higher TO/SUM rate than 55%; when the
estimation window has 500 days, that number is only one. Furthermore, in the volatility
network, even the dominant role of Lehman Brothers is questionable, as with a 500-day
window, Freddie Mac is the largest transmitter. While in the illiquidity network, it is
unequivocal; thus, it is more robust to the window size than volatility.

6.3.7 Summary of the Global Financial Crisis event study

In this section, I have shown that event study analysis tools like visualization, dynamic
measures, and the new formal statistical test help to identify key events, FIs, and con-
tagion channels in the financial system. Furthermore, I have found that on both macro
and micro level analysis, the illiquidity networks of FIs during the GFC display relevant
information.

I showed that while volatility networks do not always react to financial turmoil, trou-
bled FIs become the main shock transmitters in illiquidity networks. Illiquidity connec-
tions act as financial linkages described by Acemoglu et al. (2015), thus, they indicate
the spread of contagion in the system during turmoil. Severe financial shocks temporarily
alter the illiquidity network, and dominant shock transmitters appear in the system.

I conclude that the DY framework with the MBB approach is a powerful tool for
regulators to identify potential failure cascades and SIFIs. Through event study analysis,
they can observe shocks that lead to significant changes in the financial network.
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7 Chapter 7. Conclusion

In this chapter, I summarize my contribution to the applied finance literature in three
parts. In the first two sections, I summarize the methodological contribution by summa-
rizing the statistical benefits of my proposed adaptive joint LASSO method (AJ LASSO)
in high-dimension network modeling, and my proposed event study integrated DY frame-
work for focused crisis tracking. Last, I discuss my conceptual contribution, a shift from
traditional volatility and return network analysis towards illiquidity network modelling
which is consistent with the BASEL IV guidelines emphasizing liquidity management.

7.1 Methodological contribution

My first theoretical contribution to the existing network literature is that I proposed an
extension of the row-wise LASSO-VAR method. I referred to this method as the adaptive
joint LASSO algorithm. The strength of my adaptive joint LASSO method accounts for
possible sparsity both in the coefficient and the covariance matrix of the estimated VAR
model.

I compared my new algorithm via simulated data with the most commonly applied
regularization methods in the Diebold-Yilmaz literature (row-wise LASSO and adaptive
row-wise LASSO). I performed an extensive Monte Carlo simulation study to analyze
my proposed estimator’s statistical properties. Besides that, I compared the accuracy
of my new method to the most commonly used regularization methods’ performance. I
simulated different large sparse VAR systems and used my proposed algorithm to estimate
the parameters of the coefficient and covariance matrix and the DY network.

For the basic setup, sparse coefficient matrix, and band inverse covariance matrix,
I concluded that the adaptive joint LASSO estimator outperforms row-wise LASSO es-
timators significantly in the case of the coefficient, covariance, and the Diebold-Yilmaz
spillover matrix estimation for all parameter sets. Simulation results indicated that in
highly correlated systems, the relative performance of the AJ LASSO method performs
remarkably well, especially for the coefficient matrix estimation.

The accuracy gain is sensitive to the covariance structure. In the case of sparse inverse
covariance matrix setting, which is the common assumption in theoretical econometrics,
the accuracy gain was 90% for the DY spillover matrix estimation. The result demon-
strated that the new method efficiently accounted for the characteristics of the sparse
inverse covariance matrix in the estimation via the penalized maximum likelihood objec-
tive function.

The accuracy gain of the adaptive joint LASSO method was smaller for the non-sparse
coefficient matrix but still significant. The smallest gains of the new estimator relative
to the others were obtained for the non-sparse coefficient and inverse covariance matrix.
Even when AJ LASSO was only marginally superior, there were still benefits because the
number of extreme outliers where the error was more than 20% in the estimation was
significantly lower than for the other methods.

Based on these results, I concluded that AJ LASSO can be useful for high-dimension
VAR system (and DY network) modeling. In the empirical part of my thesis, I used my
proposed method to estimate a VAR model for the DY volatility and illiquidity network.

Combining the DY framework for network modeling with event study methodology
may be useful at turbulent times. My second theoretical contribution to the existing
network literature is that I extended the original Diebold-Yilmaz framework with an
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event study tool to provide more insights into the contagion channels appearing in the
networks during structural changes.

I introduced a formal test to compare the distribution of the commonly used spillover
indices over time. I integrated the residual-based MBB algorithm into the DY framework’s
estimation step to determine whether the DY spillover indices’ empirical distribution on
different periods is equal. The gain of this method is that we can use it not just for
analyzing the significant structural changes in the network on a macro level (total spillover
index) but on a micro level (pairwise spillover indices) too.

7.2 Conceptual contribution

In the empirical part of my thesis, I presented a characterization of the illiquidity
connectedness of a US financial network with my proposed AJ LASSO method in the
Diebold-Yilmaz framework. I investigated the significant similarities and differences be-
tween the volatility and illiquidity network on the macro and micro levels with the com-
bined MBB-based DY framework.

I showed that illiquidity total spillover indices are also relevant in analyzing systemic
risk as they behave differently than total volatility connectedness. On the macro level,
both indices react to shocks in the financial system, but even in tranquil periods, the
dynamics might vary. My empirical results suggest that the volatility and illiquidity
network differs not just on the macro level (total spillover index) but on the micro (pairwise
net spillover indices) level too. I concluded that micro and macro-level illiquidity spillover
indices display important information for the financial network.

Besides that, I extended the Diebold-Yilmaz (DY) framework with event study analysis
tools. With the components of my combined framework, like visualization and the MBB
approach, I was able to observe the financial connections during crisis periods. I provided
daily snapshots of the financial network, focusing on four key events of the GFC with
the analytical purpose of illustrating the performance of my framework and showing that
illiquidity spillovers act as contagion channels during turmoil.

In my empirical analysis, I have shown that event study analysis tools like visualization,
dynamic measures, and the new formal statistical test help to identify key events, FIs,
and contagion channels in the financial system. Furthermore, I have found that on both
macro and micro level analysis, the illiquidity networks of FIs during the GFC display
relevant information. I showed that while volatility networks do not always react to
financial turmoil, troubled FIs become the main shock transmitters in illiquidity networks.
Illiquidity connections act as financial linkages described by Acemoglu et al. (2015); thus,
they indicate the spread of contagion in the system during turmoil. Severe financial shocks
temporarily altered the illiquidity network, and dominant shock transmitters appeared in
the system. My empirical results are in line with Gai and Kapadia (2010) findings, too.
I found that the impact of a shock depends on which node of the network it hits.

Domestic and international financial networks are ever evolving, and increasingly
complex with the emergence of new forms of systemic risks (e.g., climate risk) and re-
emergence of to-big-to fail concerns as a result of major bank mergers (UBS-Credit Suisse).
While no network analysis can be complete, I believe that my methodological and con-
ceptual contribution to closed network analysis can aid future work to provide valuable
insights for regulators and policymakers.
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Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media.

Buse, R. and Schienle, M. (2019). Measuring connectedness of euro area sovereign risk.
International Journal of Forecasting, 35(1):25–44.

Buse, R., Schienle, M., and Urban, J. (2022). Assessing the impact of policy and regulation
interventions in european sovereign credit risk networks: What worked best? Journal
of International Economics, 139:103673.

Cabrieto, J., Tuerlinckx, F., Kuppens, P., Hunyadi, B., and Ceulemans, E. (2018). Testing
for the presence of correlation changes in a multivariate time series: A permutation
based approach. Scientific reports, 8(1):1–20.

Caggiano, G., Castelnuovo, E., and Figueres, J. M. (2020). Economic policy uncertainty
spillovers in booms and busts. Oxford Bulletin of Economics and Statistics, 82(1):125–
155.

Camehl, A. (2023). Penalized estimation of panel vector autoregressive models: A panel
lasso approach. International Journal of Forecasting, 39(3):1185–1204.

Candes, E. and Tao, T. (2007). The dantzig selector: Statistical estimation when p is
much larger than n.

Carriero, A., Kapetanios, G., and Marcellino, M. (2011). Forecasting large datasets
with bayesian reduced rank multivariate models. Journal of Applied Econometrics,
26(5):735–761.

Castro, C. and Ferrari, S. (2014). Measuring and testing for the systemically important
financial institutions. Journal of Empirical Finance, 25:1–14.

Cespa, G. and Foucault, T. (2014). Illiquidity contagion and liquidity crashes. The Review
of Financial Studies, 27(6):1615–1660.

103



Chan, K.-S. and Chen, K. (2011). Subset arma selection via the adaptive lasso. Statistics
and its Interface, 4(2):197–205.

Cheng, T., Liu, J., Yao, W., and Zhao, A. B. (2022). The impact of covid-19 pandemic
on the volatility connectedness network of global stock market. Pacific-Basin Finance
Journal, 71:101678.

Chowdhury, B., Dungey, M., Kangogo, M., Sayeed, M. A., and Volkov, V. (2019). The
changing network of financial market linkages: The asian experience. International
Review of Financial Analysis, 64:71–92.
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Appendix

A Simulation Appendix

A.1 Sparse B and band Ω

Figure A1: Relative estimation accuracy (MAEE) of the regularization meth-
ods as a function of the covariance matrix (Σ) Toeplitz-parameter (ρ).

Notes: Results are in percentage of the benchmark OLS model and are based on 1000 simulation
runs. The structure of B, Ω and Θ, along with T = 250 and J = 15 is fixed throughout the
simulation. The setting corresponding to ρ = 0.3 is the same as the second column in Table 4
and in Table 7.
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Figure A2: Relative estimation accuracy (MFBN) of the regularization meth-
ods as a function of the covariance matrix (Σ) Toeplitz-parameter (ρ).

Notes: Results are in percentage of the benchmark OLS model. Results are based on 1000
simulation runs. The structure of B, Ω and Θ, along with T = 250 and J = 15 is fixed
throughout the simulation. The setting corresponding to ρ = 0.3 is the same as the second
column in Table 4 and in Table 7.
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Table A1: Summary of simulation results for sparse coefficient matrix B and
sparse inverse covariance matrix Ω for OLS, RW LASSO, ARW LASSO, and
AJ LASSO methods

Panel A: T = 100 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 97% 97% 93%
True negative rate (B) 0% 79% 84% 96%
Sparsity recognition (B) 7% 80% 85% 96%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 76%
Sparsity recognition (Ω) 7% 7% 7% 77%

Panel B: T = 250 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 81% 84% 99%
Sparsity recognition (B) 7% 82% 85% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 81%
Sparsity recognition (Ω) 7% 7% 7% 83%

Panel C: T = 500 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B 0% 82% 86% 99%

Sparsity recognition (B) 7% 84% 87% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 90%
Sparsity recognition (Ω) 7% 7% 7% 91%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. In the table, in the first column, the rows indicate the
mean of sparsity recognition performance measures across simulated paths, and columns
2 through 5 represent the alternative methods: OLS, RW LASSO, ARW LASSO, and
AJ LASSO. The structures of B and Ω, along with J = 15, are fixed throughout the
simulation. Time series length (T) varies across Panels A, B, and C in the table.
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Table A2: Accuracy comparison of regularization methods with a simulation
of sparse coefficient matrix B and sparse inverse covariance matrix Ω

Panel A: T = 100 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 28% 28% 17%

MAEE (Ω, Ω̂) 77% 78% 20%

MAEE (Θ, Θ̂) 49% 54% 13%

MFBN (B,B̂) 58% 56% 51%

MFBN (Ω, Ω̂) 76% 78% 31%

MFBN (Θ, Θ̂) 51% 56% 16%

Panel B: T = 250 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 27% 27% 12%

MAEE (Ω, Ω̂) 91% 92% 21%

MAEE (Θ, Θ̂) 50% 56% 9%

MFBN (B,B̂) 56% 54% 43%

MFBN (Ω, Ω̂) 89% 91% 35%

MFBN (Θ, Θ̂) 52% 57% 10%

Panel C: T = 500 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 28% 28% 11%

MAEE (Ω, Ω̂) 95% 96% 15%

MAEE (Θ, Θ̂) 52% 58% 4%

MFBN (B,B̂) 59% 56% 39%

MFBN (Ω, Ω̂) 94% 95% 34%

MFBN (Θ, Θ̂) 53% 60% 6%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. In the table, in the first column, the rows indicate the mean
of sparsity error measures (either MAEE = mean absolute estimation error or MFBN =
mean Frobenius norm), and columns 2 through 4 represent the three alternative methods:
RW LASSO, ARW LASSO, and AJ LASSO. Results are in percentage of the benchmark
OLS model. The structures of B and Ω, along with J = 15, are fixed throughout the
simulation. Time series length (T) varies across the Panels A, B, and C in the table.
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Table A3: Summary of simulation results with sparse coefficient B and sparse
inverse covariance Ω matrix

Panel A: J = 10 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 80% 85% 99%
Sparsity recognition (B) 10% 82% 87% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 74%
Sparsity recognition (Ω) 10% 10% 10% 77%

Panel B: J = 15 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 81% 84% 99%
Sparsity recognition (B) 7% 82% 85% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 81%
Sparsity recognition (Ω) 7% 7% 7% 83%

Panel C: J = 20 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 82% 86% 99%
Sparsity recognition (B) 5% 83% 86% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 79%
Sparsity recognition (Ω) 5% 5% 5% 80%

Panel D: J = 25 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 84% 85% 99%
Sparsity recognition (B) 4% 85% 85% 99%
True positive rate (Ω) 100% 100% 100% 100%
True negative rate (Ω) 0% 0% 0% 78%
Sparsity recognition (Ω) 4% 4% 4% 79%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. In the table, in the first column, the rows indicate the
mean of sparsity recognition performance measures across simulated paths, and columns
2 through 5 represent the alternative methods: OLS, RW LASSO, ARW LASSO, and AJ
LASSO. The structures of B and Ω are fixed throughout the simulation. The length of the
time series (T) is fixed at 250, while J (dimension of the matrices) varies between 10 and
25 across the Panels A through D in the table. Panel B of the table is the same as Panel
B of Table A1.
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Table A4: Accuracy comparison of regularization methods with a simulation
of sparse coefficient matrix B and sparse inverse covariance matrix Ω using a
range of the dimension (J) of the system

Panel A: J = 10 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 32% 28% 14%

MAEE (Ω, Ω̂) 94% 95% 31%

MAEE (Θ, Θ̂) 52% 58% 10%

MFBN (B,B̂) 61% 55% 41%

MFBN (Ω, Ω̂) 93% 94% 47%

MFBN (Θ, Θ̂) 54% 61% 11%

Panel B: J = 15 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 27% 27% 12%

MAEE (Ω, Ω̂) 91% 92% 21%

MAEE (Θ, Θ̂) 50% 56% 9%

MFBN (B,B̂) 56% 54% 43%

MFBN (Ω, Ω̂) 89% 91% 35%

MFBN (Θ, Θ̂) 52% 57% 10%

Panel C: J = 20 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 23% 23% 9%

MAEE (Ω, Ω̂) 88% 89% 19%

MAEE (Ψ, Ψ̂) 47% 52% 8%

MFBN (B,B̂) 51% 50% 38%

MFBN (Ω, Ω̂) 86% 87% 32%

MFBN (Θ, Θ̂) 49% 54% 10%

Panel C: J = 25 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 20% 22% 8%

MAEE (Ω, Ω̂) 84% 86% 18%

MAEE (Θ, Θ̂) 45% 51% 8%

MFBN (B,B̂) 47% 48% 35%

MFBN (Ω, Ω̂) 81% 84% 29%

MFBN (Θ, Θ̂) 46% 52% 9%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0. In the table, in the first column, the rows indicate the mean
of sparsity error measures (either MAEE = mean absolute estimation error or MFBN =
mean Frobenius norm), and columns 2 through 4 represent the three alternative methods:
RW LASSO, ARW LASSO, and AJ LASSO. Results are in percentage of the benchmark
OLS model. The time series (T) length is fixed at 250, while J (dimension of the matrices)
varies across Panels A through D in the table. Panel B of the table is the same as Panel
B of Table A2.
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A.2 Sparse B and sparse & dense Ω

Table A5: Summary of simulation results for sparse coefficient matrix B and
dense inverse covariance matrix Ω for OLS, RW LASSO, ARW LASSO and
AJ LASSO methods

Panel A: T = 100 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 95% 93% 93%
True negative rate (B) 0% 78% 83% 95%
Sparsity recognition (B) 7% 79% 84% 95%

Panel B: T = 250 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 77% 86% 99%
Sparsity recognition (B) 7% 78% 87% 99%

Panel C: T = 500 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 79% 86% 99%
Sparsity recognition (B) 7% 80% 87% 99%

Notes: Results are based on 1000 simulation runs. In the table, in the first column,
the rows indicate the mean of sparsity recognition performance measures across simulated
paths, and columns 2 through 5 represent the alternative methods: OLS, RW LASSO,
ARW LASSO, and AJ LASSO. The structures of B and Ω, along with J = 15, are fixed
throughout the simulation. Time series length (T) varies across Panels A, B, and C in
the table. The table contains only the sparsity recognition performance for B because Ω is
dense.
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Table A6: Accuracy comparison of regularization methods with a simulation
of sparse coefficient matrix B and dense inverse covariance matrix Ω

Panel A: T = 100 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 22% 23% 10%

MAEE (Ω, Ω̂) 70% 68% 42%

MAEE (Θ, Θ̂) 52% 56% 47%

MFBN (B,B̂) 43% 46% 29%

MFBN (Ω, Ω̂) 69% 67% 44%

MFBN (Θ, Θ̂) 49% 54% 43%

Panel B: T = 250 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 23% 20% 7%

MAEE (Ω, Ω̂) 86% 85% 59%

MAEE (Θ, Θ̂) 49% 50% 41%

MFBN (B,B̂) 44% 43% 26%

MFBN (Ω, Ω̂) 85% 84% 61%

MFBN (Θ, Θ̂) 43% 45% 35%

Panel C: T = 500 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 23% 22% 6%

MAEE (Ω, Ω̂) 93% 93% 77%

MAEE (Θ, Θ̂) 43% 45% 36%

MFBN (B,B̂) 46% 45% 23%

MFBN (Ω, Ω̂) 91% 91% 78%

MFBN (Θ, Θ̂) 39% 41% 29%

Notes: Results are based on 1000 simulation runs. In the table, in the first column,
the rows indicate the mean of sparsity error measures (either MAEE = mean absolute
estimation error or MFBN = mean Frobenius norm), and columns 2 through 4 represent
the three alternative methods: RW LASSO, ARW LASSO, and AJ LASSO. Results are
in percentage of the benchmark OLS model. The structures of B and Ω, along with J =
15, are fixed throughout the simulation. Time series length (T) varies across Panels A,
B, and C in the table.
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Table A7: Summary of simulation results with sparse coefficient B and dense
inverse covariance Ω matrix

Panel A: J = 10 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 78% 86% 99%
Sparsity recognition (B) 10% 81% 88% 99%

Panel B: J = 15 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 77% 86% 99%
Sparsity recognition (B) 7% 78% 87% 99%

Panel C: J = 20 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 83% 88% 99%
Sparsity recognition (B) 5% 84% 89% 99%

Panel D: J = 25 OLS RW LASSO ARW LASSO AJ LASSO

True positive rate (B) 100% 100% 100% 100%
True negative rate (B) 0% 83% 88% 99%
Sparsity recognition (B) 5% 84% 89% 99%

Notes: Results are based on 1000 simulation runs. In the table, in the first column,
the rows indicate the mean of sparsity recognition performance measures across simulated
paths, and columns 2 through 5 represent the alternative methods: OLS, RW LASSO,
ARW LASSO, and AJ LASSO. The structures of B and Ω are fixed throughout the sim-
ulation. The length of the time series (T) is fixed at 250, while J (dimension of the
matrices) varies between 10 and 25 across the Panels A through D in the table. Panel B
of the table is the same as Panel B of Table A5.
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Table A8: Accuracy comparison of regularization methods with a simulation
of sparse coefficient matrix B and dense inverse covariance matrix Ω using a
range of the dimension (J) of the system

Panel A: J = 10 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 27% 27% 8%

MAEE (Ω, Ω̂) 93% 91% 72%

MAEE (Θ, Θ̂) 54% 57% 47%

MFBN (B,B̂) 50% 50% 24%

MFBN (Ω, Ω̂) 91% 91% 74%

MFBN (Θ, Θ̂) 49% 52% 40%

Panel B: J = 15 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 23% 20% 7%

MAEE (Ω, Ω̂) 86% 85% 59%

MAEE (Θ, Θ̂) 49% 50% 41%

MFBN (B,B̂) 44% 43% 26%

MFBN (Ω, Ω̂) 85% 84% 61%

MFBN (Θ, Θ̂) 43% 45% 35%

Panel C: J = 20 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 17% 16% 5%

MAEE (Ω, Ω̂) 83% 81% 51%

MAEE (Θ, Θ̂) 40% 41% 33%

MFBN (B,B̂) 37% 38% 22%

MFBN (Ω, Ω̂) 80% 79% 53%

MFBN (Θ, Θ̂) 37% 39% 27%

Panel C: J = 25 RW LASSO ARW LASSO AJ LASSO

MAEE (B,B̂) 15% 17% 5%

MAEE (Ω, Ω̂) 80% 79% 50%

MAEE (Θ, Θ̂) 37% 40% 30%

MFBN (B,B̂) 36% 39% 20%

MFBN (Ω, Ω̂) 77% 76% 51%

MFBN (Θ, Θ̂) 34% 38% 26%

Notes: Results are based on 1000 simulation runs. In the table, in the first column,
the rows indicate the mean of sparsity error measures (either MAEE = mean absolute
estimation error or MFBN = mean Frobenius norm), and columns 2 through 4 represent
the three alternative methods: RW LASSO, ARW LASSO, and AJ LASSO. Results are
in percentage of the benchmark OLS model. The time series (T) length is fixed at 250,
while J (dimension of the matrices) varies between 10 and 25 across Panels A through D
in the Table. Panel B of the table is the same as Panel B of table A6.
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A.3 Dense B and band, sparse & dense Ω

Table A9: Summary of the accuracy gains of the AJ LASSO method relative to
the better RW LASSO with dense coefficient (B) and band inverse covariance
(Ω) matrix.

Relative Error T = 100 T = 250 T = 500

MAEE (B,B̂) 81% 86% 85%

MAEE (Ω, Ω̂) 69% 74% 81%

MAEE (Θ, Θ̂) 77% 88% 90%

MFBN (B,B̂) 92% 98% 96%

MFBN (Ω, Ω̂) 74% 81% 85%

MFBN (Θ, Θ̂) 79% 93% 99%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. Rows contain the mean of accuracy measures across
simulated paths, and columns represent the explored methods. In the table, the first column,
the rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either
MAEE = mean absolute estimation error or MFBN = mean Frobenius norm). The relative
performance of the AJ LASSO in comparison with the better RW LASSO with time series
lengths (T) varying from 100 to 500 are presented in Columns 2 through 4. Results are
in percentage of the better RW LASSO model. The structures of B and Ω, along with J
= 15, are fixed throughout the simulation.

Table A10: Summary of the accuracy gains of the AJ LASSO method rel-
ative to the better RW LASSO with dense coefficient (B) and band inverse
covariance (Ω) matrix using a range of the dimension (J) of the system

Relative Error J = 10 J = 15 J = 20 J = 25

MAEE (B,B̂) 93% 86% 79% 74%

MAEE (Ω, Ω̂) 85% 74% 64% 60%

MAEE (Θ, Θ̂) 92% 88% 75% 75%

MFBN (B,B̂) 103% 98% 94% 88%

MFBN (Ω, Ω̂) 89% 81% 70% 67%

MFBN (Θ, Θ̂) 99% 93% 78% 79%

Notes: Results are based on 1000 simulation runs. Error terms are drawn from a Toeplitz
covariance matrix with ρ = 0.3. Rows contain the mean of accuracy measures across
simulated paths, and columns represent the explored methods. In the table, the first column,
the rows indicate the mean of sparsity error measures for (B) and (Ω) matrix (either
MAEE = mean absolute estimation error or MFBN = mean Frobenius norm). The relative
performance of the AJ LASSO in comparison with the better RW LASSO with dimension
of the time series (J) - varies from 10 to 25 -, are presented in Columns 2 through 5.
Results are in percentage of the better RW LASSO model. The structures of B and Ω,
along with T = 250, are fixed throughout the simulation.
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Table A11: Summary of large inaccuracies in the estimation with a dense
coefficient (B) and band inverse covariance (Ω) matrix II.

Panel A: J = 10 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 61% 37% 22%

RLIA (Ω, Ω̂) 93% 100% 82%

RLIA (Θ, Θ̂) 98% 99% 101%

Panel B: T = 15 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 49% 35% 17%

RLIA (Ω, Ω̂) 70% 81% 72%

RLIA (Θ, Θ̂) 96% 97% 96%

Panel C: T = 20 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 41% 29% 13%

RLIA (Ω, Ω̂) 73% 75% 64%

RLIA (Θ, Θ̂) 96% 96% 96%

Panel D: T = 25 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 36% 27% 10%

RLIA (Ω, Ω̂) 58% 69% 46%

RLIA (Θ, Θ̂) 96% 96% 96%

Notes: Error terms are drawn from a Toeplitz-type covariance matrix with ρ = 0.7. Rows
contain the mean of wrongly estimated parameters across simulated paths, and columns
represent the explored methods. RLIA = relative large inaccuracy (relative number of
parameters where the estimation error is more than 20%). Results are in percentage of
the benchmark OLS model. The number of time series (J) varies across the panels of
the table. The structure of B, Ω and Θ, along with T = 250, is fixed throughout the
simulation. Panel B of the table is the same as Panel B of Table 13
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Table A12: Summary of the accuracy gains of the AJ LASSO method rela-
tive to the better RW LASSO with dense coefficient (B) and dense inverse
covariance (Ω) matrix.

Relative Error T = 100 T = 250 T = 500

MAEE (B,B̂) 62% 64% 61%

MAEE (Ω, Ω̂) 76% 84% 98%

MAEE (Θ, Θ̂) 99% 92% 79%

MFBN (B,B̂) 67% 68% 67%

MFBN (Ω, Ω̂) 81% 89% 101%

MFBN (Θ, Θ̂) 97% 90% 70%

Notes: Results are based on 1000 simulation runs. Rows contain the mean of accuracy
measures across simulated paths, and columns represent the explored methods. In the
table, the first column, the rows indicate the mean of sparsity error measures for (B) and
(Ω) matrix (either MAEE = mean absolute estimation error or MFBN = mean Frobenius
norm). The relative performance of the AJ LASSO, in comparison with the better RW
LASSO with time series lengths (T) varying from 100 to 500, are presented in Columns
2 through 4. Results are in percentage of the better RW LASSO model. The structures of
B and Ω, along with J = 15, are fixed throughout the simulation.

Table A13: Summary of the accuracy gains of the AJ LASSO method relative
to the better row-wise LASSO with dense coefficient (B) and dense inverse
covariance (Ω) matrix using a range of the dimension (J) of the system

Relative Error J = 10 J = 15 J = 20 J = 25

MAEE (B,B̂) 65% 64% 59% 52%

MAEE (Ω, Ω̂) 94% 84% 77% 75%

MAEE (Θ, Θ̂) 92% 92% 84% 81%

MFBN (B,B̂) 69% 68% 66% 59%

MFBN (Ω, Ω̂) 99% 89% 81% 80%

MFBN (Θ, Θ̂) 88% 90% 75% 71%

Notes: Results are based on 1000 simulation runs. Rows contain the mean of accuracy
measures across simulated paths, and columns represent the explored methods. In the
table, the first column, the rows indicate the mean of sparsity error measures for (B) and
(Ω) matrix (either MAEE = mean absolute estimation error or MFBN = mean Frobenius
norm). The relative performance of the AJ LASSO in comparison with the better RW
LASSO with dimension of the time series (J) - varies from 10 to 25 -, are presented in
Columns 2 through 5. Results are in percentage of the better RW LASSO model. The
structures of B and Ω, along with T = 250, are fixed throughout the simulation.
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Table A14: Simulation results with dense coefficient (B) and dense inverse
covariance (Ω) matrix II.

Panel A: J = 10 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 50% 36% 21%

RLIA (Ω, Ω̂) 99% 94% 89%

RLIA (Θ, Θ̂) 45% 47% 29%

Panel B: T = 15 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 39% 29% 17%

RLIA (Ω, Ω̂) 98% 97% 83%

RLIA (Θ, Θ̂) 38% 40% 31%

Panel C: T = 20 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 34% 25% 13%

RLIA (Ω, Ω̂) 98% 96% 83%

RLIA (Θ, Θ̂) 37% 39% 29%

Panel D: T = 25 RW LASSO ARW LASSO AJ LASSO

RLIA (B,B̂) 30% 25% 10%

RLIA (Ω, Ω̂) 96% 95% 81%

RLIA (Θ, Θ̂) 40% 42% 30%

Notes: Rows contain the mean of wrongly estimated parameters across simulated paths,
and columns represent the explored methods. RLIA = relative large inaccuracy (relative
number of parameters where the estimation error is more than 20%). Results are in
percentage of the benchmark OLS model. The number of time series (J) varies across the
panels of the table. The structure of B, Ω and Θ, along with T = 250, is fixed throughout
the simulation. Panel B of the table is the same as Panel B of Table 14.
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B Event Study Appendix

B.1 Moving Block Bootstrap algorithm

Step 1. Obtain the residuals ût = yt − B̂1yt−1 − B̂2yt−2 − · · · − B̂pyt−p, t = 1, ..., T using

B̂1, B̂2 . . . , B̂p from an estimated the VAR(p) model. I use the adaptive joint
LASSO algorithm for estimating the VAR(p) model.

Step 2. Generate s = 1, 2, . . . , S bootstrap samples of the residuals in the next way.
Choose a block length l < T , and let N = T/l be the number of blocks.
In this case, we achieve that lN ≤ T . Get (J × l)-dimensional block Si,l =
(ûi+1, . . . , ûi+l). After that I generate i.i.d. random variables uniformly dis-
tributed on the set {0, 1, 2, . . . , T − l} where i = 0, . . . , T − l, and i0, . . . , iN−1.
Discard the last Nl−T values from the blocks Si0,l, . . . SiN−1,l, and get bootstrap
residuals û∗1, . . . , û∗T .

Step 3. Center the residuals for all t = 1, . . . , T as u∗jl+s = û∗jl+s−E∗(û∗jl+s) = û∗jl+s−
1

T−l+1

∑T−l
r=0 ûs+r to get E∗(u∗t ) = 0.

Step 4. Set the initial values of y∗p+1 . . . , y
∗
0 equal to zero and generate bootstrap sample

y∗1, . . . , y
∗
T by fitting the following model y∗t = B̂1y

∗
t−1B̂2y

∗
t−2 + · · ·+ B̂py

∗
t−p + u∗t .

Step 5. Re-estimate the adaptive joint LASSO-VAR(p) model on sample y∗p+1, y
∗
p . . . , y

∗
0

and calculate the Diebold-Yilmaz spillover measures.

Step 6. Repeat Step 2 to Step 5 several times.
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B.2 Illiquidity and Volatility network

Table B1: U.S. FIs, tickers, and total assets as of the end of 2018, trillion USD

Panel A: Big Financial Institutions Ticker Total assets
JPMorgan Chase & Co JPM 2.6225
Bank of America BAC 2.3545
Citigroup C 1.9174
Wells Fargo WFC 1.8959
Goldman Sachs Group GS 0.9318
Panel B: Medium Financial Institutions Ticker Total assets
Moran Stanley MS 0.8535
Bank of New York Mellon BK 0.3629
U.S. Bancorp USB 0.4674
PNC Financial Services Group PNC 0.3823
Capital One Financial COF 0.3725
Panel C: Small Financial Institutions Ticker Total assets
State Street Corporation STT 0.2446
BB&T Corp BBT 0.2257
SunTrust Banks STI 0.2155
American Express AXP 0.1886
Fifth Third Bancorp FITB 0.1461
Regions Financial Corporation RF 0.1257

Figure B3: Distribution of illiquidity and volatility NET spillover indices for
the network from 2004 to 2019.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows. Horizontal shaded areas around the mean of the NET spillover indices (red for the
volatility index and blue for the illiquidity index) represent the distribution with one standard
deviation. Vertical (green) shaded highlight crisis periods (GFC and ESDC).
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Figure B4: Distribution of illiquidity and volatility pairwise NET spillover
indices for the network from 2004 to 2019.

Notes: The information of Diebold-Yilmaz network is calculated from a rolling window analysis
with T = 200, adaptive joint LASSO-VAR(2) estimation. Dates correspond to the end date of
the windows. Horizontal shaded areas around the mean of the pairwise NET spillover indices
(red for the volatility index and blue for the illiquidity index) represent the distribution with
one standard deviation. Vertical (green) shaded highlight crisis periods (GFC and ESDC).
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Figure B5: Estimated volatility and illiquidity network on 2010-10-27

Notes: Volatility (Illiquidity) network are in the upper left (right) chart, and the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”small” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 200, adaptive joint LASSO-
VAR(2) estimation.
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Figure B6: Estimated volatility and illiquidity network on 2014-05-23

Notes: Volatility (Illiquidity) network are in the upper left (right) chart, and the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) of SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”small” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 200, adaptive joint LASSO-
VAR(2) estimation.
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B.3 Key events of the GFC

Table B2: Summary statistics of volatility and illiquidity of stock prices be-
tween January 5, 2000, and December 22, 2008

Volatility Illiquidity (10−10)

Ticker Mean Median Std Min Max Mean Median Std Min Max

Panel A: Big Financial Institutions

JPM 3.299 3.295 0.649 1.590 5.710 0.362 0.219 0.417 0 3.435
BAC 3.065 3.003 0.661 1.536 5.946 0.256 0.146 0.316 0 3.369
C 3.220 3.206 0.666 1.405 5.852 0.185 0.121 0.194 0 1.872
WFC 3.035 2.979 0.658 1.424 5.592 0.402 0.273 0.484 0 6.546
GS 3.357 3.313 0.568 1.562 5.951 0.478 0.222 0.788 0 9.071

Panel A: Medium Financial Institutions

MS 3.502 3.472 0.607 2.009 6.755 0.668 0.473 0.662 0 6.292
BK 3.298 3.266 0.612 1.557 6.343 1.314 0.852 1.440 0 13.916
USB 3.161 3.148 0.663 1.487 5.305 1.237 0.571 1.870 0 17.771
PNC 3.091 3.046 0.606 1.273 6.027 1.729 1.081 2.090 0 21.461
AXP 3.225 3.205 0.666 1.057 5.444 0.646 0.420 0.695 0 5.056

Panel C: Troubled Financial Institutions

FNMA 3.350 3.235 0.719 1.759 7.184 0.870 0.408 3.944 0 104.607
FMCC 3.297 3.158 0.752 1.620 7.583 1.343 0.534 9.071 0 357.380
AIG 3.165 3.098 0.673 1.291 7.406 0.380 0.231 0.755 0 19.406
BS 3.335 3.313 0.562 1.867 6.708 1.953 0.868 2.922 0 36.823
MER 3.423 3.395 0.640 1.684 6.225 0.489 0.335 0.484 0 3.320
WB 3.211 3.124 0.700 1.366 7.123 0.899 0.426 1.273 0 23.857
LEHMQ 3.526 3.442 0.710 1.736 7.995 7.866 0.550 82.362 0 2151.951
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Figure B7: Estimated illiquidity network on 2008-09-05 and 2008-09-08

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 100, adaptive joint LASSO-
VAR(2) estimation.
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Figure B8: Estimated illiquidity network on 2008-09-05 and 2008-09-08

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B9: Estimated illiquidity network on 2008-09-11 and 2008-09-12

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B10: Estimated illiquidity network on 2008-09-11 and 2008-09-12

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 200, adaptive joint LASSO-
VAR(2) estimation.
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Figure B11: Estimated volatility network on 2008-03-14 and 2008-03-17

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B12: Estimated volatility network on 2008-03-17 and 2008-03-18

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B13: Estimated volatility network on 2008-03-18 and 2008-03-19

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B14: Estimated volatility network on 2008-09-05 and 2008-09-08

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B15: Estimated volatility network on 2008-09-08 and 2008-09-09

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B16: Estimated volatility network on 2008-09-09 and 2008-09-10

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B17: Estimated volatility network on 2008-09-11 and 2008-09-12

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B18: Estimated volatility network on 2008-09-12 and 2008-09-15

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B19: Estimated volatility network on 2008-09-15 and 2008-09-16

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B20: Estimated volatility network on 2008-09-16 and 2008-09-17

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 125, adaptive joint LASSO-
VAR(2) estimation.
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Figure B21: Estimated volatility network on 2008-09-18 and 2008-09-19

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM values.
The green (red) slice of the pie charts represents the share of the FROM (TO) spillover indices of
the FI. Edge directions mark the net spillover indices; their thickness represents the magnitudes.
Only the top 15% of the edges are shown on the charts. Bottom panel: Green (red borders
represent a significant decrease (increase) of the node’s net spillover index. Smaller (Larger)
sizes than the average size represent a significant decrease (increase) in SUM values. Nodes:
Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group ”medium,”
and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with green letters
represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart,
green letters represent FIs where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information of
Diebold-Yilmaz network is calculated from a T = 90, adaptive joint LASSO-VAR(2) estimation.
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Figure B22: Estimated volatility network on 2008-09-19 and 2008-09-22

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM values.
The green (red) slice of the pie charts represents the share of the FROM (TO) spillover indices of
the FI. Edge directions mark the net spillover indices; their thickness represents the magnitudes.
Only the top 15% of the edges are shown on the charts. Bottom panel: Green (red borders
represent a significant decrease (increase) of the node’s net spillover index. Smaller (Larger)
sizes than the average size represent a significant decrease (increase) in SUM values. Nodes:
Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group ”medium,”
and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with green letters
represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the bottom chart,
green letters represent FIs where the FROM/SUM ratio increased more than 10% and reds
where TO/SUM increased more than 10%. MBB-VAR: Significance levels are estimated with
moving-block bootstrap method (block size = 15, simulation run = 1000). The information of
Diebold-Yilmaz network is calculated from a T = 90, adaptive joint LASSO-VAR(2) estimation.
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Figure B23: Estimated volatility network on 2008-09-26 and 2008-09-29

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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Figure B24: Estimated volatility network on 2008-09-30 and 2008-10-01

Notes: First day (second day) networks are in the upper left (right) chart; the bottom chart
shows their difference at 32% significance levels. Top panels: Node sizes shows the SUM
values. The green (red) slice of the pie charts represents the share of the FROM (TO) spillover
indices of the FI. Edge directions mark the net spillover indices; their thickness represents the
magnitudes. Only the top 15% of the edges are shown on the charts. Bottom panel: Green
(red borders represent a significant decrease (increase) of the node’s net spillover index. Smaller
(Larger) sizes than the average size represent a significant decrease (increase) in SUM values.
Nodes: Blue nodes represent FIs from the group ”big,” yellow represents FIs from the group
”medium,” and grey nodes are related to the ”troubled” FIs. Nodes in the upper charts with
green letters represent FIs where FROM/SUM ≥ 55%, reds where TO/SUM ≥ 55%. In the
bottom chart, green letters represent FIs where the FROM/SUM ratio increased more than
10% and reds where TO/SUM increased more than 10%. MBB-VAR: Significance levels are
estimated with moving-block bootstrap method (block size = 15, simulation run = 1000). The
information of Diebold-Yilmaz network is calculated from a T = 150, adaptive joint LASSO-
VAR(2) estimation.
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