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1 Motivation of the research

Cooperative game theory is a model of many social dilemmas and financial and economic
problems. It is usually used when the result achieved by a community exceeds the sum of the
results achieved by individuals (synergy), or the total cost of an activity is lower than the sum
of the costs of the sub-tasks (savings) or its total risk is lower than the aggregate risk of the
sub-tasks (diversification). And the main question is, of course, how to distribute the surplus
among the actors in some “fair” way.

Applications of game theory

Social choice problems are usually solved by voting. The European Economic Community was
founded in 1957 by six countries shown in Table 1. A positive decision required at least 12
yes votes out of 17 based on the weights in column 2. At first glance, Luxembourg seems to
be over-represented with a voting power of a quarter of the West Germany, which is 150 times
larger. If we take a closer look at the numbers, we can see that there is no such situation
where Luxembourg’s vote counts. With all other five weights being even, it is impossible to
form a coalition of supporters of a proposal with a total weight of 11, which would be the only
situation where Luxembourg could change the decision. Since the weights are clearly misleading,
we would like to assign values to the players that reflect their true bargaining power.

Country Weight Population

Franciaország 4 44 million

Federal Republic of Germany 4 51 million

Italy 4 49 million

Belgium 2 9 million

Netherlands 2 11 million

Luxembourg 1 308 thousand

Table 1: Weights and population of EEC countries

A financial application is as follows. There are thirty brokers in the treasury of a commercial
bank, who can invest into any portfolio of thousands of assets available on the market. The
department’s total limit is HUF 30 billion, the capital requirement of the bank’s aggregated
portfolio cannot exceed this value at any time. The capital requirement is the Conditional Value
at Risk at 99.9% level of confidence, which is estimated from the historical data, assuming a
multidimensional normal distribution. The head of department approves a HUF 1 billion limit
for each broker, which the colleagues respect individually, however, when the capital requirement
of the bank’s aggregated portfolio is calculated, it is only HUF 13 billion. The reason for the
difference is that the capital requirement is not additive due to the diversification. The question
is how to distribute the total risk of the portfolio among the individual assets? In the literature
the problem is called “capital allocation” or “risk allocation” (see, for example, Colini-Baldeschi
et al. (2018), Csóka et al. (2009) and Csóka and Pintér (2016)).

Cooperative games appear frequently in economics, finance, even in statistics and law. The
general solution was given by Lloyd Stowell Shapley in 1953 in his famous paper A value for
n-person games. Shapley’s solution, which is now called the Shapley value, is the only general
solution concept that satisfies certain fairness conditions. Unfortunately - despite the simple
formula and the intuitive interpretation - we cannot calculate it precisely when the number
of players is too large, because the number of terms in the formula is not polynomial in the
number of players. The essence of this dissertation in one sentence is as follows. How can (or
can’t) we calculate or estimate effeciently the Shapley value of a cooperative game?
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2 Prior research results

The origins of cooperative games go back to the book Theory of Games and Economic Behaviour
(1944) by John von Neumann and Oskar Morgenstern.

Definition 2.1. A cooperative n-person game in characteristic function form is (or TU-game
for short) is an ordered pair (N, v) where N is a nonempty set and v : 2N → Z is a set function
over N such that v(∅) = 0.

The elements of N are players, the subsets of N are coalitions, function v is called charac-
teristic function and v(S) is the value of coalition S ⊆ N . The value of a coalition v(S) is the
same for all players, meaning transferable utility or TU for short. Let GN , denote all TU games
over player set N . This is a Z-module with the pointwise (or ”coalitionalwise”) operations.

Definition 2.2. A value for an n-person game is a ϕ : GN → QN function.

A value for a game is a solution concept, but it might be completely meaningless without
further assumptions. To define the ”fairness” of a value we need to introduce a the concept of
marginal contribution.

Definition 2.3. Let g ∈ GN be a game, S ⊆ N a coaltion and i ∈ N a player such that i /∈ S.
Player i’s marginal contribution to coalition S is

v′i(S) = v(S ∪ {i})− v(S).

Definition 2.4. A value ϕ : GN → QN

� satisfies equal treatment property (ETP), if for each g ∈ GN for all i and j players

(v′i(S) = v′j(S) ∀ i, j /∈ S ⊆ N) =⇒ ϕi = ϕj ,

� is efficient (EFF), if
∑

ϕi = v(N) ∀g ∈ GN ,

� satisfies null player property (NPP) if ∀g ∈ GN

v′i(S) = 0 ∀i /∈ S ⊆ N =⇒ ϕi = 0,

� is additive (ADD) if ϕ(g1 + g2) = ϕ(g1) + ϕ(g2) ∀g1, g2 ∈ GN .

According to the following result these properties characterize the value of cooperative
games.

Theorem 2.1 (Shapley, 1953). For all N 6= ∅ ∃!ϕ value that satisfies properties ADD, ETP,
NPP and EFF.

Shapley did not only prove the existence and uniqueness of such a value but deduced a
formula to calculate it.

Definition 2.5. Let N be a set of players in game g = (N, v). An order of arrival of players
is an o : N ↔ {1, 2, . . . , n} bijective function. For i ∈ N and j ∈ N o(i) = j ∈ N means that i’s
position is j in o. Let So(i) = {i′ ∈ N | o(i′) < o(i)} denote the players preceding i in o. The
Shapley value of game g = (N, v) is

Shi =
∑
o

v′i(So(i))

n!
∀i ∈ N. (1)
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Shi is the average marginal contribution of player i to the coalition of players arrived before
i, considering all of the possible order of arrivals of the n = |N | players, hence it is a sum of n!
terms. As the marginal contribution does not depend on the order of players if they form the
same coalition, the formula contains a lot of equal terms. If we combine them we get that

Shi =

∑
S⊆N\{i}

|S|! · (n− |S| − 1)!

n!
· v′i(S) =

1

n

∑
S⊆N\{i}

1(
n−1
|S|
) · v′i(S). (2)

Since the number of coalitions in a game of n players is 2n and the number of terms in
formula (2) is 2n−1, the Shapley value is computationally easy to calculate based on the list of
coalition values. However if we want to define a game with hundred players it is impractical to
list the values of all of the non-empty coalitions. In most cases the characteristic function is
defined by a simple formula and a ”small” set of parameters as the following examples show.

Example 2.1.

weighted voging game: Let n ∈ N be a positive integer, N = {1, 2, . . . , n}, w = (w1, w2, . . . , wn) ∈ Nn

and q ∈ Z. Let the value of each coalition S ⊆ N be defined by formula

v(S) =


1, ha

∑
i∈S

wi ≥ q,

0, ha
∑
i∈S

wi < q.

airport game: Let n ∈ N be a positive integer, let N be a set of n items for each i ∈ N let
ci ∈ N be a positive parameter and consider the characteristic function

v(S) = max{ci|i ∈ S}.

bankruptcy game: Let A ∈ Z+ be a non-negative integer, n ∈ N, l1, l2, . . . ln ∈ N and
consider the characteristic function

v(S) = max{0, A−
∑
j 6∈S

lj}.

The computational complexity of the Shapley value of a voting game given by the weights
of the players is a meaningful question, because the input is a sequence of n integers and the
output is n rational numbers, but to evaluate formula (2) it requires the calculation of a sum
of O(2n) terms. The problem is similar in case of most games.

One of the oldest results was published by Megiddo (1978). Let the set of players be
N = {1, 2, . . . , n} and let G(N ∪ {0}, E, d) be a rooted tree with weights on the edges d(i, j) ≥
0 (i, j ∈ N ∪ {0}) where 0 denotes the root. For an S ⊆ N coalition, let v(S) denote the sum
of weights of edges on a path from the root to a node in i ∈ S. The Shapley value of these cost
sharing games can be calculated in polinomial time using a simple graph-searching algorithm.

On the other hand, Deng and Papadimitriou (1994) states that the Shapley value of voting
games is #P-complete. Furthermore, it is easy to see that to decide if the Shapley value of a
player in a voting game is 0 is a generalization of the SUBSET SUM problem, which is well-kown
to be NP-hard.

The complexity results limit the possibilities for calculating the Shapley value, but there
are two options that can work in practice, both proposed by Shapley himself back in the ’60s.

� Though they never used this terminology, Mann and Shapley (1962) give a pseudopoly-
nomial algorithm for the case of voting games, based on Cantor’s idea, by recursively
computing a generator function. The algorithm is polynomial on sub-game classes where
the weights are polynomial in the number of players.

� Mann and Shapley (1960) suggests estimating the Shapley value using Monte-Carlo sim-
ulation.
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3 Main results

The contribution to the literature is as follows.

� A complexity of the Shapley value for a new class of games. We present some minor
results on the approximation of the Shapley value and the representation of games.

� A new Monte-Carlo method is introduced for estimating the Shapley value.

� We introduce the concept of linearly representable games and present an algorithm equiva-
lent in complexity to the method proposed by Mann and Shapley (1962) for voting games,
but more general, and its relation to airport games.

3.1 Representation and complexity of cooperative games

The calulcation of the Shapley value as a computational problem can be meaningfully defined
as input-output pairs. As it is impractical to consider the characteristic function a gigantic list
of coalition values, the first step is to define what we mean by passing a game to an algorithm.
Let n̄ denote the n̄ = {1, 2, 3, . . . , n} the set of the first n natural numbers.

Definition 3.1. A game class G ⊆
⋃

n∈N
Gn̄ is polinomially representable, if

� ∃Σ finite alphabet, that contains an empty symbol denoted by a star (∗) and a 0 and 1
symbol,1

� ∃TG Turing machine over Σ with at least three tapes and

� ∀g = (n̄g, vg) ∈ G ∃xg ∈ Σ∗0 =
⋃∞

i=0 (Σ \ {∗})i such that

– the length of xg is polinomial in ng and

– if we pass an ng-long 0-1 sequence u and xg to TG as input, it calculates the value
of the coalition represented by u in game g: TG(u, xg) = vg(S).

A polynomial representation means that a class of games can be sufficiently “compressed”
to make its Shapley value complexity a meaningful question. The games of example 2.1. are
given by such a concise representation (if the parameters are at most exponentially large in the
number of players), for example, in the case of voting games, there are n + 1 parameters, the
players’ weights, and the quota.

Definition 3.2. Let G ⊆
⋃

n∈N
Gn̄ be a polynomially representable class of games. Then the

words xg form a language LG = {xg ∈ Σ∗0 | g ∈ G}. We say that the ordered pair (LG, TG),
where TG is the Turing-machine that calculates the coalition values is polinomial representation
of G.

Though it is a tautology that a game class is polynomially representable iff it has a(t least
one) polynomial representation, the definition is not superfluous, because a game class can have
multiple polynomial representation, which leads to the problem of representational equivalence:
it is not clear how to check if two formally different polynomial representation defines the same
game. In certain cases this can even be intractable.

Theorem 3.1. It is co-NP-complete to decide whether two linear representations in the form
of example 2.1. represent the same voting games.

1Thus we can represent integer numbers in binary format;
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Proof. Given 2n+ 2 positive integers w1, w2, . . . , wn, q and w′1, w
′
2, . . . , w

′
n, q
′ we have to decide

if for every S ⊆ {1, 2, . . . , n} ∑
i∈S

wi ≥ q ⇔
∑
i∈S

w′i ≥ q′.

The special case when wi = w′i and q′ = q − 1 it is equivalent to the

@S ⊆ {1, 2, . . . , n} such that
∑
i∈S

wi = q

subset sum problem. Furthermore, the problem is obviously in co-NP.

Using the polynomial representation and representability we can formally define what we
mean by the efficient calculation of the Shapley value for a game class.

Definition 3.3. We say that the Shapley value can be computed in polynomial time for the
game class G ⊆

⋃
n∈N
Gn̄ if

� ∃(LG, TG) polynomial representation of G and

� a Turing machine T with at least three tapes, such that

� for each g ∈ G game T calculates its Shapely value in polynomial time based on its
representing word xg ∈ LG using TG as a subroutine.

Remark. The definition only requires that a class of games have (at least one) polynomial
representation that can be used to efficiently calculate the Shapley value. Theoretically, it is
possible that a game is representable in several ways, but the Shapley value can be calculated
from one of them but not from the other. This is not a contradiction, but in this case one
representation cannot be easily converted to the oter.

The results related to the complexity of the Shapley value are of two types: it is polynomial
for certain games (Megiddo, 1978), in other cases it is a generalization of an NP-hard problem
(Deng and Papadimitriou, 1994), however, the dichotomy is still an open question. A new
result presented in the dissertation is that for a new game class liability games introduced by
Csóka and Herings (2019),the Shapley value is NP-hard to compute. This result was published
by (Csóka et al., 2022) in 2022.

3.2 Estimation of the Shapley’s value using Monte Carlo simulation

The Shapley value, as the average marginal contribution of the players, is the expected value
of a discrete random variable, and thus – even if we cannot calculate it exactly – it can be
estimated with a Monte-Carlo simulation. The idea was first proposed by Shapley himself in
1960 (Mann and Shapley, 1960) and he examined several possible methods for reducing the
estimation error (variance) compared to the simple random sampling method, which can be
considered a natural benchmark.

In the fourth chapter of the dissertation, a new MC method is dicussed. The estimation by
ergodic sampling introduced by Illés and Kerényi (2019) generates a pair of samples that are
not independent (but negatively correlated to reduce the variance), and yet follow the law of
large numbers (so the estimate is consistent).

3.3 Exact pseudopolynomial algorithms

An algorithm is called pseudo-polynomial if its running time is a polynomial function of the
numerical value of the input (not necessarily the size of the input). The concept only makes
sense for problems where the input is a number number or a sequences of numbers. Since it
is typical in case of the Shapley value, it makes sence to develop algorithms, which are not
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necessarily polynomial as a function of the size of the input, but the running time, unlike the
brute force method, does not increase exponentially with the number of players. In the last
chapter of the dissertation, a new algorithm is discussed for a special, but wide class of games
linearly representable games. This game class and the algorithm proposed by Illés (2022).

4 Summary of the main results

� We have introduced the concept of polynomially representable games, a framework in
which the computational complexity of the Shapley value is a meaningful question.

� We have shown that the calculation of the Shapley value for the class of the recently
introduced liability games (Csóka and Herings (2019)) cannot be solved in polynomial
time (unless P = NP).

� We presented a new method of estimating the Shapley value using Monte-Carlo simulation.

� We introduced the concept of linearly representable games and showed that the calculation
of the Shapley value for them is pseudopolynomial. This is a generalization of several
previous results and covers unexamined cases, because both voting games, bankruptcy
games, and liability games are linearly representable.

� We have shown that the algorithm also works for non-linearly represented airport games,
and even runs in linear time after a great simplification, which is a new proof of a known
result.

Most of the results have been published in one article and two working papers:

� Csóka, Péter, Ferenc Illés, and Tamás Solymosi. ”On the Shapley value of liability games.”
European Journal of Operational Research 300.1 (2022): 378-386.

� Illés, Ferenc, and Péter Kerényi. ”Estimation of the Shapley value by ergodic sampling.”
arXiv preprint arXiv:1906.05224 (2019).

� Illés, Ferenc. ”Linearly representable games and pseudo-polynomial calculation of the
Shapley value.” arXiv preprint arXiv:2205.12324 (2022).
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