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I. INTRODUCTION 

With the advent of medical technology and new drugs, medical 

practice and prognosis of diseases with high mortality rates have 

undergone a remarkable transformation (Holmes and Wood, 2006). 

Without the contributions of the medical device and pharmaceutical 

industries, healthcare would be inconceivable, although these two 

professions are worlds apart (MedTech, 2015). Drugs are compounds 

of chemical origin that are designed to interact dynamically in some 

way with the body's metabolic or immune systems (MedTech, 2015). 

Contrary to drugs, the vast majority of devices function mechanically 

and have no visible effects on the human body. While there are 

altogether less than 4300 approved drug molecules in the world 

(drugbank, 2022), the number of digital health solutions is increasing 

at a breakneck pace; there are already over 300,000 health apps 

accessible, with another 200 being developed every day (IQVIA, 

2017). This thesis focus on a special class of digital medical devices: 

digital biomarkers (DBMs). "Digital biomarkers are objective, 

measurable, physiological, and behavioural parameters collected 

using wearable, portable, implantable, or digestible digital devices" 

(Babrak et al., 2019). 

Depending on the interaction of digital biomarkers with the human 

body, we divide these digital instruments into two categories: direct 

and indirect. For example, defibrillators that regulate heart rhythm 

may be called direct digital biomarkers that directly impact 

physiological parameters without the interference of a physician or 

the patient. The utility of such instruments depends mainly on the 
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technology involved. However, indirect digital biomarkers such as 

activity trackers just capture behavioural data such as heart rhythm or 

step count. The effect of these devices also depends on the change of 

human health behaviour or the decision of a health care professional. 

As a mainstay of evidence synthesis in medicine and the medical 

industries, systematic reviews (SRs) and meta-analyses (MAs) have 

gained prominence since the 1970s. They provide evidence-based 

information to inform decision making in medicine (Li et al., 2021). 

Evidence-based medicine and clinical guideline development require 

rigorous review (Rabar et al., 2012; Goff et al., 2014). 

It is highly recommended by the Cochrane Handbook (Higgins JPT, 

Thomas J, Chandler J, Cumpston M, Li T, Page MJ, 2022) for 

systematic reviews to follow some specific procedures during the 

study stages to avoid biases, and maintain high methodological 

quality. One of the Cochrane Handbook's suggestions is to formulate 

a complete research question while searching for systematic reviews. 

In this context, the PICO style, which stands for population, 

intervention, comparator, and outcome, has been advocated for 

clinical research. Formulating a research question requires a 

centralized and integrated system capable of categorizing the PICO 

of individual studies in systematic reviews using approved 

methodologies. The World Health Organization has proposed three 

proven techniques to classify population, intervention, and outcome 

in clinical research: ICD (International Classification of Diseases) 

(WHO, 2020), ICHI (International Classification of Health 
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Interventions) (World Health Organization, 2020), and ICF 

(International Classification of Functioning, Disability and Health)  

(WHO, 2017) tools. AMSTAR-2 (Shea et al., 2017), is also one of 

the validated tools for researchers to evaluate the methodological 

quality of systematic reviews and meta-analyses. One of the 

worldwide credible techniques for analysing the validity and quality 

of the reported effect sizes in meta-analyses is GRADE (Kumar and 

Taggarsi, 2021), which assesses the quality of the calculated effect 

sizes, also known as evidence quality. Prior to making any medical 

decisions, the Cochran Handbook recommends assessing the quality 

of the evidence (Lefebvre et al., 2019). Concerns about insufficient 

sample size and lack of statistical power have received much attention 

in both primary studies and meta-analyses (Brok et al., 2008, 2009; 

Thorlund et al., 2011). Type II errors are more likely in randomized 

controlled trials (RCTs) with small sample sizes, emphasizing the 

need for optimum sample sizes to enhance statistical power (Sjögren 

and Hedström, 2010). If a meta-analysis was unable to incorporate 

and exclude some relevant studies, the effect estimates of the meta-

analysis may not be accurate and may be inflated or understated, a 

phenomenon, which called publication bias. Publication bias may 

have a detrimental impact on the validity of effect size findings from 

meta-analyses (Kicinski, Springate and Kontopantelis, 2015).  

The fast growth of systematic reviews in digital health (Ibrahim et al., 

2022) has been attributed, at least in part, to the increased output of 

systematic reviews in digital biomarkers. In terms of rules, standards, 

etc., there are distinctions between digital and non-digital or 
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pharmaceutical products. No research has, to our knowledge, 

evaluated the methodological issues of digital biomarker-based 

studies and compared them to non-digital biomarkers. In this thesis, 

we evaluated key methodological issues in digital biomarker research 

and compared them to non-digital biomarkers and pharmaceuticals. 

The results of this thesis will have significant implications for 

researchers and managers in the digital health technologies industry 

and digital biomarkers. 

 

II. ESTABLISHING A CLASSIFICATION SYSTEM 

IN DIGITAL BIOMARKERS 

 

II.1. Introduction 

In the practice of evidence-based medicine (EBM), it is generally 

recognized that the formulation of the research question is the most 

significant and vital aspect of research integrity (Eldawlatly et al., 

2018). Most academics adhere to the PICO (population, intervention, 

comparison, and outcome) paradigm when formulating research 

questions and conducting literature reviews (Schardt et al., 2007; 

Farrugia et al., 2010).  the World Health Organization family of 

international classifications (WHO) is an integrated set of 

classifications that serve as a global language for health information 

and consists of three reference classifications: the International 

Classification of Diseases (ICD), the International Classification of 
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Functioning, Disability and Health (ICF), and the International 

Classification of Health Interventions (ICHI) (Fung et al., 2021). We 

conducted a review to assess the usability of ICD-11 (the most recent 

version of ICD) for categorizing disease domains, ICHI for 

categorizing interventions, and ICF for categorizing outcomes in 

systematic reviews of digital biomarker-based studies. We also 

assessed the usability of the ICF tool for categorizing behavioural and 

physiological data in systematic reviews of digital biomarker-based 

studies.  

This study hypothesized that these tools are capable of categorizing 

populations, interventions, outcomes, and behavioural or 

physiological data of systematic reviews of digital biomarker-based 

studies. If the tools can be used in formulating the research questions 

in the style of PICO and categorizing behavioural/physiological data 

in the field of digital biomarker research, this will lead to integration 

of digital biomarker research and improve the quality of systematic 

reviews and meta-analyses in the field. 

II.2 Methods 

This section is based on a research paper published at the JMIR 

mHealth and uHealth journal (Motahari-Nezhad et al., 2021). The 

individual studies that met the inclusion criteria within the identified 

systematic reviews (SRs) were extracted, and subsequent to the 

removal of duplicate records, the remaining studies were deemed 

eligible for final analysis. The ICD-11, ICHI, and ICF tolls were used 

to categorize populations, interventions, and outcomes, respectively. 
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Digital biomarkers (behavioural/physiological data) was also 

categorized using the ICF tool.  

II.2.1 Statistical analysis 

As explained, we hypothesized that in at least 95% of the cases 

populations, interventions, outcomes, and digital biomarkers can be 

categorized using ICD-11, ICHI, and ICF tools. For testing the 

hypothesis, we generate an indicator variable, which takes the value 

of 1 (“yes”) if  

A: All populations can be categorized using the ICD-11 tool AND  

B: All interventions can be categorized using the ICHI tool AND  

C: All outcomes can be categorized using the ICF tool AND  

E: All DBMs can be categorized using the ICF tool, otherwise 0 (No).  

To test H1, we calculated the 90% confidence intervals for the 

proportion of “Yes” options. If the upper limit of the 90CI < 0.95, we 

reject H1 with one-tailed p<0.05. Rejection of H1 suggests that the 

WHO classification systems fail to full categorize digital biomarkers.  

II.3 Results 

273 single studies were considered for the final analysis.  

Based on the data presented in the subsequent graph, it was concluded 

the upper limits for intervention, outcome, and digital biomarker 

surpass 0.95.  
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Consequently, we infer that ICHI can be employed to classify 

interventions, and ICF tool can be used to categorize outcomes and 

behavioural/physiological data (digital biomarkers) in studies 

focused on digital biomarkers. However, it is noteworthy that these 

tools are not suitable for populations, as the upper limit falls below 

0.95. Furthermore, upon considering all the study components, where 

the upper limit is 0.85, we refute the hypothesis (H1) suggesting the 

appropriateness of WHO tools for categorizing digital biomarker 

studies. Furthermore, as a result of excluding 35 studies involving 

healthy and non-clinical populations, the analysis reveals an upper 

limit of 0.96. Accordingly, we establish that WHO tools are 

applicable for categorizing digital biomarker studies focusing on 

patients with specific diseases. 

II.4 Conclusion 

Digital biomarkers are predominantly employed in populations 

without pre-existing health conditions, and existing classification 

systems often lack coverage for healthy populations, particularly 
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those at risk. Conversely, the World Health Organization (WHO) 

tools demonstrated effective classification of PICO (Population, 

Intervention, Comparison, and Outcome) statements for studies 

involving individuals with illnesses. In the rapidly evolving digital 

landscape, the establishment of a standardized classification system 

holds significant importance for medical decision-makers and payers. 

 

III. COMPARING THE STATISTICAL POWER OF 

DIRECT AND INDIRECT DBMs  

III.1 Introduction 

Inadequate statistical power indicates that the study lacks the requisite 

power to detect significant effects (Pigott and Polanin, 2020). This 

deficiency can lead to a study that yields findings that do not 

accurately reflect the true magnitude of the impact, resulting in 

questionable outcomes (Nord et al., 2017). Indirect digital biomarkers 

introduce several layers of uncertainty, encompassing factors such as 

individuals' comprehension and response to the generated signal. 

Conversely, direct digital biomarkers circumvent the need for 

additional human factors. Furthermore, direct digital biomarkers 

assume a higher regulatory risk category due to interventions carried 

out by machines rather than healthcare professionals. Therefore, 

studies involving direct digital biomarkers may exhibit more 

meticulous planning and stringent methodologies and we 

hypothesised that direct digital biomarkers would possess greater 

statistical power compared to their indirect counterparts. 
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We conducted a study to evaluate the statistical power of studies of 

digital biomarkers and to compare the statistical power between direct 

and indirect digital biomarkers to determine which type of digital 

biomarkers has more power and which type of digital biomarkers has 

too little power.  We assumed that direct digital biomarker studies 

have higher power than that of indirect digital biomarkers. 

Determining and comparing the power of direct and indirect digital 

biomarkers will inform clinical researchers and health policy makers 

about how statistically powerful these studies are and how direct and 

indirect digital biomarkers differ in terms of statistical power.  

III.2 Methods 

This research is based our article published in the Journal of Medical 

Internet Research. For further details regarding the search strategies, 

screening, inclusion and exclusion criteria refer to the published paper 

(Hossein Motahari-Nezhad, Al-Abdulkarim, et al. 2022). The 

individual studies included in the meta-analyses identified through 

systematic reviews (SRs) were extracted, and subsequent to the 

removal of duplicate records, were divided into two categories direct 

and indirect DBMs and their statistical power was calculated. 

III.2.1 Power calculation 

For continuous outcomes the ‘pwr’ package in the R programming 

language, and for dichotomous outcomes, the STATA package 

‘Power’ were utilized. All power calculations were performed 

considering a 95% confidence levels and an alpha value of 0.05. 
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III.2.2 Statistical analysis 

To test the hypothesis, the average of statistical power of the direct 

and indirect DBMs was calculated and compared. To test the 

hypothesis, we first test the normal distribution of the data between 

the two groups using the Shapiro Wilk test with 95% confidence 

intervals. A non-parametric Mann Whitney U test with 95% 

confidence intervals was used to test the hypothesis. 

III.3 Results 

273 studies were identified. The statistical power of each study was 

calculated and reported as a measure between 0 and 1. 

The analysis for testing the normal distribution showed non-normal 

distribution of power in both groups direct and indirect digital 

biomarkers (p-values <0.05). Consequently, the results of Wilcoxon 

rank-sum (Mann-Whitney) test revealed a non-significant difference 

between direct and indirect digital biomarkers in terms of the 

statistical power (p-value>0.05).  

Given that a power level of 0.8 is conventionally considered the 

minimum threshold for an optimal study power (Serdar et al., 2021), 

we classified the studies into three distinct categories. The first group, 

denoted as "underpowered studies," comprises those studies whose 

power falls below 0.8. The second group encompasses studies with 

power values ranging between 0.8 and 0.9, representing the range 

considered as the optimal power level. We refer to this category as 

the "optimum power" group. Lastly, the third group encompasses 

studies exhibiting power levels exceeding 0.9, which we designate as 
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the "excess-powered studies" group. As observed in the following 

figure, the distribution of power levels in both the direct and indirect 

digital biomarker groups exhibits an equivalent pattern. In both 

groups, a substantial proportion of studies, accounting for 

approximately 75%, demonstrate an underpowered nature. 

 

III.4 Conclusion 

In light of their divergent mechanisms of action, it is recommended 

that researchers and healthcare industries adopt a new classification 

for digital biomarker technologies, distinguishing between direct and 

indirect types and they were regulated differently. When commencing 

clinical investigations to assess the efficacy of these technologies as 

interventions, it is imperative for researchers and healthcare 

industries to ensure an optimal power ranging from 0.8 to 0.9. While 

straying below 0.8 devastates the validity of the findings, exceeding 

0.9 unnecessarily squanders time and budgetary resources. 

Recognizing the underpowered nature of individual clinical studies 

pertaining to digital biomarkers, physicians should not rely solely on 
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such investigations. Instead, our evaluation accentuates the 

significance of consulting meta-analytic results, as these evidence 

syntheses enhance the statistical power of the study. 

IV. METHODOLOGICAL QUALITY OF 

SYSTEMATIC REVIEWS OF DIGITAL 

BIOMARKERS COMPARED WITH 

SYSTEMATIC REVIEWS OF NON-DIGITAL 

BIOMARKERS OR PHARMACEUTICALS 

 

IV.1 Introduction 

The development of systematic reviews over the past decades has 

raised concerns that the exponential growth in the number of 

published systematic reviews may have contributed to an increase in 

the amount of information that needs to be processed (Bastian, 

Glasziou and Chalmers, 2010; Fuhr and Hellmich, 2015; Tebala, 

2015; Ioannidis, 2016). Due to the rapid expansion in the field, we 

assumed that methodological quality of digital biomarker systematic 

reviews may be compromised. However, the quality of systematic 

reviews of digital biomarkers compared with those of non-digital 

biomarkers is unclear. To our knowledge, there have been no 

published studies that systematically compared the quality of 

systematic reviews of digital biomarker-based interventions with that 

of non-digital biomarkers. Therefore, with this study, we aimed to 

determine the difference between the methodological quality of 

systematic reviews of digital biomarker-based interventions and non-
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digital biomarkers. In the absence of official standards and definitions 

for digital biomarkers, this study assumed that the methodological 

quality of systematic reviews of non-digital biomarkers is higher than 

that of digital biomarkers. The results of this research will inform 

researchers in the field of digital biomarkers and highlight the 

weaknesses and positive points of systematic reviews of digital 

biomarker-based interventions compared to non-digital biomarkers in 

terms of methodological quality, leading to better medical decision 

making utilizing digital biomarkers. 

IV.2 Methods 

The most significant digital biomarker-based systematic reviews 

(implantable cardiac defibrillators in heart failure patients for 

mortality and wearable activity trackers to change weight in all 

populations) and their non-digital biomarker or pharmaceutical pairs 

were identified through separate searches in the PubMed electronic 

database. 

IV.2.1 Statistical analysis 

The methodological quality of the included systematic reviews was 

assessed using the AMSTAR-2 tool (Shea et al., 2017). 

Consequently, Shapiro Wilk test with a 95% confidence intervals was 

used to ascertain the normality of the methodological quality between 

the two groups. After checking the normal distribution of the data 

between the two groups, a two sample t-test was used to test the 

hypothesis. 
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IV.3 Results 

20 implantable cardiac defibrillator-based and 14 wearable activity 

tracker-based systematic reviews with their drug-based peers were 

included in the final data analysis and their methodological quality 

was assessed.  

Due to the normal distribution of the methodological quality in both 

groups (p-values >0.05), a t-test revealed a non-significant difference 

in the methodological quality between the two groups (p-value>0.05). 

According to the results, we cannot accept the hypothesis that the 

methodological quality of digital biomarker-based systematic 

reviews is significantly lower than that of non-digital biomarker or 

pharmaceuticals. 

Subsequent assessments also revealed that the majority of included 

systematic reviews in both groups exhibited critically low levels of 

methodological quality, as depicted in the following figure. 
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DBMs: Digital biomarkers, SRs: Systematic reviews, MQ: Methodological quality, H: 

High methodological quality, M: Moderate methodological quality, L: Low 

methodological quality, CL: Critically low methodological quality. 

 

IV.4 Conclusion 

The field of digital biomarkers is still in its early stages and is rapidly 

evolving, leading to potential variations in the methodological quality 

of systematic reviews (Iqbal and Biller-Andorno, 2022). Unlike 

pharmaceuticals, which possess well-established standards for study 

design and reporting (FDA, 2023), the field of digital biomarkers is 

still establishing best practices for conducting studies and 

synthesizing evidence, while the findings of this study demonstrate 

that there is no significant difference in the methodological quality of 

systematic reviews between pharmaceuticals and digital biomarkers. 

While methodological quality is an essential component of systematic 

reviews, it is not the only factor that needs to be considered when 

evaluating the potential clinical utility of digital biomarkers or 

pharmaceuticals. Assessing the quality of evidence and the cost-

effectiveness of these interventions are critical next steps to inform 

clinical decision-making. In addition to the quality of evidence, cost-

effectiveness is also a crucial consideration when evaluating the 

potential clinical utility of digital biomarkers and pharmaceuticals. 

While both interventions may show promising results in terms of 

clinical efficacy, the cost of implementing these interventions may 

also need to be considered. In some cases, the cost of implementing a 

digital biomarker or pharmaceutical may be prohibitive, particularly 
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in resource-limited settings. Therefore, it is important to consider the 

quality of evidence and the cost-effectiveness of digital biomarkers 

and pharmaceuticals in addition to methodological quality when 

making clinical decisions. This comprehensive approach to 

evaluation can help ensure that medical professionals make informed 

and effective decisions that optimize patient outcomes while 

minimizing costs. 

V. ASSESSING AND COMPARING THE QUALITY 

OF EVIDENCE OF DIGITAL BIOMARKER-

BASED META-ANALYSES WITH THAT OF 

NON-DIGITAL BIOMARKERS OR 

PHARMACEUTICALS 

 

V.1 Introduction 

Evidence-based medicine is an essential part of today's practice. It is 

so important that it is impossible to imagine contemporary health care 

if evidence and its quality are neglected (Szajewska, 2018). SRs and 

meta-analyses give a less biased, more exact estimate on a clinical 

problem, making them the gold standard in evidence-based medicine 

(Oxman, 1993).  

In addition to the many advantages of meta-analyses for medical 

research, some disadvantages should also be noted. For example, 

when the studies included in a meta-analysis are so heterogeneous, 

not enough studies and equal sizes in a meta-analysis, the exclusion 
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of some other related studies from a meta-analysis, the inclusion of 

studies with different research questions, all these are reasons that 

affect the validity of a meta-analysis (Lee, 2018). In this regard, there 

is a validated tool, namely GRADE (Grading of Recommendations 

Assessment, Development, and Evaluation Working Group), to 

assess the validity of the results of a meta-analysis (quality of 

evidence). As discussed in previous chapters, the number of digital 

biomarker-based systematic reviews is increasing. Therefore, we aim 

to compare the quality of evidence from meta-analyses based on 

digital biomarkers with the quality of evidence from non-digital 

biomarkers (e.g., drug therapies) to determine which of them provide 

high quality evidence. We hypothesized that the number of low or 

very low quality of evidence of digital biomarker-based meta-

analyses is significantly higher than that on non-digital biomarker or 

pharmaceuticals. Assessing the quality of evidence from digital 

biomarker-based meta-analyses compared with non-digital 

biomarkers (e.g., pharmaceuticals) will help physicians and health 

policy makers select the best treatment strategies. 

V.2 Methods 

We utilized the identical set of studies employed in the previous 

hypothesis to investigate the current research question. 

V.2.1 The assessment of the quality of evidence 

We assessed the quality of evidence for each outcome using the 

GRADE system (Guyatt et al., 2008; Schünemann et al., 2013). By 

default, GRADE classifies evidence from randomized controlled 
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trials as high quality. However, this rating can be downgraded based 

on the assessment of the following five quality domains: 1) risk of 

bias (Guyatt, Oxman, Vist, et al., 2011), 2) inconsistency (Guyatt, 

Oxman, Kunz, Woodcock, Brozek, Helfand, Alonso-Coello, 

Glasziou, et al., 2011), 3) imprecision (Guyatt, Oxman, Kunz, 

Brozek, et al., 2011), 4) publication bias (Guyatt, Oxman, Montori, 

et al., 2011), and 5) indirectness (Guyatt, Oxman, Kunz, Woodcock, 

Brozek, Helfand, Alonso-Coello, Falck-Ytter, et al., 2011). 

Depending on the severity of the quality concerns, a downgrade of 0, 

1, or 2 can be proposed for each domain. 

V.2.2 Statistical analysis 

Meta-analyses were divided into two groups: digital biomarkers and 

non-digital biomarkers or pharmaceuticals, whose quality of evidence 

was assessed using the above strategies. If the quality of evidence of 

a meta-analysis was low or very low, we selected "yes". Otherwise (if 

the quality of evidence of a meta-analysis was high or moderate), the 

quality of evidence was considered as "no". Consequently, the Fisher 

exact test using 95% confidence intervals was applied to test the 

hypothesis. 

V.3 Results 

A total of 34 meta-analyses focusing on DBMs and 34 meta-analyses 

pertaining to non-DBMs or pharmaceuticals were included in the 

final analysis. 

The results of the investigation revealed an equal distribution of 

evidence between the two interventions, with each modality 
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exhibiting three instances of high-quality evidence, thirty instances of 

moderate-quality evidence, and a low-quality evidence. Moreover, no 

evidence of very low quality was observed for either digital 

biomarkers or pharmaceuticals. The majority of the meta-analyses 

included in both groups were of moderate quality of evidence. 

Conversely, the number of high-quality evidence meta-analyses was 

limited to 3 out of 34, whereas only 1 out of 34 was rated as low-

quality in both groups as shown in the following graph. 

 

QoE: Quality of evidence, H: High quality of evidence, M: Moderate quality of 

evidence, L: Low quality of evidence, VL: Very low quality of evidence. 

The Fisher's exact test, which tests the hypothesis that one group has 

higher proportion than the other group, has a p-value of 0.97, which 

also indicates no evidence of an association. Therefore, based on the 

observed data, we can conclude that there is no significant difference 

between these two groups and we can reject the hypothesis that the 

proportion of meta-analyses of digital biomarker-based interventions 
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with low or very low quality evidence is higher than that of non-

digital biomarkers or drug-based interventions.  

Supplementary analyses were conducted to compare heterogeneity, 

sample size, the number of included studies, and the percentage of 

studies with a low risk of bias between the two groups. The Shapiro-

Wilk test results indicated a non-normal distribution for all the 

aforementioned variables in both groups (p-values < 0.05). 

Consequently, a rank sum test was employed to assess the differences, 

and the findings ultimately demonstrated no statistically significant 

distinction between the two groups regarding heterogeneity, the 

number of included studies, sample size, and risk of bias (p-values > 

0.05). The following Table shows the descriptive statistics of the 

variables in both groups’ digital biomarkers and non-digital 

biomarkers or drug-based meta-analyses. 

The distribution of effect sizes' magnitudes within both groups was 

also assessed as a supplementary analysis. A substantial proportion of 

effect sizes within both groups exhibited a small magnitude of effect. 

Conversely, while no effect size of digital biomarkers exhibited a big 

effect, a limited number of non-digital biomarkers or pharmaceuticals 

yielded big magnitude of effects.  
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Variable Type of meta-

analysis 

Mean Standar

d error 

95% 

confidenc

e intervals 

 

Heterogeneity 

DBMs 29.3  5.72 17.68 – 

40.94 

Non-DBMs or 

pharmaceutica

ls 

26.79  6 14.58 - 39 

 

Sample size 

DBMs 3497 925.92 1613.11 – 

5380.71 

Non-DBMs or 

pharmaceutica

ls 

3229.6

8 

614.77 1978.91 – 

4480.44 

 

Number of 

included 

studies 

DBMs 8.29 0.94 6.38 – 

10.2 

Non-DBMs or 

pharmaceutica

ls 

7.29 0.92 5.43 – 

9.16 

 

The 

percentage of 

included 

studies with 

low risk of 

bias 

DBMs 22.35 5.64 10.87 – 

33.83 

Non-DBMs or 

pharmaceutica

ls 

30.43 6.06 18.11 – 

42.76 

 

V.4 Conclusion 

Both digital health technologies and pharmaceutical interventions 

contribute equally to the body of evidence. Furthermore, it is crucial 

to address the issue of risk of bias as a significant factor affecting the 

reliability of research outcomes. To overcome this limitation, it is 
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essential to conduct more clinical studies with a low risk of bias. By 

ensuring that bias is minimized or eliminated, researchers can 

generate unbiased outcomes that can be utilized in meta-analyses. 

 

VI. PUBLICATION BIAS IN DIGITAL 

BIOMARKER-BASED META-ANALYSES AND 

NON-DIGITAL BIOMARKER-BASED OR 

PHARMACEUTICAL META-ANALYSES 

 

VI.1 Introduction 

Publication bias may have a detrimental impact on the validity of 

effect size findings from meta-analyses. Publication bias may lead to 

an incorrect pooled estimate of a treatment effect in a meta-analysis 

(Almalik, Zhan and van den Heuvel, 2021). For this reason, the 

results of a meta-analysis are only as reliable as the data that support 

them; for example, including only published studies could lead to an 

exaggeration of the effectiveness of digital biomarker interventions, 

whereas including unpublished studies with insignificant results 

could lead to a shift in the mean effect estimate. Therefore, we 

performed a systematic review of systematic reviews to evaluate 

publication bias in digital biomarker meta-analyses. Due to the fact 

that digital health technologies and digital biomarkers lack unified 

definitions and names compared to pharmaceuticals, a comparative 

study was also conducted to compare the publication bias in digital 

biomarkers and non-digital biomarkers. It was hypothesized that 
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publication bias is more prevalent in digital biomarker-based meta-

analyses than in non-digital biomarker-based meta-analyses. This 

study assessed the publication bias difference between meta-analyses 

of digital biomarker-based interventions and non-digital biomarker-

based interventions. 

VI.2 Methods 

This section is based in part on an our article published in the Journal 

of Medical Internet Research (Hossein Motahari-Nezhad, Al-

Abdulkarim, et al. 2022). According to the results of this article, 22 

systematic reviews with 95 meta-analyses (outcomes) were included. 

According to the Cochrane Handbook, the assessment of publication 

bias should be performed in meta-analyses with at least ten studies. 

Therefore, meta-analyses with at least ten studies were considered for 

the assessment of publication bias and separate searches were 

conducted to find their matched non-digital biomarkers or 

pharmaceutical-based meta-analyses. 

IV.2.1 The assessment of Publication bias 

Twenty meta-analyses including at least 10 studies of interventions 

based on digital biomarkers were identified, and similar searches 

were conducted to find other similar meta-analyses with the same 

population and outcomes but a non-digital biomarker or 

pharmaceutical intervention. After another 20 meta-analyses on non-

digital biomarkers were found, the trim-and-fill method was used to: 

1- Identify the number of missing studies in meta-analyses 
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2- Determine the change in effect size of each meta-analysis, 

called adjusted effect size, using the trim-and-fill method, 

and finally the meta-analyses of the two groups were 

compared in terms of the number of missing studies and 

adjusted effect sizes. 

VI.2.2 Statistical analysis 

In this study, we tested two following hypotheses: 

1. As the first hypothesis, it was hypothesised that the proportion of 

missing studies in meta-analyses based on digital biomarkers would 

be significantly higher compared with that of non-digital biomarkers 

or pharmaceuticals. 

2. As a second hypothesis, it was hypothesised that the difference 

between the reported effect size and the adjusted effect size in meta-

analyses of digital biomarkers would be significantly higher than that 

of non-digital biomarkers or pharmaceuticals. 

The trim-and-fill approach determined the number of missing studies 

and the adjusted effect size. In order to establish the level of 

publication bias, the reported effect sizes and the effect sizes 

recalculated using the trim-and-fill approach (adjusted effect size) 

were compared. The assessment of the normal distribution for both 

the number of missing studies and the discrepancy between the 

reported and adjusted effect sizes was conducted using the Shapiro-

Wilk test. Subsequently, a non-parametric Mann-Whitney U test was 

utilized to investigate potential significant differences between the 



31 

 

two groups concerning the number of missing studies and the 

magnitude of the effect size change. 

VI.3 Results 

20 meta-analyses from 13 SRs which includes at least 10 studies were 

deemed eligible for the final examination. Furthermore, 

supplementary searches were conducted to identify all peer studies 

related to non-DBMs or drug-based meta-analyses from the 

aforementioned twenty meta-analyses. 

Based on the results of data analysis, the mean number of missing 

studies in meta-analyses of digital biomarkers and non-DBMs or 

pharmaceuticals was found to be 2.3 and 2.35, respectively. 

Specifically, the effect size of digital biomarkers exhibited an average 

relative change of 0.14, whereas for pharmaceuticals, this alteration 

was calculated as 0.08. Despite the minimum relative change being 

identical for both groups (zero), the maximum relative change in 

effect sizes was higher in digital biomarkers, being approximately 

twice that of pharmaceuticals (0.72 compared to 0.32). 

The outcomes of Mann-Whitney U test failed to reveal any significant 

disparities between the two groups in terms of either the number of 

missing studies or the relative changes in effect sizes (p-value >0.05). 

Therefore, we conclude that no significant distinctions exist between 

the two groups concerning the number of missing studies and 

alterations in effect sizes. 
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VI.4 Conclusion 

Despite the fact that non-digital health or pharmaceutical 

interventions adhering to more well-established regulations and 

clinical research practices, including precise definitions and 

standardized nomenclature, no significant disparities were observed 

when compared to digital biomarkers. The absence of noteworthy 

distinctions between the two groups regarding the number of missing 

studies and changes in effect sizes suggests a comparable level of 

search quality. To ensure comprehensive inclusion of all relevant 

studies in a meta-analysis, it is essential to conduct a more 

comprehensive search in both groups, thereby minimizing the 

occurrence of missing studies across all meta-analyses. Achieving 

this objective necessitates the establishment of robust guidelines and 

the formulation of specific definitions and terminologies for digital 

health technologies within the clinical study domain.  

VII. Conclusions and practical implications 

 

VII.1 Classification of DBM studies using WHO tools 

Ascertaining the optimal digital intervention poses a challenge for 

medical and financial decision-makers, surpassing the complexities 

encountered in familiarizing oneself with thousands of drugs. To 

tackle clinical queries and facilitate decision-making, the formulation 

of PICO (Patient, Intervention, Comparison, Outcome) statements 

aids in structuring clinical questions. Our observation on the coverage 

of populations by WHO systems, revealing an emphasis on 
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populations with illness while offering limited coverage for healthy 

populations. 

The utilization of traditional medical technologies primarily occurs in 

response to illness, whereas the advent of digital technologies has 

opened up vast possibilities for preventive interventions, which is 

known as the evolution from treatment to prevention by digital 

healthcare (Park et al., 2019). The World Health Organization 

(WHO) suggests that the adoption of digital health technologies, such 

as wearables, can facilitate lifestyle modifications aimed at promoting 

preventive measures (Khan et al., 2017). Governments, health 

systems, and other relevant stakeholders should acknowledge and 

appreciate the substantial potential of digital tools in disease 

prevention, and accordingly modify their administrative frameworks 

to effectively incorporate and harness the capabilities of these tools. 

While the coding of clinical outcomes was less onerous with a limited 

number of drugs, the advent of digital transformation necessitates the 

coding of clinical results to ensure efficient evaluation and integration 

of digital interventions into healthcare practice. 

VII.2 Statistical power of direct – indirect biomarkers 

Devices categorized as high risk, known as direct DBMs, are those 

that execute interventions without requiring human interaction. On 

the other hand, devices involving human interaction are considered 

lower risk, termed indirect DBMs. The authorization and 

reimbursement of high-risk devices necessitate a greater volume of 

clinical evidence (Zah et al., 2022; NICE, 2023). The Medical Device 
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Regulation (MDR) aims to enhance patient safety and ensure 

improved quality standards, emphasizing the need for firms to invest 

additional efforts in meeting these standards, particularly when 

developing high-risk devices. While digital developers, often smaller 

firms compared to pharmaceutical counterparts, may encounter 

limitations in conducting well-powered trials due to resource 

constraints, this jeopardizes the viability of their investments. 

Investors, owners, CEOs, and other stakeholders should consider this 

issue, emphasizing the imperative for robust clinical studies. 

Consequently, an overall enhancement in expertise pertaining to the 

development and execution of clinical studies within the device 

industry is warranted. Investors, in turn, can utilize the statistical 

power of clinical studies as an indicator of potential returns on 

investment, highlighting the importance of robust study designs and 

sample sizes. 

VII.3 Digital vs non-digital: quality or SLR methods, quality of 

evidence, publication bias 

Irrespective of variations in industry structure, technology, and 

regulatory standards, stakeholders such as clinicians, payers, and 

patients hold a common expectation for robust supporting evidence 

when it comes to the utilization of technologies within healthcare 

systems. Developers of digital technologies must recognize and 

acknowledge this fundamental requirement, as they will eventually 

face the necessity of meeting evidence standards akin to those 

imposed on pharmaceuticals. This realization poses a considerable 
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management and investment challenge for smaller, more innovative 

firms, highlighting the need for careful strategic planning and 

resource allocation. 

While the attainment of better evidence appears to correlate with 

increased costs, the absence of sufficient evidence may impede the 

adoption of technologies in treatment guidelines and public financing 

initiatives, ultimately hindering the widespread implementation of 

innovative solutions. Hence, the generation of non-high quality 

evidence may ultimately contribute to a wasteful utilization of 

resources during the development process. 

Even a relatively modest level of publication bias can contribute to an 

inefficient allocation of resources, resulting in wastage within public 

expenditure. Such misallocation has the potential to undermine public 

welfare and compromise the optimal utilization of available 

resources. 

VII.4 Conclusion 

The Medical Device Regulation (MDR) has significantly improved 

European medical device regulatory standards, addressing the above 

concerns and improving clinical evidence. Despite MDR 

implementation delays, digital health technology evidence 

requirements are rising. Companies that achieve these higher clinical 

requirements will survive and obtain access to large interconnected 

markets, while those that fail may lose their market authorisation. 

Thus, medical technology enterprises may gain a competitive edge by 

strategically planning and executing extensive clinical investigations 
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to provide high-quality clinical data. Developing these essential skills 

needs immediate attention and effort. Digital health investors should 

actively monitor industry players' evidence quality and clinical trial 

competence, since these characteristics may significantly increase 

company risk. 
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