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Chapter 1

Introduction

According to the traditional paradigm of financial economics, participants of cap-
ital markets are rational, and the markets are efficient (Malkiel and Fama, 1970).
Although the rationality of market participants and the efficiency of markets are
not considered realistic by many critics, these ideas are deeply rooted in financial
economics. The heterogeneous agent literature of financial markets breaks with effi-
cient markets and rational investors and imagines the market as a multidimensional
dynamic system where the portfolio of traders, asset prices, and market weights
evolve simultaneously. This thesis aims to join this literature. In such models, mar-
ket participants are boundedly rational – they follow heuristic investment strategies
and make their decisions based only on information available to them.

The thesis has a theoretical and a technical goal. The the theoretical goal is
to examine the impact of investor heterogeneity and heuristic distortions on asset
prices and investor profitability using agent-based modeling. The main idea of the
thesis is that supply-demand disequilibrium in the market is reflected in the asset
price dynamics. Through this, we demonstrate phenomena such as the separation
of the asset price from the fundamental value, the sudden rise and fall of the asset
price, the positive or negative autocorrelation and the heavy-tailed distribution of
the returns. In addition to these phenomena, we will examine the profitability and
price impact of canonical investment strategies: fundamental, technical and index
trading.

The technical goal is to produce a realistic stochastic financial model in which the
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stochastic behavior of the phenomena mentioned above can be analyzed analytically.
A shortcoming of the agent based literature of financial markets is that it does not
examine the stochastic nature of the models in sufficient depth. In almost all cases,
the analytical results are only about the deterministic skeleton of the models, while
the stochastic model is only examined through simulation. In this paper, we try to
break with this tradition and provide (quasi)analytical results in stochastic cases as
well.

Structure of the thesis

Chapter 2 serves two functions. On the one hand, it is a literature review of agent-
based financial modeling, with focus on its branch in which a few canonical invest-
ment strategies compete, and the mathematical model is usually a few-dimensional
stochastic dynamic system. On the other hand, in the chapter we present – through
simple dynamic equations – the most important phenomena and effects modeled in
the later parts of the thesis; the agents, the evolution realized through the develop-
ment of their wealth and the market price mechanism.

We discuss two continuous-time models in the thesis. Chapter 3 presents the
author’s study published in a Hungarian economics journal Bihary and Víg (2020).
In this study, the volatility is constant as usual in the literature, and interesting
nonlinear effects appear through the traders’ position function. We examine the
long-term stability of the stochastic model through the invariant distribution of
certain relevant variables. Due to nonlinear effects, multimodal behavior appears in
the case of distributions.

In Chapter 4, we break with the usual constant volatility assumption and assume
instead that the supply-demand disequilibrium appears directly in the volatility as
well. This endogenous volatility effect solves the problem of the previous chapter:
none of the traders can ultimately dominate the other in the long term. Due to
stochastic volatility, the distribution of returns has a heavy-tail, which is a well-
known and welcomed feature of returns in a stochastic financial model.

7



Chapter 2

Agent-based modelling

The most important elements of agent-based models to be clarified are the agents
themselves, whom we call traders or investors. Traders make portfolio decisions
based on information available to them, typically the asset price and its history,
dividend data, but other macro indicators are also conceivable. In the thesis, we
follow the classic path where the market is populated by a finite number of traders
following a well-defined trading strategy. In the following, the most frequently mod-
eled canonical investment strategies (agent types) are presented.

2.1 Fundamental trader

The fundamental trader can be considered the classical, fully rational agent of fi-
nancial markets. The fundamental trader attempts to determine the fundamental
(intrinsic) value of an asset and then takes a position depending on whether they
deem the asset over- or undervalued. The fundamental trader can be thought of
as an investment fund with significant resources and infrastructure that conducts
its analysis effectively and makes investment decisions based on this analysis. In
the financial heterogeneous agent literature, the fundamental value often appears
explicitly, and we will follow this modelling practice in the thesis as well. In the
next section, we present a simple model of the fundamental value.
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2.1.1 Fundamental value

The fundamental value can appear in models in two ways. On the one hand, the
fundamental value itself can be an exogenously evolving stochastic process, such as
an exponential random walk. On the other hand, the future cash flow (dividend)
of the asset can be described by an exogenously developing stochastic process, and
then the fundamental value is defined as the discounted present value of the expected
value of this cash flow. In the following, we present a simple model in which the
exogenously defined stochastic dividend process leads to a fundamental value – as a
discounted present value – with the same dynamics as the dividend process itself.

Now let the process of dividends D(t) be a geometric Brownian motion with drift
µ. The dividend process is interpreted such that the asset is paying the amount
D(t)dt at time t. The fundamental trader calculates the fundamental value F (t) as
the discounted present value of future dividends at a subjective discount rate δ > µ:

F (t) = E

[∫ ∞

t

e−δ(s−t)D(s) ds

∣∣∣∣F(t)

]
=

D(t)

δ − µ
, (2.1)

thus the current fundamental value is a constant multiple of the current dividend
rate, which means that it is also a geometric Brownian motion. In light of this
result, in the later parts of the thesis, instead of introducing dividends, we will
assume directly of the fundamental value that it is an exogenous geometric Brownian
motion.

2.2 Technical trader

Technical traders believe that changes in supply and demand can be read from the
price, so they try to make predictions about the future price using patterns of price
movements of the past. In heterogeneous agent-based models, technical traders
are most often identified with trend-following (and contrarian) strategies. Traders
following a trend-following strategy believe in the inertia of price movements: if
they identify a trend, they trade on the assumption that this trend will continue
in the near future. Traders following a contrarian strategy believe in the “return to
the average”, and therefore trade against the trend. The most important effect of
technical traders is that they generate bubbles and large collapses. In the following,
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we present the dynamics of the trend indicator followed by technical traders, which
indicator will be one of the focal objects of the thesis.

2.2.1 Trend indicator

The trend indicator is a stochastic process that is meant to show whether the price
of an asset is currently in an increasing or decreasing trend. In the thesis we present
two equivalent definitions of the trend indicator, of which only one is discussed here.
In this case, the trend indicator x(t) is defined directly as an exponentially weighted
moving average of (log)returns:

x(t) =

∫ t

−∞
e−

1
τ
(t−u) ds(u), (2.2)

The intuition behind the (2.2) integral formula is that we interpret it as a positive
(negative) trend if positive (negative) returns were more typical in the recent past.
The dynamics of (2.2) trend indicator process results from the application of the
Leibniz integral rule:

dx(t) = −1

τ
x(t) dt+ ds(t), (2.3)

which is a continuous generalization of the trend indicator of Chiarella et al. (2006).

Since technical traders base their strategy on the trend indicator in the thesis,
it can ultimately be considered one of the most important state variables, the dy-
namics and stochastic properties of which are examined thoroughly in the thesis.
Furthermore, in addition to being a strategic state variable, the trend indicator can
also be considered a continuously calculated τ -time return. This is different from
the usual τ -time returns, since they are usually calculated from increments between
discrete time points, but nevertheless statements about the distribution of the trend
indicator can be interpreted as statements about the returns in the usual sense. If,
for example, the invariant distribution of the trend indicator defined according to
the equation (2.3) turns out to be heavy-tailed, then this property carries over to
returns as well.
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2.3 Evolution, wealth dynamics and equilibrium

Evolution is often at the heart of agent models: it is the main source of dynamics
between agents in both practical and philosophical sense. The profitability of indi-
vidual agents (traders or investment funds) depends on the one hand on their own
strategy, on the other hand on the strategy of the others, as they all have an impact
on market prices. In this sense, the competition of different strategies can be placed
in a game theoretic context. However, instead of the standard game theory setup,
in this thesis we examine the strategies through the lens of evolutionary game the-
ory, which identifies the success and failure of the participants with their population
ratio.

In the thesis, we present a simple two-player example for the population dynamics
and examine the relationship of this dynamic system with the usual static game
theoretic equilibrium concept. Two different sources of wealth development are
considered:

1. In the first case, the two traders achieve different returns, and this return is
naturally into account in their portfolio value. The trader who achieves a
higher return will eventually have a larger market weight, which we consider a
measure of success. LeBaron (2011) calls this slow evolution passive learning,
and following his terminology we will use the terms passive wealth development
or passive evolution.

2. In the second case, we think of individual traders as investment funds that
manage other people’s invested money. In this case as well, the investment
funds achieve different returns, but we do not take this into account in the value
of their managed portfolio. However, investors notice the difference in returns
and allocate part of their wealth to the better performing fund. LeBaron (2011)
calls this form of evolution active learning, and following his terminology we
will use the terms active wealth reallocation or active evolution.

The example we discuss here is the classic hawk-dove game interpreted for capital
markets. Let’s say that there is a professional (P) and an amateur (A) strategy to
choose from in the market. The trader who follows the professional strategy is
considered to be the informed trader. They can be identified as the previously
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discussed fundamental or even the technical trader. The trader who follows the
amateur strategy is considered to be the uninformed trader, who can be identified
as, for example, a noise trader. They essentially take random positions and provide
liquidity to the market. In the thesis, the game is described as the sum of three
subgames, which capture three market phenomena. Here we skip this breakdown,
let us look at the resulting game instead:

P A
P −2,−2 5,−1
A −1, 5 3, 3

Table 2.1: The game of the professional and the amateur trader.

A cell of the matrix should be interpreted as the first number being the row
player’s payoff if they trade “against” the corresponding column player, while the
second number is the column player’s payoff if they trade against the corresponding
row player.

The game is famous for having only one stable equilibrium. According to the
standard game theory approach, each player uses a mixed strategy: they specify a
probability distribution over the possible actions. Let p1 ∈ [0, 1] and p2 ∈ [0, 1] be
the probabilities that the row and column player chooses the professional (P) action
respectively. A probability pair (p1, p2) from which neither player will deviate is
called a Nash equilibrium (Nash, 1951), which in the case of our game are the
following:

ENash =

{(
2

3
,
2

3

)
, (1, 0) , (0, 1)

}
(2.4)

Among the three equilibrium solutions, the first represents true mixed strategies,
while the other two represent pure strategies. In the following two sections, we will
present two evolutionary game theoretic interpretations and solutions of the same
game, which are strongly related to the standard equilibrium solutions just discussed.

2.3.1 Passive wealth development

Passive wealth development is parallel with Friedman’s market selection hypothesis
(Friedman, 1953), according to which good strategies will be successful and will
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account for an ever increasing share of the market, while the weight of bad strategies
will decrease over time.

Suppose there is a continuum of traders in the market who follow one (P) or the
other (A) trading strategy. Let WP (t) and WA(t) denote the funds of each strategy
at a time t. The market weight of each strategy is identified with its market share.
Let the wealth ratio of those following the professional strategy at a time t be p(t):

p(t) =
WP (t)

WP (t) +WA(t)
,

and thus the wealth ratio of those following the amateur strategy is 1− p(t). In this
case, we do not assume a probability distribution over the individual actions, but
instead we evolve the population ratio (wealth ratio) of those following each strategy
over time. We assume that a given trader trades randomly “against” another trader.
The probability of what type of trader they will encounter depends on the market
weight – the wealth ratio – of the opposing strategy. Since the number of traders is
a continuum, the change of wealth managed by each strategy is governed by their
average profit, which in turn depends on their market wealth ratios. The dynamics
of the market share is

dp(t) = p(t)
(
1− p(t)

)(
2− 3p(t)

)
dt (2.5)

The dynamics (2.5) is the so-called replicator equation, which has a wide literature,
see for example the book of Hofbauer and Sigmund (1998). The resting points of
the replicator equation are the same as the Nash equilibria discussed in the previous
section. This is easy to see in this simple example, since a resting point is defined
by dp(t) = 0:

Epassive =
{
p ∈ [0, 1] : p(1− p)(2− 3p) = 0

}
=

{
2

3
, 0, 1

}
,

which resting points are exactly the same as the previous ENash equilibrium points.
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2.3.2 Active wealth reallocation

The active asset reallocation process is presumably closer to the evolutionary process
that a layman first thinks of in relation to financial markets. Agents actively choose
between different strategies according to a well-defined objective function and cluster
behind the strategy that performs better than the other. This selection process can
also be seen in real markets.

Similarly as before, let Wp(t) and WA(t) denote the funds managed by the two
trading strategies, while p(t) is the market share of the professional strategy. Let
us think of the players in this case as investment funds that manage the wealth of
a continuum of investors. The idea behind the wealth dynamics is that a part of
the managed funds flows into a common pool with a certain intensity, and then the
investment funds receive their share from this pool in accordance with a selection
rule. A discrete time version of this type of wealth dynamics can be seen in the
flow of funds model of Palczewski et al. (2016). The corresponding continuous-time
dynamics of the market share is:

dp(t) = κ

(
1

1 + eγ(3p(t)−2)
− p(t)

)
dt,

where κ ≥ 0 controls the intensity of wealth reallocation, while γ ≥ 0 is controls
the intensity of choice. The resting point of this dynamics is given by the value p(t)

where dp(t) = 0:

Eactive (γ) =

{
p ∈ [0, 1] :

1

1 + eγ(3p−2)
= p

}
Although the equation defining the resting point does not have an analytical solution,
in the thesis we consider that limγ→∞ Eactive (γ) =

2
3
. This means that the resting

point of pure active wealth reallocation dynamics coincides with both the standard
game-theoretic equilibrium and the resting point of the passive wealth development
dynamics if the underlying investors react very sensitively to the difference in returns
of the investment funds.
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2.4 The traded instruments and the market price

mechanism

The traded instruments are the basic building blocks of market models. The type
and number of instruments included in the model must be clarified. Since the em-
phasis in heterogeneous agent market models is on the agents and their competition,
the number of traded risky assets is often only one. In this case, this single risky
asset usually represents an index: the traders hold a portfolio of the index and a
risk-free asset, which is in accordance with the classical CAPM (Sharpe, 1964).

The market price mechanism serves to establish the asset as a result of market
demand and supply. LeBaron (2001) distinguishes three types of market mech-
anism: micro-level order book-driven market, equilibrium market, and permanent
disequilibrium market. In the thesis, we use the permanent disequilibrium approach.

The price mechanism of permanent disequilibrium models is simpler than that
of micro-level and equilibrium models, so its use in continuous-time models is more
prevalent. In such models, the market is never in equilibrium, but an external force is
constantly trying to steer it towards equilibrium. This external force is usually iden-
tified with a usually latent agent, the market maker. The market maker aggregates
the current positions of investors, determines the level of current disequilibrium, and
then takes an opposite position to satisfy excess demand or supply. Finally, it sets
a price for the next period in such a way that the absolute value of excess demand –
and thus the level of disequilibrium in the market – becomes lower. Following these
ideas, the continuous-time price dynamics of a risky asset in the most general sense
takes the following form:

dS(t)

S(t)
= µ

(
D(t)

)
dt+ σ

(
D(t)

)
dB(t),

where D(t) is the measure of current disequilibrium, dB(t) is the change of a Brow-
nian motion. In the case of the µ : R 7→ R function, it is usually assumed that
it is monotone increasing, since if the level of disequilibrium is high, the market
maker adjusts the price upwards, whereas if the level of disequilibrium is low (even
negative), they adjust the price downwards. The function σ : R 7→ R is often the
constant function, because drift is usually the focus of these type of models. How-
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ever, in the thesis we will also examine a case where volatility also depends on the
current level of disequilibrium in such a way that volatility is high when the absolute
value of disequilibrium is high. The current level of disequilibrium D(t) is usually
defined as the difference between the average position of traders and the supply:

D(t) =
n∑

i=1

pi(t)Zi(t)− S

Permanent disequilibrium models provide a lot of freedom for the modeler through
the µ and σ functions, although this freedom comes with the price of being heuristic
in nature. Interesting and realistic price dynamics usually emerge in the case of
nonlinear assumptions. A first example of permanent disequilibrium models similar
to the one described above is the article of Beja and Goldman (1980). Another early
example is the model of Jarrow (1992), who assume that sufficiently large players
move prices by trading. The articles of He et al. (2019) and He et al. (2018) can be
considered as the closest continuous-time antecedents of this thesis, while examples
of similar ideas in discrete-time are Chiarella et al. (2009) and Chiarella et al. (2013).
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Chapter 3

Fundamental and technical traders in
a constant volatility model

Chapter 3 of the dissertation is a slightly edited version of the author’s article (Bihary
and Víg, 2020) published in a Hungarian economics journal. In this chapter, we
examine a market whose active players are fundamental and trend-following traders,
and index-following traders appear as passive characters. The model in this chapter
relies heavily on the continuous-time model of He and Li (2015).

The behavior of market participants is controlled by market indicators, which
indicators are also state variables of the model. The model postulates a fundamental
value that differs from the market price. One market indicator is price dislocation,
which is the difference between the market price and the fundamental value. This
is followed by fundamental traders. The other is the trend indicator, which is the
difference between the current price and its moving average. Trend followers base
their strategy on this indicator. The joint dynamics of the two indicators can be
derived from the dynamic equation of the market price. Unlike the usual approach
of the literature, we do not ignore the stochastic nature of the dynamics in our
calculations. On the contrary, our discussion focuses on the long-term statistical
behavior of the market. As the market price is akin to a random walk, we cannot
talk about its invariant distribution. However, the market indicators, as quantities
determining the state of the market, can behave in a stationary manner. In our
stochastic description, we define the stability of the market precisely through this;
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we say that the market is stable when the indicators possess an invariant distribu-
tion. We examine the stochastic behavior of a main model and two of its simplified
versions.

• The two central quantities of the main model are the price dislocation fol-
lowed by fundamental traders and the trend indicator followed by trend fol-
lowers. In this model, the position function of trend followers is nonlinear,
as usual in the literature (see for example He and Li (2012)). Therefore the
two-dimensional stochastic dynamics is also nonlinear. The invariant distri-
bution of this stochastic dynamic system is investigated numerically using the
forward Kolmogorov method.

• The first simplified model is obtained by linearization. We linearize the posi-
tion function of trend followers around zero. Then the price dislocation and
trend indicator two-dimensional stochastic dynamic system to be investigated
becomes linear, which we are able to examine analytically.

• The second simplified model is obtained by dimension reduction. Here we
omit the fundamental value and assume that the fundamental trader also
trades based on the trend indicator, but in the opposite direction to the trend-
following trader. Then the fundamental trader actually becomes a contrarian
trader and the dynamic system becomes one-dimensional, but the interesting
nonlinearity remains.

3.1 Illustrations of the price dynamics

Figure 3.1 illustrates the role and price impact of fundamental and trend-following
traders in the case of the main – two-dimensional, nonlinear – specification using
generated trajectories.

The fundamental value (green) is a driftless, exogenous Brownian motion with
relatively low volatility. The market price (yellow) fluctuates around the fundamen-
tal value. We also show the moving average (red) that lags behind the market price.
We can visualize the two market indicators used by the respective traders. Price
dislocation (green) is the difference between the market price and the fundamental
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Figure 3.1: Sample trajectories for the main – two-dimensional, nonlinear –
specification.

value. Trend indicator (red) is the difference between the market price and the
moving average.

On the left panels we illustrate a mature market where fundamental traders are
more numerous (pf = 0.9), while on the right the market is dominated by trading-
following chartists pc = 0.9). The market influence of the traders is evident on
the charts. On the left the market price closely follows the fundamental value as
fundamental traders’ activity pulls the market price towards the fundamental value.
Therefore fluctuations of the price dislocation is relatively low. On the right we
see wild excursions in the price. These are caused by trend following chartists, who
build up and burst bubbles periodically. However, due to our nonlinear specification,
trend followers can only build a position of bounded size, so sooner or later the price
effect of the relatively small number of fundamental traders will pull the price back
to the fundamental. The market price fluctuates strongly, but does not explode
ultimately.
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3.2 Invariant distributions

Based on the stochastic differential equation system of the two indicators of the
main model (price dislocation and trend indicator), we calculate the invariant joint
probability density which characterizes the long-term state of the system. We cal-
culate the invariant density function by solving the Kolmogorov forward equation
of the system on a grid (see Appendix A.1). Figure 3.2 shows the invariant den-
sity function of the same two characteristically different markets as the previous
section: one is dominated by fundamental traders, while the other is dominated by
trend-following chartists.
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Figure 3.2: Contour plot of the invariant density functions of the main (non-
linear, two-dimensional) specification. The two dimensions are price distribu-
tion and trend indicator. The parameters coincide with those in Figure 3.1.

On the left plot (market dominated by fundamental traders) we see a density
function that is strongly localized at the (x, u) = (0, 0) origin. This corresponds to
the left side of Figure 3.1 where price dislocations and trend indicator values are
small throughout the trajectory. On the right plot (market dominated by trend-
following chartists) the density is more spread out and is bimodal. This corresponds
to the periodically increasing and decreasing market price.

We can see such effects in the simplified models as well. In the two dimensional
linear specification, we can make the following

Proposition 1. In the linear specification the joint dynamics of price dislocation
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and trend indicator Y (t) =
(
u(t), x(t)

)⊤ has a limiting distribution (which we regard
as “stable”) if the conditions

β (pcαc − pfαf ) <
1

τ
(C1)

βpfαf > 0 (C2)

both hold. Furthermore, if (C1) and (C2) both hold, the limiting distribution is
multivariate normal with

E [u∞] = E [x∞] = 0

D2 [u∞] =

(
1
τ
σu + qcσf

)⊤ ( 1
τ
σu + qcσf

)
+ qf

1
τ
σ⊤

u σu

2qf
1
τ

(
qf +

1
τ
− qc

) ,

COV [u∞, x∞] =

(
qc − 1

τ

)
σ⊤

f σf +
1
τ
σ⊤

s σs

2 1
τ

(
qf +

1
τ
− qc

) ,

D2 [x∞] =
qfσ

⊤
f σf +

1
τ
σ⊤

s σs

2 1
τ

(
qf +

1
τ
− qc

) ,

where σu = σs − σf , qj = βpjαj, j ∈ {f, c}. We use the notation Y∞ = (u∞, x∞)⊤

for the Gaussian random variable which the process Y (t) converges in distribution
to.

Proof. Appendix and Bihary and Víg (2020).

The first part of Proposition 1 says that if chartists are strong enough (pcαc is
large enough), they can destabilize the market to such an extent, that the price
dislocation – trend indicator system does not even have an invariant distribution.
If (C1) does not hold, chartists can blow a bubble which never bursts. The second
part of Proposition 1 says that if the market is stable in the above sense, then the
limiting distribution is multivariate normal. The relevant support of the ellipsoid
density of (u∞, x∞) gets larger as fundamental traders get weaker and/or chartists
get stronger, as can be seen at the denominator of D [u2

∞] for instance.
In the main model the trend-following chartists’ effect has a floor and a ceiling
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due to the nonlinearity of their position function. In the one dimensional model this
nonlinearity remains, and we can make the following

Proposition 2. In the one dimensional (nonlinear) model, the dynamics of the
trend indicator defined by equation (A.6) is always stable and its limiting probability
density function is

f∞(x) = C
(
cosh

( x

x⋆

)) 2βpcαc(x⋆)
2

σ⊤
s σs exp

(
−

1
τ
+ βpfαf

σ⊤
s σs

x2

)
, (3.1)

where C > 0 is a suitable normalizing constant.

Proof. Appendix and Bihary and Víg (2020).

Remark. Note that if the exponent of the cosh factor in equation (3.1) is one, then
the density function describes a symmetric mixture of two normal distributions.
This results from cosh (x) · e−x2

2 = ex+e−x

2
e−

x2

2 = e
1
2

(
1
2
e−

(x−1)2

2 + 1
2
e−

(x+1)2

2

)
.
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Figure 3.3: Density functions of equation (3.1) with different population
ratios. The parameters used are the same as in Figure 3.1.
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Figure 3.3 shows representative density curves with the trend-following chartists’
population gradually replacing the fundamental traders’. We used the same exoge-
nous parameters as in Figure 3.2. The blue curve corresponds to a mature market
with the same population ratios as the one in the left panel of Figure 3.2 and Fig-
ure 3.1, dominated by fundamental traders. The density in this case shows little
variance, and is unimodal. The yellow curve corresponds to a market with the same
population ratios as the one in the right panel of Figure 3.2 and Figure 3.1, domi-
nated by chartists. The density in this case shows greater variance and is bimodal.
The red curve is an intermediary case, and the purple curve shows an extreme market
populated by only chartists.

In this simple tractable model, we can investigate the appearance of bimodality
analytically. Bimodality appears when the second derivative of the density function
(3.1) at zero changes from negative to positive:

Proposition 3. The condition of unimodality of trend indicator in the one-dimensional
nonlinear model described by the limiting density (3.1) is

β (pcαc − pfαf ) <
1

τ
. (C3)

Proof. Appendix and Bihary and Víg (2020).

Condition (C3) shows that bimodality tends to appear when trend-following
chartists dominate the market over fundamental traders. This result is equivalent
to the stability condition (C1) of Proposition 1. This formal equivalence suggests
that the bimodal invariant distribution appearing in the nonlinear model can be
interpreted as a milder form of instability.

As long as fundamental traders dominate the market, they stabilize it with their
mean-reverting effect, strong trends do not develop. If the market power of trend
followers exceeds a critical value, self-inflicted bubble cycles appear. With a linear
specification, there is nothing to prevent the trend followers from generating never-
ending bubbles, the market explodes. In this case, an invariant distribution does
not exist. The nonlinear specification solves this problem by establishing bounds for
the demand of the trend-following chartists, and ultimate bubbles do not develop.
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In this case, the market price will be a noisy, quasi-periodic series of moderately
strong rising and falling trends.

3.3 Profitability

In this section, we examine the long-term profitability of traders, and through this
we draw attention to a weakness of the model of this chapter. We suppose that
the traders invest in the risky asset and a risk-free money market account according
to their position function, and we evolve their wealth Wj(t) in a self-financing way.
This idea is parallel to the passive wealth development of section 2.3.1. Then we
define the profitability of the traders with their long-term expected log return:

Πj = lim
T→∞

E

[
logWj(T )− logWj(0)

T

]
, (3.2)

In the case of the two-dimensional linear specification, we provide analytical
results for profitability:

Proposition 4. Assume that conditions (C1) and (C2) both hold in the case of the
linear model. Then the average logarithmic growth (3.2) of the traders’ wealth is:

Πf = βpfα
2
fE
[
u2
∞
]
− βpcαcαfE [u∞x∞]− α2

f

σ⊤
s σs

2
E
[
u2
∞
]

Πc = βpcα
2
cE
[
x2
∞
]
− βpfαfαcE [u∞x∞]− α2

c

σ⊤
s σs

2
E
[
x2
∞
]

Proof. Appendix and Bihary and Víg (2020).

With these long-term profits in our hands, we can examine how the difference of
profits depends on the market shares of the traders. It is easy to show that

∂ (Πf − Πc)

∂ (pf − pc)
> 0

which means that the trader with a larger market share in the market will have a
larger profit in the long run. This is unfortunate because if we were to evolve the
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market share of the traders, then we would get a model in which, in the long run,
one trader would dominate the other ultimately. In other words, in the long term,
not even some type of statistical equilibrium can arise between the different traders.
In the next chapter of the thesis, we outline a model in which the market shares are
endogenized, and thanks to a new effect in the volatility, a long-term equilibrium
arises between traders.
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Chapter 4

Market heterogeneity and
endogenous volatility

The purpose of Chapter 4 of the dissertation is to outline a model that provides
a solution to the problem related to long-term profitability discussed at the end
of the previous chapter. We introduce a new, realistic effect which “punishes” the
trader that becomes dominant in the market. In this chapter, we break with the
usual constant volatility of the heterogeneous agent literature, and assume that the
market demand-supply disequilibrium arising from active trading appears directly in
the volatility as well; the greater the current disequilibrium, the greater the volatility.
Our chosen σ function is a parameterized version of

√
1 + x2, so the dynamics of

the asset price is

dS(t)

S(t)
= β · D(t) dt+ σ ·

√
1 + γ2D2(t) dB(t),

where D(t) is the measure of current disequilibrium, which depends on the difference
of the weighted average of the traders’ positions and the supply. This endogenous
volatility effect solves the problem that appeared in the previous chapter: none of
the traders can ultimately dominate the other in the long term. Furthermore, due
to endogenous volatility, the distribution of returns will have a heavy tail, which is
a welcomed feature in the a stochastic financial model.
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4.1 Analysis of the trend indicator with endogenous

volatility

One of the main results of the chapter is the characterization of the stochastic
behavior of the trend indicator process. The stochastic differential equation of the
trend indicator is as follows:

dx(t) = −Kx(t) dt+ σ
√

1 + Γ2x2(t) dB(t), (4.1)

where K, σ and Γ are constants. The square root factor appearing in the stochastic
term is the central innovation of the chapter compared to the literature. This factor
(or this effect) is called endogenous volatility, which arises from the current level
of disequilibrium: the greater the disequilibrium in absolute value, the greater the
volatility in the market.

The invariant distribution of the trend indicator process (4.1) based on Cherny
(2004) is a scaled version Student’s t-distribution (see Appendix A.3):

x∞
d
=

T

Γ
√

1 + 2K
Γ2σ2

where T ∼ t
(
1 +

2K

Γ2σ2

)

Since the degrees of freedom of the t-distribution must be positive, the invariant
distribution exists only if

1 +
2K

Γ2σ2
> 0 =⇒ 2K

Γ2σ2
> −1

Note that the invariant distribution may exist even for negative K, since for K the
condition is K > −Γ2σ2

2
. This is an interesting observation, since intuition would

say that a process can only have an invariant distribution if it possesses some type
of mean-reverting behavior in the drift. On the other hand, the trend indicator
process (4.1) with endogenous volatility may have an invariant distribution even
if an – although weak – repulsive effect appears in the drift. This suggests that
endogenous volatility stabilizes the process in terms of its distribution.

In order to gain a deeper understanding of the behavior of the trend indicator
process (4.1), let us examine its Lamperti-transform (see Møller and Madsen (2010));
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we are searching for the function g : R 7→ R under which the process ξ(t) = g
(
x(t)

)
has constant volatility. Since according to Itô’s lemma

dξ(t) = (. . . ) dt+ g′
(
x(t)

)
σ
√

1 + Γ2x2(t) dB(t),

the suitable transformation function g can be calculated by simple integration:

g′ (x)σ
√
1 + Γ2x2 = σ =⇒ g(x) =

∫ x 1√
1 + Γ2u2

du =
arsinh (Γx)

Γ
,

Thus, if we transform the process with the inverse of the hyperbolic sine function1,
then the resulting process has constant volatility, the dynamics of which is

dξ(t) = −2K + Γ2σ2

2Γ
tanh

(
Γξ(t)

)
dt+ σ dB(t) (4.2)

In light of the transformed process (4.2), the heavy tail of the invariant distri-
bution of the original process (4.1) is not surprising. In the process (4.2), due to
the hyperbolic tangent function, mean-reversion appears very weakly. Moreover,
the original x(t) process would be the result of taking the sine hyperbolic2 trans-
form of ξ(t), which is a rapidly increasing odd function. That is, we would spread
out a weakly mean-reverting process with a rapidly increasing function, so it seems
reasonable to obtain a process whose invariant distribution has a heavy tail, in our
case a t-distribution specifically.

As explained in section 2.2.1, the trend indicator x(t) can also be interpreted
as the τ -yield in the model. Therefore, the heavy tail of the invariant distribution
of the trend indicator also means that the returns in the usual sense also have a
heavy tail due to the trading activity of the trend following traders as a result of
our endogenous volatility assumption. The non-normality of returns is one of the
classic and most fundamental empirical observations of the financial literature (see,
for example Officer (1972)), which our theoretical model is able to reproduce.

1arsinh(x) = log
(
x+

√
x2 + 1

)
2sinh(x) = ex−e−x

2
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4.2 Competition of the trend follower and the index

trader

At the end of chapter 4 of the thesis, we examine a simplified characteristic case
of the model where a trend follower and an index trader compete with each other.
The purpose of the study is to explore a realistic model in which neither trader
dominates the other ultimately, and a quasi-cyclical, long-term equilibrium emerges
between them.

At the heart of the model is a two-dimensional stochastic dynamic system, in
which one dimension is the trend indicator x(t) and the other is the logit-transform of
the market weight ratio y(t) = log

(
p(t)

1−p(t)

)
of the trend follower. Volatility depends

endogenously on current market disequilibrium. For a precise understanding of the
dynamics of the two-dimensional

(
x(t), y(t)

)
system driven by a single Brownian

motion, we examine its deterministic skeleton, where the dB(t) terms are omitted.
The characteristic behavior of the deterministic skeleton is shown in Figure 4.1.

The most interesting result is the swirling behavior in the the upper left phase dia-
gram of Figure 4.1. The two diagrams on the left characterize the drift of the system,
while the two diagrams on the right characterize its volatility. All four diagrams are
located on the (x, y) plane, where x is the trend indicator, y is the logit transform
of the market weight of the trend-following chartist. In the upper two diagrams,
the arrows are normalized to equal length in order to illustrate the direction of the
change of the system. In the case of drift (top left diagram), the arrows mean the
direction in which the system is expected to move. This figure shows a swirling
behavior around the (1, 0) and (−1, 0) points. In the case of volatility (upper right
diagram), arrowheads are not shown, since volatility has no expected direction. The
bottom two diagrams illustrate the rate of change of the system using heat maps. In
the case of drift (bottom left diagram), three “valleys” can be identified: one at the
origin and one each at the centers of the vortices. The valley at the origin represents
a trivial stationary state, which can be easily verified by examining the differential
equations. The two additional valleys can also represent two non-trivial stationary
states, but analytical verification of this is not trivial. Volatility (lower right dia-
gram) increases in the “north-east” and “north-west” directions, which means that
volatility is high when trend followers are dominant and the market is in a large
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trend.

A financial description of the swirling behavior is as follows. Assume that the
trend follower chartists and index-traders have weight in the market, and the trend-
followers identify a small – say, positive – trend. In response to the small trend,
the trend followers take a small positive position, with which they drive the price
up – thanks to their price effect. Thus, a larger and larger trend begins to form,
which the trend followers react with larger and larger positions to. Moreover, in the
meantime, their market weight is also increasing: thanks to their increasing position,
they gain more and more from price increases. However, in this euphoric state of
the market, market disequilibrium begins reach levels such that it already greatly
increases volatility. Volatility becomes so great that trend followers’ expected profit
becomes negative. When they start losing, their market share is still quite large
(although it is decreasing), so the bubble is growing even further for a while, albeit
at a slower pace. However, due to endogenous volatility, trend followers suddenly
suffer enormous losses, and they also miss the trend reversal due to the delay of
the trend indicator compared to their market share. The trend followers have thus
become victims of their own success. If market disequilibrium appears in the price
dynamics both at the level of expected returns and at the level of volatility, then the
trend followers are able to blow bubbles, during which they are able to take profits
for a while. Eventually, however, they lose a lot due to self-inflicted high volatility.

The behavior of the model is illustrated in Figure 4.2. with simulated trajecto-
ries. The diagrams show the history of a 50-year trajectory along several dimensions.
It is worth treating these diagrams as if they were a kind of caricature of real market
phenomena. The top left diagram shows the dollar price of the single risky asset,
S(t). Several large trends can be identified in the diagram, and the change in volatil-
ity is also noticeable. The most striking event is the huge spike around the 15th
year, followed by a sudden decline. In the top right diagram, the trend indicator
x(t) can be seen, which stays within the (−1, 1) interval for most of the 50 years,
but it spikes up to 2 around the 15th year. Since τ = 1, a value of 1 in this figure
corresponds roughly to a 100% annual return.

The bottom left diagram shows the evolution of the market share p(t) of the
trend followers. It is clear that at the same time as they induce large trends –
positive or negative – their market share also increases. However, the correction
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also happens quickly: their market share increases sharply, but it can fall back just
as quickly due to sudden losses. Stressed periods are followed by calm periods.

The lower right diagram shows the volatility calculated directly from the model.
This diagram resembles the empirical volatility process calculated from real-world
asset price data, where highly volatile and calm periods alternate. Of course, the
200% volatility seen around year 15 may seem unrealistic to a practicing trader, so
we emphasize the caricaturistic nature of the model again. However, barring the
largest spike, volatility remains roughly in the 20% to 60% range, which no longer
seems unrealistic.

The effect of endogenous, stochastic volatility is also illustrated by Figure 4.3,
where the distribution of log returns can be seen for different time intervals, calcu-
lated from a 2000-year simulated trajectory. In addition to the histograms of the
daily, monthly and annual returns, the density function of the corresponding normal
distribution was also plotted for comparison. Since the asset price defined by the
model is an Itô process, the conditional distribution of short-term returns is by def-
inition normal. However, due to stochastic volatility, the unconditional distribution
of returns is as a mixture of normal distributions with different standard deviations.
As a result, the returns of all three time intervals show excess kurtosis and a heavier
tail compared to normal.
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Figure 4.1: Phase diagrams of the two-dimensional system of the trend in-
dicator x(t) and the logit of the trend follower’s market share y(t). The two
diagrams on the left describe the drift of the system, while the two diagrams on
the right describe the volatility of the system. The top two diagrams show the
direction of the change of the system with normalized arrows of equal length,
while the bottom two diagrams show the speed of the change with a heat map.
Blue color means a slow change, while yellow means fast change.
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Figure 4.2: Simulated trajectory of the model.

Figure 4.3: Histograms (and the corresponding normal densities) of the re-
turns of the model. Calculated from a simulated 2000 year trajectory.
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Appendix A

Appendix

A.1 Numeric solution of the Kolmogorov forward

equation

The two-dimensional (price dislocation and trend indicator) SDE of the main spec-
ification is the following:

du(t) = β

(
pcαcx

∗ tanh

(
x(t)

x∗

)
− pfαfu(t)

)
dt+ (σs − σf )

⊤ dB(t)

dx(t) =

[
β

(
pcαcx

∗ tanh

(
x(t)

x∗

)
− pfαfu(t)

)
− 1

τ
x(t)

]
dt+ σ⊤

s dB(t).

(A.1)

Assume that the dynamics of the N -dimensional stochastic process Y (t) is given
by the SDE

dY (t) = a
(
Y (t)

)
dt+Σ

(
Y (t)

)
dB(t)

where a : RN 7→ RN , Σ : RN 7→ RN×M and B(t) is an M -dimensional Wiener-
process with independent components. Let D(y) = 1

2
Σ(y)Σ⊤(y). Then the dy-

namics of the underlying density ft (y) of the system is governed by the so-called
forward Kolmogorov equation.

∂ft (y)

∂t
= −

N∑
j=1

∂ai(y)ft (y)

∂yi
+

N∑
k=1

N∑
j=1

∂2Dj,k (y) ft (y)

∂yj∂yk
(A.2)
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The invariant density f∞ (y) is arrived at when ∂f∞(y)
∂t

= 0. We calculate f∞ (u, x)

of equation (A.1) by solving (A.2) numerically on the grid T × U × X = {0, 0 +

∆t, . . . , T}×{u, u+∆u, . . . , u}×{x, x+∆x, . . . , x}. Our main assumption through-
out the numerical calculations is that the relevant support of the density ft (u, x) is
finite, i.e. ft (u, x) ≈ 0 if the point (u, x) is far enough from the origin:

lim
(u2+x2)→∞

ft (u, x) = 0 ∀t ∈ [0,∞) ,

During computations this assumption means that at the edge of the grid U×X we
set the density to zero:

ft (u, x) = ft (u, x) = 0 ∀u ∈ U and ∀t ∈ T,

ft (u, x) = ft (u, x) = 0 ∀x ∈ X and ∀t ∈ T.

Assume now that for t ∈ T we have the density matrix ft (U,X) ∈ R|U|×|X|. In
a single iteration of our algorithm we solve (A.2) explicitly by approximating the
derivatives with their finite differences on the inner points of the grid U× X:

f ∗
t+∆t (u, x) = ft (u, x)−

(au · ft) (u+∆u, x)− (au · ft) (u−∆u, x)

2∆u
∆t

− (ax · ft) (u, x+∆x)− (ax · ft) (u, x−∆x)

2∆x
∆t

+Du,u
ft (u+∆u, x)− 2ft (u, x) + ft (u−∆u, x)

(∆u)2
∆t

+Dx,x
ft (u, x−∆x)− 2ft (u, x) + ft (u, x−∆x)

(∆x)2
∆t

+Du,x
ft (u+∆u, x+∆x) + ft (u−∆u, x−∆x)

2 (∆u) (∆x)
∆t

−Du,x
ft (u+∆u, x−∆x) + ft (u−∆u, x+∆x)

2 (∆u) (∆x)
∆t

∀(u, x) ∈ U× X = {u+∆u, . . . , u−∆u} × {x+∆x, . . . , x−∆x}.

f ∗
t+∆t (U,X) is not necessarily a probability density matrix in the sense that it

may have negative components, and
∑

u∈U
∑

x∈X f
∗
t+∆t(u, x)∆u∆x = 1 might not
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hold. To this end, we make the following corrections in each iteration:

f ∗∗
t+∆t(u, x) = max

(
f ∗
t+∆t(u, x), 0

)
∀(u, x) ∈ U× X and

ft+∆t(u, x) =
f ∗∗
t+∆t(u, x)∑

u∈U
∑

x∈X f
∗∗
t+∆t(u, x)∆u∆x

∀(u, x) ∈ U× X.

The initial density we use in our calculations is the uniform distribution:

f0(u, x) =
1

|U| · |U|∆u∆x
∀(u, x) ∈ U× X

A.2 Proofs

After linearization of (A.1) the resulting SDE is

du(t) = β
(
pcαcx(t)− pfαfu(t)

)
dt+ (σs − σf )

⊤ dB(t)

dx(t) = β
(
pcαcx(t)− pfαfu(t)

)
dt− 1

τ
x(t) dt+ σ⊤

s dB(t).

Y (t) =
(
u(t), x(t)

)⊤ is a two dimensional Ornstein-Uhlenbeck process, i.e. is of the
form

dY (t) = −ΘY (t) dt+Σ dB(t) (A.3)

where

Θ =

(
βpfαf −βpcαc

βpfαf
1
τ
− βpcαc

)
∈ R2×2 and Σ =

(
σ⊤

s − σ⊤
f

σ⊤
s

)
∈ R2×2

Proof of Proposition 1. Y (t) defined by (A.3) has the solution1

Y (t) = e−ΘtY (0) +

∫ t

0

e−Θ(t−v)Σ dB(v), (A.4)

which is asymptotically stationary if and only if – see Shreve (2004) – the ordinary
differential equation system ẏ = −Θy is strongly stable, which requires that the real
part of all the eigenvalues of Θ are strictly positive. This holds if β (pcαc − pfαf ) <

1
τ

1Here eA =
∑∞

k=0
Ak

k! , and it holds that
(
eAt
)′

= AeAt.
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and βpfαf > 0 both hold.
Furthermore, (A.4) is a simple stochastic integral, thus it is normally distributed

for all t. The expectation of the stochastic integral component is 0 for all t, thus

lim
t→∞

E [Y (t)] = lim
t→∞

e−ΘtY (0) =

(
0

0

)
(A.5)

if the eigenvalues of Θ are positive, which holds if β (pcαc − pfαf ) <
1
τ

and βpfαf >

0.
Now let ρ(t) = COV [Y (t)] = E

[
Y (t)Y ⊤(t)

]
−E [Y (t)]E

[
Y ⊤(t)

]
and let t be

large enough so that ρ(t) ≈ E
[
Y (t)Y ⊤(t)

]
. Then

dρ(t) = dE
[
Y (t)Y ⊤(t)

]
= E

[
d
(
Y (t)Y ⊤(t)

)]
=

= E
[
(dY (t))Y ⊤(t)

]
+ E

[
Y (t)

(
dY ⊤(t)

)]
+ E

[
dY (t)dY ⊤(t)

]
=

= −ΘE
[
Y (t)Y ⊤(t)

]
dt− E

[
Y (t)Y ⊤(t)

]
Θ⊤ dt+ΣΣ⊤ dt =⇒

=⇒ ρ̇ = −Θρ− ρΘ⊤ +ΣΣ⊤

The covariance matrix of the asymptotic distribution is got by setting ρ̇ = 0, and
solving the resulting system of algebraic equations.

The dynamics of the trend indicator x(t) in the one-dimensional specification is

dx(t) = −
(
βpfαf +

1

τ

)
x(t) dt+ βpcαcx

⋆ tanh

(
x(t)

x⋆

)
dt+ σ⊤

s dB(t) (A.6)

Proof of Proposition 2. The process (A.6) is a time-homogeneous Ito-process of the
form

dx(t) = b
(
x(t)

)
dt+ σ⊤(x(t)) dB(t)

with σ
(
x(t)

)
= σs > 0 ∀xt ∈ R. The main theorem of Cherny (2004) applies, and

the unique limiting (invariant) distribution is given by

f∞ (x) = C
exp

(∫ x 2b(y)
σ⊤(y)σ(y)

dy
)

σ⊤(x)σ(x)

where
∫ x denotes the indefinite integral and C > 0 is a suitable normalizing constant.
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Substituting in

b(y) = −
(
βpfαf +

1

τ

)
y + βpcαcx

⋆ tanh
( y

x⋆

)
és σ(x) = σs,

and we arrive at the invariant density function:

f∞(x) = C
(
cosh

( x

x⋆

)) 2βpcαc(x⋆)
2

σ⊤
s σs exp

(
−

1
τ
+ βpfαf

σ⊤
s σs

x2

)

Proof of Proposition 3. The function f∞(x) of equation (3.1) is unimodal if f ′′
∞(0) <

0, and bimodal if f ′′
∞(0) > 0:

f ′′
∞(0) < 0

2βpcαc(x⋆)2

σ⊤
s σs

(x⋆)2
− 2

σ⊤
s σs

1
τ
+βpfαf

< 0

β (pcαc − pfαf ) <
1

τ

Proof of Proposition 4. Megmutatjuk a számításokat Πf esetén. Πc esetén minden
hasonlóan számolható. We show the calculations for Πf , which go similarly for Πc.
First, dynamics of St = est is

dS(t)

S(t)
=

σ⊤
s σs

2
+ β

∑
j∈{f,c,i}

pjZj(t)

 dt+ σ⊤
s dB(t)

With the self-financing assumption, the dynamics of log-wealth logWf (t) is

d (logWf ) (t) = Zf (t)
dS(t)

S(t)
−

Z2
f (t)

2

d ⟨S⟩ (t)
S2(t)

In the linear specification, the position functions are Zf (t) = αfu(t), Zc(t) = αcx(t)
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and Zi(t) = 0, so the dynamics of log-wealth can be written in terms of u(t) and
x(t):

d (logWf ) (t) =

(
αf

σ⊤
s σs

2
u(t) + βpcαcαfu(t)x(t) + α2

f

(
βpf −

σ⊤
s σs

2

)
u2(t)

)
dt+

+ αfu(t)σ
⊤
s dB(t)

d (logWf ) (t) = g
(
u(t), u(t)x(t), u2(t)

)
dt+ αfu(t)σ

⊤
s dBt

where g : R3 7→ R is an affine function. From here, by using the law of iterated
expectations2 and the fact that we know the asymptotic distribution of (ut,mt)

⊤ we
get that

Πf = lim
T→∞

E

[
logWf (T )− logWf (0)

T

]
=

= lim
T→∞

1

T
E

[∫ T

0

d (logWf ) (t)

]
= lim

T→∞

1

T
E

[∫ T

0

Et

[
d (logWf ) (t)

]]
=

= lim
T→∞

1

T
E

[∫ T

0

g
(
u(t), u(t)x(t), u2(t)

)
dt

]
=

= lim
T→∞

1

T

∫ T

0

g
(
E[u(t)], E[u(t)x(t)], E[u2(t)]

)
dt =

= lim
T→∞

1

T

∫ T

0

g
(
E[u∞], E[u∞x∞], E[u2

∞]
)
dt =

= g
(
0, E[u∞x∞], E[u2

∞]
)

A.3 Invariant distribution of the trend indicator

The invariant density by Cherny (2004) is

x∞ ∼ f(x) =
C

σ2(x)
exp

(∫ x 2µ(u)

σ2(u)
du

)
(A.7)

2Here we denote the conditional expectation by Et, i.e. E [XT |Ft]
.
= Et [XT ].

40



where µ(x) and σ(x) are the drift and volatility functions respectively, C > 0 is a
suitable normalization constant. Then∫

2µ(x)

σ2(x)
dx =

∫
−2Kx

σ2 (1 + Γ2x2)
dx =

= − K

Γ2σ2

∫
2Γ2x

(1 + Γ2x2)
dx = − K

Γ2σ2
log
(
1 + Γ2x2

)
and then the invariant density is

f(x) =
C

σ2 (1 + Γ2x2)

(
1 + Γ2x2

)− K
Γ2σ2 = C

(
1 + Γ2x2

)−(1+ K
Γ2σ2 ) (A.8)

As the the probability density function of the standard t-distribution with degrees

of freedom ν is g(x) = C ·
(
1 + x2

ν

)− 1+ν
2 , it is easy to check that f(x) is the density

of a scaled t-distribution with degrees of freedom ν = 1 + 2K
Γ2σ2 :

x∞
d
=

T

Γ
√

1 + 2K
Γ2σ2

where T ∼ t
(
1 +

2K

Γ2σ2

)
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