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1. Introduction 
 
Social media bots are small programs that run on internet-connected servers and 

automatically post messages, follow or unfollow other users, set up polls, post pictures, 

send direct messages to specific users, and so on1. The typical bot acts based on predefined 

rules and uses an application programming interface (API)2 to communicate with the 

servers of a given social media service. Social media bots often automate human actions: 

They do things on a social media platform that could have been done by a human user. 

However, a bot does these tasks on a larger scale, in less time and often without human 

intervention for longer periods of time. 

As social media platforms become more open to automation, allowing businesses and 

government institutions to use bots to mediate online transactions and services, bots are 

becoming an increasingly important component in the power relations of the online 

communication sphere. The production and deployment of social media bots signal the 

emergence of new political economies that redistribute agency around new technological 

actors. This has implications for marketing, political action and even private lives. Yet, we 

have very little systematic knowledge about how bots are produced and the role of sharing 

code online and using a collaborative platform. 

 

1.1. Purpose of the thesis 
 
The goal of my PhD research project is to understand the practice of writing and deploying 

bots on Twitter. To understand current practices of bot development and use, I propose to 

bring together (1) an examination of bot codes available on GitHub, the largest online code 

repository, and (2) data on how human users communicate with the automatized social 

media accounts on Twitter, a platform where these bots are deployed. Thus, my research 

method combines data about automated accounts deployed on a social media platform with 

the source code behind those same bots – this provides a unique lens on bots and provides 

important insights about how they work. 

Combining API-based, data driven research with a classical social science approach 

helps to understand current practices of writing for and deploying bots on online social 

                                                
1 Part of the introduction and the literature review is based on an earlier single author publication of mine, but 
the text was greatly extended and updated. (See. Kollanyi, 2016). 
2 An application programming interface (APA) is a “way for two computer applications to talk to each other 
over a network” (Jacobson, Brail & Woods, 2012). In practice, an API allows accessing data and services within 
the organization, by third-party developers or by partners of the company. 
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media platforms. As part of my PhD research, I examined bot repositories on GitHub and 

conducted a survey with the same bot developers to gain further insights into the nitty-

gritty of writing bot code, including the most important challenges during the development 

phase and major barriers to deploying and operating bots on Twitter over an extensive 

period of time. The survey results also shed light on the motivations behind creating 

automated social media accounts. I also studied how programmers deploy their bots on 

Twitter and how other, mostly human, users react to the bot activity. The final part of my 

thesis contributes to a typology of open-source social media bots by systematically 

examining bot codes shared on GitHub and the activity of some of these bots on Twitter in 

tandem. 

 
1.2. Research questions 
 
While most of my research questions about the Twitter bots themselves can be answered 

by working with data and metadata obtained through the GitHub APIs and the various 

Twitter APIs, research questions about the motivations for developing a bot or questions 

about the bot developers themselves can only be partially answered by relying on these 

sources. To answer questions about this latter group of questions, developers have to be 

contacted directly, for example, through a survey or some type of interview.  

The following section of this chapter provides a list of the five research questions that 

I intend to answer as part of the research project for my dissertation. These research 

questions are centered around two main themes. The first three research questions address 

the following more general questions: who are the developers behind the open-source 

Twitter bots and how do they develop these bots. The second set of questions focuses on 

the Twitter bots themselves and attempts to answer questions about how they work and 

how they produce tweet after tweet. 

 

1.2.1. Research questions on bot developers 
These questions are aimed at the bot developers both professional developers and non-

professionals who are able to write code. 

 
RQ 1.1 What are the practices for code developing and sharing code for open-source 

Twitter bots? What are the most import reasons behind using GitHub as a tool3 for 

                                                
3 Some developers only host their code on GitHub and do not use the platform for aiding the code writing 
process by keeping track of changes or asking for contributions from other open-source developers. This 
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developing and sharing code? 

 
This question focuses on how developers use GitHub, such as how often they update their 

code, how much information they include for other developers, whether they receive 

support from other developers, etc. To answer these questions, GitHub provides access to 

almost all metadata about its repositories. However, for the question about the reasons for 

using GitHub and the motivations for developing a Twitter bot, I relied on survey data. 

 
RQ 1.2 How do developers acquire the skills needed to develop a Twitter bot? To what 

extent do these programming skills determine and facilitate the creation of Twitter 

bots? 

 
I start from the assumption (based on my preliminary findings) that developing bots 

requires programming skills, and that bot codes are developed by a large and diverse group 

of developers, including programmers with computer science backgrounds, social 

scientists, journalists and artists. At the same time, the development of bots, like open-

source software in general, is increasingly decentralized, with actors relying on reusable 

code that can be adapted to more specific needs, and sharing knowledge accordingly. This 

is the scene I would like to explore with my next research questions. 

There are a handful of different sources of information available about creating 

Twitter bots, from blog posts to university courses to a look at the available bot codes on 

GitHub. What are the most important sources of information for bot development, and what 

does a bot developer do when an unexpected problem arises? To answer this research 

question, I rely mainly on survey data. 

 
RQ 1.3 Is there a community of bot developers on GitHub? Or alternatively, is the 

code for various bots developed by lone developers? 

 
Although GitHub provides a platform for collaboration on projects involving multiple 

developers, my previous research suggests that nearly 90 percent of the bot code available 

on GitHub was developed or at least published by only one developer. 

The repositories on GitHub do not only keep track all the changes made by developers 

who have access to the code but also record who contributed to the project by either writing 

                                                
practice is often called as code dumping. My study both includes developers who practice code dumping and 
developers who actively use the a wide range of functions of the platform.  
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code or simply reporting issues. 

All of this data is publicly available for the repositories I examined and provides 

important insights into how widespread bot development collaboration is and whether there 

is an active community of developers on GitHub focused on bots. 

 
1.2.2. Research questions on Twitter bots 
 
RQ 2.1 How do open-source bots generate, process and publish content on Twitter? 
 
What can we learn about Twitter bots by examining the source codes on GitHub and the 

activity of deployed bots on Twitter in tandem? By combining these two data sources, 

GitHub and Twitter, in a novel way, I can describe how open-source Twitter bots work 

(e.g., I can rely on the Twitter bios and account descriptions and the code published on 

GitHub). All of the above data can be collected computationally through the various APIs 

of GitHub and Twitter. 

Do Twitter bots generate their own content? If so, how do these accounts generate 

their content, what are the main sources of information used? Some Twitter bots do disclose 

information about the sources they rely on, either in the bot’s bio on Twitter or in the tweets 

themselves. A good example for the latter is a link included in the tweet. However, the 

exact way these sources are accessed, processed, and how the bot generates content is often 

difficult or impossible to understand without looking into the code running behind the bot. 

To answer this research question, I am also trying to quantify how much of the traffic 

generated by open-source bots on Twitter is original content, and how much of the content 

is simply retweets or quoting other Twitter accounts. 

 
RQ 2.2 What is the life cycle of an open-source bot, and how much traffic is generated 

by a bot on Twitter during that time? What are the challenges of running a Twitter 

bot for an extended period of time, and why do bots get banned or become inactive on 

Twitter? 

 
The life cycle of a Twitter bot can be defined in several ways. We can look at the time 

between the first and last tweet generated by the account on Twitter or calculate the time 

spent developing and occasionally updating the bot’s source code on GitHub. In most cases, 

these time periods overlap, but bot accounts are often suspended and sometime even 

redeployed with a different user handle by the developer. If the bot has a longer lifespan, 

code developers may need to address issues such as changes in how the Twitter APIs work 
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or how the bot can access its sources (outside of Twitter). I am also trying to understand 

why some bots not working anymore. To figure out the main challenges, I rely both on 

studying dysfunctional or inactive bots on Twitter and on asking the developers themselves 

in the survey. 

 

1.3. Contribution to the field 
 
It is relatively cheap to create or buy fake social media accounts and use them as bot 

accounts on Twitter. On the other hand, it is much harder to build a real social network and 

reach a large number of human users with a message, although previous research projects 

and media reports suggest that bots can succeed in building their own network based on 

simple algorithms. Furthermore, having followers does not necessarily mean that a bot was 

able to create a real audience. Real users (humans) in the bot’s network will read a message 

posted by the automated account and spread it further. Through my research I hope to 

contribute to the understanding of social media automation in the broader context of 

audience engagement and to measure the impact of Twitter bots. 

My research project will also help to better understand and conceptualize social media 

automation by creating a typology of Twitter bots. To create this typology, I will also going 

to investigate the technical background of bots and bot development. While creating the 

typology, I will explore the basic domains and functions of bots and look at the external 

tools or services that can be used for content creation or automation. 

In academic journals and in the media, bots and bot networks are often equated with 

spam bots or large networks of fake user accounts created for the purpose of creating a 

false image of a grassroots movement (astroturfing). However, many bots perform 

important functions within the online social media ecosystem. For example, some bots 

gather information for journalists, facilitate often difficult access to open government data, 

or serve artistic purposes. In the literature review, I cited a few authors who have already 

written about these benign actors. I will also contribute to this “good bot”  or “useful bot” 

literature. 

Methodology, I propose a novel way to study Twitter bots by examining both the 

open-source bot codes on GitHub and the bots deployed on Twitter. Traditionally, research 

projects have examined bots as black boxes and attempted to “reverse engineer” the 

algorithms behind automated accounts. Instead, I will track bots to their source code on 

GitHub and connect the algorithm (code) running behind the bot to data about bot activity 
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on a social media platform. By connecting these two data sources, I will gain access to the 

inner “mechanics” of certain bots on Twitter, and I can test my findings about how 

algorithms built into the bots work on a large “real world” dataset. 

Another important contribution of my research project is to examine the political economy 

of Twitter automation in terms of political communication. I plan to better understand the 

fundamentals of bot production in an open-source style development workflow. It is natural 

to hypothesize that bots are embedded in an open-source context of software code 

production and sharing. The open economy of bot codes is distinct from other areas of 

information manipulation and management in the political arena, such as state level 

filtering or online political marketing communications, which are supported by pre-built 

tools and IT services offered by companies. To put it more simply, bot writing could have 

a much lower barrier to entry in terms of resources. Meanwhile, it is also mediated by 

technological expertise. My study will explore these questions to examine the extent to 

which a restructuring of the political media sphere can be understood as a bottom-up 

phenomenon. 

 

1.4. Overview of the dissertation 
 
This work consists of four main chapters. The first and second chapters provide an 

introduction to the thesis by positioning the research within the relevant scholarly discourse 

and listing the central research questions of the thesis. The next chapter provides an 

overview of the methodology and research strategy I used to answer these research 

questions. The third chapter presents the findings in four long subchapters. The thesis ends 

with a discussion chapter that summarizes and reflects on the major findings of my PhD 

research; It also includes a systematic overview of the potential limitations and outlines 

interesting future research directions. 

In the first chapter, after a brief introduction, I describe the novelty of my research 

strategy and my main contributions to the field. I then outline my research questions on bot 

developers and Twitter bots themselves. 

The literature review in the second chapter provides an overview of the relevant 

literature on Twitter bots, including bot detection, as well as open-source software 

development using GitHub. This broad range of literature includes papers in computer 

security to journalism and political science. After a brief introduction to Twitter bots, I 

provide an overview of the major efforts to detection bots, discuss the literature on the 
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political use of Twitter bots, and present the existing typologies of Twitter bots. Because I 

am particularly interested in how developers gain the skills to develop bots, the GitHub 

section of the literature review focuses primarily on collaboration and knowledge sharing. 

The methodology section presents the various computational methods I used to access 

and analyze the data. I have structured this section to provide an overview of each data 

source. The methodology section also provides an overview of the limitations of my PhD 

research project. Lastly, it includes a description of the programming work I did for the 

thesis. 

The results chapter follows a similar structure, it has four subchapters that follow the 

path of bots from GitHub to Twitter and report the most important findings about bot 

developers and their attitudes towards GitHub usage, Twitter bot development and politics. 

The final section of the findings chapter provides a typology of the open-source Twitter 

bots based on a combination of the data I collected. 

The thesis ends with a discussion chapter and a list of references. The appendices 

contain the materials that are important but not necessary for understanding the 

methodology of data collection or analysis. 

 

1.5. Notes on computational social science 
 
The empirical research in my doctoral project relies on both computational social science 

methods and traditional survey methods. These different methods are interwoven, as 

explained below, and can inform or support each other. For example, collecting and 

analyzing shared bot codes from an online code repository can allow me to ask more 

informed questions from bot developers. On the other hand, asking specific questions to 

bot developers or looking into bot codes can also help me “ask” the right questions from 

the dataset and contextualize my findings. 

My use of social media data draws on the work of the Digital Methods movement 

and, in particular, its efforts to lay the conceptual groundwork for a digital methodology. 

As the media landscape has changed and the importance of online public discussion has 

increased, social scientists now have access to a new source of data to work with. In 

addition to familiarity with traditional quantitative methods and an understanding of the 

concept of sampling, representativeness, etc., this type of data often requires computer 

skills both to access and analyze the data. 

Social scientists have long added computer-based tools to their research toolkit, using 
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software packages to analyze quantitative and qualitative data. However, the development 

and proliferation of social media platforms such as Facebook and Twitter, have given rise 

to a “new apparatus for researching social life” (Marres, 2012). This change did not happen 

overnight, and as Lazer et al. (2009) noted in their Science Magazine discussion of the 

emerging field of computational social science, the social sciences have been slow to 

respoond to the new situation. According to Lazer et al., other fields of science, particularly 

the hard sciences such as biology and physics, had already undergone fundamental changes 

by the late 2000s as they began to explore the possibilities of digital research methods, 

including big data and analysis. In the same paper, the authors also point out that in many 

cases, the new social data is being analyzed by computer scientists, not social scientists, 

and often in a corporate environments that serves the business interests of large IT 

companies like Google and Yahoo. 

In the meantime, it is important for social scientists to understand that working with 

digital data requires a new approach and the development of new research methods. The 

first step is to understand the growing availability of data that are “born digital” as opposed 

to data that has been “digitized” (Rogers, 2014), and to recognize that this allows for a shift 

in our empirical use of data. Specifically, Rogers argues that reconceptualizing data as born 

digital paves the way for new methods. As online devices capture user input and actions, 

e.g. search and purchase history, location, etc., the “digital born” data can be repurposed 

for research (Rogers, 2013). Rogers also argues that the distinction between virtual and real 

has diminished, and that social scientists should use digital data to study “cultural change 

and societal conditions.” 

In addition, researchers need to “follow the medium” by “learning from and 

reapplying how digital objects (such as hyperlinks) are treated by devices” and using digital 

methods as opposed to digitized methods (Rogers, 2013). The inner workings of digital 

technologies have implications for the methodology social scientists can use to study the 

new digital platforms. For example, to understand the logic of working with Twitter data, 

I draw on both the documentation that Twitter developed for third party developers to show 

analysts and researchers how to interact with the platform through its APIs and on the 

extensive literature on conducting research based on Twitter data (see for example, Bruns 

& Burgess, 2015, Bruns & Stieglitz, 2013; Gaffney & Puschmann, 2013, 2014). 

Digital platforms have their own internal politics. Besides understanding the nitty-

gritty of API-based data collection and the best approaches to working with a particular 

platform, researchers need to think about platform politics and look critically at their new 
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data source. To take just one example: Social media companies have significant influence 

over what researchers can learn about platform users which can be achieved either through 

technological choices or through legal and policy decisions. Twitter, for example, can 

define and regulate how third party developers, analysts, data traders, or researchers can 

access data through its API by changing the architecture of the API, modifying its terms of 

services (ToS), and adding new documents to regulate how to use and interact with the 

platform (Puschmann & Burgess, 2013). These platform  restrictions can severely limit 

who can access data that appears to be open and available to the public. Decisions about 

who can access data and interact with the platform through its APIs almost always depend 

on the commercial interests of the company behind the platform (Borra & Rieder, 2014). 

Borra and Rieder, who have conducted g social research with Twitter, caution social 

scientists that APIs are designed to help third-party developers create applications that 

Twitter can use to make money, and do not necessarily serve the needs of the research 

community. These are all important considerations when working with data collected from 

social media. The limitations of a research project must always be carefully analyzed and 

acknowledged, and researchers must think critically about their data. 
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2. Existing research on Twitter bots and open-source development 
 
 
Automated social media accounts are often portrayed in the literature as actors that 

endanger social media platforms by spamming users, distributing malicious code or using 

fake profiles to create an artificial grassroots movement that support certain political goals. 

The growing phenomenon of social media automation and in particular the use of bots on 

Twitter triggered a strong response from the information security research community 

around 2010. Many of the early publications documented efforts to detect automated 

Twitter accounts to prevent commercial spam or the distribution of links pointing to 

malicious websites (Chu et al., 2010; Lee et al., 2011; Song et al., 2011). The literature has 

also addressed a new class of more sophisticated social bots that can be described as 

“software agents mimicking humans” and more difficult to detect (Ferrara et al., 2016). 

These social bots could still have various intentions, or more specifically, they could have 

been programmed or deployed with different motivations. Stieglitz et al. (2017) recognized 

these nuances and created a two-dimensional typology based on intentions (malicious / 

neutral / benign) and the degree which the bots mimic human actors (low to none / social 

bots). 
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Table 1 Categorization Scheme of Social Media Bot Accounts by Stieglitz 

Intent / 

Imitation of humans 

Malicious Neutral Benign 

High / Social bots • Astroturfing bot 
• Social botnets in 

political 
• conflicts  
• Infiltration of an 

organization 
• Influence bots 
• Sybils  
•   Doppelgänger bots 

• Humoristic bots • Chat bots 

Low to None • Spam bots 
• Fake accounts used 

for 
• Botnet command & 

control 
• Pay bots 

• Nonsense bots • News bots  
• Recruitment bots 
• Public 

Dissemination 
Account  

• Earthquake 
warning bots 

• Editing Bots, Anti-
Vandalism Bots on 
Wikipedia 

Note. Source: Stieglitz, 2017 

 
The table above is based on an extensive literature review. Table 1 shows that while the 

literature has focused extensively on malicious social bots, it also recognizes neutral and 

even benign actors that use elements of human-like communication - satire bots and chat 

bots respectively. Malicious actors include astroturfing and influence bots as well as a 

special type of bot, the political bot, which is often used on larger networks to change 

opinion on political and civic issues. Woolley (2016) provided an overview of incidents in 

which these types of social bots “deployed by powerful political elites during global 

political events.” 

 
2.1. Twitter bots  
 
Kaplan and Haenlein (2010) define social media by user-generated content and describe 

how content creation and sharing are based on the “ideological and technological 

foundations” of Web 2.0. According to Tim O’Reilly, who popularized the term in the mid-

2000s, the technical foundation of Web 2.0 is based on the  “principles and practices” that 

enable the development of interoperable applications and the design of the Web as a 

platform (O’Reilly, 2005). Social media is a socio-technical construction, and the 
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development of social media is strongly influenced by the idea that users are not only 

consumers of media content, but also producers of the content and co-developers of the 

technology. This idea goes beyond what Toffler (1980) called prosumers (users who are 

both the customers and producers of the content), because users also have an active role in 

forming the technology that underpins content. In this way Web 2.0 is “harnessing the 

power of the users themselves” (O’Reilly, 2005). 

According to Benkler (2006), the Internet has created a new networked public sphere 

in which individuals are no longer “passive readers and listeners” anymore but become 

potential “speakers and participants in a conversation.” This has also transformed 

traditional media, allowing non-professional actors to not only produce content and 

publicly voice their opinions, but also influence the news by reporting about newsworthy 

events through social media. Following Turner’s work, Murthy (2013) refers to this shift 

as the demotic turn which gives more visibility to “ordinary people.” Indeed, Murthy cites 

examples of ordinary people’s coverage of newsworthy events when analyzing the Twitter 

coverage of the 2009 U.S. Airways plane crash and the 2008 Mumbai bombing. On the 

other hand, some critical studies have questioned the role of citizen journalism in 

transforming traditional media. Based on content analysis of four major newspapers, 

Rebillard and Toubol (2010) concluded that these mainstream newspapers still rely on 

professional news sources, and as they noted, the “simplistic conception of a digital 

revolution in journalism does not stand up to empirical verification for all its cultural 

power.” 

With the development of software solutions for creating and maintaining automated 

accounts on social media and the widespread use of bots on platforms like Twitter, the 

definition of social media that focuses on “user generated content” is no longer valid. It is 

becoming increasingly important for users to help shape the agenda by sharing and 

disseminating messages on social media. The recent Brexit and the U.S. presidential 

election have shown that newsworthiness is increasingly determined by uptake on social 

media platforms like Twitter. This is where automation plays an important role; Various 

research projects have estimated the traffic generated by bots on Twitter at 19-24 percent 

(Bessi & Ferrara, 2016; Cashmore, 2009). 

Recent studies have found that a bit more than half of the Web traffic is generated 

and disseminated by automated accounts (Zeifman, 2016 cited by Gilani et al., 2019). A 

simulation conducted by Gilani’s research group based on real-world Twitter data also 

found that bots are involved in 54.59 percent of the conversations when information 
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exchanged between two or more Twitter accounts (Gilani et al., 2017). In a more recent 

study, Pew Research examined links posted on Twitter that pointed to popular news sites 

and found that 66 percent of such links were promoted or shared by bots (Wojcik et al., 

2018). The research team at Pew Research relied on the popular Botometer service (also 

known as BotOrNot), but the results were also fine-tuned and tested against a human-coded 

dataset. Another recent study focused on a special segment of Twitter communication, the 

discussion of he Covid-19 pandemic, and found that 45 to 60 percent of the traffic was 

generated by bots (Hao, 2020). In Russian language, the contribution of bot accounts in 

politics exceeded 50 percent in 2014-2015 (Stukal et al., 2017). 

The following section of the literature review draws in part on a paper (Kollanyi, 

2016) I wrote earlier on the development of open-source Twitter bots but has been updated 

with more recent literature. This section gives an overview of the most important research 

projects dealing with bots on Twitter, as well as the literature on the social aspect of code 

development using online code repositories such as GitHub. 

 

2.1.1. Bot detection 
 
The growing phenomenon of social media automation, and in particular the use of bots on 

Twitter, triggered a strong response from the information security research community 

around 2010. Many of the early publications documented the efforts of detecting automated 

Twitter accounts to prevent commercial spam and filter out tweets with links pointing to 

malicious websites (Chu et al., 2010; Lee et al., 2011). To detect Twitter bots, researchers 

have focused on various aspects of Twitter activity, such as sender-receiver relationship 

analysis (Song et al., 2011) and behavioral patterns. The methods include supervised and 

unsupervised machine learning (Chen et al., 2012; Davis et al., 2016; Efthimion et al., 2018; 

Minnich et al., 2017; Varol et al., 2017; Wang, 2010), detection of highly correlated 

accounts (Chavoshi et al., 2016), neural networks that analyze both content and metadata 

(Kuduguntaa & Ferrara, 2018) and the use of honeypots to catch Twitter bots (Lee et al., 

2010). 

Karataş and Şahin (2017) provide a good overview of the detection methods that are 

currently used to detect automated accounts (bots) in online social networks. The authors 

distinguish between structure-based, crowdsourcing-based, and machine learning-based 

bot detection methods and briefly discuss the limitations of such efforts. Similarly, Cresci 

(2020) looks into a decade-long literature on bot detection. This review distinguishes 
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between early bot detection efforts that focused on analyzing individual bots, often using 

some form of supervised machine learning, and network-based approaches. The drawback 

of the earlier efforts was the lack of reliable baseline data, in other words, the lack of large, 

reliable, labeled bot and human data. Therefore, these methods were subject to some bias 

from the beginning. In addition, bot developers had become increasingly sophisticated in 

hiding the activities of automated accounts, and it became increasingly difficult to 

distinguish between bot and human users (Cresci, 2020). For example, headless browsers 

can completely avoid using Twitter’s APIs, making them difficult to identify for both 

Twitter and third-party researchers (Gorwa and Guilbeault, 2020; Suchacka & Iwański, 

2020). As a result, novel approaches employed some form of group detection (rather than 

attempting to evaluate or score individual accounts), and these bot detection methods more 

often used unsupervised or semi-supervised machine learning (Cresci, 2020). 

On the other hand, Twitter itself has publicly questioned the accuracy of academic 

(and commercial) research on Twitter bots, claiming that most research projects 

overestimate the traffic generated by automated accounts (Roth & Pickles, 2020). Twitter's 

head of site integrity, along with the director responsible for the company's global public 

policy strategy, published a post on the company's official blog accusing research projects 

that rely on machine learning and a human-coded training dataset of strong human bias. 

According to the blog post, the training dataset was coded by people who only have access 

to a limited amount of metadata about the accounts and therefore have to incorporate their 

biases into the bot detection algorithm. Nevertheless, Twitter, just like any other major 

social media platform, has deployed sophisticated algorithms to combat spam. Lin and 

Huang (2013) studied the spam accounts that were able to survive for a long period of time 

without being caught by these algorithms. 

In addition to spam bots that have survived for a long time, the literature has also 

looked at a new class of more sophisticated social bots that can be described as “software 

agents mimicking humans” and are more difficult to detect (Ferrara et al., 2016). Note: As 

Gorwa and Guilbeault (2020) note, the terms “social bot” and “socialbot” are used in two 

different ways in the social sciences and computer security literature, respectively. While 

some social scientists use the term social bot simply to refer to all automated accounts on 

social media (e.g., Hwang et al., 2012), the term is also used to refer to human-like 

algorithmic activities (see, e.g., the Ferrara paper mentioned above). 

Twitter bots are often perceived as content polluters or a threat to security, and 

authors often use harsh language, such as claiming that bots weaponize the vaccine debate 
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(Broniatowski et al., 2018), armies of bots spread misinformation (Barners-Lee, 2017), and 

bots fought alongside humans in the Syrian civil war (Howard, 2015). However, even the 

early literature acknowledges that not all Twitter bots are evil. Chu et al. referred to the 

automated programs used on Twitter as “double-edged swords”: while some bots serve 

legitimate purposes, such as delivering news or automatically generating updates for a 

service, others just spread spam (Chu et al., 2010). A few years later, Ferrara et al. (2016) 

explicitly distinguished between benign and malicious Twitter bots. The latter category 

includes bots that aggregate content or produce automated responses for companies to 

provide customer support. 

Twitter bots act automatically without direct human involvement. Code that requires 

constant monitoring and/or human action to perform a Twitter-based task is not a bot. The 

involvement of a human actor makes an important distinction between Twitter bots and 

accounts that are often referred to as cyborgs in the literature (Chu et al., 2010; Chu et al., 

2012; Haustein et al., 2016). The term cyborg has two different meanings in the context of 

automated social media accounts and Twitter bots: The term can be used to describe a 

computer code that helps a user perform certain actions on Twitter, or it can be used to 

describe a Twitter account whose actions are partially human and partially code-based. A 

good example of the latter type is a Twitter user who, in addition to posting original tweets 

on Tweets, employs code to automatically retweet messages that originate from a specific 

user or contain specific hashtags. Another simple code can be used to automatically follow 

back users, and this code can also run in the background. This type of cyborg does not use 

automation to create content, but to perform simple but often tedious tasks, such as 

following other users or unfollowing hundreds of users at once or in small increments. This 

type of automation is often not visible on the platform, but if you track an account's activity 

over time, you can uncover or detect cyborgs. Researchers have also found that cyborg 

accounts tend to exhibit human-like tweet patterns. There are even “human spammers” who 

abuse the platform and post in an algorithmic manner (see, for example, Clark et al., 2016). 

Communication scholars have also looked at the credibility of automated social media 

accounts. These findings suggest that social media users perceive Twitter bots as credible 

sources of information under certain circumstances (Edwards et al., 2014). Based on 

Japanese media reports, scholars have claimed that an automated Twitter account proved 

to be a reliable and critical source of information during a particularly severe earthquake 

in Japan when other forms of local communication were disrupted (Haustein et al., 2016). 

Other scholars examined so-called robotic journalism, the use of news bots in various 



 24 

phases of content creation, from identifying newsworthy events to curating and analyzing 

data to writing (Lokot & Diakopoulos, 2016; Steiner, 2014). 

 

2.1.2. Twitter bot typology 
 
Twitter bots have been used for a variety of topics, from news to education to politics. 

Automated accounts can be set to tweet massively to promote a political ideology or 

commercial product, or they can tweet far less and even set to answer  specific questions 

from interested users. Both the different genres (or tasks) and the different tweet patents 

have been covered in the literature on Twitter bots. The literature includes papers on 

spambots (Chen & Subramanian, 2018, Cresci et al., 2017), bots promoting academic 

papers (Haustein et al., 2014), newsbots and chatbots used by the media (Diakopoulos, 

2019; Jones & Jones, 2019), bots used in crisis communication (Brachten et al, 2018; 

Hofeditz et al., 2019) and in politics (Bastos & Mercea, 2019; Caldarelli et al., 2020; 

Ferrara, 2017; Howard, Woolley & Calo, 2018; Wooley & Howard, 2016a, 2016b), as well 

as anti-harassment bots (Geiger, 2016). 

In addition to focusing on specific types of Twitter bots, there are three articles in the 

literature that attempt to categorize social bots or Twitter bots. The remainder of this section 

describes each attempt. Later in my thesis, I introduce a typology developed specifically 

for open-source Twitter bots, and I provide an overview of the frequency of these bot types 

within the sample of open-source bots I worked with. 

Oentaryo et al. (2016) introduced a framework for systematically profiling automated 

social media accounts in three broad categories - broadcaster, consumption, and spam bots. 

The authors noted that early literature on automated social media accounts focused almost 

exclusively on malicious bots, with the assumption that these bots should be removed from 

social media platforms, and that benign automated accounts were rarely discussed. This is 

even more true of the computer security literature and the literature on detecting and 

profiling bots. 

Oentaryo's categorization focuses on who initiates the automated communication, 

regardless of who operates the account. The model assumes that benign bots are either 

operated by organizations and groups of people seeking to disseminate information 

(broadcaster bot) or used by individuals seeking to access information from multiple 

sources, often in an aggregated format ( consumption bot). The latter category includes 

services that send automatic updates on request - for example, a personalized horoscope 
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service or a Twitter bot that sends a user a notification when another account unfollowed 

his or her account. Spam bots work the same way as broadcast bots, but the content is either 

malicious (e.g., links to malicious websites, viruses) or they simply aggressively promote 

content. 

This categorization is useful because it recognizes that not all automated accounts are 

malicious. The article also provides important insights into bot detection by comparing 

tweet patterns and a large number of metadata fields across human and (both malicious and 

benign) bot actors' accounts. Another strength of the article is the discussion of social media 

automation tools in the context of automated social media accounts. Semi-automated or 

cyborg accounts often use social media management software to generate content, but fully 

automated accounts also often rely on social media management software (e.g., HootSuite) 

or web services (e.g., IFTTT). However, the categorization is oversimplified and mixes 

intent, tweet activity, and direction of communication. In addition, the exact method for 

distinguishing between consumption and broadcaster bots is not clear, and there could be 

many accounts that could be labeled as both. 

Maus and Varol (2017) wrote an occasionally funny short paper on socialbots for the 

2017 Web Science Conference that provided a comprehensive typology based on five 

dimensions, including the bot's goal, coordination, the operator behind the bot, and its 

transparency. (Onur Varol was instrumental in developing the bot detection platform 

Botometer at Indiana University, Bloomington.) Regardless of the funny tone, this is a 

much broader approach to bot categorization, and this paper addresses both benign (e.g., 

content curation, entertainment, motivator, etc.) and malicious (e.g., network graph or 

metrics manipulation, channel disruption, etc.) bots. A variety of examples from the 

literature are given for the different sub-dimensions. 
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Table 2 Bot Typology Developed by Maus and Varol 

Dimension Type 

Alleged Humanity Honest Bot  
Intentionally Ambiguous 
Fleshmask 

Operator Individual 
Government 
NGO 
Commercial 

Bot Coordination Hive 
Aspen 
Singleton 

Operator Transparency Covert  
Overt 

Objectives Novel Content Broadcasting 
Content Promotion 
Content Curation 
Information Acquisition 
Channel Disruption 
Network Graph Alteration 
Transaction 
Entertainment 
Proof of Concept 
Metric Manipulation 
Motivator 

Note. This is an edited version of the typology originally developed by Maus and Varol. 

 
Gorwa and Guilbeault (2020) developed a quasi-typology for bot accounts. In the paper, 

the authors focus on the lack of clarity in defining bots and the political consequences of 

the ambiguity of the term. According to the authors, the term robot (or bot in a shorter 

form) has been used to refer to a variety of automated and semi-automated actors on the 

Internet and even to non-automated accounts. On the other hand, some activities of 

automated accounts are not visible to users at all, and other seemingly automated accounts 

are actually operated by humans, the authors argue. In the first part of the paper, they give 

examples of six types of bots. Four of them tend to be fully automated: 1) crawlers and 

scrapers that download data or follow web links, but these accounts are not visible to human 

users; 2) chatbots that interact with human users and engage in meaningful conversations; 

3) Spambots, which may simply be infected computers that distribute unsolicited content, 

or social media accounts that usually spread spam messages in an automated manner; 4) 

Social bots, which are either just bots or social media platforms or social media accounts 

that mimic humans. The last two are either 5) human troll accounts or 6) cyborgs and hybrid 

accounts that are part human and part machine. This paper also raises the issue of accounts 
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that use available tools such as the popular service If This Than That (ITTT) or a social 

media or content management system (e.g., SocialFlow or Buffer) for automation. 

In addition to the underlying mechanics (e.g., bot code vs. social media management 

tool), Gorwa and Guilbeault's paper suggests examining the function or end goal of the bot. 

However, this paper does not provide a complete typology, but argues against the broad 

use of the term and speculates on the possible dimensions that can be used to build a 

meaningful and relevant typology. 

 

2.1.3. Twitter bots and high salience events 
 
The use of automated accounts in social media to manipulate high-profile (political) events 

has been studied by researchers in the fields of information security, communication 

studies, and political science. This line of research has examined how political actors can 

gain political advantage through the use of bots. Ratkiewicz et al. (2011) described Twitter 

as a battleground of modern politics where political actors can use computer code to create 

the illusion of an artificial grassroots movement (astroturfing) or conduct smear campaigns. 

Metaxas and Mustafaraj (2010, 2011) gathered evidence of the use of automated accounts 

during the Massachusetts Senate race-the authors analyzed how messages from these 

Twitter accounts could influence search engine results, a technique known as Twitter 

bombing. Other early research projects also used Twitter data collected during U.S. 

elections to examine the use of automated accounts to retweet and report content associated 

with specific political groups (e.g., Lumezanu, Feamster & Klein, 2012). Woolley (2016) 

provided an overview of incidents in which social bots were “deployed by powerful 

political elites during global political events” in countries such as Argentina, Russia, Saudi 

Arabia, the United States, and 13 other countries.  

Although the use of bots has been reported in the news around the world, including 

in many authoritarian regimes, the 2016 U.S. election and, to some extent, the 2018 

midterm elections likely had the strongest impact on public discussion of Twitter bots 

(Bessi and Ferrara, 2016; Badawy, 2018; Luceri et al., 2019; Howard et al., 2017). 

After careful review of the data collected from GitHub and Twitter, and a discussion 

with my committee, I decided not to include most of the analysis on Twitter bots and 

politics. Hence, this dissertation does not cover this topic in great detail, but I have 

suggested further research on this topic using a different methodology in the section on 

future research directions. 
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2.2. Open-source software development 
 
2.2.1. Sharing code and the social use of GitHub 
 
Previous research on Twitter bots has mainly focused on the outcomes of bot activities in 

order to regulate the bot ecosystem: Detection and categorization of bots into desirable and 

unwanted, or along similar simple distinctions. While this approach focuses heavily on 

detecting and describing bots already deployed on Twitter, these research projects have not 

addressed the development of the code and actors behind the bots. Therefore, to learn more 

about the creation of Twitter bots, I decided to investigate the process of writing and sharing 

bot code on GitHub. 

GitHub is the largest online repository for shared computer code and for open-source 

developers it is the de facto solution for collaborating and sharing their work (Gousios et 

al., 2014). Therefore, GitHub is a good place to explore open-source codes for Twitter bots 

and the social arena around bot development. 

GitHub has always advertised that it is an online repository hosting service with 

version control to support “collaborative development of software.” In the early days of 

GitHub, one of the advantages of the platform over other code sharing and version control 

solutions was actually the social features of the site. For example, GitHub users can track 

the work of other users on the platform and acknowledge the programs written by other 

developers, which is called “staring a repository.” Developers can also create a copy (fork) 

of another user's repository and work on that version independently. The changes in the 

forked repositories can later be integrated into the original repository. 

Researchers have studied the social aspect of coding on GitHub using both qualitative 

and quantitative methods. These results are also relevant to the problem of how users learn 

through social sharing on Twitter bots. Margaret-Anne Storey et al. (2014) conducted a 

survey on GitHub by contacting 7,000 active users. According to the study, there is a new 

generation of developers characterized by heavy use of social media for communication, 

coordination, collaboration, and learning from others. By providing social tools for sharing 

code, GitHub has effectively lowered “the barriers to joining and contributing to 

development communities” (Storey et al., 2014). 

Dabbish et al. (2012) provide a good example of the potential of qualitative research 

on GitHub. In this study, researchers used in-depth interviews to understand how social 

dynamics influence the way individual developers engage with code. They examined how 

users followed the work of other developers and whether this type of transparency, the 
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public nature of work on GitHub, led to learning and increased collaboration between 

developers (Dabbish et al., 2012). The researchers concluded that developers tended to 

produce cleaner code and committed changes less often when many people were watching 

their projects, but they also experimented less because of this social pressure. Still, GitHub 

users learned from each other by observing how others solved the same problem.  

There is a growing body of literature based on GitHub data that examines how 

developers use the collaborative code repository. This growing interest is explained in part 

by the availability of data, the availability of big data technologies for collecting and 

distributing vast amounts of data, and in this particular case, the emergence of methods for 

overcoming the limitations on data collection imposed by GitHub as an organization. 

Lima et al. investigated both the network-like features of GitHub and the 

collaborative aspects of the platform (Lima et al., 2014). This project was based on a very 

large dataset and showed that social ties have a relatively low level of reciprocity compared 

to other platforms, and active users do not necessarily have a large social network on the 

site. While there are some very visible cases of collaboration on GitHub, such as Linus 

Torvalds' Linux source code, the results also suggest that the site's strength lies in fostering 

a social learning process where users can view and appropriate the published code for their 

own purposes. 

GitHub provides easy access to its repositories (i.e., shared code) and to metadata 

about the repositories through an application programming interface (API). Metadata 

available through the API includes the number of contributors, some measures of the 

repository's popularity (stars and forks), and information about what programming 

language the code was written in. Additional information is available about each user, such 

as location, when they joined the platform, number of shared repositories or programming 

code, and contributions to other repositories. The site has a more liberal API policy than 

many other sites (e.g., Google or Twitter), both in terms of the number of API calls a user 

can initiate and the level of detail provided. GitHub users generate a large amount of data: 

According to Gousios (2013), Github produces 200,000 events on an average day, which 

equates to just over 8,300 events per hour. 

Data-driven research projects also investigated developers' choice of programming 

language (Sanatinia & Noubir, 2016), the geography of the open-source community 

(Takhteyev & Hilts, 2010), or the use of the platform in education (Zagalsky et al., 2015). 

For a more detailed overview of GitHub-related software research, see the review by 

Kalliamvokou et al. (2014). 
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In addition to research projects investigating specific questions, the collection and 

curation of data on GitHub is an important research direction in its own right. There are at 

least three major attempts to download any GitHub repository for the purpose of archiving 

and research (Gousios, 2013; Grigorik, 2012; Sanatinia & Noubir, 2016). The researchers 

behind the GitHub Archive and GHTorent dataset decided to publish and share their 

datasets with the research community to facilitate further research, as they claim that the 

data available about GitHub users is still “largely underexplored in terms of academic 

publications” (Gousios et al., 2014). Eventually, GitHub itself decided to copy all active 

repositories on the site to archival film and store them 250 meters below ground in a 

decommissioned coal mine in Sweden near the North Pole (Metcalf, 2020).  
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3. Methodology 
 
 
3.1. Research design and data collection strategy 
 
Data collection for my dissertation is a four-step, often iterative process that includes initial 

data collection from GitHub via the website's APIs, a survey of bot developers, Twitter 

data collection, and more specific data collection from GitHub. These steps are designed 

to build on each other and therefore can only be done in a specific order. Figure 1 provides 

an overview of these four steps and how I accessed the data, as well as the research results 

generated after each step. 
Figure 1 Data Collection Strategy for the Thesis 

 
 

Since I was interested in open-source bot development, I began my data collection by 

exploring how to access data from GitHub, the largest online code repository. The website 

has an API that allows one to search for specific keywords in the name and description of 

the repositories. The next section of the methodology chapter (2.1.1.) provides a detailed 

overview of the data collection process, focusing on GitHub. The result of this data 

collection was a large database of metadata downloaded from the website about bot 

repositories and about all developers who had at least one bot repository available on the 

platform. Although the data collection was done solely through the API by writing a script 

in Python, I periodically visited the GitHub website and compared the raw data with the 

information available on the website to make sense of the collected data. 

After collecting and analyzing the data from GitHub, I decided to contact developers 

to ask more questions about the motivation behind bot development, the skills required, 
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interaction with other developers, and the biggest challenges in developing a bot and 

deploying it on Twitter. The GitHub dataset collected during the first phase of data 

collection allowed me to extract the contact information of all developers who set their 

email address public on the platform. I used a paid online survey tool called Survey Gizmo, 

which allowed me to contact all developers by sending emails in mass. For a more detailed 

overview of the survey design and data collection, see Section 3.1.2. 

After finding a large number of open-source bot codes on GitHub, I was curious to 

see how many of these bots were deployed on Twitter and what I could learn about the 

activity of such bots. Although some of the bot repositories include either a Twitter handle 

or a link to Twitter in the description or readme.md file uploaded to the repository, this is 

not always the case. Therefore, I decided to include a question in the survey asking 

developers to provide a list of the Twitter handles of the bot they use on Twitter. This way, 

I could link data about the developers on GitHub (including their bot repositories) to the 

bots deployed on Twitter. I also had survey data available for the bot developers. For more 

information about collecting data on Twitter and how I linked bot repositories to bots on 

Twitter, see Section 2.1.3. 

During data collection, I made several small decisions that limited the generalizability 

of the results of my research, but my goal was never to collect as much data as possible. 

Instead, I wanted to develop a data collection strategy that was sound, easy to understand, 

and repeatable. (Note: The Limitations section in the Discussion chapter provides an 

overview of the limitations of the results in light of the above decisions.)  

The following list provides an overview of the four major data sets collected during 

the data collection phase of my research project: 

 

GitHub dataset: Metadata about 19K open-source bot repository; 

Survey responses: Survey results from 860 bot developers; 

Twitter dataset: Data and metadata about 321 open-source bot repositories with paired 

source code on GitHub (500K tweets and metadata, including user engagement); 

Manual coding database: Data about 321 Twitter bots – manually labeled. 
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3.1.1. Bot repositories and bot developers on GitHub 
 
The first step of my data collection focused on finding bot developers and bot codes by 

searching bot repositories on GitHub. GitHub has an API that allows users to get a list of 

repositories that contain certain search terms in their name, description, or readme file. 

Initially, an API call found GitHub repositories containing both the words “Twitter” and 

“bot.” This initial search returned 17,722 results, and an additional search for the term 

“Twitterbot” as a word returned an additional 3,566 results. After combining the two 

datasets and removing the duplicates (the overlap between the two terms), the final dataset 

contained more than 19,000 repositories.4 

Working with online social data, especially when accessing user-generated data and 

relevant metadata via multiple API calls, is in many ways an exploratory and iterative 

process. It is also a grounded process: the research questions are formulated as the 

researcher becomes familiar with the data. In other words, the initial collection and analysis 

is often designed to explore the questions a researcher may ask in a cursory examination of 

the data. A cyclical and systematic process of data interrogation creates the context for 

further analysis. 

                                                
4 By default, the GitHub search API shows only original repositories and excludes forks. By adding 
the forked versions—the copies of the original code that may have been modified—the number of bot 
repositories only using the term “Twitter bot” in itself would be higher than 26,000. This research 
proceeds with the initial dataset, which does not include forks. 
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Figure 2 The Structure of the Data Collection 

 
 

Figure 2 describes the steps of collecting data from GitHub. This approach to data 

collection is an iterative process. The researcher first queries the API and downloads the 

raw data. Then, all relevant information is processed (parsed and cleaned, if necessary) and 

stored in a local database. To make sense of this data and make new API calls, the 

researcher needs to think about the research questions as well as the structure, availability, 

and quality of the data.  

Although the most important information about repository owners is readily available 

through the search API, additional information can only be obtained through separate API 

calls, one for each repository. These additional API calls are relatively easy to create, as 

they follow the same syntax for each repository. This additional step in the data collection 

process provided important insights about users, such as when they registered, their 

location, the number of public repositories, and the number of followers they have. Further 

requests could provide additional details, such as the readme file for each repository or the 

usernames of those who forked the repository on GitHub. 

API calls must follow a specific syntax, for which there is extensive documentation 
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on GitHub (similar to APIs for other platforms). To learn the syntax and understand the 

scope and context of the available data, three different sources were used: the API 

documentation, the structure of the information on the website, and the data available by 

querying the API. 

 

1. GitHub provides extensive documentation for its API. The language of the 

documentation is mainly geared towards developers and describes the proper syntax 

for accessing the data. It is also a useful tool for gaining insight into the kinds of 

questions a social scientist might ask of the data and for understanding the potential 

limitations of data collection. 

2. Using the interface of GitHub was also helpful in understanding the mechanics of 

the platform. I regularly browsed through the various repositories created by bot 

developers and looked at the site’s interface to contextualize the data. Because of 

the liberal API policy of GitHub, almost every piece of information available on the 

site is accessible through various API queries, so studying the website also helps 

develop ideas for the types of questions that can be asked through the API.  

3. I started with a small, incomplete but easy-to-manage sample dataset of bot 

repositories. This approach allowed me to learn about the limitations of the API, the 

challenges of collecting data, and the possibilities of extending the scope of data 

collected.  

 

Once we had developed a strategy for downloading the data, it was important to decide 

how to store the information. Figure 2 provides an overview of the iterative process of data 

collection and storage that led to the final dataset. This process began with the initial dataset 

of more than 19,000 repositories that contained the words “Twitter” and “bot” or 

“Twitterbot” in their name, description, or readme file. This dataset was then expanded by 

additional targeted API calls to GitHub. 

Using the unique identifier that GitHub provides for each repository made it easy to 

add new entries and incorporate additional information into the dataset. It also makes it 

possible to update the dataset with newer bot repositories in the future. This was extremely 

useful in early 2021 when I updated the original dataset. 

Interestingly, the methodology I developed and published in an article in 2016 had 

inspired a research group at the University of Münster (Germany), to investigate bots 

(Assenmacher et al., 2020). The researchers reused my methodology (and referenced 
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properly ) and also extended it in a nice way: they focused on the top 5 code sharing 

platforms (including SourceForge, Bitbucket, GitLab, and Launchpad in addition to 

GitHub) and included other popular social media platforms like Telegram and WhatsApp 

in their analysis. This shows how the methodology can be generalized or used to collect 

data to answer a different research question. The paper also compared the available open-

source bot repositories with commercial services or solutions available on both the public 

internet and the darknet5. 

 

3.1.2. Open-source bot developer survey 
 
The Users API of GitHub provides access to a plethora of metadata fields about developers 

on the platform. The platform allows users to add a wide range of personal information to 

their profile, such as a biography or a location, links to social media platforms or websites, 

and contact information. The available information can be better understood if we take a 

look at a typical GitHub user profile, which is publicly available on GitHub’s website. 

Figure 3 is an annotated screenshot from GitHub showing an example of a typical GitHub 

profile page. 

 
Figure 3 Annotated Screenshot of a Typical GitHub Profile 

 

                                                
5 The darknet is the part of the internet that is only available through special configurations and/or software, e.g. 
peer-to-peer networks which can be used for downloading music and films. 
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Note. Source of the original screenshot: Sharon Lin, Medium.com. Annotated by the author. 

A typical profile on GitHub includes a picture of the user (sometimes it's a photograph, but 

often it's just a cartoon or logo), a name (e.g., first name, last name), and a user handle, 

usually a short bio, often a company name, a link to a blog and/or a link to a personal 

Twitter profile, an email address, and some sort of location information (often a city and 

country). However, all of this information is optional, with the exception of providing a 

valid email address when registering and selecting a username.  

Although providing an email address is mandatory for the registration process, it is 

completely optional to publish the email address in a user profile. Users have the option to 

either add their primary email address to their profile or use a secondary email address and 

hide the original email address. At the time of writing, the visibility of the email address 

associated with a GitHub user profile is set to hidden by default, and publishing an email 

address in a user profile is an opt-in feature. In other words: After registering with an email 

address, users must actively publish their email address in their profile if they want other 

users or site visitors to contact them. The decision to publish an email address could 

indicate a variety of attitudes, from encouraging openness and communication to creating 

transparency in the development of open-source software. Another potentially common 

reason for publishing an email address on a GitHub profile is so that professional recruiters 

can contact a developer on GitHub with a job offer more easily. 

In addition to the above reasons, GitHub itself encourages users to publish their email 

address in their profile (Wanstrath, 2012). The platform offers only a fairly limited number 

of ways to communicate with other users. Since 2012, users have not been able to send 

messages to each other within the platform. One way to get around this limitation of the 

platform is to open an issue in the other GitHub user's repository or create a new repository 

and add an at mention (@username) to call the attention of the other user. (Users usually 

get a notification when someone mentions them). The other option is to contact the user 

through another channel - either Twitter (if a link is provided) or email. The above 

limitation could also encourage the practice of publishing an email address in a GitHub 

profile. 

The Search API resulted in a list of 16,168 bot repositories in the summer of 2020 

(note: by the end of the same year, the number of bot repositories exceeded 19,000). 

Because some users published more than one Twitter bot repository (that matched the 

keywords I used), the number of unique developers was slightly lower. In the end, I 
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retrieved the detailed user profiles of 14,302 unique GitHub developers via the User API. 

These users were mostly individual users, but a small number of profiles were institutional 

profiles. After processing this data, I was able to identify 5,591 valid email addresses in 

the user dataset. 

After extracting the email addresses, I decided to use SurveyGizmo to host the survey 

and manage the survey request emails. (Recently, SurveyGizmo changed its name to 

Alchemer.) SurveyGizmo had a list of prohibited email addresses that included email 

addresses beginning with certain words, for example, info@, infomation@, tech@, and 

all@. No emails were sent to these addresses via the platform. Most of these addresses are 

either channeled to multiple people (e.g., all employees in the department IT ) or at least 

not to a specific person, e.g., info@example.com. According to Survey Gizmo, sending 

surveys to these addresses results in a much lower response rate, as they are usually not 

answered and often result in some of the IP addresses used by the survey platform being 

blacklisted. However, the number of developers who used such email addresses was 

minimal in my GitHub sample. Nevertheless, all such email addresses were removed before 

the email campaign for the survey was set up. 

The online data collection ran for 3 weeks, from July 20 to August 16, 2020, but most 

respondents answered the questionnaire during two peak periods within that time frame. 

The first data collection wave focused on users who had posted the word “twitterbot” either 

in the name of one of their repositories or in one of the repo descriptions or readme files in 

their repository. The second wave focused on developers who used both the words “twitter” 

and “bot” and were not included in the first wave. (There was significant overlap between 

these groups). 

The main reason for using a commercial online survey tool instead of setting up my 

own open- source survey tool or using a simple online form was the ability to send 

invitations to more than 5000 users. This online survey tool also had the ability to send 

reminders to users who did not respond to the questionnaire. Any developer who did not 

respond received a reminder note about a week after the first emails were sent. Finally, 

SurveyGizmo also gave developers the option to opt out of any further communication, 

resulting in fewer unsolicited emails. SurveyGizmo also allowed me to pay for only one 

month instead of signing up for an annual subscription, and offered conditional logic in the 

survey as well as a pretty decent customizable design. 

The invitation to participate was sent to 5,488 email addresses, and in the end 1,008 

respondents completed all or part of the survey. After removing the incomplete responses, 
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I had 813 participants. Thus, the response rate for this survey was 14.8%, which compares 

favorably to, or in some cases slightly exceeds, similar online surveys focused on GitHub 

(Begel & Nagappan, 2007, Tao et al., 2012, Vasilescu et al., 2015). 

The response rate of a survey depends on a relatively large number of factors. In the 

case of online surveys, reasons for lower response rates could include email checking 

habits, lack of interest in the study, and survey length (Saleh & Bista, 2017). Saleh and 

Bista recommend not only targeting an audience interested in the research topic, but also 

writing personalized invitations and sending reminders if respondents do not complete the 

survey. The online survey tool allowed me to add a personalized greeting to each email 

address and send a reminder to developers who did not respond and opt out of further 

communication. Most of the incomplete responses were from respondents who exited the 

survey very early, shortly after the first block of questions - this suggests that the length of 

the survey did not contribute significantly to the number of incomplete responses. 

Another caveat to the survey: the language of the survey was English, and this fact 

may also introduce some bias in my sample. I was curious about how well GitHub users 

speak English. The best information on GitHub developers' language skills comes from a 

large-scale survey conducted in 2017 as part of a collaborative project with researchers 

from academia, industry, and the open-source community (Geiger, 2017; Zlotnick et al., 

2017). According to this survey, 77% of open-source developers speak and write English 

very well, and another 19.94% reported moderately good speaking/writing skills reported 

by Geiger6.  

  

                                                
6 The advantage of this (baseline) survey is that all the questions were available in 5 major languages - 
Spanish, Chinese, Japanese, and Russian, besides English. The survey was a large scale survey with 
respondents from a wide range of GitHub project. The final sample included 5,500 randomly selected 
developers from more than 3,800 open-source repositories on GitHub.com respondent to a survey, but the 
same survey also included 500 respondents from communities that work on open-source projects by using 
other platforms (cf. numbers presented above). Although the non-GitHub user sample is only about 9 
percent of the GitHub sample, it is possible to filter out these respondents. The raw data of this 2017 
survey is available on GitHub, so I could get an even more precise picture about the language skills of the 
developers on the platform. Within the sample of GitHub users, 76.5% speaks very well in English, while 
another 20.29% speaks moderately well. 
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3.1.3. Open-source bots deployed on Twitter 
 
Bot developers who publish their bot's source code on GitHub and deploy the bot on Twitter 

can add a link pointing to the bot account to their GitHub bot repository. Similarly, 

developers can put a link in the profile information (bio) of a Twitter account that points to 

the bot's source code (a repository on GitHub). However, not every bot repository contains 

a link to Twitter and not all bots are transparent about their code, so it is not always easy 

to identify the creation of a bot developer (of a particular bot) on Twitter. 

To identify bot accounts on Twitter and create a truly cross-platform dataset, I 

included a question in my online survey asking respondents to create a list of their bot 

accounts on Twitter. The goal was to create a complex dataset where I could analyze the 

following three sources together: 1) survey results, 2) bot repositories on GitHub, and 3) 

bot accounts on GitHub. The advantage of having a list of bot accounts linked to a specific 

GitHub developer (especially if it can be linked to a specific bot repository) is that the bot 

code can be studied together with the activity of the bots that were deployed on Twitter. It 

was often challenging to link the list of Twitter accounts shared by a particular developer 

to the repositories containing the code used to run the bot. 

Participants in the bot developer survey collectively provided more than 800 

automated accounts when I asked them to list the user handles (Twitter usernames) of their 

bots. Unfortunately, some of the accounts were no longer available on Twitter (for example, 

suspended bot accounts have no visible content on Twitter) or it was impossible to connect 

to a specific bot repository on GitHub. 

There are at least three different situations that make it difficult or impossible to 

investigate a deployed bot and the corresponding bot repository on GitHub. 1) A bot can 

be suspended. Automated accounts are often caught violating Twitter's terms of service. 

These bot accounts can disappear from Twitter if the platform suspends the entire account. 

If the bot account is no longer available on Twitter, it is often difficult to establish a 

connection between a repository and the Twitter account unless there is a unique link, such 

as a link to a specific Twitter account in a repository's description. In addition, the content 

of these suspended accounts is no longer available. 2) A bot account can be deleted. If for 

some reason developers themselves decide to remove their bot activity from Twitter, the 

entire account can be deleted or all tweets posted from the account can be removed simply 

by making a few API calls. There can be several reasons for deleting the traces of an 

automated account, from trying to avoid detection by Twitter's algorithms to simply 
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rededicating the account to another task. 3) Twitter allows users of the platform, including 

bots, to change their usernames. Even if the account and its previous communications are 

available on Twitter, the user handle can be changed to (almost) any name not currently 

used on Twitter. (Every user registered with Twitter has a long, unique numerical ID that 

can be used to identify the account even if they change their username, but I did not have 

access to that information.) 

To identify the Twitter accounts uniquely associated with a particular bot repository 

on GitHub, I manually linked the lists of accounts provided by the respondents and the 

repositories belonging to one of the developers who responded to the survey. I relied on a 

combination of manual and computational analysis of three different GitHub data fields. 

First, I compared the repository name to the Twitter handle provided - repository names 

often matched the user handle on Twitter. For example, both a repository on GitHub and 

an account on Twitter might have the name WeatherBot. I then downloaded all the metadata 

for the bot repositories on GitHub and the readme files for each repository that had a readme 

file. In this dataset, I computationally searched for specific text strings. The at symbol was 

often used to indicate a Twitter handle in the repository description. For example, a 

repository might contain text similar to this, “You can find the bot on Twitter at 

@WeatherBot.” Similarly, I looked for links pointing to the Twitter.com website. For 

example, “Check out my bot at https://www.twitter.com/weatherbot/.” Finally, I looked for 

the same patterns in the readme file uploaded to the repository (at symbol or a Twitter link). 

Note: Neither a meaningful description nor a readme file are mandatory parts of a GitHub 

repository, but users almost always add a short description to their repositories and the use 

of a readme file is also very common. A readme file is a simple file written in a markup 

language that is uploaded to a repository. It is automatically recognized by GitHub and can 

be read by users visiting the repository on the website. 

In addition to looking for possible clues to identify a Twitter account on GitHub, I 

downloaded from Twitter all the user profile data for the bot accounts used. Remember that 

the bot developers have listed the user handles of their bot accounts. I simply downloaded 

the user profiles for all 800+ bots enlisted by survey participants. The profile information 

or bio of a Twitter account may also include a link to a specific GitHub repository, or the 

user profile may be linked to a website or web page. For example, a developer can link a 

Twitter profile to a specific GitHub repository using a web link. 
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3.2. Programming work for the dissertation 
 
Open research brings transparency and reproducibility to science (Nosek et al., 2015). In 

addition to reproducibility, open research requires transparency in methodology and data 

collection, as well as publication of the code behind a research project. According to Nosek 

et al, all of this should be encouraged by scientific journals, but the current academic system 

does not adequately reward these open practices. The lack of open research has led to a 

credibility crisis in the hard sciences, such as biology, and also in the human sciences, such 

as psychology (on the “crisis of confidence in psychological science,” see Pashler & 

Wagenmakers, 2012). It is not surprising that Science Magazine, one of the most 

established academic journals, has responded by introducing a specific policy on 

replicability, and the journal's editor-in-chief has emphasized the importance of producing 

peer-reviewed studies that are replicable in order to restore trust in science (McNutt, 2014). 

However, conducting open-ended research requires significant research effort from 

researchers working with vast, often unstructured and semi-structured datasets, including 

data collected from social media platforms, Internet of Things devices, and other forms of 

machine-generated data (Hashem et al., 2014).  

Computational social science has its own challenges when it comes to open research. 

These include the difficulty of sharing massive datasets from social media platforms, 

problems working with “found” data, and the lack of research transparency. A recent 

journal article by Lazer et al. (2020) warns that these platforms were never designed to 

answer research questions and that platforms often change from one day to the next. As the 

authors put it, “The design, features, data recording, and data access strategy of platforms 

may change at any time because platform owners are not incentivized to maintain 

instrumentation consistency for the benefit of research” (Lazer et al., 2020). This means 

that working with platform data raises all kinds of issues with internal and external validity 

and often makes replication of research very difficult. Replication of research is also 

difficult because the “raw data are often unavailable to the research community owing to 

privacy and intellectual property concerns, or may become unavailable in the future” (Lazer 

et al., 2020). 

API-based data collection for this work has focused entirely on public data, yet data 

sharing itself presents its own privacy issues. Both intellectual property and privacy reasons 

are indeed relevant here, especially for the data collected by Twitter. The platform's 

“Developer Agreement and Policy” explicitly restricts the redistribution of Twitter content, 
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allowing only the sharing of tweet IDs and user IDs even for academic purposes (Twitter, 

2020). These unique identifiers allow other researchers to download the original tweets, 

but only if they are still publicly available on the platform. This means that the company 

retains its right to withheld information-for example, tweets that have been removed by 

Twitter or posted by accounts that have been suspended by Twitter are no longer available. 

This makes it difficult to reproduce research. Publishing data collected through GitHub's 

API also raises privacy issues, even if the data published on the platform was routinely 

archived and made available online. 

Releasing the code used to access the data is another way to increase both the 

reproducibility and transparency of my research method. After cleaning and annotating the 

code produced for this thesis, the code will be published on GitHub with a brief description. 

Work with the GitHub data began in early 2016, although all data analyzed for this 

article was collected in 2020 and early 2021. To access the above data via the GitHub API 

and parse the information from the API response, the Python programming language was 

used. Most of the data processing and analysis was also done in Python, while most of the 

data visualization was done in R.  
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4. Findings 
 
 
4.1. Open-source bot repositories on GitHub 
 
The first steps of my empirical study involved finding Twitter bots on GitHub and 

collecting metadata about both the repositories (the bot code stored on GitHub) and the bot 

developers. The following subsection focuses on the open-source Twitter bots published 

on GitHub and the user data accessed through the platform's APIs. 

 
4.1.1. The exponential growth of Twitter bot repositories on GitHub 
 
GitHub was launched on April 10, 2008, and Twitter bots have been present since the 

beginning of the site's history. The oldest bot repository found was created just four days 

after GitHub's official launch date. The number of Twitter bots has grown rapidly. In 

GitHub's first two years, 2008 and 2009, nearly 100 different bot codes were published. 

Since then, the number has grown steadily, reaching 1,000 by 2013, and by 2016, the 

number of bots had quadrupled (about 4000 repositories). By the end of 2020, there were 

more than 19,000 repositories available on GitHub. Note that deleted bot repositories no 

longer show up in the search, so the total number of bot codes published on GitHub might 

be slightly larger. 

 

4.1.2. The location of the bot developer 
 
The analysis in this  sub-chapter is largely based on the analysis of bot codes from 2016. 

The 2016 data was analyzed using Tableau software, and I decided to include this earlier 

version originally published in a paper (Kollanyi, 2016). However, this sub-chapter has 

been updated with new data and based on all bot codes available by the end of 2020, and a 

new, updated version of the geographic distribution of the Twitter bot repositories was 

added to the thesis. 

Some online services automatically collect location information based on the IP 

address of their users or by geotagging data with location reported by a phone, computer, 

or tablet. GitHub uses a free-text question in user profiles, so location data is based on self-

declared information. This decision has numerous implications for the quality, reliability, 

and usability of the location information on GitHub. First, users have the option of not 

providing any location information. In this dataset, there are 7,081 bot repositories that do 
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contain location information. Second, even if a user provides a location, there is no 

guarantee that it is truthful. Finally, location information can change over time, but the API 

only stores current information, so there is no way to know what the information was at the 

time a repository was created. 

Asides from missing, incorrect, false, and outdated information, location data in the 

user profiles does not follow a strict syntax of street address, city, zip code, and country 

name. A developer living in New York could add this information in a variety of ways, 

from a properly formatted street-level address to just typing NY or NYC. Google Places 

was used to interpret this information. Google Places is a robust system for encoding 

geographic information, and can be used for free with some limitations to geocode data. 

Google Places provided accurate geospatial data with latitude and longitude coordinates 

for almost every valid location. Some of the original location data on GitHub included 

street-level details, while others specified only the country. Another geocoding API was 

used to obtain the address in a structured format that allowed the identification of the 

country name for each repository. The results of the geocoding process are shown in Figure 

4 (from 2016) and Figure 5 (updated data from 2020). 

 
Figure 4 Global Map of Bot Repositories in 2016  

 

Note. N = 2,615, Original publication: Kollanyi, 2016 

According to the location information in the dataset, the largest number of Twitter bots 
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within the geocoded sample was created by a developer from the United States in both 2016 

and 2020. Developers from the United States have dominated the open-source bot 

landscape since 2008. In fact, exactly 50% of the bots in 2018 came from the United States, 

with the rest being uploaded by European and Chinese developers. The first Japanese bot 

was added to GitHub in 2009, and in 2010, Japanese bot writers published more bots than 

developers from the United State. Bot developers from Japan have been remarkably active 

since then. However, the share (relative contribution) of Japanese bot developers has 

declined in the past five years. While Japan had the second largest number of bot 

repositories on GitHub in 2016, Indian developers has published more bot repositories than 

Japanese developers by 2020. Similarly, developers from other developing countries such 

as Brazil, Nigeria and Indonesia have published significantly more Twitter bot repositories. 

 
Figure 5 Global Map of Bot Repositories in 2020 

 
Note. N = 11,180 

Graham and De Sabbata (2015) mapped the number of users and the number of commits 

per country based on the GitHub Archive dataset with 65 million commits and 1.1 million 

active users. The authors were able to geocode about 26 percent of the active GitHub users 

by geocoding the self-declared location information in the profiles of the GitHub users by 

using the University of Edinburgh’s Unlock Places web service. (This is similar to the 

success rate I had using the Google Places API for my own GitHub data.) Graham and De 
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Sabbata (ibid.) found a large dominance of North American and European developers in 

both user base and number of commits (see Figure 6). However, the authors claim that the 

dominance in code production on GitHub and in other fields of content creation, such as 

the number of Wikipedia edits, is higher in Europe and the U.S. than in the rest of the world  

not consistent with other ICT-related statistics. For example, the number of internet-users 

per country shows a different picture. The number of Internet users from Asia was 

significantly higher than the number of users from the U.S. and Europe.  

 

 
Figure 6 Global Map of GitHub Users and Contributions 

Note. Source: Graham and De Sabbata, 2015 

 

What can we expect in terms of GitHub usage, given that ICT usage figures have changed 

been dramatically in many developing countries? Unfortunately, GitHub has not released 

any detailed report (or raw data) on the geographic distribution of its users, but the 2020 

GitHub Octoverse report, an internal study by GitHub, suggests that the open-source 

contribution from U.S.-based developers has decreased but is still high (22.7 percent). At 

the same time, the contribution from China (9.8 percent) and India (5.2 percent) has 

increased significantly (GitHub, 2020). It is also worth noting that the company behind 

GitHub should have better location data than the academic community that studies the 

platform. Self-described location has its own limitations, including the addition of non-
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existent or ambiguous locations, and the fact that in some cases no location information is 

provided at all. On the other hand, GitHub has access to the IP-address for every user action, 

including registration, repository creation, commits, etc. Geolocating users by their IP-

addresses has its own limitations. For example, users can use proxy servers, but the 

databases that can be used to geocode IP-addresses are limited, especially in the case of 

less developed countries (Poese et al., 2015). 

GitHub has also published its forecasts based on a model using past data (see figure 

7). The company predicts that the contribution of Chinese and Indian developers will 

increase this decade (between 2010 and 2020). 
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Figure 7 Forecast of Global GitHub Usage 

Note. Source: GitHub Octoverse, 2020 

 

When we compare the geographic distribution of Twitter bot codes with global Twitter 

usage, we have to work with similar limitations. Twitter does not publish official statistics 

on the number of users per country, but statistics from research projects on worldwide 

Twitter usage are available (Lipman, 2014). According to Sysomos, approximatly 62 

percent of users are from the United States (Sysomos, 2014), while the United Kingdom 
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and Canada represent 8 percent and 6 percent, respectively. The global map of Twitter bot 

repositories (Figure 5) largely coincides with these statistics, and the dominance of the 

United States is also evident on my map. Twitter had reported in 2016 that the number of 

monthly active users in Japan has reached 35 million (Purnell, 2016). This number can be 

compared to the 320 million active users Twitter reported globally in the fourth quarter of 

2015. The relatively high number of bot repositories for Japan is also in line with the 

country’s importance in the Twitter universe. As for the sudden surge in bot repositories 

from India, the country was one of the fastest growing markets for the company in 2020 

(Hariharan, 2021). This is in line with GitHub's usage forecasts, which suggest that the 

number of bot repositories in India will continue to rise. 

 

4.1.3. The code behind the Twitter bots 
 
As Dubbin (2013) notes, a Twitter bot can be written in almost any modern programming 

language. This GitHub corpus supports his observation by showing the diversity of Twitter 

bots in terms of technical implementation. 

The first bot code still available on GitHub was written in Ruby, and the developer 

worked on the project for two months. This bot used the then-popular instant messaging 

system Jabber to control a Twitter account. Ruby, the language used for this first bot, was 

the most popular Twitter bot language in 2008 and 2009, as more than half of the bot code 

was written in Ruby. Around 2012, Python became popular and by mid-2013, the number 

of bots written in Python surpassed the number of bots written in Ruby. Today, Python is 

by far the most popular language for writing bots: 8,085 of the 19,085 available bot codes 

on GitHub use this language. For an overview of how the programming language has 

evolved over time, see Figure 8. 

It is important to learn more about the code behind Twitter bots because the language 

chosen has consequences for the group of people who are able to understand the code, make 

changes to the code, and potentially deploy it on Twitter. 
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Figure 8 Bot Programming Languages Used in GitHub, 2008–2020. 

 

Python is known as a relatively simple language and is often the first programming 

language someone learns. The language is also known for being optimized for code 

readability, and developers try to write simple code, which makes it easier to understand 

someone else's program in Python (Hamilton, 2008; Peters, 2004). Therefore, it is also 

easier to take a Python code from GitHub and apply it to a new problem. Finally, Python is 

particularly well-suited for building Twitter bots because it includes a number of packages 

that support various aspects of bot code, from network access to text analysis and 

manipulation. 

The size of the repositories is a good indicator of the complexity of the code. 

Interestingly, the average repository size is very similar for all major bot writing languages 

(between 1 MB and 10 MB). The only exception is R, which tends to have larger 

repositories on average (around 100 MB). Unfortunately, the size of the repository is not a 

perfect indicator of the complexity of the code, since it contains all the images and data 

files. The length of the code in lines of code would be a much better indicator of the 

complexity of the bots, but this information is not readily available. 
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4.1.4. The life cycle of a Twitter bot repository 
 
GitHub is designed to manage multiple versions of a program, and the platform is ideal for 

maintaining code when a user is constantly updating a repository. However, GitHub users 

often use the site for code dumping - storing and releasing programs they do not want to 

work on - rather than actively working on code and committing changes. 

The lifetime of repositories on GitHub can be measured as the difference between the 

creation date and the last version of the repository plus one day (see Figure 9). The lifetime 

of a Twitter bot repository can include periods of time when code is actively being worked 

on, as well as longer gaps between maintenance and code updates. In most cases, however, 

a longer lifetime indicates that the project has been actively used and supported by one or 

more developers over a longer period of time. 

 
Figure 9 The Life Cycle of Twitter Bot Repositories on GitHub Between 2008 and 2020. 

 

It is important to note that one day does not mean that the user only has one version of the 

code or that it has only been committed once. Minor formatting after the initial commit, 

uploading multiple files from the same repository in multiple commits, and changing a 

repository's readme file are different than working on bugs or adding new features to a code 
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weeks after its initial creation. Again, one could argue that developers who make changes 

shortly after their initial upload are only using GitHub for code dumping. Finally, it is 

important to note that many of the bot codes are so simple that an experienced developer 

can easily create these codes in a single programming session.  

Taking these considerations into account, it can be said that a large number of bot 

repositories on GitHub are either code dumps or one-off small projects, as these repositories 

are not developed or maintained over a long period of time. For example, according to the 

data, 43 percent of bot repositories were not updated after the first 24 hours. Another 11 

percent of bot repositories have a life cycle of no more than a week.  

The average time between the creation of a repository and the last commit is 160 

days.7 Longer life cycles usually result from intense tinkering activity rather than sustained 

interest throughout the period. For example, one of the most popular Twitter bots has five 

commits from day one, but the next commit occurred almost 10 months later. This commit 

was in response to Twitter changing its process for handling API requests. Another popular 

repository was not updated for a period of 17 months. After handling some minor bugs, the 

repository owner left the code unchanged for an extended period of time and came back 

after 17 months to merge change suggestions from other users. 

 

4.1.5. The developer behind the bot code 
 
What can we learn about developers uploading bot codes to GitHub? GitHub provides 

access to various information about users' professional activities both inside and outside 

the site. However, the information about off-site activities, such as a user's workplace or a 

personal blog address, is rather limited and is only collected in a free-text format. The data 

about the outside world is only governed by the social norms and practices of the GitHub 

community. Therefore, the professional activities of users outside the GitHub universe are 

difficult to quantify. In contrast, GitHub metrics are easy to read because they are directly 

linked to the site's architecture. Still, site activity is important to understand who the 

developers behind the bots are. In the following discussion, individual users rather than bot 

repositories are the unit of analysis, as some users may have multiple bot repositories listed. 

 

                                                
7 The lifetime of the repository depends on the time of the data collection. The latest data collection happened 
about 150-160 days after the end of 2020 calendar year. This approach allowed me to calculate a more realistic 
lifetime for the bots that were added to GitHub at the last quarter of 2020, but it has slightly changed the average 
lifetime compared to an earlier (or later) data collection. 
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Figure 10 Annotated Screenshot of a Typical GitHub Profile 

 
 

GitHub distinguishes between two types of accounts: regular users and organizations. An 

example of Twitter bots published by an organization is a San Francisco school whose 

students published 37 bot codes to the school's account, all written in Python. While 

browsing these repositories, it also became clear that the teacher looked at each bot and 

provided feedback in the form of comments inserted directly into the code. 

The typical bot author is an experienced programmer and a long-time GitHub user who has 

multiple repositories on GitHub. The users in this dataset had an average of 48 repositories 

at the time of data collection. Yet, there are 655 bot repositories where the repository owner 

has no other repositories on GitHub. This data suggests that a Twitter bot is just a side 

project or fun experiment for many developers. Less than 4 percent of Twitter bot authors 

(588 developers) have additional bot repositories. 

Gist is a hosting service for code snippets with version control through GitHub. It is 

useful when a developer wants to share some of their code in a blog post or forum outside 

of GitHub. As of 2016, there are more than 17.7 million gists on GitHub. However, the 

extensive use of gists is not typical of the community of bot writers. The average bot author 

has 5.9 public gists on GitHub, 10,385 bot authors have no public gists, and another 1,638 

bot authors have only one public Gist. In other words, bot code is generally not as highly 

publicized as other forms of code. 

Most bot writers are well integrated into the GitHub community by following or being 
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followed by other users. The average GitHub bot writer has 30 followers and follows 21 

developers on the platform. Yet about one in four GitHub bot writers - 4,318 users out of 

19,085 developers - had no followers at all at the time of data collection. Code developed 

by developers without social connections can still be found by users searching for Twitter 

bots. GitHub's search interface tends to give more weight to socially active users, so these 

repositories are listed at the bottom of the results page. Overall, it's safe to assume that 

users without followers have less influence on the community. The top developers represent 

the other end of the influence spectrum. There are 61 users in the dataset with more than 

1,000 followers each. These popular users are referred to as “programming rock stars” in 

the literature (Lima et al., 2014). 

 

4.1.6. More about the social aspect of developing Twitter bots 
 
GitHub's marketing and the popular image of open-source projects suggest that shared bot 

codes attract large groups of developers who devote their free time to improving the code. 

In contrast, the overwhelming majority of open-source Twitter bot projects on GitHub were 

developed by a single author. As Table 3 shows, nearly 90 percent of the Twitter bots 

shared on GitHub were developed by only one person. These projects generate less social 

activity compared to Twitter bots developed by two or more developers. For example, the 

average number of forks (copies of the original repository) for projects with one author is 

0.3, while a project with multiple authors has more than three forks on average. The 

presence of forks is an indicator of both broader interest in a project and the ability to 

receive contributions from the broader open-source community around GitHub. About 87 

percent of single authors did not attract this type of interest because these projects do not 

have forks. In contrast, about 50 percent of bot projects with two or more authors have at 

least one fork. 



Table 3 The Social Aspects of Bot Repositories on GitHub. 

                   N Percentage  Average 

number of 

stars  

Average 

number of 

forks  

Average 

lifetime 

(days)  

Single author  16,428  89.2  1.3  0.4  133.9 

Two or more 

authors  

1,992 10.8  9.0  3.0  427.5 

Total  18,420  100  2.2  0.7  165.6 

 

The average number of stars, an indicator of a repository's popularity, is also rather modest 

for projects with only one author. A bot project with two or more developers has an average 

of 11 stars, while the average single-author project has received only one star. This does 

not mean that single-author projects are not popular or cannot receive support from the 

open-source community. The most recognized bot code developed by a single author has 

received an impressive 5,962 stars, while the most forked project with only one author has 

had 849 forks. 

Finally, projects with two or more developers are maintained or updated longer on 

average. While the average project with a single author is “closed” in less than five months, 

projects with multiple authors are maintained for more than 400 days on average. 

In summary, only 1 in 10 Twitter bot repositories shared on GitHub took advantage 

of the collaborative or social aspects of the platform. About 2,000 projects were co-

developed by two or more programmers. These projects received more recognition from 

other GitHub users and generated more forking repositories. Collaborative development 

and forking could lead to better quality code because more than one programmer 

contributes. 

 

4.1.7. Regulation and norms on the platform 
 
While Twitter has a policy against abusive bots and has developed sophisticated algorithms 

to detect these bots on its platform, GitHub does not review the content of its repositories 

and does not remove spam bots, for example. GitHub's terms of service restrict the 

uploading of materials that infringe copyrights and the use of the service for illegal 
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activities or activities that violate a country's laws. However, in most countries, Twitter 

bots are not regulated, so users can upload all kinds of bot code. 

GitHub does not censor code shared on the site, but GitHub has been censored several 

times due to content shared on the site. In the past, GitHub was blocked due to the 

publication of partially ironic suicide instructions in Russian (Lunden, 2014), anti-Indian 

propaganda from ISIS in a repository (Russell, 2014), and some controversial and 

unconfirmed reasons in the case of China (Kan, 2013). Although there are many known 

political bot cases that have been reported in the media, there is no information about any 

actions against GitHub or requests to developers using the site to remove bot codes. 

At the time of data collection, GitHub hosted a number of self-declared spam bot 

repositories on its site. GitHub provides some level of anonymity to its users because the 

site does not enforce a “real name” policy, but it is reasonable to assume that the majority 

of developers do not want to be associated with malicious bot codes. As a result, the number 

of open-source spam bot codes on GitHub is actually rather small. 

Self-regulation through shared values and norms could also play an important role in 

limiting the spread of malicious Twitter bot codes on GitHub. For example, many 

developers require that other users use the bot only for good and not for evil. Some project 

descriptions include warnings regarding the bot. Many authors specifically ask that other 

users not use the script for spamming or harassment. 

 

4.1.8. Most important research findings 
 
In the first section of the results chapter, I presented the results of an analysis focusing on 

the bot codes available on GitHub and the authors who created the repositories. The bulk 

of this section addresses the first research question (RQ 1.1) and discusses how the bot was 

developed. Bot developers are often experienced programmers and have published a large 

number of other repositories on GitHub. For many developers, writing a Twitter bot seems 

like a one-day project. In fact, more than 40 percent of bot repositories were not updated 

after the first 24 hours. However, some of these repositories were developed without using 

GitHub, and the code-sharing platform was only used as a code dump - developers simply 

uploaded their finished and polished bot code without using the system's version control. 

Although most bot developers developed only one bot for Twitter, about 4% of bot authors 

(588 developers) had at least two Twitter bot repositories at the time of data collection. 

Often developers develop bots for multiple platforms, but that is not part of this analysis.  
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The section also addressed RQ 1.3 and analyzed the contribution to each bot 

repository to determine if the bot code was developed by one author or if multiple 

developers contributed. The results indicate that 9 out of 10 bot codes were developed by 

one author. Bot repositories developed by multiple authors might be more complex, and 

developers tend to develop the code themselves over a longer period of time. In addition, 

these repositories are maintained longer. One possible explanation for this is the higher 

attention these repositories receive - while repositories developed by one author receive 

only one star (a form of user appreciation), bot codes developed by multiple authors receive 

an average of 11 stars. Similarly, these repositories are on average more often forked 

(copied in GitHub’s terminology) as a separate repository (3 forks vs. 0.4 forks).  
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4.2. The results of the bot developer survey 
 
To learn more about developers publishing open-source bot codes on GitHub, I conducted 

a survey and asked developers on GitHub to answer a series of questions about how they 

use GitHub and about their projects. To identify developers on GitHub who have published 

code to run Twitter bots and to find their contact information, I turned to a specific GitHub 

API. As I described in more detail in Chapter 1, GitHub's Search API allows you to get a 

list of repositories that contain specific search terms either in their name, description, or in 

the readme file attached to the repository. After creating a database of all repositories that 

matched a set of keywords related to Twitter bots, I used a separate GitHub API to get more 

information about the developers behind the repositories. These API calls revealed the 

contact information (email address) for a large number of developers. The following section 

explains the structure of the survey and the main themes within it. 

 

4.2.1. The structure of the survey 
 
The survey itself consists of 41 questions in 4 larger blocks. The first block focuses on 

GitHub usage, the second block covers topics around bot development in general and 

includes specific questions about how the respondent's own bot was developed and 

deployed on Twitter, while the next block includes questions about Twitter bots and 

politics. The questionnaire also includes a demographic section with some questions about 

education in IT or programming. The full questionnaire can be found in Appendix A, at the 

end of the thesis. 

In order to get a richer dataset about the developers who completed the survey, I 

decided to add to the survey some additional metadata about the users that was previously 

collected. This includes metadata about the user, such as the number of public repositories 

uploaded by the user, the time of registration, the number of programming languages used 

by the user in public repositories, etc. In addition to this user-specific information, I was 

also able to enrich the survey results with information about the specific bot project, e.g., 

social engagement with the repository (stars, watching), programming language used for 

the code, when the repository was created and when the repository was last updated, etc. 

In my questionnaire, I asked GitHub users to provide a list of Twitter handles for the 

bot(s) they developed and deployed. In addition to this source of information, many bot 

repositories included a link to a Twitter profile if the bot was deployed on Twitter. After 

compiling a list of open-source bot accounts available on Twitter, I collected additional 
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data from Twitter itself about these bots to provide an even richer dataset about bot 

developers and their projects. This data includes the time of registration, followers, number 

of posts by the bot, and much other information. 

 

4.2.2. The social aspect of developing code over GitHub 
 
GitHub is a professional web service that allows developers to use version control, host 

code online, and manage projects from development to release. GitHub also offers some 

social features, but these are limited and mostly focused on three main topics: 1) discussing 

code and software issues (e.g., requesting features, reporting bugs/problems); 2) getting 

inspired by others, expressing support or respect, and engaging with other developers 

(following other users, star repositories, etc.); and 3) collaborating on software projects 

(e.g., managing teams). 

The above social features of the site are limited. Therefore, developers often use other 

platforms to communicate with each other. For example, a developer may use GitHub for 

code sharing and version control, but rely on Slack for coordination or turn to LinkedIn to 

advance their career and Twitter to gain broader recognition. Wu et al. therefore suggest 

that GitHub is part of a larger ecosystem for developers (Wu et al., 2014). 

This is also reflected in the results of my survey of bot developers. The most 

important feature of GitHub for bot developers is the ability to control versions-more than 

83 percent of respondents indicated that version control is a very important reason for using 

GitHub. 
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Figure 11 Reason for Using GitHub 

 

Note. N=811 

 

Of the three social aspects (or use) of GitHub mentioned above, being inspired and finding 

interesting projects on GitHub is the most important to bot developers - about one in two 

respondents find this feature important when using GitHub. Collaborative software 

development is significantly less important for bot developers. Even when combining the 

Very important and Moderately important response categories, only about one-third of 

developers find it important to give back to the community and contribute to the work of 

other developers. Similarly, only one-third of developers find it important to reach out to 

other developers and ask them to contribute to a project they manage or host. This limited 

social use is consistent with the results of the analysis of the GitHub repositories themselves 

- bot codes are often developed by a single author rather than in collaboration with others. 

Although the platform offers limited communication options, e.g., users cannot 

message each other directly, communication with other developers was still an important 

feature of the platform - about 35 percent of bot developers find this social aspect very 

important, and another 29 percent find it moderately important. 

There are some gender differences in GitHub usage, at least among bot developers. 

Of the seven possible reasons for using GitHub, four showed significant differences by 
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gender. These characteristics are all related to social use of the platform - either to 

contribute, such as finding programmers to contribute to someone's work or writing code 

for other repos, or to contribute, such as giving feedback to other programmers, answering 

questions, etc. 

Note: I decided to simplify the results and compare only male and female respondents 

because only 2.8 percent of respondents chose the other gender identity categories. Another 

5.9 percent did not answer the gender identity question. These respondents were filtered 

out along with the other category to compare male and female respondents. After these 

groups were filtered out, the number of valid responses dropped to 740 (694 male 

respondents and 47 female respondents). 

The following graph shows the age and gender distribution of respondents in the form 

of a population pyramid. 

 

Figure 12 Bot Developer Population Pyramid 

Note. The age and the gender of the respondents. N=811 

 

To put the relatively high percentage of male respondents in context: GitHub and software 

development in general has a strong gender-bias (Geiger, 2017). The study mentioned 

above focused on open-source development and GitHub and concluded that 91 percent of 

respondents were male and only 3.4 percent identified their gender as female, while another 
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1.1 percent chose the “non-binary or other” category and 4.7 percent preferred not to 

specify. (My study found that 85.6 percent of bot developers are male and 5.8 percent are 

female). 

More than 75 percent of respondents have formal training in programming or 

computer science (77.9 percent). Programming background only had a significant impact 

on career-related use of GitHub and none of the other reasons for using the platform. While 

62 percent of developers with a programming background (formal education in IT or 

programming) selected the Very important or Moderately important response, only 54 

percent of developers without a programming background selected similar responses. This 

difference was significant according to the chi-square test. 

The importance of some of GitHub's features showed a significant relationship with 

bot developer age groups. Based on a chi-square test to detect independence, career 

building and contacting other developers on the platform have a p-value of less than 0.05. 

However, some of the counts per cell in the corresponding contingency tables are too low, 

even after using larger age group categories. Therefore, I decided to find another method 

to examine the relationship between GitHub usage (more specifically, the importance of 

various platform features) and age. 
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Figure 13 Density Plot of Age 

Note. N=811. 

 

Anova, T-tests, certain types of regression models, and many other statistical tests all rely 

on the assumption that the continuous data used for the test follows a normal distribution. 

These methods are called parametric tests. A quick inspection of the normal distribution of 

the age variable used in the GitHub bot developer dataset shows that age does not follow a 

normal distribution. Both visual inspection of the distribution of the age variable in Chart 

3 and a quick Shapiro-Wilk normality test confirmed that the data does not follow a normal 

distribution. The results of the Shapiro-Wilk normality test (W = 0.92514, p-value < .001) 

indicate that the data deviate significantly from the normal distribution. Again, an ANOVA 

or t-test cannot be used without assuming normality. 

For nonparametric categorical independent variables and data at least ordinal level, 

or as in this case for continuous dependent variables, a Kruskal-Wallis test can be used to 

detect differences between population means (Kruskal & Wallis, 1952). This test can be 

used to compare the means of a variable between subgroups formed along one or more 

categorical independent variables. It is the best nonparametric alternative to a one-way 

ANOVA test. The results of the Kruskal-Wallis test can be seen in Table 4. 
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Table 4 The Result of the Kruskal-Wallis Test 

Nr Kruskal-Wallis rank sum test Mean chi-squared p-value 

1 Recognition 3.0 36.1 0.00 

2 Version control 3.8 1.9 0.59 

3 Inspiration 3.3 2.7 0.44 

4 Reach out 2.5 21.5 0.00 

5 Contribution 2.8 8.8 0.03 

6 Communicate 2.9 15.9 0.00 

8 Building career 2.8 63.0 0.00 

Note. N=766. 

 

The table shows that the rating of the importance of 5 features of GitHub has a significant 

difference in the mean age. The null hypothesis of the Kruskal-Wallis test is that the groups 

have the same mean. Based on the p-values (p < 0.05), we can reject the null hypothesis 

for five of the seven variables. However, this test does not tell us if there are significant 

differences between the groups of developers who chose certain response categories. 

To compare each response category, I decided to use the pairwise Wilcoxon test. This 

test is basically the nonparametric version of the t-test. (The t-test is based on an assumption 

of normality, as described above.) The Wilcoxon tests showed that for all five important 

questions, the mean age for the response category 'Very important' was significantly 

different from all the other groups based on the other responses - 'Moderately important' 

'Low importance' and 'Not important at all' In the case of recognition and communication 

with other developers, the 'Moderately Important' group showed a significantly different 

mean than the 'Low importance' group. In the case of making contacts with other developers 

and making a career, the 'Moderately important' group has a significantly different mean 

than the 'Not important at all' group. 

Although I found significant differences between the age of the respondents and the 

importance of the various features of the platform, a look at the actual means and standard 

deviations of the groups formed around the specific response categories suggests that there 

are only minor differences between the groups. These minor differences can be easily seen 
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in the visual representation of the groups shown below. 

 
Figure 14 Using GitHub for Career Purposes 

 

Note. Mean, standard deviation and age-distribution, N=766. 

 

Bot developers on GitHub tend to be young: 68.7 percent of respondents who provided an 

age are younger than 30. The average age of developers is 27 years, with a standard 

deviation of 7.6 years. Among the respondents, those who are under 25 seem to be more 

focused on starting their careers - they find it more important to gain recognition by 

publishing code on GitHub and to find a job through the platform than the older 

developers. 
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Figure 15 Using GitHub for Contributing to the Open-source Community 

 

Note: Mean, standard deviation and age-distribution, N=766. 

 

The social aspects of using GitHub - contributing to others' code, finding developers to 

help write code, and communicating with other developers - are more important to younger 

developers. Respondents who selected “Very important” for these questions are, on 

average, slightly younger than all other groups made up of other response categories, and 

these differences are all significant. 

 

4.2.3. Reasons for developing a bot 
 
Developing bots is often about having a quick, simple idea and seeing if that idea works 

in practice. When I asked developers about their top reasons for developing a bot, testing 

an idea received the highest average score. More than nine out of ten bot developers said 

that this was indeed a very important reason for starting to develop a bot. On a scale of 

zero to five, where five means the reason is very important and zero means the reason is 

not important at all, 61.5 percent chose the highest score, 5, and another 21.5 percent 

chose 4. 
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Figure 16 The Reason for Developing a Bot Rated on a 0 to 5 Scale 

 

Note. 0: Not important at all; 5: Very important, N=811. 

 

The second most important reason for developing a bot is to practice writing code and learn 

more about Twitter's APIs. This suggests that writing bots is often about learning. In fact, 

a qualitative analysis of bot repositories suggests that bot codes are often the result of a 

school project. There are many bots that were developed for a class or put together as part 

of a hackathon. 

Interestingly, the aspect of showing off one's skills as a developer was rated 

significantly lower, suggesting that bot development is often not considered a highly 

technical task. 

As for the purpose of bot development, in addition to testing an idea, I also asked 

about the importance of automating some tedious and boring tasks. For one in three 

developers (30.2 percent), automation is a primary reason for developing a bot. On the 

other hand, every fourth developer (24.5 percent) thinks that automation is not important 

at all. 

Finally, we can note that supporting a cause or a political agenda is not the main 

reason for developing a bot. In fact, 64.9 percent of respondents indicated that a political 
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agenda or cause was not important at all when they developed their bots. Only 59 

respondents selected the highest value for political support as a reason for developing a 

bot. This suggests that the vast majority of bots are non-political bots. This was confirmed 

by analyzing the bot codes and reading all descriptions and readme files downloaded from 

the GitHub repositories. (For more details, see the chapter on open-source bots).  

The difference between male and female respondents in terms of reasons for 

developing a bot is negligible. However, the number of non-male respondents is very small, 

and I often got too few cases in cells when comparing the different response categories for 

these six questions. 

Although a Kruskal test shows that age is significantly related to four of the six 

reasons for developing a bot, these differences are only statistically significant and cannot 

be meaningfully interpreted. After forming age groups, we can see that the age of the 

respondents has no significant relationship with the importance of the six reasons for 

developing a bot. In this case, there was no reason to pair the different response categories. 

Programming background (formal education in computer science or programming) is 

not significantly related to the importance of the different options for developing a Twitter 

bot. 

 

4.2.4. Skills for developing Twitter bots 
 
One of the central questions of my dissertation is to understand where the skills for 

developing a bot come from and what kind of skills are needed to develop bots and deploy 

them on Twitter. This question is important, because it tells us a lot about the 

democratization of this technology. If the knowledge about automating accounts is easily 

accessible and available to everyone, even someone without much technical knowledge can 

develop and deploy a bot on Twitter. 

To learn more about the issues developers faced either in developing their bot or 

deploying it on Twitter, the questionnaire included two relevant questions. The first 

question lists online sources of information that may be useful for developing a bot - it 

includes options such as studying Twitter's published guidelines for developers, using one 

of its popular question and answer sites, or contacting other developers who have more 

experience developing Twitter bots. The other question is an open-ended question where I 

asked respondents to describe the most difficult aspects of bot development. These two 

questions are complemented by manual analysis of available bot code on GitHub. 
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Figure 17 Sources of Information Used for Developing Bots 

 

Note. N=811. 

 

The top resources for bot developers are Q&A sites, such as Stack Overflow and Quora, as 

well as blog posts or articles about developing a Twitter bot. More than 86 percent of 

respondents relied in part on question and answer sites. The keyword “twitterbot” for 

example, leads to 461 results on Stack Overflow, covering topics from working with 

Twitter's APIs to hosting a bot code on a free hosting platform like Heroku. The same 

platform returns 478 results for the search phrase “twitter bot”, although there could be 

some overlap between these results. Similarly, people ask questions like “How can I make 

a twitterbot using Python?” and “How do I create a Twitter Bot that retweets and likes 

tweets?” on Quora, and the site's users usually give good advice on how to create a bot. 

Blog posts also often provide step-by-step instructions for developing a bot (e.g., Spence, 

2017). 

Female respondents tend to rely at least partially on blog posts and articles as a source 

of information for bot development. There is a significant difference between male and 

female respondents who partially rely on a blog post or article. As mentioned earlier, the 

sample of females in our database is rather small, but the cell counts in the contingency 

table are large enough to conclude that female respondents rely heavily on blog posts and 

articles. In fact, 46 of the 47 female developers cited blog posts and articles as one of the 
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sources of information that helped them develop a Twitter bot. 

The average developer relies on more than 3 of the 6 sources of information offered 

in the survey. Female respondents use a greater number of sources on average (3.79 for 

women vs. 3.30 for men). 

Interestingly, the source of information has almost no significant relationship with 

age. The appropriate analytical approach for a binary variable and a continuous variable 

that does not meet the normality assumption is to use the Mann-Whitney U test (Corder & 

Foreman, 2009). This nonparametric test allows us to compare two groups and test the null 

hypothesis that the two groups come from identical populations. We can reject this null 

hypothesis only in the case of using question and answer sites. The average age of 

developers who used a question and answer site is 27.6 years, while the non-user group has 

an average age of 30.8 years. One can only speculate about the reason for this age 

difference. Either the projects of the older respondents are simpler or the older users are 

more experienced, so they do not need to respond to this popular source of information. 

Another possibility is that older developers have different heuristics for finding a solution 

to a programming problem than younger respondents. 

Although the survey did not give me an opportunity to test the skill level of the 

respondents, the question about formal education in computer science or programming 

could serve as an indicator of skill level. Unfortunately, there is no significant relationship 

between programming background and use of a question and answer site. 

 

4.2.5. Twitter bot and politics 
 
Bot developers who publish their code on GitHub are generally interested in politics-29.2 

percent of developers are very interested and another 38.9 percent are fairly interested in 

politics, the two highest scores on a 4-point scale. Less than 10 percent indicated that he 

or she is (or are) not at all interested in politics. Another 5.7 percent chose the option 

“Prefer not to answer this question.” 
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Figure 18 How Interested are the Developers in Politics 

Note. N=765 

 

Younger developers tend to be less interested in politics than older developers. The 

Kruskal-Wallis test for age and political interest is significant (Kruskal-Wallis chi-squared 

= 34.383, df = 3, p-value < .001). The pairwise comparisons based on a Wilcoxon rank sum 

test indicate that the age composition of the groups selecting the “Very interested” and 

“Quite interested” response categories are significantly different from all other groups. The 

above two groups also differ from each other, as shown by the result of the test presented 

below. 
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There is no significant difference between female and male respondents in terms of 

their interest in politics. There is also no significant relationship between the level of 

education and political interest. We know from the literature that people with higher levels 

of education tend to be more interested in politics (Emler and Frazer, 2010). However, due 

to the relatively young age of the bot developers on GitHub, we can assume that many of 

the respondents are still students. For example, the Octoverse GitHub survey suggests that 

at least 18.7 percent of programmers who regularly contribute to projects on GitHub and 

some other major open-source projects are still full-time students (Geiger, 2017). 

 
Figure 19 Frequency of Using Social Media to Discuss Politics 

 

 

The bot developers are not only interested in politics, but 40.2 percent of them use social 

media to discuss politics and public issues at least once a week. This type of political social 

media use includes writing or responding to a political Twitter post and writing or 

commenting on a political Facebook post. 

Similar to interest in politics, younger respondents tend to be less active in discussing 

politics online. While the average age among developers who discuss politics online daily 

is 33.3 years and among those who do so at least once a week is 29.3 years, respondents 

who discuss politics on social media less frequently (or not at all) are on average only 27 

years old. The Kruskall-Wallis test found significant differences between the average age 
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of the different groups formed around the frequency of online political activity. The 

pairwise Wilcoxon tests showed that “At least once a week” and “Every day” were the two 

response categories that divided developers into groups that were significantly different 

(based on age) from the groups formed around any other response category. 

I asked respondents to tell me if their bot had ever been used for political purposes 

and whether it would bother them if it had. While the first question helps identify political 

bots, the second question provides important information about bot developers' attitudes 

toward political use of automated social media accounts. 

About 11.8 percent of developers reported that one or more of the bots they developed 

were used for political purposes. Not surprisingly, these developers are significantly more 

active in politics than developers who have only non-political bots (X-squared = 16.031, 

df = 3, p-value < 0.001). Two out of ten developers who are themselves very interested in 

politics reported that their bot had been used by someone for political purposes (18.6 

percent). In the group of developers only quite interested in politics, one in ten reported the 

same (10.8 percent), while the rest of the developers less interested in politics reported a 

lower percentage of use (6.3 - 6.8 percent). 

While 39.1 percent would mind if the bot they created was used for political purposes, 

the majority of developers (60.9 percent) would have no problem if their bot codes were 

used politically in at least some form. Still, most of these developers indicated that whether 

or not they would object to their bot being used politically would depend on the political 

issue. 

 

4.2.6. Most important research findings 
 
The bot developer survey primarily addressed the first two research questions - RQ 1.1 

focuses on the practices of using GitHub and the reasons for using GitHub for development, 

while RQ 1.2 focuses on the skills required for bot development and how GitHub users 

learn how to write bot code. When I asked bot developers why they use GitHub, the 

overwhelming majority of respondents rated the site's main feature, version control, as a 

very important reason for using the platform. In addition to tracking changes to their code, 

developers use GitHub to advance their careers, gain recognition and find inspiration. 

Interestingly, contributing to the work of other developers or finding other developers who 

can complement their work was much less important to developers. Younger developers 

find both career advancement and social opportunities on the platform more important. 
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Although the majority of respondents built the bot to realize an idea, building a bot 

also seems to be a way for many developers to learn how to work programmatically with 

social media (learning APIs). Self-expression was much less important, according to the 

survey results. (These results are related to RQ 1.1 and RQ 1.2.) I specifically asked about 

how developers deal with problems they face during bot development, and it is partially 

consistent with other findings in my thesis that developers tend to learn bot creation (or 

how to solve specific problems) by visiting Q&A pages and reading blog posts rather than 

turning to other developers within the platform. Most social media platforms have 

documentation for developers, and in the case of Twitter bot development, this source of 

information was important to more than 76 percent of developers. So developers needed to 

learn not only about APIs in general, but also about platform-specific rules and ways to 

deal with the limitations imposed by Twitter. 

Bot developers are generally interested in politics, but most of them do not frequently 

participate in political discussions on social media. The bot developer survey addressed 

other political issues related to the last research question. The results indicate that the vast 

majority of bot codes were not developed or used for political purposes. Only 11.8 percent 

of respondents indicated that they had developed a bot that was used for political purposes. 

These bots were generally developed by developers who are themselves interested in 

politics. Nevertheless, most developers would not mind if the bot they developed was used 

for political purposes. 
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4.3. Open-source bots deployed on Twitter 
 
After carefully analyzing the list of GitHub repositories associated with the developers who 

responded to the survey and the Twitter profiles of the bot accounts that were either 

specified in the survey or included in a repository in the form of a link pointing to Twitter, 

I identified 381 bot repositories with a corresponding Twitter profile. After querying these 

381 accounts via Twitter's REST API, I was able to access partial or full timelines (tweets 

either produced or retweeted/quoted by the account) of 321 bot accounts. The remaining 

accounts were either suspended by Twitter, deleted by the bot master (the developer who 

controls the account), or simply had no activity on Twitter, i.e., no tweet or retweet was 

available in the timeline at the time of data collection. Within the data collected, 17 

accounts had posted 10 or fewer tweets - this either indicates that the account was only 

tested on Twitter, or the account deleted most of its content. The most active automated 

accounts had posted well over 100,000 tweets by the time of my data collection. 

 
4.3.1. The bots’ tweeting activity - volume of traffic 
 
Twitter sets a limit on access to a user's timeline: a maximum of 3,200 tweets can be 

downloaded via the free Twitter API. The remaining tweets can either be scraped through 

the website, which violates Twitter's terms of services (ToS) of Twitter, or are only 

available if the unique IDs for each message posted to the timeline are known. The 

following graph shows the traffic captured by querying the timelines of automated Twitter 

accounts. 
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Figure 20 Monthly Activity of the Automated Accounts on Twitter 

 

Note. Based on the data collected from Twitter. The maximum number of tweets per account available 
through the API is 3,200. The graph above shows the number of tweets per day produced by all the active 
bot accounts studied. 

Figure 20, the line chart above, shows the distribution of captured tweets over time. 

However, due to the 3,200 tweet limit imposed by the Twitter API, the activity of the highly 

active accounts is not well represented in this plot. This is especially true if an account has 

been active for a long period of time and has exceeded the 3,200 limit. Let us take the 

example of an account that tweets at a moderately high frequency, 10 tweets per day, and 

was registered in 2017. API-based data collection would not be able to capture tweets from 

the period between 2017 and 2019 because the account had already posted more than 3,200 

tweets in 2020. (Note: The 3,200 tweet limit includes recent tweets). 

To overcome this limitation of the Twitter API, I looked at the total number of tweets 

posted (the status count metadata filed ) available for each active Twitter account. If we 

take the example above, this account has posted well over 10,000 tweets since 2017. This 

simplified example of an account that tweets 10 times per day can be seen in Figure 21. 
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Figure 21 Limitation of the API-Based Data Collection 

 

Note. This graph is a simple example with a bot account that tweeted 13,000 tweets or 10 tweets per day 
constantly for a roughly 4 year-long period. The API only allows to download the latest 3,200 tweets as it is 
shown with green. 

 
If the total number of tweets posted by the account in the example shown in Figure 21 is 

13,000, I can simply subtract the number of tweets captured by that account (about 3,200 

tweets according to the API limit) and recreate the account's timeline by evenly 

distributing the number of missing (uncaptured) tweets between the time of registration 

and the oldest tweet captured by the account. The following chart (Figure 22) shows the 

reconstructed activity of the automated accounts over time. Again, any tweets that were 

unavailable to an account were evenly distributed between the time the account registered 

with Twitter and the earliest tweet downloaded from its timeline via the API. Therefore, 

the chart retains the granularity of the last 3,200 tweets captured per account and provides 

estimated simplified data for the period that was not available through the API. 



 79 

Figure 22 Monthly Activity of the Automated Accounts on Twitter 

 

Note. Author’s calculation based on the data collected from Twitter (max 3,200 tweets per account) and an 
estimation of the remaining traffic based on the total number of tweets per account and the time of registration 
for the accounts. The graph shows the number of tweets per month produced by all the active bot accounts 
studied. 

This chart represents the traffic generated on Twitter by the known automated open-source 

accounts developed by survey participants. On the one hand, this chart gives a good 

estimate of the Twitter bot traffic that is still available through the platform. The 

distribution of traffic is consistent with the registration time of the 321 GitHub bot 

repositories analyzed here, as you can see in Figure 23. On the other hand, accounts that 

were active on Twitter but were suspended over time are not shown in this chart. 
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4.3.2. Temporal trends – how old are the Twitter bots 
 

Figure 23 Number of Known Bot Accounts Registered by Survey Respondents on Twitter 

 

Note. Author’s calculation based on data collected from GitHub and Twitter. These are all open-source bots 
with a matching repository on GitHub and a bot account on Twitter. 

 

The time trend or temporal distribution of registration for the 321 known GitHub bot 

repositories is consistent with the changes in the number of bot repositories registered 

annually on GitHub. The latter statistic has already been presented in Subsection 3.1, but 

we can quickly compare the changes in the number of repositories in our sample and the 

changes in the total number of Twitter bots registered. According to the analysis of 

GitHub repositories, bots have gained significant popularity over the last five or six years. 

Table 5 shows a similar trend for the repositories created on GitHub and the Twitter bot 

accounts registered by respondents to my survey. 
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Table 5 Annual Changes in the Number of Bot Accounts Registered on Twitter 
 

Twitter accounts GitHub repositories 

Year N % N % 

2020 51 15.9 2,423 15.0 

2019 55 17.1 2,911 18.0 

2018 36 11.2 2,996 18.5 

2017 58 18.1 3,166 19.6 

2016 35 10.9 1,846 11.4 

2015 32 10.0 1,201 7.4 

2014 22 6.9 693 4.3 

2013 9 2.8 377 2.3 

2012 7 2.2 223 1.4 

2011 3 0.9 135 0.8 

2010 8 2.5 117 0.7 

2009 3 0.9 64 0.4 

2008 0 0.0 16 0.1 

2007 2 0.6 0 0.0 

 

For both survey respondents (with a matching bot deployed over Twitter) and the full 

database of Twitter bot repositories available on GitHub, the number of bots created was 

highest in the last five years, and 2017 was the most active year of bot 

development/deployment. Although the survey sample includes Twitter accounts registered 

before 2015, most survey respondents created their bots in the last 5 years. A quick look at 
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the repositories opened by the 321 survey participants with a paired bot account suggests 

that the vast majority (73.2 percent) of Twitter bots were registered in the last 5 years - this 

number was even higher (82.5 percent) in GitHub's full Twitter bot repository database. 

This suggests that developers who have developed a Twitter bot more recently were not 

more likely to respond to a survey about bots. The differences in responses between 

developers with older and newer bot repositories can be explained by the distribution of 

bot repositories on GitHub over time. 

To reconstruct the activity of open-source bot accounts on Twitter, I assumed that an 

automated account tweets more or less the same number of tweets per day, since its activity 

is controlled by a predefined schedule. While this is certainly the case for many accounts, 

it depends heavily on the algorithm the Twitter bot uses to find or generate content. 

Accounts that generate content by either retweeting specific accounts or listening for a set 

of keywords or hashtags via Twitter's Streaming API, for example, tend to follow a more 

hectic tweeting pattern. In other words: If an account's activity depends on content posted 

by another Twitter user or content updated by a person or organization outside of Twitter, 

the account could follow a more diverse, human-like tweeting pattern. This could also lead 

to challenges in detecting such bots, as their tweeting behavior follows real human 

communication patterns. Nevertheless, these accounts could follow certain guidelines, e.g., 

the bot's developer could limit the number of daily tweets for various reasons to avoid 

flooding the bot's followers or to avoid hitting Twitter's API limits. 

The 321 Twitter accounts analyzed in this chapter of my dissertation collectively 

posted 3,922,879 tweets, but there is a large difference between the volume of tweets posted 

by the different accounts. While the most active account posted more than 500,000 times, 

half of the accounts posted less than 1,000 times and about 1 in 5 accounts posted less than 

100 times. Even among very active accounts that posted several thousand messages, there 

is wide variation in the number of average daily tweets. 

 

4.3.3. Life-time of a Twitter bot 
 
To calculate the number of average daily tweets, I first calculated the amount of time being 

active on Twitter. This time span was based on the number of days between registration 

and the last posted tweet. The total number of tweets was simply divided by the number of 

days being active. This method was better than calculating the age of the account, i.e., the 

time from registration to the time of data collection, because there were accounts that were 
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inactive for a significant amount of time, e.g., an account that tweeted a lot during the 2016 

U.S. presidential election campaign period but had been inactive since the election. 

Accounts that posted more than 10,000 times posted between 5 times and more than 

500 times on an average day, according to data downloaded from Twitter. A good example 

of the accounts with a high average number of daily tweets is the account called First Issues 

(@first_issues), which tweets about new issues on GitHub that can be easily solved by 

inexperienced developers so that people new to open-source development can try to solve 

them. This bot has been active since 2018 and has posted more than 300K tweets, averaging 

433 tweets per day. 

Twitter bots can tirelessly produce tweets or complete tedious tasks over an extended 

period of time. However, bots often stop their activity. There can be many reasons for a bot 

to become inactive, and even the fact that the bot is inactive is not always obvious. In some 

cases, the artifacts produced by the bot, i.e., the tweets posted by the account, remain 

available on Twitter. An account may stop tweeting for at least the following three reasons: 

1) A developer's API access may be suspended, either for the activity of the bot under 

investigation or for the activity of another bot developed by the same developer if the 

accounts use the same developer account. If the bot has not been banned by Twitter, the 

account's tweets will remain online. 2) Hosting and running the bot could become either 

cumbersome (too much maintenance) or too expensive (cost of hosting the bot). If the code 

needs to be updated or there are issues with the hardware used to run the bot, the bot 

developers will have to put in extra effort to keep the bot running. If the capacity of free 

hosting services is exhausted, the cost of hosting the bot can also become expensive. 3) 

There are bots that focus on a specific event, such as the example bot that focuses on a 

presidential campaign or other specific time-bound political event. These bots are often 

abandoned, becoming inactive, but the content is not usually removed from Twitter. 

The Twitter bots examined in this chapter tend to be active for a long period of time. 

The average lifespan, or time in days from the account's registration with Twitter to the last 

available tweet from the account, was 836 days. About 30 percent of accounts are or were 

active for at least 3 years, while only 36 accounts (about 10 percent) were active for a 

period of less than 2 months. The oldest longstanding account, named Library 1, 2, 3... 

(@library) has been active on the platform for more than 13 years as it was registered on 

Twitter in April 2007. The account posts short think pieces derived from famous quotes or 

memorable lines from literature. The account currently has 674 followers and has been 

posted more than 3,500 times. 
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4.3.4. Where does the content posted by Twitter bots come from? 
 
Bot accounts can post original content by generating content based on code, using a list of 

pre-written messages, or relying on third-party sources. For example, the aforementioned 

library account relies on content created outside of Twitter - the bot generates original 

content based on an algorithm and a text file. These tweets, regardless of the source of the 

information or the actor behind the tweets, are called original tweets. In contrast, Twitter 

users (including bot accounts) have the ability to retweet or quote content from other users. 

These tweets are circulated within the platform. Accounts that exclusively retweet other 

accounts are sometimes referred to in the literature as signal boosters or amplifier accounts. 

Bot accounts often retweet either specific accounts or any content based on specific 

keywords or hashtags. The Twitter API also makes it easy for bots to quote tweets by adding 

a bot-generated (or pre-written) comment to content posted by another Twitter account. 

My Twitter bot sample has a good mix of original content, retweets, and quote tweets. 

The following chart (Figure 24) shows that open-source bots generate a lot of original 

content on Twitter. 



 
Figure 24 Original, Retweet and Quote Tweets Generated by Bot Accounts 

 

Note. Ratio of Original, Retweet and Quote Tweets Generated by Bot Accounts by Month. 

 

During the Twitter phase of my research project, I was able to download 486,859 tweets 

from the 321 accounts that had public tweets available on Twitter at the time of data 

collection, including original tweets, retweets, and quoted tweets. Of these tweets, 443,171 

(about 91 percent) were original tweets, meaning that the bot generated the content based 

on an algorithm or source outside of Twitter. It is important to note that this does not mean 

that the only source of the content was the algorithm itself. Bots often draw on public 

datasets, pre-written text sources, or Twitter itself to create content. In fact, open-source 

bots often act as a new interface to an existing online service or information source. On the 

other hand, there are bots that generate their own content from geometric shapes to a unique 

combination of different text sources. Among the non-original content generated by the 

bots, the vast majority of tweets were retweets. The 34,854 retweets accounted for 7.2 

percent of the total traffic captured, while the 8,834 quotes accounted for less than 2 percent 
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(1.8 percent) of the total traffic. 

An original tweet is, very simply and technically, a tweet written or generated by a 

Twitter user. In other words, these tweets are not generated by Twitter's retweet feature or 

its quote feature. I'll define the latter two tweet formats in more detail later, but first let us 

take a quick look at the source of content published on Twitter. Each tweet can contain 

textual and (audio) visual elements. The source of these elements can be any content 

(audiovisual or textual) that is 1) user-generated (this can include bot-generated content); 

2) stored locally by the user, such as the text of a digitized book; 3) retrieved over the 

internet, such as content dynamically downloaded from a public database or website; and 

4) Twitter itself. 

Retweets have been available on Twitter since the earliest days of the platform. 

Interestingly, the retweet feature was developed by a user of the platform-the term first 

appeared on Twitter in April 2007 (Seward, 2013). Prior to that, another user, Narendra 

Rocherolle (@narendra), used the term “echo” to refer to reposting a tweet (Tarte et al., 

2015). The retweet button (RT) was not introduced until 2009. This information is 

important only because there is now a computational mode to retweet a content, and this 

feature is often used by bot accounts. 

When an account retweets another tweet, the original tweet is shared with all 

followers of the retweeting account. The platform's retweet feature can also be defined as 

a computerized method of re-positing an entire tweet on Twitter by either using the retweet 

command through the Twitter API (the preferred way for bots) or clicking the retweet 

button on Twitter's website or a Twitter client. (Technically, Twitter clients also use the 

API to get or put content to Twitter.) 

There are two specific characteristics of a retweet: 1) Retweets are directly linked to 

the original tweet and appear in the timeline of the user who retweeted a tweet as content 

generated by another user. 2) Retweets contain a standard RT @useraneme element at the 

beginning of the tweet. This last element of a retweet allows users to manually “retweet” a 

message by adding the RT @username element and simply pasting the content of the 

original (“retweeted”) tweet. However, this tweet would show up as an original tweet in 

our database because it was not generated by the website's retweet function or by retweeting 

via the API. Consequently, this tweet is not directly linked to the original tweet. This also 

means that this manual retweet does not contribute to the retweet number displayed under 

the original message. The poster of the original tweet still receives a notification, because 

the username controlled by the author of the tweet is mentioned in the tweet (@username). 



 87 

Finally, quotes have a similar function to replies, but here tweets are re-posted with 

the option to add a comment to the original tweet. The original user can reply to a quoted 

tweet. This type of tweet overcomes an important limitation of retweeting, which is that it 

is not clear whether a retweet means an acknowledgement or not. In other words, it is not 

clear whether the user agrees with the original message or not. The quoting user has the 

option to add text or visual information to the quoted tweet. Just like retweets, quoted 

tweets are directly linked to the original tweet, and this quote contributes to the engagement 

metrics of the original tweet. 

Twitter recently announced that the platform will encourage quotes to combat the 

rapid spread of misinformation. The following Twitter message was posted on the 

company's official blog in connection with the 2020 U.S. presidential election: 

 

“First, we will encourage people to add their own commentary prior to amplifying 

content by prompting them to Quote Tweet instead of Retweet. People who go to Retweet 

will be brought to the Quote Tweet composer where they’ll be encouraged to comment 

before sending their Tweet. Though this adds some extra friction for those who simply want 

to Retweet, we hope it will encourage everyone to not only consider why they are amplifying 

a Tweet, but also increase the likelihood that people add their own thoughts, reactions and 

perspectives to the conversation.” 

 

4.3.5. Metadata about bot repositories and the deployed bots 
 
There is a large amount of metadata, both about the bot repository and the actual bot 

deployed over Twitter. For each repository, GitHub provides access to the number of stars, 

watchers, and forks. Users can star a repository on the GitHub website by clicking a button, 

similar to the “Like” button on Facebook. Watchers are developers who want to keep an 

eye on a particular repository and subscribe to notifications about changes in the code or 

readme file of the repository. The number of forks is another type of metric that is most 

relevant in the context of social coding or open-source development. On GitHub, users can 

make a copy of the content (code and files) of a repository. Then, these users can work on 

the copy of the repository and later have the opportunity to propose changes to the original 
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code. The latter must be accepted by the owner of the original repository. 

However, there are problems with almost all of these GitHub metrics. Stars are not 

used too often in the bot developer community. Of the 321 paired GitHub repositories 

(these are the repositories created by survey participants and include a known Twitter bot 

“pair”), 186 repositories have zero stars. The vast majority of the remaining bot repositories 

have five or fewer stars. A relatively small number of repositories (28) have more than five 

stars. The most popular bot repository has 98 stars. The ten most popular repositories have 

about the same number of stars (364 combined) as all other bot repositories (393 

combined). This long tail distribution of stars and the high number of zero stars make it 

difficult to use this metric in more sophisticated, multi-level analyses, such as a cluster 

analysis. Still, this is probably the best internal indicator of success on GitHub. 

The watch feature on GitHub is even less used compared to staring, at least the total 

number of watchers (361) is smaller than the total number of stars (757) in the case of the 

321 paired bot repositories. Moreover, the number of repositories without watchers is 

relatively high (58). A careful analysis of the watch metrics also shows that users often 

watch their own repositories. Subtracting all self-watchers would inflate the metrics even 

more. 

The final internal GitHub metric for paired bots is the number of forks. Only 67 bot 

repositories have a fork, and the total number of forks is only 237, indicating that, with the 

exception of a few less popular bot repositories, developers are not interested in directly 

reusing other developers' bot code or contributing individually by working on a copy of the 

repository.8 

Twitter also provides a set of metrics to describe an account's activity, source of 

information, and user engagement. I described information sources and bot activity above, 

so I'll focus on user engagement metrics here. The standard Twitter APIs provide access to 

two important user engagement metrics: the number of retweets for a tweet and the number 

of likes, formerly known as favorites. However, retweets can be misleading. When a bot 

retweets a tweet from another Twitter user, the retweet counts available for that tweet are 

based on the retweet count of the original tweet. The retweet count indicates the popularity 

of the original tweet, regardless of how many retweets were generated by the bot or its 

followers. This means that retweeting a tweet that has already been retweeted (for example, 

                                                
8 A fork allows another developer to improve a code on a parallel copy, and the author of the original code can 
later merge these changes or improvements to the original repository.  
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when you see a retweet in a bot's feed) is counted in the retweet count for the original tweet. 

In other words, the bot's contribution to the spread of a tweet cannot be measured using 

public data, as Twitter does not provide access to this information. 

Because of the difficulties in measuring the bot contribution to the spread of a 

retweeted message mentioned above, and because the metrics provided by Twitter are 

misleading, I decided to set the RT number for retweets generated by bot accounts to zero. 

Interestingly, the favorites for a retweeted tweet is still relevant and accurate, as these 

numbers show how many users favorited the (retweeted) tweet that appeared in the bot 

account's timeline. 

Querying the timeline of each bot account that has a paired Twitter handle and a 

GitHub repository yielded a database of about 490K tweets. This dataset is limited by 

Twitter's imposed limit of 3,200 tweets per account, so the dataset contains at most about 

3,200 tweets per account, even if the account tweeted significantly more. The original or 

quoted tweets from the downloaded tweets were retweeted a combined 93,078 times. This 

suggests that a bot-generated tweet is retweeted 0.19 times on average, or to put it more 

simply, for every 10 tweets generated by an average bot, there are 2 retweets. However, 

not every bot account achieves the same retweet ratio. One would assume that bots that 

produce a very large number of tweets would be retweeted less often, but this is usually not 

the case. 

 

4.3.6. Most important research findings 
 
In this part of the thesis, I examined 321 Twitter bots based on both their Twitter activity 

(tweets, retweets, etc.) and their corresponding GitHub repositories. This analysis mainly 

addresses the second set of research questions, more specifically the research questions 

about how bots generate content (RQ 2.1), how long they are active on Twitter, and how 

much they post (RQ 2.2). 

One of the most important and less expected findings of this chapter is that open-

source bots are indeed posting new, original content on the platform. Due to Twitter's API 

limitations, I was only able to access the most recent content (3,2000 tweets per account) 

in the bots' timelines. For the 321 bots, I was able to download 443,171 tweets, and more 

than 90 percent of that content was original, mostly bot-generated content as opposed to 

simply retweeting existing tweets on the platform. Together, the 321 accounts posted nearly 

4 million times. The time between registration (usually a bot's first tweet) and the bot's last 
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communication averaged 836 days. About one in three bots was active for at least 3 years. 

This suggests that a large number of Twitter bots from the bot repositories identified on 

GitHub are or have been active for longer. 
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4.4. An open-source Twitter bot typology 
 
The goal of developing an open-source bot typology, or typology in general, is twofold: on 

the one hand, we need to determine the key characteristics of our subjects that can 

distinguish them from one another; on the other hand, the subjects in our research that are 

similar along these variables can be grouped and quantified. According to Babbie (2016), 

a typology is a way to summarize our data along two or more variables. A typology is often 

based on qualitative data. To obtain reliable qualitative data about our subjects, the 

response categories (values) for a variable should be mutually exclusive. Otherwise, it is 

not possible to consistently apply coding decisions to a large dataset. 

 

4.4.1. Code review and content labelling 
 
First, I linked the bot repositories on GitHub and deployed bots on Twitter (as described 

earlier in the results chapter and methodology section of this thesis). Then, for each bot 

account, I manually reviewed the code on GitHub and visited the bot profile on Twitter in 

a browser. On GitHub, in addition to the already downloaded metadata about the bot 

repository and bot developer, I also checked the following information: 1) the description 

of the bot repository, 2) the Readme.md file uploaded to the repository, 3) the file(s) 

containing the code to run the bot, 4) the content used by the bot if it is also stored on 

GitHub, and in some cases the 5) description added to a commit (a commit is a change to 

the code uploaded to GitHub). The annotated screenshot below shows an example of a 

typical bot repository on the GitHub website. 
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Figure 25 Annotated Screenshot of a Typical GitHub Bot Repository 

 
Note. Screen shot and annotation by the author. 

 

Almost all bot repositories have a brief description, but the information is often limited and 

does not provide enough detail about the bot. For example, a description “A simple Python 

twitterbot” reveals nothing about the bot's function(s) or the data source it uses. Although 

adding a Readme.md file to a repository is a common practice on GitHub, not every bot 

repository has a Readme.md file. The Readme.md file is a short text file written in a markup 

language that must follow a simple syntax. When the file is present, GitHub automatically 

loads the contents of the file and displays it among the files available in the repository, as 

shown in Figure 25. Depending on the common practices of the programming language 

used for the bot, the repository contains one or more files with code. In addition to the code, 

these files often contain annotations and comments that help both other programmers 

understand the code and the developer make changes to the code later. Most bot repositories 

did not contain content because usually repositories used online data sources as input for 

content creation. Even bot repositories that relied on locally stored content often contained 

only a limited version of the database or text or audiovisual files used by the bot. (Note: I 

define locally stored data as data stored on a computer (server) connected to the internet 

that hosts the code itself. In other words: If the developer is using cloud computing, store 

locally means that the data is stored in the cloud on the same server or a connected online 

storage). Finally, commits, updates, or changes made by a developer often include useful 

comments, such as adding a specific function to the bot or connecting the bot to a web 
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source or API. 

The remainder of this chapter is organized as follows: I categorized open-source 

Twitter bots based on three dimensions - the source of content used by the bot (see Section 

4.4.2.), how bots process and publish content (see Section 4.4.3), and whether or not the 

bot is interactive (see Section 4.4.4). The remaining sections of this chapter focus on the 

technical details of the bot - first listing the Twitter features that the bot can access, and 

then examining how the bot generates its content (generative vs. found content). The bot 

typology presented in this thesis is based on the above three dimensions, but the technical 

details provide further insight into the actual programming of the bots. 

 

4.4.2. Finding or generating content for bots 
 

Question for dimension 1 - Where does the content for bot accounts come from? 
 

The first variable that can be used to create a typology of open-source Twitter bots is the 

data source used by the bot. To quantify bot accounts that rely on static information, 

dynamic information posted on Twitter itself, or content that comes from somewhere else, 

including generative bots that generate content based on code, I provide a description for 

each type of content generation or distribution, along with statistics based on the relatively 

small sample of 321 paired bot accounts I worked with - those accounts where I was able 

to pair source code (data from GitHub) with a bot deployed on Twitter (data from Twitter). 

Although some bot accounts rely solely on a set of previously prepared, static, often 

locally stored content, most open-source bots use dynamic sources of information. Bots 

that work with static, local content, such as a folder full of images or a digital version of a 

book, are often used only to illustrate the capabilities of a Twitter bot. These bots are 

deployed on Twitter only to showcase a bot. It should also be noted that these bots are often 

skeletons, meaning they provide the mechanics of a bot, but they must be connected to a 

data source and set up properly before they can be deployed on Twitter. These skeleton 

bots are simple, designed for common tasks, and can usually be easily customized. 

Of the 321 bot repositories, 20 bot codes either use only pre-built or previously 

collected static content, or rely mainly on locally stored content. A good example of the 

former is an automated account that tweets a picture of a fox every Friday, or a project 

where the bot tweets 140-character long sections of Pi, a mathematical constant. Both are 

very simple bots that use only local content. Of course, locally stored content can change 
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as well. For example, there is a bot that tweets a random album cover from the bot master's 

phone with the folder title - the content on the phone can change often. 

Another source of bot content is in the code itself. For example, code can generate an 

image or use an algorithm to manipulate text that is either stored in a local file or 

dynamically scraped or downloaded from an internet source. 134 bots use code-generated 

content or content that has been previously specified in the bot code. A good and simple 

example of code-generated content is a bot that plays with the concept of normal 

distribution and constantly tweets random numbers generated by an algorithm. The 

difference with the Pi bot is simple: the normal distribution bot generates the random 

numbers dynamically based on its code, while the Pi bot reads the numbers from a very 

long text file. Code-based bots can even produce art, as one of these bots produces 

computer-generated drawings with seemingly random, made-up (also code-generated) 

titles. This bot refers to its self-generated images as “procedural art” and uses hashtags such 

as #ComputerArt or #CreativeCoding in the text of its tweets. 

The next important source is Twitter itself. There are a large number (38) of bots in 

my dataset that use tweets from other Twitter users. The simplest version of this type of 

bots simply retweets a specific source (e.g., a Twitter user) or hashtag. These bots can also 

do some curatorial work in the sense that they retweet only certain messages based on an 

algorithm, e.g., tweets that contain a hashtag (i.e., belong to a particular thematic discussion 

on Twitter) and have already received a high level of user interest (e.g., a message that has 

been liked more than 100 times). Although retweeted tweets disappear when the original 

message is deleted, retweeting specific tweets creates an archive of tweets in the bot's 

timeline that can later be searched or simply browsed. 

More complex bots, which are still among those that rely on Twitter as a source, use 

a combination of a Twitter source and either local content, another web source, or the code 

itself. The bot called @WuTrump, for example, used the former U.S. president's recent 

tweets and lyrics from the Wu-Tang Clan, the popular New York hip-hop band from the 

1990s. The result was an often funny version of the already not very presidential tweets in 

a jargon used by the hip-hop subculture. 

The last type of primary source is the web outside of Twitter. To access dynamic, 

reliable, well-formatted (machine-readable) content, many bot accounts rely on the 

application programming interface (API) of other web services. 

Often, the content published on a website can be accessed without using an API, 

namely by scraping a website, i.e., directly accessing and downloading the content of a 
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website through a computational method. The reasons for not using an API are many and 

range from the cost of using a commercial API to the limitations of accessing data through 

the API. Lack of skills/technical knowledge about a particular API can also contribute to 

not using an API - it is often easier and sometimes simpler to access data without using an 

API. In addition, not every possible web resource has a public API. 

Nevertheless, the availability of well-formatted, reliable data via the API is an 

important source of data for open-source Twitter bots - 39 Twitter bots used an API to 

publish content to Twitter. While some of these bots simply published content retrieved via 

the API, others mixed it with code-based content or data from other web sources. There are 

a large number of free and open APIs that can provide content to a bot - Google Maps, 

HERE, and OpenStreetMap all provide access to maps and various geographic data, 

Wikipedia has a free, well-documented API, Dark Sky used to provide access to high-

quality weather data, and of course all the major social media platforms have APIs, from 

Instagram to Reddit. There are also (often fun) niche APIs for accessing free pictures of 

dogs (DogCEO API), facts about the Star Wars movies (SWAPI), and all sorts of data about 

Pokémon (Poké API) - all of which is good material for building a Twitter bot. Microsoft, 

IBM, Amazon and other big tech companies also provide access to image recognition, 

online computing and artificial intelligence that can be used for more complex Twitter bots. 

Using the well-formatted, reliable data and web services available through APIs, 

which are often free and open, developers have created bots that generate content by 

accessing and processing data from a web service. For example, a bot was developed that 

documented an imaginary walk on the world map (@DailyWalkBot). The bot posted more 

than 21,700 short tracks that were visualized on Google Maps. At the time of data 

collection, the bot was walking on an unnamed road in the middle of the Mexican state of 

Coahuila. The code behind the bot generates random locations within walking distance of 

each other, and Google Maps, accessed through its API, calculates the best route between 

the locations and creates a map with the route's track highlighted. Another developer has 

launched a Star Wars quiz bot that posts trivia questions about the popular science fiction 

film (@starwarsbot1) - the content here comes from a Star Wars API. In addition to fun 

side projects, developers have also created useful services based on music recognition 

services (ACRCloud API and Shazam API) that can name the music used in a video posted 

on Twitter or elsewhere by simply mentioning the bot in a tweet (@nomemusica). These 

bots post dynamic content, they are reliable and require less effort to maintain. 
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4.4.3. Processing and publishing content  
 

Question for dimension 2 - What functions do the bots perform? 
 

The second variable that can be used to create a typology of open-source Twitter bots is 

the function that these bots perform, which is directly related to how these bots process and 

publish content. Bots are often designed to automate tedious and tedious tasks, such as 

creating similar messages or automatically retweeting certain content based on simple 

rules. Although the categories are designed to be mutually exclusive, individual bots can 

and in some cases do combine them. In other words, the majority of bots fall into one of 

these categories, primarily because bots are often programmed to perform a single task. 

However, some bots are more complex and can perform multiple or complex tasks. 

 

Amplifier. These bots take a specific signal on Twitter and repeat the content, either from 

an account or from content that matches certain keywords or hashtags. Technically, this 

often takes the form of a retweet, but the account may also simply copy the content and 

repost it as an original tweet, or use the platform's quote feature, where the bot adds a short 

comment to the original tweet. Either way, these accounts can duplicate the content, make 

it available to other users, or simply drive up retweet counts for a particular account, 

keyword, or hashtag. 

 

Curator. These accounts also take content that is available on Twitter, but the method of 

selecting the content is more sophisticated and the curation itself creates a new filtered 

view of the information previously published on Twitter. For example, a bot that retweets 

every tweet from the U.S. president that mentions a particular country creates a stream of 

such tweets, making it easier to either follow or look up those tweets later, effectively 

creating an archive on Twitter. Similarly, retweeting only tweets that have been liked above 

a certain threshold creates a new filter for content available on Twitter. 

 

Content mash-up. Mash-up bots still frequently use tweets posted on the platform. The 

bot either combines tweets from multiple sources on Twitter into single mash-up tweets or 

uses a combination of tweets posted on Twitter and a third-party source. A good example 

of the latter type is the bot that created mashups of Donald Trump's tweets and the lyrics 

of the Wu-Tang Clan, the famous New York hip-hop band. 
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Transmitter. These bots rely on content posted on another social media platform or 

website. The bots either use an API designed for computational access to web services 

(including content published on those websites), or they simply scrape data from a specific 

website. A Twitter bot that posts customized weather reports may access weather data 

(content) through the API of a weather service or website. Another example is a bot that 

automatically generates a tweet when content is posted on another social media platform, 

such as Reddit. 

 

Content creator. These are bots that produce their own content without using data (text or 

visual content) from Twitter. Generative bots produce and publish content based solely on 

the code running behind the bot - this category includes artbots that produce computer-

generated images or, to take another example, computer-generated poetry. Other bots 

creatively use multiple sources outside of Twitter or mix and match them with content 

created based on rules set in the bot's source code. 

 

Service bot. Service bots do not have public/visible content. Instead, these accounts 

perform tasks in the background, such as collecting data, following specific accounts, or 

liking content posted by other accounts. Liking content is not invisible per se. Users who 

visit the account's profile can see this activity, but it is not displayed in the account's 

timeline, and the bot account's followers are not notified about it either. So, the invisibility 

of this type of actions depends on the design of the platform. It is also important to note 

that bot accounts are often able to perform some of these invisible tasks, even if they belong 

to one of the other types. For example, they can follow back a user who starts following 

them, save Twitter data, or like certain types of tweets. 

 
4.4.4. Interactivity and Twitter bots 
 

Question for dimension 3 - How bots interact with users? 
 

Media theory has identified interactivity as a key feature of new media, especially when 

compared to traditional electronic and print media (Lister et al., 2008). This literature 

focuses on both the role of users in content creation (contribution) and how audiences can 

control access to content. Contribution and interactivity are linked together, and the latter 

concept plays a central role in defining social media, a platform where users, both 
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individuals and communities, “share, co-create, discuss, and modify” content (Kietzmann 

et al., 2011). The role of interactivity in the changing media landscape has also been 

discussed extensively in the literature on digital journalism (e.g., Schultz, 2006; Spyridou 

and Veglis, 2008; Sundar, 2004). Similarly, political science and political communication 

studies have devoted a large body of literature to the interactivity of politics, which 

primarily includes papers on the interaction between politicians and their constituents 

(Bright et al., 2020; Jacobs and Spierings, 2019; Tromble, 2018). 

Much of the media studies literature on interactivity draws on Jan Jensen's (1998) 

early definition. Jensen defines interactivity as “a measure of a medium's potential ability 

to let the user exert an amount of influence on the content and/or form of the mediated 

communication” In addition to content creation, control plays a central role in theories of 

interactivity. Both Jensen (1998) and McQuail's (1994) classic textbook on mass 

communication draw on the media typology developed by Bordewijk and Kaam. For 

Bordewijk and Kaam (1986), the two most important dimensions of interactivity are 

ownership (who owns or produces the content) and control (who decides the subject and 

timing of the content accessed). 

Everett M. Rogers (1986) uses a simple, two-dimensional interactivity scale that can 

be used to distinguish between low and high interactivity media. For example, TV, radio, 

and the press, often referred to as traditional media, can be positioned at the low end of this 

spectrum, while new media represent the other end. This not only highlights interactivity 

as the main difference between these media types, but also shows that interactivity is a 

continuum and that there are different levels between high and low interactivity. 

Furthermore, according to Rogers, the level of interactivity depends not only on the 

medium or the technology behind it, but also on the human users of that technology and 

the context of use. 

Jensen (1998) introduces a more complex, 3-dimensional representation of the 

different types and levels of interactivity - he calls it the cube of interactivity. The 3 

dimensions are derived from conversational interactivity, selective interactivity, the 

freedom to choose content, and registering interactivity, the ability to adjust the response 

based on information provided by the user. This 3-dimensional model can also be divided 

into four sub-concepts that may be useful for understanding interactivity. The following 

section provides brief definitions or descriptions for these four sub-themes: 

 

“Transmissional interactivity – a measure of a media’s potential ability to let the user 
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choose from a continuous stream of information in a one way media system without a return 

channel and therefore without a possibility for making requests 

Consultational interactivity – a measure of a media’s potential ability to let the user 

choose, by request, from an existing selection of preproduced information in a two way 

media system with a return channel 

Conversational interactivity – a measure of a media’s potential ability to let the user 

produce and input his/her own information in a two way media system, be it stored or in 

real time 

Registrational interactivity – – a measure of a media’s potential ability to register 

information from and thereby also adapt and/or respond to a given user’s needs and 

actions, whether they be the user’s explicit choice of communication method or the 

system’s built-in ability to automatically ‘sense’ and adapt” 

 

Transmissional and constitutional interactivity, i.e., selection from preproduced 

content in a one or two-way media system, yield the dimension of selective interactivity, 

while the other two subthemes refer to low or high levels of conversational and 

registrational interactivity. 

Jensen also used his 3-dimensional model to categorize different media or 

technological platforms when he wrote his article, which was in the late 1990s, 

corresponding to the early days of the internet and predating Twitter. Television, for 

example, can be at the low end of the selective interactivity scale, but it can also offer the 

ability to choose between different content streams (multichannel) and achieve a high level 

of selectivity through the introduction of on-demand content. Both Rogers and Jensen's 

two-dimensional and three-dimensional models mark precise positions for each medium, 

but one can also find examples of media that typically have a low level of interactivity but 

can also be used in more interactive ways. Radio, for example, is typically a one-way 

medium with only limited interactivity, but listeners can easily dial in and join the radio 

program to voice their opinions or even change the stream by asking for specific content. 

Twitter itself is much more flexible than most of the media categorized by Rogers 

and Jensen. The technology itself provides various means of interactivity, from replying to 

a user's mention to quoting a tweet and adding a comment. In addition, the platform can be 

used as a one-way communication tool when users follow information sources and consume 
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content without producing content themselves or interacting with the information sources 

in any way (from retweets to other forms of user engagement ). Similarly, Twitter bots can 

be programmed to exhibit varying levels of interactivity, from sharing information to 

having a human conversation with chat capabilities. 

From a technical perspective, interactivity can mean choosing between simple, 

predefined options and giving the user much finer control. For example, Lev Manovich 

(2001) distinguishes between closed interactivity and open interactivity - while the first 

option provides the user with a branch like decision tree and they can only choose from 

predefined options, the second allows much more freedom in customizing the retrieved 

content. However, open interactivity also requires more sophisticated technological 

solutions such as artificial intelligence, neural networks, etc. compared to the simpler 

closed interactivity. This is also true for Twitter bots - more sophisticated conversational 

bots tend to rely heavily on natural language processing and AI.  

To understand interactivity in the context of Twitter bots, it is necessary to consider 

media-specific features (interaction capabilities offered by Twitter) and some technical 

aspects. Twitter offers the following options for interaction between users: retweet, quote, 

at mention, reply, and direct message. 

To be an interactive bot, a Twitter bot must use one of the above options to interact 

directly with users. While some bots use at mentions to interact with users but the 

communication is still one-way, other bots respond to either input, requests, or commands 

from Twitter users, so the communication is truly two-way. 

Based on the existing media studies literature on interactivity and the technical 

characteristics of Twitter as the medium used by bots, I propose to measure the following 

three dimensions of interactivity: 

 

Communication – The first dimension is communication, more specifically, how 

does communication take place between users and the bot? This dimension can take 4 

forms, partly due to the technical characteristics of the platform. Bots can be designed to 

avoid communication and generate content that is only visible to the bot's followers or users 

searching for that content. Users may communicate with the bot intentionally and without 

intent or knowledge of the communication. Bot accounts can listen to the stream of public 

communications on the platform or search for specific keywords or hashtags that cause the 

bot to tweet. Similarly, bot accounts can automatically retweet certain tweets. The user who 

originally posted the tweet is notified, but this type of notification can be turned off by the 
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user. Intentional communication (from the user's perspective) can be done in a closed 

interaction format, e.g., a user can simply include an at mention (@username_of_bot) in a 

tweet to summon or command the bot. More advanced chatbots can allow users to interact 

openly (following Manovich's notion), but this type of communication is extremely rare 

among the studied open-source Twitter bots. 

 

Control – This dimension is about who determines the topic and timing of the content 

generated. This is one of the two dimensions of interactivity defined in the Bordewijk and 

Kaam (1986) article cited earlier. In the context of Twitter bots, an automated account can 

tweet or respond to user-posted content or direct messages from users without user 

intervention. To be an interactive Twitter bot, users must be able to tweet or message the 

bot account and instruct it to respond with a specific piece of content (e.g., a local 

politician's contact information or the location of a voting booth) or a service (e.g., 

identifying a song used in a video uploaded to Twitter). It is also important that the bot 

responds automatically and in a timely manner. Aside from being interactive and 

responding to user requests, automated accounts often tweet by their own accord, to 

produce content for their followers or simply to become more visible. 

 

Authorship – Because of Twitter's design, tweets in which the user mentions the bot 

account are visible to the bot's followers or to people searching for the bot's username. My 

review of more than 300 Twitter bot source codes and Twitter accounts found that almost 

all communication originating from Twitter bots is public and visible on the platform. Users 

can contribute to bot-published content in three ways: 1) users can post content that is 

picked up by the bot and either retweeted, quoted, or otherwise reused (e.g., by partially or 

fully re-posting it to the bot's timeline); 2) users can allow bots to access previous public 

posts by them (e.g., a bot can create a word cloud from the most frequently used words that 

a user has previously tweeted); 3) users can ask the bot for specific information or services 

(e.g., a user sends an image to a bot, whereupon the bot creates a deep dream version of the 

same image). 

 

Considering the above dimensions, I have defined the following three levels of 

interactivity: 

 

No interactivity: the bot generates content without mentioning any other Twitter 
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user. In this way, there is no interaction between the bot and other users on the platform, 

and the content generated by the bot is only visible to accounts that follow the bot or to 

users searching for a specific keyword or hashtag that matches the content. Also, the timing 

and content of the tweets produced by the bot do not change when a user contacts the bot. 

 

One-way interactivity: the bot mentions other users as it generates posts, or reposts 

content, but it does not respond directly to communications from users who write to (or 

mention) the bot. Depending on the user's notification settings, a user may be notified of 

their mention on Twitter. This usually happens when the bot retweets or quotes a user's 

tweet, likes a tweet posted by someone else, or mentions a user in their tweet. In this case, 

there is indeed an interaction between the bot and the user, but it is a one-way 

communication - the bot does not respond to a message or mention from a user. 

 

Two-way interactivity: the bot account can respond to some form of direct 

communication with a Twitter user, and in response to a direct message or an at mention, 

the bot generates tailor-made content. This is a two-way, albeit sometimes limited, 

communication (cf. chatbots that can maintain longer exchange of messages ). It is 

important that users begin communication with the bot with the expectation of receiving a 

response. In other words, bot accounts that automatically respond to content posted by a 

user (e.g., when the bot is triggered by a keyword or hashtag) but do not respond to the 

same user's message, or at least not within a short period of time (e.g., within a day), are 

not two-way interactive. Table 6 provides examples of the different levels of interactivity 

defined above. 
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Table 6 Examples for Various Levels of Interactivity 

Interactivity Bot handle Description 

Not 

interactive 

@rainbow_a_day 

 

 

@nswbushfires 

A simple Twitter bot that only tweets colorful 

emojis. It generates a tweet from six, randomly 

selected emojis to form a rainbow. 

This bot puts any new bush fires on a Google map 

and tweets about them based on the RSS feed of 

the Rural Fire Service of New South Wales, 

Australia. 

One-way @Its_Cold_Bo 

 

 

 

 

@DoggoTheBot 

This bot uses the Twitter Search API to find 

tweets where users complain about cold weather. 

Then, the bot selects a random tweet, and it 

generates a short tweet based on the report and at 

mention the original user as a source. 

The bot identifies sad tweets based on a sentiment 

analysis and sends a cute puppy picture in a reply 

tweet to the users who tweeted. 

Two-way @paranoiabot1 

 

 

 

 

@domaincheckbot 

 

The bot responds to users based on a trained AI. It 

can also take videos from YouTube based on a 

query from a user and play a video backwards to 

find “clues” that can “support” conspiracy 

theories. 

This bot can react to at mentions (mentioning its 

user name in a tweet) and look up any domains 

included via the Domains API of GoDaddy, a 

popular domain registration and website hosting 

company. 

 

The distinction between one-way and two-way interactivity is not always straightforward, 

and there are indeed borderline cases. The bot @puppersplz, for example, communicates 

only with its followers and every now and then selects a random follower who receives a 

picture with a cute dog. Even though following a bot is a form of permission for the bot to 

contact a user, it is still not a two-way communication because the message is not a direct 
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(and immediate) response. 

Similarly, the account called @you_are_bot contacts users who make a grammar 

mistake and confuse the spelling of your and you're. The bot responds to each reply from 

the trolled user by retweeting the user's reply. In this case, retweeting does not generate 

custom content in response, but simply amplifies the message or changes the transparency 

of the communication. Just like amplifiers bots that retweet content based on the source of 

the tweet or a matching keyword or hashtag, this bot is only interactive in one direction. 

The account @AttentiveBot advertises itself as “A Twitter bot that finds easily 

overlooked tweets.” This account sends its followers links to tweets from their own 

followers (followers of the user who fallows the bot) who tweet the least often - these are 

tweets that are easy to overlook according to the bot developer behind this bot. This bot 

calculates the most overlooked tweet posted recently by an account you follow and sends 

a link to that tweet every day. It is a subscription-based model. Instead of notifying the bot, 

users simply have to follow or unfollow it to receive or stop receiving messages. The 

messages are customized for each user. I have classified this as a two-way interaction 

account, but it responds to following or unfollowing rather than responding to a specific 

mention or message. 

It is important to note that there is no difference in quality between bots based on 

their interactivity. While it's true that chatbots often require a certain level of sophistication, 

there are readily available solutions and numerous examples that can help create a simple 

interactive Twitter bot that responds to users. On the other hand, a Twitter bot can be quite 

complex and sophisticated, even if it is not designed to interact with other users at all. 

The goal of creating a well-defined, simple categorization that can be applied to any 

Twitter bot is to quantify the different types of bots in our dataset. The results presented 

below are not representative of all open-source Twitter bots, but give an idea of the use of 

different levels of interaction in the creation of bots. Since the method for identifying open-

source bots with a matching repository and a deployed bot on Twitter is transparent (I 

describe it in detail in my dissertation), I feel comfortable to include this statistics. 

About one in three bot codes contain some level of automation, while the majority of 

bots (236 accounts) offer no interaction - these accounts simply tweet on their own and do 

not respond to content or direct communication from users. Within the interactive bots, 50 

accounts provide one-way interaction, meaning these accounts communicate directly with 

other users, such as by mentioning them in a tweet, but they do not provide tailored content 

and are not capable of any form of two-way interaction. Another 49 bots contain elements 
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that make them capable of two-way interaction-these accounts respond to intentional 

communications from Twitter users and provide tailored content, e.g., users can request 

specific information via mentions or direct messages, and the bot responds with the 

requested information. 
 

Table 7 Overview of the Open-source Twitter Bot Typology 

Dimension Data source Function Interactivity 

Main question Where does the content 

for bots come from? 

What functions do the 

bots perform? 

How bots interact  

with users? 

Types • Locally stored 
(static, dynamic) 
content 

• Code-generated 
content 

• Content from 
Twitter 

• Web source  
(API, scraping) 

• Amplifier 

• Curator 

• Content mash-up 

• Transmitter 

• Content creator 

• Service bot 

• No interaction 
 

• One-way 
interaction 

 
• Two-way 

interaction 
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The remaining sections are discussing the technical details 

 of the open-source bots and the content they distribute, 
but they are not part of the typology. 

 
4.4.5. Themes in open-source Twitter bots 
 
In addition to creating a typology, I also looked for common themes in the development of 

open-source bots. The following sections provide an overview of two major themes in bot 

development - bots that provide access to information, with a focus on information, and 

bots that focus on art, often visual art, with less emphasis on the information itself. These 

are additional insights about open-source bots, but I chose not to include them in a bot 

typology because even though there are definitions for information and art, these categories 

are less precise and may have some overlap (cf. mutually exclusive categories).  

The first issue, which also accounts for the largest proportion of open-source bots, is 

access to information. Luciano Floridi, known for his work on the ethics of information, 

has devoted a short introductory book to information. In his book, Floridi (2010) gives a 

general definition of information that is useful for defining information bots. According to 

Floridi, information consists of data that is well-formed and meaningful. Data are well-

formed and have meaning if they follow the rules that govern “the chosen system, code or 

language” (syntax). To be meaningful, they must “comply with the meanings (semantics) 

of the chosen system, code, or language in question.” 

Automated accounts that focus on information rely on data that are well-formed and 

have meaning. Floridi also distinguishes between factual data that is true (information) and 

factual data that is either intentionally misleading or false (disinformation) or simply not 

true (misinformation). Based on a manual review of hundreds of open-source bots that rely 

on external data sources, bot developers also look for well-formed data sources that provide 

access to meaningful and factually correct data. On the other hand, the very same code can 

be used to disseminate factually incorrect information. 

Empirical evidence from other research projects suggests that not all bot accounts are 

created to disseminate factually correct information. However, I have not found any open-

source Twitter bot that has produced disinformation, that is, false information that is not 

factually correct and intentionally produced to mislead or manipulate people. It is quite 

possible that bot developers who produce bots that are used for manipulation or 

disinformation campaigns are less proud of their creations and do not publish the code. On 

the other hand, as I mentioned earlier, almost exactly the same bot code can be used to 
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spread factually correct and false or misleading information.  

Floridi also describes the typical phases of information that start with discovering, 

designing or authoring the information (1 - occurrence), this information is then often 

disseminated in a network (2 - transmission), the next phase is usually some kind of 

organization or classification and storage of the information (3 - processing and 

management) and finally the use of the information for education, decision making, 

monitoring, etc. (4 - usage). The phases described above are useful to describe the activities 

of open-source Twitter bots. These automated accounts are not only involved in 

transmission, but can also take an active role in processing and managing the information. 

I have deliberately avoided calling these accounts broadcasters, although many of 

them simply relay information collected from a source. Broadcasting does not take 

interactivity into account. Twitter bots can only provide information when contacted (e.g., 

by a direct message) or triggered by a keyword, hashtag or at mention. 

The second theme is concept, visual or art. These automated accounts tweet text-

based or visual content, including short poems, text that is not information, images, and 

graphs. 

There are several definitions of art (for the difficulty of defining the term, see 

footnote). 9 Without going into the intricacies of defining art or classifying bots as art bots, 

I have three important reasons to talk about art bots. 1) Bot developers regularly refer to 

the content generated by their bots as literature, digital art, or computer-generated art. 

Literature usually means that the bot is text-based, and the latter categories are most often 

used for visual bots. 2) Bot accounts often use artwork as input (free images from a 

museum) or use artistic methods to produce content (e.g., writing haikus). For the 

procedural definition of art, see footnote). I want to distinguish between bots that 

produce/acquire content that meets the definition of information and bots where the form 

of a tweet is more important than the information conveyed. 

It is important to note that there are bots where both the content and the information 

                                                
9 Davies distinguish between functionalist and procedural approaches to defining art (Davies 1991, 2010). 

The functionalist approach, according to Davies claims that art has a function, usually providing a “rewarding 

aesthetic experience.” However, not all art works are centered around traditional aesthetics or beauty, or made to 

provide a pleasant impression at all. Proceduralists believes that art is created by following certain rules and 

procedures (Davies, 1991). In another piece, Davies explain that the function of art changes over time (Davies, 

2010). There are less-theoretical definition, for example Davies in his chapter on the definition of art cites George 

Dickie who defined art as an any kind of artifacts that was created and presented for the public interested in art. 
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are important. For example, in a background conversation, a bot developer who created a 

bot that tweets the schedule of Barack Obama, the 44th president of the United States, 

intentionally used the colors and style that has been used by the White House for a long 

time for official communications. Still, the information itself is important. Even if the 

format is visual (textual information on a blue and white background about the former U.S. 

president's schedule), the bot would fall under the information category. In other cases, the 

format is more important than the content: a bot that translates the probability of rain and 

other information from a weather report into a series of emoticons is an art/visualization 

bot. I admit that there are borderline cases or hard-to-decide examples. 

In our sample of 321 labeled open-source bots, 118 accounts were created to provide 

access to information. Of these, 19 bots are two-way interactive and provide information 

after a user contacts the bot, meaning the user can ask the bot questions or request specific 

information. Another third of the bots fall into the art category - of the 321 tagged open-

source bots, 97 focus on visual (i.e., images or moving pictures) or text-based art. 

 

4.4.6. Twitter functions used by the bot 
 
The Twitter API is defined by Twitter as a “set of programmatic tools that can be used to 

learn from and engage with the conversation on Twitter.” To systematically examine and 

compare Twitter bots, I looked up the code published on GitHub under the repositories 

linked to the open-source Twitter bots and listed the Twitter functions implemented in the 

code. 

Technically, there are at least four different ways to automate Twitter communication. 

The bots can access almost all of Twitter's basic functions, such as tweeting or posting an 

image, directly (type post or get) via the Twitter API request. See the documentation for 

the various Twitter APIs for detailed information on how to formulate these requests and 

how to make sense of the responses provided by the API. 

The same API functions can be accessed through readily available open-source 

packages and libraries. These libraries are often referred to as API wrappers, because the 

software wraps the API and often provides a much easier way to interact with Twitter. This 

can reduce the time and knowledge required to develop a Twitter bot. In addition, these 

API wrappers are usually well maintained and help maintain the code even if the syntax for 

accessing the API or the structure of the API response changes. 

The third way to access Twitter's features is to use a third-party tool that can 
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authenticate and interact with Twitter APIs. For example, the popular service If This Than 

That (IFTTT) can be set to post content to Twitter based on simple rules. IFTTT has its 

own API for programmatic access to the service. Developers can thus rely on IFTTT or a 

similar service to post content to Twitter or use other features of the microblogging 

platform. 

Finally, developers can simulate a browser and access Twitter's website by pretending 

to be a real user who would access the platform through a browser. This is often referred 

to as headless browsing and can be used to overcome the limitations and restrictions of the 

Twitter API. For example, only the 1200 most recent tweets are available through the API 

for a Twitter account. However, this limitation does not apply when the same user profile 

is accessed through twitter.com in a browser. Headless browsers are reportedly used to 

create automated bots (Gorwa and Guilbeault, 2020; Suchacka & Iwański, 2020). 

Most open-source Twitter bots access Twitter's functionalities either directly through 

the API or through an API wrapper. Both types of programmatic access to Twitter are well 

documented and easy to find in the code published on GitHub. The following table provides 

a list of the most commonly used Twitter functions based on the 321 bot source codes 

examined on GitHub and on Twitter. 

 
Table 8 The Most Used Twitter Functions by Automated Accounts 

Function Nr of bots 
Tweet 290 
Image 66 
Reply 40 
Retweet 35 
Mention 33 
Link 25 
Search 18 
DM 10 
Follow 9 
Timeline 9 
Video 8 
Emoji 6 
Stream 5 
Quote 4 
Unfollow 3 
Trend 2 
GIF 2 
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The vast majority of Twitter bots studied are set to post content to Twitter in either text 

and/or audiovisual format. Text is the most common format, with 290 bots posting tweets 

that contain text, while 66 bots can post images, 8 post videos, and 2 post animated GIFs. 

A smaller portion of Twitter bots are set to reuse, amplify, or comment on content 

from Twitter. These bots use the retweet (35) and quote (4) functions. To find the right 

content, bots search for tweets (18), access the timelines of specific users (9), and use 

Twitter's streaming API (5) - the latter feature allows bots to “listen” for filtered content 

(based on filter keywords, hashtags, or at mentions) and immediately respond to content 

posted on Twitter (e.g., retweet, reply to a user, etc.). 

While retweeted and quoted tweets automatically mention the original user and link to the 

original tweet respectively, Twitter bots can also mention specific users in their tweets or 

listen for specific at mentions. This helps either link content to specific users or create 

interactive bots that can respond to users when they mention the bot in a tweet. Of the 321 

Twitter bots, 33 (about 10 percent) can recognize or include at mentions in tweets. 

 

4.4.7. Examples for political bots 
 
The collection of political bot repositories on GitHub is neither representative nor complete 

enough to serve as the basis for a typology of Twitter bots. Nonetheless, the political bot 

codes on GitHub show a wide range of functionalities and different purposes, from 

providing useful information about upcoming elections to accessing large but often 

difficult-to-search public databases to satirical bots that poke fun at political issues. 

There are numerous examples of bots that access public data and turn that information 

into a regularly updated stream of tweets. One of the political bots on GitHub tweets the 

wait time at the U.S.-Mexico border in San Ysidro-Tijuana based on data retrieved from 

the California Institute for Telecommunications and Information Technology website at the 

University of California. Other examples include bots that search public databases of the 

Environmental Protection Agency in the United Kingdom and the U.S. Geological Survey 

and compose tweets on environmental topics. 

A larger group of bots were programmed to provide information about elections. In 

2014, a user named Schwad wrote a bot that queried live election results and posted regular 

updates on Twitter during the House of Representatives elections in Montana. Another 

election bot was created to use the Election API provided by Google to respond to direct 
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messages about the location of polling places. During the U.S. presidential election, code 

was released for two bots that tweeted information about Republican and Democratic 

campaign contributions based on a government-maintained database. 

Another bot type can be referred to as awareness bots: These automated accounts 

draw the attention of the Twitter community to specific public issues, such as police 

violence, racism, and feminism. 

One simple but intelligent Twitter bot uses an existing public database of police-

related civilian deaths and shows the location where the death occurred by posting a Google 

Street View image. Another bot, deployed on Twitter as @YourRepsOnGuns, simply 

retweets any member of Congress who tweets about firearms and related words. 

Bots can also act as watchdogs, documenting certain online activities. On GitHub, 

you can find code for Wikiedit bots that tweet alerts when someone edits a page on 

Wikipedia from an IP address associated with the government. Another version of this bot 

tweets every time a student from an American college edits a wiki page about another, rival 

college. 

Finally, many satirical bot codes are published on GitHub. Donald Trump, for 

example, has inspired several parody bots. One of these bot codes is called “Donaldo 

Trumpilini” and mixes the text of tweets from the (now defunct) realDonaldTrump Twitter 

account with quotes from the autobiography of Benito Mussolini, the Italian fascist leader. 

Another project called “wikitrump” picks a random term from Wikipedia and describes it 

in derogatory terms to parody Donald Trump's style. 

 

4.4.8. Most important research findings 
 
In this chapter, Twitter bots from four different angels were examined. Most of the results 

are directly related to RQ 2.1, as they discuss how open-source bots generate, process, and 

publish content. After identifying common themes in the content published by Twitter bots, 

the chapter first examines interactivity and then how open-source Twitter bots produce 

content. These sections serve to create a typology, and whenever possible, I quantified these 

results. 

The typology I created is based on three dimensions: 1) the source of information and 

how the data is accessed and processed, 2) the level of interactivity built into the bot, 3) the 

list of Twitter features used by the bot. In other words, the bot is described by what Twitter 

features are included in the bot code, how the bot produces the content, and whether users 
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have control over the content or the timing of the bot's tweet behavior. 

First, I identified three main sources of content used by the bot. Open-source Twitter 

bots use content published by other Twitter users (38 bots) by retweeting their tweets, 

algorithmic content generated by code written for the bot (134 bots). Other bots collect 

content from other websites or platforms, including other social networks or social media 

sites (39 bots access their content through APIs). Another 20 bots simply rely on (locally 

stored) pre-selected or pre-written content - examples include bots built to tweet images 

from a folder/directory or lines of text from a large text file.  

Next, I examined how much control users have over the content posted by a bot, 

whether a bot attempts to communicate with other Twitter users, and whether the bot is 

able to respond to user communications. While the majority of bots (236 bots) cannot 

directly engage with users or respond to users' communications, 50 bots are capable of one-

way interactions (typically mentioning users in their posts) and another 49 bots can respond 

to users' communications and provide tailored content (two-way interaction) in response. 

Lastly, 290 bots can post tweets using Twitter's API, while visual communication was 

much less common as a feature - this includes posting images (60 bots), video files (8 bots), 

and animated GIF files (2 bots). Consistent with the findings about interactivity, 40 open-

source Twitter bots can reply to tweets and 33 can mention other users. 
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5. Discussion 
 
 
5.1. Reflections on the findings 
 
For this thesis, I collected data from the following three different sources: Repository data 

from GitHub, survey data from developers, and Twitter data. At each new step of the data 

collection process, the previously collected data was used, often in a processed and 

analyzed form. For example, relevant Twitter bot profiles were selected based on survey 

responses and the references (or links) provided in the repositories. Although I chose to 

structure the results around a particular data source (or step in the data collection process), 

comparing, contrasting, or amplifying some of the results across different data sources can 

make the results more robust. 

In my dissertation, I first investigated open-source bot development practices by 

examining metadata about bot codes shared on GitHub, the largest online code repository. 

After analyzing the available metadata about more than 19,000 Twitter bot repositories, I 

contacted developers who set their email address public on GitHub and asked about their 

motivations for developing a bot for Twitter and using the platform. In the same survey, I 

also asked questions about the challenges of developing and deploying a bot on Twitter and 

the ways in which they acquired the skills necessary to develop a bot. A large number of 

bot developers shared the Twitter username of their deployed bots - this gave me a unique 

opportunity to examine the source code of open-source Twitter bots along with the activity 

of deployed bots on Twitter. 

Much of this thesis is concerned with developing a methodology for investigating the 

development of open-source software on GitHub, so I think it is important to explain the 

rationale for contacting developers directly. Working with digital platform data has its own 

limitations. There are certain questions that you cannot ask based on this type of the data. 

In the case of GitHub repository data, the data contains very little information about the 

motivation behind a particular project, the challenges during development, or the 

communication related to the project outside of GitHub. On the other hand, answers to 

direct questions about the challenges during development based on surveys or interviews 

combine well with automatically collected metadata about the project. 

Another example of comparing and contrasting different results based on different 

data sources is the complexity of source codes published on GitHub and the level of skills 

required to develop or implement such bot codes. From the repositories analyzed,  it 
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appears that Twitter bots can be programmed to perform a variety of functions and that is 

relatively easy to repurpose or adapt these bots to perform new tasks on Twitter. It can be 

argued that individuals and groups who do not have high-level programming skills or the 

means to pay for expensive IT services can easily use bots on Twitter, suggesting a 

democratization of these powerful social media tools. On the other hand, the survey results 

suggest that the vast majority of bot developers are programmers, as nearly 78 percent of 

bot developers have formal training in programming or computer science. This suggests 

that while developing a bot is not a super complex task, writing code and understanding 

other people’s code still requires some level of programming knowledge. 

The results about the programming background of bot developers bring us to the 

limitations of this study. On the one hand, we can conclude that the majority of the 

developers are well educated and have a professional programming background. This could 

be related to the fact that GitHub is mainly used by professional programmers or students 

of computer science or in other IT fields. On the other hand, we can assume that big players, 

such as marketing companies and political groups, do not necessarily publish their source 

code on GitHub. 

GitHub itself is changing according to the literature and to internal studies within 

GitHub. For example, the 2020 Octoverse report suggests that over the past 5 years, the 

share of developers in the platform’s user-base has decreased from nearly 60 percent to 54 

percent, while the share of education, for example, has increased from 17 percent to 23 

percent (Forsgren, 2020). 

The results presented here suggest that the overwhelming majority of bot code on 

GitHub was developed by a single author in a relatively short period of time. More than 

40% of bot repositories were one-day projects, or in some cases these bots were developed 

outside of GitHub and the author only uploaded the final code to the platform (using GitHub 

as a code dump site). This suggests that GitHub is not being used to bring together different 

skill sets, connect developers from different geographic locations, or help existing teams 

share tasks, compared to more complex software projects. Moreover, only 1 in 10 bot 

repositories was developed by multiple authors using the site’s collaboration and version 

tracking features. Nevertheless, GitHub users can learn from each other by looking at how 

a particular bot-related problem was solved by other developers. 

Interestingly, projects developed by more than one developer are maintained or 

developed longer, and these projects receive more engagement on average, such as stars 

from other GitHub users. Similarly, about 9 out of 10 bot repositories developed by one 
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author were not forked on GitHub – meaning that these repositories were not copied to 

enable further work on the code by using the platform. On the other hand, half of the 

projects developed by multiple authors had at least one fork. Single-author projects 

received about 1 star on average, while multi-author repositories received 9 stars on 

average. Finally, single-author projects were maintained for  an average 134 days, while 

repositories developed by more than one author were maintained for 428 days. This could 

be explained by both the complexity of the code (more complex codes can break more 

easily) and the increased attention paid to these repositories. 

Bot developers on GitHub, on the other hand, take advantage of the social features of 

the site: the average developer has 30 followers and follows 21 developers on the platform. 

Of course, there are developers who are more connected and there are developers who are 

less socially engaged – one in four developers has no followers at all, for example. Still, 

bot source codes uploaded to the site by less-connected developers can be easily found by 

other developers by searching for a keyword on the GitHub site and serve as a model for 

other projects. 

The typical bot developer is young (the vast majority of developers were 20-29 years 

old) has a degree in computer science, or is studying programming. The typical bot 

developer is male, just like the majority of the developers on the platform. Only 3.4 percent 

of bot developers identified herself as a woman. As I mentioned earlier in this thesis, the 

2017 GitHub Open Source Survey had almost exactly the same gender distribution, as the 

percentage of woman in their data was 3.36 (Geiger, 2017). The age distribution of 

respondents was also very similar. 

In addition to programming classes in school and looking up bot code on GitHub, the 

typical developer consults multiple sources when developing a bot for Twitter. The main 

sources of information were Q&A (question and answer) sites (e.g., a solution to a specific 

problem) and blog posts (e.g., a step-by-step description of how to develop a bot). The fact 

that they prefer to solve their problems individually rather than turning to the developer 

community on GitHub is partly related to the structure of GitHub. Although the platform 

is designed to encourage collaboration and teamwork, individual developers for one-person 

projects do not have good opportunities to get input or help from other developers. The 

survey of bot developer on GitHub also found that bot developers often do not use the 

platform to contribute to other people’s repositories or reach out to developers. Using the 

site’s version control system, for example, is much more important. 

The survey results also suggest that bot developers use GitHub to gain exposure and 
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build their careers. Especially for young developers, recognition and career building are 

among the top motivations for using the platform. Aside from having a good idea and 

implementing it, creating a bot seems to be a learning project for many developers. When 

I asked developers about the most important reason for creating a bot, the majority of 

survey respondents indicated that learning how the APIs work was a very important or 

important reason for starting a bot project. Interestingly, self-expression was much less 

important, and the vast majority rejected the idea that they were developing the bot to 

support a political cause. From background conversations with developers, it was clear that 

developers often post bot codes to their GitHub profiles to show that they have personal 

projects and are interested in programming outside of work. 

Using the Twitter usernames provided by survey participants and the bot repositories 

owned by developers on GitHub, I was able to compile a list of 321 paired bot repositories. 

By querying each Twitter account via Twitter’s REST API, I was able to download and 

analyze nearly 500,000 tweets. This methodological step was important, because it allowed 

me to connect repositories identified on GitHub with the deployed bots on GitHub. In this 

way, I was able to not only examine the traces of the bots on Twitter but also understand 

the exact working mechanism of a particular bot.  

The registration time for bot accounts on Twitter and the estimated distribution (see 

Chapter 4.3.1.) of traffic generated by such accounts coincide with the creation of bot 

repositories on GitHub. The changes in the number of bot repositories on GitHub and the 

bot traffic studied on Twitter both suggest that there has been a dynamic expansion of bot 

activity over the past 6 years. This also suggests that the survey respondents represent the 

entirety of open-source bot developer quite well.  

Although Twitter data has severe limitations, I was able to overcome the lack of 

access to older tweets for high-frequency tweeting profile in my dissertation work. By 

modelling the temporal distribution of tweets, I was able to provide estimations about the 

volume of traffic generated by a sample of open-source bots. This is a methodological 

novelty and can be used in similar settings for analyzing the contribution from high-

frequency tweeting accounts.  

The vast majority of content posted to Twitter by the open-source bots studied is 

original content as opposed to retweets or quotes of existing content. This is one of the 

most interesting findings of the study of bot activity on Twitter. Although the review of bot 

repositories revealed bot accounts that either only amplify other accounts (retweeting them 

automatically) or curate content posted on Twitter (e.g., only retweet content that contains 
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certain keywords and has certain popularity level), most accounts would fall into to the 

generative and transmitter bots categories. While generative bots generate their content 

based on code (e.g., images rendered based on an algorithm), transmitters use widely 

available web APIs to access content from other platforms, and then post the information 

(or content) to Twitter. 

The literature, including my own previous research at the Oxford Internet Institute, 

has discussed the use of bots in political communication. However, the sample of open-

source Twitter bots was not designed to study political bots. This is both an important 

limitation of my study (see Limitations), and an interesting new challenge for future 

research (see Directions for future research). Nonetheless, studying non-political bots, 

including the methods of development and some information about the authors behind the 

bots, may be relevant to understanding the how political bots are created. Bot authors gain 

important skills when working with the Twitter API, so they can later decide to write a 

political bot or be hired to do so. Secondly, software development often relies on and builds 

upon existing code. Therefore, the non-political or general-purpose Twitter bot codes 

available on GitHub today can serve as the foundation for future political bots. Moreover, 

features developed for non-political bots can easily be repurposed for political purposes. 

 
5.2. Generalizability and limitations of findings 
 
When investigating digital platforms, and especially when working with API-based data 

collection, it is important to both report on the platform-specific limitations and think 

critically about the data collected. Due to the cross-platform data collection strategy of my 

research, the results presented in this thesis have a complex set of limitations. These 

limitations can be attributed to at least three different sources: 1) each platform has its own 

data collection logic, both GitHub and Twitter limit the range and scope of data that can be 

accessed through the free and public APIs; 2) on GitHub developers can also restrict access 

to certain data (e.g., their email address or location); and 3) the researcher also has to make 

certain decision during the data collection process that can further limit the generalizability 

of the results and, in worst case, compromise the internal validity of the research. Therefore, 

in the following section, I will reflect and think about the process of data collection. While 

reporting the details of the data collection itself is important for understanding the data and 

for reproducibility, discussing the limitations can create a more robust research and help 

with the understanding the generalizability of the findings. In addition, reporting the 
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limitations opens the way for suggestions for future research and new ways to study a 

problem. 

 

PLATFORM SELECTION. These limitations stem from the fact that my thesis focuses 

only on developers who publish Twitter bot codes on GitHub. By only examining bots that 

have an accessible GitHub repository, developers that do not use GitHub are not part of 

this study. This was a reasonable decision on my part, as GitHub is not only the most used 

code sharing platform, but bot developers prefer GitHub compared to other platforms, and 

significantly less bot code is published  on other platforms (see Assenmacher et al., 2020). 

Similarly, the decision to focus exclusively on Twitter bots limits the generalizability of 

the results.  

 

OPEN-SOURCE CODE. It is important to note that my research focuses on open-source 

bots. The results of the thesis cannot be fully applied to bots that are either based on closed 

source code or use a third party social media content management tool. On the one hand, 

the study investigated how to automate social media communication, more specifically, 

activities on Twitter. The technical solutions and logic of automation can be used in any 

kind of bot. On the other hand, it can be argued that certain activities that are controversial, 

unethical, or against the Twitter’s terms of services are not published on GitHub. For 

example, bots used in information manipulation campaigns or bots developed by black hat 

marketing companies are not available on GitHub. 

 

SEARCH TERMS. GitHub had more than 56 million registered developers, and the number 

of repositories on the platform had reached 100 million by the end of 2020 (GitHub, 2020). 

Only repositories containing the term Twitter bot or twitterbot (written in two words and 

one word) are part of my study. This method resulted in very few false positives (i.e. 

repositories that are not Twitter bots), while making it easy to explain the search criteria. 

However, this decision could exclude a large number of bot repositories, something that I 

tried to address in my initial data collection in 2016. I collected smaller samples of datasets 

based on other potentially relevant keywords, such as automated social media and other 

combinations of relevant words, but the results almost every time included either Twitter 

and bot or twitterbot either in the name or short description of the repository or in the 

Read.me file.  
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LANGUAGE. Twitter bot (or Twitterbot), the combination of the words Twitter and robot, 

is an English term, and it is possible that some languages use local terms for Twitter bots. 

Although the language of the repository Read.me files and the geographic information in 

the dataset suggest that this general search term could identify Twitter bots from a large 

number of countries, identifying other terms for Twitter bots in different languages, 

especially in the case of languages that use a non-Latin alphabet, could further expand the 

scope of this study. 

 

API LIMITATIONS. Although GitHub has a fairly open API policy, the platform still 

places certain limits on the data that can be accessed. For example, the Search API can only 

return a maximum of 1,000 results for each search. One strategy to deal with this limitation 

is to use narrower search terms or parameters. By limiting the search to a specific type of 

repositories (e.g., only repositories with a Python code) – a combination of such search 

results can overcome the 1,000 result limitation. Another strategy is to use time windows, 

and collect repositories in smaller batches. The GitHub Search API does have a limit on 

the number of queries per minute, but this can be easily worked around programmatically.  

Twitter, on the other hand, has a variety of limitations that are not easy to overcome. 

Both the academic literature and the API documentation on Twitter’s website describe these 

limitations in great detail. For example, the number of tweets per account that can be 

accessed is 3,600. Bot accounts are often programmed to produce content in large numbers, 

some communication from these high-frequency tweeting accounts were not available 

through the Twitter API. To mitigate this limitation, I used the total number of tweets per 

account and the time of registration to reconstruct the distribution of the traffic generated 

by such accounts.  

 

DELETED OR PRIVATE CONTENT. When working with platform data, it is often 

important to consider the temporal dimension of data availability. In the case of both 

GitHub and Twitter, deleted data is not accessible through the API. GitHub, on the other 

hand, provides access to any changes made to source code or documents, provided the user 

uses version control and upload commits to the system. Content can be deleted (or changed 

from public to private) by the user on both platforms. GitHub allows its users to both use 

public and private repositories to work on projects. Since 2019, GitHub’s free-tier users 

have unlimited private repositories (Friedman, 2019), and we can assume that, especially 

in the recent years, many bots have been developed in a private repository and never made 
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public. The reliance on the public GitHub API means that bot codes where the bot developer 

decides to use a private repository to work on a bot code are not part of this study. 

 

REMOVED CONTENT. GitHub and Twitter have a set of rules about how to behave on 

the platform and how to use their APIs. Moderators and algorithms on both platforms 

remove content. GitHub has only a loose community guideline about behavior that is “not 

tolerated” on the platform, including harassment, incitement to violence, hate speech, 

doxing, and so forth. Twitter, on the other hand, has more stringent regulations in place, 

and its algorithms regularly monitor (and police) the platform and remove content that 

violates the terms of service (ToS). Deleted or removed content is not part of my analysis 

unless the content was removed or deleted after the data collection was complete. 

 

PLATFORM USE. In addition to examining the API and retrieved data, the literature points 

to other limitations when working with GitHub data. For example, Kalliamvakou et al. 

(2016) note that repositories on GitHub are often “used for purposes other than strictly 

software development.” For example, the authors report repositories that were used solely 

for archiving project data and did not contain a single line of code. In addition, GitHub can 

be used to store notes, host CV-s, and so on. By manually reviewing the repositories, I have 

found a limited number of projects where researchers or companies uploaded algorithms to 

detect bots.  

 

STRUCTURE OF THE PLATFORM. While developing the data collection strategy for 

this thesis, I decided not to include forks to my GitHub dataset. This decision was made to 

avoid serious bias in the dataset from a few heavily forked repositories. One of the most 

popular Twitter bots, a bot repository by Randy Olson, has 415 forks. The number of 

contributors to the original project is only 13. Hence it has more than 400 forks by 

developers who have not contributed to the original repository - this would have distorted 

the dataset. Also, it did not seem like a good idea to contact developers who did not develop 

their own bots (only forked one). On the other hand, a separate analysis of all forked 

repositories and their forked versions would be a great addition to my research project and 

a possible new research project.  

 

CONTACT INFORMATION. It is also important to note that the limited availability of 

email addresses could skew data collection, especially if certain types of users tend to add 
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an email address to their profile. For example, users developing politically sensitive 

software, especially in a repressive regime, might choose to remain anonymous, even 

though there are email services that provide (some degree of) anonymity. Also, certain 

ways of using GitHub might reduce the likelihood an email address being made public. For 

example, one could imagine that users who use the platform more as a code dump (a place 

where they keep a records of past projects), rather than actively using the social coding and 

version tracking features and/or collaborating with other users, might be less likely to 

publish an email address. Finally, the platform has changed the way it handles personal 

data and privacy in the past, and this could affect the rate of developers publishing their 

email address. For example, a change from an opt-out policy on publishing email addresses 

to an opt-in policy, could result in developers who joined the platform later being less likely 

to publish their email address than earlier members. 

 
5.3. Directions for future research 
 

Compare and contrast. While the data on bot developers is interesting in its own right, it 

would be interesting to compare some of the results to baseline numbers. For example, one 

could compare the number of contributors or the time spent maintaining a repository to the 

“average” GitHub repository. Unfortunately, GitHub does not provide an easy way to create 

a random sample of all GitHub repositories. Each repository has a unique numeric ID - it 

can be a single number or a nine-digit number, but there is no available index for the 

numbers used. There is a project called GHTorrent (Gousios et al., 2014), which is an 

archive for data available through the GitHub API, maintained by Georgios Gousios, a 

computer scientist at TU Delft and a research engineer at Facebook. The dataset includes 

18 TB data and can be used for research purposes. By creating a random sample of all 

archived GitHub data, many of the results from studying open-source bots on GitHub can 

be compared to the average of a small random sample of GitHub.10 Using a similar 

approach, researchers examined computer music repositories (Burlet & Hindle, 2015). In 

this study, the authors selected 819 random repositories from GitHub and compared them 

to 819 repositories in which musicians used visual music-oriented languages to generate 

music. Results indicated, for example, that musicians used fewer commits in general and 

                                                
10 A possible extension of the GitHub data collection came up during the internal defense of the thesis. Dr. 
Zoltán Kmetty suggested to compare some of my own findings with a random sample of GitHub 
repositories. 
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updated their repositories more frequently on weekends, but the number of posts and the 

number of bug reports did not differ significantly between the two groups. 

More data on question-and-answer (Q&A) sites. Survey responses indicate that Q&A 

sites are the most important source of information when it comes to developing bots (and 

likely in other areas of software development as well). More than 86 percent of respondents 

used these sites while developing their Twitter bot, much more than contacting another 

developer (27 percent) or searching for another GitHub bot repository (67 percent). So 

another extension of my thesis could be to analyze the problems associated with bot 

development and the proposed solutions available on Stack Overflow, the largest Q&A site. 

Stack Exchange, the company behind Stack Overflow and a number of similar websites, 

has a free and open API for accessing the data on its platforms. In addition, the platform 

introduced the Stack Overflow Creative Commons Data Dump, database dumps of public 

data published on the site, back in 2009. A year later, Stack Exchange also introduced a 

web-based data explorer, making it possible to write queries and search for specific data in 

that database. As of early December 2021, Stack Overflow had 16 million users and 33 

million answers to 22 million queries. Searches for both “Twitter bot” and “twitterbot” on 

the website returned up to 500 results. Since the website only displays 500 results, the 

number of results could be much higher. In addition to the types of questions developers 

ask during development, it would be interesting to learn more about who the users are who 

answer these questions and what other questions they typically answer. 

A review of bot repository descriptions identified a small number of political Twitter 

bots. Most of these political bots can be considered “good bots” because they are designed 

with the intent of providing useful information to the Twitter community, providing 

information about polling locations during election times, tweeting about election results, 

or translating complicated public databases into the format of easily digestible 140- or 280-

character tweets. The small number of political bots suggests that studying the political use 

of bots requires a different methodology. One avenue might be a case study-based 

approach, similar to the studies of WikiEdit bots (Ford et al., 2016), in which the authors 

examined open-source bots that report edits made on Wikipedia from a government IP 

address. Another approach might be to examine datasets recorded during elections, 

referendums, and other political events of major significance (or monitor ongoing political 

events) and try to find bots that reference a code repository in their profile information.  

On the other hand, the potential use of these bot codes to influence social media 

discussions for political purposes raises serious ethical questions. Transparency of bot 
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activity may be central to the inclusion of bots in human conversations in the online public 

sphere. Currently, Twitter does not provide a standardized way to distinguish between 

human and bot activities. Publishing the source code of Twitter bots on a code-sharing 

platform like GitHub and providing a link to the appropriate repository could be a great 

way to increase transparency, as we can gain insight into the process of automating social 

media-based communications. 
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8. Appendix 
 
 
GitHub Questionnaire  
 
Using GitHub 
 
1 How IMPORTANT are the following aspect of GitHub for you? 
[Likert scale from Very important to Not important at all] 
 

• Get recognition for your work - using public repositories to show your work to 
others 

• Use version control - track changes in your own code 
• Find inspiration - learn from others by looking in to their code 
• Reach out to the community - find other programmers who can contribute to your 

work 
• Contribute to other repositories  - write code to someone else’s repository 
• Communicate with other developers -  describe your own work, give feedback to 

others, answer questions 
• Give back to the community - contribute to other programmers work (besides 

writing code) 
• Build your career - find a job through the platform 

 
Setting up a Twitter bot 
 
2 Have you ever deployed or set-up a bot on Twitter? 
(The bot can use your own code or any other tool or software.) 
• Yes  
• No 
 
Your bots on Twitter 
 
3.1. Have you ever done the following? 
[Yes or No answer] 

• Set-up a bot on Twitter based on your OWN bot code? 
• Set up a bot on Twitter that was NOT DEVELOPED by you? 
• Used a DEDICATED ACCOUNT for the bot (ie. An account primarily used by 

the bot)? 
• DISCLOSED (communicated clearly) that some or all of the COMMUNICATION 

coming from this account is AUTOMATED? 
 
3.2. Please add the Twitter handles / usernames of the bot accounts here. 
(You can add it even if the bot account is inactive at the moment.) 
[Open text field] 
 
Attitudes toward bots 
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4.1. People have different thoughts on automated accounts on Twitter. How much do 
you agree with the following statements? 
[Mostly agree / Somewhat agree / Somewhat disagree / Mostly disagree] 
 
• It is harder and harder to distinguish between human and automated communication. 
• Twitter bots are too often used to spread misinformation. 
• The communication from bots should be protected by free speech. 
• Bots are a way of self-expression. 
• During an election campaign, candidates and other politicians should not use bots. 
 
Developing a Twitter bot 
 
5.1 Think about your own Twitter bot project(s)! Have you reached out to other 
developers or used online sources of information when you developed your code? 
Have you contacted/checked the following sources: 
[Yes or No answer] 
• Twitter terms of service, developer guidelines published by Twitter  
• Other GitHub bot repositories checked for inspiration / finding a solution to a specific 

problem 
• Contacted another developer by using GitHub (e.g. sending a direct message via the 

platform) 
• Contacted another developer outside GitHub (e.g. messages over email, tweet, etc.) 
• Checked any question and answer site, e.g. Stack Overflow, Quora, etc. 
• Read a blog post or an article about developing Twitter bots 
• Participated in a lecture (online / offline) that involved / discussed bot development 
• Other: 
 
5.2 When you think about your own Twitter bot code hosted on GitHub, how 
important were the following reasons to develop your bot?  
[5 - Very important, 0 - Not important at all] 
• Test an idea  
• Show your skills as a developer 
• Automate some tedious and boring tasks  
• Support a cause / political agenda 
• Practice writing code and working with API-s 
• Self-expression or art 
• Other reason: 
 
5.3 If there were challenging aspects of developing a Twitter bot or deploying it over 
Twitter, please describe these challenges. You can mention multiple challenges.  
[Open text field] 
 
Twitter bots and politics 
 
6.1. Have you or someone who you know ever used any of the bot codes you 
developed for political purposes, including civil issues, party politics, activism, etc.?  
• Yes 
• No 
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6.2. Would you mind if someone would use your bot code for political purposes? 
• Yes 
• No 
• It depends on political issue 
 
6.3 How interested would you say you are in politics in general?  
[Very interested / Quite interested / Hardly interested / Not at all interested] 
 
6.4 How often do you discuss politics and public affairs with others ONLINE – such 
as by writing or responding to a political Twitter post, writing or commenting on a 
political Facebook post? 
Would you say:  
Every day, At least once a week, At least once a month, Less than once a month, or 
Never? 
 
Demography and education 
 
7.1. To which gender identity do you most identify with? 
Male  
Female  
Variant/Non-confirming  
Not listed:  
Prefer not to answer 
 
7.2. When did you born? 
Month / Year  
 
7.3. What is your highest education? 
No schooling completed / Less than high school degree 
High school degree or equivalent 
Completed vocational training 
Bachelor’s degree or equivalent 
Master’s degree or equivalent 
Doctorate (PhD, DLA, etc.) 
 
7.4. Do you have any formal education in computer science or programming?  
Yes / No 
 
 


