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1 Research literature and the justification of the

topic

1.1 Objective of optimization

BMS is a risk managing method mostly used in liability insurances. However, the
most general application of the BMS is in the Motor third-party liability (MTPL)
insurance. Hence in our research, we assume that the optimized BMS will be
applied for MTPL insurance. However, the results of the models would presumably
be similar for other types of insurance. Because the assumptions of the MTPL
insurance may not be entirely valid in other insurances, we only considered the
liability insurance for vehicles in this study.

In MTPL insurance, the policyholders create insurance if they cause damage to
another individual. The research assumes that a policyholder is the insured vehicle’s
driver, although it is not always the case in practice. Whenever the policyholders
cause any damage, they claim to the insurance company. Then the insurance
company pays the damage that the policyholder has caused to the other individual.
In every developed country, having MTPL insurance is compulsory for every actively
used vehicle.

The insurance company pays the claim from a financial fund. This fund was
created from all of the policyholders’ payments of this specific insurance. Therefore,
a policyholder with more claims during a period exploits more from this fund. This
is why the riskiness of a policyholder should be close to his/her contribution to
the fund. The policyholders contribute to the fund with their insurance premiums.
Hence, the objective of the insurance company is to determine a “fair” premium for
each policyholder.

A premium is “fair” if it is close to the policyholder’s risk. Therefore, in insurance
with “fair” premiums, the riskier policyholders generally pay more premiums.
However, it is difficult to determine the exact riskiness of each policyholder.

It will be assumed that some unobservable parameters influence each
policyholder’s personal risk. Estimating these parameters is difficult with statistical
methods, though with multi-period contracts, the insurance company can estimate
the overall risk more accurately for each policyholder.

In other words, policyholders can be categorized by their risks. However, the
insurance company cannot precisely determine with observable parameters (such as
the age of the driver, age of the driving license, location of the vehicle owner, type
of vehicle) which risk group a particular policyholder belongs to. These risk groups
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are usually called “types” in the literature. Therefore, this classification is prone to
error, i.e., there is an underlying unobservable parameter that explains the risks of
the policyholders. For example, let us assume that the insurance company uses only
a location parameter to estimate the premium. We may observe that policyholders
living in a city are riskier than those living in rural areas. In general, it is true, but
some deviation may also exist among the policyholders. Hence, some policyholders
from a city have fewer claims than those from a rural area during the contract period.

The cause of this deviation can be some underlying parameter that is not
described by the policyholder’s location. For example, it can be the driver’s
carefulness or talent for driving or something else.

Even though the policyholder assumes how skillful driver he/she is, the insurance
company cannot observe it. The policyholder’s assumption may not be completely
accurate, but presumably, it is closer to reality than the observation of the insurance
company. Therefore this is an asymmetric informational problem. Asymmetric
information causes welfare loss whose magnitude can be reduced, e.g., by applying
a BMS.

In a BMS, there are finitely many classes, each having a different premium.
At the start of the contract, each policyholder is assigned to the “initial class”.
Subsequently, suppose the policyholder has a claim in the following period. In that
case, he/she moves to a worse class, so the policyholder’s payment may increase in
the subsequent period. If he/she does not have a claim in a particular period, then
he/she moves to a better class; therefore, his/her payment may become less in the
following period. The classification rule – how many classes the policyholder will
move up or down in the system – is called the transition rule. Hence, a transition
rule specifies where the policyholder will be reclassified in the subsequent period for
each possible claim. Transition rules can be unified in the BMS, meaning every class
has the same rule. Alternatively, it can be non-unified. Hence, the penalization of
a claim may differ from class to class.

Without asymmetric information, each policyholder’s premium (for each risk
type) would equal the expected claim (in each class). Hence, the problem is setting
the premiums to approximate the “ideal situation” (i.e., the case without asymmetric
information) as closely as possible (this is not the same as adjusting expected
premium levels to expected claims). A perfect match is impossible in real situations.
Thus a natural goal is to minimize the difference from the “ideal” solution.

To achieve this, we strive at setting a “good” premium scale and “good” transition
rules. The first possibility is widely studied in the actuarial literature. However,
there is less emphasis on the second one.
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1.2 Economic literature

BMSs have a wide range of literature in both economics and mathematics. In
economics, the research usually focuses on non-homogenous risks. It is crucial
in any insurance to consider not just one risk but multiple risks in calculating
the insurance premium. When numerous risks are considered together, some
heterogeneity appears. Risk classification is the most used technique in the field
of insurance to reduce heterogeneity. In risk classification, the policyholders are
separated into risk groups using observable variables, such as age, type of vehicle,
etc.

However, the risk-classification cannot eliminate the risk-heterogeneity
completely. No matter how many risk group we create from how many observable
variables, it is very likely that more than one type of policyholder remains within
any risk group. Hence we cannot distinguish these different types of policyholders
from each other with their observable parameters. In economic literature, this effect
is called adverse selection.

In insurance mathematics, the adverse selection was first studied by Rothschild
and Stiglitz (1976). They found that adverse selection causes social welfare loss,
and the market equilibrium does not always exist. However, various methods can
reduce social welfare loss caused by adverse selection.

Cooper and Hayes (1987) investigated multi-period contracts and found that
if there is a contract where the premiums (and indemnities) depend on the claim
history of the previous year(s), social welfare loss can considerably be reduced. The
result is quite similar to the BMS. However, in their theoretical result, it is not
worthy of considering every policyholders’ claim history. However, applying BMS
for only a fragment of policyholders in general not be possible in practice. Therefore
according to their theoretical result, every risk group should have its own BMS to
achieve the best reduction of the social welfare loss.

Another method to decrease the social welfare loss caused by adverse selection is
compulsory insurance. In the MTPL, both methods are there since it is compulsory
in most of the countries, and the claim history is also considered in general.

In general, in real-life situations, adverse selection is accompanied by moral
hazard. In the models of moral hazard, the probability of claims also depends
on the effort of the policyholder. However, the insurance company does not know
the policyholder’s actual effort to reduce the risk of the damage. The insurer can
merely estimate it from the claim amount (Shavell (1979)). With the use of a BMS,
the insurer motivates the policyholders to reduce risk. This is so because if someone
has a claim, then the following period he/she will be assigned to a worse class (if
there is any). Hence, his/her premium will increase.
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Adverse selection and moral hazard are usually present simultaneously (as in the
case of BMS). Holton (2001) investigated the moral hazard and adverse selection
with an expected utility model. The author found that the BMS is only Pareto
optimal (optimal for both the insurance company and the policyholders) if the
adverse selection and the moral hazard or the insurance costs are considered in
the analysis.

The typical appearance of moral hazard in the MTPL insurances is the so-called
“bonus-hunger”, meaning that policyholders choose self-financing the damage rather
than claiming to the insurance company. If the claim amount is lower than the
premium increase of the following periods, then it is not worth reporting a claim to
the insurer (De Prill (1979); Sundt (1989)).

A BMS’s efficiency is typically measured by an indicator called “elasticity”
introduced in Loimaranta (1972). Elasticity shows how expected payment will
increase if risk increases by 1%. A good BMS’s elasticity is over zero, ideally one,
but can be over one as well.

Lemaire (1995) conducted an empirical study on some BMSs that were used in
practice. If the BMS’s premiums do not vary that much, the elasticity is usually
under 1 in practice. De Prill (1978) generalized the Loimaranta’s efficiency.

Loimaranta (1972) also shows that the elasticity for measuring a BMS’s
effectiveness is not a perfect indicator. In MTPL insurance, the claim probabilities
have relatively low values. Hence it is not impossible to construct a BMS with
elasticity equal to one. With the optimization of the premiums, a very steep
premium-scale would be the result to reach the ideal elasticity. However, Loimaranta
(1972) argues that in that case, the insurance would be pointless. A too steep
premium-scale results in a very volatile payment for the policyholders. Hence the
insurance would not provide economic security to the policyholder.

The economic literature calls this as the risk-averse decision-maker (in this case,
the policyholder), not only consider the premium but its fluctuation. Hence the
policyholder may be satisfied with a slightly higher expected premium on the
condition that the variation of premiums is decreased significantly is somewhat
disregarded (or partially regarded). Nonetheless, in Loimaranta (1972) a model
minimizes the variance of the premium scale assuming a fixed level of elasticity.

Lemaire (1995) compared some BMSs that are used in practice. Since 1995,
there were some changes in these systems.

In many countries, such as Belgium and Portugal, the regulations were liberated.
Hence the insurance companies can create their merit system to consider the claim
history. Some of the countries already had liberated regulations in 1995, such as
the United Kingdom and Sweden. However, there are still some countries where
the regulations are strict, such as Hungary or Luxembourg. Hence the operating
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insurance companies have to use the same transition rules in the BMS. Also, there
are countries, like Germany and the Netherlands, where the insurance companies can
change some parameters of the centrally determined BMS. However, we did not find
any countries where the rules stricken from liberated status since 1995. Therefore,
in general, the regulations on the MTPL insurance regarding the BMS became less
strict. However, even in countries with minimal regulations, the insurance companies
have to use a merit system to consider the policyholders’ claim history. Therefore,
we found that the Bonus-Malus System is generally the most used method in these
countries.

1.3 Mathematical literature

In the mathematical literature, the BMS appears in the applications of Markov
Processes. For example, Molnar and Rockwell (1966) introduces the BMS as an
application of a Markov chain.

There is usually an assumption that the policyholders pay only the system’s
premium in the MTPL insurance in the BMS optimization models. Therefore there
are not any other factors that determine the payment of the policyholders. Hence
the policyholders’ payment in a period only depends on where they are classified in
that period. Generally, the classifications in a BMS happen in each period, which is
the assumption in the optimization models. Getting into a class in the subsequent
period only depends on the currently assigned class. Therefore, knowledge of the
previous periods’ classifications is not necessary.

Let Xt denote the class, where the policyholder is classified in the period t.
Moreover, let us consider any ρ statement that is already known before period t.

P(Xt = k|Xt−1 = l, ρ) = P(Xt = k|Xt−1 = l) (Markov property)

Because the policyholders’ classification only depends on the number of claims
and the previous period’s classification, the classification process has the Markov
property. Furthermore, the process holds the Markov property and can be considered
a Markov chain because of the BMS classification rules.

Definition 1. A discrete-time stochastic process is called a Markov chain if

P(Xt+1 = kt+1|Xt = kt, Xt−1 = kt−1, . . . , X1 = k1, X0 = k0) =

P(Xt+1 = kt+1|Xt = kt)
(1)

holds for every period t.

In our research, we assume that this condition holds for all of the considered
BMSs. A BMS in practice may differ in a way that does not strictly follow this
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definition. For example, suppose there is a BMS, where the policyholders move
upward only when they have two consecutive years without a claim. In this case,
not only the last period determines the probability. However, in this case, only the
previous two periods’ classification is needed to calculate the exact probabilities.

Hence, for simplicity, we assume that in every considered BMSs, the classification
only depends on the previous period. Therefore in every case, we assume the
classification of the policyholders is a Markov chain.

Definition 2. The t-th step transition probabilities for a Markov chain are

pk,l(t) = P(Xt+1 = k|Xt = l)

Definition 3. A Markov chain is homogenous if the t-th step transition probabilities
pk,l(t) do not depend on t.

Therefore, in a homogenous Markov chain, we denote the transition probabilities
with pk,l.

In realistic situations, the policyholders become more experienced over time,
and thereby their claim probabilities may decrease in the future. The effect of the
young, inexperienced policyholders’ risk exceeding the average risk is usually called
the “duration effect”.

The states of a Markov chain (in our case, the BMS classes) can be classified
into two sets according to its movement from one class to another. The two sets are
called the ergodic set and the transition set. Class l can be reached from class k if
a policyholder in class k can be classified into class l later on (not necessarily in the
consecutive period).

A class k is an element of the ergodic set if class k can be reached from every
class of the ergodic set, and from class k, every element of the ergodic class can be
reached. Those classes that are not in an ergodic set are elements of a transition
set.

In the general definition of the BMS, all of the classes are part of one ergodic set.
Hence the classification of the policyholders is a Markov chain without a transition
set. Furthermore, it means that the chain is irreducible.

Definition 4. A Markov chain is said to be irreducible, if for every class k, j and
period t there exists a period s, such that

P(Xt+s = k|Xt = j) > 0 (2)

Hence, every class can be reached from any class. In the optimization of the BMS,
we assume that the classification is irreducible. Hence we construct the transition
rules accordingly. Furthermore, in the case of the BMS, the chain is even aperiodic.
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Definition 5. Let θk of class k be θk = gcd{t ≥ 1 : pk,k(t) > 0}, where ’gcd’ denotes
the greatest common divisor. Let θk =∞ if pk,k(t) = 0 for all t ≥ 1.
Therefore class k is aperiodic if θk = 1. And a Markov chain is aperiodic if every
class is aperiodic.

The Markov chain of all of the considered BMSs is aperiodic. If the policyholder
is in the highest class, it is impossible to classify him/her into a higher class. Besides,
from the lowest class, the policyholders cannot be classified lower. Therefore, the
finite number of classes and the considered transition rules ensure the Markov chain’s
aperiodicity.

In a Markov chain with one ergodic set and the property of aperiodicity, no
matter where the process starts, it can be in any class, after a sufficient number of
periods. This chain is called a regular Markov chain in the literature.

In a regular Markov chain, the classification tends to a unique stationary
probability distribution. These stationary probabilities are usually considered in
the optimization models of the BMS.
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2 Applied methods

2.1 Optimization models

We assume that there are I different risk groups (types) among the policyholders.
Each type has a different risk that does not change over time. In the practice of
BMS, transition rules are based only on claim numbers, and the claim amount is
ignored.

LetM > 0 be the highest number of possible claims in a period and let λim be the
probability of the occurrence ofm claims for the policyholders of type i (i = 1, . . . , I,∑M

m=0 λ
i
m = 1). We denote the risk-parameters (expected claim amount) for risk

group i with λi, (λi =
∑M

m=0mλ
i
m). The types are indexed in an increasing risk

order to keep notation simple. The expected claim amount is the least for type 1 and
the highest for type I. Let φi be the proportion of the type i policyholders among
all of the policyholders (

∑I
i=1 φ

i = 1). In BMS there are K+ 1 classes indexed from
0 to K. The premium of class k is denoted by πk. In a BMS the premiums should
be monotonic, hence we assume that πk−1 ≥ πk (k = 1, . . . , K).

The regular Markov chain has a unique stationary probability distribution. In
the model, there is a different regular Markov chain for each type. Let cik be the
probability that the type i policyholders is classified into class k after spending
sufficiently enough time in the BMS. We will refer to the cik as the stationary
probabilities of the type i in class k.

2.1.1 Optimizing the premium scale when the transition rules are fixed

We present a linear programming (LP) model for optimizing the premiums,
originally introduced in (Heras et al., 2004).

min
I∑

i=1

K∑
k=0

φigik (LP1.obj)

Subject to

πkc
i
k + gik ≥ λicik ∀i, k (LP1.1)

πkc
i
k − gik ≤ λicik ∀i, k (LP1.2)

πk−1 ≥ πk k = 1, . . . , K (LP1.3)
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πk ≥ 0 ∀k

gik ≥ 0 ∀k, i

2.1.2 Optimizing transition rules when the premium scale is fixed

We introduce a mixed-integer linear programming (MILP) model, where the
transition rules are in the scope of the optimization. Transition rules are typically
defined by transition matrices. For this model we introduce binary variables Tj,m,k

for each entry of the transition matrices. If Tj,m,k = 1, then the policyholders withm
claims are moved from class k, j classes upward (downward if j < 0) in the following
period. Denote the domain of j by Jk = [Jk : Jk] for class k where −k = Jk < 0 and
K − k = Jk > 0 are the two extremes. If a binary variable Tj,m,k = 1 and index j is
positive, then the policyholders with m claims are put upward in the system. Put
differently, they move to a class with a lower premium if it is possible. In the case
of j < 0, the policyholders move downward if they have m claims. Index j can be 0
as well, meaning they stay in the same class in the subsequent period.

The model aims to find the best transition rule that evenly separates the
risk-groups’ expected payment. Thus, we want to minimize each class’s deviation of
the payment and expected claims (in some norm).

Often in practice, the transition rules do not differ from class to class, which
means a unified transition rule for each claim m. This means that instead of binary
variables Tj,m,k we can simply use binary variables Tj,m. In this case, Jk is the same
for all k; therefore, it is sufficient to set only one upper (J = K) and lower limit
(J = −K).

Some numerical experiments were presented for each model. In general,
an optimal transition rule can be significantly better for distinguishing the
policyholders. With more classes, the BMS performs better with optimized
transition rules.

In general, the non-unified(NU) type of transition rules could significantly
improve the sorting ability of a BMS compared to the unified (U) transition
rules. Unfortunately, computing an NU model with more than ten classes within a
reasonable time was not possible. Hence we introduced two approximation methods
to find a good solution for these models. We found that even the approximated
results were generally better than the solution of the models with unified transition
rules.

2.1.3 Joint optimization of transition rules and premiums

Furthermore, we present another MILP model, where both premiums and the
classification rule can be optimized simultaneously. In this case, if we use
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πk (∀k) as non-negative variables, we will get a quadratic constraint problem
(MIQCP). Because solving a MILP usually takes less computational time than the
corresponding MIQCP, we linearize the quadratic constraints. To this end, we start
with default premiums for each class that can be increased if needed. We set each
default premium to the expected claims of types with the lowest risk πk = λ1, ∀k.
We then introduce ε as a value for changing the default premium and also consider
various layers of these modifications. ε` denotes how much the premium changes in
layer ` compared to the default premium.

Binary variable O`
k indicates whether we increase the premium in class k by ε`,

i.e., if O`
k = 1, then the final premium of class k is λ1 + ε` = λ`.

All of the previously introduced MILP models are based on the stationary
distribution. However, in some cases, for the probabilities to reach the stationary
level, more time periods are needed than the duration for which policyholders may
remain in the system. In such cases, instead of the stationary distribution, using the
probabilities in each period of the insurance contract would be more appropriate for
the optimization. We introduced a modification of the model, where we do not use
stationary probabilities.

Because this model does not require stationary probabilities, the classification
process of the policyholders does not have to be a regular Markov chain. Hence,
it is possible to optimize realistic situations where the claim probabilities of the
policyholders or the ratios of the risk groups depend on time. However, for simplicity,
we only present a model that considers the same assumptions in the stationary
case. Although the model can be formulated to consider time-dependent transition
probabilities, we did not investigate this prospect because the time required for
finding the optimal solution was extremely long, even in the simplest case.

To optimize a multi-period BMS, we take the first Θ periods of the insurance
contract. The index of time is denoted by t (t = 0, . . . ,Θ) where t = 0 indicates the
beginning of the contract, and Θ is the end of it. We introduce a binary variables
Bk for all classes to determine the initial class.

When the Bk variable takes the value 1, then class k is the initial class.
The variables that was depending on the stationary probabilities now have a

time index as well in this case.
Moreover, we introduced a modification of this model to optimize the number of

classes as well.
When realistic parameters are considered in the joint optimization model, there

are a considerable number of binary variables. Hence the running time can be
extremely long. The optimization models for the premiums and the transition
rules can be calculated much faster separately than the joint optimization model.
Hence, we may use an iterative method to approximate the optimal solution. First,
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we calculate the optimal transition rules with a fixed premium. Then, we find
the optimal premiums to these transition rules, which we consider as parameters.
Next, we use the optimal premiums of this model as parameters and re-optimize the
transition rules. We continue this until we cannot improve the objective function
further. We compared the computation of the MILP model and the iterative
heuristic. We found that the running time of the iterative heuristic, in general,
was much faster than the computation of the exact solution, while the results were
not much worse.

2.2 BMS comparison with other methods

In the practice of MTPL insurances, insurance companies often use other techniques
besides the BMS. Usually, the policyholders’ risk-groups are calculated via some
statistical methods, then part of the premium is determined based on this
classification. The other part of the premium comes from the BMS.

A better estimation is essential for the insurance company, but errors are
unavoidable in practice. With some observable parameters (such as the driver’s age,
location of the vehicle owner, age of the driving license, type of vehicle, etc.), we
may estimate risk groups. However, there may be other unobservable parameters
that influence the risk pertaining to each policyholder. Hence, the existence of
unobservable parameters may result in some deviations from the estimated risk
groups. For decreasing the error related to the estimated and “fair” premium, some
tools such as the BMS can be used. We investigate how the BMS can be optimized
if we consider the statistical model as well. We compare approaches for determining
the premium with a statistical model and an optimized BMS:

• Scaling : The insurance company optimizes the BMS and SM separately.
Then it finds an appropriate scale parameter (0 ≤ α ≤ 1) between them
to determine the final premium.

• Merging : In this method, the expected premium comes from the BMS alone.
Therefore, we consider the types, and consequently the SM, in the premiums
of the classes. Therefore, the payment by two policyholders belonging to the
same class may differ if their observable parameters are not the same.

• Independent : In this case, we optimize a BMS independently for each
observable risk group.
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2.3 Optimization model for a BMS where the transition rules

based on the size of claims

In practice – most often – the transition rules are based on the number of claims.
Therefore, the size of the claims does not affect the transition rules.

This is reasonable since empirical studies suggest that ’good’ and ’bad’
policyholders differ more in terms of the probability of the number of claims than
in amount (assuming there is at least one claim). Despite the fact that differences
in the number of claims are more significant than differences in the claim amounts,
we can observe deviations in the (conditional) amount of claims as well.

We consider a BM system with K + 1 classes, but the transition rules depend
on the claim amount instead of the number.

The (aggregate) claim amount is described with random variable Li for group i,
which differs in each risk-group.

To consider the transition rules based on the claim amount, we introduce K
breakpoint variables for every class k: `k1 > `k2 > · · · > `kK . The transition rules are
based on these breakpoints: if a policyholder is assigned to class k and its claim
amount is between `kh and `kh+1, the policyholder will be transitioned to class h in
the next period. If the policyholder’s claim amount is higher than `k1, he/she gets
into class 0; if it is less than `kK , then the policyholder gets into class K.

In this case, for the transition rules, we have to find K2+K optimal breakpoints.
We can reduce the number of breakpoints if they do not differ in the classes.

Accordingly, we define 2K + 1 breakpoints `−K > `−(K−1) > · · · > `−1 > `0 > `1 >

· · · > `K .
In this case, if the claim amount is between `h and `h+1, the policyholder moves

h classes upward (if h < 0, it will be a downward move).
In the second approach, we can further reduce the number of breakpoints. We

can consider breakpoints `−D > `−(D−1) > · · · > `−1 > `0 > `1 > · · · > `U with
U,D < K. Thus, the policyholder can move downward at most D classes and
upward at most U classes.
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3 New results of the dissertation

3.1 Optimizing the premium scale

We presented a model that was introduced in (Heras et al., 2004), but we modified
the objective. With the objective function, the fluctuation of the premiums is also
considered.

Theorem 1. There is an optimal solution of LP1, where for all k there is a risk
group i, where πk = λi.

We considered the optimization of the premium-scale of the BMS with a profit
constraint:

I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (LP1.4)

Theorem 2. There is an optimal solution of LP1 with constraint (LP1.4), where
there is only one type of premium that is unequal to any risk group’s expected claim.

3.2 Optimizing the transition rules

In the optimization of the BMS, we considered two types of transition rules. Often in
practice, the transition rules do not differ from class to class, which means a unified
transition rule for each claim m. We also considered the non-unified transition rules,
where the transition rule depends on the class.

In the BMS we have to consider only those transition rules, which results in an
irreducible Markov chain. Because in the optimization models, there are stationary
probabilities, it is sufficient to assume that each stationary probability (for each k)
be positive. In MILP models, we cannot use strict inequalities, but with a parameter
τ > 0 and τ ≈ 0, we can prescribe that each stationary probability be positive. This
is an eligible condition for an irreducible Markov chain. However, if τ is unnecessarily
high, we may exclude some transition rules that give irreducible Markov chains.

Due to the fewer possibilities of the unified transition rules, we may exclude those
transition rules that would not lead to an irreducible Markov chain. Hence we may
exclude the irreducibility constraint based on the τ value to give a not only eligible
condition.

Theorem 3 presents a rule which applies to those transition rules when there can
be up most one claim per period. For this, let j0 denote the transition rule for the
claim-free case. Furthermore, let j1 denote the transition rule when there is a claim.
We assume that j0 > 0 and j1 < 0.
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Theorem 3. Let gcd(j0, |j1|) denote the greatest common divisor between j0 and
|j1|. Let j0 > 1 and |j1| > 1. A Bonus-Malus System, with (j0; j1) transition rule is
not irreducible, if at least one of these conditions is met:{

j0 + |j1| > K + 1

gcd(j0, |j1|) > s & j0 + |j1| ≤ K + 1

Where s = 1 if K + 1 is odd, otherwise s = 2.

Theorem 4 is an extension of theorem 4 for the case, when M = 2.

Theorem 4. A Bonus-Malus System, with (j0; j1, j2) transition rule is not
irreducible if at least one of these conditions is met:

j0 + |j1| > K + 1

gcd(j0, |j1|, |j2|) > s & gcd(j0, |j1|) + |j2| ≤ K + 1

gcd(j0, |j1|) > s & gcd(j0, |j1|) + |j2| = K + 2 & K+1
gcd(j0,|j1|) /∈ Z

gcd(j0, |j1|) > s & gcd(j0, |j1|) + |j2| > K + 2

Where s = 1 if K + 1 is odd, otherwise s = 2.

3.3 Joint optimization of the premium-scale and the

transition rules

Because of Theorem 1 in the optimization of the premium-scale there are finite
possibilities of the premiums in the optimal solution with the considered objective
function. Hence, we introduced binary variables for each possibility in each class.
That means we can find the exact solution of a BMS where we consider both
transition rules and premiums in the optimization.

In the optimization model, we applied the theorems of the regular Markov chains.
Hence there is a unique stationary probability distribution in the classification. We
considered the stationary probabilities in the optimization model. However, we also
introduce a modification with multi-period probabilities instead of the stationary
ones.

We conducted numerical experiments for all of the presented optimization
models. In these tests, the consideration of the transition rules in the optimization
greatly improved the sorting capability of the BMS.

We conducted numerical tests of these models. We found that the BMS is
the most effective if there are many BMS classes and the difference between the
policyholders’ parameters is large. However, using too many classes in a BMS may
not be viable in practice due to the contract exists only for a finite number of
periods. Hence, we investigated the multi-period model, where we got a slightly
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different result than the stationary model, which assumes the contract will never
end. However, even in this case, the optimal result was to use more classes than
usually used in practice.

We also conducted research on realistic parameters calculated from Hungarian
data. We found that more classes and more rigid transition rules would separate
the policyholders better than the currently used system.

3.4 Consideration of observable variables

We investigated how the optimization model can be used in practical situations.
First,we assumed that the payment of the policyholders only depends on the BMS’
premium. However, the insurance company may estimate part of the premium
using statistical methods (SM) in practice. We compared some methods on how the
BMS and SM can be applied together. We considered the scaling method, in which
the insurance company optimizes the BMS and SM separately. The final premium
is determined by the weighted sum of the two premiums. We also examined the
Merging method. In this case, the transition rules differ for each observable risk
groups. Moreover, we investigated the independent method, where the whole BMS
differs for each observable risk group.

Overall, the independent method was the most efficient. However, in general,
using the BMS and statistical method jointly almost always resulted in a better
solution than considering only one.

We also presented a case study based on realistic data. We proposed two
approaches for determining the unobservable parameters. We found that the
optimized BMS’s effectiveness depends on the risk groups’ parameters. Hence, if
the applied statistical method is accurate, the BMS cannot improve the solution
greatly. However, in both realistic models, the BMS could improve the results.

3.5 The transition rules based on the size of claims

In practice, usually, the transition rules only depend on the number of claims, and
the sizes of the claims does not influence the classification We also considered a
BMS, where the classification only depends on the claim amount. Finding optimal
classification rules and premiums require a non-linear optimization model. When
transition rules depend on the number of claims, we could linearize the model by
introducing binary variables for each possibility of the transition rule. If the claim
amount determines the transition rules, this approach is inadequate since there are
too many possibilities. In this case, we would need to introduce binary variables for
each possible interval. Hence, we approximate the optimal solution.
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We compared simulated annealing (SA) and biased random-key genetic algorithm
(BRKGA) to approximate the optimal solution. We found that the SA is much faster
than the BRKGA at larger instances; however, the BRKGA generally found better
results.

We compared the claim size model with the original models – where the transition
rules only depend on the number of claims. A case study on realistic data is also
presented. We found that even though claim amounts can result in more flexible
classifications, the efficiency of BMS (in terms of separating the risk groups) was
very similar to the results of the claim number model.
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