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1 Introduction

In this dissertation, I present the research on the optimization of the Bonus-Malus
System (BMS), which I did with my supervisor, Kolos Csaba Ágoston. Our con-
tribution to the topic was published in Gyetvai and Ágoston (2018); Ágoston and
Gyetvai (2020) and Ágoston and Gyetvai (2021),also, in a Hungarian article, Ágos-
ton and Gyetvai (2019). We also had a study with László Kovács that was published
in Ágoston et al. (2019). In this dissertation, I present these articles’ results with
extensions of these studies.

BMS is a risk managing method mostly used in liability insurances. However, the
most general application of the BMS is in the Motor third-party liability (MTPL)
insurance. Hence in our research, we assume that the optimized BMS will be ap-
plied for MTPL insurance. However, the results of the models would presumably be
similar for other types of insurance. Because the assumptions of the MTPL insur-
ance may not be entirely valid in other insurances, we only considered the liability
insurance for vehicles in this study.

In MTPL insurance, the policyholders create insurance if they cause damage to
another individual. The research assumes that a policyholder is the insured vehicle’s
driver, although it is not always the case in practice. Whenever the policyholders
cause any damage, they claim to the insurance company. Then the insurance com-
pany pays the damage that the policyholder has caused to the other individual. In
every developed country, having MTPL insurance is compulsory for every actively
used vehicle.

The insurance company pays the claim from a financial fund. This fund was
created from all of the policyholders’ payments of this specific insurance. Therefore,
a policyholder with more claims during a period exploits more from this fund. This
is why the riskiness of a policyholder should be close to his/her contribution to
the fund. The policyholders contribute to the fund with their insurance premiums.
Hence, the objective of the insurance company is to determine a “fair” premium for
each policyholder.

A premium is “fair” if it is close to the policyholder’s risk. Therefore, in insur-
ance with “fair” premiums, the riskier policyholders generally pay more premiums.
However, it is difficult to determine the exact riskiness of each policyholder.

It will be assumed that some unobservable parameters influence each policy-
holder’s personal risk. Estimating these parameters is difficult with statistical meth-
ods, though with multi-period contracts, the insurance company can estimate the
overall risk more accurately for each policyholder.
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In other words, policyholders can be categorized by their risks. However, the
insurance company cannot precisely determine with observable parameters (such as
the age of the driver, age of the driving license, location of the vehicle owner, type
of vehicle) which risk group a particular policyholder belongs to. These risk groups
are usually called “types” in the literature. Therefore, this classification is prone to
error, i.e., there is an underlying unobservable parameter that explains the risks of
the policyholders.

For example, let us assume that the insurance company uses only a location
parameter to estimate the premium. We may observe that policyholders living in
a city are riskier than those living in rural areas. In general, it is true, but some
deviation may also exist among the policyholders. Hence, some policyholders from
a city have fewer claims than those from a rural area during the contract period.

The cause of this deviation can be some underlying parameter that is not de-
scribed by the policyholder’s location. For example, it can be the driver’s carefulness
or talent for driving or something else.

Even though the policyholder assumes how skillful driver he/she is, the insurance
company cannot observe it. The policyholder’s assumption may not be completely
accurate, but presumably, it is closer to reality than the observation of the insurance
company. Therefore this is an asymmetric informational problem. Asymmetric
information causes welfare loss whose magnitude can be reduced, e.g., by applying
a BMS.

In a BMS, there are finitely many classes, each having a different premium.
At the start of the contract, each policyholder is assigned to the “initial class”.
Subsequently, suppose the policyholder has a claim in the following period. In that
case, he/she moves to a worse class, so the policyholder’s payment may increase in
the subsequent period. If he/she does not have a claim in a particular period, then
he/she moves to a better class; therefore, his/her payment may become less in the
following period. The classification rule – how many classes the policyholder will
move up or down in the system – is called the transition rule. Hence, a transition
rule specifies where the policyholder will be reclassified in the subsequent period for
each possible claim. Transition rules can be unified in the BMS, meaning every class
has the same rule. Alternatively, it can be non-unified. Hence, the penalization of
a claim may differ from class to class.

Without asymmetric information, each policyholder’s premium (for each risk
type) would equal the expected claim (in each class). Hence, the problem is setting
the premiums to approximate the “ideal situation” (i.e., the case without asymmet-
ric information) as closely as possible (this is not the same as adjusting expected
premium levels to expected claims). A perfect match is impossible in real situations.
Thus a natural goal is to minimize the difference from the “ideal” solution.

10



To achieve this, we strive at setting a “good” premium scale and “good” transition
rules. The first possibility is widely studied in the actuarial literature. However,
there is less emphasis on the second one.

The dissertation is organized as follows: In section 2, we give an overview of the
relevant literature on BMS with particular emphasis on its optimization. Section
2.1 presents some BMSs that are used in practice. Finally, we searched for the BMS
regulations in some European countries that are used nowadays and in the past.

In the BMS, the policyholders are classified in each period. The process of this
classification has a property called Markov property. This property means that the
classification only depends on the previous period. Furthermore, the classification
of a BMS that we consider in our research can be considered a Markov chain. In
section 3, we present some theories of the Markov chains. In addition, we introduce
fundamental assumptions of our models in this section.

In section 4, we present optimization models of the BMS. In the BMS, the poli-
cyholders are classified, and the premium of the BMS depends only on their classifi-
cation. Hence in optimization, we may optimize either the system’s premiums or the
rules of the classification. This section presents a linear programming (LP) model
for optimizing the premiums, introduced in Heras et al. (2004). We also introduce a
mixed-integer linear programming (MILP) model, where the classifications’ rules are
in the scope of the optimization. We introduced this model in Gyetvai and Ágoston
(2018).

In section 5 we present an extension of this MILP model, where both premiums
and the classification rule can be optimized simultaneously. We initially introduced
this model in Ágoston and Gyetvai (2019) and Ágoston and Gyetvai (2020). In
the optimization models, we consider stationary probabilities in the classification
because of the Markov property. This section also introduces a modified MILP
model, where instead of the stationary probabilities, we consider multiple periods
in the model. Furthermore, we present a model modification where we may change
the number of classes in the optimization. This section also presents a case study
of the introduced models with real-world parameters. We obtained the real-world
parameters from a dataset of an insurance company that operates in Hungary.

Usually, in the models, it is assumed that policyholders’ payment is only the
BMS premium. However, in practice, insurance companies can use other methods
besides the BMS. Hence the premium of the policyholders does not only depend on
the class they belong to. Thus, we considered a model with observable parameters
and other aspects that affect the risk and are unobservable. Therefore the insurance
company may calculate a premium for the observable parameters with a statistical
method and use the BMS for the unobservable ones. In section 6, we compare
methods to mix the statistical method and the BMS premium. We present a case
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study as well, with the data of an insurance company.
In the MTPL insurance’s BMS, only the number of claims matters in the policy-

holders’ classification, not the size, mostly due to practical reasons. In section 7, we
present research where instead of the claims’ number, the claims’ amount determines
the policyholders’ classification. We introduced some parts of this research in Ágos-
ton et al. (2019). We also extended this research with a more realistic model and a
case study on real data. In section 8, we summarize the results of this dissertation.

Our contribution to the literature of the optimization of the BMS can be sum-
marized as:

• We investigate a model that was introduced in (Heras et al., 2004) but with a
modified objective function. We proved that an optimal premium-scale always
exists with this objective function in which all premiums equal one of the risk
groups expected claim.

• We considered the same model with a profit constraint. In this case, we proved
that an optimal premium-scale always exists in which there is only one type
of premium that is unequal to any risk group’s expected claim.

• We introduced a MILP model for the optimization of transition rules with
fixed premiums. We considered unified and non-unified transition rules opti-
mization. In the case of unified transition rules, we gave the rule to exclude
those transition rules that would lead to a non-irreducible Markov chain.

• We introduced a MILP model for the joint optimization of transition rules
and premiums. We can determine the exact solution with the investigated
objective function when we do not consider the profit constraint. However, we
can only approximate it otherwise.

• We introduced an extended version of the model, where instead of the station-
ary probabilities, we use multi-period optimization.

• We introduced modeling approaches to consider the BMS premium with other
statistical estimations in the final premium. Finally, we compared the methods
with numerical experiments on realistic data.

• We introduced an optimization model for a BMS where the classification de-
pends on the claim amount.

12



2 Literature overview

BMSs have a wide range of literature in both economics and mathematics. In eco-
nomics, the research usually focuses on non-homogenous risks. It is crucial in any
insurance to consider not just one risk but multiple risks in calculating the insur-
ance premium. When numerous risks are considered together, some heterogeneity
appears. Risk classification is the most used technique in the field of insurance to
reduce heterogeneity. In risk classification, the policyholders are separated into risk
groups using observable variables, such as age, type of vehicle, etc. For more about
the risk classification see Crocker and Snow (1986) and Crocker and Snow (2000).

However, the risk-classification cannot eliminate the risk-heterogeneity com-
pletely. No matter how many risk group we create from how many observable
variables, it is very likely that more than one type of policyholder remains within
any risk group. Hence we cannot distinguish these different types of policyholders
from each other with their observable parameters. In economic literature, this effect
is called adverse selection.

In insurance mathematics, the adverse selection was first studied by Rothschild
and Stiglitz (1976). They found that adverse selection causes social welfare loss,
and the market equilibrium does not always exist. However, various methods can
reduce social welfare loss caused by adverse selection.

Cooper and Hayes (1987) investigated multi-period contracts and found that
if there is a contract where the premiums (and indemnities) depend on the claim
history of the previous year(s), social welfare loss can considerably be reduced. The
result is quite similar to the BMS. However, in their theoretical result, it is not
worthy of considering every policyholders’ claim history. However, applying BMS
for only a fragment of policyholders in general not be possible in practice. Therefore
according to their theoretical result, every risk group should have its own BMS to
achieve the best reduction of the social welfare loss.

Another method to decrease the social welfare loss caused by adverse selection is
compulsory insurance. In the MTPL, both methods are there since it is compulsory
in most of the countries, and the claim history is also considered in general (see
section 2.1.).

In general, in real-life situations, adverse selection is accompanied by moral haz-
ard. In the models of moral hazard, the probability of claims also depends on the
effort of the policyholder. However, the insurance company does not know the pol-
icyholder’s actual effort to reduce the risk of the damage. The insurer can merely
estimate it from the claim amount (Shavell (1979)). With the use of a BMS, the
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insurer motivates the policyholders to reduce risk. This is so because if someone has
a claim, then the following period he/she will be assigned to a worse class (if there
is any). Hence, his/her premium will increase.

However, Vanderbroek (1993) shows that the insurance’s partial coverage is more
effective in the motivation to induce a better level of care than the BMS.

The typical appearance of moral hazard in the MTPL insurances is the so-called
“bonus-hunger”, meaning that policyholders choose self-financing the damage rather
than claiming to the insurance company. If the claim amount is lower than the
premium increase of the following periods, then it is not worth reporting a claim to
the insurer (De Prill (1979); Sundt (1989)).

Adverse selection and moral hazard are usually present simultaneously (as in the
case of BMS). Holton (2001) investigated the moral hazard and adverse selection
with an expected utility model. The author found that the BMS is only Pareto op-
timal (optimal for both the insurance company and the policyholders) if the adverse
selection and the moral hazard or the insurance costs are considered in the analysis.
There is broader literature about adverse selection and moral hazard in the field of
Contract theory (see for example Bolton and Dewatripont (2005)).

In the literature, there is less emphasis on the empirical tests of adverse selection
and moral hazard. The empirical findings are not entirely straightforward: see, e.g.,
Dahlby (1983) and Puelz and Snow (1994) who argue for the existence of adverse
selection while Chiappori and Salanié (2000) are against it.

The existence of moral hazard in automobile third-party liability insurance has
been empirically studied in some articles: Lee and Kim (2016) analyzed the Korean
BMS, Dionne et al. (2013) analyzed the French system, Vukina and Nestić (2015)
researched on Croatian data, and Abbring et al. (2008) analyzed the Dutch BMS.

In the mathematical literature, the BMS appears in the applications of Markov
Processes. For example, Molnar and Rockwell (1966) introduces the BMS as an
application of a Markov chain.

A BMS’s efficiency is typically measured by an indicator called “elasticity” intro-
duced in Loimaranta (1972). Elasticity shows how expected payment will increase
if risk increases by 1%. A good BMS’s elasticity is over zero, ideally one, but can
be over one as well.

Lemaire (1995) conducted an empirical study on some BMSs that were used in
practice. If the BMS’s premiums do not vary that much, the elasticity is usually
under 1 in practice. De Prill (1978) generalized the Loimaranta’s efficiency.

Loimaranta (1972) also shows that the elasticity for measuring a BMS’s effec-
tiveness is not a perfect indicator. In MTPL insurance, the claim probabilities have
relatively low values. Hence it is not impossible to construct a BMS with elasticity
equal to one. With the optimization of the premiums, a very steep premium-scale
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would be the result to reach the ideal elasticity. However, Loimaranta (1972) ar-
gues that in that case, the insurance would be pointless. A too steep premium-scale
results in a very volatile payment for the policyholders. Hence the insurance would
not provide economic security to the policyholder.

The economic literature calls this as the risk-averse decision-maker (in this case,
the policyholder), not only consider the premium but its fluctuation. Hence the pol-
icyholder may be satisfied with a slightly higher expected premium on the condition
that the variation of premiums is decreased significantly is somewhat disregarded
(or partially regarded). Nonetheless, in Loimaranta (1972) a model minimizes the
variance of the premium scale assuming a fixed level of elasticity.

The transition rules define the classification of a BMS. Transition rules tell us
how many classes the policyholders should go down in the following period if they
have claims. Additionally, there should be a claim-free transition rule which sends
the policyholder one or more classes up in the subsequent period. Thus, designing
a BMS requires choosing the transition rules between the classes and determining
the number of classes, the scale of premiums, and the initial class.

There are many papers about the optimization of BMS’s (e.g., Cooper and Hayes
(1987); Lemaire (1995); Denuit et al. (2007); Heras et al. (2004); Brouhns et al.
(2003); Denuit and Dhaene (2001); Mert and Saykan (2005); Najafabadi and Sak-
izadeh (2017)). Typically, in these works, the number of classes, the transition rules,
and the initial class are fixed while the scale of premiums is determined in the opti-
mization process. In these studies, the policyholder is usually not represented with
a utility function. A rare exception is Lemaire (1995), where there is a model where
the policyholder has an exponential utility function.

Recently, Tan et al. (2015), have incorporated in their model the effect of the
transition rule changes.

In our research, we focused on the optimization models of the transition rules.
The fundamentals of the model come from two directions. We used a similar ap-
proach to the LP model of Heras et al. (2004) for the optimization of the premiums.

For the modeling of the transition rules, we also considered the cash-balance
model introduced in Ghellinck and Eppen (1967); Eppen and Fama (1968). The
objective of this problem is to minimize the costs of a firm to keep sufficient cash (or
deposit) for day-to-day transactions. The task is to find an operating policy over a
predetermined period. Then, on each day, the company can decide how much cash
they would keep. Keeping more cash than necessary has a holding cost because
the cash can have alternative uses (such as investment). On the other hand, if the
firm keeps less cash than necessary, it entails penalty costs for delaying the demand.
The company can increase or decrease its capital, but there is a transaction cost as
well. In general, the daily inflows and outflows of cash are not deterministic in this
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problem.
Eppen and Fama (1968) introduced an LP model for this problem. In the model,

each day’s possible cash is classified into a finite number of classes. For each period,
transition probability variables were introduced. These variables denote the prob-
ability of being in cash-level and then moving to another (or staying in the same)
cash-level in the subsequent period. The model had an alternative form, where sta-
tionary probabilities are considered. This approach is very similar to the modeling
of the transition rules of BMS. However, in this case, instead of policyholders, the
cash levels are determined in the classification.

2.1 Bonus-Malus in practice

Lemaire (1995) compared some BMSs that are used in practice. We presumed since
1995, perhaps there have been some changes in these systems. Therefore, we tried to
find out how the regulations changed in the past few years in some of the countries
Lemaire presented.

In many countries, such as Belgium and Portugal, the regulations were liberated.
Hence the insurance companies can create their merit system to consider the claim
history. Some of the countries already had liberated regulations in 1995, such as
the United Kingdom and Sweden. However, there are still some countries where
the regulations are strict, such as Hungary or Luxembourg. Hence the operating
insurance companies have to use the same transition rules in the BMS. Also, there
are countries, like Germany and the Netherlands, where the insurance companies can
change some parameters of the centrally determined BMS. However, we did not find
any countries where the rules stricken from liberated status since 1995. Therefore,
in general, the regulations on the MTPL insurance regarding the BMS became less
strict. However, even in countries with minimal regulations, the insurance companies
have to use a merit system to consider the policyholders’ claim history. Therefore,
we found that the Bonus-Malus System is generally the most used method in these
countries.

Therefore the need for the optimization of the insurance company’s BMS can be
relevant in these countries. However, for insurance companies, other aspects can be
more important than adverse selection. For example, bonus protection is usually
advertised in those countries where the rules enable individual BMSs for insurance
companies. It means that the policyholder can insure their earned bonus; hence they
would stay in the same class despite their claim. Because of this, the classifications of
the policyholders in the system may differ from their actual riskiness. On the other
hand, the bonus protection does not help in handling the moral hazard problem.
Assumably will not incentivize the policyholders to drive more carefully as much as

16



it would without protection.

In this section, we present some countries’ current regulations regarding the BMS
in MTPL insurance. We compared the systems in Lemaire (1995) and the current
regulations that we found via internet search (for the sources, see Appendix 9.4).
We were particularly interested in penalizing the claims and the periods that the
policyholders have to spend to earn the highest discount from the beginning of the
contract. Because the classes’ enumerations differ from country to country, we use
the phrase number of bonus classes for those classes that are better than the initial
class—furthermore, number of malus classes for those classes, which have a higher
premium.

Austria

The regulations are fully liberated. However, the insurance companies have to con-
sider the claim history of the policyholder. Therefore if there is a claim, the premium
of the policyholder has to increase. Usually, the insurance companies use BMS for
the consideration of the claim history. However, the rules of the system may vary
from insurance company to insurance company.

Belgium

BMS has been used for MTPL insurance in Belgium since 1971. In the first regula-
tion, all insurance companies had to use the same rules. There were 18 classes, with
two types of initial class: one for the regular drivers’ vehicle and one for the vehicles
used for business. The regular initial class had five bonus classes, while the business
had 9. The transition rules were unified in each class. The policyholders moved one
class upward if they were claimless in a period. The first claim resulted in a two-class
decrease. For any further claims in that period, the down steps increased to three
per claim. Those policyholders who had four consecutive periods without any claim
were reclassified into the initial business class if they were in a worse position.

In 1992, the number of classes was increased to 23. Furthermore, transition rules
became more strict. The first claim’s punishment increased to a 4 class downgrade,
and each further claim resulted in a 5 class reduction. The separated initial classes
were kept. However, the regular initial class had 11 bonus classes, while the business
had 14.

From the beginning of 2004, insurance companies can determine their system.
Insurance companies, in general, use BMSs. In addition, all of the insurance compa-
nies use the so-called Joker, which is a Bonus-protection. The use of the Joker differs
in each insurance company, but in general, it is applied after several claim-free peri-
ods. Gaining a Joker also depends on the insurance company: some give it for free
if the policyholder drove without damage for a certain period. In other insurance
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companies, the policyholders can buy it. Finally, in some insurance companies, even
multiple claims are not considered because of the Joker.

Finland

In 1995, the Finnish BMS had 17 classes with two malus classes and 14 bonus
classes. It had non-unified transition rules; therefore, the rule of reclassification of a
policyholder based on the class where he/she was assigned. In the initial class, the
claim-free period resulted in upwards of two steps, while in every other class, it was
only one. The penalty for the claims varied between 4 and 3. An interesting feature
of this system was that the policyholders could not return to the initial class after
the first period.

In 2017 there was a change in the legislation. Therefore the insurance companies
have more freedom to consider the claims history in determining the premiums of
the MTPL insurance. However, those insurance companies that we found in our
search still use similar BMSs as Lemaire (1995) presented. In addition, however, the
number of classes increased to 22, with more bonus classes.

France

In France, there is a multiplication method. Each policyholder starts with a coeffi-
cient of 1. If there is not any claim in a period, then the coefficient is multiplied by
0.95. If a claim occurs, the coefficient is multiplied by 1.25. Then the final premium
of the insurance is multiplied by the coefficient. The best possible coefficient is set
to 0.5. Therefore within 13 years, the policyholder can reach the highest possible
discount. The maximum coefficient is maxed at 3.5.

Germany

Lemaire (1995) presented an old German system used in the early 80s and a newer
one. The old one had 18 classes, and it was extended to 22 in the newer one. Both
systems had non-unified transition rules. A period without claim resulted in one
positive step in every class for both BMSs. However, the downgrades of the claims
depended on the class where the policyholders were assigned. The interesting points
of these systems were that there were two initial classes. The class where the new
contracts started was determined by the experience and the number of vehicles the
policyholder owned.

Nowadays, the regulations are a bit more relaxed. There are 54 classes, with two
initial classes, where the policyholders cannot return. The initial class depends on
the experience: if the policyholder has a driving license for a longer period, he/she
starts in the better initial class. Otherwise, he/she starts in the other class for
novice drivers. After a policyholder leaves the initial class, he/she cannot return to
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it. The claim-free periods always result in one upgrade in the system. The insurance
companies independently specify the downgrades of the claims. The majority of the
classes are bonus classes; only two malus classes are considered. One of them is
between the two initial classes, and the other malus class is the worst-class.

Hungary

In Hungary, from 1982, a unique system was introduced (25/1982. (IV. 9.) PM
rendelet) for the MTPL insurance. In this system, the premium of the insurance
was calculated into the Gasoline price.

It was better than the previously used tax-based insurance because it considered
the drivers’ vehicle-usage time. In a tax-based insurance case, the vehicle owners
had to pay this tax without considering vehicle usage. Therefore in the tax-based
insurance system, those drivers who drove more did not get a higher premium.
Presumably, those drivers who use their vehicles less have a fewer chance to cause
collisions. Therefore a tax-based system was not that truthful in this sense as the
gasoline-price insurance. However, the gasoline-price insurance could not handle the
Moral hazard problem. Also, the experience of the driver was not considered.

Therefore this system was changed to a BMS in 1991. It was better than the
gasoline-price insurance because the BMS could handle the Moral hazard. Also,
those who drive more and thus have a higher chance of causing a collision may pay
a higher premium as well. This system can also handle the drivers’ experience level,
which was not considered in the previous insurances. Usually, beginner contracts
start from a relatively high premium class. However, if the driver becomes more
experienced, their risks decrease, they may go upward in the system.

The system of 1991 is still in use in Hungary. There are 15 classes, where the
best 10 class (B1, . . . , B10 ) are called as bonus classes. The worst 4 (M1, . . . , M4 )
are called as the malus classes. Between the Bonus- and the malus classes, there is
the A0 initial-class, where all beginner policyholder starts.

In Hungary, all of the insurance companies have to use this Bonus-Malus System.
They cannot change any parameter of the transition rules. The transition rule is the
following: If the policyholder had a claim-free period, then he/she moves one class
upward, and there are two class reductions per claim. However, if a policyholder
has at least four claims, in the next period, he/she will be classified into the worst
class (M4 ).

The regulation allows the policyholders with claims to pay the claim size by
themself. In this case, the claim is not considered in the classification. So the
Bonus-hunger is observable for the smaller-sized claims.
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Italy

Before 1991, the insurance companies were obliged to use a 13-class BMS. It had
four malus classes and eight bonus classes. The policyholders’ class was downgraded
by one class if they had a claim. Their classification was upgraded to one class if
there was no claim in the period. However, the recovery was faster from a malus
class: the policyholders without claim moved two classes upward from these classes.

In 1991, the previous system was changed to an 18 class BMS. In this system,
there are four malus classes and 13 bonus classes. The no-claim period results in
one class upgrade in the system and a two-class downgrade per claim. This system
is still in use.

Luxembourg

Lemaire (1995) presented an ’old’ and ’new’ BMS as well. In the older system, there
were 22 classes and had a unified transition rule. The claim-free period resulted in
one class improvement, while a claim reduced the classification with two classes. In
addition, there were ten bonus classes and 11 malus classes. There was one special
rule: a policyholder with four consecutive years without any claims was reclassified
into the initial class if he/she was in a malus class.

In the ’new’ system, the number of classes increased by two bonus classes. Also,
the penalty for a claim is increased to three from two.

Nowadays, insurance companies still have to use centrally regulated rules. Cur-
rently, there are 26 classes. In addition, there are 14 bonus classes and 11 malus
classes. The transition rules did not change since 1995, the claim-free period results
in one step upward, and 3 class reductions penalize the claims. The special rule is
still in use as well.

Netherlands

Lemaire (1995) presented a Dutch BMS that had to be used by each insurance
company. In this system, there were 14 classes. The transition rules were non-
unified. The claim-free period always resulted in one improvement, while the first
claim decreased the class by 5,4, or 3, depending on the current classification. The
reduction increased if the policyholder was classified into a higher bonus class. The
second claim resulted in 4 additional class reductions, uniformly. In this BMS, there
were four initial classes. The new policyholders’ age determined the starting initial
class.

Nowadays, some parts of the BMS are regulated. The insurance companies use
at least 21 classes. The transition rules are unified and centrally regulated. A
claim-free year results in one positive step in the ladder, and a claim results in
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five negative steps. The premiums of the BMS differ from insurance company to
insurance company. The insurance company also determines the initial class.

Norway

In Norway, the regulations are not strict; the insurance companies can use their own
BMS. Up to 1987, almost every insurance company used the same system. There
were seven bonus classes; however, the number of malus classes was theoretically
infinite. There were 14 normal malus classes, but there existed even more: if a pol-
icyholder had a claim and stepped over to the 14th malus class, a class is created.
The transition rules were non-unified. The first claim was punished more in the top
three bonus classes, with three class reductions. In every other class, the policyhold-
ers step two classes downward in the event of one claim. The second claim always
resulted in two additional class reductions. When there was no claim in a period,
it resulted in one class improvement. When the policyholder was under the 14th
malus class, he/she was reclassified into the malus class 14 after a period without
claim.

In 1987, the leading insurance company changed its system, described in Lemaire
(1995). This system was more straightforward than the previously used: If a pol-
icyholder did not claim, he/she received a 13% bonus on the premium. For each
claim, there was a fixed amount of extra payment. In addition, the insured vehicle’s
age determined the initial premium level: vehicles older than 25 years had a 20%

increase in the initial premium.

Nowadays, several different BMSs exist in Norway. However, we found some
insurance companies with similar systems. The policyholders receive a 10% bonus
after they have a claim-free year. After that, it can go up to a 70% discount, and
after that, the rules change from insurer to insurer. The best discount, 75%, can
be reached from 70%, after 3 or 5 years without claims. After that, the claims are
usually punished by a 10% decrease in the discount.

Portugal

Lemaire (1995) presented a Portuguese system that had only six classes. They
improved one class if there were two consecutive years without claims. In the case
of claims, the policyholders moved downward in the system.

Nowadays, insurance companies can have their merit system. As a result, in-
surance companies typically use BMS. However, the regulations only state to use a
method where a claim shall increase the insurance premium.
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Romania

There are 17 classes, eight bonus, and eight malus classes. If there is no claim in
a period, the policyholders improve their classification by one. Thus, they fall two
classes per claim. Before 2017 there were 14 bonus classes, but it was reduced to
eight recently.
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3 Preliminaries

There is usually an assumption that the policyholders pay only the system’s pre-
mium in the MTPL insurance in the BMS optimization models. Therefore there
are not any other factors that determine the payment of the policyholders. Hence
the policyholders’ payment in a period only depends on where they are classified in
that period. Generally, the classifications in a BMS happen in each period, which is
the assumption in the optimization models. Getting into a class in the subsequent
period only depends on the currently assigned class. Therefore, knowledge of the
previous periods’ classifications is not necessary.

Let Xt denote the class, where the policyholder is classified in the period t.
Moreover, let us consider any ρ statement that is already known before period t.

P(Xt = k|Xt−1 = l, ρ) = P(Xt = k|Xt−1 = l) (Markov property)

Because the policyholders’ classification only depends on the number of claims
and the previous period’s classification, the classification process has the Markov
property. Furthermore, the process holds the Markov property and can be considered
a Markov chain because of the BMS classification rules.

Definition 1. A discrete-time stochastic process is called a Markov chain if

P(Xt+1 = kt+1|Xt = kt, Xt−1 = kt−1, . . . , X1 = k1, X0 = k0) =

P(Xt+1 = kt+1|Xt = kt)
(1)

holds for every period t.

In our research, we assume that this condition holds for all of the considered
BMSs. A BMS in practice may differ in a way that does not strictly follow this
definition. For example, suppose there is a BMS, where the policyholders move
upward only when they have two consecutive years without a claim (such as in the
system used in Portugal). In this case, not only the last period determines the
probability. However, in this case, only the previous two periods’ classification is
needed to calculate the exact probabilities.

Hence, for simplicity, we assume that in every considered BMSs, the classifica-
tion only depends on the previous period. Therefore in every case, we assume the
classification of the policyholders is a Markov chain. In this section, we present some
theorems of the Markov chains that are essential for optimizing a BMS. We used
the proofs for these theorems that were introduced in Kemeny and Snell (1976).
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Definition 2. The t-th step transition probabilities for a Markov chain are

pk,l(t) = P(Xt+1 = k|Xt = l)

Definition 3. A Markov chain is homogenous if the t-th step transition probabilities
pk,l(t) do not depend on t.

Therefore, in a homogenous Markov chain, we denote the transition probabilities
with pk,l.

In realistic situations, the policyholders become more experienced over time,
and thereby their claim probabilities may decrease in the future. The effect of the
young, inexperienced policyholders’ risk exceeding the average risk is usually called
the “duration effect”.

We will show in this section that a homogenous Markov chain (with other con-
ditions) has a unique stationary distribution. Therefore, even though it is a very
unrealistic assumption for the analysis of BMSs, it is generally assumed in the lit-
erature (e.g., Arató and Martinek (2014); Bonsdorff (1992); De Prill (1978); Heras
et al. (2004); Lemaire (1995); Loimaranta (1972) ). Therefore in our study, we also
consider this condition. For the sake of simplicity, in the following, when we mention
a Markov chain, we will always refer to the homogeneous case.

Definition 4. The transition probabilities formulated in a matrix form is called as
the transition probability matrix (P ).

In a Markov chain, a simple formulation is used to assign probability to a par-
ticular class in a period. For the optimization of the BMS, the statement of Theory
1 is essential to calculate the probabilities of being in a class.

Theorem 1.
P(Xt = k) =

∑
h

P(Xt−1 = h)ph,k

Proof. Let k0, k1, . . . , h denote a possible sequence of classes that a policyholder
can be classified from the period 0 to t. The probability of belonging to the class k
at the period t is the sum of the probabilities of all possible sequences stepping into
this class:

P(Xt = k) =
∑

(k0,k1,...,h)

P(X0 = k0, X1 = k1, . . . , Xt−1 = h,Xt = k)
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The t-th period’s probability can be reformulated into conditional probability:

P(Xt = k) =∑
(k0,k1,...,h)

P(X0 = k0, . . . , Xt−1 = h)P(Xt = k|X0 = k0, . . . , Xt−1 = h) =∑
(k0,k1,...,h)

P(X0 = k0, . . . , Xt−1 = h)Ph,k(t)

If we fix the h in the last sum, we may get

P(Xt = k) =
∑
(h)

P(Xt−1 = h)Ph,k(t)

In a Markov chain, the transition probabilities (ph,k(t)) do not depend on the period
(t). Hence, the last equality completes the proof.

For the sake of simpler notation let ck,t denote the probability that the policy-
holder in period t is classified into class k. Hence ck,t = P(Xt = k). We denote Ct
the row vector form of the ck,t variables. Because of Theorem 1, the next equation
holds, for t ≥ 1:

Ct = Ct−1P (t)

Where P (t) denotes the matrix with entries ph,k(t). We may substitute the Ct−1 =

Ct−2P (t − 1) into this equation. Then with continuing the substitutions, we may
get

Ct = C0 · P (1) · P (2) ·... ·P (t)

And because in a Markov chain, the ph,k(t) probabilities are not depends on the
period, equation 2 is held.

Theorem 2. For each period for the probabilities ck,t, organised in Ct row vector,
the following equation should hold:

Ct = C0P
t (2)

The states of a Markov chain (in our case, the BMS classes) can be classified
into two sets according to its movement from one class to another. The two sets are
called the ergodic set and the transition set. Class l can be reached from class k if
a policyholder in class k can be classified into class l later on (not necessarily in the
consecutive period). We use the notation k 7→ l if the class l can be reached from
the class k.
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Definition 5. Let E denote the ergodic set. Class k ∈ E ⇔ if k 7→ l then l 7→ k,
for all l ∈ E

A class k is an element of the ergodic set if class k can be reached from every
class of the ergodic set, and from class k, every element of the ergodic class can be
reached. Those classes that are not in an ergodic set are elements of a transition
set.

In the general definition of the BMS, all of the classes are part of one ergodic set.
Hence the classification of the policyholders is a Markov chain without a transition
set. However, as section 2.1 presented, in some BMSs, the policyholders cannot
return to the initial class. Hence these initial classes will be part of the transition
set. In general, in a Markov chain, the process cannot return to the transition set
once it leaves it. From the ergodic set perspective, once the process enters, it cannot
leave this set. In the ergodic set, we may distinguish one particular class, which
absorbs the policyholders.

Definition 6. Class k is an absorbing class, if Pk,k = 1

An absorbing class cannot be in a BMS. It would mean that once a policyholder
gets into this class, it can never leave it. It would go against the basic ideas of
the BMS: It would not motivate the drivers to drive more carefully and would
not distinguish the “good” policyholders from the “bad” ones. In those countries
where regulations are liberated, many insurance companies offer the so-called Bonus
protection. In general, the bonus protection guarantees the policyholder to stay in
a class (usually with the highest discount), with a 100% probability. However, it is
a temporary option. Hence the class is only absorbing until a policyholder does not
have a claim. In this case, the transition probabilities depend on the period.

The classification of the policyholders has only one ergodic set and does not have
any transition set. Hence it means that the chain is irreducible.

Definition 7. A Markov chain is said to be irreducible, if for every class k, j and
period t there exists a period s, such that

P(Xt+s = k|Xt = j) > 0 (3)

Hence, every class can be reached from any class. In the optimization of the BMS,
we assume that the classification is irreducible. Hence we construct the transition
rules accordingly. Furthermore, in the case of the BMS, the chain is even aperiodic.

Definition 8. Let θk of class k be θk = gcd{t ≥ 1 : pk,k(t) > 0}, where ’gcd’ denotes
the greatest common divisor. Let θk =∞ if pk,k(t) = 0 for all t ≥ 1.
Therefore class k is aperiodic if θk = 1. And a Markov chain is aperiodic if every
class is aperiodic.
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The Markov chain of all of the considered BMSs is aperiodic. If the policyholder
is in the highest class, it is impossible to classify him/her into a higher class. Besides,
from the lowest class, the policyholders cannot be classified lower. Therefore, the
finite number of classes and the considered transition rules ensure the Markov chain’s
aperiodicity.

In a Markov chain with one ergodic set and the property of aperiodicity, no
matter where the process starts, it can be in any class, after a sufficient number of
periods. This chain is called a regular Markov chain in the literature. Hence for
the transition probability matrix, the Theorem 3 should hold if the Markov chain is
regular.

Theorem 3. A transition probability matrix is regular, if and only if, for some t P t

does not have any zero elements.

Hence, as we increase the number of periods (t), there will be a P t matrix with
only positive elements. Therefore, because of the irreducibility, every class can be
reached from any class. Furthermore, over time, the change between the matrix P t

and P t+1 is becoming smaller. Hence P t tends to a probability matrix, without zero
elements, as the t increases.

Theorem 4. If the transition probability matrix P is regular, then

1. As t increases, P t approach a probability matrix A

2. All row of matrix A are the same probability vector: C = {c1, . . . , cK}.

3. A = 1C, where 1 denotes a column vector, filled with only ones.

4. Every element of C is positive.

Proof. Let us introduce a column vector yj with K components. We set the j-th
element of this vector to 1 and every other component to 0.

In the first part of the proof we only focus on transition probability matrices
with no zero elements.

In this case, a connection between the minimal and the maximal elements of the
vector P tyj and P t+1yj for each t period exists. Let γt denote the minimum of the
elements in P tyj and Γt the maximum. Also we introduce a vector P̂ tyj, obtained
from vector P tyj, with changing all elements to Γt, except one γt component. Hence
P̂ tyj > P tyj. All element of the P̂ tyj can be written as

βγt + (1− β)Γt ,

where the β cannot be smaller than the minimal element of the P t matrix, that we
denote with ρt.
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Therefore each element of the P tyj cannot be larger than ρtγt + (1 − ρt)Γt =

Γt + (γt − Γt)ρ
t. And because P̂ tyj > P tyj, and P t+1yj = PP tyj,

Γt+1 ≤ Γt + (γt − Γt)ρ
t . (4)

If we consider the −P̂ tyj, then

− γt+1 ≤ −γt − (Γt − γt)ρt . (5)

And if we add (5) to (4), then we get:

Γt+1 − γt+1 ≤ Γt − γt + (γt − Γt)ρ
t − (Γt − γt)ρt = (1− 2ρ)(Γt − γt) (6)

This results that for all t, γt ≤ γt+1 and Γt ≥ Γt+1.
Let us denote st = Γt − γt. Therefore the equation (6) can be written as

st+1 ≤ (1− 2ρ)(st) = (1− 2ρ)t+1 . (7)

Because
lim
t→∞

(1− 2ρ)t+1 = 0 ,

the st+1 is tends to 0 as t increases. Hence the Γt and γt tends to a common value,
that is positive and less than 1, that we denote by cj.

Because yj consists only one 1 value and every other is zero, the jth column of
P tyj has only the cj values. Therefore as the t increases, the P t approaches an A
matrix, which all row has the C = c1, . . . , cK vector. Because each row’s sum is
equal to 1 in P t, it will approach A as t increases.

If the transition probability matrix has zero elements, there is a period u, where
P u does not have any zero component because of the irreducibility property. And
after period u, for any t > 0 P u+t will not have any 0 element. Hence, it will also
tend to an A probability matrix.

Theorem 5. For any C0 initial probability row-vector: C0P
t is tends to C as t goes

to infinity.

Proof. If C0 is a probability vector, then C01 = 1. Therefore C0A = C01C = C.
But due to C0P

t tends to C0A as the t increases, it has to tend to C.
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Theorem 6. PA = AP = A

Proof. P t tends to A, as the t increases. Furthermore, P t+1 = P tP is also tends
to A, but in the mean time it is also tends to AP . Hence AP = A.

Theorem 7. C is unique, therefore CP = C.

Proof. Let D be another probability row-vector. And let us assume that DP = D.
Because of Theorem 5 DP t tends to C as t increases. However because DP = D,
DP t = D too, which tends to C. Hence it is only possible if C = D, therefore C is
unique.

Therefore in the BMS, the ck denotes the probability that the policyholders are
classified into class k in the long run. We will refer to these probabilities as the sta-
tionary probabilities of the BMS. From Theorem 7, the vector of these probabilities
is unique. Hence there is only one stationary probability for each class. Moreover,
because of Theorem 5, these probabilities are independent of the process’s start.
Hence, determining the initial class is not essential in the BMS optimization mod-
els, which consider the stationary probabilities. No matter which class is where the
policyholders start, the stationary probabilities will be the same.

3.1 Preliminaries of the optimization models

We assume that there are I different risk groups (types) among the policyholders.
Each type has a different risk that does not change over time.

With this assumption, the classification of the policyholders is a regular Markov
chain. Therefore the stationary probabilities can be used in the optimization. Al-
though the condition that the transition probabilities cannot change over time and
such changes are unrealistic, as we mentioned earlier, it is often assumed in the
analyses of the BMS.

An exception is Borgan et al. (1981), in which the authors use weights on the
periods to analyze the impact of the duration effect. Another exception is Niemiec
(2007), where the claim probabilities depend on the time, and the BMS was analyzed
with ergodic Markov set-chains.

However, for simplicity, we assume the transition probabilities independent in
time; hence, the theory of regular Markov chains can be applied in the optimization.

Furthermore, it is necessary for the regular Markov chains that all policyholders
stay in the system. Hence the ratios of the risk groups are also independent in
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time. It is also a general assumption for the analysis of the BMS. However, this
condition is not met in reality. In practice, the policyholders may change insurance
companies (which may have different transition rules). In addition, the age of the
policyholders determines the risk group. For example, younger drivers are generally
riskier, and we may consider them in a risk group, but they will eventually become
part of another risk group over time.

For the sake of simplicity, we used these two unrealistic assumptions in our
models. Although we did not investigate this case, in section 5.2 we present a
multi-period model in which the conditions of the regular Markov chains are not
necessary. Hence, this model can be extended for those cases where the transition
probabilities and the number of policyholders may depend on time. However, we did
not research the models with realistic conditions because the computational time of
the multi-period model was very lengthy, even with the fundamental assumptions.

In the practice of BMS, transition rules are based only on claim numbers, and the
claim amount is ignored. This is reasonable since the risk groups can be distinguished
more accurately by the number of claims than the (conditional) claim amount. We
use the same assumption in the MILP model. Therefore we only consider the number
of claims. For the sake of simplicity, we assume that the claim amount is the same
for each type of policyholder (in every model, we assume it is one for each risk
group).

LetM > 0 be the highest number of possible claims in a period and let λim be the
probability of the occurrence ofm claims for the policyholders of type i (i = 1, . . . , I,∑M

m=0 λ
i
m = 1). We denote the risk-parameters (expected claim amount) for risk

group i with λi, (λi =
∑M

m=0mλ
i
m). The types are indexed in an increasing risk

order to keep notation simple. The expected claim amount is the least for type 1 and
the highest for type I. Let φi be the proportion of the type i policyholders among
all of the policyholders (

∑I
i=1 φ

i = 1). In BMS there are K+ 1 classes indexed from
0 to K. The premium of class k is denoted by πk. In a BMS the premiums should
be monotonic, hence we assume that πk−1 ≥ πk (k = 1, . . . , K).

We assume that the payment for the insurance for all policyholders depends only
on classification. However, in practice, the insurance company may also use other
methods to determine the “fair” premium besides the BMS. We investigate this case
in section 6. Also, each insurance contract has several costs that the insurance
company must consider in determining the insurance premium. We assumed that
each policyholder’s contract had the same cost. Therefore we excluded the costs
from the optimization.

Transition rules determine how the policyholders will be reclassified after a cer-
tain number of claims in a period. Hence, there is a transition rule for all m claims,
and we can write the rules in matrices Tm. Each Tm is a binary matrix that means if
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the element of row k1 and column k2 equals to one (Tmk1,k2 = 1), then a policyholder
with m claims and currently in the class k1 will be reclassified into the class k2 in
the next period.

As section 3. presents, the policyholders’ classification in a BMS can be con-
sidered as a regular Markov chain. In the model, we consider multiple types of
policyholders with different claim probabilities. Hence for each type i, there is
a transition probability matrix, depending on the λi and the common transition
matrix. Theorem 7 shows that the regular Markov chain has a unique stationary
probability distribution. In the model, there is a different regular Markov chain for
each type. Let cik be the probability that the type i policyholders is classified into
class k after spending sufficiently enough time in the BMS. We will refer to the
cik as the stationary probabilities of the type i in class k. Because of Theorem 7,
the distribution of these stationary probabilities can be calculated by solving the
following system of equations, separately for each type:

cik =
K∑
j=0

cijp
i
j,k k = 0, . . . , K (8)

K∑
k=0

cik = 1 . (9)

Where the pij,k denotes the transition probability of the type i policyholders from
the class j to k. The stationary probabilities can be written using the transition
matrix’ components as:

pij,k =
M∑
m=0

λimT
m
j,k (10)

Hence substituting (10) into (8) the first part of the system of equations can be
written as:

cik =
K∑
j=0

M∑
m=0

cijλ
i
mT

m
j,k k = 0, . . . , K . (11)

And because there are multiple types of policyholders, we weigh the probabilities
according to the risk group’s ratio. Therefore we change equation (9) into:

K∑
k=0

cik = φi . (12)
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4 Optimization models of Bonus-Malus Systems

In this section, we present a linear programming model for optimizing the premium
scale and transition rules. In the literature of BMS’s, using LP (or MILP) technique
is not very common. Only one known LP model exists, introduced in Heras et al.
(2004). Therefore, we adopted the assumptions made in that article.

Optimizing a BMS means looking for an appropriate premium scale and transi-
tion rules that minimize the difference between the expected claim amount and the
premiums in some norm:

min
(π0,π1,...,πK ,T

0
0,0,T

1
0,0,...,T

m
k1,k2

,...,TMK,K)

K∑
k=0

I∑
i=1

φicik(T
0
0,k, T

1
0,k, . . . , T

M
K,k, λ

i
0, λ

i
1, . . . , λ

i
M)d(πk, λ

i)

subject to

constraints on the decision variables,

where d(., .) is usually the `2 or `1 norm (see, Norberg (1976); Heras et al. (2002)).
The most used constraints are the profitability constraint and constraints on the
premium scale: e.g., the difference between the premiums of two consecutive classes
cannot be more than 20%. Certainly, besides these most used constraints, we can
give other constraints for special purposes. The above minimization problem is
nonlinear. In section 4.1-5 we describe how the problem can be linearized.

4.1 Optimizing the premium scale when the transition rules

are fixed

Optimizing the premium scale means that we seek the appropriate premiums for a
BMS with fixed transition rules. Since transition rules are external parameters, the
stationary probabilities are parameters as well. The following LP can obtain the
premiums:
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min
I∑
i=1

K∑
k=0

φigik (LP1.obj)

Subject to

πkc
i
k + gik ≥ λicik ∀i, k (LP1.1)

πkc
i
k − gik ≤ λicik ∀i, k (LP1.2)

πk−1 ≥ πk k = 1, . . . , K (LP1.3)

πk ≥ 0 ∀k
gik ≥ 0 ∀k, i

Because the transition rules are fixed, the stationary probabilities can be calcu-
lated. Thus for each class (k) and group (i), the cik are known parameters. Besides,
each group’s expected number of claims (λi) and their ratios (φi) are also outer
parameters.

The variables of the model are the premiums of the classes (πk). The objective
is to find a premium scale where each groups’ expected payment is as close to their
expected number of claims as possible. Thus, in this LP model, we minimize the
absolute deviation. Hence, we introduce gik auxiliary decision variables that denote
the absolute deviations of the group i in class k. Constraints (LP1.1) and (LP1.2)
define the deviation of group i and class k. Constraints (LP1.3) set the premium
scale to be monotonic. In the model’s objective function, the absolute deviation
variables (gik) are weighted by the ratio of the groups (φi).

Moreover, it is worth remarking that an approximation of a quadratic (and many
other) loss functions can be used in an LP model instead of the absolute deviation.

The first concept of this LP model was introduced in Heras et al. (2002). In
this article, the authors argue that using absolute deviation is reasonable since it is
better than the quadratic deviation to distinguish the ’bad’ and ’good’ policyholders.
The quadratic loss function consider the overpayments and underpayments equally
around the “fair” premium.

Also, Box and Tiao (1973) presents practical situations where it is not reasonable
to use the quadratic loss function. Furthermore, Smith (1988) argues that in simple
decision problems using piecewise linear functions for the loss function is viable.
Hence, an absolute loss function is reasonable in these cases since it is the simplest
piecewise linear loss function.

If the operator of a Bonus-Malus System insists on quadratic loss function, it
can be approximated with piecewise linear functions. Therefore we can solve its
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approximation as a linear model. In later, we will extend this model to optimize the
premiums, and the transition rules jointly. We use binary variables for this. Hence
the model is a Mixed Integer LP (MILP). However, without linear approximation,
the joint MILP model leads to a quadratic mixed integer programming problem,
which is unsolvable in practical situations.

Although quadratic loss function and absolute deviation do not result in the
same optimum, we think that (in not extreme cases) minimization of absolute loss
function will decrease the squared deviation as well.

Suppose the operator of a Bonus-Malus System insists on quadratic loss function
in the joint optimization. In that case, we suggest a two-stage optimization process:
In the first stage, optimize the joint model with absolute deviation objective func-
tion, then fix the transition rules and optimize the premium scale using quadratic
loss function.

The premium optimization LP problem first appeared in Heras et al. (2002), but
the above LP is different. In the original model the difference between the expected
premium and expected claim is minimized, so the constraints (LP1.1) and (LP1.2)
looked as:

K∑
k=0

πkc
i
k + gk ≥ λi ∀i (13)

and
K∑
k=0

πkc
i
k − gk ≤ λi ∀i (14)

and the objective function was:
∑I

i=1 φ
igk.

If the number of types is less than the number of BMS classes, this model’s
optimal objective function value will be 0. In other words, the expected premium
equals the expected claim for all risk groups. Merely considering the overall expected
deviation would result in high dispersion among the premiums of the classes. In
some numerical experiments, we encountered cases where the highest premium was
more than 1 million times higher than the lowest one. Such a substantial difference
between premiums is undoubtedly not adequate in an insurance contract because it
would not reduce the risk for the policyholder. The most standard way to handle
this problem is the manual limitation of the dispersion of the premiums. However,
we applied a different approach for managing the risk aversion of policyholders.

In our objective function (LP1.obj) we minimize the absolute deviations of each
type’s expected payment from the expected claims weighted with the proportion
of the types (this expression appears in many studies (Norberg (1976); Tan et al.
(2015)) with the difference that `1 norm is used instead of `2). The zero value for
the objective function in this model would mean that each risk group’s premium is
constant (i.e., does not change from class to class), and it is equal to the expected
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claim for each type. In actual circumstances, this is impossible. Heras et al. (2002)
set other constraints to limit the Lomaintra-efficiency. These constraints can be
inserted into our models. Still, we think a smaller objective value would be preferable
to the policyholder than a higher objective value with a better efficiency measure.

Theorem 8. There is an optimal solution of LP1, where for all k there is a risk
group i, where πk = λi.

Proof. Assume on the contrary that there is a class k where the premium differs
from each type’s expected claim (π′

k 6= λi,∀i).
Set K0 contains classes where premium equals to π

′

k (K0 :=
{
k|πk = π

′

k

}
).

Furthermore, set Ip and In contain risk groups where the expected claims are
greater/less than π′

k:

Ip :=
{
i|λi > π

′

k

}
; In :=

{
i|λi < π

′

k

}
.

If we start to increase π′

k with a value ε, then the objective of the model will
change with εg where

g =

∑
i∈In

∑
k∈K0

φicik −
∑
i∈Ip

∑
k∈K0

φicik


If π′

k < λ1, then g is negative which means that with the increase of the π′

k, the
value of the objective function can be better. The situation is similar if π′

k > λI . In
this case, g is positive, which means that decreasing π′

k leads to a smaller objective
function value.

For the case when λ1 < π
′

k < λI notice that the value of g depends on the values
of In and Ip. This means that if there is a premium π

′

k > λi and we increase this
premium with ε, then g changes only if π′

k + ε > λi+1. Put differently, if g of the
π

′

k + ε is zero, then λi+1 should also be optimal.
Since this holds for each k, there should be an optimal premium scale where the

premiums are all equal to a λ.

Theorem 8 suggests a quite unusual solution. The remarks below are meant to
explain the motivation.

• If there is only one risk group, then each class premiums are equal (πk = π, ∀k);
this fact corresponds to the statement of Theorem 8 for I = 1. In this context,
it is just a generalization that when there are two types of policyholders, there
are two premium values. For further motivation see example 4.1.
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• If we have only a few types of policyholders, the premium can be the same
in many classes. At first sight, it seems that we can get the same results
with a less spread BM system. However, the stationary probabilities of a
larger BM system may differ from a smaller one’s. For instance, in example
4.1, a policyholder with 0.9 expected claim pays the high premium with a
probability of 0.99998 and the low premium with a probability of 0.00002.
These probabilities cannot be reproduced in a two-class BMS.

• If there are many risk groups, then every class may have a separated premium
value.

• If the designer of the BM system prefers to have distinct premium values in
each class, he/she can easily prescribe it with additional constraints.

Example 4.1. Let us consider a BMS with the most straightforward transition rule:
in any claims, the policyholder moves downward, otherwise upward a class. Given
this transition rule, there is a relatively easy relation amongst the stationary proba-
bilities:

cik =

(
1− λi
λi

)k
ci0 , (15)

where the k outside the parenthesis is power and not an index. After applying the
expression for the sum of this geometric sequence:

ci0 =
1−λi
λi
− 1(

1−λi
λi

)K+1 − 1
(16)

Let K = 2h+ 1, then:

h∑
k=0

cik =
1−λi
λi
− 1(

1−λi
λi

)2h+2 − 1

(
1−λi
λi

)h+1

− 1

1−λi
λi
− 1

=

(
1−λi
λi

)h+1

− 1(
1−λi
λi

)2h+2 − 1
(17)

If λi > 0.5 then expression (16) tends to 1 (as h tends to infinity), otherwise it tends
to 0. Hence, a policyholder with a claim probability higher than 50% will be almost
surely in the lower half of the BM system. Similarly, any policyholder with less than
50% claim probability would be most likely in the upper half.

Let us assume that there are two types of policyholders: λ1 < 0.5 and λ2 > 0.5.
The premium is λ2 for classes 0, . . . , h and λ1 for the other classes. Asymptoti-
cally both types will pay the same amount as their risks. This statement holds for
quadratic (and any other meaningful) loss function. If the premium increases grad-
ually, we cannot get the same result. In certain cases, quite small h is enough to
approximate the asymptotic result: let λ1 = 0.1, λ2 = 0.9 and h = 4. Table 1 shows
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both risk groups’ stationary probabilities. If the premium is 0.1 for classes 5-9 and
0.9 for classes 0-4, then both types of policyholders would pay their fair premium
with 0.99998 probability.

class λi = 0.1 λi = 0.9

9 0.8889 2.29× 10−9

8 0.0988 2.06× 10−8

7 0.0110 1.86× 10−7

6 0.0012 1.67× 10−6

5 0.0001 1.51× 10−5

4 1.51× 10−5 0.0001
3 1.67× 10−6 0.0012
2 1.86× 10−7 0.0110
1 2.07× 10−8 0.0988
0 2.29× 10−9 0.8889

Table 1: Stationary probabilities of a 10 class BMS

4.1.1 Profit constraint

A crucial question is the financial balance of the BMS. In the long run, it is not
worth designing an unprofitable BMS. In the model LP1, if the objective value is as
close to zero, it is financially balanced. Besides that, each model that operates with
the Lomaintra-efficiency ensures some balance.

In the relevant literature, there are studies where profitability is explicitly pre-
scribed (Coene and Doray (1996)) and articles where it is not (Heras et al. (2004);
Tan et al. (2015)). With our notation the profit constraint takes the form

I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (LP1.4)

The financial balance of the BMS is a crucial requirement; however, in this case,
Theorem 8 does not hold anymore.

Theorem 9. There is an optimal solution of LP1 with constraint (LP1.4), where
there is only one type of premium that is unequal to any risk group’s expected claim.

Proof. By way of contradiction, let us assume that the optimal solution involves
two premium values (πk1 < πk2) that differ from any type’s expected claim. Sets K1

andK2 contain classes where the premium equals to πk1 and πk2 (K1 := {κ|πκ = πk1},
K2 := {κ|πκ = πk2}). Furthermore, sets Ip1 , Ip2 and In1 , In2 are defined as

Ip1 := {i|λi > πk1} ; Ip2 := {i|λi > πk2} ;

In1 := {i|λi < πk1} ; In2 := {i|λi < πk2} .
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If πk1 < λ1, then the premium in classes k ∈ K1 shall be increased by ε. This change
does not violate the profit constraint (LP1.4) but reduces the objective function by
gε;

g =
∑
i∈Ip1

φi
∑
k∈K1

cik ,

which means the premium scale cannot be optimal.

If λ1 < πk1 , then decreasing premiums in classes k ∈ K1 by ε produce premiums
that are equal to the increase δ(ε) in classes k ∈ K2. To preserve the financial
balance of the system we must have

δ(ε) = ε

∑I
i=1

∑
k∈K1

cik∑I
i=1

∑
k∈K2

cik
.

Decreasing premium in classes k ∈ K1 by ε (and increasing it by δ(ε) in classes
k ∈ K2) will change the objective function by gε;

g =
∑
i∈Ip1

φi
∑
k∈K1

cik−
∑
i∈In1

φi
∑
k∈K1

cik+

∑I
i=1

∑
k∈K1

cik∑I
i=1

∑
k∈K2

cik

∑
i∈In2

φi
∑
k∈K2

cik −
∑
i∈Ip2

φi
∑
k∈K2

cik

 .

If g is negative, then the increase of the premium in classes k ∈ K1 will result in a
better value for the objective function; if it is positive, then the value of the objective
function will be worse.

Let πk1 > λi1 for k1 ∈ K1 and πk2 < λi2 for k2 ∈ K2. If the premium decreases in
classes k1 ∈ K1, then the g changes only if πk1−ε < λi1 for k1 ∈ K1 or πk2+δ(ε) > λi2

for k2 ∈ K2. This means that if g = 0, then at least one premium can be replaced
with a λ which is the assertion of the theorem.

4.2 Optimizing non-unified transition rules when the pre-

mium scale is fixed

Transition rules are typically defined by transition matrices as described in section
3.1. To build a MILP model, we introduce binary variables Tj,m,k for each entry
of the transition matrices. If Tj,m,k = 1, then the policyholders with m claims are
moved from class k, j classes upward (downward if j < 0) in the following period.
Denote the domain of j by Jk = [Jk : Jk] for class k where −k = Jk < 0 and
K − k = Jk > 0 are the two extremes. If a binary variable Tj,m,k = 1 and index j is
positive, then the policyholders with m claims are put upward in the system. Put
differently, they move to a class with a lower premium if it is possible. In the case
of j < 0, the policyholders move downward if they have m claims. Index j can be 0
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as well, meaning they stay in the same class in the subsequent period.

The model aims to find the best transition rule that evenly separates the risk
groups’ expected payment. Thus, we want to minimize each class’s deviation of the
payment and expected claims (in some norm).

4.2.1 Defining reasonable transition rules

There should be a strict rule for each possible m accident. Therefore in each period,
one transition rule should describe how much class reduction or increase should affect
the policyholder with m ≥ 0 claim. The constraints (MILP1.1) ensure a transition
rule for each possible claim and class.

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

In practice, only the claimless period result in positive steps in the system.
Therefore constraints (MILP1.2) ensure that the policyholder without claims should
move upward, and in-class K, he/she should stay in the class.

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

When any claim occurs in a period, there should be a class reduction, or the
policyholder may remain in the same class. A claimless period should always result
in a positive step in the system, but it is possible to stay in the same class for the
subsequent period for claims. There should be at least one case where there is a
downward classification. We only prescribe the negativity for the largest number of
claims:

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

More accidents should cause a more considerable (not less) decrease in the classes.
Constraint (MILP1.4) guarantees the transition rule to be stricter if the number of
claims gets higher.

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)
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4.2.2 Obtaining the stationary distribution

A BM system is generally modeled as an irreducible Markov chain, which converges
to a stationary distribution. Denote stationary distributions by non-negative vari-
ables cik. They represent the probability of a type i policyholder being in BM class
k in the stationary distribution. Surely, these variables sum up to the ratio of the
type i policyholders:

K∑
k=0

cik = φi ∀i (MILP1.5)

We also have to take care of connecting the stationary probabilities to the tran-
sition rules (see (11)). The following quadratic constraints accomplish this:

cik =
k∑

j=−(K−k)

M∑
m=0

λimTj,m,kc
i
k−j k = 1, . . . , K − 1,∀i. (18)

A linearization is possible for a multiplication of a binary and a nonnegative
continuous variable, with an introduction of another variable, if we know an upper
bound of the continuous variable. For the sake of simplicity, let us consider the
multiplication of a nonnegative continuous variable c and a binary variable T . Let
us assume that c is bounded, therefore c ≤ M . For the linearization, we introduce
a nonnegative variable d. With the following constraints, the value of the d will be
equivalent to Tc multiplication:

MT ≥ d

d ≥ c− (1− T )M

c ≥ d

Therefore if T = 0, then d = 0, otherwise d = c. In (18) c is cik−j, T is Tj,m,k.
We also know that cik−j ≤ φi.

Hence, for the linearization, we introduce the variables dik,j,m, as the probabilities
that an individual from risk group i and class k moves to class k + j in the next
period. We define these variables with the constraints (MILP1.7). Constraints
(MILP1.6), (MILP1.7), (19), (20) are meant to linearize the quadratic constraints:

cik =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m ∀i, k (MILP1.6)

dik,j,m ≥ λimc
i
k − (1− Tj,m,k)φi ∀i, j, k,m (MILP1.7)
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dik,j,m ≤ λimc
i
k ∀i, j, k,m (19)

and
dik,j,m ≤ φiTj,m,k ∀i, j, k,m . (20)

Theorem 10. If Tj,m,k = 1, then dik,j,m = λimc
i
k, otherwise dik,j,m = 0, provided that

(MILP1.1), (MILP1.5), (MILP1.7) and (MILP1.6) hold.

Proof.

φi =
K∑
k=0

cik ≥
K∑
k=0

M∑
m=0

∑
(j,m)|Tj,m,k=1

dik,j,m ≥
K∑
k=0

(
M∑
m=0

λimc
i
k

)
=

K∑
k=0

cik = φi ,

The first equality holds because of constraints (MILP1.5), the second inequality
holds because of (MILP1.6). The third inequality comes from (MILP1.7) and the
last equality is valid since the sum of parameters λim equals 1 for each type i. This
means that all relations are equalities implying that variables d that are not present
in
∑K

k=0

∑M
m=0

∑
(j,m)|Tj,m,k=1 d

i
k,j,m have to be 0 while all other d’s have to be equal

to λimcik.

Because of Theorem 10 the constraints (19) and (20) can be omitted from the
MILP1 model.

4.2.3 Ensuring irreducibility of Markov chains

Previous constraints (MILP1.2), (MILP1.3), (MILP1.4), and (MILP1.1) on transi-
tion rules do not necessarily result in an irreducible Markov chain.

For example, if we have a BMS with three classes (i.e., K = 2), and the tran-
sition rule is if somebody causes an accident (or more) moves two classes down, if
he/she does not have any claims, then he/she moves two classes up. In this case,
the policyholder will be in the middle class (in the stationary distribution) with 0
probability. With this transition rule, the Markov chain is not irreducible. Never-
theless, we can interpret the situation as if we would have a two-class BMS, where
the policyholder moves downward if he/she has claims and moves upward in the
claim-free case.

Because in the optimization models, there are stationary probabilities, it is suf-
ficient to assume that each stationary probability (for each k) be positive. In MILP
models, we cannot use strict inequalities, but with a parameter τ > 0 and τ ≈ 0,
we can prescribe that each stationary probability be positive. This is an eligible
condition for an irreducible Markov chain. However, if τ is unnecessarily high, we
may exclude some transition rules that give irreducible Markov chains.
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I∑
i=1

cik ≥ τ ∀k (MILP1.8)

There are alternative solutions for the irreducibility constraint as well. For ex-
ample, we can set the transition rule of the claim-free case to exactly one upward
(as it is ordinarily done in practice). Also, it is possible to iteratively determine
all transition rules that result in an irreducible Markov chain and exclude these
rules with additional constraints. However, checking all the transition rules can be
time-consuming.

4.2.4 Profit constraint and Objective function

In this model, we may also prescribe that the BM system would not result in a
loss for the insurance company. The same constraint of (LP1.4) can be used in this
MILP model as well. However, in this case, every πk is a parameter, and the cik is
the decision variable.

I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (MILP1.9)

This model also needs constraints to define the gik variables to be the absolute
deviation from the “fair” premiums:

πkc
i
k + gik ≥ λicik ∀i, k (MILP1.10)

πkc
i
k − gik ≤ λicik ∀i, k (MILP1.11)

Overall, we use the next variables in the model:

Tj,m,k ∈ (0, 1) ∀j,m, k
gik ≥ 0; cik ≥ 0 ∀k, i

dik,j,m ≥ 0 ∀k, j,m, i.

The objective function of the MILP1 model is similar to the objective of the
LP1. We want to minimize the absolute deviation from the expected claims of each
risk group in each class:

min
I∑
i=1

K∑
k=0

φigik (MILP1.obj)

We minimize (MILP1.obj), subject to constraints (MILP1.1), (MILP1.2),
(MILP1.3), (MILP1.4), (MILP1.5), (MILP1.6), (MILP1.7), (MILP1.10) and
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(MILP1.11). Additionally we may consider constraints (MILP1.8) for the irreducibil-
ity. Furthermore the profit constraint (MILP1.9) also can be included.

4.3 Optimizing unified transition rules when the premium

scale is fixed

Often in practice, the transition rules do not differ from class to class, which means a
unified transition rule for each claim m. This means that instead of binary variables
Tj,m,k we can simply use binary variables Tj,m. In this case, Jk is the same for all k;
therefore, it is sufficient to set only one upper (J = K) and lower limit (J = −K).

We may simply rewrite the constraints (MILP1.1)-(MILP1.4) without the pa-
rameter k:

J∑
j=J

Tj,m = 1 ∀m (MILP2.1)

J∑
j=1

Tj,0 = 1 (MILP2.2)

−1∑
j=J

Tj,M = 1 (MILP2.3)

J∑
`=j

T`,m ≥ Tj,m+1 ∀j, m = 0, ...,M − 1 (MILP2.4)

However, the constraints (MILP1.6) should be different because we have to omit
reclassifications leading to non-existent classes. For example, suppose a policyholder
is in class 0 and causes an accident, then he/she would not decrease (say) two classes
since class 2 does not exist. Therefore, he/she will simply remain in class 0. The
case of the top BM class has to be treated similarly.

cik =
0∑

j=J

0∑̀
=j

M∑
m=0

dik−`,j,m k = 0,∀i

cik =
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m k = 1, . . . , K − 1,∀i

cik =
J∑
j=0

j∑̀
=0

M∑
m=0

dik−`,j,m k = K, ∀i

(MILP2.6)

Due to the fewer possibilities of the unified transition rules, we may exclude those
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transition rules that would not lead to an irreducible Markov chain. Hence we may
exclude the irreducibility constraint (MILP1.8) to give a not only eligible condition.

Theorem 11 presents a rule which applies to those transition rules when there
can be up most one claim per period. For this, let j0 denote the transition rule for
the claim-free case. Furthermore, let j1 denote the transition rule when there is a
claim. We assume that j0 > 0 and j1 < 0.

Theorem 11. Let gcd(j0, |j1|) denote the greatest common divisor between j0 and
|j1|. Let j0 > 1 and |j1| > 1. A Bonus-Malus System, with (j0; j1) transition rule is
not irreducible, if at least one of these conditions is met:{

j0 + |j1| > K + 1

gcd(j0, |j1|) > s & j0 + |j1| ≤ K + 1

Where s = 1 if K + 1 is odd, otherwise s = 2.

Proof.

In every case, if either j0 or |j1| is equal to 1, the transition rule results in an
irreducible Markov chain.

If j0 + |j1| > K + 1, the lowest class can be reached from class 0 is class j0. If
j0 > |j1|, then the highest class can be reached from a downgrade is class K − |j1|.
Because j0 > K−|j1|, at least one class cannot be reached above or below. Therefore,
if j0 + |j1| > K + 1, the BMS with this transition rule cannot be irreducible.

Hence we only have to focus on those transition rules (j0; j1), where j0 + |j1| ≤
K + 1.

For the rest of the cases, we present an illustration in Figure 1, about a method,
how can we reach all of the classes from class 0.

We start from class 0. Then we step j0 classes until it is possible to take a
complete step (hence we stop in class k if k + j0 > K). Then we step |j1| classes
down from each explored class, which are greater than |j1|. After this, we increase
all of the freshly explored classes with j0 until it is possible. Then, we continue it
until we can find more unexplored classes.

If we find K with this method, then the system is irreducible if all of the classes
k satisfy the following equation:

k = αkj0 + βkj1 ∀k = 0, . . . , K (21)

Where αk and βk denotes nonnegative integers. In other words, all classes can
be reached with a combination of periods with claims and without claims from class
0. Thus, αk denotes the number of periods without claims, and βk is the number of
periods with claims.
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3j0
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3j0 − 2j1

4j0 − 2j1

K

1

Figure 1: Reaching every class from class 0

Let us focus on the first class’ equation:

1 = α1j0 + β1j1

α1 and β1 are nonnegative integers, j0 > 1 and j1 < −1. Therefore is not exist
appropriate α1 and β1, if gcd(j0, |j1|) > 1. In other words if j0 and |j1| are not
relatively prime and exists a K = αKj0 + βKj1 equation, then the Markov chain is
not irreducible.

Let us now consider the case when there is no αK and βK that fulfill the equation
of class K in (21). If we invert the previously used method, hence we start from
class K instead of 0, then we can determine similar equations to (21) :

k = K + γkj0 + δkj1 ∀k = 1, . . . , K − 1 (22)

That means, starting from class K, each class can be reached with δk periods
with claims and γk periods without claims.

If there are not exist αK and βK , then for each class k either (21) or (22) holds,
but cannot be both, since:
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k = K + γkj0 + δkj1 = αkj0 + βkj1

K = (αk − γk)j0 + (βk − δk)j1

Because αk − γk and βk − δk are integers, it can only occur if K can be reached
from 0 with the previously introduced method. Hence, if it cannot, all classes can be
reached from only class 0 or only class K. It can only happen, if the gcd(j0, |j1|) > 1.

It is easy to see if gcd(j0, |j1|) = 2 and the number of classes is even, then
there does not exist any αK and βK . In this case, we do not discover the same
classes starting from the class 0 and from the class K. However, we find every class;
consequently, the Markov chain is irreducible. If the number of classes is odd, then
always exist an αK and βK if gcd(j0, |j1|) = 2.

If gcd(j0, |j1|) > 2 and no αK and βK exist, there is always at least one unreach-
able class between a class that can be reached from class 0 and a class that can be
reached from class K.

For this let jm denote the step, with m claim in the transition rules (j0 > 0 and
jM ≤ jM−1 ≤ · · · ≤ j1 < 0). Hence, there is only step for both direction: j0 and j1.

Theorem 12 is an extension of theorem 12 for the case, when M = 2.

Theorem 12. A Bonus-Malus System, with (j0; j1, j2) transition rule is not
irreducible if at least one of these conditions is met:

j0 + |j1| > K + 1

gcd(j0, |j1|, |j2|) > s & gcd(j0, |j1|) + |j2| ≤ K + 1

gcd(j0, |j1|) > s & gcd(j0, |j1|) + |j2| = K + 2 & K+1
gcd(j0,|j1|) /∈ Z

gcd(j0, |j1|) > s & gcd(j0, |j1|) + |j2| > K + 2

Where s = 1 if K + 1 is odd, otherwise s = 2.

Proof. If the (j0; j1) transition rule is irreducible, then of course, with any j2 addi-
tional step, the Markov chain will remain irreducible. Hence, we are only interested
in those transition rules where any of the two conditions of theorem 11 is met.

If j0 + |j1| > K + 1, then the transition rule will not be irreducible with any j2,
because |j1| ≤ |j2|.

Hence, we only have to focus on transition rules, where gcd(j0, |j1|) > s and
j0 + |j1| ≤ K + 1.

It is worth to note that if there exist an s for a (j0; j1) transition rule, then starting
from class 0 andK we can reach the same classes as with the gcd(j0, |j1|); gcd(j0, |j1|)
transition rule. Therefore the set of reached classes from class 0 andK is the same for
the (gcd(j0, |j1|); |j2|) transition rule as for the (j0; j1, j2) if gcd(j0, |j1|)+|j2| ≤ K+1.
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Therefore if gcd(j0, |j1|) + |j2| ≤ K + 1 and gcd(2|) > s, the transition rules are not
irreducible, because of the second condition of theorem 11.

If gcd(j0, |j1|) + |j2| > K + 1, then the (gcd(j0, |j1|); |j2|) transition rule is not
irreducible because of the first condition of theorem 11. However in this case, because
there are two downward steps (j1 and j2), it is not an eligible condition.

If we start the steps from class 0 for the (gcd(j0, |j1|); j2) transition rule, there
will be at least one class between class 0 and class gcd(j0, |j1|) that cannot be reached
with K − |j2| step. However, in this case, j1 is also a downward step, so (j0; j1, j2)

can be irreducible. If gcd(j0, |j1|) + |j2| > K + 2, then there will be more than
one consecutive unreachable class from 0 and K, therefore it cannot be irreducible.
When gcd(j0, |j1|) + |j2| = K + 2 it can only be irreducible if K+1

gcd(j0,|j1|) ∈ Z. In
this case the pattern of the (gcd(j0, |j1|); gcd(j0, |j1|)) steps can find the unreached
classes with a j2 downstep. Otherwise the same occurs as in the first condition of
theorem 11, there remains at least one class that cannot be reached from either class
0 or class K.

Let J∗ denote the set of all transition rules that result in a not irreducible Markov
chain. Namely (j0, j1, . . . , jM) ∈ J∗ if the condition of Theorem 11 is not held for
this transition rule. To exclude these transition rules, we need to use the following
constraint.

M∑
m=0

Tjm,m ≤M ∀(j0, j1, . . . , jM) ∈ J∗ (MILP2.8)

4.4 Numerical experiments

We used an AMD Ryzen 5 2600 Six-Core CPU 3,40 GHz computer with 16 GB
DDR4 RAM for calculations. We ran the program in Python 3.7.3. and used the
Gurobi 8.1.0 solver for the optimization. To reduce the numerical problems caused
by the many “big-M” constraints, we did concurrent optimization within Gurobi to
solve the LP. The solver uses multiple algorithms simultaneously and returns the
solution obtained first.

4.4.1 Optimization of the premiums, with fixed transition rules

First, we considered the model for the optimization of the premiums with fixed
transition rules.

We considered two types of policyholders for the calculations: a “good” with lower
risk and a “bad” with high risk. For the sake of simplicity, we assumedM = 1 in every
case and the same proportion of types. Four alternative scenarios were investigated,
two non-realistic with high claim-probabilities (10%; 20%) and (10%; 50%), and two
scenarios with more realistic parameters (1%; 2%) and (1%; 5%), respectively.
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In one of the considered rules, a claim would result in a two-class worsening
(−2). In the other one, the policyholder gets reclassified into the worst class (−K)
in the event of a claim. A period without a claim would result in one positive step
in the system in both transition rules.

We calculated the optimal premiums with different-sized BM systems. For ex-
ample, we calculated the premiums from a 3-class to a 120-class BMS.

To visualize the sorting capability of the BMS, we use an indicator that represents
the overpayment for a type i policyholder that we denote by OP i. Thus, OP i shows
the ratio of the paid and the ideal payment of type i policyholders.

OP i =

∑K
k=0 πkc

i
k

λi
− 1 (23)

Therefore, if OP i is positive, then the expected payment of risk group i is more. On
the other hand, if negative, it is less than the expected claim.

We also introduce the Ω =
∑I

i=1 |OP i|, which can be interpreted as the righ-
teousness of the BMS. If it is close to zero, then every policyholder pays close to
his/her ideal level.

Ω differs from the model’s objective due to the risk aversion of the policyholders.
Hence, it is possible to design a BMS where the Ω is smaller than our model’s optimal
result, though deviations of the premiums can be considerably higher in that case.

The following figure presents the OP i values of these BM systems with the
optimal premiums.

The transition rule of (1;−2) had constant OP is in the smaller probability cases.
Therefore, with smaller probabilities, the number of the classes could not decrease
the OP i values of the risk groups. In these cases, the types with the lower proba-
bilities paid almost the fair premiums while the other group paid much less. The
10 − 20% case was similar to the small probability cases. However, the less risky
group paid more than their fair value.

When the rule of claim changed with the number of classes (1;−K), the OP i

values also changed. However, after a certain number of classes, the size of the BMS
has not influenced the OP i values. This is because when the probabilities of the
groups were higher, it became constant with fewer classes.

4.4.2 Optimization of the Transition rules, with fixed premiums

To optimize the transition rule with fixed premiums, we have to define a premium-
scale as an outer parameter. Therefore, we considered two types of premium scales in
numerical experiments. Because of Theorem 10, we know that only the risk groups
“fair” premium can appear in the optimal premium-scale with the used objective
function. Hence, we considered a premium scale with only these premiums. We set
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1Figure 2: The Overpayments of the risk groups with
premium optimization with transition rule (1;−2) and

(1;−K).

this premium scale as a proportional representation of the policyholders. Therefore
we introduce own classes for each risk groups. The own class means the class pre-
mium equals the type’s fair premium. The risk groups have that many own classes
that are proportional to their percentage of all policyholders. Of course, we organize
it in decreasing order and round down if there are not enough classes to create a
perfect proportional representation.

We also used a linear premium scale because, according to the elasticity, a linear
premium scale is considered the best one.

We calculated the Ω values for every BMS from 3 to 120 classes for both types
of premiums. First, we used the unified transition rules. Figure 3 presents the OP
values for 3-class BMS to 120-class BMS in each case.

The OP values get closer to 0 as we increase the number of classes in both cases.
If the probabilities are smaller, the effect is smaller as well.

The Proportional scale seems a bit better in every case. The Ω is much smaller
than the Linear one. In the 10%− 20% and 10%− 50% case, the perfect distinction
happens with a given number of classes. Hence, there is a BMS in these cases, with
no cross-payment among the risk groups. For the 10% − 20% case, at least almost
100 classes are needed, while in the 10%− 50% case, a 40-class BMS was sufficient.
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1Figure 3: The Overpayments of the risk groups with unified
transition rules optimization with Proportional (Prop) and

Linear (Linear) premium-scales

The linear premium scale has a similar effect but could not decrease the Ω to zero.
As we can see in the 10%− 50% case, some over-and underpayment still exists even
with a 120 class BMS.

The lower risky policyholders pay a bit over with too few classes, but mainly close
to their fair premium. In general, there is an increase in the payments as the number
of classes increases, then the trend changes. For example, the 1% − 2% case needs
at least 40 classes to the change, but the payments are still increasing afterward.
In the 1% − 5% case, after 30 classes, the BMS gets better sorting capacity as we
increase the number of classes. In the 10%− 50% and 10%− 50% cases, the trend
is decreasing after less than ten classes.

The non-unified transition rules may result in a better solution. However, be-
cause of the more possibilities, the computation for the optimal solution needs sig-
nificantly more time. Therefore, we set the upper limit for the computational time
to 1 hour. However, the bound was violated when we considered 15 classes in most
of the cases.

Figure 4 presents how much percentage the objective value could improve with
non-unified transition rules compared to the unified ones. In the high-probability
cases, the improvement is significant. However, in the two small-probability cases
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Figure 4: Improvement of the Objective value of the NU models over

the U models.

using non-unified transition rules does not improve the objective value.
In the previous experiments, we found that the larger BMSs are more effective.

Hence, as the number of classes increases, the decrease in overpayment and under-
payment is more noticeable. We wanted to examine how the non-unified transition
rules improve the results compared to the solution of the models with unified tran-
sition rules. However, we could not calculate the exact improvements because of
the significant increase in the running time. Hence we decided to approximate the
optimal solutions of the larger instances with heuristics.

Assumably the optimal unified and the optimal non-unified transition rules are
not that different. Suppose the optimal unified transition rule is (1;−3). The
structure of the stationary probabilities of the non-unified transition rules should
be closer to the (1;−3) transition rule than the (1;−2) or (1;−4). Otherwise, the
optimal unified transition rule would be different. Hence, for example, each class’s
optimal transition rules cannot be (1,−2) in the non-unified model.

Therefore, we rephrase the MILP model to improve the results of the unified
transition rule model. In this model, we set the transition rule in each class to
the unified model’s optimal solution. And we set the J values as to how much the
transition rule may differ from the initial value.

Definition 9. We call a j-improved solution to a result of a model, where starting
from the optimal transition rule of the unified model, we may change the transition
rule by [j : −j] in each class.

Hence, in the 1-improved solution of the previous example, each class’s
transition rules can be altered by plus or minus one, which means the
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(1;−2), (1,−3), (1,−4), . . . , (2,−4). The K-improved solution is the same as the
original non-uniformed MILP model’s optimal solution. However, if we decrease the
j, the result may get worse. Nevertheless, the computational time is shorter because
of the fewer variables.

To find a better solution than the unified model, we calculated the 1-improved
solution. Then we again calculated the 1-improved solution of the already improved
result. Finally, we repeated it until we could get a better objective value.

If the unified transition rule can be improved, it can likely be found with this
type of local improvement. However, in extreme cases, the 1-improvement may
not improve the result. Hence only a higher j-improvement would find any better
result. Suppose that the (1,−3) transition rules remain in each class using the 1-
improvement. Nevertheless, if we use a 2-improvement, then in one class, we get
(2,−3) and (1,−5) in another one.

However, it can only happen when the positive step (a.k.a claim-free case) and
the negative-step change because of the structure of the stationary probabilities. In
our previous tests, with the used claim distributions, the 0-claim transition rule was
always 1. Therefore assumably, our heuristic is very likely to find an improvement
from the unified model.

This heuristic was much faster than solving the original MILP model. However,
unfortunately, the running time exceeded the 1-hour time limit, around 23-25 classes
in each case. Hence, we decided to further reduce the problem’s complexity by
splitting the optimization into smaller pieces for even larger instances. We describe
this heuristic in Figure 5.

We considered the 1-improvement solution in this heuristic, but we only consid-
ered one class at each iteration. It results in a faster computational time because
there are even fewer variables in each iteration.

Therefore, this heuristic also starts with the optimal solution of the unified model.
Then we search for the 1-improved solution, but the change is possible for only one
class’s transition rules. Moreover, we iterate through the classes.

In each iteration, we compute the possible individual improvement of a class.
It means how the objective value can be improved if every class’s transition rules
are fixed except this individual class. We consider the plus or minus one changes
on the transition rules. Then we choose the class with the best result and change
the transition rules of this class accordingly. After the change, we calculated each
class’s possible individual improvement, considering the modified transition rules.
We repeat it until no class exists with possible individual improvement.

The difference between the first and the second heuristic is that we focus on only
one class in the latter. Theoretically, the second heuristic may not result in as good
solutions as the other one. It is much easier to find a local optimum and cannot
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Calculate the model with Unified transition rules, return
Z = Objective value
T = Transition rule matrices for each claims
while Optimal = False do

for k in Classes do
Optimize the model, with class k transition rules,
that can change with +1/-1
return the objective: Z ′[k]
and the modified transition matrices: T ′[k]

end
Z∗ = min(Z ′[0], . . . , Z ′[K])
T ∗ = T ′[argmin(Z ′[0], . . . , Z ′[K])]
if Z∗ < Z then

Z = Z∗

T = T ∗

Optimal = False
else

Optimal = True return the found best solution Z.
end

end

Figure 5: Second heuristic

improve it further because it would need more than one class’s transition rules to
change. However, this heuristic’s running time was considerably faster because there
were only a few variables in each iteration. We could calculate some improvements
for even 100 class BMSs within the 1-hour time limit with this method.

This heuristic still assumably finds an improvement over the initial solution.
It will not find a better solution if more than one class’s transition rules need to
be changed together. However, we assume it may happen only in some extreme
situations. Furthermore, if it is the only possible improvement, the optimal non-
uniformed objective value would be close to the uniformed model’s objective value.
However, if we only consider a half-fixed variation, where the transition rule of the
m = 0 case is set to one, this heuristic indeed finds improvement if it exists.

Figure 6 presents the improvement of the objective value over the uniformed
model.

On the left side, the two higher probability cases can be seen. In these cases, the
non-unified models improved the objective value significantly. However, after around
55 classes, in the 10%− 50% case, the unified models’ objective value reached zero.
Hence it could not be improved further. With different lines, the exact method and
both heuristics are presented. The solutions of the second heuristic are significantly
worse than the other two techniques. Hence assumably, there may exist an even
better solution for the BMSs with more than 25 classes.
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1Figure 6: Improvement of the Objective value of the NU models over the U
models, with the heuristics.

However, the first heuristic that we introduced resulted in the same solutions to
the exact solutions, where we could calculate both (under 15 classes).

On the right side, the two smaller probabilities results are shown. Here, the
improvements are not that significant. The 1%−2% case barely exceeds the 1% im-
provement under 80 classes. Moreover, we could not find any solution that improved
the uniformed model’s objective value with 2% even with 100 classes BMSs.

The 1%− 5% has more noticeable effects than the 1%− 2%. However, there is a
relapse between the 75 class and 95 class BMSs. This setback is probably because the
heuristic could not improve from a local optimum. In the smaller probability cases,
the exact method and the two heuristics resulted in the same solutions. However,
there may be better improvements with more classes, as the higher probability cases
are shown.

Figure 7 presents theOP i values of the four instances. We considered the solution
with the best objective value amongst the exact method and the two heuristics for
the non-unified model.

At the bottom of the figure, the two higher probability cases are presented.
In these cases, both types of policyholders’ payments are noticeably closer to their
“fair” level than with unified transition rules. Also, the overall territory (Ω) is visibly
smaller. Hence it needs fewer classes to reach zero overpayments than with unified
transition rules.

In the smaller probability cases, the effect is a bit different. A little increase
in both types of policyholders’ payments is noticeable. Hence, the more risky pol-
icyholders’ underpayment decreases, and the less risky policyholders’ overpayment
increases. As Figure 6 presents, the unified transition rule’s objective value is worse
than the non-unified one. Nevertheless, the effect is barely noticeable and not ben-
eficial to the less risky policyholders in this case.
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1Figure 7: The Overpayments of the U and the NU models

4.5 Summary

In this section, we presented an LP model for the optimization of premiums, intro-
duced in Heras et al. (2004). Also, we introduced a MILP model for the optimization
of transition rules. Finally, we presented two model modifications: unified transition
rules (U) and non-unified ones (NU).

Some numerical experiments were presented for each model. In general, an op-
timal transition rule can be significantly better for distinguishing the policyholders.
With more classes, the BMS performs better with optimized transition rules. More-
over, the NU type of transition rules could significantly improve the sorting ability
when considering larger BMSs.
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5 Joint optimization of transition rules and premi-

ums

5.1 Stationary model

In this section, we present a modification of the model introduced in section 4.2. In
this modification, we can jointly optimize the transition rules and premiums. In this
case, if we use πk (∀k) as non-negative variables, we will get a quadratic constraint
problem (MIQCP). Because solving a MILP usually takes less computational time
than the corresponding MIQCP, we linearize the quadratic constraints. First, we
consider the model without a profit constraint. Due to Theorem 8, it is sufficient to
allow only finitely many possibilities for the premiums.

To this end, we start with default premiums for each class that can be increased
if needed. We set each default premium to the expected claims of types with the
lowest risk πk = λ1, ∀k. We then introduce ε as a value for changing the default
premium and also consider various layers of these modifications. ε` denotes how
much the premium changes in layer ` compared to the default premium.

By Theorem 8, setting the values of the changes to ε` = λ` − λ1, ` = 2, . . . , L,
and L = I − 1 is sufficient. Binary variable O`

k indicates whether we increase the
premium in class k by ε`, i.e., if O`

k = 1, then the final premium of class k is
λ1 + ε` = λ`. The final premiums should be monotonously decreasing:

πk +
L∑
`=1

ε`O`
k ≥ πk+1 +

L∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

Only one change should be active in each class:

L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

In addition, the premium changes should be considered in the constraints
(MILP1.10) and (MILP1.11). This would, however, change these linear constraints
into quadratic ones. We can linearize these constraints with continuous non-negative
variables o`,ik . With the following constraints, we can prescribe that if O`

k = 1, then
o`,ik should be equal to cikε`, otherwise 0.

o`,ik ≥ ε`
(
cik − (1−O`

k)
)
∀i, k, ` = 1, . . . , I − 1 (MILP3.14)
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o`,ik ≤ ε`cik ∀i, k, ` = 1, . . . , I − 1 (MILP3.15)

and
o`,ik ≤ ε`O`

k ∀i, k, ` = 1, . . . , I − 1 (MILP3.16)

We modify the constraints (MILP1.10) and (MILP1.11) as well:

πkc
i
k +

I−1∑
`=1

o`,ik + gik ≥ λicik ∀i, k (MILP3.10)

πkc
i
k +

I−1∑
`=1

o`,ik − gik ≤ λicik ∀i, k (MILP3.11)

For the joint optimization of transition rules and premiums, in the MILP, we
would minimize (MILP1.obj), subject to (MILP1.1)-(MILP1.8) and (MILP3.12)-
(MILP3.11).

If we consider the profit constraint (LP1.4), we may not get the global optimum
with finitely many premium changes. Additionally, according to Theorem 9, there
can be one additional premium in the optimal solution. We can include another
layer for this extra premium with this unique premium’s level. However, we do not
know the exact value of this layer’s ε beforehand. By adding multiple additional
layers of premium changes, we can approximate the optimal solution with arbitrary
precision.

We increase the number of layers (L) and then separate them into two sets L1

and L2; thus, L = |L1|+ |L2|. The first set of layers denotes the modifications used
previously to achieve the expected claims of the risk groups ε` = λ` − λ1 if ` ∈ L1;
hence, |L1| = I − 1. The other type of layers is for the unique premium only. For
this, we arbitrarily determine every ε`, if ` ∈ L2. By Theorem 9, there can only be
one type of unique premium, i.e., there can be at least one active layer in L2. For
this, we introduce a binary variable S` for all ` ∈ L2. This variable is equal to 1 if
the classes’ layer ` is active:

K∑
k=0

O`
k ≤ (K + 1)S` ∀` ∈ L2 (MILP4.17)

There can be at least one active layer in L2:∑
`∈L2

S` ≤ 1 (MILP4.18)
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In this case, we also have to include the profit constraint in the model:

I∑
i=1

φi
K∑
k=0

(
πkc

i
k +

L∑
`=1

o`,ik

)
≥

I∑
i=1

φiλi (MILP4.9)

The values ε` if ` ∈ L2 are arbitrary, as well as |L2|. In theory, if we include
a large number of layers of type L2, the model may give a good solution close
to the global optimum. If |L2| is large, then the computational time increases
dramatically because of the “big-M” constraints, such as (MILP3.14)-(MILP3.16).
In the numerical experiments, we used only one second-type layer (|L2| = 1). In this
case, we iteratively reran the model to find the best ε of this layer. This reduced
computational time, especially for larger cases, without significantly affecting the
optimal solution.

5.2 Multi-period model

In section 4.2, we presented a MILP model based on the stationary distribution.
However, in some cases, for the probabilities to reach the stationary level, more
time periods are needed than the duration for which policyholders may remain in
the system. In such cases, instead of the stationary distribution, using the proba-
bilities in each period of the insurance contract would be more appropriate for the
optimization. In this section, we introduce a modification to the model in section
5.1, where we do not use stationary probabilities.

Because this model does not require stationary probabilities, the classification
process of the policyholders does not have to be a regular Markov chain. Hence,
it is possible to optimize realistic situations where the claim probabilities of the
policyholders or the ratios of the risk groups depend on time. However, for simplicity,
we only present a model that considers the same assumptions in the stationary
case. Although the model can be formulated to consider time-dependent transition
probabilities, we did not investigate this prospect because the time required for
finding the optimal solution was extremely long, even in the simplest case.

Take the first Θ periods of the insurance contract. The index of time is denoted
by t (t = 0, . . . ,Θ) where t = 0 indicates the beginning of the contract, and Θ

is the end of it. The variables cik, gik and dik,j,m now depend on time, so we use
the notations cik,t, gik,t and dik,j,m,t accordingly. In the starting period (indexed with
0), each policyholder is assigned to the same initial class. We introduce a binary
variables Bk for all classes to determine the initial class. When the variable Bk takes
the value 1, class k is the initial class. Let’s assume that there is only one initial
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class:
K∑
k=0

Bk = 1 (MILP5.19)

cik,0 = Bk ∀i, k (MILP5.20)

Transition rules are determined in the same way as in the previous case. This means
that the constraints (MILP1.1)-(MILP1.4) remain unchanged in the multi-period
model. Constraints (MILP1.5)-(MILP1.6) now become

K∑
k=0

cik,t = φi ∀i, t = 1, . . . ,Θ (MILP5.5)

cik,t =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP5.6)

dik,j,m,t ≥ λimc
i
k,t − (1− Tj,m,k)φi ∀i, j, k,m, t = 0, . . . ,Θ− 1 (MILP5.7)

Constraint (MILP1.8) can only be used for irreducibility if Θ is large enough. In
the multi-period model, another approach for irreducibility would be more appropri-
ate. Theorem 9 is still valid in the multi-period case, so for the joint optimization of
the premiums and transition rules, we can use the same modifications as in section
5.1. Variables o`,ik , however, should be time-dependent and replaced by variables
o`,ik,t.

There are two ways of including the profit-constraint in the multi-period model:
either we prescribe the profitability over all the Θ + 1 periods, or we do this for
each period. If we consider the overall profit, the model should include the following
constraint:

Θ∑
t=0

I∑
i=1

K∑
k=0

(
πkc

i
k,t +

L∑
`=1

o`,ik,t

)
≥

I∑
i=1

(Θ + 1)φiλi (MILP6.9.1)

On the other hand, if we consider the profitability in each period, then

I∑
i=1

K∑
k=0

(
πkc

i
k,t +

L∑
`=1

o`,ik,t

)
≥

I∑
i=1

φiλi ∀t (MILP6.9.2)

Furthermore, in the objective function, we should consider the absolute deviation of
every period:

min
Θ∑
t=0

I∑
i=1

K∑
k=0

φigik,t (MILP5.obj)
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5.3 Changing the number of classes

When there are many classes, some of them may not be reachable during the time of
the contract. Hence, the probability to be classified into a class can be zero in every
period if we consider multi-period optimization. Presumably, in the stationary case,
more classes improve the sorting capability of the BMS. In the stationary models,
the probability of these classes would be positive. However, a BMS where each class
can be reached from the initial class may be more appealing to the designer of the
system. Also, if we use the constraints (MILP1.8), we may get a relatively extreme
transition rule. Furthermore, having a lot of classes with small probabilities may
result in some numerical issues in the optimization.

Due to these reasons, we may allow for a change in the number of classes in
the optimization. To this end, we introduce binary variables Vk for each class k.
Whenever Vk = 1, we close the corresponding class k. Therefore, the policyholders
cannot be assigned to this class, leading to the system having only K classes.

In other words, the probability of being in this class should be zero (cik,t = 0) for
each period. Therefore, the probability of getting into this class should be zero as
well (dik,j,m,t = 0, which holds because of constraint (19)).

To close a class, the probability of being in that class should be zero. Therefore,
we need to add the next constraint to the model:

cik,t ≤ 1− Vk ∀i, k, t (MILP7.21)

The reason behind the closing could be to not enable that many nearly unreach-
able classes in the BMS. Hence, we may introduce a parameter that denotes the
minimal probability of being in a class. We shall consider it in the last period,
which is almost the same as the stationary level because the probabilities’ variance
is higher at the beginning of the process. For example, in a BMS where the claimless
unified transition rule is 1 and the initial class is class 0, the probability of being in
class 5 is zero for the first four periods.

If Θ is large enough, the probabilities of being in the classes in period Θ is
close to the stationary probabilities. We may introduce a constraint to ensure that
each class has a considerable amount of policyholders in the final period considered.
Therefore, we consider a parameter that denotes the necessary probability for each
class in the period Θ.

cik,Θ ≥ τ − Vk ∀i, k (MILP7.8)

This approach is similar to the constraint (MILP1.8) in the non-unified transition
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rule’s case. Hence, this constraint also leads to an irreducible Markov chain. The
binary variables Vk enable the closing. Therefore, the probabilities of being in class
(cik,t) in the last period should be greater than τ only if the class is not closed.
Otherwise, cik,t = 0 because of the constraint (MILP7.21).

To keep the irreducibility of the system, a class should only be closed on one of
the sides of the BMS. Thus, either class K or class 0 can be closed. For the sake of
simplicity, we only present the constraint for initiating the closing from the upper
side. The other type of closing needs similar constraints. For joint optimization,
the side of closing is not essential. However, if we only consider the transition rule’s
optimization, the closing side has more importance because of the fixed premiums.

Upper-closing means that we may close class k + 1 if class k is open:

Vk ≤ Vk+1 k = 1, . . . K (MILP7.22)

The constraint (MILP5.6) has to be changed because if class k is closed, the
left-hand side of the constraint is zero. However, not all of the dik−j,j,m,t−1 variables
are zero. Hence, we have to prescribe the constraint to be an equation when class k
is open:

cik,t − Vk ≤
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP7.6.1)

cik,t + Vk ≥
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP7.6.2)

Therefore, the equation only holds when Vk = 0; otherwise, the constraint is
irrelevant.

However, if we consider the unified transition rules, the multi-period equivalent
of the constraint (MILP2.6) differs more. In this case, we had to separate the
constraints of the border and inner classes. Whenever a border class is closed, there
will be a new class at the side of the system. Thus, closing should be possible for this
class as well. For example, if class K closes, class K − 1 will become the new upper
class. Therefore, the last equation of the constraint (MILP2.6) should be applied to
this class with the multi-period modification. In other words, if VK = 1, then the
following constraint should hold; otherwise, constraint (MILP2.6) should be valid.

cik,t =
J∑
j=0

min(j,k)∑
`=0

M∑
m=0

dik−`,j,m,t−1 k = K − 1,∀i, t (24)

Those dik,j,m,t variables, which would lead into a closed class constraint (MILP2.6)
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should be modified:

cik,t + 1−Vk+1 +Vk ≥
J∑
j=0

min(j,k)∑
`=0

M∑
m=0

dik−`,j,m,t−1 k = 1, . . . , K,∀i, t (MILP8.6.1)

cik,t − 1 + Vk+1 ≤
J∑
j=0

min(j,k)∑
`=0

M∑
m=0

dik−`,j,m,t k = 1, . . . , K,∀i, t (MILP8.6.2)

These constraints will be met as an equation when Vk+1 = 1 and Vk = 0.
The constraints (MILP2.6) should be applied for the inner classes, while the set

of side classes depends on the binary variables V . Therefore, these constraints have
to be modified as well:

cik,t + Vk+1 ≥
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m,t−1 k = 1, . . . , K,∀i, t (MILP8.6.3)

cik,t − Vk+1 ≤
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m,t−1 k = 1, . . . , K,∀i, t , (MILP8.6.4)

So, in this case, the constraint (MILP2.6) is valid if Vk+1 = 0. This means that the
class above class k is open.

5.4 Numerical experiments

For the numerical calculations, we used the same computer and same setup men-
tioned in section 4.4.

5.4.1 Joint optimization model without profitability constraint

We considered a 10-class BMS for each scenario and employed the model introduced
in section 5.1. We then jointly optimized the transition rules with the premiums
without taking into account the profitability constraint. We investigated cases where
transition rules are allowed to be different in each class (introduced in section 4.2)
and when they are are unified (mentioned in subsection 4.2.2).

Table 2 presents the transition rules of a 10-class BMS for each scenario. If there
is no claim in a period, then in every situation, the policyholder moves one class
upward. In contrast, if there is a claim during the period, then only unrealistic,
“high” probability cases result in non-unified transition rules. In “small” probability
situations, the results of the non-unified models gave the same solution as the unified
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0 claim 1 claim
Current 1%-2% 1%-5% 10%-20% 10%-50%
class non-unified unified non-unified unified non-unified unified non-unified unified
0 +1 0 0 0 0 0 0 0 0
1 +1 -1 -1 -1 -1 -1 -1 -1 -1
2 +1 -2 -2 -2 -2 -2 -2 -2 -2
3 +1 -3 -3 -3 -3 -3 -3 -3 -2
4 +1 -4 -4 -4 -4 -4 -4 -4 -2
5 +1 -5 -5 -5 -5 -5 -4 -5 -2
6 +1 -6 -6 -6 -6 -6 -4 -6 -2
7 +1 -7 -7 -7 -7 -7 -4 -4 -2
8 +1 -8 -8 -8 -8 -7 -4 -1 -2
9 0 -9 -9 -9 -9 -2 -4 -1 -2

Table 2: The transition rules of the 10-class BM systems for each situation

ones. In such cases, the policyholders will be classified into class 0 if they have a
claim. In “high” risk situations, the higher classes however have less strict transition
rules if the rules are non-unified. Overall, if the claim risks are higher, the transition
rules are less strict. We investigated every scenario’s BMS with more classes as well.
The computational time of the models was limited to 3 hours. When the limit had
been reached, we stopped, and the best solution found was recorded.

class 1%-2% 1%-5% 10%-20% 10%-50%
Obj. ch. time NU time U Obj. ch. time NU time U Obj. ch. time NU time U Obj. ch. time NU time U

10 0% 22 0.2 0% 6 0.3 -0.08% 539 0.2 -0.52% 5 0.2
11 0% 589 0.2 0% 41 0.2 -0.10% 9311 0.3 -0.60% 16 0.2
12 0% 10606 0.3 0% 289 0.3 -0.13% 10800 0.3 -0.67% 423 0.3
13 0% 10800 0.4 0% 2992 0.3 -0.15% 10800 0.4 -0.68% 475 0.3
14 0% 10800 0.3 0% 10800 0.3 -0.16% 10800 0.4 -0.72% 1229 0.4
15 0% 10800 0.4 0% 10800 0.4 -0.17% 10800 0.5 -0.78% 10800 0.5

Table 3: Differences in the running time and objectives of 10–15-class BM systems.
The time U indicates the running time of the unified model, and the time NU is the
non-unified model’s computational time (both in seconds). The columns titled ’Obj.

ch.’ represent the improvement of the objective value of the model with the
non-unified transition rules.

Table 3 presents the differences in the objective function as well as the running
time between the unified (U) and non-unified (NU) models. As we increased the
number of classes, in “high” probability scenarios, the NU models gave an even
better solution. For “small” probabilities, the change of U to NU was however of
no significance. Besides, the NU models are computationally much harder than the
U models because of the large number of binary variables. While the U models
produced optimal solutions in every case within a second, we could not compute the
optimal solution of the NU models within three hours in many cases. We further
investigated the effect of the number of classes on unified transition rules. Every
optimal solution was determined from a 3-class to a 120-class BMS.

In Figure 8, the unified transition rule for the case of a claim in each BMS can
be seen.

As the number of classes increases, the transition rule generally gets stricter in
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Figure 8: Changes to the transition rule with one claim as a function of the

number of classes

every scenario. However, after reaching a certain number of classes, the penalty
for a claim tends to decrease. In addition, if the probabilities are higher, the point
where the rate of decline changes occurs at a much lower number of classes. The
case where m = 0 resulted in one positive step in each situation.
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1Figure 9: Changes in the OP i and the profit ratio as a function of the number
of classes

In every situation, Ω decreases with an increase in the number of classes; this
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means that a BMS with a larger number of classes would be a better sorting system.
If the risk groups’ parameters are higher, then Ω tends to level zero, meaning the
BMS sorts the types almost perfectly. For the 10 − 50% case, the BMSs with over
20 classes sort the types almost perfectly, whereas the 10 − 20% situation needs
about 100 classes. In lower-risk situations, even 120 classes are not enough to form
a viable sorting system, but some decrease of Ω can be seen as the number of classes
increases. It can also be seen that, in the lower-risk situations, a smaller number of
classes brings the payment of “good” policyholders closer to their ideal level. As the
number of classes increases, the payment for “bad” types gets closer to their ideal
level too.

The dotted line represents the profit ratio of the insurer, which is the expected
overall payment of the policyholders divided by the expected total claims minus one.
If the profit ratio is positive, the BMS is profitable. Certainly, if every policyholder’s
expected payment equals to his/her ideal level, then the profit ratio is zero. With
a lower number of classes, the policyholders pay less, but as the number of classes
increases, the payment also increases.

5.4.2 Consideration of more than one claim per period.

In the previous models, the maximal number of claims that could happen in a period
was one. We also considered a model when M = 2 where the probabilities of the
claims are calculated according to the Poisson distribution. Figure 10 depicts the
transition rules of the models. On the left-hand side, the first claim’s transition rule
is shown. The graph on the right side presents the additional reduction that the
second claim would cause.
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1Figure 10: The 1st and 2nd claim’s transition rules

In the graph showing the first claim’s transition rule, we also display in paler
colors the models’ results with M = 1. These lines are almost the same; hence, the
first claim is treated similarly across all scenarios.

As for the second claim, it is not treated too strictly when there are only a few
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classes in every scenario. Interestingly, in the scenario of 1− 2% claim probabilities,
the second claim is not considered at all if there are less than 40 classes. However,
as the number of classes increases, the smaller probability scenarios’ transition rules
decrease. Notably, the higher probability scenarios’ transition rules do not decrease
significantly.
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Figure 11: The ratio between the reduction associated with the first

and second claim

Figure 11 illustrates the ratio between the first and second claims’ reduction in
the classification. If the relevant value is 100%, then the second claim is treated the
same way as the first one is. When it is less than 100%, the second claim results in
less class-reduction. Mostly, the transition rule for the second claim is not as strict
as the first one. In the 10− 50% scenario, the rule for the second claim gets slightly
unstable as the number of classes rises. This is because the Ω in these BM systems
are nearly zero. Hence, the second claim does not influence the solution greatly.

In practice, the second claim is regularly treated similar to the first one. The
probability of two claims occurring in the same period is in reality very small. It
was also observed that the consideration of multiple claims does not change the Ω

values of the models. Besides, the first claims’ transition rule was very similar to
the case where M = 1. Therefore, in the numerical examples, we considered only
one possible claim for the sake of computational simplicity.

5.4.3 Model with profitability constraint

With the inclusion of the profitability constraint (MILP4.9), there is one unique
premium. In section 5.1, we put forth a modification of the MILP by which we can
determine the unique premium with additional premium changing layers. Multiple
layers require more binary variables, producing a notable increase in computational
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time. Moreover, even with a fixed number of layers, we cannot be certain that we
have found the global optimum. Therefore, for finding a (nearly) globally optimal
solution within a reasonable time, we employed an Iterated Local Search (ILS)
algorithm (see for instance Lourenço et al. (2010)).

Sol0 = Initial solution
Sol∗ = LocalSearch(Sol0)
repeat

Solp= Perturbation(Sol∗,
history)
Solls = LocalSearch(Solp)
if min(Solp;Solls) < Sol∗

then
Sol∗ = min(Solp;Solls)

end
until termination condition met ;

Figure 12: Iterated Local Search (source: Lourenço et al. (2010))

We used this algorithm as a heuristic of the model. Hence, we reran the model
in each iteration but with a different parameter for the unique premium. Thus, in
this case, the Sol in Figure 12 determines the objective value of a model with a
specified unique premium.

We started the initial solution (Sol0) with a zero parameter, which means that
the first model did not have unique premium. After the initial solution was calcu-
lated, we started to find a local optimum, close to the 0 unique premium. Hence,
we searched for a better solution by iteratively increasing the value of the unique
premium. After identifying the local optimum, we iteratively searched with a Per-
turbation function that increases the unique premium by a random value. We used
a randomized Perturbation function, which increases over the iteration if we do not
find a better solution. However, if we find a better solution, then the following
perturbation will be a smaller increase again. To improve the running time, we only
conduct LocalSearch on the perturbed solution if it is close to the best solution. We
ran three random restarts of this algorithm to find a better solution.

Figure 13 shows the results of the transition rule of the case where m = 1 as
the number of classes increases with the inclusion of the profitability constraint
(MILP4.9). Similarly to the case that does not consider profitability, the parameter
j decreases as the number of classes increases, but after getting to certain number
of classes, the reduction trend changes. Interestingly, the initial decrease turns to
increase only to start decreasing once again.

Figure 14 shows the OP i values under different situations. The dashed lines indi-
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Figure 13: Transition rule changes for one claim as a function of

the number of classes
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1Figure 14: Changes of the OP i as a function of the number of classes

cate the case where profitability is not considered. Profitability constraint typically
affects BMSs having a small number of classes. Overall, profitability increases the
payment by the policyholder, i.e., the “good” policyholders will pay even more than
their ideal expected premium, but the “bad” policyholders pay closer to their ideal
level.
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5.4.4 Ratios of types

In the previous examples, we considered the two risk groups with the same ratio.
We further investigated how the optimized BMS can sort risk groups when their
ratio is not equal. For this, we calculated the optimal solution for 15-class BMSs
for the two risk groups but with different proportions.
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1Figure 15: Changes of the φ1.

Figure 15 presents the results of 15-class BMSs, with different ratios of the types
(φi). The x-axis represents the proportion of the ’good’ policyholders among all of
the insurance contracts. If one of the types has a much higher proportion, then the
system attributes this risk group more weightage. If the riskier ones constitute the
majority, they pay their ideal expected premium, and the ’good’ policyholders pay
more than their risks. However, if the less risky policyholders form the majority, the
’good’ policyholders pay their ideal expected premium, and the ’bad’ policyholders
pay less than their ideal level. Therefore, if there are more ’good’ policyholders than
the ’bad’ ones, the BM system is not profitable.

The grey squares display the Ω of the systems. It has a lower value when the
ratio between the two types further differs. Therefore, if the risk groups are equally
sized, the BM system’s sorting capability is not as efficient as it is otherwise.
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Figure 16 displays the premiums of each BMS. Each ’sheet’ represents one sys-
tem’s premium vector. Therefore, there is a ’sheet’ for each setup for the different
risk group ratios. Hence, every ’sheet’ has two dimensions: the class (k) and the
premium (πk).

If the proportion of the policyholders with lower risk is considerably smaller, then
there are no ideal premiums for the ’good’ policyholders in most cases. Consequently,
the BMS only considers the ’bad’ type. The ’good’ policyholders surely pay more
than their expected claim. The only exception is the 10- 50% case.

As the proportion of the ’good’ type increases, the number of classes where
the premiums are equal to their ideal premium increases as well. However, there
is at least one class in every situation in which the premium is equal the ’bad’
policyholders’ ideal premium.

If the ratios of the risk groups are not equal, in a 15-class BMS, only the situa-
tions wherein the ’bad’ policyholders are not the majority are affected by the profit
constraint. Figure 17 presents the profit constraint’s effect on the value of Ω in
each situation. The unique premiums in the cases where there are very few ’bad’
policyholders are becoming considerably higher than the other premiums. This is
because, otherwise, the profitability would not be met. This premium scale can be
optimal for the model; however, it will not be a useful solution in practice. In this
case, causing a claim may increase the payment of a policyholder by a considerable
amount. Therefore, this BM system may not reduce the risk of the policyholders.
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5.4.5 Multi-period optimization without considering profitability

For the multi-period model, we studied the Θ = 20 and Θ = 40 cases. For treating
the irreducibility of the system, constraints (MILP1.8) may not be suitable. There-
fore, we fixed the m = 0 transition rule to 1. Because of the excessive amount of
computations the multi-period model requires, we only examined BMSs where the
number of classes was divisible by 5, up to 30 classes. Figure 18 shows the differences
of the m = 1 transition rule in each case.

Figure 18 illustrates the transition rule of the multi-period models, compared
with the results of the stationary models. In the “high” probability situations and in
the 1− 5% case, the transition rules are much stricter in the multi-period model. In
the 1− 2% risk situation, the transition rules however become less strict when there
are 25 or 30 classes. In these cases, the value represents the average overpayment (or
underpayment) of the types during the insurance contract period. Figure 19 shows
the differences in the Ω values between the multi-period model and the stationary
model.

As the number of the periods increases, the Ω of the multi-period model gets
closer to the result of the stationary model. As Figure 19 depicts, if Θ is smaller, then
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Figure 18: Changes in the transition rule with one claim as a

function of the number of classes
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1Figure 19: Changes of the OP i as a function of the number of classes

the overpayment is less for the “good” policyholders and the underpayment is more
for the “bad” ones. In addition, due to the limitation of the periods, if we increase
the number of classes, then the sorting capability of the system does not necessarily
improve. In the 10 − 50% case, in the stationary model, each type of policyholder
pays their ideal expected premium in class 25, whereas in the multi-period models
we obtained considerably worse results.
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5.4.6 Multi-period optimization considering profitability

Figure 20 depicts the Ω values of the multi-period models if we consider the prof-
itability in each period (constraints (MILP6.9.2)).
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We can observe results similar to those without profitability constraints. The
improvement of the Ω is considerably smaller in the multi-period case if we increase
the number of classes compared with the results of the stationary models.

5.4.7 Computational considerations

In the introduced MILP model, as we increase the number of classes, the number of
types, or the maximal number of potential claims, finding the optimal solution may
take more time. For example, the running times of the stationary model that did
not factor in the profitability constraint changed as Figure 21 shows.

When K = 3, the running time, was generally less than a half-second, and
when the number of classes was 120, it increased to above 30 minutes. When we
investigated the multi-period model, even the instances with few classes needed
slightly more time. The case where Θ = 40 required more than one hour in all cases.
When the profitability was considered, the running time also increased considerably
because of the ILS’s multiple runs. The realistic case also resulted in a long running
time. The case where the profitability was not considered where Θ = 40 needed
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Figure 21: Running times of the stationary models without profit.

more than one day to find the optimal solution.

It is important to note that despite the running time being long in some cases,
the aim to optimize such a BMS is not a time urgent problem. An optimized system
should be valid for several years in the third-party liability insurance application.
Also, the running time can be reduced using better hardware and a more significant
tolerance level.

Another solution would be to approximate the result with a heuristic. The opti-
mization models for the premiums and the transition rules can be calculated much
faster separately than the joint optimization model. Hence, we may use an itera-
tive method to approximate the optimal solution. First, we calculate the optimal
transition rules with a fixed premium. Then, we find the optimal premiums to these
transition rules, which we consider as parameters. Next, we use the optimal premi-
ums of this model as parameters and re-optimize the transition rules. We continue
this until we cannot improve the objective function further. The solution of this
heuristic greatly depends on the initial model. In the initial model of transition
rules’ optimization, the premiums are outer parameters. We may also start with the
premiums’ optimization and then proceed with the optimization of the transition
rules. In this case, the transition rules are the outer parameters in the first model.
We present a comparison of this heuristic with the exact method in the next section.

5.4.8 Comparison of the iterative heuristic and joint optimization

In Ágoston and Gyetvai (2021), we made a comparison of the joint optimization of
premiums and transition rules with the iterative method. In this section, we present
the results of this study with an extension. We show that the iterative method
is much faster than joint optimization, while the solution is close to the optimal
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solution of the joint MILP model. The performance of the iterative heuristic largely
depends on the initial model. In the comparison, we considered four types of initial
premiums:

• Proportional (prop): We introduce own classes for each risk group, which
means the premium of these classes is equal to the risk groups’ expected claim.
The risk groups have that many own classes that are proportional to their
percentage among all policyholders.

• Linear (lin): We take the lowest and highest risk groups’ expected claim for
the lowest and highest premium and set the classes’ premium linearly.

• Minimal (min): The premium is equal to the highest expected claim in the
worst class. In all other classes, it is equal to the lowest expected claim.

• Maximal (max): In this case, only one class premium is equal to the minimal
expected claim, and the highest expected claim applies to all other classes.

We also considered two types of initial transition rules:

• TRK: In case of any claim, the policyholders move into the worst class. With-
out a claim, the policyholders move one class upward.

• TR1: In case of any claim, the policyholders move one class downward. With-
out a claim, the policyholders move one class higher.

Numerical experiments on the initial solutions
We considered BMSs with 15 classes in the comparison of the joint optimization
model with the iterative heuristic. We then randomly chose their risk groups’ claim
probability to test the heuristic in as many setups as possible. Hence, we considered
100 randomized setups. In each setup, we considered five equally sized risk groups.

Two cases were examined: a realistic one, in which the risk parameters were
generated from a 0.01 to 0.1 interval. And a non-realistic higher risk setup, in which
the risks were chosen from the [0.1 : 0.3] interval. In each model, the maximal
number of claims per period could be up to 2. For the claim probabilities, we
considered the Poisson distribution. We compared the iterative heuristic with the
joint optimization model with six different initial solutions. We highlighted the
difference between the optimal solution and the running time. Figure 22 illustrates
the relative deviation from the MILP model in both cases.

On the left side of the figure, the objective increase compared with the joint model
is presented. The top row shows the low-risk case and the bottom one depicts the
high-risk case. When the risks are low, the results are similar to the objective of the
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Figure 22: Objective and time changes compared with the joint optimization model

joint model. The TR1 resulted in the highest difference in average. However, even
in this case, the average increase was only 1.4%. When the risks are higher, the
difference between the joint model and the heuristic is higher as well. The TR1 led
to the highest increase in average in this case too. The average increase was 2.9%

for the TR1 followed by the max with 1.1%

The running time of the iterative heuristic, was generally much faster than that
of the joint optimization model with each initial solution. Again, the TR1 seemed
to be the worst. However, even so, the average running time was less than half of
the joint model in both setups (40% in the low and 8% in the high setup).

Performance of the iterative method with the increase in BMS size

We investigated how the iterative method performs in comparison with joint op-
timization as the number of classes increases. We computed the solutions of models
starting from a 2-class BMS up to an 80-class BMS. As the initial premium scales
resulted in very similar results, we only considered the prop type initial premiums.
We also considered the initial solution of TRK in the comparison. For each BMS, we
considered only two risk groups, with expected claims generated from the [0.1 : 0.3]

interval. We generated ten instances for each BMS.

Figure 23 presents the results of the models. On the top-left side, the compu-
tational time is represented. The increase in the computational time of the joint
optimization model is significantly larger than that of the iterative method. Further-
more, the range of the running time fluctuates more (the background color). The
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Figure 23: Results of models from a 2-class BMS to a 80-class BMS

top-right graph shows the difference between the objectives of the joint optimization
model and the iterative methods. It is noticeable that as the size of the BMS in-
creases, the prop increase becomes negligible, but the TRK gets very unstable. And
even though the computational time required by the two iterative methods seems
similar, the number of iterations (illustrated in the graph at the bottom) is more
when we consider the TRK initial solution. In this case, it grew as the size of the
BMS increased, while in the case of prop, the average number of iterations remained
around two.

5.5 Case study: Optimizing the Hungarian BMS

Using data obtained from a Hungarian insurance company, we could work with
realistic claim probabilities. We distinguished five different risk groups whose ratios
and expected claims are provided in Table 4.

Type 1 2 3 4 5

Expected claim 1.8% 2.7% 3.2% 4.1% 5.0%

Ratio 11% 44% 26% 11% 7%

Table 4: Parameters of the risk groups

We solved the stationary models and the multi-period models with Θ = 20 and
Θ = 40 respectively. In both cases, we carried out computations both with and
without the consideration of the profitability constraint. Because of the excessive
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time requirement, we only considered the unified cases of a 20-class BMS. Table 5
lists the transition rules and the OP i and Ω values of the models.

Without profitability With profitability
Stationary Θ = 20 Θ = 40 Stationary Θ = 20 Θ = 40

T0 1 1 1 1 1 1
T1 -6 -5 -6 -8 -2 -16

Objective 100% 100.01% 100.01% 155.53% 183.08% 163.91%
Ω 1.46 1.46 1.46 1.49 1.54 1.48
OP 1 0.50 0.50 0.50 0.68 0.78 0.69
OP 2 0.00 0.00 0.00 0.13 0.19 0.13
OP 3 -0.16 -0.16 -0.16 -0.05 0.00 -0.04
OP 4 -0.34 -0.34 -0.34 -0.25 -0.22 -0.24
OP 5 -0.46 -0.46 -0.46 -0.38 -0.36 -0.38

Table 5: The results of the models with realistic parameters. T0, and T1 denote the
transition rules. Objective is the value of the objective function, compared with the

stationary model that does not factor in profitability. Regarding multi-period
models, the value of the objective function has been divided by the number of

periods for the sake of comparison. The Ω shows the absolute overpayments, and the
OP i is the overpayment by the type i policyholders.

If we had not considered the profitability, the result of the stationary model and
both multi-period models would not have been significantly different. The transition
rule is less strict in the case where Θ = 20, but the values of overpayments have not
differed considerably. Considering profitability however results in a much different
outcome. The value of the objective function gets much worse, and of course, the
absolute overpayment increases as well compared with the financially not balanced
models. The difference between the stationary and the multi-period models is more
notable. The time of the multi-period model is more crucial here since the 20-
period model’s result differs more from the outcome of the stationary model than
the result of the 40-period model. Even the case wherein Θ = 40 results in a much
worse optimal solution than that in the stationary case.

Without profitability With profitability
Premium: 0.018 0.027 0.032 0.041 0.05 0.018 0.027 0.03 0.032 0.041 0.05
Stationary - 5-19 0-4 - - - - 19 0-18 - -
Θ = 20 - 5-19 0-4 - - - - - 8-19 1-7 0
Θ = 40 - 4-19 0-3 - - - - 7-19 2-6 0-1 -

Table 6: Premium scales of the realistic models

Table 6 shows the optimal premiums. Each cell shows the classes where the
column’s premium is present. Therefore, the 5 − 19 in the column of 0.027 means
that class 5, 6, . . . , 19 has the premium 0.027.

When we did not consider the profitability constraint, the optimal premium scale
only contained two premiums: 0.027 and 0.032. It means that three risk groups
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cannot pay their fair price. Therefore, 11% of the policyholders surely overpay and
18% pay undoubtedly less. When the profit constraint was considered for the types
with 0.018 and 0.027 expected claim, there was no class that provided a fair payment
for them. The premiums were adjusted upward, but there were still up to three
different premiums. However, because in this case we considered a metaheuristic,
a better solution may exist. In these cases, we got 0.03 as unique premium, which
only appeared in the stationary and the Θ = 40 models. In the Θ = 20 model, we
did not get any unique premium.

Interestingly, we got fewer premiums than the number of risk groups in every
case. The other objective of the BMS is to reduce the moral hazard. In other
words, a system that motivates the policyholders to reduce their risks is needed.
For this, the designer of the BMS may want more variability on the premiums. One
possibility would be to specify a minimal difference between the premiums of each
class. However, this would be rather difficult in the joint optimization approach.
In this model, we can specify that each type’s fair premium should appear in the
premium scale. To this end, we have to add the following constraints:

K+1∑
k=0

L∑
`=1

O`
k ≤ K (25)

K+1∑
k=0

O`
k ≥ 1 ∀` ∈ L (26)

Premium: 0.018 0.027 0.032 0.041 0.05 T1 `1 change `2 change
Stationary

19 3-18 2 1 0
-17 1.709 1.151

Θ = 20 -3 1.662 1.131
Θ = 40 -16 1.719 1.172

Table 7: The results when each type has a premium

Table 7 provides the results of the extended models. We only considered the
models without profitability constraint because in these cases, we obtained the exact
solution. In these models, we got the same premium scales and only the transition
rules differed. Again, the case wherein Θ = 20 had a much different transition
rule. When the considered time was longer, the model had a similar solution to
the stationary model. The column related to `1 change presents the increase in the
objective value if we add constraints (25) and (26). The `2 column shows the increase
if we consider the `2 norm, i.e., the squared deviations instead of the absolute value
of the deviations. In this case, the solution was worse, which means more variation
on the premiums was not that good in this case as well.
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5.6 Summary

This section introduced a MILP model for the joint optimization of the premiums
and transition rules in a BMS. First, we put forth the model with stationary prob-
abilities. Then, we presented a multi-period modification. From the model with
multi-period probabilities, it is possible to omit some of the unrealistic assumptions
required for the stationary model. Furthermore, with multi-period probabilities, we
may determine the initial class. Moreover, in this section, we proposed a modifi-
cation to optimize the number of classes. We also presented numerical experiment
results on the models and a case study using real data.
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6 Optimization of a Bonus-Malus System in prac-

tice

6.1 Introduction

In the practice of MTPL insurances, insurance companies often use other techniques
besides the BMS. Usually, the policyholders’ risk groups are calculated via some sta-
tistical methods and then part of the premium determined based on this classifica-
tion. In modeling risks for MTPL insurance, the Generalized linear models (GLM)
and Generalized additive models (GAM) are used most frequently (Giancaterino
(2016); Kafková and Křivánková (2014); Burka et al. (2021)).

A better estimation is essential for the insurance company, but errors are un-
avoidable in practice. Therefore, it is also a necessary objective of the estimation
method to reduce the classification errors. Hence, the practical application of a BMS
is to minimize classification errors caused by unobservable variables.

As we discussed in section 1, with some observable parameters (such as the
driver’s age, location of the vehicle owner, age of the driving license, type of vehi-
cle, etc.), we may estimate risk groups. However, there may be other unobservable
parameters that influence the risk pertaining to each policyholder. Hence, the exis-
tence of unobservable parameters may result in some deviations from the estimated
risk groups. For decreasing the error related to the estimated and “fair” premium,
some tools such as the BMS can be used.

In section 5.5, we assumed that we might not know anything about the observ-
able risk groups’ deviation. Hence, we used these groups as parameters for the
optimization model. However, with sufficiently large data, it is possible to calculate
some kind of deviation from the estimated classifications. For an illustration of the
problem, we introduce example 6.1.

Example 6.1. For the sake of simplicity, let us assume that there is only one sig-
nificant observable parameter with merely two categories. For example, this variable
relates to the type of the location where the policyholder lives. A policyholder may
live in a town or the countryside. Statistically, cities are a much riskier place for
driving; hence, if the policyholder lives in a town, his/her premium should be higher.

Let us imagine that the insurance company’s statistical model suggests that the
people who live in a city have a Poisson claim distribution with a 10% mean. Those
from the countryside have a risk with a 5% Poisson distribution. Hence, without
a BMS, the city’s policyholders’ premium would be 10%, which would otherwise be
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simply 5%.

However, presumably, not all policyholders from the city have a 10% claim prob-
ability. With the statistical estimation, we could only evaluate the average values of
the risk groups. Hence, the “fair” premium of many policyholders may differ from
the estimation of the statistical model. This difference may be caused by some other
variables that were not considered in the statistical model.

Even though it is hard to find the deviation’s source, using a BMS can reduce this
error. Suppose that a policyholder is below the risk level corresponding to his/her
estimated “fair” premium. Thus, in a BMS, the policyholder will have fewer claims;
offering them the option to be in a better class than the initial classification of the
insurance company. However, some error is still inevitable, e.g., if the policyholder
has a smaller expected risk than the lowest premium of the BMS.

If the risk can be explained with an additional observable variable, the statistical
model can be improved. It may also happen that the observable parameters of the
policyholders are not fully describing the risk. Hence, there are some unobservable
parameters such as the level of carefulness that are not considered. Some policyhold-
ers are careful and others not that much, regardless off their physical attributes.

Let us assume an unobservable categorical variable – the level of carefulness. We
may separate policyholders into two types according to this variable: careful and
careless policyholders.

Presumably, the insurance company has some data from the previous years.
Hence, the effects of this unobservable variable can be estimated.

Let us assume that a careful policyholder’s expected risk is smaller at a 3 percent-
age point than the statistical model’s estimated value. If the policyholder is careless,
then the risk is higher than the observable risk with the same amount.

Therefore, if the insurance company knows all the information, it classifies four
risk groups among the policyholders: the countryside-careful with 2% expected claim;
the city-careful with 7%; the countryside-careless with 8%, and the city-careless with
13%.

The level of carefulness is unobservable based on the policyholders’ physical at-
tributes. Therefore, the insurance company cannot precisely determine the policy-
holders’ real “fair” premium values. Hence, using a tool for estimating it, such as
the BMS, is necessary in this case.

We will refer to the two risk groups (city–countryside) as the types of the pol-
icyholders. Further, the four groups separated according to the level of carefulness
variable as the unobservable risk groups.

In this section, we investigate the importance of using a BMS. In section 4,
we assumed that the policyholders only pay the premium of the BMS. However,
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in practice, other statistical methods are also used. Therefore, in this section, we
examine how the BMS can be optimized if we consider the statistical model too.

6.2 Preliminaries

This section explores a setup that is closer to practice. Hence, we once again consider
only the number of claims in the BMS. Resultantly, even in the statistical model,
we only consider the distribution of having claims and do not focus on its amount.

Let Λp denote the personal risk related to the policyholder p. The insurance
company wants to set the premium as close to Λp as possible. Let πp represent
the premium of the policyholder p. The premium corresponds to the insurance
company’s estimation of the policyholder’s risk (Λ̂p).

Furthermore, let ηp ∈ Rn be the n observable variables of the policyholder p. If
the insurance company assumes that there are no unobservable variables or notice-
able noise, then it would determine the risk according to equation (27).

Λ̂p = f(ηp), (27)

where f() is a function, usually in practice a GLM or GAM is used. We assume
that there may be r unobservable parameters as well (ρp ∈ Rr). A full model refers
to a model wherein all of the information can be used. Therefore, the unobservable
parameters can also be used as variables in the estimation:

Λ̂p = g(ηp, ρp), (28)

where g() is a function, similar to f() but not the same. Of course, this is just a
theoretical model because the unobservable variables cannot be used in this way in
practice. However, for the sake of comparison, we also consider this model because
it is the theoretically best estimation.

In practice, for estimating the unobservable parameters, some statistical methods
can be employed. We consider the BMS for handling this problem. In a BMS, the
policyholders are classified into classes according to their claim history. Therefore,
for optimization, we consider the expected premium of the policyholders. Hence,
the premium of policyholder p is E(πp) when the BMS is applied.

There are several approaches for determining the premium:

• Statistical model (SM) only: In this case, a BMS is not utilized. There-
fore, the unobservable variables are not considered. We use the model de-
scribed in (27). We consider this case for the sake of comparison. If the effects
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of the unobservable parameters are small, considering a BMS besides a SM
may not improve the fairness of the premiums that much.

• BMS only: The purpose of a BMS is to estimate the risk of the policy-
holders. Presumably, the risk has observable and unobservable aspects. We
cannot consider only the unobservable effects in the BMS as it estimates only
the overall risk. Hence, the BMS may distinguish policyholders efficiently;
therefore, using an SM is not necessary. This is the model that we introduced
in section 4.

• Both SM and BMS: In this case, the insurance company uses a SM and
BMS jointly to estimate the policyholders’ premium. Burka et al. (2021) com-
pared GLM, GAM and machine learning models in the calculation of optimal
premiums for MTPL insurance. In their models, the classification of the BMS
was a variable. Hence, it means the premiums of the BMS are also determined
inside the statistical model. However, as we can jointly optimize the premi-
ums and the transition rules of the BMS, we only consider the premiums of
the BMS in our analysis.

We consider three methods:

– Scaling : The insurance company optimizes the BMS and SM separately.
Then it finds an appropriate scale parameter (0 ≤ α ≤ 1) between them
to determine the final premium.

E(πp) = αSMp + (1− α)BMp, (29)

where BMp denotes the expected premium of the BMS and SMp repre-
sents the premium of the statistical model. For determining the α value,
we presume that the insurance company has made assumptions about
the unobservable parameters. Therefore, there are observable types and
unobservable risk groups. The separation of the types is the result of the
SM. The BMS represents the unobservable risks. Hence, we use an α to
weight the difference between the E(πp) and the assumed unobservable
risk group.

– Merging : In this method, the expected premium comes from the BMS
alone. Therefore, we consider the types, and consequently the SM, in the
premiums of the classes. Therefore, the payment by two policyholders
belonging to the same class may differ if their observable parameters are
not the same.
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Let us assume that we estimated H types of policyholders with the SM
with each having λh (h = 1, . . . , H) expected claims. Therefore, the
premiums for a policyholder of type h, who is classified into class k of the
BMS is determined using the equation:

πhk = λh +BMk, (30)

where BMk is considered a deviation from the expected value. Thus, the
premium of class k can be negative as well.

Other approaches can also be adopted for merging the SM and BMS.
However, we only investigated this additive approach because the MILP
model we introduced in section 5.1 can be easily adjusted to consider the
SM result.

In this case, we modify the default premium to be the result of the sta-
tistical model. Let SM i denote the statistical model’s result, calculated
using only the observable parameters for the unobservable risk group i.
Therefore, the default premium differs for each type of policyholder, and
the constraints (MILP3.10) and (MILP3.11) changes into the following:

SM icik +
I−1∑
`=1

o`,ik + gik ≥ λicik ∀i, k (MILP1.18”)

SM icik +
I−1∑
`=1

o`,ik − gik ≤ λicik ∀ik (MILP1.19”)

However, with this modification, the premiums can be only higher than
the default premiums. This change is not sufficient because the policy-
holders less riskier than the result of the SM would not have the option
to pay their fair premium.

Therefore, we have to enable negative premiums in the BMS. Conse-
quently, the variables o`,ik should be able to take negative values as well.
Therefore, in the optimization of the premiums, we use both positive and
negative layers. Let set L denote the possible premium changes and let
ε` represent the element ` in L. We may construct L with negative and
positive elements. Hence, by using the constraints of section 5.1, we can
have negative and positive premiums of the BMS in the optimization.

For example, if the unobservable parameters cause a deviation of 3% from
the SM value, then we set L = [−0.03; 0.03]. With all these modifica-
tions, we can alter the BM premiums according to each fair value. If
the effects of the unobservable risks are not that simplistic, other ele-
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ments can be added to L. For example, there are two types, with 0.02

and 0.03 expected claim. Suppose we can separate the 0.02 type of pol-
icyholders into 0.01 and 0.04 unobservable risk groups and the other
type into 0.01 and 0.06. We can then get all of the fair premiums with
L = [−0.02;−0.01; 0.02; 0.06].

We may consider the merging method in another way: the result of the
BMS is considered in the SM. In this case, the BM premium, or the class,
can be regarded as an observable variable in the estimation of the SM
premium. We did not adopt this method because it requires a data-driven
approach instead of a theoretical comparison.

– Independent : In this case, we optimize a BMS independently for each
observable risk group. Therefore, in example 6.1, we optimize two models.
Hence, policyholders from the city may have different transition rules
as opposed to the other policyholders. Also, the premiums may differ
because the assumed unobservable risks determine the possible changes
in the premiums.

This method would be hard to implement in a practical situation. Yet,
we added it to the analysis because according to the results of Cooper
and Hayes (1987), this method would give the best result in theory.

6.3 Computational analysis

6.3.1 Example

To compare the different methods, we considered the example 6.1. For the compar-
ison of the models, we calculated the sum of the absolute differences between the
fair and the expected premium (AD):

AD =
I∑
i=1

φi|Eπi − Λi|, (31)

where I denotes the number of risk groups, considering all variables. Therefore
in example 6.1 I = 4. The φi represents the ratio of risk group i. In all the
experiments, we considered equally sized risk groups. The Eπi is the calculated
expected premium, and the Λi is the fair premium, i.e., the expected claims.

• Only SM: In this case, the unobservable parameters are not considered. Thus,
those who live in a city would pay 10%, and the rest would pay 5%. Hence,
AD = 3%.
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• Only the BMS: In this case, we use all of the calculated risk groups to
determine the optimal BMS. We assume that the insurance company knows
all the information but cannot distinguish the policyholders. Therefore, the
company knows all of the unobservable risk groups’ mean and claim distribu-
tions. We considered a 20-class and 30-class BMS. We then optimized both
systems according to the stationary model, introduced in section 5.1. In both
cases, the claimless transition rules are one positive step. In the 20-class BMS,
the downgrade is [6,10,19] classes, respectively for 1, 2, and 3 or more claims.
AD = 2.37%, which is better than the only SM’s AD. In the 30-classes BMS,
the results are even better, with AD = 1.26%. The downgrades in the event
of claims are [12,18,23] respectively for 1, 2, and 3 or more claims.

• Both SM and BMS:

– scaling : In the BMS, we cannot consider only the unobservable param-
eters without the observable ones. Therefore if we consider the BMS and
the SM with equal weights, the observable parameters may be weighted
higher than its actual effect. Therefore, we calculated the solution with
multiple α values and chose the best result. Table 8 presents the AD
values for both 30- and 20-class BM systems, with different α values.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
AD20 2.37% 2.36% 2.36% 2.35% 2.36% 2.37% 2.37% 2.38% 2.39% 2.39% 2.40%
AD30 1.26% 1.26% 1.26% 1.27% 1.28% 1.30% 1.32% 1.34% 1.35% 1.37% 1.39%

Table 8: The AD values of the scaling BMS, with different α values.

According to Table 8, BMS only has such an accurate solution so that
it is not worth mixing the BMS with the SM. Therefore, the best α is
0 in both BMSs. When we determined the α more precisely, we got
α = 0.02493 for the 20-class BMS. However, we could not find a better α
than 0 for the 30-class BMS.

– merging : When we considered the 20-class BMS, with the merging
method, the AD value was 1.87%. That means, in a 20-class BMS,
the merging method resulted in a better system than the scaling method.
The transition rules were [8,19,19] class reduction in the event of claims.

We designed the joint optimization so that the BMS premiums can be
either 3% or −3%. Interestingly, only the highest class got a negative
BMS premium. In the only BMS case, the premiums can only take the
values of the fair premium. In that case, the lowest premium was 7%.
Therefore, the risk group with a 2% expected claim probability cannot
get its fair premium at all. In the merging method, it however can when it
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is classified into the highest class. Thus, the better result of the merging
method.

When the number of classes increased to 30, the results changed as well.
The merging method led to a 1.69% AD value, which is slightly higher
than that of the scaling method (1.26%). The change in order is because
of a 2% premium that appears in the scaling method’s premium scale.

The improvement from 20 classes to 30 is not that great in the merging
method, despite the transition rule now takes three different values in the
event of claims ([11,23,29]).

– independent : In the independent BMS case, the total AD value was
1.71% for the 20-class system and 1.41% when we considered 30 classes.
Therefore, in the case with 20 classes, the independent BMS was the most
effective. However, with 30 classes, it was not the best one. In that case,
BMS only has such an effective outcome so that using any combination
with the SM would decrease the sorting effectiveness.

6.3.2 Decreasing the effect of the unobservable variable

In the example 6.1, the deviation caused by the unobservable parameter was con-
siderably high. Thus, based on the results, the BMS worked extremely well. In a
real-world situation, the unobservable variables’ effect may be much smaller than
what we considered in the example. Therefore, we analyzed different levels of de-
viations. Table 9 presents the AD values of the cases with 3%, 2%, 1%, 0.5%, and
0.1% deviation.

Deviation 3% 2% 1% 0.5% 0.1%

only SM 3% 2% 1% 0.5% 0.1%
only 20-BMS 2.37% 2.06% 1.91% 1.85% 1.71%
scaling 20-BMS (α) 2.35% (0.03) 1.74% (0.26) 0.90% (0.58) 0.47% (0.76) 0.1% (0.95)
merging 20-BMS 1.87% 1.49% 0.87% 0.47% 0.1%
independent 20-BMS 1.72% 1.28% 0.86% 0.46% 0.1%
only 30-BMS 1.26% 1.36% 1.70% 1.60% 1.45%
scaling 30-BMS (α) 1.26% (0) 1.28% (0.24) 0.86% (0.52) 0.46% (0.76) 0.1% (0.95)
merging 30-BMS 1.69% 1.40% 0.85% 0.46% 0.1%
independent 30-BMS 1.41% 1.16% 0.81% 0.45% 0.1%

Table 9: The AD values with different deviations

We denoted the best result in boldface in Table 9. As the deviation gets smaller,
the BMS only case gets worse, and the SM only case gets better. In every case, one
of the 30-class BMS resulted in the smallest AD. Hence, an increased number of
classes improve the sorting efficiency of the system.
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In the cells of the scaling method, we also denoted the α value. As the deviation
gets smaller, the α value increases. It means that the necessity for a BMS decreases
with the deviation. However, even with a 0.1% deviation, the α is less than one.
Thus, a BMS may improve the estimation in that case as well.

When we considered a 3% deviation, the SM only case was the worst, and using
a BMS is highly recommended. Therefore, we can conclude that the BMS is more
useful if the unobservable parameters play an essential role in the characteristic of
the risk.

When we considered both the SM and BMS, the independent method led to the
best outcome except for the 3% case. As the deviation gets smaller, the difference
between the methods’ results also gets smaller.

6.3.3 Unfairness between policyholders with an equal expected claim
but with different observable parameters

As we saw in the previous example, the independent method seems to be the most
effective one. Although having different BMSs for each observable risk group con-
tribute to the best sorting capability, it may lead to an unfair outcome. Let us
consider two types with 2% and 4% expected claims. Moreover, let the deviation be
1%. Therefore, by including the unobservable risks, we have three different unob-
servable risk groups. There are risk groups with 1% and 5% expected claims with a
quarter of the policyholders from the two types. Furthermore, we have a risk group
with a 3% claim probability. Half of the policyholders from this group are classified
into the types with 2% claim probability, and the other half is put into the 4% one.

We examined 30-class BMSs using every method. Table 10 provides the AD
values.

SM BMS scaling merging independent
AD 1.00% 0.97% 0.91% 0.74% 0.72%

RG(2,1) 2.00% 3.02% 2.66% 1.40% 1.48%
RG(2,3) 2.00% 3.15% 2.78% 2.04% 2.14%
RG(4,3) 4.00% 3.15% 2.82% 4.04% 3.82%
RG(4,5) 4.00% 3.43% 3.07% 4.46% 4.27%

RG(4,3)/RG(2,3) 2 1 1.01 1.98 1.79

Table 10: AD values of the methods and the expected payment of each risk group
(RG(2,1) refers to the type with 2% observable risk but with 1% risk considering
the unobservable variables.

In this case, once again, the independent method provides the best AD value.
The worst one is noted in the SM only case. Besides the AD values, Table 10
presents the expected payment of each risk groups in every solution. We denoted
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RG(i, j) as the payment of a risk group, with observable risk i and unobservable
risk j (in percentage).

The risk groups RG(2, 3) and RG(4, 3) have the same fair premium. Hence,
these policyholders should pay a similar premium. However, because they are dif-
ferent types of policyholders, they pay the same amount only in the BMS. The
RG(4,3)/RG(2,3) row shows how much the policyholders from the RG(4,3) pay
more than those from the RG(2,3). According to the AD value, the independent
and the merging methods seem to be the best ones. However, the difference between
the payment of these groups is much higher compared with the scaling method.
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1Figure 24: Payment of the RG(2, 3) and RG(4, 3) in each class with
every method

Figure 24 shows the premiums of the risk group RG(2, 3) and RG(4, 3), of each
case. The SM payment is also displayed in the graph with a horizontal line. In the
BMS only case, the payment is the same for both groups. Two different premiums
exist in this system: the 5% for class 0–17 and 3% for every other class. The scaling
method brings the payments a bit closer to the observable level.

The merging and the independent methods have the same premium scale. The
only difference between their results is the transition rules. In the merging case,
every policyholder has the transition rule [21,29,29] respective to the number of
claims. In the independent case, the RG(2, 3) group has [27,29,29] transition rules.
For the other groups, it is a bit less strict, [14,29,29] respectively to the claims.

Therefore, the RG(4, 3) risk group pays more or at least an equal premium
compared to their fair premium in all results. Furthermore, the RG(2, 3) may pay
less than 3%.
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6.4 Case study on Hungarian data

6.4.1 By making assumption on the unobservable parameters

Estimating the observable risks
We used the 2008–2009 vehicle insurance data of an insurance company that operates
in Hungary for using realistic parameters in the optimization. For the observable
risk groups, we employed the statistical classification tree method. For the classi-
fication variables, we did not consider some variables. We excluded the sex of the
policyholders because insurance companies in the European Union cannot use this
variable in the estimation 1. Also, we took out the previous years’ insurance-related
variables because they also may not be fully available for the insurance company. A
policyholder may be a beginner driver or it can be a new contract for this insurance
company. Hence, we used location-based variables, age, and vehicle’s age variables
to separate the policyholders. Presumably, any insurance company can ask the pol-
icyholders about these variables. Hence, we consider the leaves of the classification
tree as the observable types of policyholders. With this method, we could divide
the policyholders into four parts.

Estimating the unobservable risks
We could not observe any trends of deviation from the separated types because
we only had two years of insurance data. Therefore, we assumed that the leftover
variables also influence the policyholders’ risk. Thus, with those variables that we
did not consider in the estimation of the types, we further divided the policyholders.
We again utilized classification trees for making the unobservable part, but this time
separately on each type. In the estimation, we used the insurance-related variables
(previous years’ payment and BMS classification) and the sex of the policyholders.

We could divide each type into two unobservable parts. Therefore, we determined
eight different unobservable risk groups. The mean of the observable types and
unobservable risk groups and their ratio are given in Table 11.

Observable 1.8% 2.7% 2.9% 3.9%
Unobservable 0.5% 3.1% 2.3% 6.1% 1.6% 5.4% 3.0% 8.5%
Ratio 6% 6% 4% 1% 37% 15% 26% 5%

Table 11: The means of the observable and unobservable risk groups, as well as their
ratio

1https://ec.europa.eu/commission/presscorner/detail/en/IP_12_1430
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Results of methods
We optimized four BMSs with 10, 15, 20, and 30 classes. Moreover, we considered
the result of the observable classification tree as the output of the SM. Besides the
SM and the BMS, we calculated the merging, scaling, and independent methods.
Table 12 presents the AD values of all the considered models.

class 10 15 20 30
only BMS 1.34% 1.29% 1.25% 1.16%
scaling BMS (α) 1.17% (0.54) 1.16% (0.52) 1.14% (0.49) 1.1% (0.48)
merging BMS 1.16% 1.15% 1.1% 1.01%
independent BMS 0.99% 0.95% 0.91% 0.81%

Table 12: The AD values of the models

Using only the SM (in this case, the observable classification tree) results in an
AD of 1.53%. As Table 12 shows, using the BMS with any method increased the
premiums’ overall fairness level. Even when we only considered the BMS with ten
classes, the AD was 1.34%. Also, it is worth noting that as we increased the BMS
size, the expected payments got closer to the fair premiums. The consideration of
both the SM and BMS produced the most beneficial outcome. The result of the
independent method shows the real limits of the BMS. Theoretically, this method
gives the best feasible solution. Hence, presumably, we cannot decrease the difference
between the “fair” and the real expected premium under 0.8% in a 30-class BMS.

The merging and scaling methods had similar results in smaller BMSs. In a 30-
class BMS, the merging method had a slightly better result. The absolute deviation
only decreased below 1% with the independent method. The independent method’s
separation was so superior that a 10-class BMS of this method was better than any
other method’s 30-class BMS.

Difference between the expected payment and claims of each policyholder
Figure 25 depicts the distance from the model’s premium and each risk group’s
fair premium. The x-axis shows the risk groups’ parameter, and we marked their
payment of each model on this graph. When the payment is on the diagonal red
line, the risk group’s expected payment is equal to its fair premium.

In general, the policyholders whose risk is more than 3% pay less than their “fair”
premium in every model. The scheme is quite similar to the results we presented
in section 5.4 because all of these risk groups have a higher risk than what we
can observe. Even though it seems the payments of these risk groups are far away
from the diagonal, they only constitute 27% of the policyholders. The blue area
represents the ratio of the risk groups. Hence the merging method did not give the
worst solution, despite being farthest from the diagonal.
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Figure 25: Payments of the risk groups

Conclusion
Consequently, the risk groups with smaller probabilities define the result because
of their sizes. Moreover, in every smaller-probability risk groups, the independent
method’s premium is very close to the diagonal. The SM’s premium is the farthest
from the diagonal in these risk groups. Thus, using a BMS mostly reduces the
unfairness to the less risky policyholders. Interestingly, none of the policyholders
pays more than their fair premium in the merging method.

Overall, using the BMS with any method could decrease the difference between
the expected payment and the fair premium. However, the effect was not large. The
independent method provided the best results, followed by the merging method.

6.4.2 Without any assumption on the unobservable parameters

In the previous examples and in this case study, we used relatively few unobservable
risk groups. We created two unobservable risk groups from each type to calculate
the optimal solution within a reasonable time. More risk groups may significantly
increase the running time, thus calculating the optimal BMS, even with eight risk
groups took 155 hours on a desktop computer.

However, in the previous example, the optimal solution of the BMS was built
around the two largest risk group. As Figure 25 illustrates, these risk groups’ pay-
ment is almost “fair” in the merging and the independent method. We also wanted
to calculate the solution with more unobservable risk groups. However, with the
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classification tree method, we could not categorize the policyholders into nearly
equal-sized groups.

Estimating the unobservable risks
To create equally sized unobservable risk groups, we estimated the policyholders’
claim probabilities with a logit model. We used all available variables for the estima-
tion (age, sex, location of the policyholder, the previous year’s insurance premiums,
and the vehicles’ type). We will refer to these probabilities as the “real” probabilities
of the policyholders because all of their parameters were utilized in the estimation.
The distribution of the logit model’s probabilities is presented in Figure 26.
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Figure 27: Distribution of the “real’ claim probabilities by the
observable types (left) and the unobservable risk groups (right)

Figure 27 illustrates the “real” claim probabilities classified by the types and
the unobservable risk groups that we used previously. On the left, the observable
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types are presented. The 2.7% and 3.9% types of policyholders’ distribution seems
flatter compared with the other two types’ distribution. It can be noted that the
unobservable risk groups can be separated into smaller segments (on the right).
Some risk groups’ distribution has a larger deviation. Hence, considering more
unobservable risk groups in the optimization may lead to a better estimation of the
fair premiums.

Therefore, we created 100 equally sized unobservable risk groups, according to
the “real” probabilities, with the consideration of the observable risk groups. Hence,
we separated the types into 1%-sized parts. For example, from those types of poli-
cyholders, whose observable risk is 1.8%, we created 12 equally sized risk groups.

Calculation of optimal solutions
As there are many risk groups in this case, the computation of the optimal solution
would be a very long process. Therefore, we used the iterative method, introduced
in section 5.4.8 to approximate the optimal solution. First, we calculate the optimal
transition rules with a fixed premium. Then, we find the optimal premiums to
these transition rules, which we consider as parameters. Next, we use the optimal
premiums of this model as parameters and re-optimize the transition rules. We
continue this until we cannot improve the objective function further. In the first
fixed premiums, we use a proportional premium scale.

Deviation 3% 2% 1% 0.5% 0.1%

Time 15.46% 47.58% 38.72% 94.94% 87.65%20 class Objective 102.58% 100.00% 100.05% 100.00% 100.00%
Time 11.08% 1.62% 6.57% 7.80% 9.42%30 class Objective 100.00% 100.18% 100.65% 100.38% 100.45%

Table 13: Differences between the objective value and the running time of the exact
solution and the result of the iterative algorithm

Table 13 presents the time and the objective value of the iterative method com-
pared with the exact solution of the examples, put forth in section 6.3.1. We con-
sidered the 20- and 30-class BMSs. The table shows that the time of the iteration
was decreased significantly with the iterative optimization. The reduction was more
noticeable in the 30-class systems. Nevertheless, even in the case of the 20-class
BMSs, it was still noticeable. The objective value, however, did not increase that
much. The highest increase was observed in the 3% 20-class case, but even in this
case, it was less than 3%. Therefore, we assume that the iterative optimization’s
optimal solution may not be too far away from the global optimum in this model.

The problem with this iterative optimization is that we can only determine a
BMS independently from the SM. Hence, the merging method cannot be utlized
with this type of optimization. Since we found that the merging method’s solution
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was usually between that of the independent and scaling method, we focused only
on the latter two.

Results of methods
With the 100 unobservable risk groups, we found that the SM model’s AP was only
0.56%. The value is much smaller than in the previous study. The reason behind the
decrease is that when we consider more risk groups, the policyholders with extreme
probabilities have their own group. Hence, the deviation from the mean of the
observable risk group is much smaller.

With the 30-class BMS only case, we got a 0.7% AP value. It was worse than
the SM’s AP, but with the scaling-method, we could get a slightly better AP of
0.55%. In the scaling method, the BMS was considered with a weight α = 20%.
The independent-method resulted in the best AP value. Nevertheless, even in this
case, it was only 0.52%.

0 1 2 3 4 5

1.8

2.7
2.9

3.9

Risk

E
x
p
ec
te
d
p
ay
m
en
t

fair-premium
SM
BMS
scaling

independent

1

Figure 28: Payments of the risk groups

Difference between the expected payment and the claims of each policy-
holder
Figure 28 shows how far the unobservable risk groups payment was from their “fair”
premium. The “fair” premium is the diagonal red line in this figure. The SM pre-
miums are represented as flat lines at the observable risks that we marked on the
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y-axis. The blue line represents the payments of the BMS. It is noticeable that in
the BMS, the payments almost linearly increase. Compared with the SM model, the
BMS has one line, but it tries to ’rotate’ into the diagonal. The SM payments have
a stepwise increase; hence, the risk groups farthest from the diagonal differ from the
two methods. In the BMS, the risk groups whose payment differs the most from
their “fair” premium are those far from the mean of all policyholders’ risk. In the
SM, the policyholders who have the least fair payment are far away from the mean
of their observable parameter.

Therefore, there are multiple lines in the methods where we consider both SM
and BMS, but none is flat. The steepness differs for each observable risk group, but
neither the scaling method nor the independent method can rotate the lines much.

Conclusion
Overall, as we separate more unobservable risk groups, the effect of the BMS keeps
decreasing. In the first study, the improvement was noticeable, but when we con-
sidered 100 risk groups, even the independent method could not improve the clas-
sification significantly. However, there was a slight improvement, and even in the
scaling method, the BMS was considered with 20% weight. Furthermore, there may
exist a better solution than what we found with the iterative optimization.

To make an insurance contract more “fair” for the policyholders, considering the
adverse selection problem is essential. The BMS, even in extreme cases, seems to
be able to decrease the welfare loss, even though its effect is not enormous.

6.5 Summary

In this section, we investigated how the optimization model can be used in practical
situations. In section 3.1, we assumed that the payment of the policyholders only
depends on the BMS’ premium. However, the insurance company may estimate part
of the premium using statistical methods (SM) in practice. This section further
compared the methods on how the BMS and SM can be applied together. We
considered the scaling method, in which the insurance company optimizes the BMS
and SM separately. The final premium is determined by the weighted sum of the two
premiums. We also examined the Merging method. In this case, the transition rules
differ for each observable risk groups. Moreover, we investigated the independent
method, where the whole BMS differs for each observable risk group.

Overall, the independent method was the most efficient. However, in general,
using the BMS and statistical method jointly almost always resulted in a better
solution than considering only one.

We also presented a case study based on realistic data. We proposed two ap-
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proaches for determining the unobservable parameters. We found that the optimized
BMS’s effectiveness depends on the risk groups’ parameters. Hence, if the applied
statistical method is accurate, the BMS cannot improve the solution greatly. How-
ever, in both realistic models, the BMS could improve the results.
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7 The transition rules based on the size of claims

In practice – most often – the transition rules are based on the number of claims.
Therefore, the size of the claims does not affect the transition rules.

This is reasonable since empirical studies suggest that ’good’ and ’bad’ poli-
cyholders differ more in terms of the probability of the number of claims than in
amount (assuming there is at least one claim). Despite the fact that differences in
the number of claims are more significant than differences in the claim amounts, we
can observe deviations in the (conditional) amount of claims as well.

Because, in practice, the classification in the BMS depends only on the number
of claims, the literature on claim amount–dependent BMS is limited. Pinquet (1997)
and Frangos and Vrontos (2001) use a Bayesian model to analyze a rating system
where the cost of claims (considered as the size of the claim) is also considered. The
BMS premiums are used to calculate the final premiums in these articles; thus, the
claim amount is not factored in the classification.

Bonsdorff (2005) investigates the Markov chain properties of a BMS, where both
the claim number and amount are considered in the transition rules. In Bonsdorff
(2008), the analysis is extended to the optimization of the premiums in such a
system. In the article, an algorithm to find the optimal solution of a BMS is also
proposed. The algorithm focuses on the optimization of premiums and calculates
the stationary probabilities with simulation.

In Ágoston et al. (2019), we investigated a case in which we considered a BMS
where the transition rules depend only on the size of claims. We introduced a method
to jointly optimize the premiums and transition rules of such a system. This section
summarizes the results of this article and extends it with a more realistic model.

7.1 Preliminaries

Some parameters and assumptions are the same for this model as in the model
mentioned in section 4. Among the policyholders, there are I disjoint risk groups.
We denote φi as the ratio of the group i among all of the policyholders. The insurance
company knows the size and distributions of each group but cannot distinguish them.
Hence, the insurer does not know which group a specific policyholder belongs to.
The (aggregate) claim amount is described with a random variable Li for group i,
which differs in each risk group.

We consider a BM system with K + 1 classes, but the transition rules depend
on the claim amount instead of the number. Class 0 is the worst one (i.e., it has
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the highest premium) and class K is the best one (with the lowest premium). We
denote the premium of class k with πk. We then assume that the payment of the
policyholders only depends on the BMS premium.

To jointly optimize the premiums and re-classifications based on the claim
amount, the non-linear model would look as follows:

min
I∑
i=1

K∑
k=0

φigik (NLP1.obj)

Subject to

πkc
i
k + gik ≥ Licik ∀i, k (NLP1.1)

πkc
i
k − gik ≤ Licik ∀i, k (NLP1.2)

πk−1 ≥ πk k = 1, . . . , K (NLP1.3)
K∑
k=0

cik = φi ∀i (NLP1.4)

cik =
K∑
j=0

cijp
i
j,k ∀i, k (NLP1.5)

`kh ≥ `kh+1 + ζ h = 1, . . . K − 1 (NLP1.6)

pik,h = 1− Fi(`k0) ∀i, k;h = 0

pik,h = Fi(`
k
h−1)− Fi(`kh) ∀i, k;h = 1, . . . , K − 1

pik,h = Fi(`
k
h) ∀i, k;h = K

(NLP1.7)

πk ≥ 0 ∀k
gik, c

i
k ≥ 0 ∀k, i
`kh ≥ 0 ∀k, h = 1, . . . , K

1 ≥ pik,h ≥ 0 ∀k, i, h = 0, . . . , K

Here, pik,h represents the transition probabilities of the type i policyholders from
class k to class h. This value depends on the transition rules, which are, in this case,
determined by the claim amount.

To consider the transition rules based on the claim amount, we introduce K
breakpoint variables for every class k: `k1 > `k2 > · · · > `kK . We have to presume a
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strict inequality between the breakpoints, otherwise, the Markov chain of the clas-
sification may not be regular. Hence, we introduce a positive ζ auxiliary parameter
to ensure the strict monotony of the breakpoints with constraint (NLP1.6).

The transition rules are based on these breakpoints: if a policyholder is assigned
to class k and its claim amount is between `kh and `kh+1, the policyholder will be
transitioned to class h in the next period. If the policyholder’s claim amount is
higher than `k1, he/she gets into class 0; if it is less than `kK , then the policyholder
gets into class K.

Constraint NLP1.7 connects the transition probabilities to the claim amount
distribution. Fi(`kh) denotes the cumulative distribution function (CDF) of the claim
amounts for the type i policyholders; hence, Fi(`kh) = P(x < `kh), where x represents
a claim amount.

Note that (NLP1.1), (NLP1.2) and (NLP1.5) are non-linear constraints. More-
over, we assume that the CDF is nonlinear.

In this case, for the transition rules, we have to find K2 +K optimal breakpoints.
As section 2.1 mentions, usually there are more than 15 classes in practice. Hence,
the number of optimal breakpoints can be quite large.

We can reduce the number of breakpoints if they do not differ in the classes.
Accordingly, we define 2K + 1 breakpoints `−K > `−(K−1) > · · · > `−1 > `0 > `1 >

· · · > `K .
In this case, if the claim amount is between `h and `h+1, the policyholder moves

h classes upward (if h < 0, it will be a downward move). Surely, the policyholders
cannot move higher than class K or lower than class 0; thus, in such cases, the
policyholder will get to (or remain in) class K or class 0 respectively. For instance,
suppose that a policyholder is currently in class 2, and they should move three
classes downward, meaning the policyholder should go to (the non-existing) class
-1. In this case, the policyholder will be classified into class 0, so the total number
of downward steps will only be two.
This approach is equivalent to the unified transition rules of the number of claims,
introduced in 4.3. Therefore, each class has the same transition rule. However,
instead of the number of claims, claim amount intervals determine the classification
of the next period.

In the second approach, we can further reduce the number of breakpoints. We
can consider breakpoints `−D > `−(D−1) > · · · > `−1 > `0 > `1 > · · · > `U with
U,D < K. Thus, the policyholder can move downward at most D classes and
upward at most U classes.

In both of the previously shown approaches, the policyholder can move upward
and downward one class, with positive probability. Hence, if we consider the BMS
classification process as a Markov chain, it will have the irreducibility property.
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Besides, because of the finite number of classes associated with these transition
rules, the Markov chain is aperiodic as well. Thus, the policyholders’ classification
will be a regular Markov chain, as in the previously researched models. Therefore,
there exist unique ci0, ..., ciK stationary probabilities.

7.2 Optimization process

The goal of the optimization is to determine the optimal breakpoints and premiums.
The only purpose of the BMS in this model is to decrease the welfare loss caused
by adverse selection.

The perfect outcome would entail each policy holder paying their expected claim
amount value (E(Li)). However, in the investigated BM system, this target is un-
reachable. Therefore, our goal is to get as close to the perfect situation as possible.

The optimization problem is non-linear. When transition rules depend on the
number of claims, we could linearize the model by introducing binary variables for
each possibility of the transition rule. If the claim amount determines the transition
rules, this approach is inadequate since there are too many possibilities. In this case,
we would need to introduce binary variables for each possible interval. Hence, we
approximate the optimal solution.

With fixed breakpoints and an assumption about the policyholders’ claim amount
distribution, we can calculate the stationary probabilities cik.

After determining the stationary probabilities, we can calculate the optimal pre-
miums with the LP model presented in section 4.1. We also consider the profitability
constraint in the model.

To solve this linear programming model, we have to compute the stationary prob-
abilities that depend on the breakpoints. We (randomly) generate these breakpoints
and then optimize the LP with the calculated stationary probabilities.

Let us assume a BM system with two classes. We use the second approach for
the transition rules; thus, we have to determine only two breakpoints. We assume
that there are two equally sized groups among the policyholders.

Figure 29 shows the values of the objective function of the LP model discussed
in section 4.1 with changing breakpoints. For the graph on the left, we assumed
6200- and 9300-exponential distributions and for the graph on the right side, these
results come from a 3500- and 7400-exponential distributions. In both cases, the
objective function’s value gives a non-convex, smooth surface with local minima.

If we have more classes, then the dimension of the optimization problem increases
quadratically. If we use a method like the Monte Carlo method, we will need a very
large number of random points, which is not fortunate.

Using a classical optimization tool, such as the Newton–Raphson method, is also
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Figure 29: The expected value of absolute deviation in the case of two
groups, depending on breakpoints

not a suitable solution because we expect multiple local optima, and the surface is
not convex.

An initial solution should be determined to optimize the model with the Newton–
Raphson method. However, in this case, it is not simple to give such an initial solu-
tion. Although it is possible to approximate a good initial solution and then improve
it with the Newton–Raphson method, we cannot be sure that the Jacobian matrix
of the conditions is invertible since it depends on the claim amount distribution.

Furthermore, as Figure 29 shows, the surface is non-convex, even in this very
simple example. If the size of the problem is more extensive (with more classes and
risk groups), the optimal solution may not be calculated within a reasonable time
using classical optimization methods.

Due to these reasons, we decided to only approximate the optimal solution of
this model. We assumed that by using a metaheuristic, a result close to the optimal
solution could be found.

Although it may be possible to determine the exact solution with classical op-
timization tools, such as the Newton–Raphson method, we did not investigate it,
even in smaller instances. This was because we think the results would not be much
better, but a classical optimization tool may not be generally applicable.

Therefore, we use simulated annealing, which is more suitable for problems such
as these.

7.2.1 Simulated annealing

Simulated annealing is a very simple heuristical search algorithm (see for instance
Datta et al. (2019)). It first appeared in Kirkpatrick et al. (1983). It starts by
considering a random solution as the actual solution: sact. In each iteration, the
algorithm examines a neighbor of sact. If the chosen neighbor is more optimal
regarding the objective function, we consider that the new sact. In the following
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sact = Random solution
while temperature > min_temperature do

for t in Time do
sn = neighbour(sact) if sn > sact then

if e(− δ
temperature

) > random(0, 1) then
sact = sn

end
else

sact = sn
end

end
decrease temperature

end

Figure 30: Simulated annealing (Kirkpatrick et al. (1983))

iterations, we examine the neighbors of the new actual solutions.

However, to avoid local extremes of the objective function, we can also change
sact if the Boltzmann condition is accepted: e(− δ

T
) > random(0, 1), where δ is the

difference between sact and the neighbor in the objective function, and T is a pa-
rameter that controls the maximum number of iterations of the algorithm. The
Boltzmann condition basically means that if δ is not really high (i.e., the objective
function of the neighbor is not much worse than sact), then we can accept the neigh-
bor as the new sact with a high probability, even if it is less optimal than sact. With
this extra condition in the search process, we can escape local extremes present on
our non-convex surfaces as seen in Figure 29.

The parameter T is the temperature parameter that controls the annealing sched-
ule. The starting value for T is given as a parameter, and it continuously decreases
with each iteration of the algorithm until it reaches a minimum temperature, given
also as a parameter. When the minimum temperature is reached, the algorithm ter-
minates. We can also specify a time parameter that gives the number of iterations
to use the same T . This way the decrease of T is not continuous but monotonous.
Together with the Boltzmann condition, the annealing schedule controlled by T can
indicate that the probability for accepting a worse solution as sact is high at the first
few iterations and relatively low at the last iterations when we need the formation
of a stable convergence.

This algorithm is very similar to annealing in metallurgy, a technique involving
heating and controlled cooling of a material to increase the size of its crystals and
reduce their defects. This is why the algorithm is named simulated annealing. In our
applications, we chose the starting value of T as 0.001 and the minimum temperature
as 0.0001. The time spent on each T is 10 iterations, and T decreases by 0.0001
with every 10 iterations. This way, if we have constant δ of 0.001, the probability
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of accepting a worse neighbor as sact decreases from 0.3679 to 0.00005 during the
iterations.

7.2.2 Numerical results

We used an Intel Core i5-7300HQ CPU 2,50 GHz computer with 8 GB DDR3 RAM
for calculating the numerical results. We ran the program in Python 3.7.3. and
used the Cbc 2.10. solver for the optimization of the model introduced in section
4.1. We considered the profitability constraint in the model.

In our numerical examination, we assumed two risk groups with different ex-
pected claim amounts with exponential distribution. We then calculated a BM
system with four classes, and we used the second type approach. Therefore, in this
case, we only need to determine three breakpoints.

E(L1) E(L2) Best Obj. SD of Obj. π0 π1 π2 π3 OP1 OP2

500 550 22.15 0.0091 550 550 500 500 4.88% -3.62%
500 600 23.13 1.8348 600 500 500 500 9.29% -2.97%
500 700 38.11 0.0363 700 500 500 500 5.61% -3.99%
500 900 45.83 1.2438 900 500 500 500 10.91% -4.12%
500 1200 39.05 3.1273 1200 1200 500 500 7.83% -3.25%
500 1600 21.78 0.4441 1600 1600 500 500 4.36% -1.36%
500 2100 10.83 0.0671 2100 2100 500 500 2.17% -0.52%
500 3100 3.90 0.0005 3100 3100 500 500 0.78% -0.13%
500 5100 1.14 0.0004 5100 5100 500 500 0.23% -0.02%
500 9100 0.30 0.0024 9100 9100 500 500 0.06% 0.00%

Table 14: Results of exponential distributions
The first two columns show the parameters of the two groups, and the two

adjacent the best objective value and the standard deviations of the objective
values, followed by the premiums of each class, and lastly the overpayment

(OP) of each group

The results of ten different models are shown in Table 14. In each case, the
optimal premium scale is of a staircase type with only two steps. The lower premium
is always equal to the expected claim amount of the less risky group, while the higher
premium is consistently matched with the same parameter of the riskier one.

The simulated annealing always stopped after 470 seconds. The standard devi-
ations of the objective values are relatively small, as seen in the fourth column.

The columns OP show the overpayment of the risk groups, compared with the
expected claim amount. The less risky group is always paying more than what cor-
responds to their real risk, while the riskier group almost always pays less. However,
the rate of the overpayment becomes smaller if the difference between the groups’
parameters is higher. Thus, the BM system can handle adverse selection in a better
way if the difference between the risks of the policyholders is high.

The breakpoints of the models can be seen in Figure 31. The lowest breakpoint
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Figure 31: The changes of the breakpoints in the models.

always stays close to zero; however, the other two higher breakpoints grow together
with the difference in parameters. The two higher breakpoints in most cases are over
the higher-risk policyholder’s parameter, except the last case where the difference
between the policyholders is the highest.

7.3 Consideration of the claim occurrence with the claim

amount

In the previous example, the probability of claim occurrence is relatively high be-
cause we only considered the exponential distribution for the claim amount. We
also wanted to investigate a more realistic model wherein the claim numbers are
also considered. Hence, in the model, we assume a distribution for the number of
claims and another distribution for the claim amount. For the sake of simplicity,
we suppose that the policyholders move one class upward in the BMS if they did
not have any claim during a period. And in this model, only the claim amount
determines the downward steps.

Hence, if at least a claim occurs in the period, the policyholders move downward.
The number of classes the policyholder will move in this case is solely determined
by the claim amount. Thus, we only have to determine breakpoints for moving
downward in the system.

For the sake of simplicity, we considered a simple model with either no claim or
at least one claim. If there is at least one claim, we only consider the cumulative
claim amount. For the distribution of the claim amount, we consider exponential
distribution.
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We wanted to investigate BMSs with more classes and therefore with more break-
points. To optimize this model, using a classical optimization tool is not suitable
because of the same reasons mentioned in section 7.2. However, we wanted to
compare the simulated annealing with at least one alternative approach. Hence,
we also tested a genetic algorithm, called the biased random-key genetic algorithm
(BRKGA) for this model.

7.3.1 Biased random-key genetic algorithm

k = 1
while termination conditions not met do

if k = 1 then
Generate P initial random-keys
for p in Population do

Solution[k][p] = LP(initial random-keys)
end

else
for p in Population do

for the size of the elite population:
Solution[k][p] = Elites[k-1][p]

for the size of the mutant population:
Solution[k][p] = LP(new random-keys)

for the rest:
Solution[k][p] = LP(mating(Elites[k-1],
Rest[k-1], biased-probability))

end
end
Separate Solution[k] into Elite[k]-set and Rest[k]-set.
k += 1

end

Figure 32: Biased random-key genetic algorithm (Gonçalves and
Resende (2010))

This genetic algorithm was introduced in Gonçalves and Resende (2010). In
the genetic algorithm, we consider a population of solutions that evolve during a
specified time. In this type of algorithm, we consider random-keys to determine
the solutions. The random-keys are vectors with [0, 1) elements; often, the elements
are called alleles. In our application, we considered the breakpoints as the random-
keys. Hence, we multiply the elements of the vector to be suitable breakpoints.
From a random-key vector, we calculate the corresponding solution with the model
of section 4.1.

At the beginning of the algorithm, we generate a population with P random-
keys. For each random-key (breakpoint), we calculate its optimal solution. Then,
we separate the solutions into an elite set and a non-elite set. The better solutions
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belong to the elite set; the rest is classified into the non-elite set. A parameter
determines the size of the elite set.

We produce new generations until we cannot improve the best solution for some
periods. In each period, we copy the elite set into the subsequent period’s population.
We also generate some mutant solutions that are generated from new random-keys.
For all of the population’s remaining solutions, we mate a random elite with a
non-elite from the previous period. In the mating, we use a parametrized uniform
crossover. Let us call the new random-key the child of an elite and non-elite parent.
Each element (allele) of the child’s random-key vector comes from one of the parents.
Therefore, for each allele, we flip a biased coin to choose which parent passes the
allele to the child. There is a bias toward the elite parent in the mating; hence, the
child is more likely to get alleles with a good solution. At the end of each period,
we separate the period’s solutions into an elite set and a non-elite set. At the end
of the algorithm, we choose the best solution.

Parameter tuning
The parameters of the BRKGA algorithm are the ratio of elites, mutants, the

mating bias toward the elites, and the size of a generation. Gonçalves and Resende
(2010) recommends intervals for the parameters that we have provided in Table 15.

recommended
ratio of elites (0.1;0.25)
ratio of mutants (0.1;0.3)
mating bias towards the elites (0.5;0.8)

Table 15: Recommended BRKGA parameter intervals

To find parameters that result in stable solutions, we used a bootstrap-type
search. We generated 100 small BMS instances with five classes and two random
risk groups (claim numbers are the same, only the claim amount differs). The
expected claims were generated from a [10% : 30%] interval, and the expected
claim amounts were generated from a [100 : 2000] interval. For each instance, we
generated ten different combinations of BRKGA parameters, and we optimized the
model five times with each parameter. We then calculated the standard deviations
of the optimal solutions (standardized to the best optimal solution). In the end, the
parameters that had the smallest average standard deviation of optimal solutions
were chosen. We considered 20 for the size of a population for the determination
of the other parameters. We found that the results were the most stable when the
ratio of the elites was 20%, the ratio of mutants was 25%, and the mating bias was
70%.

For the size of the population, Gonçalves and Resende (2010) recommend using
the multiplication of the number of keys. We have as many keys as the breakpoints,
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which is equal to the number of classes minus one. To find the optimal population
size, we generated 1000 random instances and optimized the BRKGA with differ-
ent populations. We considered populations of multiplication of the breakpoints by
0.5, 1, 2, . . . , 10. To have at least one elite and mutant in each population, we in-
creased the number of classes to eleven. Thus, there are 10 breakpoints in this model.
Figure 33 presents the objective compared with the smallest size of population and
the runtimes of the computations.

Figure 33: Objective and time change as the size of the population
increases

On the left side, the objective improvement is shown, compared with the smallest
population. As the population increases, a decrease in the objective is noticeable.
However, the improvements of the populations that are larger than 15 are negligible.
On the right side, the runtime is depicted. As the population increases, the running
time, on average, almost linearly increases. For getting a good solution within a
reasonable time, we chose a population that is three times greater than the number
of breakpoints because it seems that the objective cannot improve much further,
but the computational time increases significantly.

7.3.2 Numerical results

We used the same desktop computer for the numerical calculation as in section 4.4.
In the numerical experiments, we considered two parameters for the risk groups:
expected claim amount and the probability of a claim in a period.

We considered two types of policyholders regarding their claim amount distri-
bution. Also, we assumed two types of policyholders in terms of claim occurrence.
The policyholders with a higher probability of a claim are considered type A poli-
cyholders, and otherwise as type B. Policyholders with a less expected value of the
claim amount are type L policyholders, and otherwise type H. Hence, in each case,
we considered four risk groups: AL;AH;BL and BH.

Comparison of the genetic algorithm and simulated annealing
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To choose between simulated annealing (SA) and the genetic algorithm, we gen-
erated 100 instances of four different setups. We considered setups with low (between
0.01 and 0.05) and high (between 0.1 and 0.3) expected claims. Furthermore, we
utilized setups where the difference between the expected claim size is low and high.
We searched for an optimal solution of 5-, 10-, and 15-class BMSs with SA and
BRKGA.

Figure 34: Objective and time increase of the BRKGA compared to the SA

Figure 34 presents the objective and the time difference distribution of the
BRKGA and the SA of all instances in each setup. On the left, the objective change
of the BRKGA compared with the SA is given. A value indicates by how many
percentage points the BRKGA changed the objective of the SA. Hence, a negative
value means that BRKGA had a better result. All of the setups’ distributions are
presented ((’low’, ’high’) corresponds to the cases with low expected claim number
and high difference between the claim size). The 5-class results are at the top; the
10-class is in the middle; and the 15-class case’s results are at the bottom.

When the expected claims are lower, the BRKGA improvement is almost negligi-
ble. However, when the expected claims are higher, the improvement of the BRKGA

110



in comparison with the SA is more noticeable. When the claim size differs more,
the improvement is generally much greater. As the number of classes increases, the
BRKGA gets even better than the SA.

In terms of the running time, the SA was much faster than the BRKGA. On the
right side, the increase of the BRKGA’s computational time compared with the SA
is presented. In all of the cases, the SA is much faster than the BRKGA. And if the
number of classes increases, the difference becomes much higher.

Even though the SA was significantly faster, the BRKGA could be calculated
within a reasonable time. And because the BRKGA resulted in better objectives,
we decided to use the BRKGA for the larger, more realistic instances.

Testing the impact of the policyholders’ parameters
Table 16 presents the four scenarios we investigated.

Risk group AL AH BL BH

case 1 claim probability 10% 10% 20% 20%
expected claim amount 1000 2000 1000 2000

case 2 claim probability 10% 10% 20% 20%
expected claim amount 1400 1600 1400 1600

case 3 claim probability 1% 1% 2% 2%
expected claim amount 1000 2000 1000 2000

case 4 claim probability 1% 1% 2% 2%
expected claim amount 1400 1600 1400 1600

Table 16: Parameters of the risk groups in each case

Hence in cases 1 and 2, the claims happen more frequently than in cases 3 and 4.
Also, in the first two cases, the difference between the A and B types of policyholders
is higher. According to the results of section 5.4, the BMS, which only considers the
claim number, would be more efficient than the BMS of cases 3 and 4.

In cases 1 and 3, the difference between the claim amount is smaller for the risk
groups than in cases two and four. In these experiments, we left out the profitability
constraint.

Table 17 presents the objective values and the OP values of the risk groups. In
each case, we considered a BMS with 10, 20, or 30 classes. The row pertaining to
objective in the table shows the improvement of the objective value over the result
of the 10-class BMS. In each case, it is decreasing as the size of the BMS increases.
In cases 1 and 2, it is more noticeable than in cases 3 and 4. Hence, if the probability
of claim occurrence is small, adding more classes to the BMS does not improve the
solution. Thus, the results are similar to the outcome described in section 5.4. When
the claim amount was not considered and the claim probabilities were small, even
100 classes could not decrease the risk groups’ OP values significantly.
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Case 1 Case 2
Class 10 20 30 10 20 30
Objective 100% 88% 76% 100% 76% 60%
OPAL 101.89% 101.77% 100.77% 45.07% 30.31% 24.95%
OPAH 5.69% 8.45% 7.25% 27.47% 14.99% 11.06%
OPBL 5.51% 9.05% 9.68% -12.60% -10.50% -4.62%
OPBH -39.22% -27.64% -19.97% -23.22% -21.20% -15.75%

Case 3 Case 4
Class 10 20 30 10 20 30
Objective 100% 100% 100% 100% 98% 97%
OPAL 100.28% 100.40% 100.77% 17.08% 18.69% 20.37%
OPAH 0.93% 1.29% 2.12% 2.55% 4.12% 5.73%
OPBL 0.31% 0.42% 0.85% -40.03% -38.40% -36.71%
OPBH -49.04% -48.67% -47.75% -47.42% -45.84% -44.21%

Table 17: Results of the 4 cases

Similarly, in this model, when the claim probabilities are smaller in general, the
system cannot distinguish the risk groups that efficiently.

The OP values present the relative overpayments of the risk groups. In this
consideration, case 1 and case 3 are similar to each other. In both cases, the over-
payment is close to zero for the two middle groups (the AH and the BL. Their
payment is relatively fair, compared with the other two risk groups. The very risky
policyholders (BH) pay much less than their fair premium. The least risky policy-
holders, however, pay premiums more than twice their fair price. In these two cases,
every risk group except BH pays more than the fair premium. Cases 2 and 4 are
similar in a way that all of the risk groups’ over- and underpayment is similar: AL
pays much more, and AH pays a bit more than their fair premium. Furthermore,
BL and BH pay less. Hence, if the difference between the expected claim amount
is large, the system is not fair to the more extreme policyholders. Those who have
a small claim amount probability pay much more, and those who have really high
expected claims pay much less.

Breakpoints in solutions

Figure 35 presents the breakpoints of each case’s 30-class BMS. For better vis-
ibility, in the figure, we depicted the breakpoint as the percentage to the highest
breakpoint. In our computations, we set the highest breakpoint to the value, where
the exponential distribution probability becomes exactly one if we round the prob-
ability to 4 digits.

None of the breakpoints increases linearly. Also, it is noted that in each case,
there is one large step between the breakpoints. In case 1, the breakpoints start
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1Figure 35: The breakpoints of the four cases. Represented in the
percentage of the highest breakpoint(29).

almost linearly, and then at around the tenth breakpoint, there is a huge increase.
This increase occurs around the fifth breakpoint for case 2 and around fifteenth
breakpoint for case 4. For case 3, there is a big step between breakpoints 20 to 24.

For cases 2 and 4, the first few breakpoints are really close to zero. Hence, in
these cases, in the event of any claim, the policyholders are likely to fall multiple
classes.

However, even though the change in the breakpoints does not seem to increase
linearly, the breakpoints with a higher number are not as relevant. For comparison,
we also calculated the optimal premiums with linearly increasing breakpoints. It was
thus found that the objective value of the models with linearly increasing breakpoints
was worse in each case. In case 1, it was worse with 5.9%. In Case 2, it was much
worse, with the decrease being 24.3%. Presumably, the result was much worse for
Case 2 because there is a huge step after the 5th breakpoint. On the other hand, for
case 1, the first ten breakpoints increased almost linearly. Therefore, the difference
is much smaller.

Interestingly for Cases 3 and 4, the difference was not that huge: for case 3, the
increase was only 0.4%, and for case 4, it was 3.0%. Therefore, even though the
overall increase between the breakpoints does not seem to be linear, the first few
breakpoints have more weights.

To further analyze the reasons behind it, we calculated the probabilities of re-
classification between the periods if there is a claim.

Probability of reclassification
Figure 36 illustrates the reclassification distribution of a claim from the class 29.

Therefore, for each class, the probability of the policyholders will be assigned to this
class if they are currently in class 29 and have a claim.

In case 1, if the policyholders have any claim, they are very likely to fall less than
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5 classes. The type L policyholders have more than 40% probability for one class
reduction when there is a claim. The other type, however, has a higher probability
of stepping down more classes in the system.

In case 2, the policyholders’ class reduction is around 6 classes, with almost any
claim amount. If we only consider the number of claims, the optimal transition rules
will be exactly 5 classes reduction in case of a claim. Hence, if the expected claim
amount is similar among the risk groups, the consideration of only the number of
claims has almost the same outcome. However, if we consider the claim amount, it
gives slightly more possibilities to distinguish the policyholders since in case 2, the
five class reduction is not with 100% probability.

In case 3, it is around four classes. In case 4, the policyholders are likely re-
classified around 3–17 class under. If we only consider the number of claims, the
transition rules would be 29 classes reduction when a claim occurs. Hence the tran-
sition rules of the claim amount have very different results, unlike in cases 1 and
2.

Compared with the breakpoint values, in Figure 35, the large leap corresponds
to the reclassification probability only in case 2. In this case, the huge leap results in
a large possibility of reduction around five classes when at least one claim occurs. In
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the other cases, the huge increase in the breakpoint value does not seem noticeable
in the probabilities. In case 1, the probability of stepping more than ten classes
(where the increase in the breakpoint value is noticeable) is around zero for type L
policyholders but higher for the other one. In cases 3 and 4, the large leap is over
the 20th breakpoint. However, the probability of more than 20 class reductions is
almost zero in both cases.

7.3.3 Case Study

Currently, in Hungary, only the number of claims determines the transition rules in
the MTPL insurance. In the previously presented case studies, we analyzed vehicle
insurance data of an insurance company that operates in Hungary. Unfortunately,
the claim amounts that were paid are not listed in this data. However, two variables
indicate the claim amounts. Each policyholder with at least a claim has a variable
showing which decile the claim amount belonged to. Also, another variable shows
the classifications of the claim amounts if the claims are separated into ten equal
length intervals.

Because we analyzed the Hungarian BMS in the previous sections of the dis-
sertation, we did not seek to analyze a different system for this model. Hence, we
estimated claim amounts from another dataset. We used an open data library from
R, the dataCar dataset from the insuranceData library.

By considering the deciles and range variables, we generated a claim amount
for each policyholder with at least one claim in the Hungarian data. We used the
insurance data’s claim amount distribution as a reference for the generation.

Our intention was to compare two models: when the transition rule depends
only on the number of claims (currently used system) and when there is a claim,
the transition depends only on the claim amount (as in section 7.3.2). When only
the number of claims matters, we used the model introduced in section 5.1. The
profit constraint was not considered in any of these models. To make the comparison
easier, we assumed that during any period, one claim can occur at most.

We used the same risk groups as in section 5.5. However, we separated each
risk groups further by the claim amounts. We estimated a regression tree for each
risk group to further separate the group. In each regression tree, the target variable
was the claim amounts, and the features were the same variables that we used to
create the original risk groups. Table 18 provides the estimated risk groups expected
claims amounts and claim occurrence probabilities (first two columns).

Overall, we could separate 17 risk groups. The first column presents the proba-
bility of claim occurrence in a period, followed by the expected claim amount and
the risk group ratio within the whole population. For simplicity, we assumed that
all of the risk groups’ claim amount distribution is exponentially distributed.
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Claim probability Expected claim size Ratio OP
claim size claim number number with size

1.8%

1156 2% 262.3%

50.0%

327.7%
1858 1% 125.4% 166.1%
2216 2% 89.0% 123.1%
2897 6% 44.7% 70.7%

2.7%
1922 3% 45.3%

0.0%
71.6%

2792 35% 0.1% 18.1%
3244 6% -13.7% 1.6%

3.2%

1739 3% 35.5%

-15.6%

60.1%
2300 16% 2.5% 21.0%
2718 4% -13.2% 2.4%
3244 3% -27.1% -14.2%

4.1%
3813 1% -51.3%

-34.0%
-43.0%

5136 7% -63.1% -57.7%
5924 3% -67.4% -63.3%

5.0%
5144 5% -69.4%

-45.8%
-65.3%

7520 1% -77.3% -76.2%
8895 1% -79.8% -79.9%

Table 18: Parameters of the risk groups and the results of the models.

With both methods, we optimized a 30-class BMS. The three OP columns present
the OP values of each risk groups for each model. The first column presents the
OP values of the model where the negative transition rules depend only on the
claim amount (we estimated the results with the BRKGA). The next two columns
present the OP results of the model that were introduced in section 5.1. The column
on the left relates to the assumption that the claim amount is equal in each risk
groups. The right column presents the OP values of the claim number model with
the consideration of the estimated claim amounts.

Overall, the trend of the OP values are similar in each column: risk groups with
lower risks generally pay more than what would be fair, and the riskier policyholders
pay less. However, the amount of overpayment differs. In general, the more extreme
risk groups pay less when the transition rules depend on the claim amount. The
least risky groups pay less – they get closer to their fair premium. Nevertheless, the
risky policyholders also pay less – they get farther from their fair premium.

Even though the OP values differ significantly for some risk groups in the two
solutions, the claim amount model also faces similar limitations as the claim number
model. Figure 37 presents the difference between expected payment and expected
claim amounts for each risk groups in both models. In general, when the claim
occurrence determines the classification solely, almost any type of policyholder pays
more. And, when transition rules depend on the claim amount, the policyholders
generally pay less.

The blue line in the background depicts the ratio of the risk groups. It is also
similar in both models that the risk group with the majority gets the fairest expected
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Figure 37: Difference between the expected payments and claim-payments

premium. It seems that the risk group with the majority has to pay more than their
fair premium in the model, where the transition rules depend on the claim number.
However, it only appears that way because the claim amount was not considered in
the optimization of this model. With uniform claim amounts, the OP value of the
risk group 2.7% is almost 0.
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Figure 38 presents the probability of reclassification for each risk group from class
30 if there is a claim in a period. It is noticeable that if the size of the expected
claim is small, there is a high probability that the policyholder will be reclassified
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1–3 classes. When the expected claim size is larger, there is also a chance for more
class reduction. Over 5000 expected claims, it is also possible that a policyholder
falls 18 classes. When we considered only the number of claims in the transition
rules, the rule was 9 class reduction if a claim occurs. Seemingly, the expected claim
size model is more indulgent. Hence, there is a small probability that a policyholder
will fall as many classes. Nevertheless, in this case, it is also possible to fall more
classes. Therefore, transition rules that depend on the claim amount give more
flexibility to the reclassifications.

7.3.4 Summary

In practice, usually, the transition rules only depend on the number of claims, and
the sizes of the claims does not influence the classification. In this section, we
considered BMS, where the classification only depends on the claim amount. Finding
optimal classification rules and premiums require a non-linear optimization model.
We compared simulated annealing (SA) and biased random-key genetic algorithm
(BRKGA) to approximate the optimal solution. We found that the SA is much
faster than the BRKGA at larger instances; however, the BRKGA generally found
better results.

We compared the claim size model with the original models – where the transition
rules only depend on the number of claims. A case study on realistic data is also
presented. We found that even though claim amounts can result in more flexible
classifications, the efficiency of BMS (in terms of separating the risk groups) was
very similar to the results of the claim number model.
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8 Summary

In the dissertation, we presented research on the Bonus-Malus System (BMS). This
system is mostly used in Motor third-party liability insurances to separate the risky
drivers from the less risky ones. Another aim is to incentivize risk aversion for the
drivers.

A BMS consists of several classes, and each class has a premium. The policy-
holders (drivers) are classified into these classes over the periods of the insurance
contract. Hence, in the base model, the policyholder’s payment in a period only
depends on the class where he/she is classified into.

In the literature on optimizing a BMS, the rules over the classification are usually
considered as the parameters, and the premiums are the variables. In some countries,
the rules of classification are determined by law. Hence, the insurance companies
can only optimize the premiums. However, as we presented in section 2.1, in many
European countries, the regulations became liberated in the past 25 years. Hence
in these countries the insurance companies can optimize their own BMS.

In section 4.1, we presented an LP model where the premiums were the optimiza-
tion variables. In section 4.2, we put forth a MILP model where we may optimize
the transition rules instead of the premiums. In this model, we introduced binary
variables for each possible transition rule.

This section also presented a model for the joint optimization of the premiums
and transition rules. We found that there are finite possibilities of the premiums in
the optimal solution with the considered objective function. Hence, we introduced
binary variables for each possibility in each class.

We also proposed a modification of this model, where instead of the stationary
probability, we may consider multi-period optimization. We also extended this MILP
model to optimize the number of classes besides the premiums and the transition
rules.

We conducted numerical tests of these models. We found that the BMS is the
most effective if there are many BMS classes and the difference between the policy-
holders’ parameters is large. However, using too many classes in a BMS may not
be viable in practice due to the contract exists only for a finite number of periods.
Hence, we investigated the multi-period model, where we got a slightly different
result than the stationary model, which assumes the contract will never end. How-
ever, even in this case, the optimal result was to use more classes than usually used
in practice.

We also conducted research on realistic parameters calculated from Hungarian
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data. We found that more classes and more rigid transition rules would separate
the policyholders better than the currently used system.

In the models of section 4, we assumed that the policyholders only pay the BMS’s
premium. However, in practice, insurance companies often use other statistical
methods besides the BMS to approximate the policyholders’ real probabilities. In
section 6, we compared techniques for matching the BMS and statistical method’s
premium in the optimization of the BMS. Using the BMS and statistical method
jointly has almost always resulted in a better solution than when we considered
only one of them. The most effective method was when we optimized BMSs for
each type of policyholder, and we also considered the statistical method’s result in
the payments. However, the results can be a bit unstable because an optimized
BMS’s effectiveness depends on the risk groups’ parameters.

In section 6.4, we compared the techniques using parameters of real data. We
considered two different approaches for the determination of the parameters. We
obtained slightly different results, but in both cases, considering both BMS and
statistical methods resulted in the most effective outcome.

In practice, only the number of claims are considered in the transition rules of
the BMS. Hence, the premiums are independent of the claim amount. In section
7, we presented a study where instead of the number of claims, the claim amount
determines the transition rules. In this BMS, we consider breakpoints of the claim
amount for the classification rule. The interval of two breakpoints determines the
policyholder’s class in the subsequent periods. In the optimization model, we have to
optimize the premiums as well as the breakpoints’ exact values. For the premiums,
we used the LP model of section 4.1. For finding relatively good breakpoints, we used
heuristics. Similarly to the study, where only the number of the claims mattered,
the BMS of this model is more efficient when there are more classes. Also, it can
separate the policyholders better if the difference between their parameters is large.
When the claim occurrence probability was higher, the separation of the system was
also more effective.
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9 Appendix

9.1 List of Notations

List of mathematical notations, used in models.

Greek letter

ε` How much the premium changes in layer ` compared to the default premium.

ζ Auxiliary parameter to enforce the strict monotony of the breakpoints

ηp Observable variables of the policyholder p

Θ Final period in multi-period optimization

λi Expected claim amount for risk group i

λim Probability of the occurrence of m claims for the policyholders of type i

Λp Personal risk related to the policyholder p

Λ̂p Insurance company’s estimation of the p policyholder’s risk

ρp Unobservable variables of the policyholder p

πk Premium of class k

τ Very small value to exclude the non-irreducible Markov chains from the op-
timization

φi Proportion of the type i policyholders among all of the policyholders

Ω The overall cross-financing of the policyholders in a BMS

Lowercase letter

cik Stationary probability that type i policyholders is classified into class k

ck,t Probability that the policyholder in period t is classified into class k

cik,t Probability that type i policyholders is classified into class k at period t

dik,j,m,t Probability of an individual from group i and from class k at period t moves
to class k + j in the next period
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dik,j,m Probability of an individual from group i and from class k moves to class
k + j in the next period

gik Absolute deviations of expected payment to expected claims of the group i

in class k

gik,t Absolute deviations of expected payment to expected claims of the group i

in class k at period t

n Number of observable parameters

o`,ik Continuous nonnegative variable, if O`
k = 1, then o`,ik is equal to cikε`, other-

wise 0

o`,ik,t Continuous nonnegative variable, if O`
k = 1, then o`,ik,t is equal to c

i
k,tε

`, other-
wise 0

pij,k Transition probability of the type i policyholders from the class j to k

pk,l(t) The t-th step transition probabilities from class l to k

r Number of unobservable parameters

Special character

L1 Layers for the premium increases to the expected claims

L2 Layers for the premium increases to the unique premium

OP i Ratio of the paid and the ideal payment of type i policyholders

Uppercase letter

Bk Binary variable, if it is equal to one, then class k is the initial class

Ct Row vector form of the ck,t

Fi() Cumulative distribution function of the ith risk group

I Number of risk groups

J∗ Set of transition rules that lead to a non-irreducible Markov-chain

Jk Domain of j. Jk = [Jk : Jk] for class k

K The class with the lowest premium (there are K + 1 classes indexed from 0

to K)

L Number of layers
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M Highest number of possible claims in a period

O`
k Binary variable, if it is equal to one, then the premium of class k is increased

by ε`

P (t) Matrix with entries pk,l(t)

S` Binary variable, if it is equal to one, if the classes’ layer ` ∈ L2 is active

Tm Transition matrix of claim m

Tj,m,k Binary variable of non-unified transition rule. If it is equal to one, then
policyholders with m claims are moved from class k, j classes in the following
period

Tj,m Binary variable of unified transition rule. If it is equal to one, then policy-
holders with m claims are moved j classes in the following period

Vk Binary variable, if it is equal to one, then class k is closed

Xt The class, where the policyholder is classified in period t
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9.2 Summary of Models

In this section, we present the whole models that we introduced in the dissertation.

9.2.1 Premium scale optimization model with fixed transition rules

The model is presented in section 4.1.

min
I∑
i=1

K∑
k=0

φigik (LP1.obj)

Subject to

πkc
i
k + gik ≥ λicik ∀i, k (LP1.1)

πkc
i
k − gik ≤ λicik ∀i, k (LP1.2)

πk−1 ≥ πk k = 1, . . . , K (LP1.3)

πk ≥ 0 ∀k
gik ≥ 0 ∀k, i

9.2.2 Premium scale optimization model with fixed transition rules with
profit constraint

The model is presented in section 4.1.1.

min
I∑
i=1

K∑
k=0

φigik (LP1.obj)

Subject to

πkc
i
k + gik ≥ λicik ∀i, k (LP1.1)

πkc
i
k − gik ≤ λicik ∀i, k (LP1.2)

πk−1 ≥ πk k = 1, . . . , K (LP1.3)
I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (LP1.4)

πk ≥ 0 ∀k
gik ≥ 0 ∀k, i
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9.2.3 Non-unified transition rules optimization model with fixed premi-
ums

The model is presented in section 4.2.

min
I∑
i=1

K∑
k=0

φigik (MILP1.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik = φi ∀i (MILP1.5)

cik =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m ∀i, k (MILP1.6)

dik,j,m ≥ λimc
i
k − (1− Tj,m,k)φi ∀i, j, k,m (MILP1.7)

I∑
i=1

cik ≥ τ ∀k (MILP1.8)

πkc
i
k + gik ≥ λicik ∀i, k (MILP1.10)

πkc
i
k − gik ≤ λicik ∀i, k (MILP1.11)
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Tj,m,k ∈ (0, 1) ∀j,m, k
gik ≥ 0; cik ≥ 0 ∀k, i

dik,j,m ≥ 0 ∀k, j,m, i.

The profit-constraint can be added to this model as well:

I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (MILP1.9)

9.2.4 Unified transition rules optimization model with fixed premiums

The model is presented in section 4.3.

min
I∑
i=1

K∑
k=0

φigik ((MILP1.obj))

Subject to

J∑
j=J

Tj,m = 1 ∀m (MILP2.1)

J∑
j=1

Tj,0 = 1 (MILP2.2)

−1∑
j=J

Tj,M = 1 (MILP2.3)

J∑
`=j

T`,m ≥ Tj,m+1 ∀j, m = 0, ...,M − 1 (MILP2.4)

K∑
k=0

cik = φi ∀i (MILP1.5)

cik =
0∑

j=J

0∑̀
=j

M∑
m=0

dik−`,j,m k = 0,∀i

cik =
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m k = 1, . . . , K − 1,∀i

cik =
J∑
j=0

j∑̀
=0

M∑
m=0

dik−`,j,m k = K, ∀i

(MILP2.6)
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dik,j,m ≥ λimc
i
k − (1− Tj,m)φi ∀i, j, k,m (MILP2.7)

M∑
m=0

Tjm,m ≤M ∀(j0, j1, . . . , jM) ∈ J∗ (MILP2.8)

πkc
i
k + gik ≥ λicik ∀i, k (MILP1.10)

πkc
i
k − gik ≤ λicik ∀i, k (MILP1.11)

Tj,m ∈ (0, 1) ∀j,m
gik ≥ 0; cik ≥ 0 ∀k, i

dik,j,m ≥ 0 ∀k, j,m, i.

The profit-constraint can be added to this model as well:

I∑
i=1

K∑
k=0

(
πkc

i
k

)
≥

I∑
i=1

φiλi. (MILP1.9)
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9.2.5 Joint optimization of non-unified transition rules and premiums -
stationary model

The model is presented in section 5. Only the non-unified transition rules’ model
was introduced in the dissertation. However, changing the constraints (MILP1.1)-
(MILP1.7) to the unified transition rules optimization model (MILP2.1)-(MILP2.7)
constraints would allow optimizing the unified transition rules with the premiums.

min
I∑
i=1

K∑
k=0

φigik (MILP1.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik = φi ∀i (MILP1.5)

cik =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m ∀i, k (MILP1.6)

dik,j,m ≥ λimc
i
k − (1− Tj,m,k)φi ∀i, j, k,m (MILP1.7)

I∑
i=1

cik ≥ τ ∀k (MILP1.8)

πkc
i
k +

I−1∑
`=1

o`,ik + gik ≥ λicik ∀i, k (MILP3.10)
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πkc
i
k +

I−1∑
`=1

o`,ik − gik ≤ λicik ∀i, k (MILP3.11)

πk +
I−1∑
`=1

ε`O`
k ≥ πk+1 +

I−1∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

I−1∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik ≥ ε`
(
cik − (1−O`

k)
)
∀i, k, ` = 1, . . . , I − 1 (MILP3.14)

o`,ik ≤ ε`cik ∀i, k, ` = 1, . . . , I − 1 (MILP3.15)

o`,ik ≤ ε`O`
k ∀i, k, ` = 1, . . . , I − 1 (MILP3.16)

Tj,m,k ∈ (0, 1) ∀j,m, k
gik ≥ 0; cik ≥ 0 ∀k, i

dik,j,m ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, ` = 2, . . . , I − 1

o`,ik ≥ 0 ∀k, i, ` = 2, . . . , I − 1

9.2.6 Joint optimization of non-unified transition rules and premiums
with the profit constraint - stationary model

The model is presented in section 5.

min
I∑
i=1

K∑
k=0

φigik (MILP1.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)
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max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik = φi ∀i (MILP1.5)

cik =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m ∀i, k (MILP1.6)

dik,j,m ≥ λimc
i
k − (1− Tj,m,k)φi ∀i, j, k,m (MILP1.7)

I∑
i=1

cik ≥ τ ∀k (MILP1.8)

I∑
i=1

φi
K∑
k=0

(
πkc

i
k +

L∑
`=1

o`,ik

)
≥

I∑
i=1

φiλi (MILP4.9)

πkc
i
k +

L∑
`=1

o`,ik + gik ≥ λicik ∀i, k (MILP3.10)

πkc
i
k +

L∑
`=1

o`,ik − gik ≤ λicik ∀i, k (MILP3.11)

πk +
L∑
`=1

ε`O`
k ≥ πk+1 +

L∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik ≥ ε`
(
cik − (1−O`

k)
)
∀i, k, ` = 1, . . . , L (MILP3.14)

o`,ik ≤ ε`cik ∀i, k, ` = 1, . . . , L (MILP3.15)

o`,ik ≤ ε`O`
k ∀i, k, ` = 1, . . . , L (MILP3.16)

K∑
k=0

O`
k ≤ (K + 1)S` ∀` ∈ L2 (MILP4.17)
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∑
`∈L2

S` ≤ 1 (MILP4.18)

Tj,m,k ∈ (0, 1) ∀j,m, k
gik ≥ 0; cik ≥ 0 ∀k, i

dik,j,m ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, `
o`,ik ≥ 0 ∀k, i, `

S` ∈ (0, 1) ∀` ∈ L2
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9.2.7 Joint optimization of non-unified transition rules and premiums -
multi-period model without profit constraint

The model is presented in section 5.2.

min
Θ∑
t=0

I∑
i=1

K∑
k=0

φigik,t (MILP5.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik,t = φi ∀i, t = 1, . . . ,Θ (MILP5.5)

cik,t =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP5.6)

dik,j,m,t ≥ λimc
i
k,t − (1− Tj,m,k)φi ∀i, j, k,m, t = 0, . . . ,Θ− 1 (MILP5.7)

I∑
i=1

cik,Θ ≥ τ ∀k (MILP5.8)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t + gik,t ≥ λicik,t ∀i, k, t (MILP5.10)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t − gik,t ≤ λicik,t ∀i, k, t (MILP5.11)

πk +
I−1∑
`=1

ε`O`
k ≥ πk+1 +

I−1∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)
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L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik,t ≥ ε`
(
cik,t − (1−O`

k)
)

∀i, k, t, ` = 1, . . . , I − 1 (MILP5.14)

o`,ik,t ≤ ε`cik,t ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.15)

o`,ik,t ≤ ε`O`
k ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.16)

K∑
k=0

Bk = 1 (MILP5.19)

cik,0 = Bk ∀i, k (MILP5.20)

Tj,m,k ∈ (0, 1) ∀j,m, k
gik,t ≥ 0; cik ≥ 0 ∀k, i

dik,j,m,t ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, ` = 2, . . . , I − 1

o`,ik,t ≥ 0 ∀k, i, ` = 2, . . . , I − 1

Bk ∈ (0, 1) ∀k
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9.2.8 Joint optimization of non-unified transition rules and premiums -
multi-period model with profit constraint

The model is presented in section 5.2.

min
Θ∑
t=0

I∑
i=1

K∑
k=0

φigik,t (MILP5.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik,t = φi ∀i, t = 1, . . . ,Θ (MILP5.5)

cik,t =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP5.6)

dik,j,m,t ≥ λimc
i
k,t − (1− Tj,m,k)φi ∀i, j, k,m, t = 0, . . . ,Θ− 1 (MILP5.7)

I∑
i=1

cik,Θ ≥ τ ∀k (MILP5.8)

Θ∑
t=0

I∑
i=1

K∑
k=0

(
πkc

i
k,t +

L∑
`=1

o`,ik,t

)
≥

I∑
i=1

(Θ + 1)φiλi (MILP6.9.1)

πkc
i
k,t +

L∑
`=1

o`,ik,t + gik,t ≥ λicik,t ∀i, k, t (MILP5.10)

πkc
i
k,t +

L∑
`=1

o`,ik,t − gik,t ≤ λicik,t ∀i, k, t (MILP5.11)
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πk +
L∑
`=1

ε`O`
k ≥ πk+1 +

L∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik,t ≥ ε`
(
cik,t − (1−O`

k)
)

∀i, k, t, ` = 1, . . . , L (MILP5.14)

o`,ik,t ≤ ε`cik,t ∀i, k, t, ` = 1, . . . , L (MILP5.15)

o`,ik,t ≤ ε`O`
k ∀i, k, t, ` = 1, . . . , L (MILP5.16)

K∑
k=0

O`
k ≤ (K + 1)S` ∀` ∈ L2 (MILP4.17)

∑
`∈L2

S` ≤ 1 (MILP4.18)

K∑
k=0

Bk = 1 (MILP5.19)

cik,0 = Bk ∀i, k (MILP5.20)

Tj,m,k ∈ (0, 1) ∀j,m, k
gik,t ≥ 0; cik ≥ 0 ∀k, i

dik,j,m,t ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, ` = 1, . . . , L

o`,ik,t ≥ 0 ∀k, i, ` = 1, . . . , L

Bk ∈ (0, 1) ∀k

The following constraint can be used instead of (MILP6.9.1):

I∑
i=1

K∑
k=0

(
πkc

i
k,t +

L∑
`=1

o`,ik,t

)
≥

I∑
i=1

φiλi ∀t (MILP6.9.2)
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9.2.9 Joint optimization of non-unified transition rules, premiums and
number of classes - multi-period model

The model is presented in section 5.3.

min
Θ∑
t=0

I∑
i=1

K∑
k=0

φigik,t (MILP5.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1 , ∀m, k (MILP1.1)

Jk∑
j=min(Jk,1)

Tj,0,k = 1 , ∀k (MILP1.2)

max(Jk,−1)∑
j=Jk

Tj,M,k = 1 , ∀k (MILP1.3)

Jk∑
`=j

T`,m,k ≥ Tj,m+1,k ∀j, k, m = 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik,t = φi ∀i, t = 1, . . . ,Θ (MILP5.5)

cik,t + 1−Vk+1 +Vk ≥
J∑
j=0

min(j,k)∑
`=0

M∑
m=0

dik−`,j,m,t−1 k = 1, . . . , K,∀i, t (MILP8.6.1)

cik,t − 1 + Vk+1 ≤
J∑
j=0

min(j,k)∑
`=0

M∑
m=0

dik−`,j,m,t k = 1, . . . , K,∀i, t (MILP8.6.2)

cik,t + Vk+1 ≥
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m,t−1 k = 1, . . . , K,∀i, t (MILP8.6.3)

cik,t − Vk+1 ≤
min(J,k)∑

j=max(J,−(K−k))

M∑
m=0

dik−j,j,m,t−1 k = 1, . . . , K,∀i, t , (MILP8.6.4)
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dik,j,m,t ≥ λimc
i
k,t − (1− Tj,m,k)φi ∀i, j, k,m, t = 0, . . . ,Θ− 1 (MILP5.7)

I∑
i=1

cik,Θ ≥ τ ∀k (MILP5.8)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t + gik,t ≥ λicik,t ∀i, k, t (MILP5.10)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t − gik,t ≤ λicik,t ∀i, k, t (MILP5.11)

πk +
I−1∑
`=1

ε`O`
k ≥ πk+1 +

I−1∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik,t ≥ ε`
(
cik,t − (1−O`

k)
)

∀i, k, t, ` = 1, . . . , I − 1 (MILP5.14)

o`,ik,t ≤ ε`cik,t ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.15)

o`,ik,t ≤ ε`O`
k ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.16)

K∑
k=0

Bk = 1 (MILP5.19)

cik,0 = Bk ∀i, k (MILP5.20)

cik,t ≤ 1− Vk ∀i, k, t (MILP7.21)

Vk ≤ Vk+1 k = 1, . . . K (MILP7.22)
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Tj,m,k ∈ (0, 1) ∀j,m, k
gik,t ≥ 0; cik ≥ 0 ∀k, i

dik,j,m,t ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, ` = 2, . . . , I − 1

o`,ik,t ≥ 0 ∀k, i, ` = 2, . . . , I − 1

Bk ∈ (0, 1) ∀k
Bk ∈ (0, 1) k = 1, . . . , K

9.2.10 Joint optimization of unified transition rules, premiums and num-
ber of classes - multi-period model

The model is presented in section 5.3.

min
Θ∑
t=0

I∑
i=1

K∑
k=0

φigik,t (MILP5.obj)

Subject to

J∑
j=J

Tj,m = 1 ∀m (MILP2.1)

J∑
j=1

Tj,0 = 1 (MILP2.2)

−1∑
j=J

Tj,M = 1 (MILP2.3)

J∑
`=j

T`,m ≥ Tj,m+1 ∀j, m = 0, ...,M − 1 (MILP2.4)

K∑
k=0

cik,t = φi ∀i, t = 1, . . . ,Θ (MILP5.5)

cik,t − Vk ≤
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP7.6.1)

cik,t + Vk ≥
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t (MILP7.6.2)
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dik,j,m,t ≥ λimc
i
k,t − (1− Tj,m,k)φi ∀i, j, k,m, t = 0, . . . ,Θ− 1 (MILP5.7)

I∑
i=1

cik,Θ ≥ τ ∀k (MILP5.8)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t + gik,t ≥ λicik,t ∀i, k, t (MILP5.10)

πkc
i
k,t +

I−1∑
`=1

o`,ik,t − gik,t ≤ λicik,t ∀i, k, t (MILP5.11)

πk +
I−1∑
`=1

ε`O`
k ≥ πk+1 +

I−1∑
`=1

ε`O`
k+1 k = 0, . . . , K (MILP3.12)

L∑
`=1

O`
k ≤ 1 ∀k (MILP3.13)

o`,ik,t ≥ ε`
(
cik,t − (1−O`

k)
)

∀i, k, t, ` = 1, . . . , I − 1 (MILP5.14)

o`,ik,t ≤ ε`cik,t ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.15)

o`,ik,t ≤ ε`O`
k ∀i, k, t, ` = 1, . . . , I − 1 (MILP5.16)

K∑
k=0

Bk = 1 (MILP5.19)

cik,0 = Bk ∀i, k (MILP5.20)

cik,t ≤ 1− Vk ∀i, k, t (MILP7.21)

Vk ≤ Vk+1 k = 1, . . . K (MILP7.22)
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Tj,m,k ∈ (0, 1) ∀j,m, k
gik,t ≥ 0; cik ≥ 0 ∀k, i

dik,j,m,t ≥ 0 ∀k, j,m, i
O`
k ∈ (0, 1) ∀k, ` = 2, . . . , I − 1

o`,ik,t ≥ 0 ∀k, i, ` = 2, . . . , I − 1

Bk ∈ (0, 1) ∀k
Bk ∈ (0, 1) k = 1, . . . , K
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9.3 Program for optimizing a BMS

During the research, we implemented the previously presented models in python.
While I wrote the dissertation, I had to do additional researches with some of these
models. For the sake of simplicity, I connected all of the implemented models in
a framework program. This program can be downloaded from: https://github.

com/gyetmarton/BonMal

9.4 BMS in practice websites

The internet search was concluded in January 2021.

• Austria

– https://www.oesterreich.gv.at/en/themen/gesundheit_und_

notfaelle/unfall/4/Seite.2892002.html

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/austria/index_en.htm

• Belgium

– https://economie.fgov.be/en/themes/consumer-protection/

insurance/car/civil-liability/bonus-malus-and-certificate

– https://www.mon-assurance-auto.be/accident/

bonus-malus-auto.html

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/belgium/index_en.htm

– https://www.aginsurance.be/Retail/nl/mobiliteit/auto/

Paginas/bonus-malus-schadevrij.aspx

– https://www.ethias.be/content/campaigns/ethias-campaigns/nl/

lp-auto-new.html

– https://www.mon-assurance-auto.be/accident/

joker-assurance-auto.html

• Czech Republic

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/czechia/index_en.htm

• Denmark
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– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/denmark/index_en.htm

• Finland

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/finland/index_en.htm

– https://www.lvk.fi/en/obligation-to-insure/

obligation-to-insure/

– https://www.if.fi/en/private-customers/insurances/

car-insurance

– https://www.internationallawoffice.com/

Newsletters/Insurance/Finland/HPP-Attorneys-Ltd/

New-Motor-Liability-Insurance-Act-enters-into-force

– https://www.nordea.fi/en/personal/our-services/insurance/

if-insurance/vehicle-insurance.html

• France

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/france/index_en.htm

– https://www.service-public.fr/particuliers/vosdroits/F2655

• Germany

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/germany/index_en.htm

– https://www.allianz.de/auto/kfz-versicherung/

schadenfreiheitsklasse/

– https://www.axa.de/kfz-versicherung

• Hungary

– https://www.mnb.hu/fogyasztovedelem/biztositasok/

gepjarmu-biztositas/a-bonus-malus-besorolasi-rendszer

• Italy

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/italy/index_en.htm
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– \protect\tolerance9999\emergencystretch3em\hfuzz.

5\p@\vfuzz\hfuzz{https://www.chiarezza.it/guide/

bonus-malus-che-cos-e-e-come-funziona}

• Luxembourg

– https://www.axa.lu/en/blog-car-no-claims-bonus-scale

– https://www.lalux.lu/en/info-tools/faq

• Netherlands

– https://www.centraalbeheer.nl/verzekeringen/autoverzekering/

bonus-maluskorting

– https://www.fbto.nl/autoverzekering/premie-berekenen/

stel-samen?utm_campaign=Auto&utm_content=tekstlink&awc=

8354_1610448652_c0d2084e6d148bf61db0f3d402b83385&utm_

medium=Affiliate&utm_source=Zanox&zanuid=666995&zanpub=

httpwwwexpaticacom

– https://www.aegon.nl/particulier/verzekeren/autoverzekering/

schadevrije-jaren

– https://www.abnamro.nl/en/personal/insurance/car-insurance/

claim-free-years.html

• Norway

– https://eika.no/forsikre/bilforsikring

– https://www.codanforsikring.no/privat/forsikringer/

bilforsikring/bonus

– https://www.dnb.no/bedrift/forsikring/skadeforsikring/

bilforsikring

– https://www.frende.no/forsikringer/bilforsikring/

velg-frende/bonusmesteren/

• Portugal

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/portugal/index_en.htm

– https://www.mapfre.pt/seguros-pt/particulares/automovel/

net-auto/

– https://www.libertyseguros.pt/Produto/Sobre-Rodas/prod-7
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• Romania

– https://asfromania.ro/en/legislation/

sectorial-legislation/insurance-reinsurance-market/

secondary-legislation-csa/rules-csa/

6014-rule-no-20-2017-on-motor-vehicle-insurance-in-romania

– https://europa.eu/youreurope/citizens/vehicles/insurance/

validity/romania/index_en.htm

• Switzerland

– https://www.helvetia.com/ch/web/en/private-customers/

vehicles-and-travel/vehicles/car-insurance/bonus-malus.html
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