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Chapter 1

Introduction

Computer vision is an interdisciplinary �eld of science that tries to imitate the ability

of humans how they detect and interpret visual data from the environment. Accord-

ing to a story, computer vision started as a student summer project at MIT in 1966.

Marvin Minsky asked his undergraduate student Gerald Jay Sussman to link a com-

puter to a camera to describe what it saw. However, this problem is e�ortlessly done

by humans, it proved to be more complicated for computers endowed with algorithms.

As Szeliski noted in 2011 [67], despite all of the advances, the aim for a computer to

interpret an image at the same level as a two-year-old is a dream. Nevertheless, this

discipline has developed tremendously in the last years. Nowadays, computer vision

is applied in many areas, for instance, robotics, industrial automation, tra�c control,

navigation, medical imaging, and surveillance.

Interestingly, techniques that are developed in computer vision could be applied

in social sciences as well. For example, the shape of electoral districts might be the

subject of visual analysis. Drawing new electoral district boundaries or, in other

words redistricting is always a controversial process since it may favor a speci�c party

in an electoral system. Unfortunately, gerrymandering is a commonly used practice

of political manipulation that dates back to 1812 when Elbridge Gerry, the governor
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of Massachusetts, approved a redrawing plan of electoral districts that contained a

district that reminded journalists of a salamander. This story also explains the origin

of this term. Nowadays, gerrymandering is still a hot issue in the United States, where

redistricting is often carried out to resolve geographic malapportionment caused by

demographic changes. In fact, only a few states have an independent body in charge of

this process because state legislatures usually have primary control over redistricting

in their state.

Intending to connect the two seemingly distant �elds, in both cases, we try to

imitate humans as they percept and interpret the environment. On the one hand,

matching the visible paramount peaks and landmarks around us with a large-scale

map is a traditional way of orientation in mountainous terrain. On the other hand,

the visual inspection of the compactness of a congressional district by an outline map

is a natural way to look for political manipulation.

Our �rst goal is to develop an algorithm for skyline extraction, calculating the az-

imuth in mountainous terrain, and verify the method in a relevant environment. Our

next aim is to prove that optimal partisan districting and majority securing district-

ing are NP-complete problems, and demonstrate why �nding optimal districting in

real-life is challenging, as well. Finally, we intend to create a parameter-free circular-

ity measure that can be used to detect gerrymandering and apply it to congressional

districts. In this dissertation, we also study a computer vision problem and political

districting problems, where Part I and Part II contain our results, respectively.

In Chapter 2, we show an e�ective method that can improve orientation by us-

ing skyline in an Augmented Reality (AR) mobile application. These apps, e.g.,

PeakVisor [62], PeakFinder [65] have a well-developed mountain identi�cation func-

tion. They can render the digital terrain model and labels the name of peaks nearby

and additional information. Some apps can also annotate uploaded pictures but the
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horizontal orientation is usually imprecise, so manual �ne-tuning is required for an

appropriate result. It is well known that these apps have a serious problem with the

accuracy of the azimuth angle provided by the sensors of the device. The fusion of

the digital magnetic compass, accelerometer, and gyroscope gives the translation and

rotation of the observer in the 3D space. However, the precision is usually not ap-

propriate since the compass is prone to interference when using it near metal objects

or electric currents. With the camera and a digital elevation model, a calibration can

be carried out to determine the correct orientation angles. Skyline extraction is a

challenging task because various visibility and weather conditions might occur. We

propose an e�ective method to adjust the azimuth by skyline extraction that does

not require manual interaction. Chapter 2 is based on Nagy [7].

In Part II, we turn to the analysis of the political districting problems and gerry-

mandering, which have great importance to society.

In Chapter 3, we study the districting problem from a theoretical point of view.

In the middle of the previous century, it was hoped that the problem of gerryman-

dering could be overcome by computer programs using only data on the geographic

distribution of the voters without any statistical information on voters' preferences

and thus determining an unbiased districting, see Vickery [72]. The computational

di�culty of the problem was clear from the very beginning, see Nagel [47]. The �rst

algorithm �nding all districtings with equally sized, connected, and compact districts

was given by Gar�nkel and Nemhauser [28]. Altman [2] showed that the problems of

achieving any of the three mentioned criteria are NP-hard. Moreover, he also demon-

strated that maximizing the number of competitive districts is also NP-hard. We

show that optimal partisan districting and majority securing districting in the plane

with geographical constraints are NP-complete problems. We provide a polynomial

time algorithm for determining an optimal partisan districting for a simpli�ed version
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of the problem. Besides, we give possible explanations for why �nding an optimal

partisan districting for real-life problems cannot be guaranteed. Chapter 3 contains

our results published in Fleiner et al. [26].

In Chapter 4 demonstrates an empirical study on gerrymandering. Shape analysis

has special importance in the detection of manipulated redistricting. Thus we apply

image moments that are widely used in image processing and computer vision. These

moments are invariant to similarity transformations and can be calculated e�ectively.

The e�ort to create as compact districts as possible can naturally be expected, and it

is a standard criterion, see Webster [73], Polsby and Popper [54]. Hence, measuring

the circularity of districts can be a suitable tool to help detect gerrymandering. The

standard meaning of circularity is the degree to which a shape di�ers from a circle,

and it is the most important index from a practical point of view. A desirable shape

circularity measure should be applicable on every planar shape, ranges from 0 to

1, and it should be invariant with respect to translations, rotations, and scaling.

We introduce a novel circularity measure based on Hu moment invariants. We also

analyze the shape of Arkansas, Iowa, Kansas, and Utah after redistricting through

multiple US Congresses. Chapter 4 is based on Nagy and Szakál [10] and [9].

Finally, in Chapter 5, a brief conclusion summarizes the thesis and presents the

contributions.
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Part I

SKYLINE EXTRACTION





Chapter 2

Improving the Azimuth in

Mountainous Terrian

An AR application has a serious problem with the accuracy of the azimuth provided

by mobile devices. The azimuth (ϕ) is an angular measurement between a refer-

ence direction and true north, and a line from the observer to the point of interest,

projected on the same plane. The fusion of the Digital Magnetic Compass (DMC),

accelerometer, and gyroscope gives the translation and rotation of the observer in 3D

space. Unfortunately, the precision is not always appropriate since DMC is prone to

interference when using it near metal objects or electric currents, which causes a prob-

lem in everyday use. The silhouette of ridges separates the sky from the terrain and

forms the skyline or sometimes referred to as the horizon line in a mountain scenery.

This salient feature can be used for orientation in both the traditional paper map way

and digitally. With the camera of the device and a Digital Elevation Model (DEM),

the correct azimuth can be determined. The skyline extraction from an image is a

challenging task because various visibility and weather conditions might occur. We

propose an e�ective method to adjust the azimuth by recognizing the skyline from

an image and matching it with the panoramic skyline of the DEM. This algorithm
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does not require manual interaction, and it has also been validated in a real-world

environment.

Computer vision algorithms aim to perceive and interpret visual data coming

from the environment by describing it and reconstructing its principal properties.

The typical steps of a computer vision task are image acquisition, image processing,

feature extraction, and decision making. There are several �elds where computer

vision is applied, e.g., robotics, industrial automation, transportation, navigation,

medical imaging, and surveillance. Humans interpret the environment by processing

information that is contained in visible light radiated, re�ected, or transmitted by the

surrounding objects. Due to the larger and higher resolution mobile screens, smart

devices have become suitable for navigation since they are equipped with necessary

sensors, such as Global Navigation Satellite System (GNSS), DMC, accelerometer

and gyroscope. The GNSS and the magnetic �eld of Earth give a rough estimate of

the position of the observer, but the accuracy of mobile sensors is not high enough

for high precision AR applications. The compass is biased by metal and electric

instruments nearby, although frequent calibration, so measuring the magnetic and

thus the true north is not reliable. The location of the magnetic poles does not

coincide with the geographic poles. Moreover, the magnetic poles are wandering

around. So, the magnetic north should be corrected using a declination angle to

obtain true north. Several studies, for example Blum et al. [13], Höltz et al. [31]

have examined sensor reliability in real-world tests and showed the error of DMC

could be as high as 10 − 30◦. The error of the gyroscope and accelerometer are also

increasing with the elapsed time, and the accuracy of GNSS could be up to several

meters. However, these problems are not that critical from our perspective.

Visual orientation is a three-dimensional problem of �nding the orientation (pan,

tilt, roll) from a geotagged photo. This task requires that the position (longitude,
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latitude, elevation) of the observer is at least roughly given, the photo is taken not

far from the ground, and the camera is approximately horizontal. That means the

problem can be reduced to a one-dimensional instance in which the pan angle or, in

other words, the azimuth needs to be determined. In this case, the camera helps to

increase the precision of the other sensors by capturing visual clues whose real-world

positions are known from a digital map. We propose a real-time method that extracts

skyline from an image and matches it with the panoramic skyline determined from

a rendered DEM. Thus, the orientation of the observer can be improved, which is

critical in AR applications.

A potential application of visual orientation is mobile hiking apps that annotate

mountain photos by matching images with 3D terrain models and geographic data.

The ideal hiking app should have the following features: rendered 3D terrain models,

highly detailed spatial data, and AR mode with automatic orientation. Popular AR

apps such as PeakVisor and PeakFinder have a well-developed mountain identi�cation

function. These apps render the digital terrain model and label the name of peaks

nearby with additional information. Some apps can also annotate o�ine geotagged

images. The main problem with these programs that the horizontal orientation is

usually imprecise, so a manual correction is required for an appropriate result. One

of the few applications that employs sophisticated algorithms is PeakLens [53], but

it focuses solely on this function. The fully panoramic 360◦ version of this app by La

Salandra et al. [63] can be used with Virtual Reality (VR) devices too. Lütjens et

al. [44] give a good example of how VR can o�er intuitive 3D terrain visualization of

geographical data.

Our main contribution is a novel edge-based method for automatic skyline ex-

traction and a real-time procedure that increases the accuracy of the azimuth. This

algorithm could be a module in a future AR app, as it is demonstrated in Figure 2.1.
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(a) Camera picture.

(b) DEM with geographical data.

(c) AR overlay.

Figure 2.1: AR application for mountain peak identi�cation. Source: Author.
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A camera picture is shown in Figure 2.1a with a mountain ridge in the background.

Figure 2.1b introduces the DEM with pertinent geographical data such as trails and

peaks. The fusion of the original image and the main hiking data can be seen in

Figure 2.1c.

In recent years there has been considerable interest in the challenging task of visual

localization in mountainous terrain. In realistic scenarios, vegetation changes rapidly

as well as lighting and weather conditions. Since the most steady and reliable feature

is the contour of the mountains, people usually use the skyline and the prominent

features of a landscape for orientation. This is the main idea in our approach.

Many experts have examined the so-called drop-o� problem when the observer or

an Unmanned Aerial Vehicle (UAV) is dropped o� into an unfamiliar environment

and try to locate its position. Preliminary work by Stein and Medioni [66] focused on

pre-computed panoramic skyline matching with manually extracted skylines. Tzeng

et al. [70] investigated a user-aided visual localization method in the desert using

DEMs. Once the user marked the skyline in the query image manually, this feature

was looked up in the database of panoramic skylines that had been rendered from

a DEM. Camera pose and orientation estimation from an image and a DEM were

studied by Naval et al. [49]. This non-real-time approach classi�ed the sky and non-

sky pixels by a previously trained neural network. Peaks and peak-like protrusions

were used as feature points in the matching phase, where pre-calculated synthetic

skylines were stored in a database which is not favorable in a real-time AR app due

to the computation and storage needs.

Fedorov et al. [24] proposed a framework for an outdoor AR application for

mountain peak detection called SnowWatch, and also described the data manage-

ment approach of their solution. Sensor inaccuracy and position alignment were only

partially discussed. In contrary to the present study, they took in input the device
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orientation, as well. Eventually, they reached a slightly higher peak position error

(1.32◦) on their manually annotated dataset. SwissPeaks is another AR app that

overlays peaks is presented by Karpischek et al. [36]. The main limitation of the

app is that the correct azimuth should be set manually since visual feature extrac-

tion or matching was not implemented. Lie et al. [42] examined skyline extraction

by a dynamic programming algorithm that looked for the shortest path on the edge

map based on the assumption that the shortest path between image boundaries is

the skyline. A similar solution was investigated by Hung et al. [33], where a support

vector machine was trained for classifying skyline and non-skyline edge segments. A

comparison of four autonomous skyline segmentation techniques that use machine

learning was reviewed by Ahmad et al. [1]. The above-mentioned studies focused on

skyline extraction only, and their outcomes are hard to compare with our results.

A non-real-time procedure for visual localization was suggested by Saurer et al.

[64]. They introduced an approach for large-scale visual localization by extracting

skyline from query images and using a collection of pre-generated, vector-quantized

panoramic skylines that were determined at regular grid positions. For sky segmenta-

tion, they used dynamic programming, but their solution required manual interaction

by the operator in case of the problematic pictures, which amounted to 40% of the

samples. An early attempt was made by Behringer [12] to use computer vision meth-

ods for improving orientation precision. Due to computation complexity, this solution

was tested in a non-real-time environment. Baboud et al. [5] also presented an auto-

matic, but non-real-time solution for annotation and augmentation of mountainous

photos. From geographical coordinates and camera Field of View (FoV), this system

automatically determined the pose of the camera relative to the terrain model by

using contours extracted from the 3D model. They used an edge-based algorithm

for skyline detection and proposed a metric for �ne-matching based on the feasible
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topology of silhouette-maps. However, their algorithm was well-developed, but it is

not suitable for AR applications. An unsupervised method for peak identi�cation in

geotagged photos is examined by Fedorov et al. [25]. They extracted the panoramic

skyline by edge detection from the rendered DEM, but they did not address exactly

how to obtain the skyline from an image.

It is worth to note that Infrared (IR) cameras were also put in an application for

localization in a mountain area by Woo et al. [74]. They designed a procedure for

UAV navigation based on peak extraction. Special sensors that are sensitive in the IR

range could work better under lousy weather or weak light conditions. Unfortunately,

a real-world test was not presented in their study.

Visual localization in an urban environment is a related problem. Several studies

have been carried out on visual-aided localization and navigation in cities where

the sky region is more homogeneous than other parts of the image. For instance,

Ramalingam et al. [57] employed skyline, and 3D city models for geolocalization in

GNSS challenged urban canyons. Zhu et al. [76] matched the panoramic skyline

extracted from a 3D city model with a partial skyline form an image.

This chapter is organized as follows: Section 2.1 describes the proposed method

that has three main phases:

1. panoramic skyline determination from DEM,

2. skyline extraction from the image,

3. matching the two skylines.

Section 2.2 presents the experimental results and the �eld test. Finally, conclusions

and outlook are drawn in Section 2.3.
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(a) Position of the observer in DEM. (b) Panoramic skyline on a satellite image.

(c) Coordinate transformation.
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(d) Panoramic skyline vector.

Figure 2.2: The determination of the panoramic skyline. Source: Author.

15



2.1 Method

We propose a method that consists of three main phases. Firstly, we determine the

panoramic skyline from the DEM by a geometric transformation based on the idea

that Zhu et al. [76] suggested. After that, we extract the skyline from the image by

a novel edge-based algorithm that uses connected component labeling. Finally, for

the matching phase, we seek the largest correlation between the two skyline vectors.

C++ and OpenSceneGraph were used for panoramic skyline determination. The

image processing task and matching were carried out by MATLAB (Image Processing

Toolbox). The georeferencing for the �eld tests was made with Google Earth Pro and

QGIS.

2.1.1 Panoramic Skyline Determination

Panoramic skyline is a vector obtained from the 3D model of the terrain. We used

publicly available DEMs: SRTM [23] and ASTER [48], sampled at a spatial resolution

between 30m and 90m. Depending on the distance of the viewpoint from the target

and characteristic of the terrain in the corresponding geographical area that could be

a bit coarse, but in most cases, this resolution was enough. Figure 2.2 demonstrates

this phase. Figure 2.2a shows a rendered DEM, where the black triangle is the position

of the camera, which was determined by the GNSS sensor of the device. The 360◦

panoramic skyline was calculated from this point by a coordinate transformation, as

Figure 2.2c shows, where

� C(X0, Y0, Z0) is the position of the camera,

� D(X, Y, Z) is an arbitrary point of the DEM,

� D′(x′, y′, z′) is the projection of point D. 1

1y′ = Y0
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Hereby, each point can be described by the azimuth angle:

ϕ =



0 if X = X0 and Z = Z0

arcsin
(
z′−Z0

ρ

)
if X ≥ X0

− arcsin
(
z′−Z0

ρ

)
+ π if X < X0

and the elevation angle:

θ = arcsin

(
Y − y′

r

)
where

ρ =
√

(x′ −X0)2 + (z′ − Z0)2

is the distance between C and D′ and

r =
√

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2

is the distance between C and D. A 3D to 2D transformation was applied since the

height information, or the radial distance is no longer required. Azimuth angle φ and

the elevation angle θ describe any point D in the DEM. Finally, the largest θ value

determines the demanded point of the skyline for each ϕ. Figure 2.2b illustrates

the panoramic skyline projected on a satellite image. The sharp edges on the left

corner indicate the border of the DEM because the skyline was calculated only at a

reasonable distance. Figure 2.2d shows the output, i.e., the panoramic skyline vector

that will be used in the matching phase.

2.1.2 Skyline Extraction

The skyline sharply demarcates terrain from the sky on a landscape photo. Our novel

and automatic skyline extraction method is presented in the following. The main idea

is based on the experience that large and wide connected components in the upper

region of the image usually belong to the skyline.
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(a) Original image. (b) Morphological operations.

(c) Edge map. (d) Skyline candidates.

(e) Top-down search. (f) The extracted skyline.

(g) The skyline vector.

Figure 2.3: The extraction of the skyline. Source: Author.
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A well-known algorithm for connected components labeling was used for �nding

blobs in a binary image. It is an algorithmic application of graph theory, where

connected components are labeled uniquely. Figure 2.4a shows an input binary image

with disjoint edge segments that are colored to di�erent shades of gray in the output,

as Figure 2.4b shows. A �ood-�ll algorithm was applied for �nding 8-connected

components (8-connected neighborhood), where pixels touch one of their edges or

corners, i.e., they are connected horizontally, vertically, or diagonally. A detailed

review of connected components labeling is found in He et al. [29]. It is not necessary

to detect the whole skyline since, in most cases, recognizing only an essential part of

it is enough for matching. On the other hand, it is crucial to extract a piece from the

real skyline and not a false edge. Statistically speaking, the False Acceptance Rate

(Type II error) should be as low as possible, while the False Rejection Rate (Type I

error) is not that critical.

In the preprocessing phase, morphological operations were carried out to enhance

the grayscale image and remove noise. Morphological closing (dilation and erosion)

eliminate small holes, while morphological opening (erosion and dilation) removes

small objects from the foreground that are smaller than the structuring element. A

disk-shaped structuring element was used either for closing and opening but with

a di�erent radius (5 and 10 pixels). Details on morphology can be found in, e.g.,

Szeliski [67].

The following algorithm selects the skyline from skyline candidates in multiple

steps. The candidates were sorted by the function

S(C) = µ(C) + 2ρ(C),

where C is a skyline candidate, µ measures the number of pixels in the candidate

and ρ is the span of the candidate, i.e., the di�erence between the rightmost and the

leftmost pixel coordinates in the image space.
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This function takes into account the size and the span of C with double weight,

which is proved to be e�cient according to our observations. Therefore, larger and

broader skyline candidates are preferred.

The main steps are listed below and also shown in Figure 2.3.

1. Preprocessing

(a) The �rst step is to resize the original image to 640× 480 pixels and adjust

the contrast. (Figure 2.3a)

(b) The sky is in the sharpest contrast to the terrain in the blue color channel

in RGB color space. Thus we use the blue channel as a grayscale picture.

(c) Morphological closing and opening operations are applied for smoothing

the outlines, reducing noise, and thereby ignoring the useless details, e.g.,

edges of tree branches or rocks. (Figure 2.3b)

(d) The edge detection is carried out by the Canny edge detector [15] results

in a bitmap that contains the most distinctive edges on the image. (Figure

2.3c)

2. Connected components labeling detects the connected pixels on the edge map

determining the skyline candidates. The top three skyline candidates are chosen

by the function S. (Figure 2.3d)

3. A top-down search selects the �rst edge pixels from the most probable candi-

dates in each column because the skyline should be on the upper region of the

image. (Figure 2.3e)

4. In case of low resolution, the top-down search might make a one-pixel gap in the

skyline. A so-called bridge operation repairs this problem by �lling the holes.
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5. The second connected component analysis eliminates the left-over pieces from

the edge map and selects the largest one as the presumed skyline. (Figure 2.3f)

6. Finally, the skyline is vectorized for the matching phase. (Figure 2.3g)

(a) Binary image. (b) Three disjoint components.

Figure 2.4: Connected components labeling. Source: Author.

2.1.3 Skyline Matching

The last phase of the proposed method is matching the panoramic skyline and the

recognized fragment of the skyline from the image. We look for the point from where

the skyline vectors interlock, i.e., the image skyline �ts into the panoramic skyline.

The ϕ could be obtained from here. It is worth noting that for the proper comparison,

the Horizontal Field of View (HFoV) of the camera and the panoramic skyline 2 need

to be synchronized via the sampling rate of the two signals. For the sake of simplicity,

the �rst index of the panoramic skyline vector corresponds to 0◦ (true north) as a

reference point. In the case of partially extracted image skyline, the gap also should

be considered in accordance with HFoV, so the total width of the skyline is estimated.

After that, normalized cross-correlation (a? b) is used, which is commonly used in

signal processing as a measure of similarity between a vector a (panoramic skyline)

and shifted (lagged) copies of a vector b (extracted skyline) as a function of the lag k.

2The HFOV of the panoramic skyline is 360◦.
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After calculating the cross-correlation between the two vectors, the maximum of the

cross-correlation function indicates the point K where the signals are best aligned:

K = argmax
0◦≤k<360◦

((a ? b)(k)).

From K the azimuth ϕ can be determined, and the estimated horizontal orientation

can be acquired. As it was mentioned above, the camera is supposed to be approx-

imately horizontal when the picture was taken, though the skyline could be slightly

slanted. The cross-correlation is not sensitive to such inaccuracies, so this approach

is suitable for matching the skylines. An example of matching the panoramic skyline

(blue) with the extracted skyline (red) is presented in Figure 2.5.
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Figure 2.5: Matching of the panoramic skyline with the extracted skyline. Source:

Author.

2.2 Experimental Results

Our goal was to develop a procedure that can determine the exact orientation of the

observer in a mountainous environment by a geotagged camera picture and a DEM.

The main contribution of this paper was an edge-based skyline extraction method.

Thus the �rst part of this section demonstrates the results on sample images. The

second part is about calculating the azimuth (ϕ) and comparing the results with
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the ground truth azimuth (ϕ̂) determined by traditional cartographic methods using

reference objects.

2.2.1 Skyline Extraction

Skyline extraction is a crucial task in this method. The whole pattern is not neces-

sarily needed for the correct alignment because, in most cases, only a characteristic

part of the skyline is enough for matching. The algorithm was tested on a sample

set that contains mountain photos from various locations, seasons, under di�erent

weather and light conditions. The goal was to extract the skyline as precisely as pos-

sible, therefore to somehow evaluate the results, we also classi�ed the outputs. The

pictures were made by the author, or they were downloaded from Flickr under the

appropriate Creative Commons license. The collection consists of 150 images with

640 × 480 pixels resolutions and 24-bit color depth. Experiments showed that this

resolution provides good results considering computation performance, as well. Fig-

ure 2.6 illustrates the automatic skyline extraction steps on four di�erent examples:

(a) shows a craggy mountain ridge with clouds and rocks that could have misled an

edge detector; in (b) the snowy hills blend into the cloudy sky mountain which makes

skyline detection di�cult; (c) is taken from behind a blurry window, where raindrops

and occluding tree branches could have impeded the operation of an algorithm; (d)

demonstrates a hard contrast image with a clear skyline, where clouds might have

induced false skyline edges. The detailed description of the steps can be found in

Section 2.1. For more examples, see Appendix A.

The outputs were classi�ed into four classes according to the quality (%) of the

result. The evaluation was done manually because an objective measure is hard to

create.

� Perfect: the whole skyline [95 − 100%] is detected, no interfering fragments
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Class Rate

Perfect 56.67%

Good 32.67%

Poor 8.00%

Bad 2.67%

Table 2.1: Results of automatic skyline extraction method.

found.

� Good: the better part of the skyline [50− 95%) is detected, false pixels do not

a�ect the analyses.

� Poor: only a small part of the skyline [5− 50%) is detected, false pixels might

a�ect the analyses.

� Bad: skyline cannot be found or the detected edges do not belong to the skyline

[0− 5%).

Table 2.1 shows that the extracted skylines are assigned to Perfect or Good classes

in more than 89% of the samples. In these cases, the extracted features can be used

for matching in the next phase. It is noteworthy that the rate of poor is 8% and bad

outcomes is less than 3%. When the algorithm fails, the di�culties usually arise from

occlusion, foggy weather, or low light conditions. In some cases, when the picture

is hard contrast with plenty of edges, e.g., deceptive clouds, or rocks, the largest

connected component did not necessarily belong to the skyline, and it is di�cult to

�nd the horizon line even with the naked eye.

24



2.2.2 Field Tests

Unfortunately, it was not possible to compare the results directly with those obtained

by other methods discussed above, due to the di�erent problems they addressed.

Therefore, we made �eld tests to measure the performance of our algorithm. The

experiments aimed to determine the orientation using only a geotagged photo and

the DEM. A Microsoft Surface 3 tablet was employed, which has an in-built GNSS

sensor and an 8MP camera sensor with 53.5◦ HFoV. Various pictures were taken in

the mountains with clearly identi�able targets such as church or transmission towers

and aligned them into the center of the image with the help of an overlying grid. The

Exchangeable Image File Format (EXIF) data contains the position, so a recognizable

target concerning the viewpoint could be manually referred, so ϕ̂ was determined for

the 10 sample images. The low sample size is due to the di�cult task of locating test

points and the lack of a publicly available image data set with georeferenced objects.

Figure 2.7 shows example images with the extracted skyline (white), the panoramic

skyline (orange), and the reference object (yellow cross) that was aligned to the center

of the picture. Table 2.2 presents the experimental results of the �eld tests. Only

Good and Perfect skylines were accepted for the tests, and the correlation is almost

95% on average. The mean of absolute di�erences between ϕ̂ and ϕ is 1.04◦, which

is auspicious.

As it was mentioned above, the error of DMC could be 10 − 30◦. Measuring the

inaccuracy of the compass sensor is beyond the scope of this study. Nevertheless, this

problem was experienced during �eld tests. The bene�t of the proposed algorithm is

the precise orientation obtained by the camera picture and a DEM. The �eld tests

demonstrated that it could be achieved with this method. The average 1.04◦ error

is mainly caused by the coarse resolution of DEMs and the vegetation. Thus, the

results might be enhanced with a higher resolution DEM.
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(a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

Figure 2.6: Some examples of automatic skyline extraction. Source: Author.

2.3 Concluding Remarks

This chapter proposed an automatic method for improving the azimuth measured by

the unreliable DMC sensor in mountainous terrain. The aim was to develop an algo-
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(a) Example 1. (b) Example 2.

(c) Example 3. (d) Example 4.

Figure 2.7: Field test images with the extracted skyline, the panoramic skyline, and

the reference object. Source: Author.

rithm for an outdoor AR app that overlays useful information about the environment

from a Geographic Information System (GIS) such as peak names, heights, or dis-

tances. The main contribution of this work is the robust skyline extraction procedure

that employed connected components labeling. The skyline was extracted success-

fully in more than 89% of the sample set. Furthermore, �eld tests were also carried

out to verify the skyline matching, as well. The deviation of the azimuth provided

by the algorithm and the ground truth azimuth is 1.04◦ on average. Performance

issues were beyond the scope of this study, but the algorithm is time and storage ef-
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Image Viewpoint Target Results

ID Lat (◦N) Lon (◦E) Height (m) Lat (◦N) Lon (◦E) Height (m) Corr. ϕ (◦) ϕ̂ (◦) ϕ̂− ϕ (◦)

FT01 47.51552 18.96866 330 47.55016 19.00178 436 0.92 31.58 32.60 1.02

FT02 47.51552 18.96866 330 47.53371 18.95588 429 0.96 334.62 334.61 -0.01

FT03 47.55555 18.99883 483 47.51827 18.95922 508 0.95 214.83 215.61 0.78

FT04 47.53154 18.98611 219 47.49178 18.97895 458 0.99 185.89 186.95 1.06

FT05 47.99865 18.86120 188 47.99564 18.86353 195 0.92 151.35 152.47 1.12

FT06 47.99948 18.86173 201 47.99564 18.86353 195 0.98 161.22 162.92 1.70

FT07 47.51827 18.95922 508 47.55016 19.00178 436 0.97 44.12 41.85 -2.27

FT08 47.98355 18.80440 124 47.95780 18.87714 723 0.88 118.98 118.58 -0.40

FT09 47.99865 18.86120 188 47.99564 18.86353 195 0.94 151.52 152.47 0.95

FT10 47.99948 18.86173 201 47.99564 18.86353 195 0.98 161.81 162.92 1.11

Table 2.2: Experimental results of the �eld tests.

�cient. The results are promising, and they showed that the proposed method could

be applied as an autonomous, highly accurate orientation module in a real-time AR

application. With suitable data and some adaptation, the system might be used for

visual localization in GNSS challenged urban environment.
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Part II

CONGRESSIONAL DISTRICTING





Chapter 3

Optimal Partisan Districting on

Planar Geographies

In this chapter, we examine districting in a particular framework from a theoreti-

cal point of view. We show that optimal partisan districting and majority secur-

ing districting in the plane with geographical constraints are NP-complete problems.

Furthermore, we provide a polynomial time algorithm for determining an optimal

partisan districting for a simpli�ed version of the problem. Besides, we give possi-

ble explanations for why �nding an optimal partisan districting for real-life problems

cannot be guaranteed.

In electoral systems with single-member districts or even with at least two multi-

member districts, redistricting has to be carried out to resolve geographic malap-

portionment caused by migration and di�erent district population growth rates. An

inherent di�culty associated with redistricting is that it may favor a party. The

problem becomes even worse if redistricting is manipulated for an electoral advan-

tage, which is referred to as gerrymandering.

In the middle of the previous century, it was hoped that the problem of gerry-

mandering could be overcome by computer programs using only data on voters' ge-
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ographic distribution without any statistical information on voters' preferences and

thus determining an unbiased districting, see Vickery [72]. The �rst algorithm �nd-

ing all districtings with equally sized, connected, and compact districts was given

by Gar�nkel and Nemhauser [28]. Earlier Hess et al. [30] provided an algorithm

striving for similar goals. However, their algorithm did not always obtain optimal

solutions. The computational di�culty of the problem was clear from the very be-

ginning. Nagel [47] documented in an early survey the computational limitations of

automated redistricting by considering the available programs of his time. Altman

[2] showed that the problems of achieving any of the three mentioned criteria are

NP-hard. Moreover, he also demonstrated that maximizing the number of competi-

tive districts is also NP-hard. Because of the computational di�culty of the problem

there is a growing literature on new approaches to �nding unbiased districtings, see,

for instance, Mehrotra [46], Bozkaya et al. [14], Bacao et al. [6], Chou and Li [19],

Ricca [61], Ricca et al. [60]. For recent surveys, we refer to Ricca et al. [59], Tasnádi

[69], Kalcsics [35].

Though �nding an equally sized districting is already computationally hard, from

another point of view it is feared by the public that the continuously increasing com-

putational power makes the problem of carrying out optimal partisan gerrymandering

possible. However, the underlying di�culty of the problem does not allow us to de-

termine an optimal partisan redistricting. Indeed, Altman and McDonald [3] provide

recent evidence that current computer programs are far away from �nding optimal

gerrymandering.

A formal proof establishing that a simpli�ed version of the optimal gerryman-

dering problem is NP-complete was given by Puppe and Tasnádi [56]. They took

geographical constraints into account, but planarity was not prescribed explicitly. In

recent work, Lewenberg et al. [41] also proved the NP-completeness of optimal ger-
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rymandering in the plane. However, they did not demand equally or almost equally

sized districts.

This chapter is organized as follows. In Section 3.1, we introduce the most impor-

tant de�nitions. In Section 3.2, we show that winning an election, i.e., deciding the

existence of a districting that guarantees a majority of a party is also NP-complete.

Furthermore, for districting problems that can be simpli�ed to a one-dimensional

districting problems, we provide a polynomial time algorithm for �nding the optimal

partisan districting. In Section 3.3, we bring forward arguments in favor of the com-

putational intractability of determining an optimal partisan districting for real-life

problems of modest size. Finally, conclusions are drawn in Section 3.4.

3.1 The Framework

We assume that parties A and B compete in an electoral system consisting only of

single member districts. A single member district is an electoral district returning

only one representative to an o�ce. In addition, voters with known party preferences

are located in the plane and have to be divided into a given number of almost equally

sized districts. The districting problem is de�ned by the following structure:

De�nition 3.1.1. A districting problem is given by Π = (X,N, (xi)i∈N , v,K,D),

where

� X is a bounded and strictly connected1 subset of R2,

� the �nite set of voters is denoted by N = {1, . . . , n},

� the distinct locations of voters are given by x1, . . . , xn ∈ int(X),

� the voters' party preferences are given v : N → {A,B},
1We call a bounded subset A of R2 strictly connected if its boundary ∂A is a closed Jordan curve.
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� the set of district labels is denoted by K = {1, . . . , k}, where bn/kc ≥ 3, and

� D denotes the �nite set of admissible districts consisting of bounded and strictly

connected subsets of X and each of them containing the location of bn/kc or

dn/ke voters,2 and furthermore,

� we shall assume that based on their locations the n voters can be partitioned into

k districts {D1, . . . , Dk} ⊆ D.

Observe that in de�ning the districting problem, we assumed that obtaining an

almost equally sized districting is possible, which can be justi�ed by the fact that

�nding an admissible districting for real-life problems is possible, while �nding a

districting satisfying additional requirements such as partisan optimality is di�cult.

In particular, the sta� hired to produce a districting map could always construct a

districting map consisting of almost equally sized districts, although other properties

like partisan optimality are di�cult to prove or to confute. Producing a districting

with almost equally sized districts is a tractable problem if there are not too many

geographical restrictions since then we can obtain a result by drawing districts from

left to right and from top to bottom on a map of a state by keeping the average

district size in mind. An initial step for such an algorithm would be, for instance, to

order the voters increasingly according to their horizontal or vertical coordinates.

We shall mention that in reality, the basic units of a districting problem from

which districts have to be created are census blocks or electoral wards rather than

voters in order to simplify the problem, and at the same time to include natural

municipal boundaries. In this case, voter preferences v : N → {A,B} have to be

replaced by a function of type v′ : N ′ → [0, 1], where N ′ stands for the �nite set

of wards, assigning to each ward a fraction of party A voters. However, our results
2bxc stands for the largest integer not greater than x ∈ R and dxe stands for the smallest integer

not less than x ∈ R.
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obtained in this work can be extended to this more general setting by allowing the

case of almost equally sized wards. For this, district outcomes are determined by the

number of winning wards for party A, which happens to be the case, for instance, if

v′(N ′) = {α, 1 − α} for a given α ∈ [0, 1/2), i.e., the fraction of party A voters in

each ward equals either α or 1 − α, and thus the main result of this study delivers

a worst case scenario for the model with wards as elementary units. Hence, the NP-

completeness results in this study imply the same NP-completeness results within

a model with almost equally sized wards and districts, which come closer to the

problems handled by gerrymanderers.

Turning back to our districting problem de�ned on the level of voters, we have to

assign each voter to a district.

De�nition 3.1.2. An f : N → D is a districting for problem Π if there exists a set

of districts D1, . . . , Dk ∈ D such that

� f(N) = {D1, . . . , Dk},

� int(Di) ∩ int(Dj) = ∅ 3 if i 6= j and i, j ∈ K,

� {xi | i ∈ f−1(Dj)} ⊂ int(Dj) for any j ∈ K.

Observe that without loss of generality we do not explicitly require that a district-

ing covers the entire country, but just the inhibited areas.

De�nition 3.1.3. Two districtings f : N → D and g : N → D with districts

D1, . . . , Dk and D
′
1, . . . , D

′
k, respectively, are equivalent if there exists a bijection be-

tween the series of sets {xi | i ∈ f−1(D1)}, . . . , {xi | i ∈ f−1(Dk)} and the series

of sets {xi | i ∈ g−1(D′1)}, . . . , {xi | i ∈ g−1(D′k)} such that the respective sets are

identical.

3int(A) stands for the interior of set A.
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Clearly, by de�ning equivalent districtings we have de�ned an equivalence relation

above the set of districtings for problem Π.

A districting f and voters' preferences v determine the number of districts won

by parties A and B, which we denote by F (f, v, A) and F (f, v, B), respectively. If

the two parties should receive the same number of votes in a district, its winner is

determined by a prede�ned tie-breaking rule τ : D → {A,B}.

De�nition 3.1.4. For a given problem Π and tie-breaking rule τ a districting f :

N → D is optimal for party I ∈ {A,B} if F (f, v, I) ≥ F (g, v, I) for any districting

g : N → D.

Note that due to the above de�ned equivalence relation the set of districtings

has �nitely many equivalence classes, and therefore there exists at least one optimal

districting for each party.

3.2 Determining an Optimal Districting

We establish that even the decision problem associated with the optimization problem

of determining an optimal partisan districting, i.e., deciding for a given districting

problem Π whether there exists a districting with at least m winning districts for a

party, say party A, is an NP-complete problem. We call this WINNING DISTRICTS

problem. In order to prove this, we shall reduce the INDEPENDENT SET problem

on planar cubic4 graphs, a proven NP-complete problem, see Garey and Johnson [27],

to WINNING DISTRICTS. The INDEPENDENT SET problem asks whether a given

graph G has a set of non-neighboring vertices of cardinality not less than m.

Theorem 3.2.1. WINNING DISTRICTS is NP-complete.

4A graph is cubic if the degree of each vertex equals 3.
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Proof. Whether a districting possesses at least m winning districts for party A can

be veri�ed easily in polynomial time, and therefore WINNING DISTRICTS is in NP.

We establish that INDEPENDENT SET on planar cubic graphs reduces to WIN-

NING DISTRICTS. We de�ne the mapping that assigns to an arbitrary planar cubic

graph G = (V,E) a districting problem. We may assume that the graph is embedded

in the plane such that all the edges are straight lines and denote the set of their

midpoints by VE. We de�ne ε as the minimum of the distances between a point of

V ∪ VE and a non-incident edge. The layout of the districts and the reduction can

be seen in Figure 3.1. The 3-star of a vertex v ∈ V is the union of the three line

segments between v and the midpoints of the three edges emitting from v.

Let the set of party A voters be VE and with each party A voter M ∈ VE we

associate two party B voters M ′ and M ′′ such that M ′, M and M ′′ lie in this order

on the same straight line perpendicular to the edge of M and the distance of M ′ and

M ′′ from M is between 1
5
ε and 2

5
ε.

For each midpoint M ∈ VE we construct a party B winning district as the 2
5
ε-

neighborhood of M . Since each of these districts contains two-party B voters and a

party A voter, so we call them mixed districts.

We associate with each vertex v ∈ V a party A winning district as the 1
5
ε-

neighborhood of the 3-star of v. Observe that this district contains exactly three

voters, and they are the midpoints of the edges of v thus we call it A-uniform district.

Consider the set-theoretic di�erence of the 2
5
ε-neighborhood and 1

5
ε-neighborhood

of the 3-star of v, i.e., the subset of the plane consisting of the points having distance

from the 3-star between 1
5
ε and 2

5
ε. This set contains exactly six voters, which are the

party B voters corresponding to the midpoints of the edges of v. It is straightforward

to see that the bisector of any angle de�ned by the edges at v and the edge di�erent

from the sides of that angle divide this set in such a way that each part contains
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Figure 3.1: The layout of the districts. Source: Author.

three-party B voters. We call these divided parts B-uniform districts.

Now, it is enough to show that the graph G has an independent set of size m if

and only if the above-de�ned districting problem has a districting with m party A

winning districts.

The su�cient part of this claim is obvious since the party A winning districts of a

districting are disjoint A-uniform districts, and they correspond to non-neighboring

graph vertices.

For the necessary part, we construct for any given independent set of size m a

districting having m A winning districts. Take the A-uniform and B-uniform districts

corresponding to the vertices of the independent set and for the still uncovered voters,

take their mixed districts. Clearly, all the voters are covered by a district, and it is

not hard to see because of the choice of ε that the chosen districts are disjoint and

each contains three voters.

We note that the associated districting problem described above can be determined

in polynomial time.
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The following easy consequence of Theorem 3.2.1 has practical importance.

Theorem 3.2.2. The decision problem whether a districting problem Π has a dis-

tricting in which party A gains majority is NP-complete.

Proof. Note that all districtings in the proof of Theorem 3.2.1 have 3
2
|V | districts.

Thus there exists a districting with at least m winning districts of party A if and only

if the following districting problem extended with dummy voters and districts has a

solution in which the A winning districts form a majority. Let us add 3
2
|V |−2m + 1

extra disjoint A winning districts each containing three extra A voters if m ≤ 3
2
|V |/2,

otherwise add 2m − 3
2
|V |−1 extra disjoint B winning districts with three extra B

voters in each.

Remark. The notion of majority in Theorem 3.2.2 is irrelevant. The same statement

can be proved by analogy for any quali�ed majority.

3.2.1 A Positive Result

As we have seen in Theorem 3.2.1, �nding an optimal districting is di�cult. The

problem becomes tractable if we replace R2 with R in De�nition 3.1.1, i.e., if we

restrict the two-dimensional problem to a one-dimensional one. Observe that X and

the admissible districts become intervals. For the sake of simplicity, we assume that

X = [0, n], voter i is in the ith unit interval, i.e., xi ∈ (i − 1, i), and the admissible

districts have the form of [a, b] where a, b ∈ {0, 1, 2, . . . , n} and a < b. If n is divisible

by k, the problem of �nding a partisan optimal districting is trivial. Therefore, in

the remainder of this subsection we assume that n is not divisible by k. Then the

admissible districts may contain either bn/kc or dn/ke voters, which we will call short

and long districts, respectively, and denote their lengths by s and l, respectively.

Based on the dynamic programming technique, we develop a polynomial time
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algorithm that �nds a so-called party A optimal districting for the one-dimensional

districting problem.

For expositional reasons, we de�ne the indicator function w : D → {0, 1} such

that w([a, b]) = 1, if the district [a, b] is won by party A and w([a, b]) = 0, oth-

erwise. We will keep a record of the variables Wi(j) (for j ∈ {0, 1, . . . , n} and

i ∈ {−1, 0, 1, . . . , n mod k}), which are initially all set to −1, terminating with the

maximum number of A winning districts in a districting of the interval [0, j] in which

there are exactly i long districts if such a districting exists and i ≥ 0.

Whenever Wi(j) ≥ 0 we de�ne pi(j) as the starting point of the last district of

one of the districtings corresponding to Wi(j).

The key observation is that from an A optimal districting of an interval [a, b] with

a last district [c, b] we get an A optimal districting for the subinterval [a, c] by simply

omitting last district [c, b] from the districting. Consequently,Wi(j) can be calculated

from Wi−1(j − l) and Wi(j − s), thus the following recursion hold:

W0(0) = 0,

W0(s) = w([0, s]),

while for (i, j) 6= (0, 0) and (i, j) 6= (0, s) we have [Wi(j), pi(j)] =

[Wi−1 (j − l) + w ([j − l, j]) , j − l] if Wi−1(j − l) > Wi(j − s),

[Wi (j − s) + w ([j − s, j]) , j − s] if Wi−1(j − l) < Wi(j − s),

[Wi (j − s) + w ([j − s, j]) , j − s] if Wi−1(j − l) = Wi(j − s) ≥ 0 and

w([j − s, j]) = 1,

[Wi−1 (j − l) + w ([j − l, j]) , j − l] if Wi−1(j − l) = Wi(j − s) ≥ 0 and

w([j − s, j]) = 0,

[−1, −1] if Wi−1(j − l) = Wi(j − s) = −1,

where s < j ≤ n and 0 ≤ i ≤ n mod k.
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The values of w for short and long districts can be evaluated in linear time,

while the calculation of the values Wi(j) is within O(n2) time complexity. Since k

districts are required, the maximum number of districts party A can win is given by

Wn mod k(n). The values pi(j) can be used for reconstructing an optimal solution in

linear time.

3.3 A Practical Approach

Since many NP-complete problems can be solved for real-life situations, we would like

to point out in this section why it is di�cult to �nd an optimal partisan districting

even if only a modest number of districts have to be formed.

A real-life knapsack problem can be solved in many cases, and the number of

items together with the magnitude of their values describes the complexity of the

problem well. Whereas the number of districts or the number of electoral wards for

districting problems can be deceptive because, while the number of districts to be

drawn is relatively small, the number of possible districts is already extremely large,

as we will point out in the following paragraphs.

For instance, let us consider the Hungarian Electoral System in which since 2011,

Budapest has to be subdivided into 18 electoral districts from a total of 1472 wards,

each serving 600-1500 voters. Thus, an average district consists of approximately 82

wards. For simplicity, we model the election map by a 2-dimensional square grid,

where every cell represents a ward with a given party preference A or B. Obviously,

the real-life structure is even more complex because the distribution of party A and B

voters di�ers ward by ward, and there are further restrictions on the set of admissible

districts. In this model, two cells are connected if they share a common edge, so this

de�nes a 4-neighborhood relation on the set of cells.

Even in this simpli�ed structure, there is no known formula for the number of
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possible �gures. It means, we do not know how many districts can be formed out of a

given number of connected cells, so-called polyominoes. If even orientation matters,

they are called �xed polyominoes. It is known that the number of polyominoes grows

exponentially. Jensen [34] enumerated �xed n-cell polyominoes up to n = 56, which

resulted in 6.9 × 1031 polyominoes for the last case, which equals the number of

di�erent shapes that can be formed out of 56 connected squares. This result shows

that it is unfeasible to examine all possible cases, even for 82 wards on a Budapest

scale problem. Therefore, in contrast to the knapsack problem, the number of districts

to be formed in case of a districting problem underestimates the magnitude of the

latter problem. Obviously, considering possible district shapes is just the �rst step in

arriving to a districting.

It is worth noting that the dynamic programming technique applied successfully

for one-dimensional districting problems in Section 3.2.1, cannot be employed in ex-

actly the same way for the two-dimensional problems speci�ed above since, while for

the one-dimensional setting, it was possible to evaluate any important subdistricting

problem by simply omitting one small or one large district, from the explanations

above it follows for the two-dimensional setting that the number of possible subdis-

trictings will be simply too large, i.e., non-constant in the number of voters, to obtain

a computationally feasible algorithm.

Another starting point to obtain a heuristic for gerrymandering, i.e., an algorithm

which is not optimal but quick, would be the pack and crack principle. In a similar

framework, Puppe and Tasnádi [56] showed that not every crack procedure reaches

the optimal solution if geographical constraints are present. If the connectivity of the

cells is not required, the problem can be easily solved by a simple crack algorithm,

which leads to the optimal solution in this special case. The aim of the crack strategy

for the bene�ciary party is to win the query district with just the least margin, thus
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(a) Employing the crack principle. (b) Party A optimal districting.

Figure 3.2: Example of pack and crack principle. Source: Author.

weakening the opponent party. In fact, according to this greedy algorithm for a given

district size, one has to pick just one more cell for party A than for party B if the

district size is odd. Unfortunately, if we require districts to be connected, it is far

from obvious how this greedy approach arrives to a feasible map tiling.

Regardless, Figure 3.2a and Figure 3.2b, contain the same gird-like geography

with holes, e.g., lakes, show that employing the crack principle in favor of party A

does not result in a party A optimal districting. In the unlabeled squares, we have

party B voters. In particular, it can be veri�ed that the geography depicted in Figure

3.2a and Figure 3.2b admits just these two feasible districtings from which the crack

principle chooses the districting of Figure 3.2a,5 while the party A optimal districting

is shown in Figure 3.2b. Figure 3.2a and Figure 3.2b improve on the respective

example in Puppe and Tasnádi [56] by pointing out that any implementation of the

crack principle results for some problems in a non-partisan optimal districting.

We still might hope that by a clever combination of packing and cracking, we

could obtain a party A optimal districting. The pack and crack principle requires

that we draw districts sequentially in a way that the number of wasted votes by party

A is decreasing, where in case of a cracked district the number of wasted votes by
5The numbers close to the districts indicate a possible ordering in which the districts can be

chosen based on the crack principle.
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(a) Employing the pack and crack principle. (b) Party A optimal districting.

Figure 3.3: Another example of pack and crack principle. Source: Author.

party A equals the number of party A voters not needed for winning the respective

cracked district, while in case of a packed district the number of wasted votes by party

A equals the number of party A voters in the respective packed district. However,

Figure 3.3a and Figure 3.3b show that the pack and crack principle does not always

result in a party A optimal districting since the geography in Figure 3.3a and Figure

3.3b admits just two districtings, the pack and crack principle results in the districting

depicted in Figure 3.3a, and Figure 3.3b contains the party A optimal districting.

3.4 Concluding Remarks

In this chapter, we showed that optimal partisan districting and majority securing

districting in the plane with geographical constraints are NP-complete problems. To

obtain a heuristic algorithm, the original problem might be simpli�ed in some way. We

provided a polynomial time algorithm for determining an optimal partisan districting

for the one-dimensional version of the problem. However, to develop a procedure

for �nding an optimal partisan districting in general is beyond the scope of this

study. We also examined a practical approach using polyominoes to give possible

explanations for why �nding an optimal partisan districting for real-life problems

cannot be guaranteed.

44



Chapter 4

Measuring the Circularity of

Congressional Districts

In this chapter, we continue to examine districting from a practical perspective with

the help of image processing techniques. Shape analysis has special importance in

the detection of gerrymandering, the manipulated redistricting. In most states of

the USA, redistricting is made by non-independent actors and often causes debates

about partisan manipulation. The somewhat ambiguous concept of compactness is

a standard criterion for legislative districts. In the literature, circularity is widely

used as a measure of compactness, since it is a natural requirement for a district

to be as circular as possible. We propose a novel circularity measure based on Hu

moment invariants. This parameter-free circularity measure provides a powerful tool

to detect districts with abnormal shapes. We also analyze the districts of Arkansas,

Iowa, Kansas, and Utah over several consecutive periods and redistricting plans, and

also compared the results with some classical circularity indexes. Our �ndings show

that the fall of the average circularity value of the new measure indicates potential

gerrymandering.

Traditionally, redistricting is always contentious in the United States because it
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may favor a political party. As we already mentioned in Chapter 3, redistricting has

to be carried out to resolve geographical malapportionment caused by demographic

changes such as migration. Gerrymandering is among the most commonly discussed

practices of political manipulation. This process aims to establish a political advan-

tage for a particular group by partially shaping district boundaries. The e�ort to

create as compact districts as possible is a standard criterion, see, e.g., Webster[73],

Polsby and Popper [54]. Hence, measuring the circularity of districts can be a suitable

tool to help detect gerrymandering. This study focuses on the quanti�cation of shape

circularity. We propose a novel circularity measure based on Hu moment invariants

that can be considered as a further development of the concept introduced by Nagy

and Szakál [10]. We also test the new measure on various US congressional districts

in di�erent periods.

The process of redistricting is usually the following. After we determined the

number of citizens belonging to one district, the boundaries have to be drawn, which is

critical from the perspective of proportional representation of the voters. More details

on apportionment methods can be found in Kóczy et al. [37] and [38]. Districting

problems were examined by, for instance, Ricca et al. [59], Kalcsics [35], Chambers

[16], Oehrlein and Haunert [52], Tasnádi [69], and Puppe and Tasnádi [55].

Several methods have been developed to measure the shape of a district, e.g.,

Chambers [17], Chambers and Miller [18], Young [75], Maceachren [45], and Dusek

[21]. It is di�cult to characterize a district with a single number because there are

several correlative properties regarding the form of a planar object, e.g., circularity 1,

elongation, convexity, connectivity, or the jaggedness of the boundary. These terms

have di�erent meanings in di�erent �elds of science, so there is not a common ter-

minology for describing shapes. The standard meaning of circularity is the degree to
1In the literature, the terms circularity and compactness are often used interchangeably.
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which a shape di�ers from a circle, and it is the most important index from a practi-

cal point of view. A desirable shape circularity measure should satisfy the following

criteria:

� it is applicable on every planar shape,

� it ranges from 0 to 1,

� it is invariant with respect to translations, rotations, and scaling.

In the literature, measuring circularity is an accepted approach to cope with the

compactness criterion that aims to limit gerrymandering. The classical circularity

measures use the perimeter, the area, and various length measures of shape, but a

measure that is perfect in every respect does not exist. The most widespread indexes

are, e.g., the Reock Test (RT) [58], the Polsby-Popper Test (PPT) [54], and the

Lee-Sallee Index (LSI) [39].

Image moments are used in image processing to characterize shapes. These mo-

ments are invariant to similarity transformations and can be calculated e�ectively.

Initially, moment-based circularity measure was introduced by �uni¢ [77], �uni¢ et

al. [78], and Nayak and Stojmenovic [50]. Many attempts have been made in order

to detect gerrymandering, e.g., Ansolabehere and Palmer [4]. A method for evaluat-

ing the shape of political districts based on geometric characteristics and comparison

with ranking established by human judgment can be found in Lunday [43]. In Fan et

al. [22], the authors analyzed the compactness of redistricting plans in California and

North Carolina by calculating four compactness measures, including some classical

indexes.

In Nagy and Szakál [10], we studied the shape of the congressional districts by a

measure Cβ that depended on a parameter β. This index is invariant under similarity

transformations, and its sensitivity to lacerated boundaries is adjustable by β. The
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measure was evaluated for several parameters and they were compared with the LSI,

the PPT, RT on actual US congressional districts. We reached the conclusion that

β = 2 is an appropriate parameter on the sample set. Thanks to the Hu moment

invariants, the evaluation of this measure was e�cient to set against other indexes.

Sziklai and Héberger [68] compared our measure with the three classical circularity

measures (RT, LSI , PPT) by the so-called Sum of Ranking Di�erences method. This

novel statistical approach ranks competing solutions based on a reference point. It

is rapidly gaining popularity in various �elds of science, from analytical chemistry

to �nance. Their analysis concluded that LSI and our measure with the suitable

parameters performed the best.

However, as it has been revealed in Nagy and Szakál [9], when we compared the

circularity of two districts with di�erent β parameters, the circularity order changed

in certain cases, which is an undesirable feature of the index. Thus, we aimed to

develop the Cβ measure and introduce a more robust index M that does not need

any parameters. We found that this new measure provides a powerful method to

detect districts with abnormal shapes. Examining several consecutive periods show

that the fall of average circularity can indicate gerrymandering.

This chapter is organized as follows. In Section 4.1, the outline of moment in-

variants can be found. Section 4.2 gives a brief overview of circularity measures.

Section 4.3 reveals an unpleasant feature of Cβ and demonstrates the application of

the new circularity measure M on congressional districts of Arkansas, Iowa, Kansas,

and Utah. Finally, our conclusions are drawn in Section 4.4.

4.1 Moment Invariants

Moment invariants are widely used in pattern recognition and have been studied in

the literature, for instance, Csetverikov [20], Hu [32], �uni¢ et al. [78], and Nayak
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and Stojmenovic [50]. Our proposed circularity measure uses moment invariants for

shape analysis. The most important notions will be reviewed below.

De�nition 4.1.1. Let gmp,q(D) be the geometric moment of order (p+q) of a planar

shape D

gmp,q(D) =

∫ ∫
D

xpyqdxdy,

where (p, q = 0, 1, 2, ...).

The examined objects consist of pixels, so typically, the discrete version of De�-

nition 4.1.1 is applied.

De�nition 4.1.2. Let GMp,q(D) be the (discrete) geometric moment of order (p+q)

of a planar shape D

GMp,q(D) =
∑

(i,j)∈D∩Z2

ipjq,

where (p, q = 0, 1, 2, ...) and Z is the set of integers.

De�nition 4.1.3. Let imp,q(D) be the image moment of order (p+q) of a planar

shape D

imp,q(D) =

∫ ∫
D

xpyqf (x, y) dxdy,

where f (x, y) is the brightness function of the image and (p, q = 0, 1, 2, ...).

The discrete version of De�nition 4.1.3 can be de�ned as follows.

De�nition 4.1.4. Let IMp,q(D) be the (discrete) image moment of order (p+q) of a

planar shape D

IMp,q(D) =
∑

(i,j)∈D∩Z2

ipjqf (i, j) ,

where f (x, y) is the brightness function of the image, (p, q = 0, 1, 2, ...) and Z is the

set of integers.
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The brightness function is usually normalized into 0 to 1, and can be interpreted as

a probability density function of a 2D random variable. The brightness of a grayscale

image can be characterized by image moments, so we use them to describe the shape

of congressional districts. In future research, the brightness function could be applied

for representing the population density over an area.

Let (x, y) be the centroid of the image that can be obtained by normalization of

the �rst order moments:

x =
IM1,0(D)

IM0,0(D)
, y =

IM0,1(D)

IM0,0(D)
.

By shifting the centroid to the origin, a moment that is invariant with respect to

the location of the shape can be constructed. Thus, the central image moments can

be de�ned as follows.

De�nition 4.1.5. Let µp,q(D) be the central image moment of order (p+q) of a planar

shape D

µp,q(D) =

∫ ∫
D

(x− x)p (y − y)q f (x, y) dxdy,

where f (x, y) is the brightness function of the image and (p, q = 0, 1, 2, ...).

We also de�ne the discrete version of De�nition 4.1.5.

De�nition 4.1.6.

µp,q(D) =
∑

(i,j)∈D∩Z2

(i− x)p (j − y)q f (i, j) ,

where f (x, y) is the brightness function of the image, (p, q = 0, 1, 2, ...) and Z is the

set of integers.

Moments also have physical meaning. For instance, it is easy to see that IM0,0(D)

represents the entire intensity of the image, while µ2,0(D) and µ0,2(D) are the variance

of the brightness function. These quantities will play an essential role in the future.
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De�nition 4.1.7. Let ηp,q (D) be the normalized central image moment of order (p+q)

of a planar shape D

ηp,q (D) =
µp,q(D)

µ0,0(D)γ
,

where

γ = 1 +
p+ q

2
.

With the help of the normalized central moments, Hu ([32]) introduced seven

moments that are invariant under translations, rotations and scaling. In our study

we are focusing on the �rst Hu moment invariant:

De�nition 4.1.8. Let φ1(D) be the �rst Hu moment invariant of a planar shape D

φ1(D) = η2,0 (D) + η0,2 (D) .

4.2 Circularity Measures

Measuring the compactness of congressional districts can be a powerful tool in ger-

rymandering detection. Unsurprisingly, the de�nition of many shape descriptors is

based on the degree to which a shape di�ers from a circle.

The following requirements hold for a circularity measure C:

1. C(D) ∈ (0, 1] for any planar shape D;

2. C(D) = 1 if and only if D is a circle;

3. C(D) is invariant with respect to similarity transformations (translations, ro-

tations and scaling);

4. For each δ > 0 there is a shape D such that 0 < C(D) < δ, i.e., there are shapes

whose measured circularity are arbitrarily close to 0.
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There are a large number of shape descriptors in the literature that can be applied

as a circularity measure for a region, and there are several attempts to classify them

into di�erent categories, see Maceachren [45] and Niemi et al. [51].

In this section, we will brie�y introduce the most commonly used shape descrip-

tors. In De�nition 4.2.6, we introduce a new circularity measure based on the concept

that is de�ned in De�nition 4.2.5.

4.2.1 Classical Circularity Indexes

One of the most popular contour-based indexes is the PPT. It compares the area of

the shape D to the area of a circle that has the same perimeter as the shape.

De�nition 4.2.1. Let the measure CPP (D) be the Polsby-Popper Test for a planar

shape D

CPP (D) =
4π · area(D)

perimeter(D)2
.

It can be easily checked that this de�nition satis�es the above-mentioned proper-

ties.

The next one is a famous area-based measure, the RT, which �nds the smallest

circle O containing the district D and takes the ratio of its area to that of the circle.

De�nition 4.2.2. Let the measure CR(D) be the Reock Test for a planar shape D

CR(D) =
area(D)

area(O)
.

Another possible way to quantify the circularity of a shape is to place a reference

shape R on the examined shape D making sure that the overlapping area is maximal.

According to the practice, we arrange the two shapes that their centroids coincide,

and we use a circle O as a reference shape. Thus we get the following circularity

measure.
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De�nition 4.2.3. Let the measure CLS(D) be the Lee-Sallee Index for a planar shape

D

CLS(D) = 1− area(D
a
O)

area(D ∪O)
=
area(D ∩O)

area(D ∪O)
,

where circle O is a reference shape that has an equal area to D and
a

is the symmetric

di�erence.

4.2.2 Moment Invariants as Circularity Measures

Let us assume that all the examined shapes are compact in the topological sense,

which does not restrict our image processing task. Besides, we analyze the shape of

a congressional district and do not take the population into account. The brightness

function can be considered as the indicator function. Before we introduce our novel

circularity measure, two de�nitions shall be recalled here. Proposition 4.2.1 and

De�nition 4.2.4 are from �uni¢ et al. [78].

Proposition 4.2.1. Let D be a compact planar shape. Then

φ1(D) = η2,0 (D) + η0,2 (D) =
µ2,0(D) + µ0,2(D)

µ0,0(D)2
≥ 1

2π

φ1(D) = η2,0 (D) + η0,2 (D) =
µ2,0(D) + µ0,2(D)

µ0,0(D)2
=

1

2π
⇐⇒ if D is a circle.

Based on Proposition 4.2.1 a circularity measure C1 can be constructed as follows.

De�nition 4.2.4. Let D be a compact planar shape and the area of circle O equals

to the area of D. Then C1(D) is a circularity measure

C1(D) =
φ1(O)

φ1(D)
=

1

2π
· µ0,0(D)2

µ2,0(D) + µ0,2(D)
.
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It is easy to see that this circularity measure satis�es the required properties.

Using normalized central moments, we get moments invariant with respect to scaling.

If the scale factor is λ, then the new central moments are:

µ′p,q = λp+q+2 · µp,q.

Specially,

µ′0,0 = λ2 · µ0,0.

Hence it follows that,

η′2,0 =
µ′2,0[
µ′0,0
]2 =

λ4 · µ2,0

[λ2 · µ0,0]
2 = η2,0 ,

η′0,2 =
µ′0,2[
µ′0,0
]2 =

λ4 · µ0,2

[λ2 · µ0,0]
2 = η0,2,

which veri�es the scale invariance of the central moments.

After rotating the shape by an angle of α, the second order moment can be

expressed in the following way:

µ′2,0 = cos2 α · µ2,0 + sin2 α · µ0,2 − sin 2α · µ1,1,

µ′0,2 = sin2 α · µ2,0 + cos2 α · µ0,2 + cos 2α · µ1,1.

Thus

µ′2,0 + µ′0,2 =
(
sin2 α + cos2 α

)
(µ2,0 + µ0,2) = µ2,0 + µ0,2,

that is

φ′1 = φ1.

In Hu [32], the proof of translation and rotation invariance can also be found.

The following circularity measure Cβ from �uni¢ et al. [78] is a generalization of

C1, and it is applicable in special cases when we want to set the sensitivity manually for
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a speci�c purpose. We applied this circularity measure for measuring the circularity

of congressional districts for the �rst time in Nagy and Szakál [10].

De�nition 4.2.5. Let D be a planar shape whose centroid coincides with the origin

and let β be a real number greater than −1 and β 6= 0. Then Cβ (D) is the generalized

moment-based circularity measure

Cβ (D) =



µ0,0(D)β+1

πβ (β + 1)

∫ ∫
D

(
x2 + y2

)β
dxdy

if β > 0

πβ (β + 1)

∫ ∫
D

(
x2 + y2

)β
dxdy

µ0,0(D)β+1
if β ∈ (−1, 0) .

Nevertheless, we revealed an undesired feature of this measure, which emerged

from the examined data. The circularity order can change when we apply di�erent

β parameters to dissimilar shapes, as it is highlighted in Figure 4.4 and Figure 4.5.

That is the main reason why we should take multiple β parameters into account at

the same time. Besides, our goal is to describe district circularity by a single value

and make a comparison with other districts or with other periods. Therefore, in the

next de�nition, we propose the normalized measure of the area under the curve of Cβ

for β ∈ (−1, 0) ∪ (0,∞) as a novel circularity measure and denote it by M .

De�nition 4.2.6. Let Cβ (D) be the generalized moment-based circularity measure.

Then M is a circularity measure

M(D) = lim
b→∞

1

b+ 1

∫ b

−1
Cβ (D) dβ.

In fact, M equals the average of Cβ for β. Furthermore, it also keeps the ben-

e�cial properties of Cβ, and it is more robust in some cases. Figure 4.1 illustrates

the di�erent characteristics of Cβ on two dissimilar shapes, and it also shows the

circularity values of the classical indexes and the new measure M . More details on

the application of the new measure will be given in the following section.

55



Figure 4.1: The Cβ curve and the comparison of M with the classical circularity

indexes on two dissimilar shapes. Source: Author.

4.3 Application of the New Circularity Measure

The United States Congress consists of two chambers, the Senate and the House of

Representatives. The 50 states have been divided into a total of 435 congressional

districts in the House of Representatives, with each one representing approximately

711 thousand citizens. The US Congress has 535 voting members, 435 Representa-

tives, and 100 Senators. The members of the House of Representatives serve two-year

terms representing the people of a congressional district. The Census Bureau within

the United States Department of Commerce conducts a decennial census, and the re-

sults of it are used to determine the boundaries of the districts. The boundaries can
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be redrawn, e.g., two districts can be merged into one, see Iowa from 113th Congress,

or a district can be separated into two districts, see Utah from 113th Congress. Sur-

prisingly, in most states, this process is made by non-independent actors and often

causes debates about partisan manipulation. According to Levitt [40], only a few

states have an independent commission that draws the district lines because state

legislatures usually have primary control over the congressional lines in their state.

Unfortunately, the de�nition of compactness is not clear-cut, see Chambers and

Miller [17]. However, the measure of how far the points of the district is from the

center, determined by classical circularity indexes is essential in redistricting. 2 In

some cases, there is a prima facie evidence that a district is manipulated, see the

famous example of Illinois 4/107 in Figure 4.6. On the other hand, it is hard to

determine the ideal shape for a congressional district. Moreover, as we discussed in

Chapter 3, the optimal partisan redistricting is also di�cult.

4.3.1 The Computation of the Measures

In order to determine the circularity measures, some image processing tasks should

be carried out on the cartographic shape�les that were retrieved from US Census

Bureau [71]. We rendered the vector maps of the selected states to grayscale bitmap

images by QGIS. Thus, the di�erent areas could be separated by the pixel intensity

values by MATLAB. A simple example for the operation of the algorithm can be seen

in Figure 4.2a, the white area is the examined district, black is the rest of the state,

and gray is an ignorable region, e.g., sea or a neighboring state. Then we calculate

the centroid of the district with the help of the central moments. This allows us to

determine the reference circle, as Figure 4.2b shows. The area of the reference circle
2Interestingly, Arkansas does not require congressional or legislative districting plans to be com-

pact.
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equals to the area of the district being investigated. Finally, we need the Hu moment

invariants to determine the new circularity measure. The classical circularity indexes

that we use for comparison only require the area and perimeter of the shape.

(a) Input of the algorithm. (b) The corresponding reference circle.

Figure 4.2: The computation of the new measure M . Source: Author.

4.3.2 An Undesired Feature of the Moment-based Circularity

Measure

The moment-based circularity measure Cβ was �rst applied for analyzing the shape

of congressional districts in Nagy and Szakál [10], where we examined the measure as

a function of β, Figure 4.3 shows an example for β = −0.5, 1, 2, 8. We also compared

the values of Cβ with the PPT, RT, and LSI on various congressional districts. We

will also use these indexes as benchmarks when we try to detect gerrymandering.

However, our research revealed in certain cases, when we compare the circularity

of two districts with di�erent β parameters, the order changed, which is an undesired

feature of the circularity index. Figure 4.4 presents the case of β = −0.5 for two

districts where AR03/107 is more circular than AR01/113, while for β = 1 it is

just the opposite. This phenomenon appears in a more relevant part of the domain,

between 1 and 2, as it can be seen in Figure 4.5. That was one of the reasons why we

introduced the new indexM de�ned in De�nition 4.2.6. The other bene�cial property

of M that it does not require any parameters.
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β Cβ(AR02/107) Cβ(KS04/107)

-0.5 0.9235 0.9226

1 0.6401 0.6550

2 0.3013 0.3321

8 0.0008 0.0014

(a) AR02/107. (b) KS04/107.

Figure 4.3: Comparison the circularity of two districts by Cβ. Source: Author.

β Cβ(AR03/107) Cβ(AR01/113)

-0.5 0.9404 0.9059

1 0.6977 0.7159

(a) AR03/107. (b) AR01/113.

Figure 4.4: Arkansas's 3rd district in the 107th and 1st district in the 113th Congress.

Source: Author.

Finally, an illustration that shows the nature of the examined circularity measures,

in a nutshell, can be found in Figure 4.6. In this example, we can see the circularity

evaluation of two diversiform districts. The fourth district of Illinois in the 107th

Congress is a famous example of gerrymandering, with its tangled boundaries and
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small area compared to its perimeter, has much lower circularity than Arkansas second

district from the 113th Congress. The di�erent characteristic of the two curves is

distinctly visible as β changes. In the upper instance, Cβ (D) curve decreases much

slower compared to the lower case. Furthermore, the more irregular the shape is,

the faster the value converges to 0, for details see �uni¢ et al. [78]. This example

also shows that determining an appropriate β for Cβ is not straightforward. PPT,

RT, and LSI all fall into the interval of β ∈ [1, 3]. Therefore, we applied β = 2 in

Nagy and Szakál [10]. However, De�nition 4.2.6 proposes a more robust solution,

instead of choosing a specify β, we take the area under the curve Cβ and yield the

new circularity measure M .

β Cβ(AO01/107) Cβ(IO02/108)

1 0.7900 0.7712

2 0.5271 0.5335

(a) IO01/107. (b) IO02/108.

Figure 4.5: Iowa's 1st district in the 107th and 2nd district in the 108th Congress.

Source: Author.

4.3.3 Detection of Gerrymandering

When we try to detect gerrymandering, we should consider the average circularity of

a state through successive Congresses and seek signi�cant anomalies. Thus, we can
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Figure 4.6: The Cβ curve and the comparison of M with the classical circularity

indexes on Arkansas's 2nd district in the 113th and Illinois's 4th district in the 107th

Congress.

track the changes and reduce the impact of external conditions, e.g., geographical

constraints. We have analyzed four states in the period of the 107th (from January 3,

2001, to January 3, 2003), 108th (from January 3, 2003, to January 3, 2005) and 113th

(from January 3, 2013, to January 3, 2015) US Congress. The populations of these

states are similar, around 3 million, and they all have 3 to 5 districts. See Figure 4.7

for the overview map of Arkansas, Iowa, Kansas and Utah in the 113th Congress. The

summary of the experimental results can be found in Figure 4.8, Figure 4.9 3, Figure
3Since 2013, there are only 4 districts in this state.
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4.10, and Figure 4.11 4. More details on this will be given in Appendix B, and they

can be also seen on an interactive map, see Nagy and Szakál [8].

Figure 4.7: The boundaries of the 113th Congress. Arkansas, Iowa, Kansas and

Utah are highlighted. Source: Author.

All circularity indexes of Utah decreased in stages from the 107th to the 113th

Congress. In Iowa, the examined indexes behaved similarly in these periods, the 107th

showed the best, while 108th worst results. In Arkansas, LSI and PPT decreased

monotonically while RT and M had a peak at 108th. Remarkably, M was more

sensitive to the change than RT. The most interesting state was Kansas, where the

indexes gave completely di�erent orders, andM was the only one with a falling trend.

An example of presumable gerrymandering is given below. Figure 4.12 shows the

third district of Arkansas alone through the 107th, 108th and the 113th Congress. In

the table, we can see an almost unambiguous improvement in the circularity values

from the 107th to the 108th period, then a major fall from the 108th to the 113th

Congress, which gives rise to suspicion of gerrymandering. The strange shape of the

district in the last period is also visible to the naked eye.
4Since 2013, there are already 4 districts in this state.
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Measure M LSI RT PPT

District \ Congress 107 108 113 107 108 113 107 108 113 107 108 113

1 0.5619 0.5678 0.4536 0.7206 0.7005 0.6316 0.3955 0.4310 0.3003 0.1436 0.1426 0.1051

2 0.4061 0.4062 0.4851 0.5816 0.5819 0.6478 0.3107 0.3106 0.3410 0.2207 0.2212 0.2505

3 0.4398 0.5391 0.2648 0.6192 0.6569 0.2745 0.3281 0.4406 0.2812 0.3266 0.3200 0.1291

4 0.5045 0.4830 0.4787 0.6165 0.5736 0.6293 0.3938 0.3918 0.3855 0.2605 0.2151 0.2685

Average 0.4781 0.4990 0.4206 0.6345 0.6282 0.5458 0.3570 0.3935 0.3270 0.2378 0.2247 0.1883

Figure 4.8: The congressional of Arkansas districts for the 107th, 108th and the 113th

US Congresses. Source: Author.

4.4 Concluding Remarks

This chapter has investigated the shape circularity of congressional districts. The

circularity of a district is a fundamental requirement by citizens, and unsurprisingly,

it is also included in the regulation of many states. The measure presented by Nagy

and Szakál [10] performed well compared with classical circularity indexes. However,

later we found several instances where the circularity order of the districts changed

after di�erent β parameters were applied. We have made some improvements to this

measure and create a more robust method that does not depend on any parameters.

Our experiments on US congressional districts con�rmed that the new index is useful,

and in many cases, it is more sensitive than the traditional circularity measures.

63



Measure M LSI RT PPT

District \ Congress 107 108 113 107 108 113 107 108 113 107 108 113

1 0.5285 0.3395 0.3384 0.6552 0.5103 0.4616 0.3882 0.2024 0.2330 0.4032 0.2619 0.2725

2 0.3375 0.5410 0.4312 0.4834 0.6491 0.5410 0.2084 0.4806 0.3716 0.2547 0.3493 0.4024

3 0.3585 0.4477 0.4483 0.4450 0.5563 0.5797 0.2544 0.3404 0.2983 0.3023 0.3218 0.3649

4 0.5099 0.3798 0.4515 0.6095 0.5464 0.6186 0.4280 0.2179 0.3108 0.4680 0.2844 0.2379

5 0.4545 0.3268 0.6540 0.4269 0.2725 0.2378 0.3231 0.3027

Average 0.4378 0.4070 0.4174 0.5694 0.5378 0.5502 0.3103 0.2958 0.3034 0.3503 0.3040 0.3194

Figure 4.9: The congressional districts of Iowa for the 107th, 108th and the 113th

US Congresses. Source: Author.

Measure M LSI RT PPT

District \ Congress 107 108 113 107 108 113 107 108 113 107 108 113

1 0.4778 0.4690 0.4197 0.7902 0.7766 0.6344 0.3867 0.3321 0.3694 0.4312 0.3856 0.3987

2 0.3936 0.4216 0.4053 0.4388 0.4892 0.4819 0.3549 0.3776 0.3322 0.2300 0.2440 0.3362

3 0.4918 0.4305 0.5606 0.6119 0.6102 0.6973 0.3893 0.3330 0.4396 0.3550 0.2861 0.4440

4 0.4214 0.4071 0.3315 0.5486 0.5444 0.3774 0.3455 0.3148 0.3198 0.4673 0.4490 0.3759

Average 0.4462 0.4321 0.4293 0.5974 0.6051 0.5478 0.3691 0.3394 0.3653 0.3709 0.3412 0.3887

Figure 4.10: The congressional districts of Kansas for the 107th, 108th and the 113th

US Congresses. Source: Author.
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Measure M LSI RT PPT

District \ Congress 107 108 113 107 108 113 107 108 113 107 108 113

1 0.4121 0.4993 0.2726 0.5058 0.6832 0.2909 0.3386 0.2803 0.2158 0.3196 0.3549 0.2666

2 0.6576 0.4198 0.5609 0.7474 0.5681 0.6466 0.4823 0.3108 0.4711 0.3471 0.3034 0.3364

3 0.5675 0.4607 0.3655 0.7003 0.5350 0.5054 0.5134 80.3989 0.2596 0.3334 0.3023 0.1923

4 0.3748 0.4898 0.3131 0.2200

Average 0.5457 0.4599 0.3935 0.6512 0.5954 0.4832 0.4448 0.3300 0.3149 0.3334 0.3202 0.2538

Figure 4.11: The congressional districts of Utah for the 107th, 108th and the 113th

US Congresses. Source: Author.
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(a) AR03/107. (b) AR03/108. (c) AR03/113.

Index \ Congress 107th 108th 113th

LSI 0.6192 0.6569 0.2745

RT 0.3281 0.4406 0.2812

PPT 0.3266 0.3200 0.1291

M 0.4398 0.5391 0.2648

Figure 4.12: The evaluation of Arkansas's 3rd district in the 107th, 108th and 113th

US Congresses by M and the classical circularity indexes. Source: Author.
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Chapter 5

Conclusion

In this thesis, we discussed problems from the �elds of computer vision and congres-

sional districting. The connection between the two seemingly distant subjects is image

processing, which can be applied for both skyline extraction and circularity measure-

ment. Computer vision determines the properties of the 3D world from images. In

pattern recognition tasks, we often use image moments to summarize or describe

shapes. Hu moment invariants proved to be a useful tool in analyzing the shape of

political districts that plays an important role in the detection of gerrymandering.

In Part I, we started with the examination of a real-world computer vision prob-

lem, where the experimental results showed that the developed solution could be

integrated into a hiking application.

In Chapter 2, we introduced an e�ective method for improving orientation in an

AR mobile application by using a mountainous skyline. These apps have a serious

problem with the accuracy of the azimuth angle provided by the digital magnetic

compass sensor of the device since it is prone to interference when using it near metal

objects or electric currents. With the camera and a DEM, we could determine the

correct orientation angles without manual interaction. This chapter focuses on an

automatic edge-based skyline extraction method that can be used for orientation in
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mountainous terrain. We extracted the skyline from the image in multiple steps, and

we also de�ned a target function to select the skyline from candidates. The proposed

algorithm performed well on the sample set. Then, we carried out �eld tests to verify

the accuracy of the method in a real-world environment. These tests showed that

the azimuth angles provided by the algorithm were 1.04◦ on average from the ground

truth azimuth. The publication related to Chapter 2 is Nagy [7].

In Part II, we turned to districting problems, and we presented a theoretical and

a more empirical study. These studies address issues that have signi�cant importance

to society.

In Chapter 3, we studied the districting problem from a theoretical point of view.

We showed that optimal partisan districting and majority securing districting in the

plane with geographical constraints are NP-complete problems, and we provided a

polynomial time algorithm for determining an optimal partisan districting for a sim-

pli�ed version of the problem. Besides, we gave possible explanations for why �nding

an optimal partisan districting for real-life problems cannot be guaranteed by a practi-

cal approach that using polyominoes. The publication related to Chapter 3 is Fleiner

et al. [26].

In Chapter 4, we presented an empirical study on gerrymandering. Shape analysis

has special importance in the detection of manipulated redistricting. We applied

techniques widely used in computer vision, and with the help of them, we introduced

a novel, parameter-free circularity measureM based on Hu moment invariants. Then,

we analyzed the shape of Arkansas, Iowa, Kansas, and Utah after redistricting through

multiple US Congresses, and we compared the values with some classical circularity

measures. The experimental results showed that our method could indicate suspected

cases of gerrymandering. The publications related to Chapter 4 are Nagy and Szakál

[10] and [9].

68



It is worth mentioning that we also have some ongoing researches that, to a certain

extent, are related to the topic of this thesis.

The �rst one is another application of computer vision. Tra�c enforcement cam-

eras can classify vehicles, recognize license plate numbers, detect speeding, and au-

tomatically send tickets to the o�enders. Fastened seat belts can save lives and play

an important role in decreasing casualties of tra�c accidents. Therefore seat belt

detection is an essential but quite a complex task. Due to external circumstances,

the image quality is often poor, sometimes, even a human observer can hardly decide

whether the seat belt is fastened or not. We propose a novel method that can support

the decision of authorities by selecting drivers who do not use their seat belts. We

use edge detection and Hough transformation to �nd parallel line segments, then we

train an arti�cial neural network with the extracted features. Preliminary experi-

ments show that this method could be the base of a forthcoming tra�c surveillance

system.

The next one is a theoretical study in which we use computer simulations in a

socially relevant problem. In Nagy and Tasnádi [11], we investigate the presence of

a socially concerned �rm in the framework of a Bertrand-Edgeworth duopoly with

capacity constraints. In particular, we determine the mixed-strategy equilibrium of

this game and relate it to both the standard and the mixed versions of the Bertrand-

Edgeworth game. In this model, the government tries to regulate a market by ob-

taining partial ownership in a �rm. This type of socially concerned �rm behaves as

a combined pro�t and social surplus maximizer. In contrast to other results in the

literature, we �nd that full privatization is the socially best outcome that is the opti-

mal level of public ownership is equal to zero. However, the deduction of this result is

complicated, thus �rst, we use simulations that help to �nd equilibria in our model.

Finally, we have an R&D project that aims to use high-resolution hand-motion
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data of individuals while writing their signatures to identify them securely. We de-

veloped a novel pen-sized device that could capture the dynamic details of a signa-

ture. The pen is equipped with a 3-axial accelerometer, 3-axial gyroscope, and also a

pressure sensor. The hardware has an optical-based tamper resistance method that

protects from physical manipulation. We test several algorithms to match signatures.

Firstly, a dynamic time warping-based approach which is a classical method in on-

line signature veri�cation. Secondly, a statistical method based on the distribution

of the values of the prepared data. Finally, a neural network-based method where a

feed-forward multi-layer perceptron was trained for each signatory for detecting fake

signatures by analyzing the signals. In such a system, the False Acceptance Rate

should be as low as possible, while the False Rejection Rate is just inconvenient for

the user.
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Appendix A

Skyline Extraction

Appendix A presents the steps of automatic skyline extraction on four challenging

examples. Cragged mountain ridges or the cloudy sky could cause a problem for an

algorithm. These examples demonstrate the proposed method's e�ciency.
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Figure A.1: Example for skyline extraction. Source: Author.
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Figure A.2: Example for skyline extraction. Source: Flickr Creative Commons.
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Figure A.3: Example for skyline extraction. Source: Flickr Creative Commons.
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Figure A.4: Example for skyline extraction. Source: Author.
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Appendix B

Circularity Indexes

Appendix B includes a detailed comparison of the di�erent circularity measures in the

examined states. The graphs illustrate the di�erent characteristics of Cβ on di�erent

districts, and the novel measure M as the area under the curve.
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(a) The 1st district. (b) The 2nd district.
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(c) The 3rd district. (d) The 4th district.

Figure B.1: The circularity indexes of Arkansas for the 107th, 108th and the 113th

US Congresses from top to bottom. Source: Author.
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(a) The 1st district. (b) The 2nd district.
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(c) The 3rd district. (d) The 4th district.
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(e) The 5th district, only for the 107th and 108th.

Figure B.2: The circularity indexes of Iowa for the 107th, 108th and the 113th US

Congresses from top to bottom. Source: Author.
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(a) The 1st district. (b) The 2nd district.

83



(c) The 3rd district. (d) The 4th district.

Figure B.3: The circularity indexes of Kansas for the 107th, 108th and the 113th US

Congresses from top to bottom. Source: Author.
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(a) The 1st district. (b) The 2nd district.
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(c) The 3rd district. (d) The 4th district, only for the 113th.

Figure B.4: The circularity indexes of Utah for the 107th, 108th and the 113th US

Congresses from top to bottom. Source: Author.
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