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1 Prior research and motivation

The signi�cance of cooperative game theory is beyond dispute. This �eld of science po-

sitioned on the border of mathematics and economics enables us to model and analyze

economic situations that emphasize the cooperation among di�erent parties, and achiev-

ing their common goal as a result. In such situations we focus primarily on two topics:

what cooperating groups (coalitions) are formed, and how the gain stemming from the

cooperation can be distributed among the parties. Several theoretical results have been

achieved in recent decades in the �eld of cooperative game theory, but it is important to

note that these are not purely theoretical in nature, but additionally provide solutions

applicable to and applied in practice.

One example is the Tennessee Valley Authority (TVA) established in 1933 with the

purpose of overseeing the economy of Tennessee Valley, which was engaged in the analysis

of the area's water management problems. We can �nd cost distributions among their

solutions which correspond to cooperative game theory solution concepts. Results of the

TVA's work are discussed from a game theory standpoint in Stra�n and Heaney (1981).

We consider situations that can be modeled by �xed trees as known from graph theory

nomenclature. There exists a �xed, �nite set of participants, who connect to a distinctive

node, the root, through a network represented by a �xed tree. Several real-life situations

may be modeled using this method. The aforementioned problem of the TVA's water

management is de�ned in Chapter 2, where we examined the maintenance costs of an

irrigation ditch.

We present a special class of games, the standard tree games, and provide examples

of their applications in the �eld of water management. Additional game-theoretic appli-

cations to water management problems are discussed in Parrachino et al. (2006). Besides

�xed tree structures several other graph-theoretic models are applicable as well, for ex-

ample the class of shortest path games, which we will cover in more detail in Chapter 7.

As a further special case we must mention the class of �airport problems�, which can

be modeled with a non-branching tree, i.e. a chain. The related airport games are a proper

subset of the standard �xed tree games. Airport games were introduced by Littlechild and

Owen (1973), and the games' characterization will be described in detail in Chapter 5. A

summary of further results related to the class is provided in Thomson (2007).
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1.1 Maintenance or irrigation games

A widely used application of �xed tree games is the so called maintenance games. These

describe situations in which players, a group of users connect to a certain provider (the

root of the tree) through the �xed tree network. There is given a maintenance cost for all

edges in the network, and the question is how to distribute �fairly� the entire network's

maintenance cost (the sum of the costs on the edges) among the users.

A less widely used naming for the same �xed tree games is irrigation games, which are

related to the water management problems described in Chapter 2. A group of farmers

irrigate their lands using a common ditch, which connects to the main ditch at a distinct

point. The costs of the network must be distributed among the farmers. Aadland and

Kolpin (1998) have analyzed 25 ditches in the state of Montana, where the local farmers

used two di�erent major types of cost allocation methods, variants of the average cost

and the serial cost allocations. Moreover, Aadland and Kolpin (2004) also studied the

environmental and geographical conditions that in�uenced the cost allocation principle

chosen in the case of di�erent ditches.

1.2 River sharing and river cleaning problems

Let there be given a river, and along the river players that may be states, cities, enterprises,

and so forth. For downstream users the quality and quantity of water let on by the state

is of concern, and conversely, how upstream users are managing the river water is of

concern to the state. In the paper of Ambec and Sprumont (2002) the position of the

users (states) along the river de�nes the quantity of water they have control over, and

the welfare they can therefore achieve. Ambec and Ehlers (2008) studied how a river can

be distributed e�ciently among the connected states. They have shown that cooperation

provides a pro�t for the participants, and have given the method for the allocation of the

pro�t.

In the case of river cleaning problems, the initial structure is similar. There is given a

river, the states (enterprises, factories, etc.) along the river, and the amount of pollution

emitted by the agents. There are given cleanup costs for each segment of the river as

well, therefore the question is how to distribute these costs among the group. Since the

pollution of those further upstream in�uences the pollution and cleanup costs further

downstream as well, we get a �xed tree structure with a single path.
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Ni and Wang (2007) analyzed the problem of the allocation of cleanup costs.They

have shown that there exists an allocation method that is equal to the Shapley value in

the corresponding cooperative game. Based on this Gómez-Rúa (2013) studied how the

cleanup cost may be distributed taking into consideration certain environmental taxes.

The article discusses the expected properties that are prescribed by states in real situa-

tions in the taxation strategies, and how these can be implemented for concrete models.

Furthermore, the article describes the properties useful for the characterization proper-

ties of certain allocation methods, shows that one of the allocation rules is equal to the

weighted Shapley value of the associated game.

Khmelnitskaya (2010) discusses problems where the river sharing problem can be rep-

resented by a graph comprising a root or a sink. In the latter case the direction of the

graph is the opposite of in the case where the graph comprises a root, in other words, the

river uni�es �ows from multiple springs (from their respective the river deltas) in a single

point, the sink.

1.3 Airport and irrigation games

The irrigation ditch can be represented by a rooted tree. The root is the head gate, nodes

denote users, and the edges represent the segments of the ditch between users. Employing

this representation Littlechild and Owen (1973) have shown that the contribution vector

(the solution for the cost-sharing problem) given by the �sequential equal contributions

rule� (henceforth SEC rule, or Baker-Thompson rule; Baker (1965), Thompson (1971)) is

equivalent to the Shapley value (Shapley, 1953). According to this rule, for all segments

their respective costs must be distributed evenly among those using the given segment,

and for all users the costs of the segments they are using must be summed up. This sum

is the cost the user must cover.

In Chapter 2 we have described an empirical and axiomatic analysis of a real cost-

sharing problem, an irrigation ditch located in a south-central Montana community (Aad-

land and Kolpin, 1998).

When considering special rooted trees with no branches (i.e. chains), we arrive at the

well-known class of airport games (Littlechild and Thompson, 1977), therefore this class

is the proper subset of the class of irrigation games. Thomson (2007) gives an overview

on the results for airport games.
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Granot et al. (1996) introduce the notion of standard �xed tree games. Irrigation

games are equivalent to standard �xed tree games, except for that in irrigation games the

tree may vary, while in the approach of Granot et al. (1996) it is �xed. Koster et al. (2001)

study the core of �xed tree games. Ni and Wang (2007) characterize the rules meeting

properties additivity and independence of irrelevant costs on the class of standard �xed

tree games. Fragnelli and Marina (2010) characterize the SEC rule for airport games.

1.4 Upstream responsibility

We consider further cost sharing problems given by rooted trees, called cost-tree problems,

but we are considering di�erent applications from those so far. We will consider energy

supply chains with a motivated dominant leader, who has the power to determine the

responsibilities of suppliers for both direct and indirect emissions. The induced games are

called upstream responsibility games Gopalakrishnan et al. (2017), and henceforth we will

refer to it as UR game.

We utilize the TU game model of Gopalakrishnan et al. (2017), called GHG Re-spon-

si-bil-i-ty-Emissions and Environment (GREEN) game. The Shapley value is used as an

allocation method by Gopalakrishnan et al., who also consider some pollution-related

properties that an emission allocation rule should meet, and provide several axiomatiza-

tions as well.

1.5 Shortest path games

In this chapter we consider the class of shortest path games. There are given some agents, a

good, and a network. The agents own the nodes of the network and they want to transport

the good from certain nodes of the network to others. The transportation cost depends on

the chosen path within the network, and the successful transportation of a good generates

pro�t. The problem is not only choosing the shortest path (a path with minimum cost,

i.e. with maximum pro�t), but we also have to divide the pro�t among the players.

Fragnelli et al. (2000) introduce the notion of shortest path games and they prove that

the class of such games coincides with the well-known class of monotone games.

In this chapter we consider further characterizations of the Shapley value: Shapley

(1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations.

We analyze their validity on the class of shortest path games, and conclude that all
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aforementioned axiomatizations are valid on the class.

2 Research methods and notations

Besides basic graph-theoretic notions and models, we apply game-theoretic models in the

majority of the thesis. The signi�cance of cooperative game theory is beyond dispute. This

�eld of science positioned on the border of mathematics and economics enables us to model

and analyze economic situations that emphasize the cooperation among di�erent parties,

and achieving their common goal as a result. In such situations we focus primarily on two

topics: what cooperating groups (coalitions) are formed, and how the gain stemming from

the cooperation can be distributed among the parties. Several theoretical results have been

achieved in recent decades in the �eld of cooperative game theory, but it is important to

note that these are not purely theoretical in nature, but additionally provide solutions

applicable to and applied in practice. In the following we present the notations used in

the thesis.

Cost allocation models

N = {1, 2, . . . , n} the �nite set of players

L ⊆ N the set of leaves of a tree

i ∈ N a given user/player

ci the cost of the ith segment/edge

I−i = {j ∈ N |j < i} the set of users preceding i

I+
i = {j ∈ N |i < j} the set of users following i

ξai the average cost allocation rule

ξsi the serial cost allocation rule

ξeqi the allocation rule based on the equal allocation of the non-separable cost

ξriui the allocation rule based on the ratio of individual use of the non-separable cost

ξri the restricted average cost allocation rule

Introduction to cooperative game theory

TU game cooperative game with transferable utility

|N | the cardinality of N

2N the class of all subsets of N
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A ⊂ B A ⊆ B, but A 6= B

A ]B the disjoint union of sets A and B

(N, v) the cooperative game de�ned by the set of players N and the charac-

teristic function v

v(S) the value of coalition S ⊆ N

GN the class of games de�ned on the set of players N

(N, vc) the cost game with the set of players N and cost function vc

I∗(N, v) the set of preimputations

I(N, v) the set of imputations

C(N, v);C(v) the set of core allocations; the core of a cooperative game

X∗(N, v) =
{
x ∈ RN | x(N) ≤ v(N)

}
, the set of feasible payo� vectors

ψ(v) = (ψi(v))i∈N ∈ RN , the single-valued solution of a game v

v
′
i(S) = v(S ∪ {i})− v(S), the player i's individual marginal contribution to

coalition S

φi(v) the Shapley value of player i

φ(v) = (φi(v))i∈N the Shapley value of a game v

π an ordering of the players

ΠN the set of the possible orderings of set of players N

Fixed tree games

Γ(V,E, b, c, N) a �xed tree network

G(V,E) directed graph with the sets of nodes V and edges E

r ∈ V the root node

c the non-negative cost function de�ned on the set of edges

Si(G) = {j ∈ V : i ≤ j} the set of nodes accessible from i via a directed

graph

Pi(G) = {j ∈ V : j ≤ i} the set of nodes on the unique path connecting i to

the root

S̄ the trunk of the tree containing the members of coalition S (the union

of unique paths connecting nodes of members of coalition S to the

root)

uT the unanimity game on coalition T
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ūT the dual of the unanimity game on coalition T

Airport and irrigation games

(G, c) the cost tree de�ned by the graph G and cost function c

GAI the class of airport games on the set of players N

GNI the class of irrigation games on the set of players N

GG the subclass of irrigation games induced by cost tree problems de�ned

on rooted tree G

Cone {vi}i∈N the convex cone spanned by given vi games

i− = {j ∈ V : ji ∈ E} the player preceding player i

virr the irrigation game

i ∼v j i and j are equivalent players in game v, i.e. v′i(S) = v′j(S) for all

S ⊆ N \ {i, j}

ξSEC �sequential equal contributions� cost allocation rule

Upstream responsibility

~ij the directed edge pointing from i to j

Ei the set of edges whose corresponding emissions are the direct or indirect respon-

sibility of i

ES the set of edges whose corresponding emissions are the direct or indirect respon-

sibilities of players in S

GNUR the class of UR games corresponding to the set of players of N

Shortest path tree games

Σ(V,A, L, S, T ) the shortest path tree problem

(V,A) directed, acyclic graph de�ned by the sets of nodes V and edges A

L(a) the length of the edge a

S ⊆ N the nonempty set of sources

T ⊆ N the nonempty set of sinks

P the path connecting the nodes of {x0, . . . , xp}

L(P ) the length of path P

o({x}) function de�ning the owners of node x
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o(P ) de�nes the owners of the nodes on the path P

g the income from transporting a good from a source to a sink

σ(Σ, N, o, g) the shortest path cooperative situation

vσ the shortest path game

3 Scienti�c results of the thesis

We will annotate our own results (lemmata, claims, theorems, and new proofs of known

theorems) in the thesis by framing their names.

3.1 Cost allocation models

Our entire thesis discusses cost allocation problems. One of the most well-known examples

is described as follows. A group of farmers acquire water supply for their land from a ditch

that is connected to a main ditch. Operation and maintenance of the ditch incur costs

which are jointly covered by the group. The question is how the farmers (henceforth users)

may �fairly� divide the aforementioned costs among the group. After the introduction we

shall present the basic models and the axioms aiming to de�ne the notion of �fairness�.

The axioms are based on the work of Aadland and Kolpin (1998).

In this chapter we generalize the above models for problems described by tree-struc-

tures, and show that they uphold the properties of cost allocations described for chains.

These results were presented in our paper (Kovács and Radványi, 2011, in Hungarian).

De�nition 3.1 A ξ : RN
+ → RN

+ mapping is a cost allocation rule, if ∀c ∈ RN
+

∑
i∈N

ξi (c) =∑
i∈N

ci, where (ξi (c))i∈N = ξ (c).

(a) According to the average cost allocation rule the operation and maintenance costs

of the ditch are distributed evenly among users, i.e. ∀i ∈ N :

ξai (c) =
∑
j∈N

cj
n

(b) According to the serial cost allocation rule the costs associated with each segment

are distributed evenly among those who utilize the segment, i.e. ∀i ∈ N :
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ξsi (c) =
∑

j∈I−i ∪{i}

cj
|I+
j |+ 1

Axiom 3.2 A rule ξ is cost monotone, if ∀c ≤ c′: ξ (c) ≤ ξ(c′).

Axiom 3.3 A rule ξ satis�es ranking, if ∀c ∈ RN
+ and ∀j ∀i ∈ I−j ∪ {j}: ξi (c) ≤ ξj (c).

Axiom 3.4 A rule ξ is subsidy-free, if ∀c ∈ RN
+ and ∀I = {i1, i2, . . . , ik} ⊆ N :∑

j∈J

ξj (c) ≤
∑
j∈J

cj,

where for the sake of brevity J := I−i1 ∪ · · · ∪ I
−
ik
∪ I, where J is the sub-tree generated by

I.

De�nition 3.5 � The non-separable cost's equal allocation:

ξeqi (c) = si +
1

|N |
k(N) ∀i ∈ N

� The non-separable cost's allocation based on the ratio of individual use:

ξriui (c) = si +
ki∑

j∈N
kj
k(N) ∀i ∈ N

We summarize our results in the following table.

Cost monotone Ranking Subsidy-free

ξa X X ×

ξs X X X

ξeq X X ×

ξriu × X ×

Properties of allocations

Claim 3.6 In the case of cost allocation problems represented by tree structures, the

properties cost monotonicity, ranking, and subsidy-free are independent of each other.

De�nition 3.7 A restricted average cost allocation is a cost monotone, ranking, subsidy-

free cost allocation, where the di�erence between the highest and lowest distributed costs

is the lowest possible, considering all possible allocation principles.
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Theorem 3.8 There exists a restricted average cost share allocation ξr and it is unique.

The rule can be constructed recursively

Theorem 3.9 The restricted average cost rule is the only cost monotone, ranking,

subsidy-free method providing maximal Rawlsian welfare.

Axiom 3.10 A rule ξ satis�es the reciprocity axiom, if ∀i the points

(a)
∑

h≤i ξh(c) ≤
∑

h≤i ch

(b) c′ ≥ c and

(c)
∑

h≤i (ch − ξh(c)) ≥
∑

j>i (c
′
j − cj)

imply that the following is not true: ξh(c
′)− ξh(c) < ξj(c

′)− ξj(c) ∀h ≤ i and j > i.

Axiom 3.11 A rule ξ is semi-marginal, if ∀i ∈ N \L: ξi+1(c) ≤ ξi(c) + ci+1, where i+ 1

denotes a direct successor of i in I+
i .

Axiom 3.12 A rule ξ is incremental subsidy-free, if ∀i ∈ N and c ≤ c′:∑
h∈I−i ∪{i}

(ξh(c
′)− ξh(c)) ≤

∑
h∈I−i ∪{i}

(c′h − ch).

Theorem 3.13 Cost-sharing rule ξ is cost monotone, ranking, semi-marginal, and in-

cremental subsidy-free if and only if ξ = ξs, i.e. it is the serial cost allocation rule.

Theorem 3.14 The serial cost-sharing rule is the unique cost monotone, ranking, and

incremental subsidy-free method that ensures maximal Rawlsian welfare.

Theorem 3.15 The serial cost-sharing rule is the single cost monotone, ranking, semi-

marginal method ensuring minimal Rawlsian welfare.

3.2 Airport and irrigation games

In this chapter we introduce irrigation games and characterize their class. We show that

the class of irrigation games is a non-convex cone which is a proper subset of the �nite

convex cone spanned by the duals of the unanimity games, therefore every irrigation game

is concave. Furthermore, as a corollary we show that the class of airport games has the

same characteristics as that of irrigation games.

In addition to the previously listed results, we extend the results of Dubey (1982) and

Moulin and Shenker (1992) to the class of irrigation games. Furthermore, we �translate�
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the axioms used in the cost-sharing literature (see e.g. Thomson, 2007) to the language

of transferable utility cooperative games, and show that the results of Dubey (1982) and

Moulin and Shenker (1992) can be deduced directly from Shapley (1953)'s and Young

(1985)'s results. Namely, we present two new variants of Shapley (1953)'s and Young

(1985)'s results, and we provide Dubey (1982)'s, Moulin and Shenker (1992)'s and our

characterizations as direct corollaries of the two new variants.

In our characterization results we relate the TU games terminologies to the cost sharing

terminologies, therefore we bridge between the two �elds.

Up to our knowledge these are the �rst results in the literature which provide a pre-

cise characterization of the class of irrigation games, and extend Shapley's and Young's

axiomatizations of the Shapley value to this class of games. We conclude that apply-

ing the Shapley value to cost-tree problems is theoretically well-founded, therefore, since

the Shapley value behaves well from the viewpoint of computational complexity theory

(Megiddo, 1978), the Shapley value is a desirable tool for solving cost-tree problems. The

results of present chapter have been published in Márkus, Pintér és Radványi (2011).

In this section we build on the duals of unanimity games.The dual of the unanimity

game for all T ∈ 2N \ {∅} and S ⊆ N is:

ūT (S) =

 1, if T ∩ S 6= ∅,

0 otherwise.

De�nition 3.16 (Irrigation game) For all cost trees (G, c) and player set N = V \{r},

and coalition S let

v(G,c)(S) =
∑
e∈S̄

ce ,

where the value of the empty sum is 0.

De�nition 3.17 (Airport games I.) For an airport problem let N = N1 ] · · · ]Nk be

the set of players, and let there be given c ∈ Rk
+, such that c1 < . . . < ck ∈ R+. Then the

airport game v(N,c) ∈ GN can be de�ned as v(N,c)(∅) = 0, and for all non-empty coalitions

S ⊆ N :

v(N,c)(S) = max
i:Ni∩S 6=∅

ci .
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De�nition 3.18 (Airport games II.) For an airport problem let N = N1 ] · · · ] Nk

be the set of players, and c = c1 < . . . < ck ∈ R+. Let G = (V,E) be a chain such

that V = N ∪ {r}, and E = {r1, 12, . . . , (|N | − 1)|N |}, N1 = {1, . . . , |N1|}, . . . , Nk =

{|N | − |Nk| + 1, . . . , |N |}. Furthermore, for all ij ∈ E let c(ij) = cN(j) − cN(i), where

N(i) = {N∗ ∈ {N1, . . . , Nk} : i ∈ N∗}.

For a cost tree (G, c), an airport game v(N,c) ∈ GN can be de�ned as follows. Let

N = V \ {r} be the set of players, then for each coalition S (the empty sum is 0)

v(N,c)(S) =
∑
e∈S̄

ce .

Clearly, both de�nitions above de�ne the same games.

Lemma 3.19 For an arbitrary coalition ∅ 6= T ⊆ N , for which T = Si(G), i ∈ N , there

exists chain G, such that ūT ∈ GG. Therefore {ūT}T∈2N\{∅} ⊂ GNA ⊂ GNI .

Lemma 3.20 For all rooted trees G: GG ⊂ Cone {ūSi(G)}i∈N . Therefore, GNA ⊂ GNI ⊂

Cone {ūT}T∈2N\{∅}.

Lemma 3.21 Neither GNA nor GNI is convex.

Lemma 3.22 For all rooted trees G and v =
∑

i∈N αSi(G)ūSi(G) ∈ GG, and for all i∗ ∈ N :∑
i∈N\{i∗} αSi(G)ūSi(G) ∈ GG. Then for all airport games v =

∑
T∈2N\{∅} αT ūT and coalition

T ∗ ∈ 2N \{∅}:
∑

T∈2N\{∅,T ∗} αT ūT ∈ GNA , and for all irrigation games v =
∑

T∈2N\{∅} αT ūT

and T ∗ ∈ 2N \ {∅}:
∑

T∈2N\{∅,T ∗} αT ūT ∈ GNI .

Lemma 3.23 All irrigation games are concave.

Corollary 3.24 In the case of a �xed set of players the class of airport games is a

union of �nitely many convex cones, but the class itself is not convex. Moreover, the

class of airport games is a proper subset of the class of irrigation games. The class of

irrigation games is also a union of �nitely many convex cones, but is not convex, either.

Furthermore, the class of irrigation games is a proper subset of the �nite convex cone

spanned by the duals of the unanimity games, therefore every irrigation game is concave,

and consequently every airport game is concave too.
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De�nition 3.25 Let v ∈ GN and

piSh(S) =


|S|!(|(N \ S)| − 1)!

|N |!
, if i /∈ S,

0 otherwise.

Then φi(v), the Shapley value of player i in game v is the piSh-weighted expected value of

all v′i. In other words:

φi(v) =
∑
S⊆N

v′i(S) piSh(S) . (1)

the core of v is

C(v) =

{
x ∈ RN :

∑
i∈N

xi = v(N), and for all S ⊆ N :
∑
i∈S

xi ≤ v(S)

}
.

De�nition 3.26 Value ψ in game class A ⊆ GN is core compatible, if for all v ∈ A it

holds that ψ(v) ∈ C(v).

Theorem 3.27 A cost allocation rule ξ on the cost tree (G, c) is subsidy-free, if and only

if the value generated by the cost allocation rule ξ on the irrigation game v(G,c) induced by

the cost tree is core compatible.

De�nition 3.28 A single-valued solution ψ on A ⊆ GN is / satis�es

� Pareto optimal (PO), if for all v ∈ A,
∑
i∈N

ψi(v) = v(N),

� null-player property (NP ), if for all v ∈ A, i ∈ N , v′i = 0 implies ψi(v) = 0,

� equal treatment property (ETP ), if for all v ∈ A, i, j ∈ N , i ∼v j implies ψi(v) =

ψj(v),

� additive (ADD), if for all v, w ∈ A such that v + w ∈ A, ψ(v + w) = ψ(v) + ψ(w),

� marginal (M), if for all v, w ∈ A, i ∈ N , v′i = w′i implies ψi(v) = ψi(w).

Theorem 3.29 (Shapley's axiomatization) For all rooted trees G a value ψ is PO,

NP , ETP and ADD on GG if and only if ψ = φ, i.e. the value is the Shapley value. In

other words, a value ψ is PO, NP , ETP and ADD on the class of airport and irrigation

games if and only if ψ = φ.
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Theorem 3.30 (Young's axiomatization) For any rooted tree G, a single-valued so-

lution ψ on GG is PO, ETP and M if and only if ψ = φ, i.e. it is the Shapley value.

Therefore, a single-valued solution ψ on the class of airport games is PO, ETP and M if

and only if ψ = φ, and a single-valued solution ψ on the class of irrigation games is PO,

ETP and M if and only if ψ = φ.

Corollary 3.31 For any irrigation game v, φ(v) ∈ C(v), i.e. the Shapley value is in

the core. Moreover, since every airport game is an irrigation game, for any airport game

v: φ(v) ∈ C(v).

De�nition 3.32 (SEC rule) For all cost trees (G, c) and for all players i the distribu-

tion according to the SEC rule is given as follows:

ξSECi (G, c) =
∑

j∈Pi(G)\{r}

cj−j
|Sj(G)|

.

De�nition 3.33 Let G = (V,A) be a rooted tree. Rule χ de�ned on the set of cost trees

denoted by G satis�es

� non-negativity, if for each cost function c, χ(G, c) ≥ 0,

� cost boundedness, if for each cost function c, χ(G, c) ≤

( ∑
e∈APi(G)

ce

)
i∈N

,

� e�ciency, if for each cost function c,
∑
i∈N

χi(G, c) =
∑
e∈A

ce,

� equal treatment of equals, if for each cost function c and pair of players i, j ∈ N ,∑
e∈APi(G)

ce =
∑

e∈APj(G)

ce implies χi(G, c) = χj(G, c),

� conditional cost additivity, if for any pair of cost functions c, c′, χ(G, c + c′) =

χ(G, c) + χ(G, c′),

� independence of at-least-as-large costs, if for any pair of cost functions c, c′ and

player i ∈ N such that for each j ∈ Pi(G),
∑

e∈APj(G)

ce =
∑

e∈APj(G)

c′e, χi(G, c) =

χi(G, c
′).

Claim 3.34 Let G be a rooted tree, χ be de�ned on cost trees (G, c), solution ψ be

de�ned on GG such that χ(G, c) = ψ(v(G,c)) for any cost function c. Then, if χ satis�es
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� non-negativity and cost boundedness, then ψ is NP ,

� e�ciency, then ψ is PO,

� equal treatment of equals, then ψ is ETP ,

� conditional cost additivity, then ψ is ADD,

� independence of at-least-as-large costs, then ψ is M .

Theorem 3.35 A rule χ on cost-tree problems satis�es non-negativity, cost bounded-

ness, e�ciency, equal treatment of equals and conditional cost additivity, if and only if

χ = ξ, i.e. χ is the SEC rule.

Theorem 3.36 Rule χ on cost-tree problems satis�es e�ciency, equal treatment of

equals and independence of at-least-as-large costs, if and only if χ = ξ, i.e. χ is the

SEC rule.

3.3 Upstream responsibility

In this chapter we consider further cost sharing problems given by rooted trees, called

cost-tree problems, but we are considering di�erent applications from those so far. We

will consider energy supply chains with a motivated dominant leader, who has the power

to determine the responsibilities of suppliers for both direct and indirect emissions. The

induced games are called upstream responsibility games Gopalakrishnan et al. (2017), and

henceforth we will refer to it as UR game.

The results on the class of UR games presented in the following have been published

in working paper Radványi (2018).

De�nition 3.37 (UR game) For all cost trees (G, c), player set N = V \ {r}, and

coalition S let the UR game be de�ned as follows.

v(G,c)(S) =
∑
j∈ES

cj ,

where the value of the empty set is 0.

Lemma 3.38 For any chain G, T ⊆ N such that T = Pi(G), i ∈ N , ūT ∈ GG it holds

that {ūT}T∈2N\{∅} ⊂ GNA ⊂ GNUR.
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Lemma 3.39 For all rooted trees G: GG ⊂ Cone {ūPi(G)}i∈N . Therefore, GA ⊂ GNUR ⊂

Cone {ūT}T∈2N\{∅}.

Lemma 3.40 Neither GNA nor GNUR is convex.

Lemma 3.41 For any rooted tree G and v =
∑

i∈N αPi(G)ūPi(G) ∈ GG, and for each

i∗ ∈ N it holds that
∑

i∈N\{i∗} αPi(G)ūPi(G) ∈ GG. Therefore, for any airport game v =∑
T∈2N\{∅} αT ūT and T ∗ ∈ 2N \ {∅} it holds that

∑
T∈2N\{∅,T ∗} αT ūT ∈ GNA , and for

any upstream responsibility game v =
∑

T∈2N\{∅} αT ūT and T ∗ ∈ 2N \ {∅} it holds that∑
T∈2N\{∅,T ∗} αT ūT ∈ GNUR.

Lemma 3.42 All UR games are concave.

Let us summarize our results in the following.

Corollary 3.43 For a �xed player set the class of airport games is a union of �nitely

many convex cones, but the class is not convex. Moreover, the class of airport games

is a proper subset of the class of upstream responsibility games. The class of upstream

responsibility games is also a union of �nitely many convex cones, but is not convex either.

Finally, the class of UR games is a proper subset of the �nite convex cone spanned by the

duals of the unanimity games, therefore every upstream responsibility game is concave, so

every airport game is concave too.

Theorem 3.44 (Shapley's axiomatization) For all rooted trees G a value ψ is PO,

NP , ETP and ADD on GG, if and only if ψ = φ, i.e. the value is the Shapley value. In

other words, value ψ on the class of UR games is PO, NP , ETP and ADD, if and only

if ψ = φ.

Theorem 3.45 (Young's axiomatization) For any rooted tree G, a single-valued so-

lution ψ on GG is PO, ETP and M if and only if ψ = φ, i.e. it is the Shapley value.

Therefore, a value ψ on the class of UR games is PO, ETP and M if and only if ψ = φ.

Corollary 3.46 For all UR games v it holds that φ(v) ∈ C(v) i.e. the Shapley value is

in the core.

Corollary 3.47 The Shapley value on the class of the upstream responsibility games

can be calculated in polynomial time.
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3.4 Shortest path games

In this chapter we consider the class of shortest path games. There are given some agents, a

good, and a network. The agents own the nodes of the network and they want to transport

the good from certain nodes of the network to others. The transportation cost depends on

the chosen path within the network, and the successful transportation of a good generates

pro�t. The problem is not only choosing the shortest path (a path with minimum cost,

i.e. with maximum pro�t), but we also have to divide the pro�t among the players.

Fragnelli et al. (2000) introduce the notion of shortest path games and they prove that

the class of such games coincides with the well-known class of monotone games.

In this chapter we consider further characterizations of the Shapley value: Shapley

(1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations.

We analyze their validity on the class of shortest path games, and conclude that all

aforementioned axiomatizations are valid on the class.

Our results are di�erent from Fragnelli et al. (2000) in two aspects. Firstly, Fragnelli

et al. (2000) give a new axiomatization of the Shapley value, conversely, we consider

four well-known characterizations. Secondly, Fragnelli et al. (2000)'s axioms are based

on the graph behind the problem, in this chapter we consider game-theoretic axioms

only. Namely, while Fragnelli et al. (2000) consider a �xed-graph problem, we consider

all shortest path problems, and examine them from the viewpoint of an abstract decision

maker who focuses rather on the abstract problem, instead of the concrete situations.

The following results have been published in Pintér and Radványi (2013).

De�nition 3.48 A shortest path cooperative situation σ is a tuple (Σ, N, o, g). We can

identify σ with the corresponding cooperative TU game vσ given by, for each S ⊆ N :

vσ(S) =

 g − LS, if S owns a path in Σ and LS < g,

0 otherwise,

where LS is the length of the shortest path owned by S.

De�nition 3.49 A shortest path game vσ is a game associated with a shortest path

cooperative situation σ. Let SPG denote the class of shortest path games.

Theorem 3.50 Let there be given A ⊆ GN such that the Cone {uT}T⊆N, T 6=∅ ⊆ A. Then

value ψ on A is PO, NP , ETP and ADD, if and only if ψ = φ.

17



Corollary 3.51 (Shapley's axiomatization) A value ψ is PO, NP , ETP and ADD

on the class of monotone games, if and only if ψ = φ, i.e. it is the Shapley value.

De�nition 3.52 On set A ⊆ GN value ψ is / satis�es

� fairness property (FP ), if for all games v, w ∈ A and players i, j ∈ N for which

v + w ∈ A and i ∼w j: ψi(v + w)− ψi(v) = ψj(v + w)− ψj(v),

� coalitional strategic equivalence (CSE), if for all games v ∈ A, player i ∈ N ,

coalition T ⊆ N , and α > 0: i /∈ T and v + αuT ∈ A implies ψi(v) = ψi(v + αuT ).

Theorem 3.53 (van den Brink's axiomatization) A value ψ is PO, NP , and FP

on the class of monotone games, if and only if ψ = φ, i.e. it is the Shapley value.

Lemma 3.54 On the class of monotone games M and CSE are equivalent.

Corollary 3.55 (Young's and Chun's axiomatization) A value ψ is PO, ETP ,

and CSE on the class of monotone games, if and only if ψ = φ, i.e. it is the Shap-

ley value.
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