

CSABA BRUNNER

INSTITUTE OF INFORMATION TECHNOLOGY

SUPERVISOR: ANDREA KŐ PH.D.

SZABINA FODOR PH.D.

© CSABA BRUNNER

CORVINUS UNIVERSITY OF BUDAPEST

DOCTORAL SCHOOL OF BUSINESS INFORMATICS

INTRUSION DETECTION BY MACHINE LEARNING

PH.D. DISSERTATION

CSABA BRUNNER

BUDAPEST

2020

Abstract

Since the early days of information technology, there have been many stakeholders who

used the technological capabilities for their own benefit, be it legal operations, or illegal

access to computational assets and sensitive information. Every year, businesses invest

large amounts of effort into upgrading their IT infrastructure, yet, even today, they are

unprepared to protect their most valuable assets: data and knowledge. This lack of

protection was the main reason for the creation of this dissertation. During this study,

intrusion detection, a field of information security, is evaluated through the use of several

machine learning models performing signature and hybrid detection. This is a challenging

field, mainly due to the high velocity and imbalanced nature of network traffic. To

construct machine learning models capable of intrusion detection, the applied

methodologies were the CRISP-DM process model designed to help data scientists with

the planning, creation and integration of machine learning models into a business

information infrastructure, and design science research interested in answering research

questions with information technology artefacts. The two methodologies have a lot in

common, which is further elaborated in the study. The goals of this dissertation were two-

fold: first, to create an intrusion detector that could provide a high level of intrusion

detection performance measured using accuracy and recall and second, to identify

potential techniques that can increase intrusion detection performance. Out of the

designed models, a hybrid autoencoder and stacking neural network model managed to

achieve detection performance comparable to the best models that appeared in the related

literature, with good detections on minority classes. To achieve this result, the techniques

identified were synthetic sampling, advanced hyperparameter optimization, model

ensembles and autoencoder networks. In addition, the dissertation set up a soft hierarchy

among the different detection techniques in terms of performance and provides a brief

outlook on potential future practical applications of network intrusion detection models

as well.

Csaba Brunner – Intrusion Detection by Machine Learning

5

TABLE OF CONTENTS

TABLE OF CONTENTS ... 5

LIST OF FIGURES .. 7

LIST OF TABLES ... 9

LIST OF ABBREVIATIONS .. 11

1. INTRODUCTION ... 13

2. BACKGROUND .. 15

2.1. WHAT IS INTRUSION DETECTION? ... 15

2.2. DATA MINING ... 19

2.2.1. SUPERVISED LEARNING .. 25

2.2.2. UNSUPERVISED LEARNING ... 33

2.2.3. NEURAL NETWORKS ... 38

2.2.4. ADDITIONAL TECHNIQUES USED IN DATA MINING 47

2.3. INTRUSION DETECTION RESEARCH – RELATED WORKS 58

3. RESEARCH OVERVIEW ... 74

3.1. CONTEXT ... 74

3.2. RESEARCH GOALS .. 76

3.3. RESEARCH QUESTIONS ... 76

3.4. METHODOLOGY ... 80

4. PROPOSED MODEL DESIGNS .. 82

4.1. INPUT DATASETS ... 82

4.2. MODEL EVOLUTION ... 87

4.2.1. THE DECISION TREE BAGGING MODEL .. 89

4.2.2. THE STACKED NEURAL NETWORK MODEL .. 93

4.2.3. NEURAL NETWORKS ON TENSORFLOW AND KERAS 97

4.2.4. AUTOENCODER ENHANCED STACKING NEURAL NETWORK 101

5. RESULTS ... 106

Csaba Brunner – Intrusion Detection by Machine Learning

6

5.1. DECISION TREE BAGGING RESULTS .. 106

5.2. STACKING NEURAL NETWORK RESULTS ... 107

5.3. KERAS AND TENSORFLOW STACKING NEURAL NETWORK RESULTS 111

5.4. AUTOENCODER ENHANCED STACKING NEURAL NETWORK RESULTS 113

5.5. COMPARISON OF EXPERIMENTAL RESULTS .. 116

5.6. COMPARISON TO EXTERNAL RESULTS .. 118

6. CONCLUSION .. 121

7. REFERENCES ... 124

8. PUBLICATIONS .. 130

9. APPENDIX ... 131

Csaba Brunner – Intrusion Detection by Machine Learning

7

LIST OF FIGURES

Figure 1: Types of hybrid intrusion detection. Source: Molina-Coronado et al., (2020) 18

Figure 2: The relationships between KDD, data mining and machine learning. Based on

Fayyad, Piatetsky-Shapiro and Smyth (1996) ... 20

Figure 3: The CRISP-DM process model. Source: Chapman et al. (2000) 21

Figure 4: The SEMMA process model for data mining. Source: Sharda, Delen and

Turban (2018) .. 23

Figure 5: Knowledge discovery in databases. Source: Fayyad, Piatetsky-Shapiro and

Smyth (1996) ... 24

Figure 6: Decision tree. Based on: Han, Kamber and Pei (2011) 26

Figure 7: Optimal separating hyperplane with maximized margin created by SVM.

Based on Cortes and Vapnik (1995) .. 29

Figure 8: KNN classification with K=1. Source: Navlani (2018) 31

Figure 9: K-means clustering algorithm. Source: Piech (2012) 34

Figure 10: Point types in DBSCAN clustering. Source: Lutins (2017) 37

Figure 11: Simple mathematical model for a neuron. Based on Russel and Norwig

(2010) ... 39

Figure 12: Architecture of a multilayer feedforward neural network. Source: own edit 40

Figure 13: Architecture of an autoencoder network. Source: own edit 44

Figure 14: Bagging model training process. Based on Budzik (2019) 47

Figure 15: Boosting model training process. Based on Budzik (2019) 48

Figure 16: Stacking model training process with results combination. Based on Budzik

(2019) ... 48

Figure 17: ROC curve. Source: scikit-learn developers (2018) 52

Figure 18: Illustration of the Bayesian optimization. Source: Brochu, Cora and De

Freitas (2010) ... 56

Figure 19: Classification of network anomaly detection methods. Source: Bhuyan,

Bhattacharyya and Kalita (2014) ... 61

Figure 20: Relationship between detection methods. Source: Ippoliti (2011) 62

Figure 21: Machine learning approaches in intrusion detection. Coverage of Buczak and

Guven (2015) ... 62

Figure 22: The methodological abstraction levels followed in this dissertation. Source:

own edit.. 80

Csaba Brunner – Intrusion Detection by Machine Learning

8

Figure 23: The relationship between the Engineering Cycle and CRISP-DM. Based on:

Chapman et al. (2000) and Wieringa (2014) ... 80

Figure 24: KDD Cup 1999 class distributions on the 10% training sample. Source: own

edit. .. 86

Figure 25: NSL-KDD train dataset class distributions. Source: own edit. 87

Figure 26: Iterations on the studied detection model. Source: own edit. 88

Figure 27: Data preprocessing for the detection model prototype. Source: own edit. 89

Figure 28: Experimental execution architectures of the V0 intrusion detector. Source:

own edit.. 90

Figure 29: The model creation and prediction process of the V0 intrusion detector.

Source: own edit .. 91

Figure 30: Data preprocessing for the V1 detector. Source: own edit. 93

Figure 31: The model creation and prediction process of the V1 model. Source: own

edit ... 95

Figure 32: Data preprocessing for the V2 models. Source: own edit 98

Figure 33: The model creation and prediction process of the V2 models implemented in

Keras on TensorFlow backend. Source: own edit ... 99

Figure 34: Data preprocessing for the V3 architecture. Source: own edit 102

Figure 35: The model creation and prediction process of the V3 model. Source: own

edit ... 102

Figure 36: Per-class autoencoder model errors on NSL-KDD dataset. Source: own edit.

 ... 114

Csaba Brunner – Intrusion Detection by Machine Learning

9

LIST OF TABLES

Table 1: Confusion matrix for classifier performance. Source: Han, Kamber and Pei

(2011) ... 50

Table 2: Hyperopt (python implementation of TPE) stochastic sampling functions.

Source: Bergstra, Yamins and Cox (2013) .. 58

Table 3: Comparison of engineering cycle and CRISP-DM tasks. Based on: Chapman et

al. (2000) and Wieringa (2014).. 81

Table 4: Classification of attack types. Source: own edit (see Appendix A for details). 84

Table 5: Statistics of redundant records in the KDD train set. Source: Tavallaee et al.

(2009) ... 84

Table 6: Statistics of redundant records in the KDD test set. Source: Tavallaee et al.

(2009) ... 85

Table 7: Sampling setup of the prototype intrusion detector. Source: Brunner (2017) .. 90

Table 8: Sample fractions to balance class distributions in the 10% KDD Cup 1999

sample before SMOTE resampling. Source: own edit .. 94

Table 9: Hyperparameter settings for the V1 detector. Source: own edit 96

Table 10: TPE hyperparameter settings for the V2 intrusion detectors. Source: own edit

 ... 100

Table 11: Autoencoder parameter settings. Source: own edit....................................... 103

Table 12: Aggregate measurements for the binary classification case of the V0 model.

Based on Brunner (2017) ... 106

Table 13: Aggregate measurements for the five-class multiclass classification case of

the V0 model. Based on Brunner (2017) ... 107

Table 14: V1 sampling validation results on KDD Cup 1999 data. Source: own edit . 108

Table 15: Aggregate V1 model accuracy with base model accuracies measured on KDD

Cup 1999. Source: own edit ... 109

Table 16: Macro-averaged precision, recall and F1-score of the V1 model measured on

KDD Cup 1999. Source: own edit ... 109

Table 17: Aggregate V1 model accuracy with base model accuracies measured on NSL-

KDD. Source: own edit .. 110

Csaba Brunner – Intrusion Detection by Machine Learning

10

Table 18: Macro-averaged precision, recall and F1-score of the V1 model measured on

NSL-KDD. Source: own edit ... 110

Table 19: Aggregate V2 model accuracies. Source: own edit 112

Table 20: Aggregate V2 model recalls. Source: own edit .. 112

Table 21: Autoencoder MSE per feature group and activation. Source: own edit 113

Table 22: Aggregate V3 model accuracies. Source: own edit 115

Table 23: Aggregate V3 model recalls. Source: own edit .. 115

Table 24: Accuracy table for all model variants. Source: own edit. 116

Table 25: Recall table for all experiments. Source: own edit 117

Table 26: Model rankings in terms of accuracy and recall. Source: own edit 117

Table 27: External comparisons in terms of accuracy and recall. Source: own edit 119

Table 28: Recall comparison per class. Source: Yang et al. (2019) & own edit 120

Csaba Brunner – Intrusion Detection by Machine Learning

11

LIST OF ABBREVIATIONS

AE Autoencoder network

AI Artificial intelligence

ANN Artificial neural network

API Application programming interface

AUC Area under the ROC curve

BPSO Binary-based particle swarm optimization

CART Classification and regression trees

CDF Cumulative distribution function

CRISP-DM Cross-industry standard process for data mining

CV Cross validation

CVAE Conditional variational autoencoder

DARPA Defense Advanced Research Projects Agency

DBN Deep belief networks

DBSCAN Density-based spatial clustering of applications with noise

DDoS Distributed denial of service

DM Data mining

DMZ Demilitarized zone

DNN Deep neural network

DoS Denial of service

DT Decision trees

ENN Edited nearest neighbors

FN False negative

FP False positive

HIDS Host intrusion detection system

ICT Info-communication technologies

ID3 Interactive dichotomizer 3

IDS Intrusion detection system

KDD Knowledge discovery in databases

KL divergence Kullback-Leibler divergence

KNN K-nearest neighbor

LR Learning rate

MARS Multiple adaptive regression splines

Csaba Brunner – Intrusion Detection by Machine Learning

12

ML Machine learning

MLP Multilayer perceptron

MSE Mean squared error

NB Naive Bayes

NIDS Network intrusion detection system

NLP Natural language processing

NN Neural network

PCA Principal component analysis

PF Probability function

R2L Remote to local

RBF Radial basis function

RELU Rectified linear unit

RF Random forest

RIPPER Repeated incremental pruning to produce error reduction

RNN Recurrent neural network

ROC Receiver operating characteristic

SAE Sparse autoencoder

SEMMA Sample, explore, modify, model, assess

SGD Stochastic gradient descent

SMOTE Synthetic minority oversampling technique

SPSO Standard-based particle swarm optimization

SVM Support vector machine

TF TensorFlow

TN True negative

TP True positive

TPE Tree-structured parzen estimator

U2R User to root

USAF United States Air Force

VPN Virtual private network

Csaba Brunner – Intrusion Detection by Machine Learning

13

1. INTRODUCTION

The need to protect information systems and resources from misuse had arisen as early

as 1972 and 1980, when James P. Anderson outlined that the USAF had become

increasingly aware of information security related issues (Anderson (1972) and (1980)).

Since then, the reported number of system intrusions grew at an alarming rate, especially

from the early 2000s, which, according to reports like Beek et al. (2019) only increased

in severity. The most common cyber attacks were the following:

• DDoS in the early 2000s (Lau et al. (2000), Smith (2014)), causing significant

revenue loss by shutting down services,

• Botnet infections in relation to DDoS (Smith (2014)), taking computational

resources from legitimate clients and using those resources for illegal conduct,

• ransomwares, specialized malwares (Beek et al. (2019)), encrypting information

and demanding ransom for decryption,

• and more recently, deepfake attacks (Damiani (2019), Statt (2019)), where deep

learning models are used to impersonate stakeholders in key positions to gain

access to sensitive information or to conduct fraud.

The presence of these attacks changes among economic sectors, the most targeted being

financial services, healthcare and education. Several methods exist for countering these

malicious activities at different layers of an information system, a concept often referred

to as defense in depth. One example is machine learning. Intrusive activities have well-

defined patterns, detecting them is simple enough for a specialized system supported by

the same machine learning algorithms. Furthermore, in some cases, like deepfake attacks,

machine learning might be the only effective method of detection.

Despite cybercrime becoming more and more common, machine learning techniques are

still not widespread and utilized enough in IT security. This is my motivation for studying

network intrusion detection systems (NIDS) from a data mining perspective. My main

goal was to provide a novel intrusion detection solution applying machine learning

methods. To fulfill this goal, I set up, parameterized, trained and tested several intrusion

detection models, implementing artificial neural network architectures. I combined two

Csaba Brunner – Intrusion Detection by Machine Learning

14

approaches in my research: the design science research methodology and the CRISP-DM

process model.

Throughout the dissertation I created four models in total for intrusion detection, going

from simple classification ensembles to more complex neural network stacking models

and hybrid anomaly-signature detection solutions implemented with the help of

autoencoder networks. To evaluate how well each can detect intrusive behavior, I used

the KDD Cup 1999 and NSL-KDD benchmark datasets for modeling, and the accuracy

and recall metrics for model evaluation. I proved that machine learning is a suitable

approach for detecting intrusions. Based on certain per-class and aggregate measures, at

least one of the proposed models (V3) can compete and outperform works in the related

literature. More details on the proposed models are available in chapter 4.2, and the

comparison with the related literature in chapter 5.6.

In the following chapters of my dissertation I will introduce the concept of intrusions,

intrusion detection and intrusion detection systems (IDS), the machine learning models

and techniques that I used, or could have used for intrusion detection and the wider

research conducted in the field in chapter 2. In chapter 3, I detail my choice of

methodology based on the design science research methodology and CRISP-DM process

model, followed by the design, implementation and evaluation of the machine learning

model-based detectors I created in chapters 4 and 5. Chapter 6 contains the conclusions I

collected with a brief outlook on practical application and further research possibilities.

Csaba Brunner – Intrusion Detection by Machine Learning

15

2. BACKGROUND

In this chapter, I introduce the core concepts of my dissertation: intrusions, and intrusion

detection systems. I follow this up describing data mining, its key characteristics and the

different machine learning algorithms it uses, both supervised and unsupervised. I found

this introduction important, as machine learning has gained recognition in the last decades

in detecting intrusion attempts. Moreover, I discuss artificial neural networks and

autoencoder networks in a separate chapter to detail how important they were to the

detectors I implemented. Further chapters provide an introduction to the overall intrusion

detection research, identifying the key literature within the field like McHugh (2000),

Stolfo et al. (2000); Tavallaee et al. (2009), Tsai et al. (2009), Ippoliti (2011), Buczak

and Guven (2015), Dua and Du (2016) and Molina-Coronado et al. (2020).

2.1. WHAT IS INTRUSION DETECTION?

According to Bhuyan, Bhattacharyya and Kalita (2014, pp. 303, 305) “Intrusion is a

deliberate and unauthorized attempt to access information, manipulate information and

render a system unreliable or unusable. Intrusion itself is a set of actions aimed to

compromise the security of computer and network components in terms of confidentiality,

integrity and availability”. Intrusion detection is a set of actions to detect such events, to

raise alerts, and to provide information to prevent them. Bruneau (2001, p. 2) described

it as a collection of “unrelenting active attempts in discovering or detecting the presence

of intrusive activities.” These attempts refer to all processes aimed at discovering

unauthorized use of network or computer resources. Dua and Du (2016, p. 10) defined

intrusions and intrusion detection as “any unauthorized attempt to access, manipulate,

modify, or destroy information or to use a computer system remotely to spam, hack, or

modify other computers. An IDS intelligently monitors activities that occur in a

computing resource, e.g., network traffic and computer usage, to analyze the events and

generate reactions”. This is a more up to date description that accounts for botnet

activities and includes both network and host intrusion detection. Molina-Coronado et al.

(2020, p. 2) defined intrusion detection systems the following way “Intrusion Detection

Systems are deployed to uncover cyberattacks that may harm information systems.” In

further chapters of this dissertation, when I talk about intrusion detection systems, I will

mean a system designed to detect attempts at unauthorized access to an information

Csaba Brunner – Intrusion Detection by Machine Learning

16

system coming from a wider external network. The key assumption for such a system to

function is that intrusive behavior is discernable from normal activity.

According to Scarfone and Mell, (2007), Dua and Du, (2016) and Molina-Coronado et

al. (2020), the following types of IDS exist:

• Network based (NIDS): monitoring traffic on network devices or segments with

the aim of detecting malicious traffic aimed at devices within the protected

network boundaries. Network intrusion detectors are usually deployed in DMZs,

as part of an intelligent firewall, VPN servers, remote access servers and wireless

network access points.

• Host based (HIDS): monitoring the resource consumption on a single system for

suspicious activity. This host can be a critical IT infrastructure element, typically

an application or database server. Together with NIDS, these are the most

researched and mature fields.

• Wireless: monitoring wireless network traffic for possible intrusions. The

characteristics of wireless communication makes it a special category of network

intrusion detection.

• Network behavior analysis: monitoring network traffic to identify unusual flows

(which could be a result of a DDoS attack).

Many techniques have been developed to create intrusion detection systems, from manual

oversight in the early days, though expert and rule-based solutions to data science and

machine learning. Data science plays a key role in modern intrusion detection, as it is the

only technique that can handle the sheer volume of network traffic effectively. From a

data scientific point of view, Scarfone and Mell (2007), Dua and Du (2016) and Molina-

Coronado et al. (2020) distinguished the most common classes of intrusion detection:

• Misuse / signature detection: IDS that generates alarms when a known intrusion

occurs. Known attacks can be detected reliably with low false positive rates,

however new attacks cannot be detected. Misuse detectors describe known attacks

as malicious patterns; therefore, they require data on the attacks first to be able to

detect them.

Csaba Brunner – Intrusion Detection by Machine Learning

17

• Anomaly-based detection: alarms are triggered when a traffic flow behaves in a

significantly different way compared to normal traffic patterns. Subsequently,

they can detect previously unknown attacks at the cost of a higher false positive

rate. Ippoliti (2011) noted the key difference between anomaly and signature-

based methods: anomaly detectors detect what their name suggests: anomalies in

traffic and not intrusions: legitimate albeit unusual usage might raise alerts in an

anomaly detection model, while a carefully constructed attack could remain

undetected if it behaves like normal activity.

• Hybrid detection: to improve the detection performance of IDSs, some

researchers proposed to combine anomaly and misuse detection into hybrid

detectors. The underlying idea is to combine the benefits of the two, like the ability

to detect known attacks with low false positive rates, while maintaining some

ability of detecting new attacks when needed. Zhang and Zulkernine (2006),

Zhang, Zulkernine and Haque (2008), Dua and Du (2016) and Molina-Coronado

et al. (2020) identified four possible configuration for hybrid intrusion detection,

also visible in Figure 1:

o Parallel detection: used to correlate signature and anomaly detection

results to provide a stronger detection (Figure 1.a). Network traffic is

flagged as attack if either the anomaly or the signature detector identifies

it as such.

o Signature-Anomaly sequence detection: designed to improve detection

ability on unknown attacks missed by the signature detector (Figure 1.b).

o Anomaly-Signature sequence detection: designed to reduce false

positive rates (Figure 1.c). The anomaly detector flags suspicious traffic,

then the misuse detector confirms the flagged anomalies.

o Complex mixture detection: any detection approach using anomaly and

signature detectors simultaneously, that did not fit in the categories above.

For example, the model demonstrated in Figure 1.d, where traffic is

evaluated by an anomaly detector first. Normal traffic is further evaluated

by a signature detector to identify attacks missed, while suspicious traffic

is evaluated by a second anomaly detector to refine detections of the first

model.

Csaba Brunner – Intrusion Detection by Machine Learning

18

Figure 1: Types of hybrid intrusion detection. Source: Molina-Coronado et al., (2020)

Even with data science and machine learning techniques, intrusion detection is a complex

and challenging task for the reasons below:

• The most important challenge from a data science point of view, is the imbalanced

representation of normal and intrusive activity. Normally, the volume of normal

traffic outweighs that of attacks. At the sime time stakeholders are more interested

in precisely detecting attacks. This implies that a learning system not only needs

to be able to address an imbalance between normal and attack behavior, but it also

has to be more effective at detecting attacks, even if it means a higher number of

legitimate behavior gets flagged.

• A second challenge is the definition of performance. This could be the number of

attacks detected, but could also mean the amount of time under which detection

alerts are generated by the IDS. Both are correct depending on context. Metrics

measuring detection peformance can do som from different perspectives, some

less effective than others. Ultimately, the task determines the set of useful

performance metrics, which is the accurate detection of attacks rather than normal

traffic in case of intrusion detection.

• The amount of data available for intrusion detection is high, both in characteristics

and in traffic records. The former requires a conscious effort at choosing the

characteristics that best describe all or given attack patterns either through

selection or information compression. The number of traffic records poses a

Csaba Brunner – Intrusion Detection by Machine Learning

19

challenge when machine learning models are trained, but this can be mitigated by

sampling the traffic. A further complication comes with the interpretation if

traffic. They could be treated as individual packets, or as a communication flow.

This distinction is important, as different attacks are effective at different levels.

After reviewing the approaches used for intrusion detection and the challenges it involves,

I found network-based misuse / signature detection to be an interesting field to study,

while also planning to include at least one hybrid intrusion detection. Therefore, three out

of four of my proposed machine learning models performed signature detection only, with

the fourth being a hybrid anomaly-signature detector. I used decision trees and artificial

neural network (ANN) architectures set up in ensembles as machine learning models.

Further algorithms, particularly used for sampling, were k-nearest neighbors (KNN) and

support vector machines (SVM). I describe them in detail in the next chapter.

2.2. DATA MINING

Data mining has several definitions, Fayyad, Piatetsky-Shapiro and Smyth (1996) defined

it as a part of a wider process called knowledge discovery in databases (KDD). KDD is

determined as “the overall process of discovering useful knowledge from data” (Fayyad,

Piatetsky-Shapiro and Smyth (1996, p. 40)) and data mining as “a process using

statistical, mathematical and artificial intelligence techniques to extract and identify

useful information and subsequent knowledge from large sets of data”. From the

perspective of an IDS, the hidden knowledge is the unknown intent behind the source of

the network traffic and the data is the inbound network traffic. The goal is to set apart

traffic sent with malicious intent from the legitimate.

The terms data mining and machine learning, depending on interpretation, are often used

as synonyms. In this dissertation I will use the following definition for machine learning:

“it is a field of study that gives computers the ability to learn without being explicitly

programmed to” (Samuel (1959), indirect quote). The definitions of KDD, data mining

and machine learning make the relationship among them clearer (Figure 2). Data mining

is an activity in the KDD process, producing patterns to discover interesting knowledge.

Machine learning algorithms are frequently, though not exclusively, used in data mining

to generate these patterns.

Csaba Brunner – Intrusion Detection by Machine Learning

20

Figure 2: The relationships between KDD, data mining and machine learning. Based on Fayyad,

Piatetsky-Shapiro and Smyth (1996)

The most common tasks and algorithms of data mining were organized by Sharda, Delen

and Turban (2018). They distinguished prediction, association and segmentation tasks.

Prediction is referred to as the act of telling about the future. Prediction is further divided

into classification and regression. Classification attempts to predict categorical, while

regression attempts to predict numerical outcomes. This distinction is not as clear as it

might sound at fist. Many algorithms, that were designed to perform one method, were

extended to be applicable to the other as well. Typical example is the family of

generalized regression models with linear and logistic regression performing regression

and classification respectively. A counter example is the family of decision tree

algorithms, initially created for classification, later extended to perform regression.

Association discovers interesting relationships between entities in large databases. For

example, two products that are frequently purchased together. Two methods used for

relationship detection are link and sequence analysis. Link analysis does not take the order

of precedence between entities into account, while sequence analysis does.

In segmentation the goal is to split up and group structured data based on a similarity

metric. Partitioning include clustering and outlier analysis techniques. The former creates

homogenous groups where members in one group are more similar compared to members

from other groups. Outlier analysis tries to find entities that are more dissimilar to others.

By excluding these dissimilar entities, the effectiveness of following data mining

algorithms can be improved.

A different classification of machine learning algorithms can be based on the learning

process they use, according to Russel and Norwig (2010):

• Supervised learning the algorithm observes pairs of input-output observations

and learns a function mapping from input to output. In supervised learning, input

characteristics are called explanatory features and output is called target feature.

Csaba Brunner – Intrusion Detection by Machine Learning

21

• Unsupervised learning, the algorithm learns patterns in the input, even though

no expected output is supplied. These algorithms often perform self-organization

as part of the learning process.

• Semi-supervised learning, the algorithm receives only a few examples with valid

output, and the model must make decisions with data missing those labels.

Out of the data mining methods, classification, clustering and outlier analysis are the most

common in intrusion detection. These methods can be organized into supervised and

unsupervised types, the former representing techniques used for signature detection, the

latter for anomaly detection. Just like with the categorization of Sharda, Delen and Turban

(2018), some overlap between the categories exist, for example, SVMs, a supervised

learning algorithm, can be altered for anomaly detection as a semi-supervised algorithm.

Another example has been provided by Yao, Zhao and Maguire (2003), where an

unsupervised association rule mining algorithm was extended with supervised learning

models. The border between supervised and unsupervised learning approaches is not as

clear as it might seem to be at first.

To systematically carry out data mining projects, a general process flow is required. Some

of the most popular data mining process models are the cross industry standard process

for data mining (CRISP-DM) designed by Chapman et al. (2000), the SEMMA model by

Sharda, Delen and Turban (2018) and the knowledge discovery in databases (KDD)

process I mentioned earlier from Fayyad, Piatetsky-Shapiro and Smyth (1996).

Figure 3: The CRISP-DM process model. Source: Chapman et al. (2000)

Csaba Brunner – Intrusion Detection by Machine Learning

22

The CRISP-DM process shown in Figure 3 starts with a good understanding of the

business and the associated need for data mining and ends with the deployment of a

machine learning model that satisfies the specified business need. The process itself is

iterative consisting of the following steps:

1. Business understanding: a key element of any data mining project is figuring out

what the project is set to achieve. In this stage the tasks are to formulate business

questions, and to develop a project plan with the necessary resources and budget

assigned.

2. Data understanding: the next step in the process is to find and understand the

relevant data that might come from many sources. To acquire this understanding,

many simple statistical and graphical techniques are used.

3. Data preparation: the purpose of data preparation (or data preprocessing) is to

take the data identified in the previous step and prepare it for the data mining

algorithms, for example, by scaling the numerical features.

4. Model building: modeling techniques are selected and applied to a prepared data

set to address needs and answer questions specified in the business understanding

step.

5. Testing and evaluation: The models are assessed and evaluated for their

generalization capability.

6. Deployment: model development and assessment are not the end of the data

mining project. Knowledge acquired must be organized and presented in a way an

end user can benefit from. Even with deployed models, annual re-evaluation

might be necessary to maintain high performance, occasionally starting a new

iteration of the CRISP-DM process.

Apart from CRISP-DM, the SEMMA methodology can be used, visible in Figure 4. It is

an acronym standing for sample, explore, modify, model and assess. It starts with a

representative data sample, applies exploratory statistical and visual analysis techniques,

selects and transforms the most important predictive features, models them to predict

outcomes and confirms the performance of a model. The main difference between CRISP-

DM and SEMMA is that CRISP-DM takes a more comprehensive approach to the data

mining process, including business and data understanding earlier, and model operation

later in the process. SEMMA implicitly assumes that business understanding has been

achieved before data mining and treats model operation as a separate process altogether.

Csaba Brunner – Intrusion Detection by Machine Learning

23

Figure 4: The SEMMA process model for data mining. Source: Sharda, Delen and Turban (2018)

The third process model is the KDD model (Figure 5). Compared to CRISP-DM, it is

even more comprehensive, where data mining is only an important step, rather than the

key focus. The complete list of activities of the KDD process:

1. Data selection: selection and query of data for analysis. Involves data integration,

where data from multiple sources are joined together.

2. Data cleaning and preprocessing: remove noise and inconsistencies in data.

Handle missing and outlier observations.

3. Data transformation: prepare data for analysis and data mining by performing

aggregations and operations on data features.

4. Data mining: train models to detect hidden patterns.

5. Interpretation and evaluation: evaluate detected patterns to see whether they

provide acceptable results and are interesting from a business perspective.

Sample

(representative sample
of the data)

Explore

(visualization and data
description)

Modify

(select variables, transform
variable representation)

Model

(use statistical and machine
learning models)

Assess

(evaluate accuracy and
usefulness of models)

Csaba Brunner – Intrusion Detection by Machine Learning

24

Figure 5: Knowledge discovery in databases. Source: Fayyad, Piatetsky-Shapiro and Smyth (1996)

Data mining has become a popular tool in addressing many complex business questions

and opportunities. Sharda, Delen and Turban (2018) listed many economic fields where

it can be useful, including customer relationship management, banking, retail and

logistics, manufacturing and production, insurance, computer hardware and software,

government and defense, travel industry, healthcare and medicine, entertainment

industry, homeland security and law enforcement and sports. Intrusion detection can be

applied in computer hardware and software, where it supports the detection of computer

network security breaches, and in homeland security and law enforcement, where it plays

a critical role in stopping malicious attacks on critical information infrastructures.

Thanks to data mining, organizational data, information and knowledge became the

primary sources of competition on a global scale according to Nemati and Barko (2001).

Organizations that successfully leverage the decision-enhancing environment realized by

data mining can both obtain and maintain a lasting competitive advantage. This is the

main strategic benefit of data mining.

The following chapters discuss data mining techniques sorted by type: starting with

supervised and followed by unsupervised learning. Following that, I introduce the only

machine learning algorithm I made an exception with, artificial neural network

algorithms. I found them to be pivotal for my research, thus I dedicated an entire chapter

to their introduction, focusing on fully connected feed-forward networks and autoencoder

networks. In the last chapter, I will introduce techniques I used to improve model training

and prediction performance. These include ensemble methods, combining results from

Csaba Brunner – Intrusion Detection by Machine Learning

25

multiple base models, synthetic sampling methods, the metrics I used to evaluate

predictions and hyperparameter optimization.

These chapters involve formula definitions when describing the different machine

learning algorithms, many of which share common elements, for example explanatory

and target features. I indicated the target feature for a hypothetical dataset with the letter

𝑦 and the target feature values for a given observation as 𝑦𝑖 ∈ 𝑦, ∀𝑖 = 1. . . 𝑛. The target

feature can also be described in the terms of set theory, where 𝑌 stands for the set of all

possible values the target feature can take 𝑌𝑗 ∈ 𝑌, ∀𝑗 = 1. . . 𝑘. A similar notation can be

created for the explanatory features as well. In this case, the complete set of explanatory

variables is marked with 𝑋, with 𝑋𝑠 ∈ 𝑋, ∀𝑠 = 1. . . 𝑚 as the features of 𝑋. As a matrix, 𝑋

can be traversed “row wise” as well, where the “rows” act as the observations of an entity

or event. These are marked as 𝑥𝑖 ∈ 𝑋, ∀𝑖 = 1. . . 𝑛. Last, I defined the set of possible

values for a given feature 𝑋𝑠 as 𝑥𝑢
(𝑠)
∈ 𝑋𝑠, ∀𝑢 = 1. . . 𝑣𝑠 for ∀𝑠 = 1. . . 𝑚.

Additional notation I used are the standard notation for probability (𝑃(∙)) and conditional

probability (𝑃(∙ | ∙)), the notation for weight matrices (W) and the hat (∙)̂ notation for

values estimated by the machine learning models. I will provide descriptions for every

other new parameter or value that might appear in the introduced formulas in paragraphs

preceding or following said introduction.

2.2.1. SUPERVISED LEARNING

A learning process is called supervised when the algorithm is provided with reference

target information to compare learned patterns with. Based on the learned context, new

observations can be predicted with higher probability of correctly identifying the real

value than just by guessing randomly. The types of supervised learning are classification

(where the reference is categorical) and regression (where the reference is numerical).

Intrusion detection is concerned with predicting the class of incoming traffic; therefore,

classification is a better fit. Training a classifier model can be time consuming, hence it

is often performed off-line, while application is strictly on-line.

The greatest challenge with classification, especially for intrusion detection, is that the

appropriate class labels must be acquired prior, which is often a tedious task itself. When

determining the typical classification algorithms used for intrusion detection, I primarily

Csaba Brunner – Intrusion Detection by Machine Learning

26

used the findings of Han, Kamber and Pei (2011), Bodon and Buza (2014) and Dua and

Du (2016).

Decision Trees

Decision trees are sets of hierarchical if-then decisions generated by recursive partitioning

algorithms according to a set purity measure. An example decision tree for a hypothetical

credit scoring application can be seen in Figure 6. Represented in tree-like structures, an

object can be classified starting from the root node and moving along the edges (~rules)

towards the leaves. The final class of the object is provided by the label of the leaf node.

Figure 6: Decision tree. Based on: Han, Kamber and Pei (2011)

The construction process of decision trees according to Han, Kamber and Pei (2011)

involve the following steps:

• Initially, the tree consists of a single root node.

• If all observations within a node belong to a single class, then the node becomes

a leaf with the class value as label.

• Otherwise, an attribute is selected according to a purity measure. This purity

measure is either the information gain ratio based on the Shannon-entropy, or the

Gini index. This measure determines which attribute and value is selected for

partitioning.

• The sample is then partitioned into subsamples.

Age?

Employed? Student?

Credit accepted Credit accepted Credit rejected Credit rejected

<=35 >35

yes no yes no

Csaba Brunner – Intrusion Detection by Machine Learning

27

• The above steps repeat recursively for each subsample until a stopping criterion

is met:

o If all observations on a node belong to a single class, then the associated

class value will become the label of the leaf node.

o If one feature can only be selected once and the list of available features

for partitioning is empty. In this and the following cases, the label is

determined by a simple majority vote.

o The number of observations is less than a predefined threshold (prior

minimum number of observations rule).

o The number of observations in either node after a split would be smaller

than a predefined threshold (posterior minimum number of observations

rule)

The most common algorithms for creating decision trees are Interactive Dichotomizer 3

(ID3) by Quinlan (1986) and Classification and Regression Trees (CART) from Breiman

et al. (1984). The main difference between the two is the measure for finding a critical

attribute value for partitioning the tree. ID3-based algorithms use information gain ratio

and the Shannon-entropy, CARTs prefer the Gini index. Consider target Y a probabilistic

feature that can take k possible values with 𝑃(𝑌𝑗)(𝑗 = 1, . . . , 𝑘) probability, then the

Shannon-entropy of Y will be calculated as

𝐻(𝑌) = 𝐻(𝑃(𝑌𝑗), … , 𝑃(𝑌𝑘)) = −∑𝑃(𝑌𝑗)𝑙𝑜𝑔2𝑃(𝑌𝑗)

𝑘

𝑗=1

Entropy is a core concept in information theory; it refers to the uncertainty about the value

of Y. If we observe probabilistic feature 𝑋𝑠, then the uncertainty of Y changes to

𝐻(𝑌|𝑋𝑠) = ∑𝑃(𝑋𝑠 = 𝑥𝑢
(𝑠)
)𝐻(𝑌|𝑋𝑠 = 𝑥𝑢

(𝑠)
)

𝑣𝑠

𝑢=1

Meaning, if one observes the unique values of 𝑋𝑠, the uncertainty decreases by

𝐼(𝑌, 𝑋𝑠) = 𝐻(𝑌) − 𝐻(𝑌|𝑋𝑠)

Csaba Brunner – Intrusion Detection by Machine Learning

28

This quantifies the information gained from feature 𝑋𝑠 about Y. The entropy 𝐻(𝑌|𝑋𝑠) has

a bias towards attributes with a large number of unique values according to Quinlan

(1986). Information gain ratio eliminates this bias by normalizing information gain with

the entropy of variable 𝑋𝑠:

𝑔𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜(𝑋𝑠) =
𝐼(𝑌, 𝑋𝑠)

𝐻(𝑋𝑠)

To find the 𝑋𝑠 feature which contributes the most to the value of Y, the information gain

(or gain ratio) calculation is repeated for each 𝑠 = 1. . . 𝑚, and we select 𝑋𝑠 for which

information gain (or gain ratio) is the highest.

The CART algorithm uses the Gini index instead of information gain, which is formulated

as

𝐺𝑖𝑛𝑖(𝑌) = 1 −∑𝑃(𝑌𝑗)
2

𝑘

𝑗=1

A key advantage of decision trees is the simplicity of their output for the end user. A

disadvantage is their tendency to overfit: they learn specific details of the training data

and generalize poorly on test data. This overfitting can be mitigated by pruning the

decision trees, or in other words, replacing sub trees in a decision tree to improve

predictions on the test set. The two most common methods for pruning are subtree

replacement and subtree raising.

Support Vector Machines

Support vector machines (SVMs) are algorithms used for regression, classification and

anomaly detection, designed by Cortes and Vapnik (1995). It constructs a

m-1-dimensional separating hyperplane on m-dimensional data. A separation is

considered good, when it has the highest distance (or margin) to the nearest data points,

as the higher the margin, the lower the generalization error will be. A 2-dimensional

example with optimal margin for SVM can be seen in Figure 7.

Csaba Brunner – Intrusion Detection by Machine Learning

29

Figure 7: Optimal separating hyperplane with maximized margin created by SVM. Based on Cortes and

Vapnik (1995)

Support vector classifiers take numerical observations 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, . . . , 𝑛 and a binary

target vector 𝑌 = {1,−1}𝑛. They solve the following optimization problem:

𝑚𝑖𝑛
𝑊,𝑏,𝜉

‖𝑊‖2
2

2
+ 𝐶∑𝜉𝑖

𝑛

𝑖=1

Subject to 𝑦𝑖(𝑊
𝑇𝛷(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛

Its dual problem obtained from Lagrange multipliers is

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼

Subject to 𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = 1, . . . , 𝑛

Where 𝑒 is a vector of ones of length n, 𝐶 > 0 is a tradeoff value for soft margin

separation, Q is an 𝑛 × 𝑛 positive semidefinite matrix, for which 𝑄𝑖1𝑖2 ≡

𝑦𝑖1𝑦𝑖2𝐾(𝑥𝑖1 , 𝑥𝑖2), where 𝐾(𝑥𝑖1 , 𝑥𝑖2) = Φ(x𝑖1)
𝑇Φ(x𝑖2) is the kernel function, most

commonly linear, though other, more sophisticated kernel functions exist, such as

gaussian, radial basis function and sigmoid. Φ stands for a function that transforms xi

observations into a feature space with higher dimension. This is often referred to as the

kernel trick and it is used for linearly inseparable data in m dimensions. Furthermore,

Csaba Brunner – Intrusion Detection by Machine Learning

30

𝜉𝑖 (𝑖 = 1, . . . , 𝑛) are the errors made by the SVM model on noisy data, used for soft

margin classification, in other words, how much does the model permit classes on the

“wrong” side of the hyperplane. With the dual solved, the decision function will be the

following:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝜌

𝑛

𝑖=1

)

An advantage of SVMs is their simplicity: they find an optimal separating hyperplane.

This hyperplane has been proven to have the highest margin, therefore SVM models tend

to generalize well even when the number of explanatory features is high. They are

applicable to linearly inseparable patterns in data, although then the model requires the

use of the kernel trick and the C and 𝜉𝑖 parameters. The only difficulty is finding the

correct value for C. If too large, the model will generalize poorly, if too small, it will have

a high error rate. The best strategy for finding C is to experiment, for example, with

hyperparameter optimization and cross validation. A smaller issue with SVM is that it

implicitly performs binary classification. This can be mitigated by using either one versus

one or one vs rest classification strategies, meaning m SVM models are trained each

comparing two classes, or a selected class and all the remaining classes.

K-Nearest Neighbor

The k-nearest neighbor (KNN) algorithm searches the variable space around 𝑥𝑖 selected

observation and selects the K nearest neighbors around it based on a distance metric (Han,

Kamber and Pei (2011), Bodon and Buza (2014) and Dua and Du (2016)). Then, 𝑦𝑖 will

be estimated as the (weighted or non-weighted) arithmetic mean of the neighboring target

values (in case of regression) or by the relative frequency of 𝑌𝑗 values in the neighborhood

of 𝑦𝑖 (classification). A demonstrative example of KNN with K = 1 is shown in Figure 8.

Csaba Brunner – Intrusion Detection by Machine Learning

31

Figure 8: KNN classification with K=1. Source: Navlani (2018)

Some of the key challenges with k-nearest neighbor algorithm is finding an appropriate

distance measure and a good K value for separation. The most common answer for the

former is the Euclidean distance (assuming both 𝑥𝑖1 and 𝑥𝑖2 are observations with only

numerical features):

𝐷𝑖𝑠𝑡(𝑥𝑖𝑖 , 𝑥𝑖2) = ‖𝑥𝑖1 − 𝑥𝑖2‖2

Finding the right value for K is more complicated: a small K might provide a good

distinction between classes or a more accurate regression, but it is more sensitive to noise

in the data. The best approach for finding K is trying out multiple settings and choosing

the one with the best overall results.

KNN is a lazy classifier, it trains models fast. Testing, however, is slower and has a higher

memory consumption, as the algorithm needs the complete training data for predictions.

These characteristics make KNN less applicable on data that either has too many

observations or too many features, regardless of how well KNN performs on said data.

Bayesian Networks

Bayesian networks use factored joint probability distributions in a graphical model to

decide about uncertain features (Han, Kamber and Pei (2011), Bodon and Buza (2014)

and Dua and Du (2016)). Bayesian networks rely on the Bayes-theorem for classification.

Considering observation x𝑖 and features 𝑋1. . . 𝑋𝑚, let us mark 𝑥𝑖1 . . . 𝑥𝑖𝑚 as the observation

values for each feature. Let 𝑌𝑗 mark the probabilistic event that 𝑥𝑖 belongs to class j, where

𝑗 = 1. . . 𝑘. According to the Bayes rule:

Csaba Brunner – Intrusion Detection by Machine Learning

32

𝑃(𝑌𝑗|𝑥𝑖) =
𝑃(𝑥𝑖, 𝑌𝑗)

𝑃(𝑥𝑖)
=
𝑃(𝑥𝑖|𝑌𝑗)𝑃(𝑌𝑗)

𝑃(𝑥𝑖)

Where 𝑃(𝑌𝑗|𝑥𝑖) is the posterior probability of Yj (how the likelihood of event 𝑌𝑗 changed

knowing information about observation 𝑥𝑖), 𝑃(𝑌𝑗) is the prior probability of Yj (the

likelihood of 𝑌𝑗 not knowing anything about 𝑥𝑖). Similarly, 𝑃(𝑥𝑖|𝑌𝑗) denotes the posterior

probability of 𝑥𝑖 knowing about the value of 𝑌𝑗. Bayesian networks assign 𝑌𝑗 to 𝑥𝑖 where

𝑃(𝑌𝑗|𝑥𝑖) is the highest out of 𝑗 = 1. . . 𝑘 classes.

As 𝑃(𝑥𝑖) is constant for every class and 𝑃(𝑌𝑗) is either provided already or can be

estimated from sample (with relative frequencies, for example), Bayesian networks only

need to maximize 𝑃(𝑥𝑖|𝑌𝑗) in order to maximize 𝑃(𝑌𝑗|𝑥𝑖). The data needed to calculate

every possible 𝑃(𝑥𝑖|𝑌𝑗) probability is often not available in practice; therefore, some

versions of Bayesian networks make assumptions about the probabilities to simplify

calculations. For example, Naïve Bayes networks assume the conditional independence

of 𝑋1. . . 𝑋𝑚. In this case, 𝑃(𝑥𝑖|𝑌𝑗) can be simplified as

𝑃(𝑥𝑖|𝑌𝑗) =∏𝑃(𝑥𝑖𝑠|𝑌𝑗)

𝑚

𝑠=1

For each class value. 𝑃(𝑥𝑖𝑠|𝑌𝑗) probabilities can be estimated from the available data. If

𝑋𝑠 is categorical, then 𝑃(𝑥𝑖𝑠|𝑌𝑗) can be estimated with relative frequencies. When 𝑋𝑠 is

numerical and the distribution of 𝑃(𝑋𝑠|𝑌𝑗) is known, then the probability in question can

be determined by estimating the parameters of the distribution with statistical methods.

The most important advantages of naïve Bayes are robustness (the models remain stable

even if the conditional independence assumption is violated) and theoretical importance

(the results of many neural network and curve fitting algorithm equals the maximum

likelihood hypothesis provided by the naïve Bayes algorithm). The disadvantages of naïve

Bayes models are their tendency to lose accuracy when their assumptions (conditional

independence and the equal importance of every attribute) are violated. However, when

the naïve Bayes algorithm is combined with feature selection techniques, then its

classifications can rival the performance of decision trees and neural networks.

Csaba Brunner – Intrusion Detection by Machine Learning

33

2.2.2. UNSUPERVISED LEARNING

According to Russel and Norwig (2010, p. 694) “In unsupervised learning the agent

learns patterns in the input even though no explicit feedback is supplied”. Unsupervised

learning is more useful for anomaly detection, as it provides more stable performance

compared to signature detection models, are less costly to train and work well on

previously unknown patterns. However, many unsupervised techniques can only handle

numerical inputs, and differentiating attacks from normal activities is still a challenging

task. The two most common type of unsupervised learning are clustering and outlier

analysis.

Clustering algorithms partition a collection of entities into segments whose members

share a similar characteristic, while members between segments are less likely to share

that characteristic (Sharda, Delen and Turban (2018)). Many clustering algorithms have

been invented, using different heuristics for similarity, therefore they might create

different clusters even on the same data. The most common types of clustering algorithms

are, according to (Bodon and Buza (2014)):

• Partitioning methods divide data into 𝐶𝑗 , 𝑗 = 1. . . 𝑘 disjoint groups (or clusters),

each containing at least one observation.

• Hierarchical methods construct hierarchical data structures, commonly referred

to as dendrograms.

• Density-based methods overcome the common inability of earlier clustering

algorithms to create clusters other than elliptical in shape. For a density-based

cluster to be valid, at least 𝑛∗ observations need to be in a predetermined radius

from any other observation in the same cluster. Apart from clustering, density-

based methods can be used for outlier analysis as well, making them well suited

for intrusion detection.

Han, Kamber and Pei (2011) and Bodon and Buza (2014) refers to outliers as data with

unusual and distinctively different characteristics from a larger set of observations. Often,

outliers are either results of errors in data recording or inherent to the studied phenomena.

If the latter is the case, then outliers themselves are the interesting patterns to be found.

They could, for example, indicate fraudulent activities in a banking environment, or

intrusive behavior in computer networks.

Csaba Brunner – Intrusion Detection by Machine Learning

34

The task of outlier analysis is finding 𝑛∗ outlier values in a dataset with n observations

(𝑛∗ ≪ 𝑛). This can be broken down to two questions: how to determine which

observations are inconsistent with a large enough part of the data, and what are the

effective methods for detecting them. Outliers could be defined by more than one feature,

which excludes most (but not all) statistical analysis techniques used for outlier detection.

A common way of creating multidimensional outlier detectors is the modification of pre-

existing classification and clustering methods.

In the following subchapters, I will describe the most common algorithms used for

clustering and outlier analysis with the help of Han, Kamber and Pei (2011), Bodon and

Buza (2014) and Dua and Du (2016).

K-means clustering

K-means is the oldest and most common algorithm for clustering. It takes n observations

and partitions them into k disjoint clusters. Observations in the same cluster are more

similar to each other than to observations in other clusters. This “closeness” is captured

by a distance function, most commonly the Euclidean distance, measured from the

arithmetic mean of all 𝑥𝑖 ∈ 𝐶𝑗 , ∀𝑗 = 1. . . 𝑘, often represented as 𝑐𝑗 centroid of a cluster.

The goal of k-means clustering is to minimize a predetermined criteria function. The steps

performed by the algorithm are shown in Figure 9.

Figure 9: K-means clustering algorithm. Source: Piech (2012)

Csaba Brunner – Intrusion Detection by Machine Learning

35

1. Start with 𝑋 represented in a Euclidean space (Figure 9 (a)). Choose k points in

space at random at first (Figure 9. (b)), mark them as the initial centroids (𝑐𝑗 , 𝑗 =

1. . . 𝑘).

2. Assign all 𝑥𝑖 ∈ 𝑋 observations to the nearest 𝑐𝑗 (Figure 9. (c)), based on a distance

measure.

3. Re-calculate 𝑐𝑗 centroids for each cluster (Figure 9. (d)).

4. Repeat steps 2 and 3 until a criteria function converges (Figure 9. (e)-(f)). This

criteria function can be the squared error function:

𝑆𝐸 =∑∑‖𝑥𝑖
(𝑗)
− 𝑐𝑗‖

2

2
𝑘

𝑗=1

𝑛

𝑖=1

In the formula above 𝑥𝑖
(𝑗)

 is an observation belonging to 𝐶𝑗 cluster with 𝑐𝑗 centroid. This

error function is the sum of distances for each observation and cluster.

The k-means algorithm works well when clusters form compact groups. It is a simple and

fast algorithm that scales well with larger datasets. It is, however, not guaranteed to find

global optima: it converges on a partitioning, even when a cluster setup could exist with

lower squared error. Moreover, the algorithm only works with observations defined in a

vector space, therefore categorical features must be excluded or encoded to numerical

first.

Many variations of k-means were invented. These are different in their cluster

initialization, in the distance functions from centroids or in what they treat as centroids.

One of these variations is called k-medoid clustering, aiming to address two

disadvantages with k-means: k-medoid results are less sensitive to outliers, and the

algorithm is dependent on similarity metrics only, therefore observations are no longer

required to be representable in Euclidean vector spaces. In k-medoid, a cluster centroid is

not an arithmetic mean, but an actual observation (𝑐𝑗 ∈ 𝑋 ∀𝑗 = 1. . . 𝑘), called the medoid.

As a result, the criteria function is altered; the squared distance is calculated from these

medoids.

The k-means algorithm can be adapted for outlier analysis as well demonstrated by Dua

and Du (2016). Without explicitly defining k, the clusters are also constrained by a

threshold r. The difference from standard k-means algorithm comes when the distance

between 𝑐𝑗 and 𝑥𝑖 is greater than threshold r. When that happens, a new cluster is

Csaba Brunner – Intrusion Detection by Machine Learning

36

initialized with 𝑥𝑖 as its initial centroid. The challenge of determining which clusters can

be considered normal and which clusters as anomalous remains. The assumption is that

normal data outnumbers anomalous data, therefore the clusters that contain more than a

set 𝛼 percentage of the training data are labelled as normal, the rest as anomaly.

DBSCAN

DBSCAN, or density-based spatial clustering of applications with noise is a clustering

algorithm using two parameters (𝜀, a radius-like parameter and 𝑛∗, a threshold for the

number of observations) for determining the density of a cluster developed. I has been

developed by Ester et al. (1996) and it requires X explanatory features to be represented

in an n-dimensional Euclidean space, just like k-means. Then, the neighborhood of 𝑥𝑖

(𝑁𝜀(𝑥𝑖)) is the set of observations that fall within an 𝜀 radius around 𝑥𝑖. Further

terminology of DBSCAN is based on the following definitions:

• Observation 𝑥𝑖 is directly density-reachable from 𝑥𝑗 if 𝑥𝑖 ∈ 𝑁𝜀(𝑥𝑗) and |𝑁𝜀(𝑥𝑗)| ≥

 𝑛∗ (core point condition). Two core observations are density-reachable from each

other, a border observation is directly density-reachable from a core observation,

but a core observation is not directly density reachable from a border observation.

• Observation 𝑥𝑖 is directly density-reachable from 𝑥𝑗 if there exists a chain of

observations {𝑥1
∗, . . . , 𝑥𝑛

∗} 𝑥1
∗ = 𝑥𝑖, 𝑥𝑛

∗ = 𝑥𝑗 and 𝑥𝑖+1
∗ is directly density reachable

from 𝑥𝑖
∗.

• Observation 𝑥𝑖 is density-connected to 𝑥𝑗 if an observation 𝑥ℓ exists, such that

both 𝑥𝑖 and 𝑥𝑗 are density-reachable from 𝑥ℓ.

Then, a cluster in DBSCAN can be defined as a set of density-connected observations.

Observations, that were not assigned to any cluster will be considered as noise (or, in the

case of outlier analysis, as the outliers themselves). Figure 10 demonstrates different types

of observations determined by the DBSCAN algorithm.

Csaba Brunner – Intrusion Detection by Machine Learning

37

Figure 10: Point types in DBSCAN clustering. Source: Lutins (2017)

The DBSCAN algorithm can detect non-elliptical clusters, however, it is highly sensitive

to the two input hyperparameters, ε and 𝑛∗. Finding these optimal parameters may not

even be feasible if observation densities within a cluster are not uniform.

One Class SVM

The support vector machine algorithm is considered to be a supervised classification

model, however, Schölkopf et al. (2000) proved that it can be modified to perform outlier

analysis as well. One class SVM is an algorithm that learns a function with a returned

value of +1 in a small region capturing a large portion of data points (called origin) and -1

everywhere else. To separate data from the origin, it solves the following quadratic

problem:

𝑚𝑖𝑛
𝑤,𝜉,𝜌

‖𝑊‖2

2
+
1

𝜈𝑛
∑𝜉𝑖 − 𝜌

𝑛

𝑖=1

Subject to (𝑊𝑇𝛷(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖,

𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛

Note, that apart from a change to the C parameter, the problem definition remains largely

the same. The 𝜈 ∈ (0, 1) parameter sets an upper limit on the fraction of outliers and a

lower limit on the training examples used as support vectors simultaneously. The 𝜌

parameter represents the margin separating outliers from the origin data, basically the

distance of the separating hyperplane from the origin. The decision function can be

determined by solving the Lagrange dual problem:

Csaba Brunner – Intrusion Detection by Machine Learning

38

min
𝛼

1

2
𝛼𝑇𝐾(𝑥𝑖, 𝑥𝑗)𝛼

Subject to 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑛
, ∑ 𝛼𝑖 = 1

𝑛
𝑖=1

Thus, the decision function will take the form of:

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝛼𝑖𝐾(𝑥𝑖, 𝑥) − 𝜌

𝑛

𝑖=1

)

One class SVM shares most advantages and disadvantages with the original SVM

algorithm, the only major difference being that outlier classification is inherently a binary

classification problem, therefore one class SVMs do not need adjustments for multiclass

classification.

2.2.3. NEURAL NETWORKS

In this chapter I introduce the most common artificial neural network model, the feed-

forward multilayer perceptron model. These models consist of parallel operating elements

called neurons, each performing simple partitioning or fitting operations. Neural networks

are powerful models, due to how, given enough neurons, they can approximate any

arbitrary function. I based the first half of this chapter on the works of Rumelhart et al.

(1988), Russel and Norwig (2010, pp. 727–737) and Kingma and Ba (2014). In the second

half I introduce a specialized neural network architecture called autoencoder network.

Autoencoder networks were designed to reconstruct their input data. A clever exploitation

of this reconstruction on normal traffic makes autoencoders better suited for anomaly

detection. My discussion on autoencoder networks is based on Ng and others, (2011),

Kingma and Welling, (2013) and Sohn, Lee and Yan, (2015).

Artificial neural networks are designed to model the activity of the human brain, though

this mathematical model cannot be claimed to be 100% accurate, as some operations in

artificial neural networks were rather based on practical experiences. ANNs form

networks of massively parallel distributed processing units called neurons. The schematic

model for one neuron is presented in Figure 11. Each neuron is either connected with

input observation values (𝑥𝑖
𝑠) or the outputs of other neurons (𝑎𝑞

ℓ−1, where ℓ refers to the

layer the current neuron is part of and 𝑞 = 1. . . 𝑁ℓ−1 iterates over the neurons of layer

ℓ − 1). Each connection has a weight 𝑤𝑞𝑝
ℓ ∈ 𝑊 (where 𝑝 = 1. . . 𝑁ℓ iterates over the

Csaba Brunner – Intrusion Detection by Machine Learning

39

neurons of layer ℓ) associated with it determining the strength of the connection. The first

weight (𝑤0𝑝
ℓ ∈ 𝑾) refers to the bias value (𝑏𝑝

ℓ), with its associated activation usually, but

not necessarily equal to one. Activation 𝑎𝑝
ℓ of neuron p is calculated by aggregating the

products of prior activations and their associated weights. This aggregation is marked as

𝑧𝑝
ℓ for convenience.

Figure 11: Simple mathematical model for a neuron. Based on Russel and Norwig (2010)

Mathematically, neurons perform a sum of products between activations of the previous

layer and their respective weights, then apply a function on the aggregation:

𝑧𝑝
ℓ = ∑ 𝑎𝑞

ℓ−1𝑤𝑞𝑝
ℓ

𝑁ℓ−1

𝑞=0

𝑎𝑝
ℓ = 𝑓(𝑧𝑝

ℓ)

This function is the activation function (𝑓). The most common are sigmoid, tangent

hyperbolic, RELU and leaky RELU:

𝑠𝑖𝑔𝑚𝑜𝑖𝑑: 𝑓(𝑧) =
1

1 + 𝑒−𝑧

𝑡𝑎𝑛ℎ: 𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

𝑅𝐸𝐿𝑈: 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)

𝐿𝑒𝑎𝑘𝑦 𝑅𝐸𝐿𝑈: 𝑓(𝑧) = 𝑚𝑎𝑥(𝜀𝑧, 𝑧); 0 < 𝜀 ≪ 1

Each of these activation functions were based and developed on practical considerations,

rather than on observed brain activity. This is one of the reasons why neural networks

cannot be considered accurate mathematical models of the human brain. These activation

Csaba Brunner – Intrusion Detection by Machine Learning

40

functions map a value from (-∞, ∞) to a set interval, and must be differentiable over the

same interval. Differentiability is an important aspect of activation functions, which will

become clear once back propagation is introduced.

In total, two neural network architectures can be developed:

1. Feed-forward networks: connections between neurons form a directed acyclic

graph. They have no internal state other than their weights.

2. Recurrent networks: feeds output back into its own inputs. Their initial state

depends on prior inputs as well as the weights, making them adept at modeling

memory. They are better suited for problems possessing inherent sequential and

temporal patterns, for example, text processing and NLP problems. They can be

useful for intrusion detection if the intrusion detector is tasked to evaluate

sequences of network packets. This temporal characteristic is not available for the

benchmark datasets I used, therefore, though they have potential, this chapter will

not discuss RNNs any further.

Feed-forward neural networks are structured into layers (Figure 12), collections of

neurons taking inputs from neurons in a preceding layer and propagating their output to

neurons in the following layer. A layer receiving inputs from the environment is called

an input layer, a layer propagating its outputs to the environment is called an output layer.

All the remaining layers between input and output layers are called hidden layers.

Figure 12: Architecture of a multilayer feedforward neural network. Source: own edit

Csaba Brunner – Intrusion Detection by Machine Learning

41

Multilayer feed-forward neural networks are surprisingly flexible models. They can

support both classification and regression problems. McCulloch and Pitts (1943) argued

that a network constructed by a sufficiently large number of neurons is capable of

approximating any desirable function with categorical or numerical output. As the

primary use case of neural networks in intrusion detection is signature detection,

primarily a classification task, the classification aspects of neural networks will be the

primary focus of this chapter.

One challenge for multilayer feed-forward networks is how to produce more than a single

output value. In this case, original expected output vectors are available, indicated as 𝑦𝑖.

To quantify the performance of the network, the activations of the output layer (𝑎𝑖
𝐿 = �̂�𝑖)

are compared to this expected output. This is performed with the help of loss functions.

In classification a particular loss function is the cross-entropy loss:

𝐿𝑜𝑠𝑠 = −∑𝑦𝑖𝑙𝑜𝑔(𝑎𝑖
𝐿)

𝑛

𝑖=1

+
𝛼

2
‖𝑊‖2

2

The point of a loss function is to take two vectors of class probabilities and compare them

to one another. The difference between ground truth values and predictions is the loss for

a given observation. Calculate the arithmetic mean of this loss for all observations to get

the global loss of the network. Other popular loss functions include mean squared loss (or

mean squared error, MSE) function, measuring ANN performance in regression tasks.

Calculating cross-entropy loss, however, requires class membership vector values to be

interpretable on a (0, 1) interval each with one single value much closer to one than the

rest. The softmax function can calculate vectors with such criteria:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖
𝐿) =

𝑒𝑎𝑖
𝐿

∑ 𝑒𝑎𝑖𝑗
𝐿

𝑘
𝑗=1

Where k stands for both the number of classes and the number of output neurons. The

expected output 𝑦𝑖 is a vector of length k, where 𝑦𝑖𝑗 = 1 if and only if the observation

represented by 𝑦𝑖 belongs to 𝑌𝑗, otherwise 0. The softmax function takes a vector of length

k and returns a vector at the same length with class membership probabilities. The

probability located at index j will be the highest, if an observation belongs to 𝑌𝑗. This way,

Csaba Brunner – Intrusion Detection by Machine Learning

42

the loss for one observation and the overall loss for all observations can both be

calculated.

One additional element in the loss function is
𝛼

2
‖𝑊‖2

2, commonly referred to as L2

regularization or ridge regression. The purpose of L2 is to penalize weight updates too

great in magnitude, preventing the neural network model from overfitting the data. The

magnitude of this regularization penalty is controlled by parameter 𝛼. Other

regularizations are L1 and elastic net regularizations. L1 regularization (or lasso

regression) is denoted as 𝛼‖𝑊‖1. Its main purpose, like L2, is to prevent the network

from overfitting, but it regularizes weights (𝑤𝑞𝑝
ℓ) to zero more, therefore it is suitable for

feature selection or for enforcing weight sparsity. Finally, elastic net regularization

combines the benefits of L1 (weight sparsity) and L2 (small coefficients) regularizations.

In an elastic net α is multiplied by an additional component controlling the tradeoff

between L1 and L2 regularization. Apart from L1, L2 and elastic net, other regularization

techniques are available as well. One such example is the dropout rate (Srivastava et al.,

(2014)), where, during training, a fraction of neurons are temporarily excluded from the

model at each iteration, introducing randomness to neuron activations at each hidden

layer, making the network overall more robust and generalize better on unseen data.

Learning in a neural network is synonymous with the minimization of the mean loss

function. This optimization process involves the iterative incremental adjustment of W

by taking the partial derivative of the loss function with regards to the weights. This is

simple considering only the output layer; however, the true challenge lies in propagating

the loss over to the hidden layers. This challenge has been solved when backpropagation

was introduced.

Backpropagation propagates the loss measured at the output layer towards the input layer.

To do this, backpropagation has to determine the sensitivity of the loss function to the

weights. This is performed for each weight by applying the chain rule twice:

𝛻𝐿𝑜𝑠𝑠𝑊 ←
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
𝑝,𝑁ℓ
ℓ

= 𝑎
𝑁ℓ
ℓ−1 ∗ 𝑓′(𝑧𝑝

ℓ) ∗
𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑝
ℓ

Where

Csaba Brunner – Intrusion Detection by Machine Learning

43

𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑗
ℓ
=

{

∑ 𝑤

𝑝,𝑁ℓ+1
ℓ+1 ∗ 𝑓′(𝑧𝑝

ℓ+1) ∗
𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑝
ℓ+1

, 𝑖𝑓 ℓ 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

𝑁ℓ+1

𝑝=0

𝑎𝑖
𝐿 − 𝑦𝑖, 𝑖𝑓 ℓ 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

With the formula above, the algorithm calculates the gradient vector (𝛻𝐿𝑜𝑠𝑠𝑊), holding

information on how much each weight needs to change to minimize the loss function:

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝐿𝑜𝑠𝑠𝑊
𝑡

Where t is the iteration step and 𝜂 is a special parameter called learning rate. It is a model

hyperparameter controlling the size of a step at each iteration to ensure the training

reaches a global minimum. It is a sensitive value, set it too low and training will take a

long time, set it too high and the model will fail to converge, or it will even diverge. More

advanced optimization methods permit a dynamic learning rate, enabling the training

process to start from higher learning rates (faster) and end on lower learning rates for

better convergence. For example, inverse scaling learning rate reduces the initial learning

rate by dividing it with the current iteration step (t) raised to a predetermined value.

An iteration can be one complete pass over all (𝑋, 𝑦) input-output pairs. This is

computationally expensive, other methods, like minibatch stochastic gradient descent

(SGD) are preferred, where, the algorithm uses small slices of input observations before

a single weight update, repeated for all 𝑋. A whole pass of the entire input in SGD is

referred to as an epoch, which in turn repeats until a set number or convergence is reached.

The other improvements to SGD involve Adam (Kingma and Ba (2014)), which

introduced adaptive bias-corrected first and second moments to gradient descent for

automated weight adjustments. Adam has been widely adopted as a solver for neural

networks.

An advantage of neural networks is that they operate as universal function approximators.

Given enough time and input, they can learn non-linear functions of any complexity.

The disadvantages of neural networks are:

• The algorithm has no guarantees to finding global optimum, neural network

instances must be trained multiple times with different weight initializations.

• They tend to overfit presented data. This can be offset by applying L1 or L2

regularization.

Csaba Brunner – Intrusion Detection by Machine Learning

44

• Neural networks require the tuning of several hyperparameters, such as learning

rate, the number of hidden layers and the number of neurons per hidden layer.

Hyperparameter optimization strategies are required to find an optimal value for

each.

• Neural networks are sensitive to feature scaling, mitigated by feature

normalization.

• Neural networks are often too complex for a human observer to understand, often

referred to as black box systems.

Autoencoder Networks

Autoencoder networks are unsupervised neural network algorithms created when the

target vectors are set to be identical to the input vectors. They are particularly useful in

finding outlier patterns, a characteristic that can be exploited for anomaly detection. The

architecture of a basic autoencoder network is available in Figure 13. More complex

versions of this model have been designed, although all of them can be divided into an

encoder, learning interesting patterns about the input data, a bottleneck creating a limited

representation, and the decoder reconstructing the input from this limited representation.

Figure 13: Architecture of an autoencoder network. Source: own edit

Training on an autoencoder is performed using the same backpropagation process used

to train feed-forward neural networks. The most important differences lie in the network

Csaba Brunner – Intrusion Detection by Machine Learning

45

architecture, the choice of true output to compare predicted outputs to and, in the case of

intrusion detection, in which class of traffic is provided for the network to train on. With

these considerations an autoencoder is trained the following way:

• The data is split to normal and anomalous (~attack) traffic

• The autoencoder is trained only using normal traffic, thus it learns patterns

between normal connection features only

• Reconstruction loss on new normal connections is expected to be lower, and

higher on attacks. This reconstruction loss, unlike with fully connected neural

networks, is the half of the mean squared error function:

𝐿𝑜𝑠𝑠𝐴𝐸 =
1

2𝑛
∑‖�̂�𝑖 − 𝑥𝑖‖2

2

𝑛

𝑖=1

Where 𝑥𝑖 stands for the true input observations and �̂�𝑖 is the reconstructed input.

So far, I only introduced dense autoencoders with one hidden layer, but more complex

autoencoder networks exist. By introducing additional hidden layers, one can construct

an autoencoder capable of learning nonlinear relationships between the input features.

These multilayer autoencoders are often referred to as deep autoencoders.

A second restriction imposed on deep autoencoders is that neuron counts in encoder layers

must be monotonically decreasing and monotonically increasing in decoder layers. This

restriction can be lifted, by introducing a sparsity constraint to the network (Ng and

others, (2011)). Sparsity in all neural networks refers to the sparsity of activations when

a selected 𝑥𝑖 observation is fed to the network. Its main difference compared to dropout

is that sparsity is maintained even after training has ended and a given 𝑞∗ neuron might

activate for some 𝑥𝑖 input and not for others. Sparsity can be achieved by applying a

constraint as regularization:

• Regularize the loss function with L1, as lasso regression encourages sparsity.

• Use Kullback-Leibler divergence (KL divergence). KL divergence is a measure

of difference between two distributions. When used for sparsity in autoencoders,

it penalizes the average activation of all neurons in all layers to a predetermined

rate, indicated as ρ. The formula of KL divergence for hidden neuron q:

Csaba Brunner – Intrusion Detection by Machine Learning

46

∑𝐾𝐿(𝜌||�̂�𝑞)

𝑁ℓ

𝑞=1

=∑𝜌𝑙𝑜𝑔
𝜌

�̂�𝑞
+ (1 − 𝜌)𝑙𝑜𝑔

1 − 𝜌

1 − �̂�𝑞

𝑁ℓ

𝑞=1

Where �̂�𝑞 =
1

𝑛
∑ 𝑎𝑞

ℓ(𝑥𝑖)
𝑛
𝑖=1 is the average activation of q over all 𝑥𝑖 inputs. This formula,

like L1, is added as a regularization constraint to the loss function of the autoencoder:

𝐿𝑜𝑠𝑠𝑆𝐴𝐸 =
1

2𝑛
∑‖�̂�𝑖 − 𝑥𝑖‖2

2

𝑛

𝑖=1

+ 𝛽∑𝐾𝐿(𝜌||�̂�𝑞)

𝑁ℓ

𝑞=1

Where β controls the effect of the KL divergence penalty on the loss function. The first

part of the formula remained unchanged from ½ MSE. With sparsity introduced, neuron

counts in encoder and decoder layers are permitted, and even encouraged, to increase

beyond the number of preceding, as only a handful of them will be active at a time. An

autoencoder regularized by sparsity constraints is called a sparse autoencoder (SAE).

The last variants of autoencoders I detailed are called variational autoencoders (VAE),

developed by Kingma and Welling (2013). Variational autoencoders are created when,

instead of learning an arbitrary function, the model learns the parameters of a

multidimensional distribution. Compared to previous AEs, this model can not only reduce

input dimensionality, but it is also capable of providing new samples itself. In this regard

VAEs can be considered as generative models. This is achieved by dividing the bottleneck

to mean and standard deviation vectors of neurons. The outputs of these two are used

together with a random variable drawn from a predetermined distribution (usually

normal) to generate new samples.

The loss of this model is the same as with sparse autoencoders: reconstruction loss

regularized by KL divergence between the learned latent distribution and the prior

distribution.

An extension of VAEs can also be fed with classification target class values (𝑦𝑖) as a

separate one hot encoded input. Then, the model is trained to learn not only a single latent

distribution, but a set of latent distributions for each 𝑦𝑖. This model is called conditional

variational autoencoder (Sohn, Lee and Yan, 2015). CVAEs allows more control over the

generated samples, for example, generate observations per intrusion type to train an IDS.

I decided to use fully connected deep autoencoder networks with no regularization for the

model introduced in chapter 4.2.4 as part of a hybrid intrusion detector.

Csaba Brunner – Intrusion Detection by Machine Learning

47

2.2.4. ADDITIONAL TECHNIQUES USED IN DATA MINING

Machine learning algorithms form the core techniques data scientists use; however, they

use other tools to assist them with data processing, model testing and model performance

improvement. In this chapter I will briefly introduce these tools in more detail: model

ensembles, synthetic sampling, hyperparameter optimization and model evaluation

metrics.

Ensemble methods

The idea behind ensemble methods is to combine multiple machine learning models to

get an aggregate prediction with the goal to provide better results than what any of them

could achieve. In this chapter I use the term base models to describe the different machine

learning models that contribute to the ensemble, and aggregate model to describe the

ensemble. This chapter introduces the three most common ensemble models: bagging,

boosting and model stacking, based on Smolyakov (2017) and Budzik (2019).

Bagging, or bootstrap aggregation aims to sample the training data with replacement

(bootstrap sampling) to create an ensemble of models (Figure 14). This sampling process

is repeated for each base model, and the final decision is calculated as either an arithmetic

mean or a simple majority vote of base model predictions. Bagging is most effective when

the base models have low bias but high variance, typically random forests.

Figure 14: Bagging model training process. Based on Budzik (2019)

With boosting, performance is improved by concentrating modeling efforts on errors

made by weak models (Figure 15). These base models are trained sequentially, where

incorrectly predicted observations are weighted more than correct ones. The aggregate

Csaba Brunner – Intrusion Detection by Machine Learning

48

boosting result is calculated either as a weighted arithmetic mean or by weighted majority

voting. Models with low variance and high bias are well suited for boosting, for example,

gradient boosting.

Figure 15: Boosting model training process. Based on Budzik (2019)

With model stacking, base model results are combined using a meta-model. This could

be as simple as a linear function of the intermediary results, or a complex machine

learning model itself (Figure 16). Stacking, compared to boosting and bagging, can

reduce model variance and bias at the same time, providing powerful aggregate predictor

models. This improvement stems from the heterogeneity of the base models, which could

be achieved in two ways: by training models of the same kind, but on different feature

sets, or by training different machine learning models (more common). Considering the

advantageous property of simultaneously reducing variance and bias in model

predictions, I decided to use this ensemble design for my intrusion detectors.

Figure 16: Stacking model training process with results combination. Based on Budzik (2019)

Ensemble models can improve results by reducing model variance, bias or both.

Therefore, they are useful for creating aggregate models with improved classification or

Csaba Brunner – Intrusion Detection by Machine Learning

49

regression performance. A drawback of model ensembles is an increase in complexity as

multiple models have to be trained and maintained simultaneously.

Synthetic sampling methods

In classification, a way to combat imbalanced class values is to under-sample the majority

class, or to over-sample the minority class. However, when class imbalance is too great,

more sophisticated methods are needed. One such sophisticated method is synthetic

sampling, where a machine learning model is trained to recognize relationships between

data and a target feature with the goal to provide new artificial samples for minority

classes, or to reduce the number of observations of the majority class, while maintaining

patterns that make the target recognizable still. There are three methods for synthetic

sampling:

• Over-sampling methods,

• Under-sampling methods and

• Combination of over- and under-sampling methods

The first oversampling method is SMOTE (synthetic minority over-sampling technique),

developed by Chawla et al. (2002). In SMOTE, the minority class is over-sampled by

selecting one observation from minority at a time and introducing new synthetic

observations at random along the line connecting the selected observation and one of its

k nearest neighbors from the same minority class. An advantage of SMOTE is that it

forces the following machine learning model to create larger and less specific decision

regions between classes forcing them to generalize better.

By itself, I used SMOTE only in one model, however it is important building block for

more advanced synthetic sampling methods, like SVM SMOTE, recommended by

Nguyen, Cooper and Kamei (2009). The core purpose of SVM SMOTE remains the same,

but instead of using the k nearest neighbor algorithm only, it also applies the maximum

margin classification of SVMs to sample observations from border regions only. The

benefit compared to SMOTE that it samples the border regions between majority and

minority classes, thus improving model generalization even further. The drawback is that

neither k nearest neighbors, nor SVMs are recognized for their fast execution on large

amounts of data. Later, it has been empirically proven (by Lopez-Martin, Carro and

Sanchez-Esguevillas (2019), for example), that models that were fed with observations

Csaba Brunner – Intrusion Detection by Machine Learning

50

by an SVM SMOTE sampler, achieved higher classification performance, than those that

were fed by other synthetic samplers.

Turning to under-sampling methods, the first technique used to under-sample the training

data is called edited nearest neighbors (ENN) created by Wilson (1972). It is based on the

k nearest neighbor algorithm, however, instead of sampling from a line between two

neighbors, it removes observations which do not “agree” with their neighborhood enough.

This agreement can, for example, be described by the relative distribution of minority and

majority class values within the neighborhood.

A second technique (Tomek (1976)) is based on identifying Tomek links within the

dataset. Two observations in a dataset form a Tomek link, if they are nearest neighbors

of each other. Under-sampling with Tomek links is the removal of such observations

either from the majority class only, or from the minority classes as well.

I did not use edited nearest neighbors or Tomek links under-sampling for my intrusion

detectors directly. However, they both played a role in creating combined under-, and

over-sampling methods. I used both ENN and Tomek links in tandem with SMOTE, first

over-sampling the minority classes, followed by under-sampling the majority class.

Further details of how this combination works can be found in Batista, Prati and Monard

(2004).

Evaluation metrics

Due to the comparability of the performance classification models, the data mining

community developed several evaluation metrics. For almost every metric I used, the

input has been provided by the confusion matrix, available in Han, Kamber and Pei (2011)

and in Table 1 as well. It shows the predictions made by the classifier in rows and the

ground truth class values in columns. The cells contain the true positive (TP), false

positive (FP), false negative (FN) and true negative (TN) predictions. Table 1 is a

confusion matrix for binary classification, although it can be extended for the multiclass

case as well.

 Ground truth

+ -

Prediction
+ True positive (TP) False positive (FP)

- False negative (FN) True negative (TN)

Table 1: Confusion matrix for classifier performance. Source: Han, Kamber and Pei (2011)

The most common metric based on the confusion matrix is accuracy:

Csaba Brunner – Intrusion Detection by Machine Learning

51

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

It is sensitive to high imbalance between target feature values; therefore, it is less useful

for evaluating intrusion detection performance. Other metrics to use to extend accuracy

are precision, recall, F1-score, the receiver operating characteristic (ROC) curve and the

area under the ROC curve (AUC). The formula of the first three:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

Precision measures the exactness of positive labeling, the coverage of the correct positive

labels among all positive-labelled samples. Recall measures the completeness of positive

labelling, the fraction of correctly labelled positive samples among all positive samples.

It is often referred to as sensitivity and detection rate. The F1-score combines the two in

a weighted harmonic mean. The weight is almost always set to one, meaning precision

and recall are treated equally important.

Precision, recall and F1-score are per-class measures, meaning they provide multiple

values for each class value in multiclass classification. Sometimes, it is more desirable to

calculate one single aggregate value describing the trained model. For these situations,

three averaging schemes were constructed by Pedregosa et al. (2011):

• Micro: calculates metrics globally by counting total true positives, false negatives

and false positives.

• Macro: calculates metrics for each label and calculate their unweighted arithmetic

mean. This does not take class imbalance into account, which makes it easier to

highlight performance on minority classes.

• Weighted: calculates metrics for each class value and averages them weighted by

the number of observations that belong to that class. This method does take class

imbalance into account.

Csaba Brunner – Intrusion Detection by Machine Learning

52

The efficiency of an intrusion detector can be measured with false positive rate as well,

indicating the percentage of observations misclassified as positive over all observations:

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

The ROC curve mentioned earlier visualizes all possible cuts between positive and

negative predictions. It is a measure based on sensitivity and false positive rate (or 1-

specificity) (Figure 17). In a ROC curve a good prediction with a good cut value

converges to the top right or the bottom left corner (in the latter case, changing the class

labels is a viable option). The diagonal line represents the results of random guessing.

Figure 17: ROC curve. Source: scikit-learn developers (2018)

The formulas for sensitivity and specificity are:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝑇𝑃

ROC curve is a visualization technique, it is difficult to interpret quantitatively. AUC is

a metric can be calculated from ROC curves, which is easier to interpret as a measurement

of overall generalization ability. A 0.5 AUC score indicates random guessing, a value

closer to 1 an almost perfect classification.

The metrics introduced so far are all used for evaluating classification performance.

However, due to the application of autoencoder networks, and how they are evaluated, I

found it useful to introduce one metric used for measuring regression performance. This

Csaba Brunner – Intrusion Detection by Machine Learning

53

metric is the mean squared error, measuring the average squared difference of

predictions from true values:

𝑀𝑆𝐸 =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

Compared to the earlier formula shown in chapter 2.2.3, ŷi and yi refer to scalar ground

truth and predicted target features, rather than vectorized features.

All these model performance metrics have their own unique characteristics, which makes

choosing them more challenging. Intrusion detection is a classification task, where the

difference in the representation of attacks compared to normal traffic can be uneven.

Accuracy and precision are less useful metrics here, as both require class values to be

equally distributed. Although, a case could be made for accuracy, due to how common it

is even in papers studying intrusion detection. A second characteristic of intrusion

detection, is how expensive the wrong classification of an attack as normal traffic is,

compared to the reverse case. This calls for the importance of recall and false positive

rate as values better characterizing this kind of error in face of imbalanced classes.

Personally, I opted in to demonstrating the accuracy and recall achieved by my models,

the latter for the reason I just described, and the former for its common appearance in

intrusion detection literature. For aggregating recall, I decided to use macro averaging,

highlighting the imbalanced nature of the dataset I worked with.

Hyperparameter optimization

Machine learning models require parameters set up prior to training. These parameters

could directly influence the performance achieved by a model, therefore an automated

approach for selecting these is crucial. This approach is called hyperparameter

optimization, a method wrapped over regular train-test-evaluate process of machine

learning. In this sense, the meaning behind the notations used for {𝑋, 𝑦} is slightly

different for hyperparameter optimization: 𝑋 indicates the hyperparameter space where

optimization algorithms sample from, where 𝑋𝑠, s=1...m are the hyperparameters and

𝑥𝑖 , 𝑖 = 1. . . 𝑛 are samples from the hyperparameter space. The target feature (y) is an

outcome performance metric of the internal machine learning model, where 𝑦𝑖 is the

metric achieved when the hyperparameter sample was 𝑥𝑖. The challenge is that no prior

information is available on the value of 𝑦𝑖, but it can be estimated by calculating �̂�𝑖. The

Csaba Brunner – Intrusion Detection by Machine Learning

54

goal of hyperparameter optimization is to find a 𝑥𝑖
∗ parameter combination, for which �̂�𝑖

reaches its maximum (or, in case y is a loss metric, its minimum).

First, I introduce the two most common methods for hyperparameter optimization,

followed by more intelligent approaches. The common methods:

• Grid search: 𝑋 is divided into equally sized segments (~grids) between

[𝑥𝑚𝑖𝑛
𝑠 , 𝑥𝑚𝑎𝑥

𝑠], ∀𝑠 = 1. . . 𝑚. At each step a parameter combination from the grid is

chosen for evaluation. The best performing combination of hyperparameters will

be the final choice to train the machine learning model with. Grid search evaluates

all grid combinations generated from 𝑋 exactly once, in this sense it ensures

optimal results; however, its time complexity increases exponentially with 𝑚 and

the number of grids selected for each 𝑋𝑠.

• Random search: randomly generates 𝑥𝑖 values from 𝑋 a set number of times. The

final parameter combination (𝑥𝑖
∗) is determined by the best model performance. It

is linear in the number of trials set in advance; therefore, it calculates faster

compared to grid search strategy; however, it does not guarantee optimal

hyperparameters.

Grid and random search both have their respective issues either with execution time or

with performance. One idea to solve these issues is to find algorithms designed to

optimize more intelligently, for example, Bayesian optimization with gaussian process

priors (Brochu, Cora and De Freitas (2010) and Snoek, Larochelle and Adams (2012)) or

tree-structured parzen estimators (Bergstra et al. (2011)).

Bayesian optimization is interested in finding the maximum of function 𝑓(𝑥) = 𝑦𝑖 on a

bounded set of hyperparameters. This function is expensive to evaluate; therefore, a

probabilistic model is calculated to approximate it. Bayesian optimization uses all

information (all earlier evaluations of 𝑓(𝑥)) to approximate the target metric value. This

results in a process that can find the maximum of 𝑓(𝑥) at additional computational cost,

which is still lower than attempting to calculate an additional value of the function to be

approximated. For Bayesian optimization to work, two choices must be made: first, a

prior over function must be selected to approximate 𝑓(𝑥); second, one must chose an

acquisition function to construct a utility function from the model posterior to calculate a

new point in 𝑋 to evaluate.

Csaba Brunner – Intrusion Detection by Machine Learning

55

Gaussian processes (GP) are a good choice for the prior over function. GP is defined by

the assumption that any finite set of points form a multivariate gaussian distribution. Each

GP can be derived and are characterized by a mean function and a covariance (or kernel)

function. The mean function can be set to return zero constantly for convenience. This

leaves the covariance function, which is a choice between the squared exponential

function (or RBF kernel), the Matérn kernel, the rational quadratic kernel, the exp-sine-

squared kernel or the linear kernel.

Several popular choices are available for the acquisition function as well. These all

determine which 𝑥𝑖 in 𝑋 should be evaluated next. In general, these functions depend on

all previous �̂�𝑖 estimates, as well as the GP hyperparameters. This dependence on GP

prior functions is characterized by the predictive mean function 𝜇(𝑥) and predictive

variance function 𝜎2(𝑥). An additional formula is the best current value, which is denoted

as 𝑥𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖𝑓(𝑥𝑖). The most common acquisition functions:

Probability of improvement:

𝑃𝐼(𝑥) = Φ(𝑍), 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑓(𝑥𝑏𝑒𝑠𝑡) − 𝜇(𝑥) − 𝜉

𝜎(𝑥)

Expected improvement:

𝐸𝐼(𝑥) = {
(𝜇(𝑥) − 𝑓(𝑥𝑏𝑒𝑠𝑡) − 𝜉)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍), 𝑖𝑓 𝜎(𝑥) > 0

0, 𝑖𝑓 𝜎(𝑥) = 0

GP upper confidence bound:

𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥)

In the formulas above Φ(∙) and 𝜙(∙) are the normal cumulative distribution (CDF) and

probability functions (PF) respectively. 𝜉 and 𝜅 are parameters controlling the tradeoff

between exploitation and exploration for the two improvement functions and the upper

confidence bound function.

In fact, exploitation (associated with the mean function) and exploration (associated with

the variance function) are important concepts to Bayesian optimization. The first means

that new 𝑥𝑖 recommendations will be calculated where earlier evaluations yielded higher

target metric values. Exploration on the other hand encourages the evaluation of regions

Csaba Brunner – Intrusion Detection by Machine Learning

56

where uncertainty is high. Finding the balance between the two is one of the core elements

of Bayesian hyperparameter optimization.

A more demonstrative example of Bayesian optimization can be seen in Figure 18. In the

figure, solid back line denotes the prior (and posterior) mean, blue shaded areas the prior

(and posterior) uncertainty and black dotted line shown the true mean of function 𝑓(𝑥).

The acquisition function is denoted as a green line. The next 𝑥𝑖 value to evaluate are

proposed based on the maximum of the acquisition function.

Figure 18: Illustration of the Bayesian optimization. Source: Brochu, Cora and De Freitas (2010)

Bayesian optimization is a more purposeful approach compared to random search and

converges in less total iterations compared to grid search. However, it has drawbacks: the

more purposeful hyperparameter recommendations require additional calculation

overhead (cubic in the dimensions of the hyperparameter space (indicated as 𝑚)), which

makes Bayesian optimization less suitable for simple machine learning models or when

the model has a lot of parameters to set. Moreover, kernel functions and the tradeoff

between exploration and exploitation are themselves hyperparameters to the optimization

process itself. Finally, Bayesian optimization can only yield continuous numeric

Csaba Brunner – Intrusion Detection by Machine Learning

57

hyperparameters and it cannot provide hyperparameter values dependent on other

hyperparameter values.

These drawbacks have been highlighted and addressed by the tree-structured parzen

estimators (TPE) approach by Bergstra et al. (2011). Where Bayesian optimization

modeled 𝑃(𝑦|𝑋) directly, TPE models 𝑃(𝑋|𝑦) and 𝑃(𝑦). This 𝑃(𝑋|𝑦) is modeled by

transforming the tree-structured generative process by replacing the distributions with

non-parametric densities. Using different observations in these non-parametric densities,

these substitutions represent a learning algorithm that can produce a variety of densities

over the space of hyperparameters. TPE defines two densities for 𝑃(𝑋|𝑦):

𝑃(𝑋|𝑦) = {
ℎ(𝑋), 𝑖𝑓 𝑦 > 𝑦∗

𝑔(𝑋), 𝑖𝑓 𝑦 ≤ 𝑦∗

Important to note that TPE is an algorithm which minimizes �̂�𝑖, rather than maximizing

it. Though this change is only technical, it does affect function notation. In the formula

above, ℎ(𝑋) represents the density formed using 𝑥𝑖 hyperparameter samples lower than

a selected threshold y*, while 𝑔(𝑋) represents distribution from all the remaining

observations. Unlike GP, TPE supports a soft y* threshold, in order to keep some 𝑥𝑖

samples from X to formulate ℎ(𝑋). For example, this y* can be chosen to be some quantile

𝛾 of the observed �̂�𝑖 values. TPE itself optimizes the expected improvement acquisition

function, formulated as:

𝐸𝐼𝑇𝑃𝐸(𝑋) = (𝛾 +
𝑔(𝑋)

ℎ(𝑋)
(1 − 𝛾))

−1

To maximize improvement, 𝑥𝑖 hyperparameter combinations which have high probability

under ℎ(𝑋) and low probability under 𝑔(𝑋) should be selected. The tree structure enables

it to easily draw many 𝑥𝑖 parameter combinations to evaluate. The ones with the highest

expected improvement are selected at each iteration.

TPE addresses issues with numerical only and independent hyperparameter features as

well. It permits sampling discrete numerical and categorical distributions and extends

continuous numerical values sampling with more than one distribution type to sample

from with the help of stochastic expressions shown in Table 2. The attribute value for

label is common for all the expressions, indicating an internal name of a given

hyperparameter for better tracking.

Csaba Brunner – Intrusion Detection by Machine Learning

58

Expression Description

hp.choice(label, options) Returns an element from an options list. Elements can

be nested stochastic expressions.

hp.pchoice(label, p_options) Returns an element from a list of tuples in the format

(prob, option). Permits the user to enforce bias among

the choices.

hp.uniform(label, low, high) Draws uniformly between low and high.

hp.quniform(label, low, high, q) Draws uniformly between low and high. Better suited

for handling discrete values.

hp.loguniform(label, low, high) Draws values that are uniform in their exponent, from

the interval [elow, ehigh].

hp.qloguniform(label, low, high, q) Draws values that are uniform in their exponent, from

the interval [elow, ehigh]. Better suited for handling

discrete values.

hp.normal(label, mu, sigma) Draws a real value from a normal distribution with mu

mean and sigma standard deviation.

hp.qnormal(label, mu, sigma) Draws a discrete value from a normal distribution with

mu mean and sigma standard deviation.

hp.lognormal(label, mu, sigma) Draws values whose exponent is normally distributed

with mu mean and sigma standard deviation.

hp.qlognormal(label, mu, sigma, q) Draws values whose exponent is normally distributed

with mu mean and sigma standard deviation. Better

suited for handling discrete values.

hp.randint(label, upper) Returns a random integer in the range [0, upper). No

additional correlation is assumed between closer

integer values compared to distant values during

optimization.

Table 2: Hyperopt (python implementation of TPE) stochastic sampling functions. Source: Bergstra,

Yamins and Cox (2013)

Apart from these improvements to the hyperparameter value definitions, TPE also

improved execution time from being cubic in 𝑚 to being linear in both 𝑚 and 𝑛. With

these advantages and considering the availability of a python implementation, I decided

to use TPE hyperparameter optimization to improve my intrusion detectors.

This concludes the data mining and machine learning context of my dissertation. In this

chapter I introduced supervised and unsupervised learning and the most common

algorithms in intrusion detection research from each. The introduction of neural networks

and autoencoders, due to their importance to my work, received their own chapters.

Finally, in the last part of this chapter I have shown additional techniques that I used to

evaluate and improve the detection performance of my proposed models. Chapter 2.3

introduces the pivotal early works on intrusion detection and reviews the research

conducted in the literature.

2.3. INTRUSION DETECTION RESEARCH – RELATED WORKS

The aim of this chapter is to briefly introduce the field of intrusion detection research with

articles that studied it using machine learning models. I will start this chapter with the

Csaba Brunner – Intrusion Detection by Machine Learning

59

most important studies in the field and follow it up with dedicated survey papers to give

a quick look on which machine learning models can be used for intrusion detection. Then,

I will discuss further articles that either focused on or provided single-model detectors as

part of their research. Afterwards, I introduce papers evaluating ensemble models and

followed by those evaluating hybrid models. Special cases of hybrid models were

extended with variational autoencoders. I discussed them in connection with hybrid

intrusion detectors. I highlighted papers that used at least one of two additional techniques

for intrusion detection as well: synthetic sampling and hyperparameter optimization.

Finally, I close this chapter by listing the issues in the field formulated by the survey

papers introduced earlier.

One of the first studies of intrusion detection from a data mining perspective was Stolfo

et al. (2000). They discussed the 1999 DARPA dataset for anomaly and misuse detection.

They performed feature selection, classification, frequent pattern detection and sequence

analysis. By the end of feature selection, the original traffic features were divided into

four categories:

• Intrinsic features: features describing all network connections.

• Time-based traffic features: aggregate features describing connections that had

the same destination host or service as a selected connection in the prior 2 seconds.

• Host/service-based traffic features: same as above, but instead of a 2 second

aggregation window, the authors used the previous 100 connections.

• Content features: features describing the content of the traffic.

These four groups of features were used to train three machine learning models with the

RIPPER algorithm for rule construction (RIPPER: a rule induction algorithm based on

the “divide and conquer” principle). The target variable consisted of 5 classes: DoS

(denial of service attacks), R2L (unauthorized access from a remote machine), U2R

(unauthorized local access to superuser privileges), probe (traffic surveillance), and

normal behavior.

Stolfo et al. (2000) expected the three models to perform better on different feature

groups:

• The time-based traffic model: containing intrinsic and time-based traffic

features. This proved to be the best for detecting DoS and probing attacks.

Csaba Brunner – Intrusion Detection by Machine Learning

60

• The host-based traffic model: containing intrinsic and host-based traffic

features, best for detecting slow probing attacks.

• The content model: containing intrinsic and content features, designed

specifically for detecting R2L and U2R attacks.

The three models were then combined into a meta-learner, which decided on the best

performing models for each connection. Though not explicitly stated in the paper, this

approach can be considered as a model ensemble.

Stolfo et al. (2000) provided an important study of intrusion detection and one of the first

benchmark datasets, the KDD Cup 1999, however the data they used were not without

criticism. The most prominent of which can be read in McHugh (2000). His criticisms

can be traced back to the unit of analysis problem: a single attack pattern can be tied to a

single connection package, or to multiple packages over time, formulating a flow. This

causes issues with evaluation methods used by Stolfo et al. (2000) and other participants

analyzing the KDD Cup 1999 dataset. A second criticism of the dataset by McHugh

(2000) complained about the underlying taxonomy: it has been developed from the

attacker’s perspective. This provides additional information for detection algorithms that

may not be available in a realistic scenario. Instead, McHugh (2000) proposed a

classification scheme based on the protocol layer and the protocols used, or whether a

completed protocol handshake is required to carry out an attack. Attack distributions were

unrealistic as well, which have been noted first a decade later by Tavallaee et al. (2009).

Both the training and test datasets of KDD Cup 1999 contained a large number of

redundant records (78% and 75%, respectively), which caused machine learning

algorithms to have biased predictions, first highlighted by Tavallaee et al. (2009). Instead,

they proposed a new dataset, the NSL-KDD dataset having better balanced target classes,

no redundancy and less observations overall.

The works of McHugh (2000), Stolfo et al. (2000) and Tavallaee et al. (2009) were

pivotal, but not the only ones in intrusion detection. In their literature review, Tsai et al.

(2009), for example, wrote about intrusion detection research between 2000 and 2007.

The authors reported that single model classifiers were used the most, however by 2008,

hybrid classification techniques also began to gain attention. Ensemble models were not

analyzed in depth, partly due to how these works contributed only a small fraction in the

evaluated literature (only ~11%).

Csaba Brunner – Intrusion Detection by Machine Learning

61

Moreover, Tsai et al. (2009) have taken a look at two additional characteristics of

intrusion detection literature: the datasets used and whether feature selection was

considered by a paper or not. They, just as Bhuyan, Bhattacharyya and Kalita (2014),

determined that most of the available literature used one of three datasets: KDD Cup

1999, DARPA 1998 and DARPA 1999, being the few available benchmark datasets at

the time.

Bhuyan, Bhattacharyya and Kalita (2014) identified six methods used for network

anomaly detection: statistical methods, classification, clustering and outlier detection, soft

computing, knowledge-based models and combination learners (Figure 19) Out of them,

classification, clustering, outlier analysis, soft computing algorithms (specifically

artificial neural networks) and combination learners were the most researched areas.

Figure 19: Classification of network anomaly detection methods. Source: Bhuyan, Bhattacharyya and

Kalita (2014)

Figure 20 shows the model classification scheme set up by of Ippoliti (2011). Compared

to Bhuyan, Bhattacharyya and Kalita (2014), he grouped classification, clustering and

outlier analysis under machine learning, distributed elements of soft computing between

the remaining four categories and identified knowledge based and combination learners

as rule based and hybrid approaches.

Network
intrusion
detection

Statistical

Parametric

Non-parametric

Classification
Clustering and
outlier analysis

Soft computing

GA (Genetic
algorithms)

ANN

Fuzzy set

Rough set

ACO (Ant colony
optimization)

Knowledge based

Rule and expert
systems

Ontology and
logic based

Combinational
learners

Ensembles

Fusion

Hybrid

Csaba Brunner – Intrusion Detection by Machine Learning

62

Figure 20: Relationship between detection methods. Source: Ippoliti (2011)

Buczak and Guven (2015) discussed the potential of using data mining and machine

learning algorithms for intrusion detection, more particularly for signature detection,

anomaly detection and hybrid approaches, the latter two combined into one category due

to their low representation in the studied literature. The covered algorithms can be seen

in Figure 21.

Figure 21: Machine learning approaches in intrusion detection. Coverage of Buczak and Guven (2015)

The most common metrics for classifier evaluation in the literature were accuracy,

detection rate (often referred to as recall or sensitivity), false alarm rate (or false positive

rate) and AUC based on ROC curves. Recall and false positive rate better describe model

performance in intrusion detection, as attacks that remain undetected are more harmful

for an organization, as legitimate connections being detected as attacks. Accuracy for

intrusion detection, due to the unbalanced nature of attack classes, is far less informative.

Detection
methods

Host based
Network

based

Statistical
methods

Frequency
analysis

Bayesian
networks

Rule based

Rule induction

Association
rule discovery

Fuzzy rule
generation

Genetic
algorithms

Machine
learning

K-nearest
neighbor

SVM

ANN

Hybrid
approaches

Enhanced
training

Composition

Cascading

ANNs
Association rules

and fuzzy
association rules

Bayesian
networks

Clustering
approaches

Decision trees
Ensemble
learning

approaches

Evolutionary
computation

Hidden markov
models

Inductive
learning

Naïve Bayes
Sequential

pattern mining
SVMs

Csaba Brunner – Intrusion Detection by Machine Learning

63

A more recent survey created by Molina-Coronado et al. (2020) evaluated intrusion

detection research from the perspective of the KDD process of Fayyad, Piatetsky-Shapiro

and Smyth (1996). Therefore, they provide a more holistic review:

• Data selection: the system from which data is collected matters a lot. One can

collect data from root network devices, covering a broad range of network devices

at the cost of having less data on horizontal traffic, or from access devices, which

provides more data on horizonal communication, but for less network devices.

Network traffic itself can be interpreted on packet and flow level, which

complicates analysis further.

• Construction of data features: it is tasked to acquire features from the captured

raw traffic data. This includes both explanatory and target features, each having

unique challenges associated. Explanatory features can come from the various

packet headers, or from the content, and can describe one or more connection

flows. Features from each must be collected if the goal is to create an intrusion

detector for a wide array of attack patterns. Additionally, labelling attacks might

be an even greater challenge.

• Data preprocessing and transformation: involve feature noise reduction

(outlier and missing value imputations), categorical feature encoding, continuous

feature discretization and numerical feature scaling.

• Data reduction: data reduction can be achieved by reducing the number of

features or of traffic observations. The former can be achieved by selecting useful

features or by projecting explanatory variables into a lower dimensional space.

For example, PCA and AE can be used for dimensionality reduction. Sample

dimensionality reduction (where an observation in the sample represents more

than one observation from the old dataset) is less researched within the field.

• Data mining: data mining for intrusion detection can take the form of misuse,

anomaly and hybrid detection. In misuse detection, the most common algorithms

used were ANNs, SVMs, k-nearest neighbor, naïve Bayes algorithms and decision

trees. The combination of these methods into ensemble models was also proposed

by multiple papers. Hybrid detection was divided into four categories, shown in

Figure 1 and discussed in chapter 2.1. A second, less common taxonomy divided

intrusion detection to batch and incremental learning. Batch learning is more

Csaba Brunner – Intrusion Detection by Machine Learning

64

common, while incremental learning is better suited for stream data processing

architectures.

• Evaluation: prediction performance is only one of many evaluation criteria an

intrusion detector can face, however papers published study this characteristic

almost exclusively. Furthermore, not every metric is equally useful, due to the

target class imbalance experienced in the data and the fact that attacks might have

more severe consequences for the victim.

The most used single-model methods for intrusion detection were ANNs, SVMs, decision

trees, k-nearest neighbor algorithms and naïve Bayes algorithms. ANNs, decision trees

and SVMs performed well as intrusion detectors, not without drawbacks though: in

general, ANNs and SVMs are time intensive to train, while ANNs and decision trees are

more susceptible to overfitting. I found the following papers studying single model

signature detection either as their pronounced focus, or as part of a comparison with more

advanced ensemble or hybrid detectors: Bouzida et al. (2004), So-In et al. (2014), Elhag

et al. (2015), Petersen (2015), Aghdam and Kabiri (2016), Hasan et al. (2016), Almseidin

et al. (2017), Yin et al. (2017), Ingre, Yadav and Soni (2017), Divekar et al. (2018),

Parampottupadam and Moldovann (2018), Sakr, Tawfeeq and El-Sisi (2019), Sapre,

Ahmadi and Islam (2019), Mahfouz, Venugopal and Shiva (2020).

Aghdam and Kabiri (2016) performed feature selection on the NSL-KDD and KDD Cup

1999 datasets using ant colony optimization, a special metaheuristic approach mimicking

the foraging behavior of real-life ants. The authors mentioned no explicit classification

algorithm, although ant colony optimization could be utilized as one, the means of which

I studied in Brunner (2019) as well.

Almseidin et al. (2017) compared several models on the KDD Cup 1999 dataset, reporting

random forest classifiers, an ensemble method, having the best overall performance in

terms of precision, recall and AUC. Their work is not the only one which, either on

purpose or by accident, compared single model approaches with model ensembles. The

ensembles outperformed the single models in every case.

Bouzida et al. (2004) experimented with k-nearest neighbor and decision tree approaches

augmented by principal component analysis on the 10% sample of the KDD Cup 1999

dataset. They reported good classification performance on as low as four components for

Csaba Brunner – Intrusion Detection by Machine Learning

65

both models. They also reported predictions on R2L and U2R classes to be the most

difficult.

Elhag et al. (2015) proposed a genetic fuzzy system for classification in one versus one

pairwise classification models rained on the 10% sample of the KDD Cup 1999 dataset.

Their goal with it was to improve prediction performance on minority classes. The

method they used was initially designed for association rule mining, but they extended it

for classification. During training, just like Tavallaee et al. (2009), they removed

duplicate observations. Performance evaluation shown comparable results to other fuzzy

rule generation algorithms and to decision trees. Their proposed genetic fuzzy system

performed well with underrepresented classes as well, while maintaining low false alarm

rates.

Hasan et al. (2016) studied the intrusion detection performance of SVM classifiers under

different kernels. They found the Laplace kernel to provide the best performance on the

NSL-KDD dataset, though they highlighted that SVM model performance is dependent

on the used dataset.

Ingre, Yadav and Soni (2017) used correlation-based feature selection and CART

decision trees to perform predictions on the NSL-KDD dataset. They reported good

classification performance on both binary and 5-class classification.

Mahfouz, Venugopal and Shiva (2020) trained naïve Bayes, logistic regression, neural

network, SVM, k-nearest neighbor and decision tree models in three setups on the NSL-

KDD dataset. The first and second setups were performed with and without feature

selection. The third setup involved data resampling: random under sampling was used for

majority classes, and SMOTE oversampling for minority classes. Models trained in setup

three provided the best predictions.

Parampottupadam and Moldovann (2018) used the H2O.ai implementation of artificial

neural networks on a cloud architecture. Their model performed binary classification

between normal and attack traffic on the NSL-KDD dataset, then a second neural network

classified the attacks into multiple classes. The authors compared the performance of their

neural network architecture with SVM, random forest, linear regression and naïve Bayes

models. Overall, the proposed neural network architecture provided the best classification

performance.

Csaba Brunner – Intrusion Detection by Machine Learning

66

Petersen (2015) used the NSL-KDD dataset and four machine learning algorithms (ID3

and CART decision trees, k-nearest neighbor and naïve Bayes) to perform three

hypothetical experiments with binary, five class and 22-class classification schemes. A

secondary analysis evaluated feature importance. The results provided shown that k-

nearest neighbor and ID3 decision tree algorithms had the best overall prediction

performance. Out of the classification schemes, binary classification models performed

better, however, Petersen (2015) noted, that a case for a five class classification could be

created, as it provides additional clues for the intrusion detection system to act on.

So-In et al. (2014) manually extended the KDD Cup 1999 dataset with a new class based

on botnet signatures. Their model comparison covered decision trees, sequential rule

construction, artificial neural networks, naïve Bayes, k-nearest neighbor algorithms and

SVMs in different setups. Setup one involved binary classification between normal and

attack traffic, setup two was 5-class multiclass attack detection and scenario three was

6-class multiclass attack detection with the new botnet class. The authors reported good

prediction performance, with the best performing models being decision trees, neural

networks and k-nearest neighbor algorithms.

Yin et al. (2017) used recurrent neural networks on the NSL-KDD dataset. Their choice

of approach is interesting, as the original KDD Cup 1999 dataset does not contain any

feature that is explicitly temporal, only implicitly temporal features in the form of time-

based traffic features. This lack of a temporal feature has been inherited by the NSL-KDD

dataset and it makes sorting observations difficult be used for training RNN models,

despite the potential gains of detecting attacks tied not only to a single traffic packet, but

also to a flow of traffic.

Divekar et al. (2018) used naïve Bayes, SVM, decision trees, random forests, neural

networks and k-means clustering with majority voting over the clusters. The authors

applied synthetic sampling and improved the models with grid search hyperparameter

optimization as well. They reported model performances in terms of F1-score, where

random forests performed slightly better than other, single-model classifiers.

Sapre, Ahmadi and Islam (2019) Studied naïve Bayes, SVM, random forest, and neural

network models for binary and multiclass classification. They reported artificial neural

networks as the best, outperforming even random forests in some classes and setups.

Csaba Brunner – Intrusion Detection by Machine Learning

67

Sakr, Tawfeeq and El-Sisi, (2019) combined binary-, and standard-based particle swarm

optimizations (BPSO and SPSO) with support vector machines. First, feature selection

was performed by BPSO, then a support vector machine was trained on the NSL-KDD

dataset. SPSO played a part in the optimization of the SVM model, which managed to

achieve good performance.

A second group of researchers studied ensemble models with the intent of increasing

overall intrusion detection performance by aggregating the results of multiple classifiers.

Papers written on ensemble modeling are Chebrolu, Abraham and Thomas (2005),

Folino, Pizzuti and Spezzano (2005), Mukkamala, Sung and Abraham (2005), Abadeh et

al. (2007), Tian, Liu and Xiang (2009), Kevric, Jukic and Subasi (2017), Latah and Toker

(2018) and Cavusoglu (2019). In the majority of these papers result combination has been

based on a simple function of predictions, such as simple majority vote, average vote,

rule-based evaluation, etc. The most common ensemble model used was the random

forest algorithm due to its popularity. More complex boosting and stacking approaches

were studied less in the intrusion detection literature.

Abadeh et al. (2007) presented a parallelized fuzzy rule generation approach, each rule

built using a genetic local search algorithm. Each set of fuzzy rules were later aggregated

to perform ensemble classification. This approach was compared with other rule-based

learning algorithms, where it achieved best performance.

Tian, Liu and Xiang (2009) created a distributed learning model using artificial neural

networks in a two-staged approach: in the first stage, a network learned a random subset

of the KDD Cup 1999 10% dataset’s features. In the second phase, the class predictions

of these models were collected by a final classifier improving prediction performance.

Conceptually, this model is the most similar to a combination of ideas used for random

forests, neural networks and stacking model ensembles.

Chebrolu, Abraham and Thomas (2005) used a three-phased approach. They first

performed feature selection on a sample created from the 10% sample of the KDD Cup

1999 dataset. In the second phase, they created a Bayesian network and a CART decision

tree, tested separately. Later, the two models were combined into a bagging classifier with

improved overall detection performance compared to each base model.

Folino, Pizzuti and Spezzano (2005) used distributed parallel genetic programming to

train decision trees. These trees were then combined in an ensemble by using simple

Csaba Brunner – Intrusion Detection by Machine Learning

68

majority vote. The solution was tested using the 10% sample of KDD Cup 1999 dataset.

The proposed model performed well on normal, DoS and proba attacks, but struggled on

minority classes.

Latah and Toker (2018) experimented with decision trees, random forests, bagging trees,

multiple boosting algorithms, k-nearest neighbor algorithms, extreme learning machines,

neural networks, SVMs, linear discriminant analyses and naïve Bayes algorithms. Some

of these are single-model methods, others ensemble models. The authors achieved the

best performance on LogitBoost out of the listed detectors.

Mukkamala, Sung and Abraham (2005) discussed three different artificial neural

networks (different in their optimization algorithms), SVMs and multiple adaptive

regression spline (MARS) models. These results were improved further on when the

authors aggregated the results with majority voting. The authors created two stacking

models: one that combined the three ANNs, and a second adding the SVM and MARS

models to the stack. The best performing ANN was the one with back propagation, though

both stacking models improved on the results further.

Cavusoglu (2019) used naïve Bayes, random forest, decision tree and k-nearest neighbor

algorithms as single-model classifiers and as candidate base models for stacking

classifiers combined with logistic regression. The author grouped the NSL-KDD data into

multiple samples comparing each attack class to normal traffic. Each model was trained

and evaluated on these with the option of formulating ensembles as well. Though not a

conscious attempt at studying ensemble models, the resulting detectors of Cavusoglu

(2019) all ended up being random forests or stacking classifiers.

Kevric, Jukic and Subasi (2017) compared different models based on decision trees, then

combined them into majority voting ensembles. One example is the NBtree model, which

is a specialized decision tree with naïve Bayes classifiers at each leaf of the tree.

More sophisticated models combine signature and anomaly detection, resulting in hybrid

intrusion detectors. Only a few research papers evaluated hybrid detection. These had

shown a lot of variations on how models can be combined. Studies evaluating hybrid

detection were Zhang and Zulkernine (2006), Zhang, Zulkernine and Haque (2008), Kim,

Lee and Kim (2014), Parsaei, Rostami and Javidan (2016) and Yao et al. (2017).

Csaba Brunner – Intrusion Detection by Machine Learning

69

Zhang and Zulkernine (2006) and Zhang, Zulkernine and Haque (2008) demonstrated the

applicability of random forest algorithms for hybrid intrusion detection. In their papers,

signature detection is performed using random forests, and anomaly detection with outlier

detection techniques applied on each leaf of every decision tree in the forest. For example,

outlier detection can be based on a similarity score between two network traffic

observations which appear in the same leaf for a large enough number of trees. The

authors profiled the records for outlier detection not by attack class, but by network

service, which is available in KDD Cup 1999.

Similarly, Kim, Lee and Kim (2014) used decision trees and one-class SVMs for their

hybrid intrusion detector. Their approach constructed a decision tree first to classify

attacks present in the training dataset. Attacks unknown to the model were used to train

one-class SVM models, one for each leaf of the decision tree having unknown attack

classes. In this combination, the model managed to achieve good predictions with a low

false positive rate.

Yao et al. (2017) proposed a new hybrid multi-level data mining system for intrusion

detection. The system consists of three components. The multi-level hybrid data

engineering component is tasked with data preprocessing and with splitting the data to

one versus rest samples. Then performs feature selection on the samples. The second

component is called multi-level hybrid machine learning, and it is responsible for model

training by clustering each data group first, then classifying each cluster using either an

SVM model, an artificial neural network, a decision tree or a random forest. These are

not evaluated immediately, because the next component, micro expert modify generates

“impurity data” from the misclassified traffic, then trains a new decision tree model on

this misclassified dataset to improve predictions further. The hybrid multi-level data

mining system achieved better performance using the KDD Cup 1999 10% sample than

many non-ensemble and ensemble approach used before, even on the more challenging

minority classes.

Parsaei, Rostami and Javidan (2016) focused their efforts on the minority classes of

NSL-KDD. They used a combination of k-means and k-nearest neighbor algorithms.

They first clustered the training data, and calculated two distances, one from the cluster

centroids and one from the neighborhood of each traffic record. They used this aggregate

feature for dimensionality reduction to a single explanatory feature. This feature was used

Csaba Brunner – Intrusion Detection by Machine Learning

70

to train k-nearest neighbor algorithm. To increase performance, the authors used SMOTE

sampling as well.

So far, I have excluded one type of hybrid intrusion detection from the previous

paragraphs due to their unique nature. The following authors all combined autoencoder

and variational autoencoder networks with signature detectors to achieve an even greater

level of prediction performance: Javaid et al. (2016), Al-Qatf et al. (2018), Lopez-Martin,

Carro and Sanchez-Esguevillas (2019) and Yang et al. (2019). The utility of autoencoders

comes from how they can be viewed as dimensionality reduction algorithms. On top of

that, VAEs and CVAEs also perform well as data generative models, therefore, they can

replace synthetic sampling techniques, as well as help machine learning models acquire

more knowledge on minority classes.

Al-Qatf et al. (2018) combined sparse autoencoders with SVM classifiers. This has been

achieved by training the SAE on unlabeled data to generate a low dimensional

representation. Following this, new data with target labels are fed to the encoder layers

only. The reduced dimension explanatory features are then fed to the SVM classifier. The

authors did not only report improved performance, but also improved the memory

footprint and lowered training time for the SVM model. Similarly, Javaid et al. (2016),

combined an autoencoder with multiclass logistic regression. Both reported classification

performance greater than ensemble models.

Lopez-Martin, Carro and Sanchez-Esguevillas (2019) used different types of VAE

models. The first model was a standard VAE conditioned by target labels at encoder input.

It used cross-entropy loss regularized by KL divergence compared to standard normal

distribution. The second variation split explanatory features at the output layer to

numerical and categorical. The loss for numerical features was MSE, whereas the loss for

categorical features remained the cross-entropy loss. KL divergence was not changed.

The third model changed the conditioning: instead of the encoder input, it was applied on

the decoder input. Out of the three models, the outputs of the third provided the best

predictions, outperforming those using synthetic sampling. For their performance tests

the authors used random forests, linear SVMs, logistic regression and neural networks,

although their main focus was on sampling, rather than on prediction capabilities.

Yang et al. (2019) combined improved CVAEs with neural networks. The improvement

in their model was a target conditioning applied on the decoder layer only, which makes

Csaba Brunner – Intrusion Detection by Machine Learning

71

their intrusion detector similar to the third model of Lopez-Martin, Carro and Sanchez-

Esguevillas (2019). The main difference was that Yang et al. (2019) re-used the encoder

for weight initialization in the detector neural network. They carried out numerous

performance comparisons with single-model, ensemble and other AE supported hybrid

models as well, reporting their CVAE + NN model achieving the highest detection

performance.

I also identified two techniques that could increase detection performance regardless of

the model type used. One was synthetic sampling and the other was hyperparameter

optimization, both used infrequently in the articles I researched. Synthetic sampling has

been utilized by Parsaei, Rostami and Javidan (2016), Divekar et al. (2018), Lopez-

Martin, Carro and Sanchez-Esguevillas (2019), Yang et al. (2019) and Mahfouz,

Venugopal and Shiva (2020). These papers compared SMOTE with their respective VAE

variations or used to improve detections of their model. As SMOTE and VAE fulfill the

same purpose, it is highly discouraged to use them at the same time. Hyperparameter

optimization was used by Zhang, Zulkernine and Haque (2008), Hasan et al. (2016), Yin

et al. (2017), Al-Qatf et al. (2018), Divekar et al. (2018), Sakr, Tawfeeq and El-Sisi

(2019) and Yang et al. (2019). The most used optimization strategy was grid search.

Based on my review of the literature, I experienced a hierarchy between the studied

techniques, starting from single-model signature / anomaly detection, followed by

ensemble models, then by hybrid models, and finally, new data generative approaches,

like VAE models.

Each review article I presented earlier in this chapter provided challenges and open

questions in intrusion detection. Bhuyan, Bhattacharyya and Kalita (2014) brought up the

following issues, questions and research topics:

• The nature of attacks keeps changing over time; therefore, adaptability of models

is a necessity.

• A high rate of false alarms should be avoided; however, it cannot be eliminated

completely.

• There is an overarching need for benchmark intrusion datasets.

• A fast and appropriate feature selection for all attack classes is needed.

• Selection of non-correlated classifiers for building an effective ensemble

approach.

Csaba Brunner – Intrusion Detection by Machine Learning

72

Buczak and Guven (2015) advised the following criteria to compare machine learning

algorithms with each other:

• Performance measures do not work for comparison, as the trained machine

learning algorithms were tested using different samples of the same dataset.

• Due to the ever-changing nature of network attacks, intrusion detectors need to

adapt quickly. IDS model training, however, is performed when traffic is the

lowest, usually at night. It is expected form the training process to not take 24

hours. A relatively low training time therefore is key to evaluation.

• Intrusions should be detected fast. Quick classification of network traffic can

improve reaction time and shows the processing capability of the system.

• To help administrators examine model characteristics and update the system more

easily, a model with lower complexity is preferred, though not mandated.

Buczak and Guven (2015) furthermore gave the following advice on creating machine

learning models for intrusion detection:

• Intrusion detection is a field with a rapidly changing environment. Models must

be trained on a daily basis, or when a new intrusion is discovered. To adopt faster,

the whole model should not be retrained again, but incrementally as the

administrators feed it with new data.

• The KDD Cup 1999 dataset, as a benchmark, is widely accepted and used,

however it has its own flaws. It contains too many redundant observations and the

target class is unevenly distributed. Many tried to combat both by sampling the

dataset, which makes performance comparisons complicated. The creators of the

NSL-KDD dataset addressed this redundancy; therefore, it is a preferable

alternative.

Dua and Du (2016) identified multiple challenges for data mining algorithms in intrusion

detection:

• Modeling large-scale networks and creating graphs based on large networks is a

difficult task.

• The volume of heterogenous data, the dynamic threats, and the severe imbalance

between normal and attack classes complicate threat detection.

Csaba Brunner – Intrusion Detection by Machine Learning

73

• New data mining methods and adaptive systems are necessary to predict future

attacks.

• Use of online learning methods for dynamic modelling of network data.

• Modelling data with skewed class distributions to handle rare event detection.

There is a fundamental asymmetry in anomaly detection problems between

normal activities and attacks. Classification should be more focused on classifying

minority classes as attacks or anomalies.

• One of the biggest challenges in anomaly detection is the selection of features that

best characterize the user, or the system usage patterns. This is often carried out

to reduce data dimensionality.

Molina-Coronado et al. (2020) provided the following open issues in their review article:

• Most papers provided insufficient information on the techniques applied for

intrusion detection which hurt reproducibility.

• They found issues with publicly available datasets, too. A large portion of data

preprocessing has been carried out in them in advance. The authors recommend

not to rely on a single benchmark dataset but to use two or more instead.

Furthermore, encrypted data is increasingly prevalent, which is not present in

these public datasets at all.

• They highlighted the importance of dimensionality reduction, due to the large

number of features, which is further increased when categorical features are

encoded.

• Instead of batch learning, incremental learning should receive more attention in

the future.

• The temporal nature of network traffic is underused, despite having a lot of

potential.

• Intrusion detection has many more characteristics apart from detection

performance. However, only the latter is studied in the field.

To summarize, I identified the following areas in need of substantial attention:

• Design hybrid detection approaches and/or ensemble models for comprehensive,

unbiased intrusion detections.

• Mind the data: if the KDD Cup 1999 dataset is used, then an appropriate sample,

and a good set of features should be selected. With NSL-KDD dataset, sampling

Csaba Brunner – Intrusion Detection by Machine Learning

74

can be omitted, but some form of feature selection should be performed,

nonetheless.

• When measuring performance, false alarm rate and recall are more important than

accuracy.

3. RESEARCH OVERVIEW

This chapter provides an overview of the research I have conducted, demonstrated with

the tools, techniques and considerations of the design science methodology and the

CRISP-DM process. These two have many intersections, as some steps in the CRISP-DM

process supports design science activities.

3.1. CONTEXT

The context of intrusion detection, apart from the details discussed in chapter 2.1, were

elaborated in Ahamad et al. (2009). They identified five reasons for developing intrusion

detection systems:

• Threats from malware: hackers use malware to steal private information. They

leverage the vulnerabilities of web site structures, social networks and document

transmissions not scanning for malware. Once and intrusion is successful, the

malware will track the user’s keystrokes, spy on the users browsing habits and

send the user’s personal information to the attacker.

• Threats from botnets: botnets are groups of hijacked machines coordinated by

attackers. Bots in a botnet are controlled by a hidden master computer. Computer

and internet users suffer privacy breaches or financial losses, loss of valuable data,

and damage to computer systems caused by botnets.

• Threats from cyber warfare: cyber-attacks are critical military actions. The

increasing dependence of traditional infrastructure on cyberinfrastructure leaves

many vulnerabilities for cyber warriors to exploit. Cyber defense is an inevitable,

challenging goal of military forces around the world. An efficient cyber defense

requires conscious effort from multiple countries, states, institutions and industry

members, as attacks can affect all of them.

• Threats from mobile communication: the development of mobile

communication caused the proliferation of reliable services. Investigations shown

Csaba Brunner – Intrusion Detection by Machine Learning

75

that even financial transactions appeared in mobile services, which draws the

interest of hackers as well. The mobile infrastructure and devices provide multiple

opportunities to steal valuable information. Institutions are developing new ways

to protect against fraud and phishing.

• Cyber-crimes: different jurisdictions define cyber-crime depending on how it

correlates to local situations. Prospering e-commerce entices cyber criminals,

many purchase attack platforms to carry out their activities. These are carried out

by exploiting vulnerabilities in the e-commerce industries. Countering these

activities is difficult as they do not leave traces behind. Combating cyber-crimes

requires effort in two perspectives: first, uniform cyber laws need to be enacted.

Second, advanced intrusion detection technology needs to be developed to defend

against criminal activities.

More recent developments within the context of intrusion detection are the ongoing

monitoring and reporting on the development of malicious activities. One example is the

McAfee Labs Threats report (Beek et al. (2019)). This report drawn attention to the

increase of ransomware attacks, the increase of data dumps (release of sensitive customer

data to the dark web), the increase of cyber-attacks exploiting vulnerabilities in remote

desktop applications and in the HTTP protocol. Two attacks mentioned in the report were

social engineering, which is still as prevalent as ever, and an increase in attacks exploiting

the vulnerabilities of IoT devices. Many of these are not necessarily network intrusions

themselves, more the results of a successful intrusion.

All the above and more fuel the efforts aimed at creating new and better intrusion

detection systems. The goals of actors in the social context can be summarized in the

following points:

• Risk mitigation: reduce the chance of intrusion, information loss, or fines in the

form of potential lawsuits. Reduce system downtime due to DDoS attacks, by

installing a traffic reduction service supported by an intelligent intrusion detector.

• Infrastructure and national security: prevent the sabotage of key infrastructural

elements, such as electricity and water supply, increasingly reliant on information

infrastructure.

• Protection of private information: restrict access to sensitive information, such as

credit card numbers, bank account and personal information.

Csaba Brunner – Intrusion Detection by Machine Learning

76

• Protection of government secrets: as an extension of the point above, departments

store information not meant for a public audience. The exposure of these can have

far-reaching consequences.

I have already discussed the knowledge context of intrusion detection in chapter 2. Out

of them I found signature and hybrid NIDS interesting to be studied deeper using

ensemble techniques and artificial neural networks. To frame my research, I decided to

use the CRISP-DM process model, displayed in Figure 3.

3.2. RESEARCH GOALS

The goal and design problem of this dissertation is to provide a novel intrusion detection

solution applying machine learning methods. Accordingly, the two research goals I set to

achieve are:

RG1. To create an intrusion detection model that can compete with the ones

introduced in related scientific literature, measured by detection performance

metrics. Performance in this context is described as the portion of attacks correctly

and incorrectly classified as being part of normal activity and vice versa.

RG2. To identify machine learning methods that can improve performance on

complex event detection problems where target features have a high degree of

class imbalance. Intrusion detection fits this description, as the available data is

heavily skewed towards the more common normal, rather than the rarer malicious

activity. Some of these candidates are synthetic sampling to feed more balanced

training data, hyperparameter optimization to find the overall best performing

parameters for a machine leaning model, and ensemble techniques, creating

composite models for improved predictions.

Based on these research goals I formulated the research questions of the next chapter.

3.3. RESEARCH QUESTIONS

RQ1. Is machine learning a suitable approach for intrusion detection? If machine

learning is a proper technique for intrusion detection, which are the appropriate

models?

Csaba Brunner – Intrusion Detection by Machine Learning

77

Finding the right machine learning model is a challenging task. It is affected by the

selected intrusion detection method (signature detection or anomaly detection) as well as

the available dataset and the sampling method chosen for that dataset.

The most common and best working non-ensemble machine learning algorithms in

intrusion detection are decision trees, artificial neural networks and k-nearest neighbor

algorithms for signature detection. Each has drawbacks though:

• Decision trees are prone to overfitting, unstable (a small change in training data

can cause entirely different decision trees) and perform poorly on unevenly

distributed training classes.

• Artificial neural networks, like decision trees, are prone to overfitting, and

generally have long training times.

• K-nearest neighbor algorithms are fast to train, but need all data for accurate

predictions, therefore they scale poorly.

Countless studies in the literature have proven that a good combination of machine

learning algorithms can detect intrusions well with few false alarms.

Predictive performance is, however, not the only characteristic for intrusion detectors to

be compared by. Training time, prediction time and model portability are three additional

characteristics to consider. Under portability I mean how well can one move the detection

model between two systems and how much computational resource do they require from

the operator. However, I kept the evaluation of these aspects out of scope of this

dissertation in favor of a more thorough study of predictions.

I answered this research question throughout the dissertation with different machine

learning models, most prominently in chapters 4.2.1 and 4.2.2, where I provided the

designs of two intrusion detectors and in chapters 5.1 and 5.2, where I described the

achieved performances of the same detectors. In addition, the analysis of the related

literature in chapter 2.3 already provided context for this research question.

RQ2. Which type of intrusion detection method is more effective from the

following ones: misuse detection by classification, anomaly detection by outlier

analysis or a combination of the previous ones?

This is a more recent question in the field of intrusion detection, also highlighted by Dua

and Du (2016). On one hand, signature detection can have high recall and low false

Csaba Brunner – Intrusion Detection by Machine Learning

78

positive rate, is easy to implement, and provides predictions quickly. However, it is

incapable of detecting new, unknown attacks. On the other hand, anomaly detection aims

at building a profile of normal traffic, and then detects anomalous or attack traffic based

on the difference from this normal profile. Anomaly detection captures unknown attacks

better; however, it is more difficult for it to set apart attacks and anomalous traffic, as the

latter might include unusual, yet normal connections as well, highlighted in Ippoliti

(2011, 2013), therefore, anomaly detection will have high false positive rates. In a good

intrusion detector, recall is high and false positive rate is low. Signature and anomaly

detectors use compensatory detection approaches; therefore, it is a good idea to combine

them into new hybrid detectors.

A simple combination of the two techniques is not enough though, a more purposeful

approach must be followed. For a hybrid detector to work, one must make two decisions:

• Find the best candidate algorithms for the individual signature and anomaly

detector.

• Find a way to integrate the two detection approaches to achieve the best balance

of recall and false positive rate.

Good candidates for hybridization are models that do not perform conflicting operations

on the data, for example, decision trees and one class SVM models or any autoencoder

combined with fully connected artificial neural networks. The choice of integration can

be simplified to one of the four alternatives shown in Figure 1 as well.

The chapters intended to provide answers to this question are 4.2.4 and 5.4 where I design

and evaluate a neural network stacking ensemble as a signature detector enhanced by deep

autoencoder networks as an anomaly detector. Chapter 5.4 in particular evaluates the

composite performance of the two models and the anomaly detection capabilities of the

autoencoder.

RQ3. What is the level of model performance that can be expected in an

intrusion detection task?

Based on reviewing the related literature, contemporary intrusion detection research is

facing the following challenges:

• Predominant use of the accuracy measure for performance evaluation on data with

unevenly distributed classes.

Csaba Brunner – Intrusion Detection by Machine Learning

79

• Different articles created their own samples of a chosen dataset, making

performance comparisons between them and the proposed models difficult, if not

impossible.

• Focus mostly on signature detection, less on other techniques.

• Intrusion detection is always involved with detecting minority classes.

There is a high variation on possible model performance measurements. Therefore, I set

up two criteria for selecting papers from the related literature to compare the proposed

models with, in order to test the assumptions of this dissertation.

• Emphasis on recall / detection rate: although accuracy is the most common metric,

it is inappropriate for performing detections on imbalanced data. A better

alternative is recall. Throughout the dissertation I favored literature with recall as

the model performance indicator compared to those with accuracy, though, due to

how common it is, I could not ignore accuracy completely. Moreover, I had to

take the alternative names of recall, like detection rate and sensitivity, into account

as well. To make the search more difficult, some papers claimed to use detection

rate, when in reality, the definition and provided formula fitted accuracy instead.

• Data sampling is the second source of complexity and prediction variance in the

literature. Different samples result in different models with different performance

measurements. Therefore, I attempted to look for papers that validated their model

proposals with the complete test samples of the datasets they used. Similarly, I set

up the intrusion detectors of this dissertation in the following way: I tested them

on the complete test sample of the respective dataset, regardless of what data I

used for training. This covered data preprocessing as well: transformations were

performed on the test sample using calculations from the training data to avoid

information leakage.

I used these requirements as filters on the research papers to be used in the final

performance comparisons in chapters 5.5 and 5.6. Apart from that, I also aimed to test

techniques like synthetic sampling, particularly with models demonstrated in chapter

4.2.3 and evaluated in 5.3; and advanced hyperparameter optimization with models in

chapters 4.2.3, 4.2.4, 5.3 and 5.4 to achieve increased model prediction performance.

Csaba Brunner – Intrusion Detection by Machine Learning

80

3.4. METHODOLOGY

The methodology I used for designing, executing and evaluating my models followed a

top-down pattern shown in Figure 22. As the goals I set can be achieved by creating and

evaluating an algorithmic artifact, I found design science research to be a fitting

methodology. Furthermore, this algorithmic artifact is in fact a machine learning model,

therefore the concepts and considerations of the CRISP-DM process model for planning,

implementing and deploying machine learning models can be applied as well, forming

the second methodological pillar. Finally, the designs in chapter 4 outline the exact

process of model creation, with the necessary data preprocessing, training and evaluation

steps involved, forming the lowest level of methodological abstraction.

Figure 22: The methodological abstraction levels followed in this dissertation. Source: own edit.

To further clarify the connection between design science research and the CRISP-DM

process model, one must first evaluate the engineering cycle (Wieringa (2014)). The

engineering cycle is a rational problem-solving process consisting of 5 tasks, each

displayed in Figure 23, and described in detail together with the CRISP-DM tasks in Table

3.

Figure 23: The relationship between the Engineering Cycle and CRISP-DM. Based on: Chapman et al.

(2000) and Wieringa (2014)

Design science CRISP-DM Model designs

Csaba Brunner – Intrusion Detection by Machine Learning

81

Engineering cycle (design science) CRISP-DM

Treatment: interaction between the artifact and

the problem context.

In CRISP-DM, a treatment can be an

implemented machine learning model and its

effect on the decision-making process.

Problem investigation: to prepare the researcher

for designing a treatment, by learning more about

the problem to be treated.

Business understanding: to understand the

business background / context / problem

Data understanding: to evaluate the available

data sources and to understand the meaning and

utility of data for machine learning applications.

Treatment design: design is a decision about

what the researcher is going to do. A specification

is the documentation of this decision.

Multiple methods exist to express design and

specification within the field of machine learning.

Data preparation: ~ transform data for machine

learning. In some contexts, this is referred to as

data preprocessing.

Modeling: find applicable model for the problem

context, design model architecture, design model

optimization process.

Evaluation: the design of model evaluation is

tied to this step (train/test split, CV, nested CV,

choice of performance metric(s))

Treatment validation: the goal is to predict how

a designed treatment will perform within context

without it being observed in said context. As

such, the evaluation is performed under artificial

conditions.

Modeling, evaluation: executing the training and

evaluation processes on separate training data.

Treatment implementation: implementation and

use of treatment in the original problem context.

Deployment: live implementation of the machine

learning model.

Implementation evaluation: evaluate how the

implemented artifact interacts with its real

context.

Deployment: performance monitoring of the

machine learning model. Retrain in case of

performance degradation.

Table 3: Comparison of engineering cycle and CRISP-DM tasks. Based on: Chapman et al. (2000) and

Wieringa (2014)

The two methodologies are connected by their logically corresponding tasks, for example,

problem investigation in the engineering cycle involves activities that are similar to

activities performed during the business understanding and data understanding tasks of

CRISP-DM. However, design cycle, the focus of design science, consists of only the first

three tasks of the engineering cycle. Therefore, this dissertation will only discuss CRISP-

DM tasks leading up to and including model evaluation. Deployment, although an

important task, will only be discussed tangentially in chapter 6.

The two methodologies have differences as well. The goals of the two methodologies is

one. The main goal of design science research is not only to deliver a well-designed,

working artifact, but also to answer scientific questions about the artifact, at the context

or at the relationship between the two. Comparatively, the goal of CRISP-DM is more

practical. It is interested in delivering a machine learning algorithm, preferably as a part

of a working business solution or service, delivering value to both the customers and the

organization. The CRISP-DM approach therefore is more focused on evaluating the

Csaba Brunner – Intrusion Detection by Machine Learning

82

business context and the effects on the business context, rather than on answering research

questions.

Some personalization of the CRISP-DM process model, hence, will be necessary. These

adjustments are not only permitted, but also encouraged by the designers of CRISP-DM,

as they intended it to be a collection of best practices within the field of data science,

rather than a rigid standard. Some of the changes compared to the CRISP-DM process

model are:

• Greater emphasis on the wider context of the intrusion detection model: this

includes both the social scientific context via literature reviews and the knowledge

context by covering the data scientific tools and techniques in use. I covered them

both already in chapter 2.

• More emphasis on model evaluation involving the comparison of model

performances: On one hand, comparisons are conducted between the different of

intrusion detection models I delivered as part of the design process. This supports

the disclosure rule of the design science process as well. On the other hand, I

compared the best performing detector to other works available in the field of

intrusion detection, placing a higher emphasis on detection rate.

4. PROPOSED MODEL DESIGNS

This chapter describes the design and creation of the machine learning model-based

intrusion detection architectures. In the chapter I introduce the datasets used for model

training and evaluation first, followed by the detailed description of model architecture

designs. Throughout this chapter and chapter 5, I followed the CRISP-DM process,

creating four intrusion detection model variations.

4.1. INPUT DATASETS

After reviewing the literature, particularly Stolfo et al. (2000), McHugh (2000) and

Tavallaee et al. (2009) the most common datasets for intrusion detection in use were:

DARPA 1998 & DARPA 1999, KDD Cup 1999 and NSL-KDD. These datasets are all

the products of an experiment conducted in 1998 by MIT Lincoln Labs to survey the state

of the art in intrusion detection at the time. During the experiment, about 5 million records

were collected in 5 weeks in the form of raw tcpdump logs. The data simulated the traffic

Csaba Brunner – Intrusion Detection by Machine Learning

83

of a typical Air Force LAN, while the researchers carried out multiple network attacks

against it.

The first iteration of these experiments were the DARPA 1998 & DARPA 1999 datasets.

These were highly criticized, particularly by McHugh, (2000). These issues have already

been discussed in chapter 2.3. The main criticisms were the unit of analysis problem, the

question of attack distribution and the large level of redundancy among the records.

The unit of analysis criticism has been resolved by the KDD Cup 1999 dataset, by fixing

the unit of analysis in network connections. The dataset itself consists of ~5 million

network connection record for training, and another ~3 million record for testing intrusion

detection models. The altogether ~8 million records might be too difficult for an intrusion

detection system to handle; therefore, the authors of the KDD Cup 1999 dataset provided

a 10% stratified sample of both the training and test datasets. The total number of features

available is 41, with 40 explanatory and 1 target feature. Designed primarily for signature

detection, the target feature contains numerous attack types each belonging to five distinct

attack classes:

• DoS: denial of service attacks aimed at disabling crucial systems or system

components.

• R2L: unauthorized access from a remote machine.

• U2R: unauthorized access to local superuser (~admin) privileges by a local

unprivileged user.

• Probe: surveillance and probing, not attacks by themselves but could be used to

prepare for future attacks.

• And normal legitimate behavior.

The assignment of each detailed attack type to their respective class is shown in Table 4.

Some of the detailed types are only available in the test dataset of KDD Cup 1999. The

training attack types were well documented by Stolfo et al. (2000); the test attack types,

however, were not, which caused some confusion in the studied literature. I have

determined a final detailed attack type to high level attack class assignment shown in

Table 4 using a simple majority vote between relative class frequencies based on the

assignment tables published in 10 different articles. The exact process of this is further

demonstrated in Appendix A.

Csaba Brunner – Intrusion Detection by Machine Learning

84

Class Train Test

Normal normal normal

DoS back, land, neptune, pod, smurf,

teardrop

apache2, mailbomb, processtable,

udpstorm, worm

Probe ipsweep, nmap, portsweep,

satan

mscan, saint

R2L ftp_write, guess_passwd, imap,

multihop, phf, spy, warezclient,

warezmaster

httptunnel, named, sendmail,

snmpgetattack, snmpguess, xlock,

xsnoop

U2R buffer_overflow, loadmodule,

perl, rootkit

ps, sqlattack, xterm

Table 4: Classification of attack types. Source: own edit (see Appendix A for details).

Compared to the previous DARPA 1998 and 1999 datasets, the features of KDD Cup

1999 are better organized and described, and, as a part of data preprocessing, new derived

features were created based on domain knowledge by Stolfo et al. (2000). These features

can be grouped into four categories:

• Intrinsic features: features describing all network connections, regardless of user

intentions.

• Content features: capturing information on the content of each network

connection.

• Time-based traffic features: features aggregating the connections that had the

same destination host or service as the selected connection in the prior 2 seconds.

• Host-based traffic features: as a counterpart to time-based traffic features, host-

based traffic features were created to capture aggregate data not over the prior 2

seconds, but over the previous 100 connections.

Tavallaee et al. (2009) identified an issue with the KDD Cup 1999 dataset: a large number

of redundant observations (Table 5 and Table 6). About 75% of the test set and 78% of

the training set is duplicated. This redundancy often caused research papers prior to 2009

to have biased intrusion detectors towards duplicate records. To alleviate this issue,

Tavallaee et al. (2009) proposed the new NSL-KDD dataset. The authors provided two

datasets: the first with binary labels and the second with 5-class labels, both having their

respective training and test sets.

 Original records Distinct records Reduction rate Final records

Attacks 3,925,650 262,178 93.32% 58,630

Normal 972,781 812,814 16.44% 67,343

Total 4,898,431 1,074,992 78.05% 125,973

Table 5: Statistics of redundant records in the KDD train set. Source: Tavallaee et al. (2009)

Csaba Brunner – Intrusion Detection by Machine Learning

85

 Original records Distinct records Reduction rate Final records

Attacks 250,436 29,378 88.26% 12,833

Normal 60,591 47,911 20.92% 9,711

Total 311,027 77,289 75.15% 22,544

Table 6: Statistics of redundant records in the KDD test set. Source: Tavallaee et al. (2009)

Apart from reducing the level of redundancy in both sets of KDD Cup 1999, Tavallaee et

al. (2009) introduced two additional changes to the original DARPA 1998 data: first, they

trained 21 machine learning classifiers on the reduced redundancy KDD Cup 1999

dataset. Each record has been grouped based on how many models predicted its class

correctly. This information was then stored as a complexity feature in addition to the rest

of the data and provided an input to the next change. In order to make the size of the

dataset more manageable, a random sampling has been performed, stratified by class, and

the new complexity feature. This resulted in the creation of the NSL-KDD dataset, with

final class membership counts shown in the final records column of Table 5 and Table 6.

The final issue was the class distribution. Figure 24 shows this for the 10% sample of the

KDD Cup 1999 dataset, while the same for the NSL-KDD training dataset is shown in

Figure 25. There are too many records for DoS attacks, and not enough for the remaining

classes. This distribution is unrealistic, a real-life environment can have a ratio closer to

98-95% to 2-5% between normal traffic and any attacks. Nonetheless, class imbalance

persists, the only factor that has changed is the class in majority. Neither of the two

studied datasets proposed solutions to handle class imbalance, finding them is up to the

person conducting research. Inequalities in class distribution in general can be corrected

by using one of following strategies recommended by Brownlee (2015):

• Collect more data. Because the research that produced the DARPA 1998 data

has concluded a long time ago, this alternative is improbable.

• Change the performance metric from accuracy to something different,

discussed in chapter 2.2.

• Resample the dataset: one can use oversampling on the less represented classes,

and under sampling on the better represented ones. This serves no benefit by itself,

as some of the minority classes have <100 observations. Therefore, even if the

minority classes are 100% oversampled, their number is still insufficient when

compared to majority classes, and if the majority classes were to be under

sampled, then the size of the training data will be too small for any meaningful

model to be trained.

Csaba Brunner – Intrusion Detection by Machine Learning

86

• Generate synthetic samples: the idea behind synthetic sampling is to generate

samples where the records are not necessarily from the original dataset but were

created with some randomness involved, based on statistical distributions of the

class they originate from. Some methods of generating synthetic samples are

reversed Naïve Bayes algorithm, SMOTE, and more recently, variational

autoencoders. This approach could work by itself, or as the second phase of a

process aimed at creating a balanced training sample.

• Try different algorithms: use not just one data mining algorithm on a dataset but

try out more and see which works best. This is the thought process behind model

ensembles.

• Use penalized models: penalized classification imposes an additional cost factor

to misclassification. In short, the cost of making a mistake is set to be higher for

the minority class, compared to the majority class.

• Use a different perspective: view the dataset from the perspective of the area

studying it. This usually involves different machine learning algorithms, for

example, clustering or outlier analysis instead of classification. This is the idea

behind anomaly and hybrid detection models.

Figure 24: KDD Cup 1999 class distributions on the 10% training sample. Source: own edit.

Csaba Brunner – Intrusion Detection by Machine Learning

87

Figure 25: NSL-KDD train dataset class distributions. Source: own edit.

Despite the criticisms formulated, a large portion of the literature still use the KDD Cup

1999 and NSL-KDD datasets. Therefore, I decided to prefer the NSL-KDD dataset, in

contrast to newer datasets. In return, these datasets have been evaluated many times

before, and now work as benchmarks for intrusion detection models. Additionally,

according to Stolfo et al. (2000), the core idea behind the KDD Cup 1999 dataset (and

NSL-KDD dataset) is that training data contains one set of attack patterns, while test data

contains a different set of attack patterns, some unavailable in the training data. These test

attack patterns are impossible for machine learning models to learn, emulating the

appearance of new attack types. This makes KDD Cup 1999, and NSL-KDD as an

extension, conceptually similar to the newer intrusion detection datasets.

4.2. MODEL EVOLUTION

I studied intrusion detection models created by combining machine learning algorithms

in an ensemble. The design and implementation of one model, however, was not an easy

task due to the specifics of the dataset. I had to perform multiple iterations to find an

appropriate model. I discuss further elements of the CRISP-DM process in terms of these

iterations, where each produced a new, better refined version of an intrusion detector.

Figure 26 shows the detection models created in this iterative process:

• Version 0 (prototype): the first prototype of the model is outlined and evaluated

in Brunner (2017), where I published a decision tree bagging classifier trained on

Csaba Brunner – Intrusion Detection by Machine Learning

88

a map-reduce-like architecture. I trained this model only on the KDD Cup 1999

dataset.

• Version 1 (neural network stacking ensemble): I created a stacking ensemble

from neural networks trained on different features. I managed to improve

performance by using a more robust sampling process and grid search

hyperparameter optimization. In this model I transitioned between KDD Cup

1999 and NSL-KDD, sampling both differently.

• Version 2 (migration to TensorFlow): I moved the neural network ensemble over

to a TensorFlow + Keras platform achieving faster training. I expected further

improvements in prediction performance by using TPE hyperparameter

optimization. My second goal with this iteration was to evaluate different

variations of SMOTE sampling, namely SMOTE ENN, SMOTE Tomek, and

SVM SMOTE. In this iteration I used the NSL-KDD dataset only.

• Version 3 (extension with autoencoders): where I extended the best performing

elements of earlier iterations (like SVM SMOTE sampling and TPE optimization)

with deep autoencoder networks trained on normal traffic, creating a true hybrid

intrusion detection approach. For training, I kept the NSL-KDD dataset.

Figure 26: Iterations on the studied detection model. Source: own edit.

Further chapters show how the modeling and model evaluation steps of CRISP-DM were

implemented throughout the different iterations of the proposed intrusion detector. I

Version 0
• Decision tree bagging

• Map-reduce

Version 1
• Stacking neural network

• SMOTE

• Hyperparameter
optimization

Version 2
• Stacking neural network + Keras

• SMOTE variations

• Gaussian process + TPE
optimization

Version 3
• Stacking neural network

• Autoencoder networks

• SVM SMOTE

• TPE optimization

Csaba Brunner – Intrusion Detection by Machine Learning

89

describe implementation details by how data preparation and model training were

performed, the plans for performance evaluation and techniques how I attempted to

improve the design of the next model with.

4.2.1. THE DECISION TREE BAGGING MODEL

The first machine learning model used for intrusion detection was built using decision

trees organized into a bagging ensemble on a parallel map-reduce environment. I

discussed this model in detail in Brunner (2017). I used Java and the WEKA API to

implement this machine learning model. In further chapters I will refer to this intrusion

detector as V0 model, due to it being the first model I created. This is a naming I will

follow consistently throughout the dissertation for the other intrusion detectors as well.

Data preparation

Figure 27: Data preprocessing for the detection model prototype. Source: own edit.

The steps of data preparation are outlined in Figure 27. I had to organize unique attacks

into their respective classes first. To achieve the desired outcome I used an earlier

conceptual hierarchy from which I created the categorization scheme in Table 4 and in

Appendix A.

Next I performed stratified sampling on the 10% sample of the KDD Cup 1999 training

dataset. Altogether I created 4 datasets with different target features iteratively changing

the following settings:

• Target feature: during this first iteration, I performed binary and five-class

classifications. I based the classes for multiclass classification on the early

conceptual hierarchy. Binary classification was a choice between normal traffic

and one of the four attack classes.

Csaba Brunner – Intrusion Detection by Machine Learning

90

• Sample size: small or large. This, together with map-reduce parallelization had

implications on training time only. The exact sample sizes are available in Table

7.

• Intent with the sample: I prepared a test and a training sample. However, due to

frequent memory overflow errors of the Java platform, I had to swap training and

test datasets around for the binary and multiclass classification tasks. Table 7

shows how I performed this exactly. Training and test columns show the number

of observations available in a given sample.

Target variable Training Test Sample size

5 classes 3,000 5,000
S

2 classes 5,000 3,000

5 classes 6,000 10,000
L

2 classes 10,000 6,000

Table 7: Sampling setup of the prototype intrusion detector. Source: Brunner (2017)

Apart from target recategorization and data sampling, I performed no feature selection or

feature grouping. Moreover, I transformed no numerical or categorical features either.

Modeling

I set up the model to work in a parallel map-reduce environment in three different

architectures (Figure 28) each different in the number of CPUs and CPU cores used: 1

and 2 CPUs and 2-4-8 cores. Out of these architectures my goal with the 1 processor, 2

cores architecture was to train a benchmark classifier, to provide simple results for

comparison with the later ensemble models trained on 4 and 8 processing cores.

Figure 28: Experimental execution architectures of the V0 intrusion detector. Source: own edit.

The first available core was reserved for a master thread tasked to distribute the stratified

subsamples to all the remaining threads, each training a decision tree (Figure 29). When

Csaba Brunner – Intrusion Detection by Machine Learning

91

done, each thread calculated predictions on the test sample. These were sent back to the

master, where the final class of each observation was decided based on a majority vote

between the decision tree predictions.

Figure 29: The model creation and prediction process of the V0 intrusion detector. Source: own edit

To mitigate the level of uncertainty caused by random elements of the process, I repeated

training three times for each sample size (small or large), architecture setup (1 processor

4 cores, 2 processors, 8 cores) and target feature kind (binary and five-class) combination.

Altogether, including the benchmarks, I repeated the training and testing processes 28

times.

Evaluation

Performance measurement and data collection were determined by target feature kind. I

collected accuracies and macro-averaged precisions, recalls and F1-scores for five-class

classification. I expanded these metrics with ROC AUC scores for binary classification.

Due to my lacking understanding of model ensembles at the time, I only collected base

classifier performance metrics, but no metrics measuring aggregate classification

performance. Moreover, in some instances the base classifiers were unable to detect

minority attack types, thus I had to set precision, recall and F1-score values to zero. This

is a common behavior in many programming frameworks for machine learning. I had to

follow this in a manual post-processing step, as the WEKA API at the time did not support

it.

Due to the parallelization on the map-reduce architecture, I measured execution time as

well, although I dropped this in later models, so I could focus more on detection

performance.

Csaba Brunner – Intrusion Detection by Machine Learning

92

Potential improvements of the model

This first version is best described as a prototype intrusion detector. It had many flaws:

• I only measured the classification performance for each individual base model,

the aggregate performance of the ensemble could only be evaluated as the

arithmetic mean of each base classifier, which does not reflect the real

classification capabilities of a bagging ensemble.

• Java and the WEKA API, though useful on their own right, have counterparts that

are better at performing data preprocessing, model training and testing. Three

examples are Python, R and the KNIME Analytics Platform. The first two are

programming languages less susceptible to malfunctions and are easier to

maintain. Additionally, Python has readability advantage over most other

programming languages as well. KNIME Analytics Platform is a free

environment for developing and maintaining data workflows. Written in Java and

originating from the WEKA API, it is an ideal choice for someone who prefers

using the two.

• More robust sampling methods are to be explored, having a large effect on model

performance.

• New machine learning models were recommended for use in detection models,

particularly artificial neural networks.

• Opportunities related to feature group creation were not explored.

• Out of binary and five-class classification, only the latter should be kept, being

greater challenge. This is supported by the nature of network intrusions as well,

after all, different mitigation controls should be applied to DoS attacks than to

R2L or U2R attacks.

However, some findings of this early version are undeniably valuable. For example, the

application of model ensembles was a forward-looking idea. With all the above

considered, I designed the next experiment.

Csaba Brunner – Intrusion Detection by Machine Learning

93

4.2.2. THE STACKED NEURAL NETWORK MODEL

The next intrusion detection model has been implemented using the Python scientific

stack (a collection of Python modules designed for data manipulation and data scientific

tasks, the core modules being pandas + numpy + scikit-learn + matplotlib). I created a

new stacking ensemble of artificial neural networks and evaluated it for detection

performance. In the following chapters I will refer to this model as V1.

Data Preparation

Figure 30: Data preprocessing for the V1 detector. Source: own edit.

Figure 30 shows the modifications to data preprocessing performed on the 10% sample

of the KDD Cup 1999 dataset first, then later on the NSL-KDD dataset. I highlighted the

new steps compared to the preprocessing of the V0 model in green, and the two altered

steps in orange:

• Some categorical features were recognized incorrectly as numerical by the Python

interpreter, I corrected these in the first preprocessing step. Furthermore, as the

second part of this process, I encoded all categorical features using one-hot

encoding to be more appropriate for processing by the neural networks.

• The target feature was created using the class assignments described in Table 4. I

dropped binary classification in this iteration, however.

• I performed a simple feature selection to remove explanatory features with no

variance (equivalent to not having information content). I based this feature

selection on relative deviation.

• I fundamentally redesigned sampling generate balanced samples more efficiently.

This process was different for the two datasets. For the 10% sample of KDD Cup

1999, it was performed in two stages. Stage one performed a balancing stratified

Csaba Brunner – Intrusion Detection by Machine Learning

94

split, where minority classes had higher probability to be selected in the sample,

the exact sampling fractions are in Table 8. The second stage balanced the sample

further by performing SMOTE sampling on the intermediate sample. This two-

stage approach yielded a completely balanced sample. For the NSL-KDD dataset,

due to its more manageable size, I only used SMOTE.

Class Normal DoS Probe R2L U2R

Sampling fraction 2.50% 0.50% 50% 100% 100%

Table 8: Sample fractions to balance class distributions in the 10% KDD Cup 1999 sample before

SMOTE resampling. Source: own edit

• I split the data to feature groups according to the findings of Stolfo et al. (2000).

The sample was grouped into intrinsic, content, time-based traffic and host-based

traffic feature groups.

• As the last step of data preprocessing, I normalized the training sample with

min-max normalization for the neural networks to reach meaningful results.

One might ask whether the sample created from the 10% KDD Cup 1999 data is a valid

representation of the original. I have validated this in a separate experiment where I

repeated the proposed sampling process 150 times, then compared them to the original

training dataset. I based this evaluation on the nonparametric two-sample Kolmogorov-

Smirnov test from statistics. The null hypothesis of the K-S test states that the two samples

were drawn from the same statistical distribution. These K-S tests were then performed

for each class, feature and sampling iteration. The result is a per class aggregation of the

acceptance or rejection of the null hypothesis, where acceptance counts as 1 and rejection

as 0. My goal with this test was to provide insights into how well the sampling matched

the original data.

For the NSL-KDD data, as SMOTE is guaranteed to yield a synthetic sample with a

distribution matching the original data closely, answering the above question has no

additional benefit.

Modeling

I trained multiple neural networks, one for each feature group and one as a final

aggregator model. The modeling setup is visible in Figure 31.

Csaba Brunner – Intrusion Detection by Machine Learning

95

Figure 31: The model creation and prediction process of the V1 model. Source: own edit

An important element to stacking ensembles is the variance of the base models, which is

usually achieved by different base models. In V1, I tried to achieve variation by feeding

different data features to the base classifiers instead.

I trained every model in the ensemble in a similar process. First, I optimized each with

grid search hyperparameter optimization with five-fold CV for more stable results. The

target metric I optimized for was recall, the hyperparameters I changed are visible in

Table 9. The optimization process altered only the initial learning rate, the exponent for

the decaying learning rate and the momentum for every neural network. Further settings

available were, for example, hidden layer and neuron per hidden layer counts. In those

cases however, grid search would have taken too long to conclude and yield an optimal

neural network architecture. As a compromise, I gave each model a fixed architecture.

The base classifiers were trained on three hidden layers with 40, 20 and 10 neurons

respectively, whereas the aggregator was trained only on two hidden layers with 10 and

5 neurons. I base my argument for the smaller architecture for the aggregator model on

that it received only 𝑘 ∙ 5 features as input, one for each target class value per base

classifier.

Parameter Base models Aggregator model

hidden layer (40, 20, 10) (10, 5)

activation RELU

solver Adam

alpha (L2 regularization) 0.0001

Csaba Brunner – Intrusion Detection by Machine Learning

96

Parameter Base models Aggregator model

learning rate type inverse scaling

initial learning rate 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9

LR decay power 0.25, 0.5, 0.6, 0.7, 0.8, 0.9

momentum 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 9: Hyperparameter settings for the V1 detector. Source: own edit

Evaluation

I used the standard measures of accuracy, precision, recall and F1-score for performance

evaluation, obtained from testing the ensemble with the dedicated test datasets of KDD

Cup 1999 and NSL-KDD respectively. I performed transformations using the same one-

hot encoding, feature group splitting rule and normalizer objects I fitted using the training

datasets to limit the effect of information leakage. Moreover, I performed no sampling on

the test datasets either.

Potential improvements of the model

This iteration has taken a major step forward in terms of quality and classification

performance compared to the prototype V0 model. However, I identified new issues as

well:

• Although I did not measure with research intent, the training process with grid

search hyperparameter optimization took a significant amount of time, which was

a result of multiple factors: the notoriously long training time of neural networks,

the grid search algorithm itself and the cross-validation iterations. I found

TensorFlow + Keras with GPU acceleration capabilities a good candidate to

improve this training time, with the potential benefit of improving model

performance further.

• I performed hyperparameter optimization using grid search, though I considered

random search at some point as well. Both have flaws, grid search takes a long

time, while random search is not guaranteed to find global optimum. Gaussian

and tree-structured parzen estimator hyperparameter optimization both evaluate a

small number of combinations, but they do it more intelligently, thus converge

faster to global optima. Moreover, they can search in larger parameter spaces,

therefore more parameter dimensions could be evaluated.

Csaba Brunner – Intrusion Detection by Machine Learning

97

• Later in the iteration, as I evaluated synthetic sampling for utility, I discovered

multiple modifications to the SMOTE sampling algorithm. Some of these

variations had the potential to further improve prediction performance, therefore

I found it useful to include them in the next iteration.

4.2.3. NEURAL NETWORKS ON TENSORFLOW AND KERAS

The next iteration was a natural evolution of the V1 model. I created it by implementing

two major changes to the training process shown in chapter 4.2.2: first, I changed the

models from scikit-learn MLPClassifiers to Keras models on TensorFlow backend.

Second, I used TPE hyperparameter optimization instead of grid search during model

training. I refer to models created this way as V2 detectors, with variations in naming

suggesting variations in the sampling I applied on data the models were trained with.

According to the Google Brain Team (2015) “TensorFlow is an end-to-end open source

platform for machine learning. It has a comprehensive, flexible ecosystem of tools,

libraries and community resources that lets researchers push the state-of-the-art in ML

and developers easily build and deploy ML powered applications”. Developed by

Google, it has quickly obtained popularity in the fields of machine learning and AI

research.

The latest release of TensorFlow has native support for Keras, a high-level API for neural

network architecture development. According to the Keras documentation (Chollet

(2015)): “Keras is a high-level neural networks API, written in Python and capable of

running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on

enabling fast experimentation”.

Recently, Google released TensorFlow 2.0, which tied the Keras API closer, which, at

the same time discontinued support for Theano backend. To keep my models up to date,

I used TensorFlow 2.0 as well.

Data Preparation

The data preparation step in Figure 32, as the majority of my changes affected modeling,

remained largely unchanged compared to the previous iteration (shown in Figure 30),

except for two. First, I experimented with multiple variations of synthetic sampling,

namely SMOTE ENN, SMOTE Tomek and SVM SMOTE, the former two being

Csaba Brunner – Intrusion Detection by Machine Learning

98

combinational over and under sampling approaches, while the latter being a strictly over

sampling approach. My second change was added to meet a requirement of Keras

regarding the target class: the target needs to be represented in a number encoded format

in order for cross entropy loss to work, which I added as the last step to preprocessing.

Figure 32: Data preprocessing for the V2 models. Source: own edit

Regarding execution speed, although more manageable, the NSL-KDD training dataset

still contained enough observations and features to make synthetic resampling a slow

process to execute. After taking the recommendations of (scikit-learn developers, 2018),

the following adjustments were made to the synthetic samplers:

• I set all their n_jobs parameter to -1. This setting enables multi-threaded execution

during resampling, the -1 value tells the code to use all available CPU cores for

execution, thus enabling it to take advantage of all available resources.

• The SVM classifier used by SVM SMOTE has no n_jobs parameter, instead, it is

optimized with the cache_size parameter. Adjusting this from the default 200 MB

to 4096 MB enabled faster execution for SVM SMOTE as well.

Modeling

In the modeling phase I changed the backend and the API of the neural networks and

introduced the new optimization strategy. The model architecture is presented in Figure

33.

Csaba Brunner – Intrusion Detection by Machine Learning

99

Figure 33: The model creation and prediction process of the V2 models implemented in Keras on

TensorFlow backend. Source: own edit

The architecture setup shares a lot in common with the V1 model: I trained and optimized

each base model, then trained the aggregator on the class probability predictions of the

base models. The differences were in the backend and the hyperparameter optimization

strategy I used. One of the many reasons for choosing TensorFlow was a better access to

computational resources, notably the potential to access the GPU of the computer

modeling is performed on. A question is the degree of benefit from doing so, as GPU

training involves a computational overhead to set the data up for processing.

Furthermore, Bayesian model optimization together with the flexibility of TF and Keras,

allowed training to explore a wider range of hyperparameters, for example, the number

of hidden layers, the number of neurons per hidden layer and the activation function per

hidden layer together with the already explored learning rate and learning rate decay over

time parameters. This expanded optimization has the potential of finding more accurate

predictions. I chose TPE algorithm for hyperparameter optimization, as it possessed

advantageous properties compared even to gaussian process optimization. The target

measure to optimize for has been the sparse categorical cross entropy loss function of the

Keras API.

The parameterization of TPE, however, is different than that of grid search, visible in

Table 10. I defined the parameter settings in accordance with Bergstra et al. (2011),

Bergstra, Yamins and Cox (2013). The details of this is visible in Table 2. Distributions

to sample from were log uniform for learning rate and dropout rate and uniform for

learning rate decay. I set the number of hidden layers to be chosen from a list of values,

Csaba Brunner – Intrusion Detection by Machine Learning

100

in this case, integers between 1 and 5 inclusive. The number of hidden layers parameter

also determined the number of neurons and activations per layer parameters (one for each

hidden layer), each sampling from a quantized uniform distribution converted to integer

value and a choice between sigmoid, RELU and tanh functions, respectively. This

dependent hyperparameter value selection is one of the many advantages of the TPE

algorithm over gaussian processes. The settings in Table 10 enabled a simple neural

network architecture search for each base and the aggregator model alike.

Parameter Generator function

Learning rate hp.loguniform(10-3, 101)

Dropout rate hp.loguniform(10-3, 5 * 10-1)

Learning rate decay hp.uniform(0.1, 0.5)

Hidden layer number hp.choice(1, 5)

Neurons per layer hp.quniform(5, 50, q=1) converted to integer

Activations per layer hp.choice(sigmoid, RELU, tanh)

Table 10: TPE hyperparameter settings for the V2 intrusion detectors. Source: own edit

Other parameters important to neural networks were not optimized. These were the

number of epochs during training (set to 100), batch size (set to 1024) and a lower bound

for learning rate reduction (set to 10-3). The learning rate reduction, together with an early

stopping criterion with patience set to the square root of the number of epochs were added

as callback policies expanding the capabilities of the training process and reducing

execution time. Another unaffected parameter was L2 regularization, the coefficient of

which I fixed at 10-3. Finally, I used the Adam solver of Kingma and Ba (2014) for

training, just like with the V1 model of chapter 4.2.2.

Evaluation

The evaluation process is the same as it was in previous experiments, however, I altered

the scope of measures as I only examined accuracy and recall. My choice for these two

measures was influenced by their widespread use and general recommendations in the

literature.

The main benefit I expected from using TensorFlow and Keras were the potential of better

optimized neural network training algorithms, which can exploit the capabilities of multi

core CPUs as well as GPUs. Moreover, Keras models are more flexible when it comes to

parameter settings, enabling per-layer activation functions, neuron counts, regularization,

etc. With TPE optimization, the key advantage is that it performs a limited set of trials,

just like how random search works, however it converges on good results faster compared

to grid search, and, in some cases, it can even outperform it.

Csaba Brunner – Intrusion Detection by Machine Learning

101

As a secondary goal, I evaluated more advanced synthetic sampling approaches as part

of this iteration. These included SMOTE Tomek (Batista et al. (2003)), SMOTE ENN

(Batista, Prati and Monard (2004)) and SVM SMOTE ((Nguyen, Cooper and Kamei

2009)). Based on empirical results, I expected models trained on samples generated by

SVM SMOTE to perform slightly better, due to how it samples from border regions.

Potential improvements of the model

The models trained in this iteration only performed signature detection. I planned to

evaluate at least one hybrid intrusion detector in this dissertation, providing more insight

to the second research question I formulated in chapter 3.3. I found a good candidate in

the shape of autoencoder networks. Two benefits from using them are:

• First, the least complicated single layer autoencoder networks can be viewed as a

nonlinear extension of the PCA algorithm, therefore, they are inherently capable

of dimensionality reduction.

• Second, being neural networks themselves, I could integrate them into the V2

stacking neural network architecture demonstrated in this chapter.

4.2.4. AUTOENCODER ENHANCED STACKING NEURAL NETWORK

The key improvement of this model version over V2 is the extension of base classifiers

with deep autoencoder networks trained only on normal traffic. Changes to data

preparation and modeling processes were only minor, mostly involving the usage of the

best performing elements described in chapter 4.2.3. My goal with the addition of

autoencoders was increasing the quality of model predictions, justifying the ordinal

increase in the naming convention to V3 in the following chapters.

Data Preparation

The data preprocessing in Figure 34 only saw minor changes, aimed at optimizing the

workflow and at synthetic sampling. I implemented the former by using new

preprocessing tools offered by the latest release of the scikit-learn API (Pedregosa et al.

(2011)), and by merging logically similar transformations in a single step. I managed to

join one-hot encoding, min-max normalization and target feature numerical encoding

together in the same preprocessing step. The second change I implemented was the use

of SVM SMOTE sampling, as it proved to be the best performing synthetic sampling

Csaba Brunner – Intrusion Detection by Machine Learning

102

process according to the studied literature, particularly to Lopez-Martin, Carro and

Sanchez-Esguevillas (2019).

Figure 34: Data preprocessing for the V3 architecture. Source: own edit

Modeling

Model training (Figure 35) received a major update when I added deep AEs to the base

classifier levels. I trained and saved each of these autoencoders only on normal traffic in

a separate process, then, before training the base models of the neural network stacking

model, I loaded and used these autoencoders to predict all connection data. Attack

connections are predicted as if they were normal traffic, therefore I expected the squared

difference between the actual and predicted features to be higher for attacks than for

normal traffic. This difference can be calculated for each observation and feature, yielding

new datasets to train and test with. I performed the rest of model training as I described

in chapter 4.2.3, I used the TPE algorithm for hyperparameter optimization with the same

hyperparameter space definitions I shown earlier in Table 10.

Figure 35: The model creation and prediction process of the V3 model. Source: own edit

Csaba Brunner – Intrusion Detection by Machine Learning

103

I set up the architecture of the deep autoencoders differently than the architecture of the

stacking neural network models, due to their different purpose. These different settings

are shown in Table 11. As part of the study I performed on deep AE networks, I

experimented with linear, sigmoid, RELU and tanh activation functions applied on all

hidden layers of the autoencoder with the intent of using the activation which provided

the lowest MSE on the target features. Further parameters I used were the Adam solver

with default learning rate, and early stopping criterion, which was a policy shared between

the autoencoders and the models of the stacking neural network with identical parameters.

I did not perform regularization on the hidden layers of the autoencoder.

Parameter name Parameter setting

Activation Linear

Layer reduction rate 2

Optimizer Adam (LR=0.001)

Bottleneck Round(√|𝑖𝑛𝑝𝑢𝑡|)

Epochs 100

Early stopping patience √𝐸𝑝𝑜𝑐ℎ𝑠

Table 11: Autoencoder parameter settings. Source: own edit

To better understand layer reduction rate and bottleneck parameters of Table 11, the setup

process of one autoencoder must be understood first. I divided this process into two

stages:

1. Encoder construction: the input feature count is taken to be the neuron count for

the first hidden layer. For each subsequent hidden layer, the used neuron count is

saved to a list and the neuron count for the subsequent layer is divided by the layer

reduction rate. Then, the next iteration is performed with the new calculated

neuron count. This iteration continues while the current neuron count is larger

than a predefined bottleneck parameter, set to the square root of the input feature

count.

2. Decoder construction: the decoder network is constructed from the reversed list

of encoder neuron counts.

Evaluation

I did not change the stacking neural network performance evaluation process from the

previous iterations described in chapter 4.2.3, I kept accuracy and recall as the core

metrics to demonstrate. I did so to maintain the ability to compare results achieved by this

variant with the results of previous variants.

Csaba Brunner – Intrusion Detection by Machine Learning

104

I tested the autoencoders separately, on training and test datasets of NSL-KDD. The

predictive performance of autoencoders is defined on how closely they can reconstruct

data from a low-dimensional representation. This is best characterized using the MSE

function. I performed these comparisons for each class value and feature group, expecting

different results by both values and groups, but not much different between the training

and test datasets. A further evaluation of autoencoders was the small optimization of the

activation functions, which I already described.

Potential improvements of the model

Although this iteration had the potential for the most promising results, I still found

opportunities for adjustments. Particularly, the following could be improved on:

• Although NSL-KDD (and KDD Cup 1999) is a widely studied and accepted

benchmark for comparing intrusion detectors, its source is one of the oldest in the

field, dating back to 1999. Although both NSL-KDD and KDD Cup 1999 simulate

the appearance of new attacks by excluding some attack categories from the

training set, new datasets created since then may have new insights useful for

machine learning algorithms. New candidate datasets include Kyoto 2006 (Song

et al. (2011)), UNSW-NB15 (Moustafa and Slay (2015)) and CSE-CIC-IDS2018

(Sharafaldin, Lashkari and Ghorbani (2018)). UNSW-NB15 looks to be the most

promising, it is more up to date, has dedicated training and test datasets and both

packet and flow features.

• Deep autoencoders are just one type of autoencoders that can be effective in an

intrusion detection environment. Newer autoencoders include sparse

autoencoders and variational autoencoders, both used effectively for improving

intrusion detector systems in Al-Qatf et al. (2018), Lopez-Martin, Carro and

Sanchez-Esguevillas (2019) and Yang et al. (2019).

• I used the results of the autoencoders as the squared difference between the

original and the predicted features. This approach is uncommon, most studies (Al-

Qatf et al. (2018), Lopez-Martin, Carro and Sanchez-Esguevillas (2019) and Yang

et al. (2019)) used the latent representation of a variational autoencoder to

generate new outputs or used the reduced dimensional representation. When

applied to the intrusion detector demonstrated in this chapter, this change would

likely reduce model complexity to a level, where even the use of model ensembles

Csaba Brunner – Intrusion Detection by Machine Learning

105

could be omitted entirely, and instead, a neural network could be trained directly

on reduced dimensional set of features. Furthermore, it is also possible that, being

generative models, variational autoencoders could replace synthetic sampling

altogether.

• Finally, the current and previous iterations all relied on feature groups proposed

primarily by Stolfo et al. (2000). The original purpose of these feature groups was

to provide feature subsets better suited at detecting specific classes of traffic. A

similar process could be developed to calculate feature importance per class in a

one vs rest setting and take the top performing features to further modeling. This

would create an ensemble built from base classifiers performing well for on

specific class each. For example, these base classifiers could be the encoders of

trained autoencoder networks, although it is to be determined whether a single

variational autoencoder would provide better predictions.

Csaba Brunner – Intrusion Detection by Machine Learning

106

5. RESULTS

In this chapter I summarize the detection results that the models achieved. I organized

this chapter similarly to the model outline in chapter 3.4 and Figure 26: I discuss the

results of each model in the order of their creation, going from V0 to V3. Following the

separate evaluation of these detectors, I discuss their results in relevance to each other.

Finally, in chapter 5.6, I take these results an compare them with results provided by

several papers in the field of intrusion detection research to see if my detectors can

compete in a wider scientific context.

5.1. DECISION TREE BAGGING RESULTS

The results of the V0 detector can be seen in Table 12 and Table 13 . The metrics I used

were accuracy, precision, recall, F1-score and, in the case of binary classification, AUC,

all calculated using custom samples from the 10% KDD Cup 1999 dataset. In the original

article of Brunner (2017) I evaluated the effects of parallelization on classification

performance using differently sized training and test samples as well. There, I concluded

that map-reduce parallelization and different sample sizes had no effect on the prediction

performance of the base classifier models. Therefore, when I aggregated the performance

metrics for demonstration in this dissertation, I filtered the effects of both characteristics

out of the aggregate results calculation. For those interested in the original measurements,

I made the source tables available in Appendix B.

Binary classification (Table 12) achieved moderate accuracy and AUC at 78.8% ± 1.23%

and 0.773 ± 0.0237 respectively. The ± components were due to the aggregation; they

do not indicate cross validation folds. Precision was the highest metric at 0.925 ± 0.0372

and recall and F1-score were the lowest at 0.513 ± 0.0332 and at 0.659 ± 0.0266.

Measurement Value

Accuracy 78.8% (±1.32%)

Precision 0.925 (±0.0372)

Recall 0.513 (±0.0332)

F1-score 0.659 (±0.0266)

AUC 0.773 (±0.0237)

Table 12: Aggregate measurements for the binary classification case of the V0 model. Based on Brunner

(2017)

Comparing binary with five-class classification (Table 13), where accuracy was the

highest at 97.9% ± 1.24% with the remaining precision (0.491 ± 0.0944), recall (0.458

Csaba Brunner – Intrusion Detection by Machine Learning

107

± 0.0582) and F1-score (0.473 ± 0.0708) measurements showing worse performances.

The high accuracy in this case is misleading, as training and test samples were not

balanced at the time, and accuracy tends to rate classifier models better when they assign

most observations to the majority class.

Measurement Value

Accuracy 97.9% (±1.24%)

Precision 0.491 (±0.0944)

Recall 0.458 (±0.0582)

F1-score 0.473 (±0.0708)

Table 13: Aggregate measurements for the five-class multiclass classification case of the V0 model.

Based on Brunner (2017)

Binary classification achieved better results. This is understandable as binary

classification only requires models to make a choice between normal and attack traffic,

also highlighted by Petersen (2015). This also means that the misclassifications made

between the different attack classes remain masked. Depending on the intrusion detection

controls requested, this masking may be unacceptable, as different control policies need

to be applied for different attack patterns. Therefore, I considered studying intrusion

detection performance as a multiclass classification problem more favorable in further

intrusion detectors. One candidate algorithm recommended were artificial neural

networks, preferably joined in an ensemble, for example, in the form of stacking

classifiers.

The results of this chapter provide one example answer to my first research question in

chapter 3.3.

5.2. STACKING NEURAL NETWORK RESULTS

The datasets I used to train the V1 ensemble were KDD Cup 1999 and NSL-KDD. Due

to differences in dataset sizes and certain steps of data preprocessing I applied, it would

be a mistake if I was to aggregate or even compare results achieved on the two datasets

with each other. Therefore, I decided to show the results separately, first on KDD Cup

1999, where I tested the stability of the custom sampling process I designed, and

prediction performance of the models. This time I included detection performance metrics

at base classifier and aggregator levels both, an improvement over the V0 model of

chapter 5.1. On NSL-KDD, I evaluated detection performance only, as I simplified the

data sampling process to only include SMOTE sampling.

Csaba Brunner – Intrusion Detection by Machine Learning

108

KDD Cup 1999 - Sampling stability

Sampling stability evaluation was designed to test the specialized two-stage sampling

process, repeated 150 times. I used Kolmogorov-Smirnov tests at each sampling iteration

to compare the original 10% KDD Cup 1999 dataset and the generated samples for each

class and feature, including one-hot encoded categorical columns. I set a special decision

column to 0 if I could not reject the null hypothesis of K-S test, 1 otherwise. The result is

an aggregation of these decisions to target class values. Table 14 shows these aggregate

results, containing mean rejection rate with ~95% confidence interval estimated from

standard deviation.

H0 Normal DoS Probe R2L U2R

Rejected % 0.16%±0.13% 0.02%±0.04 0.00%±0.00% 0.00%±0.00% 2.73%±0.76%

Table 14: V1 sampling validation results on KDD Cup 1999 data. Source: own edit

Sample testing results show that probe and R2L classes matched the original data

perfectly for all explanatory features, while DoS and normal categories matched their

respective distributions in the majority of tests. The only exception was the U2R class,

where 2.73% (with a confidence interval of ±0.76%) of tests rejected the possibility that

the sample has been drawn from the same distribution as the 10% KDD Cup 1999 dataset.

It is likely that this has been caused by how underrepresented U2R class was in the

original dataset.

KDD Cup 1999 - Model performance

I trained each model (the four base classifiers and the aggregator model) using the

preprocessed training sample and grid search hyperparameter optimization. I tested 540

different combinations in total with exact hyperparameter values I shown earlier in Table

9.

I performed model testing using the dedicated test dataset of KDD Cup 1999. The results

of this can be viewed in Table 15 and Table 16. Table 15 shows achieved model

accuracies for each class and base model as well as accuracy achieved by the ensemble

under the aggregator model. The best base models were those trained on intrinsic and

host-based traffic for normal, host-based traffic for DoS, time- and host-based traffic for

probe and R2L and host-based traffic and content for U2R classes. Overall, content model

performed the worst, however, I cannot say it was completely redundant, as it still

contained useful information about U2R attacks, partially confirming the findings of

Stolfo et al. (2000).

Csaba Brunner – Intrusion Detection by Machine Learning

109

The aggregator model improved accuracy further compared to the base models. The

aggregator model improved detection accuracy for nearly every class, the only exception

being probe detection on the model trained on host-based traffic data (99.16% against

99.07% of the aggregator), but even there the difference is minor.

The final row of Table 15 shows overall accuracies for each model. Despite how it seems,

this overall accuracy value has no connection with the per-class values. Per class

accuracies were meant to measure model performance in detecting that one class, while

overall accuracy is measuring the performance of a model in general. Based on overall

accuracies, the aggregator managed to improve the detections of all models, with the base

model trained on host-based traffic features being the closest in detection.

 Intrinsic Time-traffic Host-traffic Content Aggregator

Normal 91.76% 79.54% 92.10% 63.26% 92.13%

DoS 83.56% 85.11% 96.71% 17.16% 96.74%

Probe 85.27% 99.05% 99.16% 15.86% 99.07%

R2L 93.83% 93.36% 94.17% 74.41% 94.70%

U2R 98.62% 86.50% 99.32% 99.77% 99.92%

Overall 78.77% 74.94% 91.03% 15.31% 91.52%

Table 15: Aggregate V1 model accuracy with base model accuracies measured on KDD Cup 1999.

Source: own edit

Table 16 shows the remaining aggregate classification measures for base and aggregator

models. Class recall, precision and F1-scores were all macro-averaged to calculate the

results shown in Table 16. As I mentioned before, the primary measure I evaluated was

recall, which shown promising results with the aggregator and one base model trained on

intrinsic features as well. However, only the aggregator model could achieve consistently

high recall together with high precision (achieving the highest F1-score as a result).

 Intrinsic Time-traffic Host-traffic Content Aggregator

Recall 0.668 0.635 0.595 0.470 0.665

Precision 0.476 0.447 0.555 0.333 0.626

F1 score 0.402 0.442 0.525 0.269 0.582

Table 16: Macro-averaged precision, recall and F1-score of the V1 model measured on KDD Cup 1999.

Source: own edit

I also attached a more detailed version of Table 16 showing base and aggregator model

performances on intrusion class value level in Appendix C.

NSL-KDD – Model performance

The performance comparison on NSL-KDD dataset is available in Table 17. Out of the

base classifiers, intrinsic model performed the best on normal class, time-based traffic

Csaba Brunner – Intrusion Detection by Machine Learning

110

model detected DoS, probe and U2R attacks well and host-based traffic model was the

best on R2L class. Content model was the worst at detecting attacks except R2L and U2R.

The final aggregator improved on almost every class, except normal traffic, where it could

not achieve better per class accuracy than the base classifier trained on intrinsic data.

Based on overall accuracy, I set up the following ranking from worst to best model:

content, intrinsic, host-traffic, time-traffic and aggregator. Performance improvement

achieved by the aggregator model is understandable as it uses knowledge and patterns

acquired earlier by the base classifiers.

The results the models achieved when I used the NSL-KDD dataset for training are worse

than the results achieved when I used the KDD Cup 1999 dataset. Due to redundancies,

certain observations received a higher representation in training and test datasets.

Correctly classified, these redundant records have a stronger representation in Table 15,

compared to Table 17, where each observation is equal in importance. This is a possible

reason why accuracies trained on KDD Cup 1999 seem to be better.

Intrinsic Time-traffic Host-traffic Content Aggregator

Normal 84.71% 80.30% 79.44% 81.58% 82.30%

DoS 81.73% 88.14% 86.97% 70.29% 91.00%

Probe 79.74% 94.44% 92.00% 89.26% 93.64%

R2L 88.56% 86.46% 89.18% 89.09% 90.09%

U2R 96.98% 99.35% 97.65% 98.07% 99.18%

Overall 65.86% 74.34% 72.62% 64.15% 78.11%

Table 17: Aggregate V1 model accuracy with base model accuracies measured on NSL-KDD. Source:

own edit

In Table 18 recall, precision and F1-score are visible, calculated on the test dataset of

NSL-KDD. Based on recall, the intrinsic model performed best out of the base models,

even outperforming aggregate results. With precision, it was the base model trained on

the host-based traffic features that provided the best result, closely followed by the model

trained on time-based traffic features, which simultaneously provided the best F1-score.

The aggregator model managed to improve precision and F1-score compared to the base

models.

Intrinsic Time-traffic Host-traffic Content Aggregator

Recall 0.576 0.609 0.515 0.453 0.558

Precision 0.512 0.580 0.607 0.451 0.668

F1 score 0.483 0.584 0.509 0.372 0.566

Table 18: Macro-averaged precision, recall and F1-score of the V1 model measured on NSL-KDD.

Source: own edit

Csaba Brunner – Intrusion Detection by Machine Learning

111

As with the KDD Cup 1999 measurements, I published a detailed version of Table 18 in

Appendix D for those who are interested. As I considered aggregator model performance

to be much more important to analyze in this dissertation, I decided to exclude base model

performance measurements from further chapters. Moreover, instead of providing class-

specific recalls, precisions and F1-scores for each model, I only shared confusion matrices

in further appendices tied to chapters 5.3 and 5.4. I found this an easier approach to follow,

while allowing the reader to calculate additional performance metrics as they see fit.

The results of this and the previous chapter confirm that machine learning works as an

intrusion detector, answering the first research question in chapter 3.3.

5.3. KERAS AND TENSORFLOW STACKING NEURAL NETWORK RESULTS

I compared V2 models for performance in groups determined by the synthetic sampling

approach. I executed all experiments according to details I explained in chapter 4.2.3,

with 50 hyperparameter optimization iterations at first. However, with 50 iterations, the

aggregator models started to show signs of overfitting, therefore, later I reduced the

number of hyperparameter optimization iterations to 25. Results in this and the following

chapters were provided by the models performing best out of these 25 iterations.

Earlier I mentioned that a key advantage of TensorFlow is the potential execution time

improvement on computers equipped with a GPU. This improvement is conditional,

requiring a setup overhead from the TensorFlow backend and depends on the dimensions

of the weight matrix. For example, a more complex model with weights in the millions,

GPU utilization is highly beneficial, as it was determined by Lind and Pantigoso

Velasquez, (2019) as well. As none of the models trained in this dissertation reached such

complexities, I decided to drop GPU utilization and work with CPU only instead.

Model prediction performances are visible in Table 19 for accuracy. The models

performed well on each class, regardless of the sampling approach used. The class all

models had difficulty predicting was normal, which indicates that a large portion of

attacks were classified as normal traffic incorrectly. I excluded overall accuracies from

Table 19, for the same reasons I highlighted while discussing the accuracies in Table 15

(per-class and overall accuracies are different metrics). Overall accuracies were 77.09%

for SMOTE ENN, 78.34% for SMOTE Tomek and 77.75% for SVM SMOTE. In this

Csaba Brunner – Intrusion Detection by Machine Learning

112

regard SMOTE Tomek provided the best predictions, although, the differences between

the sampling methods are rather small.

Accuracy SMOTE ENN SMOTE Tomek SVM SMOTE

Normal 80.67% 82.38% 80.78%

DoS 90.16% 90.52% 90.74%

Probe 93.01% 93.14% 93.57%

R2L 90.68% 91.02% 90.73%

U2R 99.66% 99.64% 99.68%

Table 19: Aggregate V2 model accuracies. Source: own edit

The recall values of Table 20 provide more information on predictions. The models

provided the best results on the majority normal and DoS classes and predicted probe,

R2L and U2R classes worse as they started belonging more and more to minority.

Moreover, the sampling methods provided similar macro-averaged recall values ranging

within one percentage point, with the minor advantage of SMOTE ENN sampling.

Recall SMOTE ENN SMOTE Tomek SVM SMOTE

Normal 0.9255 0.9198 0.9140

DoS 0.8259 0.8592 0.8438

Probe 0.5225 0.5580 0.5944

R2L 0.3258 0.3289 0.3109

U2R 0.3731 0.2985 0.2985

Average 0.5946 0.5929 0.5923

Table 20: Aggregate V2 model recalls. Source: own edit

Based on the data I collected, I cannot state with certainty which synthetic sampling of

the three evaluated can improve model performance the most, therefore, I compared the

results with the models discussed in chapter 2.3. Lopez-Martin, Carro and Sanchez-

Esguevillas (2019) reported SVM SMOTE models to give a small advantage, therefore I

used this sampling approach for the model described in chapter 4.2.4. To assist with

further performance analysis, I attached the confusion matrices for all the V2 base and

aggregator models to this dissertation in Appendix E, Appendix F and Appendix G.

As part of my third research question, I set the goal of finding additional techniques that

could help an intrusion detector in providing more accurate predictions. This chapter

provided models enhanced with two such techniques: synthetic sampling and more

advanced hyperparameter optimization.

Csaba Brunner – Intrusion Detection by Machine Learning

113

5.4. AUTOENCODER ENHANCED STACKING NEURAL NETWORK RESULTS

My goal with the autoencoder iteration was to evaluate the predictive performance of a

hybrid intrusion detection solution. I implemented this hybrid detector by extending the

V2 model of chapter 4.2.3 with autoencoders trained on normal traffic. This process

required evaluations on two artefacts: the autoencoders themselves, and the extended

stacking model.

Autoencoder model results

I conducted two analyses on the autoencoder models: the first involved the testing and

evaluation of the activation functions. I set this up in a way similar to grid search

hyperparameter optimization. I measured the results of these experiments using the mean

squared error function common in regression tasks. The measured MSE values can be

seen in Table 21. All autoencoders, except the one trained on intrinsic data, performed

the best with linear activation functions, while intrinsic AE performed better with RELU

activations. Based on these results, I decided to use linear activation for each autoencoder.

Feature Group Linear RELU Sigmoid Tanh

Intrinsic 0.00060 0.00012 0.00205 0.00013

Content 0.00016 0.00031 0.00186 0.00018

Host-traffic 0.00304 0.00461 0.01012 0.00335

Time-traffic 0.00442 0.00609 0.01096 0.00447

Table 21: Autoencoder MSE per feature group and activation. Source: own edit

My second analysis of autoencoders measured their performance. Just like with the

previous analysis, I used the MSE between the original explanatory features and the

predictions the AE models made. With this analysis I aimed to prove the usefulness of

training autoencoders on normal traffic only. Because the models only saw normal traffic,

their reconstruction error would be much higher on attack classes. the results of this

analysis can be seen in Figure 36.

Csaba Brunner – Intrusion Detection by Machine Learning

114

Figure 36: Per-class autoencoder model errors on NSL-KDD dataset. Source: own edit.

Figure 36 shows the per-class and per feature group performance of the autoencoder

models. The intrinsic and the two traffic AEs were good at differentiating DoS and probe

attacks, R2L and U2R classes were more challenging, though: MSEs for these categories

were similar, or even lower than what the three models achieved on normal traffic. This

similarity, together with their minority state makes these classes even harder for machine

learning models to detect. The last remaining content autoencoder was unique in how

well it managed to find differences between normal and U2R traffic. This is another proof,

Csaba Brunner – Intrusion Detection by Machine Learning

115

that, no matter how poorly models trained on content features perform, they still

contribute to the overall performance.

Based on the results in Figure 36, an autoencoder network can work as an anomaly

detector, partially answering my second research question.

Model performance

Following autoencoder model predictions, the stacking neural networks were trained as

usual. As in chapter 5.3, I show two tables, one for the accuracy measures and the other

for recall values, both describing only the aggregator model predictive performance.

Table 22 shows per class accuracies. The model provided the best accuracy for U2R,

while DoS, R2L and normal also maintained high detection accuracies. Probe class

provided the worst per-class accuracy at only 84.95%. Overall accuracy of the aggregator

model was 74.26%, a surprisingly decreased value compared to the results published in

chapter 5.3.

Normal DoS Probe R2L U2R

87.20% 90.82% 84.95% 88.84% 96.72%

Table 22: Aggregate V3 model accuracies. Source: own edit

Viewing the analysis from a different perspective, Table 23 shows the recalls of the

aggregator model. The best recall values were achieved on normal, DoS and probe traffic.

The worst achieved recall was on R2L. Their average improved compared to the earlier

iterations.

Normal DoS Probe R2L U2R Average

0.8367 0.7728 0.7732 0.3262 0.5821 0.6582

Table 23: Aggregate V3 model recalls. Source: own edit

As in the previous chapters, I published the confusion matrices of all the trained neural

networks in Appendix H.

This chapter proved that hybrid models work as viable intrusion detector models.

Additionally, the V3 model further utilized synthetic sampling and advanced

hyperparameter optimization, providing more evidence to answer my third research

question.

Csaba Brunner – Intrusion Detection by Machine Learning

116

5.5. COMPARISON OF EXPERIMENTAL RESULTS

The most important conclusions can be drawn when one compares the results of each

model variant. In this chapter, I performed this comparison between these variants on a

per-class value basis trained on the NSL-KDD dataset. These comparisons encompass

two metrics, accuracy and recall. To make these comparisons easier, I created a ranking

scheme inspired by the ranking ideas outlined in Kovács and Kő (2018), adjusted to

benefit from the characteristics of confusion matrices.

Table 24 demonstrates the aggregator model accuracies. As in previous chapters, V1

stands for the scikit-learn-based NN staking ensemble, V2 for the TF + Keras stack and

V3 for the model enhanced by autoencoders. Interestingly, according to per-class

accuracies, the V1 model outperformed the more complex Keras models, particularly in

detecting DoS and probe attacks. Moreover, the V3 model is not necessarily the best

performing model either, only providing better results for normal traffic. I explain this

with the autoencoder training process and how I trained them on normal traffic. Following

neural networks saw explanatory features that were less different from normal traffic,

therefore they have gotten better at detecting that exact class.

Based on overall accuracies, V2 SMOTE Tomek performed best with 78.34%, followed

by the V1 model at 78.11% and V2 SVM SMOTE at 77.75%. The last two models were

the V2 SMOTE ENN and the V3 detectors, both achieving 77.09% and 74.26%,

respectively.

V1

V2
V3 Support

SMOT ENN SMOTE Tomek SVM SMOTE

Normal 82.30% 80.67% 82.38% 80.78% 87.20% 9711

DoS 91.00% 90.16% 90.52% 90.74% 90.82% 7460

Probe 93.64% 93.01% 93.14% 93.57% 84.95% 2421

R2L 90.09% 90.68% 91.02% 90.73% 88.84% 2885

U2R 99.18% 99.66% 99.64% 99.68% 96.72% 67

Table 24: Accuracy table for all model variants. Source: own edit.

Model performance shifts when I include the recall measures of Table 25. With recall, I

observed that the V3 model traded performance on majority classes (normal and DoS) for

performance on minority classes, especially U2R. This caused a significant increase in

the macro-averaged recall.

Csaba Brunner – Intrusion Detection by Machine Learning

117

 V1
V2

V3 Support
SMOT ENN SMOTE Tomek SVM SMOTE

Normal 0.9452 0.9255 0.9198 0.9140 0.8367 9711

DoS 0.8126 0.8259 0.8592 0.8438 0.7728 7460

Probe 0.6898 0.5225 0.5580 0.5944 0.7732 2421

R2L 0.2400 0.3258 0.3289 0.3109 0.3262 2885

U2R 0.1045 0.3731 0.2985 0.2985 0.5821 67

Average 0.5584 0.5946 0.5929 0.5923 0.6582 22544

Table 25: Recall table for all experiments. Source: own edit

I also included support values to Table 24 and Table 25. This support stands for how

many records from the test dataset belongs to a specific class. I used these support values

for a performance ranking as inverse class weights. First, I ranked the models for each

class and metric, extending this ranking to the overall accuracy average precision values

as well, assigning them artificial 50% weights. I distributed the remaining 50% between

the classes according to the following formula:

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 = (1 −
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

∑ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗
𝑘
𝑗=1

)/(𝑘 − 1) ∗ 2

My goal with this formula was to penalize the effect of majority classes more, and the

multiplication by 2 in the denominator was needed to adjust the sum of weights to 50%.

The end results of this ranking process are visible in Table 26. When ranked according to

accuracy, the V2 SMOTE Tomek model performed best. With recall rankings, the V3

model proved to be the best alternative.

V1

V2
V3

SMOT ENN SMOTE Tomek SVM SMOTE

Accuracy 2.34 3.80 1.79 2.60 4.46

Recall 4.30 2.53 2.79 3.66 1.73

Table 26: Model rankings in terms of accuracy and recall. Source: own edit

With all the above considered, determining the best intrusion detector still remains a

challenging task, influenced by the problem the models were created to address. As the

cost of predicting a false negative is greater, going for a high recall is preferable. Based

on this line of thought, the V3 stacking neural network model extended with autoencoders

is the correct model to choose.

The models’ comparisons in this chapter provided additional information on the

performance levels of several intrusion detectors necessary to answer the third research

question in chapter 3.3. These models include ensemble signature detectors supported by

Csaba Brunner – Intrusion Detection by Machine Learning

118

different variants of synthetic sampling and a hybrid detector model based on a deep

autoencoder network. Depending on the choice of performance metric, stacking models

enhanced by autoencoder networks can provide an improved detection performance.

5.6. COMPARISON TO EXTERNAL RESULTS

To truly understand how the proposed model predictions performed, I compared them to

results I found in the wider intrusion detection context. This information gathering proved

to be a more challenging task than I anticipated at first. For example, most intrusion

detection papers published accuracy only as the primary metric for intrusion detection.

Accuracy alone can be a misleading measure when class imbalance is high. Recall, a

better metric for intrusion detection is seldom published, and even if it is, it is often

referred to by different names, like detection rate or sensitivity, or defined incorrectly

with the formula of accuracy or other metrics. The fact that there are three different

averaging methods for recall (macro, micro and weighted) did not help either. The third

challenge I faced was with class assignments. Separate studies assigned detailed attack

categories to different classes. Luckily, this issue was only prevalent in attack categories

present in the test samples of the DARPA 1998 family of datasets, attack classes in the

training datasets were sufficiently described in Stolfo et al. (2000). Nonetheless, this issue

with class assignments was the main reason why I decided to conduct the analysis of

Appendix A. With these difficulties and my earlier results in mind, I created a comparison

table based on the key metrics I collected.

Table 27 shows the results comparison with intrusion detection papers. I collected most

of these from papers studying autoencoder network performance and included the

performance of non-ensemble models as well. The mean accuracy of the available models

was 77.72%; V2 SMOTE Tomek, V2 SVM SMOTE and V1 models managed to

outperform this from my proposed models. Yang et al. (2019) also published model

recalls, the average of which was 51.23%. All models published in this dissertation

managed to perform above this value. In fact, the autoencoder enhanced model achieved

the best recall, even in comparison to the best models in the intrusion detection literature.

Model Accuracy Recall

KNN (Yang et al., (2019)) 76.51% 48.3%

Multinomial NB (Yang et al., (2019)) 78.73% 47.69%

RF (Yang et al., (2019)) 76.49% 48.84%

SVM (Yang et al., (2019)) 72.28% 45.88%

Csaba Brunner – Intrusion Detection by Machine Learning

119

Model Accuracy Recall

DNN (Yang et al., (2019)) 80.22% 52.77%

DBN (Yang et al., (2019)) 80.82% 53.61%

ROS-DNN (Yang et al., (2019)) 78.26% 49.59%

SMOTE-DNN (Yang et al., (2019)) 81.16% 51.49%

ADASYN-DNN (Yang et al., (2019)) 80.1% 51.47%

ICVAE-DNN (Yang et al., (2019)) 85.97% 62.66%

VGM + RF (Lopez-Martin, Carro and Sanchez-Esguevillas,

(2019))
73.61% N/A

VGM + Logistic Regression (Lopez-Martin, Carro and

Sanchez-Esguevillas, (2019))
77.29% N/A

VGM + Linear SVM (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019))
77.23% N/A

VGM + MLP (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019))
79.26% N/A

SVM SMOTE + RF (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019))
74.25% N/A

SVM SMOTE + Logistic Regression (Lopez-Martin, Carro

and Sanchez-Esguevillas, (2019))
76.29% N/A

SVM SMOTE + Linear SVM (Lopez-Martin, Carro and

Sanchez-Esguevillas, (2019))
77.99% N/A

SVM SMOTE + MLP (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019))
77.98% N/A

Decision Tree (Yin et al., (2017)) 74.6% N/A

NB (Yin et al., (2017)) 74.4% N/A

RF (Yin et al., (2017)) 72.8% N/A

NB Tree (Yin et al., (2017)) 75.4% N/A

MLP (Yin et al., (2017)) 78.1% N/A

RNN (Yin et al., (2017)) 81.29% N/A

SAE + SMR (Javaid et al., (2016)) 79.1% N/A

AE + SVM (Al-Qatf et al., (2018)) 80.48% N/A

Proposed V3 (AE + Stacking NN) 74.26% 65.82%

Proposed V2 + SMOTE ENN 77.09% 59.46%

Proposed V2 + SMOTE Tomek 78.34% 59.29%

Proposed V2 + SVM SMOTE 77.75% 59.23%

Proposed V1 (Stacking NN) 78.11% 55.84%

Table 27: External comparisons in terms of accuracy and recall. Source: own edit

The authors of Yang et al. (2019) published per-class recalls, enabling a more detailed

comparison. In fact, global macro recalls in Table 27 were calculated from the per-class

recalls shown in Table 28. The mean recall values based on the collected data were 95.5%

for normal, 77.44% for DoS, 64.52% for probe, 13.84% for R2L and 4.85% for U2R

classes. My proposed models performed under average for normal classes, above average

for DoS, with the exception of V3, above average for probe, except for the V2 models,

and all proposed models performed above average for R2L and U2R classes.

Model Normal DoS Probe R2L U2R

KNN (Yang et al., 2019) 92.78% 82.25% 59.4% 3.56% 3.5%

Csaba Brunner – Intrusion Detection by Machine Learning

120

Model Normal DoS Probe R2L U2R

Multinomial NB (Yang et al., 2019) 96.03% 37.1% 82.61% 22.22% 0.5%

RF (Yang et al., 2019) 97.37% 80.24% 58.53% 7.55% 0.5%

SVM (Yang et al., 2019) 92.82% 74.85% 61.71% 0% 0%

DNN (Yang et al., 2019) 96.1% 85.4% 65.3% 14.56% 2.5%

DBN (Yang et al., 2019) 97.04% 83.11% 69.85% 12.56% 5.5%

ROS-DNN (Yang et al., 2019) 92.61% 80.32% 56.26% 12.75% 6%

SMOTE-DNN (Yang et al., 2019) 96.59% 82.19% 56.75% 10.93% 11%

ADASYN-DNN (Yang et al., 2019) 96.43% 83.28% 59.81% 9.84% 8%

ICVAE-DNN (Yang et al., 2019) 97.26% 85.65% 74.97% 44.41% 11%

Proposed V3 (AE + Stacking NN) 83.67% 77.28% 77.32% 32.62% 58.21%

Proposed V2 + SMOTE ENN 92.55% 82.59% 52.25% 32.58% 37.31%

Proposed V2 + SMOTE Tomek 91.98% 85.92% 55.80% 32.89% 29.85%

Proposed V2 + SVM SMOTE 91.40% 84.38% 59.44% 31.09% 29.85%

Proposed V1 (Stacking NN) 94.52% 81.26% 68.98% 24.00% 10.45%

Table 28: Recall comparison per class. Source: Yang et al. (2019) & own edit

The autoencoder enhanced model proposal provided the worst recall on normal

connections and performed bad on DoS attacks compared to the measurement of Yang et

al. (2019). The V3 model performed better, however, at predicting probe and U2R attacks

and not much worse with R2L classes. It can be said that the V3 model traded good

performance on majority classes for better classifications on minority classes, which also

explains the performance degradation experienced with accuracy metrics.

This chapter summarized several works from the related literature and compared their

reported performance with the models’ performances I proposed in my research. Based

on certain per-class and aggregate measures, at last one of the proposed models (V3) can

compete and outperform works in the related literature, answering my third research

question in chapter 3.3.

Csaba Brunner – Intrusion Detection by Machine Learning

121

6. CONCLUSION

The main goal of my dissertation was to provide a novel intrusion detection solution

applying machine learning methods. I have introduced the field of, the data science and

machine learning tools and techniques used for, and the literature studying intrusion

detection first. Then, based on the design science methodology and the CRISP-DM

process model I have designed, implemented and evaluated four intrusion detector

models. For evaluation I compared the four models with one another first, then with

additional model proposals from the related literature. I discussed three research questions

in my dissertation.

The first research question dealt with the suitability of machine learning models. Based

on the literature review and the machine learning models I created, I proved that machine

learning is a suitable approach for detecting intrusions. It is easy for machine learning

models to provide accurate predictions when detecting DoS, probe and normal activity.

Minority classes, like U2R and R2L attacks are more complicated. To overcome this

challenge, the right course of action is not necessarily the choice of a new model. There

is no “free lunch” in data science, there is no single best model which can give perfect

predictions. Instead, a viable approach is to strive for ensemble models. The comparisons

of chapter 5.2, Appendix C and Appendix D between base classifiers and aggregate

classifiers have pointed out the usefulness of this approach.

Speaking of ensembles, the second research question put misuse detection with ensembles

and hybrid detection into perspective. Misuse detection can achieve good results,

especially when the models are combined into ensembles, but it does have its limits. To

test the magnitude of detection performance increase from hybrid detection, I created the

model described in chapter 4.2.4. My expectation based on the literature was an intrusion

detector that achieved an even better classification performance. The results were,

however, more nuanced. The V3 model did achieve the best overall recall, even when it

was compared to the related literature, but its overall accuracy suffered for it. Other

models, like a more advanced conditioned variational autoencoder could help clarify the

results.

My third research question was about the levels of model performance. Primarily based

on the related literature, I can set up a form of hierarchy between the known intrusion

detection techniques. Single-model misuse detection can achieve acceptable detection

Csaba Brunner – Intrusion Detection by Machine Learning

122

results, but better detections can be generated by ensemble models, and even better by

hybrid approaches. Currently, data generative models, like CVAE and generative

adversarial networks (GANs), formulate the cutting edge in intrusion detection. The

question is whether there is a significant difference between the two approaches in terms

of prediction performance, which is a potential topic for a future study. The dissertation

also highlights two techniques important from a detection performance evaluation

perspective: hyperparameter optimization and synthetic sampling. The former is

underutilized in intrusion detection research, the most common technique used was grid

search, when more advanced ones exist, like Bayesian optimization and tree-structured

parzen estimators. For synthetic sampling, the most common method was SMOTE. The

majority of the models discussed in the literature apply only the base variant of SMOTE,

while I took a step further and compared SMOTE ENN, SMOTE Tomek and SVM

SMOTE, However, I did not find significant differences in the predictions among the

three.

A different angle intrusion detection systems can be evaluated from is more practical.

Ahamad et al. (2009) and Beek et al. (2019) reported an increase in volume and

complexity of cyber-crimes in the last decade, showing no signs of slowing down. By

providing inputs to alerting and prevention systems, intrusion detection could play an

important role in a holistic information security system. My research can additionally

provide guidance on what models do and do not work for detecting malicious activity.

NIDS is not a one size fits all solution, though. There are many attacks, like social

engineering that exploit the weakest link in an information security system: the human.

An algorithm, no matter how well designed and implemented it might be, will not stop

someone who looks like a janitor if the security guards let them in without supervision.

The key to preventing such events is the application of defense in depth, meaning that a

host of different controls are applied at different layers of an information system.

Intrusion detection itself, for example, can protect the network layer or the host layer.

Furthermore, I left the discussion of the last steps of the design science methodology and

CRISP-DM process (Table 3 and Figure 22) out of scope for my dissertation, as that

would have required model implementation into a live environment, which depends on

the social context of the research process. However, if implementation is the intended

purpose, then a more detailed context study involving the study of stakeholder goals,

Csaba Brunner – Intrusion Detection by Machine Learning

123

information system entry points, particularly the review of the network protocols and

potential open ports, the information infrastructure, and an information security audit.

This latter shall be repeated annually to not only implement, but also maintain a high-

profile security infrastructure.

A different approach to intrusion detection deals with its big data nature, particularly the

velocity of modern network traffic. Here, the recommendations of Molina-Coronado et

al. (2020) and ideas from stream processing can be applied. The recommendation is an

intrusion detector that learns not large amounts of data at rest, but continuously as new

observations and patterns are being provided. This concept is called incremental learning,

and it combines well with stream processing. Furthermore, stream processing enables the

system to benefit from the otherwise underutilized temporal nature of network traffic

better.

A final topic to consider during deployment is simplicity of the deployment process itself.

Recent advances like containerization, and tools like Docker, can help tremendously with

operation in a live environment and model maintenance. Splitting up the software

environment to development, test and production enables the developers to find potential

mistakes and bugs in the code, before the models get to be used.

Csaba Brunner – Intrusion Detection by Machine Learning

124

7. REFERENCES

Abadeh, M. S. et al. (2007) “A parallel genetic local search algorithm for intrusion detection in computer

networks,” Engineering Applications of Artificial Intelligence, 20(8), pp. 1058–1069. doi:

10.1016/j.engappai.2007.02.007.

Aghdam, M. H. and Kabiri, P. (2016) “Feature Selection for Intrusion Detection System Using Ant

Colony Optimization.,” IJ Network Security, 18(3), pp. 420–432.

Ahamad, M. et al. (2009) “Emerging Cyber Threats Report for 2009,” Georgia Tech Information Security

Center (GTISC), 34, pp. 1–9.

Al-Qatf, M. et al. (2018) “Deep learning approach combining sparse autoencoder with SVM for network

intrusion detection,” IEEE Access. IEEE, 6, pp. 52843–52856.

Almseidin, M. et al. (2017) “Evaluation of Machine Learning Algorithms for Intrusion Detection

System,” in IEEE (ed.) Intelligent Systems and Informatics (SISY), 2017 IEEE 15th International

Symposium on. IEEE, pp. 000277–000282. Available at: http://arxiv.org/abs/1801.02330.

Anderson, J. P. (1972) Computer security technology planning study. volume 2.

Anderson, J. P. (1980) “Computer security threat monitoring and surveillance,” Technical Report, James

P. Anderson Company.

Batista, G. E. et al. (2003) “Balancing Training Data for Automated Annotation of Keywords: a Case

Study.,” in WOB, pp. 10–18.

Batista, G. E., Prati, R. C. and Monard, M. C. (2004) “A study of the behavior of several methods for

balancing machine learning training data,” ACM SIGKDD explorations newsletter. ACM, 6(1), pp. 20–

29.

Beek, C. et al. (2019) McAfee Labs Threats Report August 2019. Available at:

https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html.

Bergstra, J. S. et al. (2011) “Algorithms for hyper-parameter optimization,” in Advances in neural

information processing systems, pp. 2546–2554.

Bergstra, J., Yamins, D. and Cox, D. D. (2013) “Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms,” in Proceedings of the 12th Python in science

conference, pp. 13–20.

Bhuyan, M. H., Bhattacharyya, D. K. and Kalita, J. K. (2013) “Network Anomaly Detection: Methods,

Systems and Tools,” IEEE Communications Surveys & Tutorials. IEEE, 16(1), pp. 303–336. doi:

10.1109/SURV.2013.052213.00046.

Bodon, F. and Buza, K. (2014) Adatbányászati algoritmusok.

Bouzida, Y. et al. (2004) “Efficient intrusion detection using principal component analysis,” in 3éme

Conférence sur la Sécurité et Architectures Réseaux (SAR), La Londe, France, pp. 381–395.

Breiman, L. et al. (1984) Classification and Regression Trees. 1st ed. New York: Routledge.

Brochu, E., Cora, V. M. and De Freitas, N. (2010) “A tutorial on Bayesian optimization of expensive cost

functions, with application to active user modeling and hierarchical reinforcement learning,” arXiv

preprint arXiv:1012.2599.

Brownlee, J. (2015) 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset.

Available at: https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-

machine-learning-dataset/ (Accessed: March 31, 2018).

Bruneau, G. (2001) “The history and evolution of intrusion detection,” SANS Institute, 1.

Brunner, C. (2017) “Processing Intrusion Data with Machine Learning and MapReduce,” Academic and

Applied Research in Public Management Science, 16(1), pp. 37–52.

Csaba Brunner – Intrusion Detection by Machine Learning

125

Brunner, C. (2019) “A comparative study of Antminer+ and Decision Tree classification performances,”

SEFBIS Journal, 13, pp. 15–23.

Buczak, A. L. and Guven, E. (2015) “A survey of data mining and machine learning methods for cyber

security intrusion detection,” IEEE Communications Surveys & Tutorials. IEEE, 18(2), pp. 1153–1176.

doi: 10.1109/COMST.2015.2494502.

Budzik, J. (2019) Many Heads Are Better Than One: The Case For Ensemble Learning. Available at:

https://www.kdnuggets.com/2019/09/ensemble-learning.html (Accessed: September 29, 2019).

Cavusoglu, Ü. (2019) “A new hybrid approach for intrusion detection using machine learning methods,”

Applied Intelligence. Springer, 49(7), pp. 2735–2761.

Chapman, P. et al. (2000) “CRISP-DM 1.0: Step-by-step data mining guide,” SPSS inc, 16.

Chawla, N. V et al. (2002) “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of

Artificial Intelligence Rearch, 16, pp. 321–357.

Chebrolu, S., Abraham, A. and Thomas, J. P. (2005) “Feature deduction and ensemble design of intrusion

detection systems,” Computers & security. Elsevier, 24(4), pp. 295–307.

Chollet, F. (2015) KERAS Documentation. Available at: https://keras.io (Accessed: September 15, 2019).

Cortes, C. and Vapnik, V. (1995) “Support-vector networks,” Machine learning. Springer, 20(3), pp.

273–297.

Damiani, J. (2019) A Voice Deepfake Was Used To Scam A CEO Out Of $243,000, Forbes. Available at:

https://www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-

243000/#3efedc652241 (Accessed: June 7, 2020).

Divekar, A. et al. (2018) “Benchmarking datasets for anomaly-based network intrusion detection: KDD

CUP 99 alternatives,” in 2018 IEEE 3rd International Conference on Computing, Communication and

Security (ICCCS), pp. 1–8.

Dua, S. and Du, X. (2016) Data mining and machine learning in cybersecurity. CRC press.

Elhag, S. et al. (2015) “On the combination of genetic fuzzy systems and pairwise learning for improving

detection rates on Intrusion Detection Systems,” Expert Systems with Applications. Elsevier Ltd, 42(1),

pp. 197–202. doi: 10.1016/j.eswa.2014.08.002.

Ester, M. et al. (1996) “A density-based algorithm for discovering clusters in large spatial databases with

noise.,” in Kdd, pp. 226–231.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996) “From data mining to knowledge discovery in

databases,” AI magazine, 17(3), p. 37.

Folino, G., Pizzuti, C. and Spezzano, G. (2005) “GP ensemble for distributed intrusion detection

systems,” in International Conference on Pattern Recognition and Image Analysis, pp. 54–62.

Google Brain Team (2015) TensorFlow.org. Available at: https://www.tensorflow.org/ (Accessed:

September 15, 2019).

Han, J., Kamber, M. and Pei, J. (2011) Data mining: concepts and techniques. Elsevier Ltd.

Hasan, M. A. M. et al. (2016) “Performance evaluation of different kernels for support vector machine

used in intrusion detection system,” International Journal of Computer Networks and Communications,

8(6), pp. 39–54.

Ingre, B., Yadav, A. and Soni, A. K. (2017) “Decision tree based intrusion detection system for NSL-

KDD dataset,” in International Conference on Information and Communication Technology for

Intelligent Systems, pp. 207–218.

Ippoliti, D. (2011) Ph. D. Thesis Proposal Automated Network Anomaly Detection with Learning and

QoS Mitigation.

Ippoliti, D. (2013) “Automated network anomaly detection with learning, control and mitigation,” p. 196.

Available at: http://gradworks.umi.com/36/07/3607573.html.

Csaba Brunner – Intrusion Detection by Machine Learning

126

Javaid, A. et al. (2016) “A deep learning approach for network intrusion detection system,” in

Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications

Technologies (formerly BIONETICS), pp. 21–26.

Kevric, J., Jukic, S. and Subasi, A. (2017) “An effective combining classifier approach using tree

algorithms for network intrusion detection,” Neural Computing and Applications. Springer, 28(1), pp.

1051–1058. doi: 10.1007/s00521-016-2418-1.

Kim, G., Lee, S. and Kim, S. (2014) “A novel hybrid intrusion detection method integrating anomaly

detection with misuse detection,” Expert Systems with Applications. Elsevier, 41(4), pp. 1690–1700.

Kingma, D. P. and Ba, J. (2014) “Adam: A Method for Stochastic Optimization,” arXiv preprint

arXiv:1412.6980. Available at: http://arxiv.org/abs/1412.6980.

Kingma, D. P. and Welling, M. (2013) “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114.

Kovács, T. and Kő, A. (2018) “Termelési hálózatok gyárainak összesített teljesítménymérése

többváltozós döntési modellek alkalmazásával,” Vezetéstudomány / Budapest Management Review, 49(4),

pp. 32–43. doi: 10.14267/VEZTUD.2018.04.04.

Latah, M. and Toker, L. (2018) “Towards an efficient anomaly-based intrusion detection for software-

defined networks,” IET networks. IET, 7(6), pp. 453–459.

Lau, F. et al. (2000) “Distributed denial of service attacks,” in 2000 IEEE international conference on

systems, man and cybernetics., pp. 2275–2280.

Lind, E. and Pantigoso Velasquez, Ä. (2019) “A performance comparison between CPU and GPU in

TensorFlow.” Stockholm.

Lopez-Martin, M., Carro, B. and Sanchez-Esguevillas, A. (2019) “Variational data generative model for

intrusion detection,” Knowledge and Information Systems. Springer, 60(1), pp. 569–590.

Lutins, E. (2017) DBSCAN: What is it? When to Use it? How to use it. Available at:

https://medium.com/@elutins/dbscan-what-is-it-when-to-use-it-how-to-use-it-8bd506293818 (Accessed:

August 10, 2019).

Mahfouz, A. M., Venugopal, D. and Shiva, S. G. (2020) “Comparative Analysis of ML Classifiers for

Network Intrusion Detection,” in Fourth International Congress on Information and Communication

Technology, pp. 193–207.

McCulloch, W. S. and Pitts, W. (1943) “A logical calculus of the ideas immanent in nervous activity,”

The bulletin of mathematical biophysics. Springer, 5(4), pp. 115–133.

McHugh, J. (2000) “Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA

intrusion detection system evaluations as performed by Lincoln Laboratory,” ACM Transactions on

Information and System Security, 3(4), pp. 262–294. doi: 10.1145/382912.382923.

Molina-Coronado, B. et al. (2020) “Survey of Network Intrusion Detection Methods from the Perspective

of the Knowledge Discovery in Databases Process,” arXiv preprint arXiv:2001.09697.

Moustafa, N. and Slay, J. (2015) “UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set),” in 2015 Military Communications and Information

Systems Conference (MilCIS), pp. 1–6.

Mukkamala, S., Sung, A. H. and Abraham, A. (2005) “Intrusion detection using an ensemble of

intelligent paradigms,” Journal of Network and Computer Applications. Elsevier, 28(2), pp. 167–182. doi:

10.1016/j.jnca.2004.01.003.

Navlani, A. (2018) KNN Classification using Scikit-learn. Available at:

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn (Accessed:

August 8, 2019).

Nemati, H. R. and Barko, C. D. (2001) “Issues in organizational data mining: A survey of current

practices,” Journal of data warehousing. THE DATA WAREHOUSE INSTITUTE, 6(1), pp. 25–36.

Csaba Brunner – Intrusion Detection by Machine Learning

127

Ng, A. and others (2011) “Sparse autoencoder,” CS294A Lecture notes, 72(2011), pp. 1–19.

Nguyen, H. M., Cooper, E. W. and Kamei, K. (2009) “Borderline over-sampling for imbalanced data

classification,” in Proceedings: Fifth International Workshop on Computational Intelligence &

Applications, pp. 24–29.

Parampottupadam, S. and Moldovann, A.-N. (2018) “Cloud-based Real-time Network Intrusion Detection

Using Deep Learning,” in 2018 International Conference on Cyber Security and Protection of Digital

Services (Cyber Security), pp. 1–8.

Parsaei, M. R., Rostami, S. M. and Javidan, R. (2016) “A hybrid data mining approach for intrusion

detection on imbalanced NSL-KDD dataset,” International Journal of Advanced Computer Science and

Applications, 7(6), pp. 20–25.

Pedregosa, F. et al. (2011) “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning

Research, 12, pp. 2825–2830.

Petersen, R. (2015) Data Mining for Network Intrusion Detection - A comparison of data mining

algorithms and an analysis of relevant features for detecting cyber-attacks. Mittuniversitetet - Mid

Sweden University.

Piech, C. (2012) K Means. Available at: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html

(Accessed: August 10, 2019).

Protić, D. D. (2018) “Review of KDD Cup’99, NSL-KDD and Kyoto 2006+ datasets,” Vojnotehnički

glasnik, 66(3), pp. 580–596.

Quinlan, J. R. (1986) “Induction of decision trees,” Machine learning. Springer, 1(1), pp. 81–106.

Rumelhart, D. E. et al. (1988) “Learning representations by back-propagating errors,” Cognitive

modeling, 5(3), p. 1.

Russel, S. J. and Norwig, P. (2010) Artificial Intelligence A modern approach. 3rd ed. Prentice Hall.

Sakr, M. M., Tawfeeq, M. A. and El-Sisi, A. B. (2019) “Network Intrusion Detection System based PSO-

SVM for Cloud Computing,” International Journal of Computer Network and Information Security.

Modern Education and Computer Science Press, 11(3), p. 22.

Samuel, A. L. (1959) “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of

Research and Development, 3(3), pp. 210–229.

Saporito, G. (2019) A Deeper Dive into the NSL-KDD Data Set. Available at:

https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-15c753364657.

Sapre, S., Ahmadi, P. and Islam, K. (2019) “A Robust Comparison of the KDDCup99 and NSL-KDD IoT

Network Intrusion Detection Datasets Through Various Machine Learning Algorithms,” arXiv preprint

arXiv:1912.13204.

Scarfone, K. and Mell, P. (2007) “Guide to Intrusion Detection and Prevention Systems (IDPS)

Recommendations of the National Institute of Standards and Technology,” Nist Special Publication, 800–

94, p. 127. doi: 10.6028/NIST.SP.800-94.

Schölkopf, B. et al. (2000) “Support vector method for novelty detection,” in Advances in neural

information processing systems, pp. 582–588.

scikit-learn developers (2018) “scikit-learn user guide,” p. 2377. Available at: https://scikit-

learn.org/stable/index.html.

Sharafaldin, I., Lashkari, A. H. and Ghorbani, A. A. (2018) “Toward generating a new intrusion detection

dataset and intrusion traffic characterization.,” in ICISSP, pp. 108–116.

Sharda, R., Delen, D. and Turban, E. (2018) Business Intelligence, Analytics, and Data Science: A

managerial perspective. 4th ed. Pearson.

Smith, S. (2014) 5 Famous Botnets that held the internet hostage. Available at:

https://tqaweekly.com/episodes/season5/tqa-se5ep11.php (Accessed: June 7, 2020).

Csaba Brunner – Intrusion Detection by Machine Learning

128

Smolyakov, V. (2017) Ensemble Learning to Improve Machine Learning Results. Aug. Available at:

https://blog.statsbot.co/ensemble-learning-d1dcd548e936 (Accessed: March 20, 2019).

Snoek, J., Larochelle, H. and Adams, R. P. (2012) “Practical bayesian optimization of machine learning

algorithms,” in Advances in neural information processing systems, pp. 2951–2959.

So-In, C. et al. (2014) “An evaluation of data mining classification models for network intrusion

detection,” 2014 Fourth International Conference on Digital Information and Communication

Technology and its Applications (DICTAP), pp. 90–94. doi: 10.1109/DICTAP.2014.6821663.

Sohn, K., Lee, H. and Yan, X. (2015) “Learning structured output representation using deep conditional

generative models,” in Advances in neural information processing systems, pp. 3483–3491.

Song, J. et al. (2011) “Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS

evaluation,” in Proceedings of the first workshop on building analysis datasets and gathering experience

returns for security, pp. 29–36.

Srivastava, N. et al. (2014) “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,”

Journal of Machine Learning Research, 15(56), pp. 1929–1958. Available at:

http://jmlr.org/papers/v15/srivastava14a.html.

Statt, N. (2019) Thieves are now using AI deepfakes to trick companies into sending them money, The

Verge. Available at: https://www.theverge.com/2019/9/5/20851248/deepfakes-ai-fake-audio-phone-calls-

thieves-trick-companies-stealing-money (Accessed: June 7, 2020).

Stolfo, S. J. et al. (2000) “Cost-based Modeling for Fraud and Intrusion Detection: Results from the JAM

Project,” in Proceedings DARPA Information Survivability Conference and Exposition. DISCEX’00.

IEEE, pp. 130–144.

Tavallaee, M. et al. (2009) “A Detailed Analysis of the KDD CUP 99 Data Set,” in IEEE Symposium on

Computational Intelligence for Security and Defense Applications - CISDA. IEEE, pp. 1–6.

Tian, D., Liu, Y. and Xiang, Y. (2009) “Large-scale network intrusion detection based on distributed

learning algorithm,” International Journal of Information Security. Springer, 8(1), pp. 25–35.

Tomek, I. (1976) “Two modifications of CNN.,” IEEE transactions on Systems, Man, and Cybernetics,

6(11), pp. 769–772.

Tsai, C. F. et al. (2009) “Intrusion detection by machine learning: A review,” Expert Systems with

Applications. Elsevier Ltd, 36(10), pp. 11994–12000. doi: 10.1016/j.eswa.2009.05.029.

Wieringa, R. J. (2014) Design science methodology for information systems and software engineering.

Springer.

Wilson, D. L. (1972) “Asymptotic properties of nearest neighbor rules using edited data,” IEEE

Transactions on Systems, Man, and Cybernetics. IEEE, (3), pp. 408–421.

Yang, Yanqing et al. (2019) “Improving the classification effectiveness of intrusion detection by using

improved conditional variational autoencoder and deep neural network,” Sensors. Multidisciplinary

Digital Publishing Institute, 19(11), p. 2528.

Yao, H. et al. (2017) “An Intrusion Detection Framework Based on Hybrid Multi-Level Data Mining,”

International Journal of Parallel Programming. Springer US, pp. 1–19. doi: 10.1007/s10766-017-0537-7.

Yao, Y. Y., Zhao, Y. and Maguire, R. B. (2003) “Explanation-oriented association mining using a

combination of unsupervised and supervised learning algorithms,” in Conference of the Canadian Society

for Computational Studies of Intelligence, pp. 527–532.

Yin, C. et al. (2017) “A deep learning approach for intrusion detection using recurrent neural networks,”

Ieee Access. IEEE, 5, pp. 21954–21961.

Zhang, J. and Zulkernine, M. (2006) “A hybrid network intrusion detection technique using random

forests,” in The First International Conference on Availability, Reliability and Security. Vienna: IEEE,

pp. 1–8. doi: 10.1109/ARES.2006.7.

Zhang, J., Zulkernine, M. and Haque, A. (2008) “Random-Forests-Based Network Intrusion Detection

Csaba Brunner – Intrusion Detection by Machine Learning

129

Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,

38(5), pp. 649–659. doi: 10.1109/TSMCC.2008.923876.

Csaba Brunner – Intrusion Detection by Machine Learning

130

8. PUBLICATIONS

Journal articles

Brunner, C. (2019): A comparative study of Antminer+ and Decision Tree classification performances.

SEFBIS, issue 13, pp. 15-23.

Brunner, C. (2017): Processing Intrusion Data with Machine Learning and MapReduce. ACADEMIC AND

APPLIED RESEARCH IN MILITARY AND PUBLIC MANAGEMENT SCIENCE, issue 16, pp. 37-

52.

Abstracts in conference proceedings

Brunner, C. (2019): Behatolás-detektálás Tensorflow Platformon. 16. Országos Gazdaságinformatikai

Konferencia (p. 32). Budapest: NJSZT Neumann János Számítógép-tudományi Társaság GIKOF

Gazdaságinformatikai Kutatási és Oktatási Fórum.

Brunner, C. (2018): Hálózati behatolás detektálás Neurális hálózatok összevonásával. OGIK’2018

Országos Gazdaságinformatikai Konferencia – Az előadások összefoglalói (p. 75). Sopron,

Alexander Alapítvány a Jövő Értelmiségéért.

Brunner, C. (2017): Ant Colony Algorithm in Data Mining. XIV. Országos GazdaságInformatikai

Konferencia (p. 31). Győr: Alexander Alapítvány a Jövő Értelmiségéért.

Brunner, C. (2016): Behatolási adatok feldolgozása gépi tanulás és MapReduce segítségével. XIII.

Országos Gazdaságinformatikai Konferencia (pp. 25-26). Dunaújváros: DUE Press.

Conference presentations

Brunner C. (2019): Behatolás-detektálás Tensorflow Platformon- Presented at: 16. Országos

Gazdaságinformatikai Konferencia; Nov 8-9; Budapest, Hungary

Brunner, C. (2018): Hálózati behatolás detektálás Neurális hálózatok összevonásával. Presented at:

OGIK’2018 Országos Gazdaságinformatikai Konferencia; Nov 9-10; Sopron, Hungary

Brunner, C. (2017): Ant Colony Algorithm in Data Mining. Poster presented at: XIV. Országos

GazdaságInformatikai Konferencia; Nov 10-11; Sopron, Hungary.

Brunner, C. (2016): Behatolási adatok feldolgozása gépi tanulás és MapReduce segítségével. Presented at:

XIII. Országos GazdaságInformatikai Konferncia; Nov 11-12; Dunaújváros, Hungary.

Other works

Brunner, C. (2019): Hálózati behatolás detektálás Neurális hálózatok összevonásával. In L. Bacsárdi, G.

Bencsik, & Z. Pödör, OGIK'2018 Országos Gazdaságinformatikai Konferencia - Válogatott

közlemények. Sopron, Hungary: Alexander Alapítvány a Jövő Értelmiségéért.

In preparation

Brunner, C., Kő, A., & Fodor, S. (2020): A novel ensemble method based on Neural Networks with

hyperparameter optimization for Intrusion Detection. Manuscript

Csaba Brunner – Intrusion Detection by Machine Learning

131

9. APPENDIX

Appendix A: As part of this dissertation, 10 independent articles were collected to verify

which detailed class belongs to which attack category. The exact articles and the

evaluation are visible here. After data collection, the relative frequencies of each attack

category have been calculated. The attack category with the most “votes” became the

final category for a given detailed attack class used later as a data preparation step prior

to model training.

Appendix B: Detailed performance measurements for the decision tree bagging classifier

(V0 experiment). This intrusion detector was implemented using the map-reduce

programming paradigm coded using the implementation of the Message Passing Interface

in Java. Runtime considerations of this parallelization approach, however, do not affect

classification performance, therefore measurements between parallel setups and sample

sizes have been aggregated.

Appendix C & Appendix D: Detailed performance measurements for intrinsic, time-

traffic, host-traffic, content and aggregator models of the V1 models measured with KDD

Cup 1999 and NSL-KDD test datasets. Each of the base models performed poorly on

different classes of the test set. Results were improved by the final or aggregator model.

Appendix E, Appendix F & Appendix G: The V2 models were repeated with three

distinct synthetic sampling processes as variants, the base and aggregator model

confusion matrices have been provided with the intention to be used for calculating

further performance metrics when considered necessary.

Appendix H: confusion matrices for the V3 model. A key element of this was the

application of autoencoder networks, a kind of neural network designed to learn an

internal representation of the input space. Therefore, the inputs to the stacking neural

network were comprised of the per-feature difference between the original feature values

and those predicted by autoencoders trained on normal traffic only.

Csaba Brunner – Intrusion Detection by Machine Learning

132

Detailed Class Train/

Test

(Ingre,
Yadav

and

Soni,
2017)

(Sakr,
Tawfeeq

and El-

Sisi,
2019)

(Mahfouz,
Venugopal

and Shiva,

2020)

(Yang
et al.,

2019)

(Latah
and

Toker,

2018)

(Aghdam
and

Kabiri,

2016)

(Saporito,
2019)

(Hasan
et al.,

2016)

(Parampottupadam
and Moldovann,

2018)

(Protić,
2018)

dos probe r2l u2r N/A Result

apache2 Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

back Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

buffer_overflow Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

ftp_write Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

guess_passwd Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

httptunnel Test r2l r2l r2l u2r u2r u2r r2l r2l r2l r2l 0% 0% 70% 30% 0% r2l

imap Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

ipsweep Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

land Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

loadmodule Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

mailbomb Test dos N/A N/A dos dos dos dos dos dos dos 80% 0% 0% 0% 20% dos

mscan Test probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

multihop Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

named Test r2l r2l N/A r2l r2l r2l r2l r2l r2l r2l 0% 0% 90% 0% 10% r2l

neptune Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

nmap Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

perl Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

phf Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

pod Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

portsweep Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

processtable Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

ps Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

rootkit Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

Csaba Brunner – Intrusion Detection by Machine Learning

133

Detailed Class Train/

Test

(Ingre,
Yadav

and

Soni,
2017)

(Sakr,
Tawfeeq

and El-

Sisi,
2019)

(Mahfouz,
Venugopal

and Shiva,

2020)

(Yang
et al.,

2019)

(Latah
and

Toker,

2018)

(Aghdam
and

Kabiri,

2016)

(Saporito,
2019)

(Hasan
et al.,

2016)

(Parampottupadam
and Moldovann,

2018)

(Protić,
2018)

dos probe r2l u2r N/A Result

saint Test probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

satan Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe

sendmail Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

smurf Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

snmpgetattack Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

snmpguess Test u2r r2l r2l r2l r2l u2r r2l r2l r2l r2l 0% 0% 80% 20% 0% r2l

spy Train r2l r2l r2l r2l r2l u2r r2l r2l r2l r2l 0% 0% 90% 10% 0% r2l

sqlattack Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

teardrop Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

udpstorm Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos

warezclient Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

warezmaster Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

worm Test u2r dos dos r2l r2l u2r dos r2l dos dos 50% 0% 30% 20% 0% dos

xlock Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

xsnoop Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l

xterm Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r

Appendix A: The data used to create a conceptual hierarchy, which in turn is used later to recategorize attacks in the KDD Cup 1999 and NSL-KDD datasets

Csaba Brunner – Intrusion Detection by Machine Learning

134

4 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.)

 1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.785 0.791 0.772 0.796 0.795 0.792 0.809 0.799

Precision 0.959 0.975 0.866 0.967 0.965 0.902 0.903 0.969

Recall 0.483 0.490 0.508 0.506 0.507 0.539 0.585 0.513

F-score 0.642 0.652 0.641 0.664 0.664 0.675 0.710 0.671

AUC 0.735 0.766 0.783 0.793 0.811 0.789 0.776 0.777

8 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.)

 1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.793 0.782 0.788 0.796 0.797 0.756 0.777 0.799

Precision 0.893 0.931 0.903 0.967 0.936 0.895 0.881 0.969

Recall 0.546 0.493 0.525 0.506 0.529 0.442 0.512 0.513

F-score 0.678 0.644 0.664 0.664 0.676 0.592 0.648 0.671

AUC 0.789 0.719 0.784 0.793 0.772 0.771 0.757 0.777

4 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.)

 1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.978 0.964 0.981 0.984 0.985 0.985 0.980 0.987

Precision 0.477 0.449 0.513 0.511 0.532 0.558 0.489 0.576

Recall 0.438 0.438 0.466 0.525 0.469 0.469 0.452 0.507

F-score 0.456 0.444 0.489 0.518 0.498 0.510 0.470 0.539

8 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.)

 1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c

Accuracy 0.970 0.977 0.976 0.984 0.981 0.981 0.980 0.987

Precision 0.397 0.467 0.476 0.511 0.513 0.445 0.470 0.576

Recall 0.421 0.437 0.441 0.525 0.470 0.439 0.438 0.507

F-score 0.408 0.452 0.458 0.518 0.490 0.442 0.453 0.539

Appendix B: Detailed performance measurements for the decision tree bagging classifier

Csaba Brunner – Intrusion Detection by Machine Learning

135

Intrinsic Time-traffic Host-traffic Content Aggregator

Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score

Normal 0.971 0.744 0.842 0.664 0.504 0.573 0.956 0.728 0.827 0.700 0.817 0.754 0.978 0.720 0.830

DoS 0.791 0.998 0.883 0.826 0.997 0.903 0.964 0.994 0.979 0.000 0.000 0.000 0.961 0.997 0.979

Probe 0.702 0.067 0.122 0.730 0.733 0.731 0.669 0.733 0.699 0.966 0.016 0.031 0.727 0.664 0.694

R2L 0.074 0.555 0.131 0.000 0.000 0.000 0.058 0.308 0.098 0.071 0.493 0.123 0.088 0.585 0.152

U2R 0.800 0.016 0.032 0.957 0.002 0.004 0.329 0.012 0.023 0.614 0.339 0.437 0.571 0.165 0.256

Appendix C: Detailed performance measurements for intrinsic, time-traffic, host-traffic, content and aggregator models of the V1 detector on KDD Cup 1999

Intrinsic Time-traffic Host-traffic Content Aggregator

Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score

Normal 0.857 0.801 0.828 0.736 0.792 0.763 0.928 0.696 0.795 0.750 0.809 0.778 0.945 0.726 0.821

DoS 0.547 0.847 0.665 0.723 0.899 0.801 0.728 0.856 0.787 0.889 0.530 0.664 0.813 0.906 0.857

Probe 0.547 0.276 0.367 0.770 0.728 0.748 0.549 0.651 0.596 0.000 0.000 0.000 0.690 0.710 0.700

R2L 0.374 0.583 0.456 0.815 0.483 0.607 0.204 0.807 0.325 0.181 0.846 0.298 0.240 0.947 0.383

U2R 0.552 0.054 0.098 0.000 0.000 0.000 0.164 0.023 0.040 0.448 0.070 0.121 0.104 0.053 0.071

Appendix D: Detailed performance measurements for intrinsic, time-traffic, host-traffic, content and aggregator models of the V1 detector on NSL-KDD

Csaba Brunner – Intrusion Detection by Machine Learning

136

Intrinsic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n

DoS 4086 86 654 5 0

Normal 1110 8319 30 808 0

Probe 1973 879 1407 611 0

R2L 289 368 119 1081 28

U2R 2 59 211 380 39

Content
Ground Truth

DoS Normal Probe R2L U2R
P

re
d

ic
ti

o
n

DoS 6315 2358 2286 1128 15

Normal 792 7274 135 776 10

Probe 0 0 0 0 0

R2L 353 59 0 976 11

U2R 0 20 0 5 31

Time-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n

DoS 5316 368 15 0 0

Normal 921 6902 308 316 1

Probe 566 675 1922 195 1

R2L 615 1750 175 2358 65

U2R 42 16 1 16 0

Host-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n

DoS 5344 515 598 31 7

Normal 1751 8650 578 1718 26

Probe 112 166 1206 175 3

R2L 226 206 14 724 13

U2R 27 174 25 237 18

Aggregator
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n

DoS 6161 466 453 1 0

Normal 1130 8988 702 1779 23

Probe 78 192 1265 148 2

R2L 89 50 1 940 17

U2R 2 15 0 17 25

Appendix E: V2 with SMOTE ENN sampling confusion matrices

Csaba Brunner – Intrusion Detection by Machine Learning

137

Intrinsic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 4079 86 738 5 0

Normal 671 8312 31 807 0

Probe 1980 884 1322 611 0

R2L 285 370 119 1082 28

U2R 445 59 211 380 39

 Content
Ground Truth

DoS Normal Probe R2L U2R
P

re
d

ic
ti

o
n

 DoS 0 1 0 31 0

Normal 792 7275 135 777 11

Probe 6315 2357 2286 1097 15

R2L 353 57 0 976 10

U2R 0 21 0 4 31

Time-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5056 390 80 1 0

Normal 1216 6861 340 330 1

Probe 557 691 1877 175 1

R2L 137 523 12 393 1

U2R 494 1246 112 1986 64

Host-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5521 516 766 28 5

Normal 1611 8595 342 1654 20

Probe 149 200 1273 229 5

R2L 159 225 23 760 17

U2R 20 175 17 214 20

 Aggregator
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 6410 473 610 4 1

Normal 949 8932 460 1757 28

Probe 82 244 1351 149 1

R2L 19 53 0 949 17

U2R 0 9 0 26 20

Appendix F: V2 with SMOTE Tomek sampling confusion matrices

Csaba Brunner – Intrusion Detection by Machine Learning

138

 Intrinsic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 4049 87 566 3 0

Normal 796 8256 27 798 0

Probe 2015 940 1500 622 0

R2L 285 369 117 1081 28

U2R 315 59 211 381 39

Content
Ground Truth

DoS Normal Probe R2L U2R
P

re
d

ic
ti

o
n

 DoS 6315 2357 2286 1111 15

Normal 792 7224 135 765 3

Probe 0 1 0 17 0

R2L 353 112 0 984 31

U2R 0 17 0 8 18

 Time-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5378 402 111 1 0

Normal 969 7307 268 346 2

Probe 491 217 1916 158 0

R2L 612 1768 124 2354 65

U2R 10 17 2 26 0

Host-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5851 541 624 56 8

Normal 1376 8422 512 1540 18

Probe 96 252 1218 258 6

R2L 117 315 25 820 17

U2R 20 181 42 211 18

Aggregator
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 6295 470 450 2 0

Normal 1108 8876 532 1834 25

Probe 36 295 1439 136 1

R2L 21 60 0 897 21

U2R 0 10 0 16 20

Appendix G: V2 with SVM SMOTE sampling confusion matrices

Csaba Brunner – Intrusion Detection by Machine Learning

139

 Intrinsic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 3181 111 443 4 0

Normal 700 9379 392 1732 15

Probe 2894 124 1263 153 0

R2L 240 57 148 626 13

U2R 445 40 175 370 39

 Content
Ground Truth

DoS Normal Probe R2L U2R
P

re
d

ic
ti

o
n

 DoS 0 0 0 0 0

Normal 1 2 0 1 2

Probe 7459 9643 2421 1905 28

R2L 0 50 0 972 9

U2R 0 16 0 7 28

Time-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5171 385 298 7 0

Normal 183 147 19 3 0

Probe 446 498 1493 107 0

R2L 1649 8664 454 2768 67

U2R 11 17 157 0 0

 Host-traffic
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 1477 13 230 4 2

Normal 736 5327 107 1595 16

Probe 3381 274 1458 308 13

R2L 741 73 58 40 6

U2R 1125 4024 568 938 30

Aggregator
Ground Truth

DoS Normal Probe R2L U2R

P
re

d
ic

ti
o

n
 DoS 5765 72 293 10 0

Normal 241 8125 127 914 18

Probe 1065 1114 1872 663 2

R2L 126 373 65 941 8

U2R 263 27 64 357 39

Appendix H: V3 detector confusion matrices

