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Abstract 

Since the early days of information technology, there have been many stakeholders who 

used the technological capabilities for their own benefit, be it legal operations, or illegal 

access to computational assets and sensitive information. Every year, businesses invest 

large amounts of effort into upgrading their IT infrastructure, yet, even today, they are 

unprepared to protect their most valuable assets: data and knowledge. This lack of 

protection was the main reason for the creation of this dissertation. During this study, 

intrusion detection, a field of information security, is evaluated through the use of several 

machine learning models performing signature and hybrid detection. This is a challenging 

field, mainly due to the high velocity and imbalanced nature of network traffic. To 

construct machine learning models capable of intrusion detection, the applied  

methodologies were the CRISP-DM process model designed to help data scientists with 

the planning, creation and integration of machine learning models into a business 

information infrastructure, and design science research interested in answering research 

questions with information technology artefacts. The two methodologies have a lot in 

common, which is further elaborated in the study. The goals of this dissertation were two-

fold: first, to create an intrusion detector that could provide a high level of intrusion 

detection performance measured using accuracy and recall and second, to identify 

potential techniques that can increase intrusion detection performance. Out of the 

designed models, a hybrid autoencoder and stacking neural network model managed to 

achieve detection performance comparable to the best models that appeared in the related 

literature, with good detections on minority classes. To achieve this result, the techniques 

identified were synthetic sampling, advanced hyperparameter optimization, model 

ensembles and autoencoder networks. In addition, the dissertation set up a soft hierarchy 

among the different detection techniques in terms of performance and provides a brief 

outlook on potential future practical applications of network intrusion detection models 

as well. 
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1. INTRODUCTION 

The need to protect information systems and resources from misuse had arisen as early 

as 1972 and 1980, when James P. Anderson outlined that the USAF had become 

increasingly aware of information security related issues (Anderson (1972) and (1980)). 

Since then, the reported number of system intrusions grew at an alarming rate, especially 

from the early 2000s, which, according to reports like Beek et al. (2019) only increased 

in severity. The most common cyber attacks were the following: 

• DDoS in the early 2000s (Lau et al. (2000), Smith (2014)), causing significant 

revenue loss by shutting down services, 

• Botnet infections in relation to DDoS (Smith (2014)), taking computational 

resources from legitimate clients and using those resources for illegal conduct, 

• ransomwares, specialized malwares (Beek et al. (2019)), encrypting information 

and demanding ransom for decryption, 

• and more recently, deepfake attacks (Damiani (2019), Statt (2019)), where deep 

learning models are used to impersonate stakeholders in key positions to gain 

access to sensitive information or to conduct fraud. 

The presence of these attacks changes among economic sectors, the most targeted being 

financial services, healthcare and education. Several methods exist for countering these 

malicious activities at different layers of an information system, a concept often referred 

to as defense in depth. One example is machine learning. Intrusive activities have well-

defined patterns, detecting them is simple enough for a specialized system supported by 

the same machine learning algorithms. Furthermore, in some cases, like deepfake attacks, 

machine learning might be the only effective method of detection. 

Despite cybercrime becoming more and more common, machine learning techniques are 

still not widespread and utilized enough in IT security. This is my motivation for studying 

network intrusion detection systems (NIDS) from a data mining perspective. My main 

goal was to provide a novel intrusion detection solution applying machine learning 

methods. To fulfill this goal, I set up, parameterized, trained and tested several intrusion 

detection models, implementing artificial neural network architectures. I combined two 
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approaches in my research: the design science research methodology and the CRISP-DM 

process model. 

Throughout the dissertation I created four models in total for intrusion detection, going 

from simple classification ensembles to more complex neural network stacking models 

and hybrid anomaly-signature detection solutions implemented with the help of 

autoencoder networks. To evaluate how well each can detect intrusive behavior, I used 

the KDD Cup 1999 and NSL-KDD benchmark datasets for modeling, and the accuracy 

and recall metrics for model evaluation. I proved that machine learning is a suitable 

approach for detecting intrusions. Based on certain per-class and aggregate measures, at 

least one of the proposed models (V3) can compete and outperform works in the related 

literature. More details on the proposed models are available in chapter 4.2, and the 

comparison with the related literature in chapter 5.6. 

In the following chapters of my dissertation I will introduce the concept of intrusions, 

intrusion detection and intrusion detection systems (IDS), the machine learning models 

and techniques that I used, or could have used for intrusion detection and the wider 

research conducted in the field in chapter 2. In chapter 3, I detail my choice of 

methodology based on the design science research methodology and CRISP-DM process 

model, followed by the design, implementation and evaluation of the machine learning 

model-based detectors I created in chapters 4 and 5. Chapter 6 contains the conclusions I 

collected with a brief outlook on practical application and further research possibilities. 
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2. BACKGROUND 

In this chapter, I introduce the core concepts of my dissertation: intrusions, and intrusion 

detection systems. I follow this up describing data mining, its key characteristics and the 

different machine learning algorithms it uses, both supervised and unsupervised. I found 

this introduction important, as machine learning has gained recognition in the last decades 

in detecting intrusion attempts. Moreover, I discuss artificial neural networks and 

autoencoder networks in a separate chapter to detail how important they were to the 

detectors I implemented. Further chapters provide an introduction to the overall intrusion 

detection research, identifying the key literature within the field like McHugh (2000), 

Stolfo et al. (2000); Tavallaee et al. (2009), Tsai et al. (2009), Ippoliti (2011), Buczak 

and Guven (2015), Dua and Du (2016) and Molina-Coronado et al. (2020). 

2.1.  WHAT IS INTRUSION DETECTION? 

According to Bhuyan, Bhattacharyya and Kalita (2014, pp. 303, 305) “Intrusion is a 

deliberate and unauthorized attempt to access information, manipulate information and 

render a system unreliable or unusable. Intrusion itself is a set of actions aimed to 

compromise the security of computer and network components in terms of confidentiality, 

integrity and availability”. Intrusion detection is a set of actions to detect such events, to 

raise alerts, and to provide information to prevent them. Bruneau (2001, p. 2) described 

it as a collection of “unrelenting active attempts in discovering or detecting the presence 

of intrusive activities.” These attempts refer to all processes aimed at discovering 

unauthorized use of network or computer resources. Dua and Du (2016, p. 10) defined 

intrusions and intrusion detection as “any unauthorized attempt to access, manipulate, 

modify, or destroy information or to use a computer system remotely to spam, hack, or 

modify other computers. An IDS intelligently monitors activities that occur in a 

computing resource, e.g., network traffic and computer usage, to analyze the events and 

generate reactions”. This is a more up to date description that accounts for botnet 

activities and includes both network and host intrusion detection. Molina-Coronado et al. 

(2020, p. 2) defined intrusion detection systems the following way “Intrusion Detection 

Systems are deployed to uncover cyberattacks that may harm information systems.” In 

further chapters of this dissertation, when I talk about intrusion detection systems, I will 

mean a system designed to detect attempts at unauthorized access to an information 
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system coming from a wider external network. The key assumption for such a system to 

function is that intrusive behavior is discernable from normal activity. 

According to Scarfone and Mell, (2007), Dua and Du, (2016) and Molina-Coronado et 

al. (2020), the following types of IDS exist: 

• Network based (NIDS): monitoring traffic on network devices or segments with 

the aim of detecting malicious traffic aimed at devices within the protected 

network boundaries. Network intrusion detectors are usually deployed in DMZs, 

as part of an intelligent firewall, VPN servers, remote access servers and wireless 

network access points. 

• Host based (HIDS): monitoring the resource consumption on a single system for 

suspicious activity. This host can be a critical IT infrastructure element, typically 

an application or database server. Together with NIDS, these are the most 

researched and mature fields. 

• Wireless: monitoring wireless network traffic for possible intrusions. The 

characteristics of wireless communication makes it a special category of network 

intrusion detection. 

• Network behavior analysis: monitoring network traffic to identify unusual flows 

(which could be a result of a DDoS attack). 

Many techniques have been developed to create intrusion detection systems, from manual 

oversight in the early days, though expert and rule-based solutions to data science and 

machine learning. Data science plays a key role in modern intrusion detection, as it is the 

only technique that can handle the sheer volume of network traffic effectively. From a 

data scientific point of view, Scarfone and Mell (2007), Dua and Du (2016) and Molina-

Coronado et al. (2020) distinguished the most common classes of intrusion detection: 

• Misuse / signature detection: IDS that generates alarms when a known intrusion 

occurs. Known attacks can be detected reliably with low false positive rates, 

however new attacks cannot be detected. Misuse detectors describe known attacks 

as malicious patterns; therefore, they require data on the attacks first to be able to 

detect them. 
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• Anomaly-based detection: alarms are triggered when a traffic flow behaves in a 

significantly different way compared to normal traffic patterns. Subsequently, 

they can detect previously unknown attacks at the cost of a higher false positive 

rate. Ippoliti (2011) noted the key difference between anomaly and signature-

based methods: anomaly detectors detect what their name suggests: anomalies in 

traffic and not intrusions: legitimate albeit unusual usage might raise alerts in an 

anomaly detection model, while a carefully constructed attack could remain 

undetected if it behaves like normal activity. 

• Hybrid detection: to improve the detection performance of IDSs, some 

researchers proposed to combine anomaly and misuse detection into hybrid 

detectors. The underlying idea is to combine the benefits of the two, like the ability 

to detect known attacks with low false positive rates, while maintaining some 

ability of detecting new attacks when needed. Zhang and Zulkernine (2006), 

Zhang, Zulkernine and Haque (2008), Dua and Du (2016) and Molina-Coronado 

et al. (2020) identified four possible configuration for hybrid intrusion detection, 

also visible in Figure 1: 

o Parallel detection: used to correlate signature and anomaly detection 

results to provide a stronger detection (Figure 1.a). Network traffic is 

flagged as attack if either the anomaly or the signature detector identifies 

it as such. 

o Signature-Anomaly sequence detection: designed to improve detection 

ability on unknown attacks missed by the signature detector (Figure 1.b). 

o Anomaly-Signature sequence detection: designed to reduce false 

positive rates (Figure 1.c). The anomaly detector flags suspicious traffic, 

then the misuse detector confirms the flagged anomalies. 

o Complex mixture detection: any detection approach using anomaly and 

signature detectors simultaneously, that did not fit in the categories above. 

For example, the model demonstrated in Figure 1.d, where traffic is 

evaluated by an anomaly detector first. Normal traffic is further evaluated 

by a signature detector to identify attacks missed, while suspicious traffic 

is evaluated by a second anomaly detector to refine detections of the first 

model. 
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Figure 1: Types of hybrid intrusion detection. Source: Molina-Coronado et al., (2020) 

Even with data science and machine learning techniques, intrusion detection is a complex 

and challenging task for the reasons below: 

• The most important challenge from a data science point of view, is the imbalanced 

representation of normal and intrusive activity. Normally, the volume of normal 

traffic outweighs that of attacks. At the sime time stakeholders are more interested 

in precisely detecting attacks. This implies that a learning system not only needs 

to be able to address an imbalance between normal and attack behavior, but it also 

has to be more effective at detecting attacks, even if it means a higher number of 

legitimate behavior gets flagged. 

• A second challenge is the definition of performance. This could be the number of 

attacks detected, but could also mean the amount of time under which detection 

alerts are generated by the IDS. Both are correct depending on context. Metrics 

measuring detection peformance can do som from different perspectives, some 

less effective than others. Ultimately, the task determines the set of useful 

performance metrics, which is the accurate detection of attacks rather than normal 

traffic in case of intrusion detection. 

• The amount of data available for intrusion detection is high, both in characteristics 

and in traffic records. The former requires a conscious effort at choosing the 

characteristics that best describe all or given attack patterns either through 

selection or information compression. The number of traffic records poses a 
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challenge when machine learning models are trained, but this can be mitigated by 

sampling the traffic. A further complication comes with the interpretation if 

traffic. They could be treated as individual packets, or as a communication flow. 

This distinction is important, as different attacks are effective at different levels. 

After reviewing the approaches used for intrusion detection and the challenges it involves, 

I found network-based misuse / signature detection to be an interesting field to study, 

while also planning to include at least one hybrid intrusion detection. Therefore, three out 

of four of my proposed machine learning models performed signature detection only, with 

the fourth being a hybrid anomaly-signature detector. I used decision trees and artificial 

neural network (ANN) architectures set up in ensembles as machine learning models. 

Further algorithms, particularly used for sampling, were k-nearest neighbors (KNN) and 

support vector machines (SVM). I describe them in detail in the next chapter. 

2.2.  DATA MINING 

Data mining has several definitions, Fayyad, Piatetsky-Shapiro and Smyth (1996) defined 

it as a part of a wider process called knowledge discovery in databases (KDD). KDD is 

determined as “the overall process of discovering useful knowledge from data” (Fayyad, 

Piatetsky-Shapiro and Smyth (1996, p. 40)) and data mining as “a process using 

statistical, mathematical and artificial intelligence techniques to extract and identify 

useful information and subsequent knowledge from large sets of data”. From the 

perspective of an IDS, the hidden knowledge is the unknown intent behind the source of 

the network traffic and the data is the inbound network traffic. The goal is to set apart 

traffic sent with malicious intent from the legitimate. 

The terms data mining and machine learning, depending on interpretation, are often used 

as synonyms. In this dissertation I will use the following definition for machine learning: 

“it is a field of study that gives computers the ability to learn without being explicitly 

programmed to” (Samuel (1959), indirect quote). The definitions of KDD, data mining 

and machine learning make the relationship among them clearer (Figure 2). Data mining 

is an activity in the KDD process, producing patterns to discover interesting knowledge. 

Machine learning algorithms are frequently, though not exclusively, used in data mining 

to generate these patterns. 
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Figure 2: The relationships between KDD, data mining and machine learning. Based on Fayyad, 

Piatetsky-Shapiro and Smyth (1996) 

The most common tasks and algorithms of data mining were organized by Sharda, Delen 

and Turban (2018). They distinguished prediction, association and segmentation tasks. 

Prediction is referred to as the act of telling about the future. Prediction is further divided 

into classification and regression. Classification attempts to predict categorical, while 

regression attempts to predict numerical outcomes. This distinction is not as clear as it 

might sound at fist. Many algorithms, that were designed to perform one method, were 

extended to be applicable to the other as well. Typical example is the family of 

generalized regression models with linear and logistic regression performing regression 

and classification respectively. A counter example is the family of decision tree 

algorithms, initially created for classification, later extended to perform regression. 

Association discovers interesting relationships between entities in large databases. For 

example, two products that are frequently purchased together. Two methods used for 

relationship detection are link and sequence analysis. Link analysis does not take the order 

of precedence between entities into account, while sequence analysis does. 

In segmentation the goal is to split up and group structured data based on a similarity 

metric. Partitioning include clustering and outlier analysis techniques. The former creates 

homogenous groups where members in one group are more similar compared to members 

from other groups. Outlier analysis tries to find entities that are more dissimilar to others. 

By excluding these dissimilar entities, the effectiveness of following data mining 

algorithms can be improved. 

A different classification of machine learning algorithms can be based on the learning 

process they use, according to Russel and Norwig (2010): 

• Supervised learning the algorithm observes pairs of input-output observations 

and learns a function mapping from input to output. In supervised learning, input 

characteristics are called explanatory features and output is called target feature. 
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• Unsupervised learning, the algorithm learns patterns in the input, even though 

no expected output is supplied. These algorithms often perform self-organization 

as part of the learning process. 

• Semi-supervised learning, the algorithm receives only a few examples with valid 

output, and the model must make decisions with data missing those labels. 

Out of the data mining methods, classification, clustering and outlier analysis are the most 

common in intrusion detection. These methods can be organized into supervised and 

unsupervised types, the former representing techniques used for signature detection, the 

latter for anomaly detection. Just like with the categorization of Sharda, Delen and Turban 

(2018), some overlap between the categories exist, for example, SVMs, a supervised 

learning algorithm, can be altered for anomaly detection as a semi-supervised algorithm. 

Another example has been provided by Yao, Zhao and Maguire (2003), where an 

unsupervised association rule mining algorithm was extended with supervised learning 

models. The border between supervised and unsupervised learning approaches is not as 

clear as it might seem to be at first. 

To systematically carry out data mining projects, a general process flow is required. Some 

of the most popular data mining process models are the cross industry standard process 

for data mining (CRISP-DM) designed by Chapman et al. (2000), the SEMMA model by 

Sharda, Delen and Turban (2018) and the knowledge discovery in databases (KDD) 

process I mentioned earlier from Fayyad, Piatetsky-Shapiro and Smyth (1996). 

 

Figure 3: The CRISP-DM process model. Source: Chapman et al. (2000) 
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The CRISP-DM process shown in Figure 3 starts with a good understanding of the 

business and the associated need for data mining and ends with the deployment of a 

machine learning model that satisfies the specified business need. The process itself is 

iterative consisting of the following steps: 

1. Business understanding: a key element of any data mining project is figuring out 

what the project is set to achieve. In this stage the tasks are to formulate business 

questions, and to develop a project plan with the necessary resources and budget 

assigned. 

2. Data understanding: the next step in the process is to find and understand the 

relevant data that might come from many sources. To acquire this understanding, 

many simple statistical and graphical techniques are used. 

3. Data preparation: the purpose of data preparation (or data preprocessing) is to 

take the data identified in the previous step and prepare it for the data mining 

algorithms, for example, by scaling the numerical features. 

4. Model building: modeling techniques are selected and applied to a prepared data 

set to address needs and answer questions specified in the business understanding 

step. 

5. Testing and evaluation: The models are assessed and evaluated for their 

generalization capability. 

6. Deployment: model development and assessment are not the end of the data 

mining project. Knowledge acquired must be organized and presented in a way an 

end user can benefit from. Even with deployed models, annual re-evaluation 

might be necessary to maintain high performance, occasionally starting a new 

iteration of the CRISP-DM process. 

Apart from CRISP-DM, the SEMMA methodology can be used, visible in Figure 4. It is 

an acronym standing for sample, explore, modify, model and assess. It starts with a 

representative data sample, applies exploratory statistical and visual analysis techniques, 

selects and transforms the most important predictive features, models them to predict 

outcomes and confirms the performance of a model. The main difference between CRISP-

DM and SEMMA is that CRISP-DM takes a more comprehensive approach to the data 

mining process, including business and data understanding earlier, and model operation 

later in the process. SEMMA implicitly assumes that business understanding has been 

achieved before data mining and treats model operation as a separate process altogether.  
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Figure 4: The SEMMA process model for data mining. Source: Sharda, Delen and Turban (2018) 

The third process model is the KDD model (Figure 5). Compared to CRISP-DM, it is 

even more comprehensive, where data mining is only an important step, rather than the 

key focus. The complete list of activities of the KDD process: 

1. Data selection: selection and query of data for analysis. Involves data integration, 

where data from multiple sources are joined together. 

2. Data cleaning and preprocessing: remove noise and inconsistencies in data. 

Handle missing and outlier observations. 

3. Data transformation: prepare data for analysis and data mining by performing 

aggregations and operations on data features. 

4. Data mining: train models to detect hidden patterns. 

5. Interpretation and evaluation: evaluate detected patterns to see whether they 

provide acceptable results and are interesting from a business perspective. 

Sample

(representative sample 
of the data)

Explore

(visualization and data 
description)

Modify

(select variables, transform 
variable representation)

Model

(use statistical and machine 
learning models)

Assess

(evaluate accuracy and 
usefulness of models)
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Figure 5: Knowledge discovery in databases. Source: Fayyad, Piatetsky-Shapiro and Smyth (1996) 

Data mining has become a popular tool in addressing many complex business questions 

and opportunities. Sharda, Delen and Turban (2018) listed many economic fields where 

it can be useful, including customer relationship management, banking, retail and 

logistics, manufacturing and production, insurance, computer hardware and software, 

government and defense, travel industry, healthcare and medicine, entertainment 

industry, homeland security and law enforcement and sports. Intrusion detection can be 

applied in computer hardware and software, where it supports the detection of computer 

network security breaches, and in homeland security and law enforcement, where it plays 

a critical role in stopping malicious attacks on critical information infrastructures. 

Thanks to data mining, organizational data, information and knowledge became the 

primary sources of competition on a global scale according to Nemati and Barko (2001). 

Organizations that successfully leverage the decision-enhancing environment realized by 

data mining can both obtain and maintain a lasting competitive advantage. This is the 

main strategic benefit of data mining. 

The following chapters discuss data mining techniques sorted by type: starting with 

supervised and followed by unsupervised learning. Following that, I introduce the only 

machine learning algorithm I made an exception with, artificial neural network 

algorithms. I found them to be pivotal for my research, thus I dedicated an entire chapter 

to their introduction, focusing on fully connected feed-forward networks and autoencoder 

networks. In the last chapter, I will introduce techniques I used to improve model training 

and prediction performance. These include ensemble methods, combining results from 
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multiple base models, synthetic sampling methods, the metrics I used to evaluate 

predictions and hyperparameter optimization. 

These chapters involve formula definitions when describing the different machine 

learning algorithms, many of which share common elements, for example explanatory 

and target features. I indicated the target feature for a hypothetical dataset with the letter 

𝑦 and the target feature values for a given observation as 𝑦𝑖 ∈ 𝑦, ∀𝑖 = 1. . . 𝑛. The target 

feature can also be described in the terms of set theory, where 𝑌 stands for the set of all 

possible values the target feature can take 𝑌𝑗 ∈ 𝑌, ∀𝑗 = 1. . . 𝑘. A similar notation can be 

created for the explanatory features as well. In this case, the complete set of explanatory 

variables is marked with 𝑋, with 𝑋𝑠 ∈ 𝑋, ∀𝑠 = 1. . . 𝑚 as the features of 𝑋. As a matrix, 𝑋 

can be traversed “row wise” as well, where the “rows” act as the observations of an entity 

or event. These are marked as 𝑥𝑖 ∈ 𝑋, ∀𝑖 = 1. . . 𝑛. Last, I defined the set of possible 

values for a given feature 𝑋𝑠 as 𝑥𝑢
(𝑠)
∈ 𝑋𝑠, ∀𝑢 = 1. . . 𝑣𝑠 for ∀𝑠 = 1. . . 𝑚. 

Additional notation I used are the standard notation for probability (𝑃(∙)) and conditional 

probability (𝑃(∙ | ∙)), the notation for weight matrices (W) and the hat (∙)̂ notation for 

values estimated by the machine learning models. I will provide descriptions for every 

other new parameter or value that might appear in the introduced formulas in paragraphs 

preceding or following said introduction. 

2.2.1.  SUPERVISED LEARNING 

A learning process is called supervised when the algorithm is provided with reference 

target information to compare learned patterns with. Based on the learned context, new 

observations can be predicted with higher probability of correctly identifying the real 

value than just by guessing randomly. The types of supervised learning are classification 

(where the reference is categorical) and regression (where the reference is numerical). 

Intrusion detection is concerned with predicting the class of incoming traffic; therefore, 

classification is a better fit. Training a classifier model can be time consuming, hence it 

is often performed off-line, while application is strictly on-line. 

The greatest challenge with classification, especially for intrusion detection, is that the 

appropriate class labels must be acquired prior, which is often a tedious task itself. When 

determining the typical classification algorithms used for intrusion detection, I primarily 
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used the findings of Han, Kamber and Pei (2011), Bodon and Buza (2014) and Dua and 

Du (2016). 

Decision Trees 

Decision trees are sets of hierarchical if-then decisions generated by recursive partitioning 

algorithms according to a set purity measure. An example decision tree for a hypothetical 

credit scoring application can be seen in Figure 6. Represented in tree-like structures, an 

object can be classified starting from the root node and moving along the edges (~rules) 

towards the leaves. The final class of the object is provided by the label of the leaf node. 

 

Figure 6: Decision tree. Based on: Han, Kamber and Pei (2011) 

The construction process of decision trees according to Han, Kamber and Pei (2011) 

involve the following steps: 

• Initially, the tree consists of a single root node. 

• If all observations within a node belong to a single class, then the node becomes 

a leaf with the class value as label. 

• Otherwise, an attribute is selected according to a purity measure. This purity 

measure is either the information gain ratio based on the Shannon-entropy, or the 

Gini index. This measure determines which attribute and value is selected for 

partitioning. 

• The sample is then partitioned into subsamples. 

Age? 

Employed? Student? 

Credit accepted Credit accepted Credit rejected Credit rejected 

<=35 >35 

yes no yes no 
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• The above steps repeat recursively for each subsample until a stopping criterion 

is met: 

o If all observations on a node belong to a single class, then the associated 

class value will become the label of the leaf node. 

o If one feature can only be selected once and the list of available features 

for partitioning is empty. In this and the following cases, the label is 

determined by a simple majority vote. 

o The number of observations is less than a predefined threshold (prior 

minimum number of observations rule). 

o The number of observations in either node after a split would be smaller 

than a predefined threshold (posterior minimum number of observations 

rule) 

The most common algorithms for creating decision trees are Interactive Dichotomizer 3 

(ID3) by Quinlan (1986) and Classification and Regression Trees (CART) from Breiman 

et al. (1984). The main difference between the two is the measure for finding a critical 

attribute value for partitioning the tree. ID3-based algorithms use information gain ratio 

and the Shannon-entropy, CARTs prefer the Gini index. Consider target Y a probabilistic 

feature that can take k possible values with 𝑃(𝑌𝑗)(𝑗 = 1, . . . , 𝑘) probability, then the 

Shannon-entropy of Y will be calculated as 

𝐻(𝑌) = 𝐻(𝑃(𝑌𝑗), … , 𝑃(𝑌𝑘)) = −∑𝑃(𝑌𝑗)𝑙𝑜𝑔2𝑃(𝑌𝑗)

𝑘

𝑗=1

 

Entropy is a core concept in information theory; it refers to the uncertainty about the value 

of Y. If we observe probabilistic feature 𝑋𝑠, then the uncertainty of Y changes to 

𝐻(𝑌|𝑋𝑠) = ∑𝑃(𝑋𝑠 = 𝑥𝑢
(𝑠)
)𝐻(𝑌|𝑋𝑠 = 𝑥𝑢

(𝑠)
)

𝑣𝑠

𝑢=1

 

Meaning, if one observes the unique values of 𝑋𝑠, the uncertainty decreases by 

𝐼(𝑌, 𝑋𝑠) = 𝐻(𝑌) − 𝐻(𝑌|𝑋𝑠) 
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This quantifies the information gained from feature 𝑋𝑠 about Y. The entropy 𝐻(𝑌|𝑋𝑠) has 

a bias towards attributes with a large number of unique values according to Quinlan 

(1986). Information gain ratio eliminates this bias by normalizing information gain with 

the entropy of variable 𝑋𝑠: 

𝑔𝑎𝑖𝑛_𝑟𝑎𝑡𝑖𝑜(𝑋𝑠) =
𝐼(𝑌, 𝑋𝑠)

𝐻(𝑋𝑠)
 

To find the 𝑋𝑠 feature which contributes the most to the value of Y, the information gain 

(or gain ratio) calculation is repeated for each 𝑠 = 1. . . 𝑚, and we select 𝑋𝑠 for which 

information gain (or gain ratio) is the highest. 

The CART algorithm uses the Gini index instead of information gain, which is formulated 

as 

𝐺𝑖𝑛𝑖(𝑌) = 1 −∑𝑃(𝑌𝑗)
2

𝑘

𝑗=1

 

A key advantage of decision trees is the simplicity of their output for the end user. A 

disadvantage is their tendency to overfit: they learn specific details of the training data 

and generalize poorly on test data. This overfitting can be mitigated by pruning the 

decision trees, or in other words, replacing sub trees in a decision tree to improve 

predictions on the test set. The two most common methods for pruning are subtree 

replacement and subtree raising. 

Support Vector Machines 

Support vector machines (SVMs) are algorithms used for regression, classification and 

anomaly detection, designed by Cortes and Vapnik (1995). It constructs a 

m-1-dimensional separating hyperplane on m-dimensional data. A separation is 

considered good, when it has the highest distance (or margin) to the nearest data points, 

as the higher the margin, the lower the generalization error will be. A 2-dimensional 

example with optimal margin for SVM can be seen in Figure 7. 
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Figure 7: Optimal separating hyperplane with maximized margin created by SVM. Based on Cortes and 

Vapnik (1995) 

Support vector classifiers take numerical observations 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, . . . , 𝑛 and a binary 

target vector 𝑌 = {1,−1}𝑛. They solve the following optimization problem: 

𝑚𝑖𝑛
𝑊,𝑏,𝜉

‖𝑊‖2
2

2
+ 𝐶∑𝜉𝑖

𝑛

𝑖=1

 

Subject to 𝑦𝑖(𝑊
𝑇𝛷(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 

𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛 

Its dual problem obtained from Lagrange multipliers is 

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼 

Subject to 𝑦𝑇𝛼 = 0 

0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = 1, . . . , 𝑛 

Where 𝑒 is a vector of ones of length n, 𝐶 > 0 is a tradeoff value for soft margin 

separation, Q is an 𝑛 × 𝑛 positive semidefinite matrix, for which 𝑄𝑖1𝑖2 ≡

𝑦𝑖1𝑦𝑖2𝐾(𝑥𝑖1 , 𝑥𝑖2), where 𝐾(𝑥𝑖1 , 𝑥𝑖2) = Φ(x𝑖1)
𝑇Φ(x𝑖2) is the kernel function, most 

commonly linear, though other, more sophisticated kernel functions exist, such as 

gaussian, radial basis function and sigmoid. Φ stands for a function that transforms xi 

observations into a feature space with higher dimension. This is often referred to as the 

kernel trick and it is used for linearly inseparable data in m dimensions. Furthermore, 
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𝜉𝑖 (𝑖 = 1, . . . , 𝑛) are the errors made by the SVM model on noisy data, used for soft 

margin classification, in other words, how much does the model permit classes on the 

“wrong” side of the hyperplane. With the dual solved, the decision function will be the 

following: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝜌

𝑛

𝑖=1

) 

An advantage of SVMs is their simplicity: they find an optimal separating hyperplane. 

This hyperplane has been proven to have the highest margin, therefore SVM models tend 

to generalize well even when the number of explanatory features is high. They are 

applicable to linearly inseparable patterns in data, although then the model requires the 

use of the kernel trick and the C and 𝜉𝑖 parameters. The only difficulty is finding the 

correct value for C. If too large, the model will generalize poorly, if too small, it will have 

a high error rate. The best strategy for finding C is to experiment, for example, with 

hyperparameter optimization and cross validation. A smaller issue with SVM is that it 

implicitly performs binary classification. This can be mitigated by using either one versus 

one or one vs rest classification strategies, meaning m SVM models are trained each 

comparing two classes, or a selected class and all the remaining classes. 

K-Nearest Neighbor 

The k-nearest neighbor (KNN) algorithm searches the variable space around 𝑥𝑖 selected 

observation and selects the K nearest neighbors around it based on a distance metric (Han, 

Kamber and Pei (2011), Bodon and Buza (2014) and Dua and Du (2016)). Then, 𝑦𝑖 will 

be estimated as the (weighted or non-weighted) arithmetic mean of the neighboring target 

values (in case of regression) or by the relative frequency of 𝑌𝑗 values in the neighborhood 

of 𝑦𝑖 (classification). A demonstrative example of KNN with K = 1 is shown in Figure 8. 
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Figure 8: KNN classification with K=1. Source: Navlani (2018) 

Some of the key challenges with k-nearest neighbor algorithm is finding an appropriate 

distance measure and a good K value for separation. The most common answer for the 

former is the Euclidean distance (assuming both 𝑥𝑖1 and 𝑥𝑖2 are observations with only 

numerical features): 

𝐷𝑖𝑠𝑡(𝑥𝑖𝑖 , 𝑥𝑖2) =  ‖𝑥𝑖1 − 𝑥𝑖2‖2 

Finding the right value for K is more complicated: a small K might provide a good 

distinction between classes or a more accurate regression, but it is more sensitive to noise 

in the data. The best approach for finding K is trying out multiple settings and choosing 

the one with the best overall results. 

KNN is a lazy classifier, it trains models fast. Testing, however, is slower and has a higher 

memory consumption, as the algorithm needs the complete training data for predictions. 

These characteristics make KNN less applicable on data that either has too many 

observations or too many features, regardless of how well KNN performs on said data. 

Bayesian Networks 

Bayesian networks use factored joint probability distributions in a graphical model to 

decide about uncertain features (Han, Kamber and Pei (2011), Bodon and Buza (2014) 

and Dua and Du (2016)). Bayesian networks rely on the Bayes-theorem for classification. 

Considering observation x𝑖 and features 𝑋1. . . 𝑋𝑚, let us mark 𝑥𝑖1 . . . 𝑥𝑖𝑚  as the observation 

values for each feature. Let 𝑌𝑗 mark the probabilistic event that 𝑥𝑖 belongs to class j, where 

𝑗 = 1. . . 𝑘. According to the Bayes rule: 
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𝑃(𝑌𝑗|𝑥𝑖) =
𝑃(𝑥𝑖, 𝑌𝑗)

𝑃(𝑥𝑖)
=
𝑃(𝑥𝑖|𝑌𝑗)𝑃(𝑌𝑗)

𝑃(𝑥𝑖)
 

Where 𝑃(𝑌𝑗|𝑥𝑖) is the posterior probability of Yj (how the likelihood of event 𝑌𝑗 changed 

knowing information about observation 𝑥𝑖), 𝑃(𝑌𝑗) is the prior probability of Yj (the 

likelihood of 𝑌𝑗 not knowing anything about 𝑥𝑖). Similarly, 𝑃(𝑥𝑖|𝑌𝑗) denotes the posterior 

probability of 𝑥𝑖 knowing about the value of 𝑌𝑗. Bayesian networks assign 𝑌𝑗 to 𝑥𝑖 where 

𝑃(𝑌𝑗|𝑥𝑖) is the highest out of 𝑗 = 1. . . 𝑘 classes. 

As 𝑃(𝑥𝑖) is constant for every class and 𝑃(𝑌𝑗) is either provided already or can be 

estimated from sample (with relative frequencies, for example), Bayesian networks only 

need to maximize 𝑃(𝑥𝑖|𝑌𝑗) in order to maximize 𝑃(𝑌𝑗|𝑥𝑖). The data needed to calculate 

every possible 𝑃(𝑥𝑖|𝑌𝑗) probability is often not available in practice; therefore, some 

versions of Bayesian networks make assumptions about the probabilities to simplify 

calculations. For example, Naïve Bayes networks assume the conditional independence 

of 𝑋1. . . 𝑋𝑚. In this case, 𝑃(𝑥𝑖|𝑌𝑗) can be simplified as 

𝑃(𝑥𝑖|𝑌𝑗) =∏𝑃(𝑥𝑖𝑠|𝑌𝑗)

𝑚

𝑠=1

 

For each class value. 𝑃(𝑥𝑖𝑠|𝑌𝑗) probabilities can be estimated from the available data. If 

𝑋𝑠 is categorical, then 𝑃(𝑥𝑖𝑠|𝑌𝑗) can be estimated with relative frequencies. When 𝑋𝑠 is 

numerical and the distribution of 𝑃(𝑋𝑠|𝑌𝑗) is known, then the probability in question can 

be determined by estimating the parameters of the distribution with statistical methods. 

The most important advantages of naïve Bayes are robustness (the models remain stable 

even if the conditional independence assumption is violated) and theoretical importance 

(the results of many neural network and curve fitting algorithm equals the maximum 

likelihood hypothesis provided by the naïve Bayes algorithm). The disadvantages of naïve 

Bayes models are their tendency to lose accuracy when their assumptions (conditional 

independence and the equal importance of every attribute) are violated. However, when 

the naïve Bayes algorithm is combined with feature selection techniques, then its 

classifications can rival the performance of decision trees and neural networks. 
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2.2.2. UNSUPERVISED LEARNING 

According to Russel and Norwig (2010, p. 694) “In unsupervised learning the agent 

learns patterns in the input even though no explicit feedback is supplied”. Unsupervised 

learning is more useful for anomaly detection, as it provides more stable performance 

compared to signature detection models, are less costly to train and work well on 

previously unknown patterns. However, many unsupervised techniques can only handle 

numerical inputs, and differentiating attacks from normal activities is still a challenging 

task. The two most common type of unsupervised learning are clustering and outlier 

analysis. 

Clustering algorithms partition a collection of entities into segments whose members 

share a similar characteristic, while members between segments are less likely to share 

that characteristic (Sharda, Delen and Turban (2018)). Many clustering algorithms have 

been invented, using different heuristics for similarity, therefore they might create 

different clusters even on the same data. The most common types of clustering algorithms 

are, according to (Bodon and Buza (2014)): 

• Partitioning methods divide data into 𝐶𝑗 , 𝑗 = 1. . . 𝑘 disjoint groups (or clusters), 

each containing at least one observation. 

• Hierarchical methods construct hierarchical data structures, commonly referred 

to as dendrograms. 

• Density-based methods overcome the common inability of earlier clustering 

algorithms to create clusters other than elliptical in shape. For a density-based 

cluster to be valid, at least 𝑛∗ observations need to be in a predetermined radius 

from any other observation in the same cluster. Apart from clustering, density-

based methods can be used for outlier analysis as well, making them well suited 

for intrusion detection.  

Han, Kamber and Pei (2011) and Bodon and Buza (2014) refers to outliers as data with 

unusual and distinctively different characteristics from a larger set of observations. Often, 

outliers are either results of errors in data recording or inherent to the studied phenomena. 

If the latter is the case, then outliers themselves are the interesting patterns to be found. 

They could, for example, indicate fraudulent activities in a banking environment, or 

intrusive behavior in computer networks. 
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The task of outlier analysis is finding 𝑛∗ outlier values in a dataset with n observations 

(𝑛∗ ≪ 𝑛). This can be broken down to two questions: how to determine which 

observations are inconsistent with a large enough part of the data, and what are the 

effective methods for detecting them. Outliers could be defined by more than one feature, 

which excludes most (but not all) statistical analysis techniques used for outlier detection. 

A common way of creating multidimensional outlier detectors is the modification of pre-

existing classification and clustering methods. 

In the following subchapters, I will describe the most common algorithms used for 

clustering and outlier analysis with the help of Han, Kamber and Pei (2011), Bodon and 

Buza (2014) and Dua and Du (2016). 

K-means clustering 

K-means is the oldest and most common algorithm for clustering. It takes n observations 

and partitions them into k disjoint clusters. Observations in the same cluster are more 

similar to each other than to observations in other clusters. This “closeness” is captured 

by a distance function, most commonly the Euclidean distance, measured from the 

arithmetic mean of all 𝑥𝑖 ∈ 𝐶𝑗 , ∀𝑗 = 1. . . 𝑘, often represented as 𝑐𝑗 centroid of a cluster. 

The goal of k-means clustering is to minimize a predetermined criteria function. The steps 

performed by the algorithm are shown in Figure 9. 

 

Figure 9: K-means clustering algorithm. Source: Piech (2012) 
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1. Start with 𝑋 represented in a Euclidean space (Figure 9 (a)). Choose k points in 

space at random at first (Figure 9. (b)), mark them as the initial centroids (𝑐𝑗 , 𝑗 =

1. . . 𝑘). 

2. Assign all 𝑥𝑖 ∈ 𝑋 observations to the nearest 𝑐𝑗 (Figure 9. (c)), based on a distance 

measure. 

3. Re-calculate 𝑐𝑗 centroids for each cluster (Figure 9. (d)). 

4. Repeat steps 2 and 3 until a criteria function converges (Figure 9. (e)-(f)). This 

criteria function can be the squared error function: 

𝑆𝐸 =∑∑‖𝑥𝑖
(𝑗)
− 𝑐𝑗‖

2

2
𝑘

𝑗=1

𝑛

𝑖=1

 

In the formula above 𝑥𝑖
(𝑗)

 is an observation belonging to 𝐶𝑗 cluster with 𝑐𝑗 centroid. This 

error function is the sum of distances for each observation and cluster. 

The k-means algorithm works well when clusters form compact groups. It is a simple and 

fast algorithm that scales well with larger datasets. It is, however, not guaranteed to find 

global optima: it converges on a partitioning, even when a cluster setup could exist with 

lower squared error. Moreover, the algorithm only works with observations defined in a 

vector space, therefore categorical features must be excluded or encoded to numerical 

first. 

Many variations of k-means were invented. These are different in their cluster 

initialization, in the distance functions from centroids or in what they treat as centroids. 

One of these variations is called k-medoid clustering, aiming to address two 

disadvantages with k-means: k-medoid results are less sensitive to outliers, and the 

algorithm is dependent on similarity metrics only, therefore observations are no longer 

required to be representable in Euclidean vector spaces. In k-medoid, a cluster centroid is 

not an arithmetic mean, but an actual observation (𝑐𝑗 ∈ 𝑋 ∀𝑗 = 1. . . 𝑘), called the medoid. 

As a result, the criteria function is altered; the squared distance is calculated from these 

medoids. 

The k-means algorithm can be adapted for outlier analysis as well demonstrated by Dua 

and Du (2016). Without explicitly defining k, the clusters are also constrained by a 

threshold r. The difference from standard k-means algorithm comes when the distance 

between 𝑐𝑗 and 𝑥𝑖 is greater than threshold r. When that happens, a new cluster is 
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initialized with 𝑥𝑖 as its initial centroid. The challenge of determining which clusters can 

be considered normal and which clusters as anomalous remains. The assumption is that 

normal data outnumbers anomalous data, therefore the clusters that contain more than a 

set 𝛼 percentage of the training data are labelled as normal, the rest as anomaly. 

DBSCAN 

DBSCAN, or density-based spatial clustering of applications with noise is a clustering 

algorithm using two parameters (𝜀, a radius-like parameter and 𝑛∗, a threshold for the 

number of observations) for determining the density of a cluster developed. I has been 

developed by Ester et al. (1996) and it requires X explanatory features to be represented 

in an n-dimensional Euclidean space, just like k-means. Then, the neighborhood of 𝑥𝑖 

(𝑁𝜀(𝑥𝑖)) is the set of observations that fall within an 𝜀 radius around 𝑥𝑖. Further 

terminology of DBSCAN is based on the following definitions: 

• Observation 𝑥𝑖 is directly density-reachable from 𝑥𝑗 if 𝑥𝑖 ∈ 𝑁𝜀(𝑥𝑗) and |𝑁𝜀(𝑥𝑗)| ≥

 𝑛∗ (core point condition). Two core observations are density-reachable from each 

other, a border observation is directly density-reachable from a core observation, 

but a core observation is not directly density reachable from a border observation. 

• Observation 𝑥𝑖 is directly density-reachable from 𝑥𝑗 if there exists a chain of 

observations {𝑥1
∗, . . . , 𝑥𝑛

∗} 𝑥1
∗ = 𝑥𝑖, 𝑥𝑛

∗ = 𝑥𝑗 and 𝑥𝑖+1
∗  is directly density reachable 

from 𝑥𝑖
∗. 

• Observation 𝑥𝑖 is density-connected to 𝑥𝑗 if an observation 𝑥ℓ exists, such that 

both 𝑥𝑖 and 𝑥𝑗 are density-reachable from 𝑥ℓ. 

Then, a cluster in DBSCAN can be defined as a set of density-connected observations. 

Observations, that were not assigned to any cluster will be considered as noise (or, in the 

case of outlier analysis, as the outliers themselves). Figure 10 demonstrates different types 

of observations determined by the DBSCAN algorithm. 
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Figure 10: Point types in DBSCAN clustering. Source: Lutins (2017) 

The DBSCAN algorithm can detect non-elliptical clusters, however, it is highly sensitive 

to the two input hyperparameters, ε and 𝑛∗. Finding these optimal parameters may not 

even be feasible if observation densities within a cluster are not uniform. 

One Class SVM 

The support vector machine algorithm is considered to be a supervised classification 

model, however, Schölkopf et al. (2000) proved that it can be modified to perform outlier 

analysis as well. One class SVM is an algorithm that learns a function with a returned 

value of +1 in a small region capturing a large portion of data points (called origin) and -1 

everywhere else. To separate data from the origin, it solves the following quadratic 

problem: 

𝑚𝑖𝑛
𝑤,𝜉,𝜌

‖𝑊‖2

2
+
1

𝜈𝑛
∑𝜉𝑖 − 𝜌

𝑛

𝑖=1

 

Subject to (𝑊𝑇𝛷(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖, 

𝜉𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝑛 

Note, that apart from a change to the C parameter, the problem definition remains largely 

the same. The 𝜈 ∈ (0, 1) parameter sets an upper limit on the fraction of outliers and a 

lower limit on the training examples used as support vectors simultaneously. The 𝜌 

parameter represents the margin separating outliers from the origin data, basically the 

distance of the separating hyperplane from the origin. The decision function can be 

determined by solving the Lagrange dual problem: 
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min
𝛼

1

2
𝛼𝑇𝐾(𝑥𝑖, 𝑥𝑗)𝛼 

Subject to 0 ≤ 𝛼𝑖 ≤
1

𝜈𝑛
, ∑ 𝛼𝑖 = 1

𝑛
𝑖=1  

Thus, the decision function will take the form of: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑𝛼𝑖𝐾(𝑥𝑖, 𝑥) − 𝜌

𝑛

𝑖=1

) 

One class SVM shares most advantages and disadvantages with the original SVM 

algorithm, the only major difference being that outlier classification is inherently a binary 

classification problem, therefore one class SVMs do not need adjustments for multiclass 

classification. 

2.2.3. NEURAL NETWORKS 

In this chapter I introduce the most common artificial neural network model, the feed-

forward multilayer perceptron model. These models consist of parallel operating elements 

called neurons, each performing simple partitioning or fitting operations. Neural networks 

are powerful models, due to how, given enough neurons, they can approximate any 

arbitrary function. I based the first half of this chapter on the works of Rumelhart et al. 

(1988), Russel and Norwig (2010, pp. 727–737) and Kingma and Ba (2014). In the second 

half I introduce a specialized neural network architecture called autoencoder network. 

Autoencoder networks were designed to reconstruct their input data. A clever exploitation 

of this reconstruction on normal traffic makes autoencoders better suited for anomaly 

detection. My discussion on autoencoder networks is based on Ng and others, (2011), 

Kingma and Welling, (2013) and Sohn, Lee and Yan, (2015). 

Artificial neural networks are designed to model the activity of the human brain, though 

this mathematical model cannot be claimed to be 100% accurate, as some operations in 

artificial neural networks were rather based on practical experiences. ANNs form 

networks of massively parallel distributed processing units called neurons. The schematic 

model for one neuron is presented in Figure 11. Each neuron is either connected with 

input observation values (𝑥𝑖
𝑠) or the outputs of other neurons (𝑎𝑞

ℓ−1, where ℓ refers to the 

layer the current neuron is part of and 𝑞 = 1. . . 𝑁ℓ−1 iterates over the neurons of layer 

ℓ − 1). Each connection has a weight 𝑤𝑞𝑝
ℓ ∈ 𝑊 (where 𝑝 = 1. . . 𝑁ℓ iterates over the 
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neurons of layer ℓ) associated with it determining the strength of the connection. The first 

weight (𝑤0𝑝
ℓ ∈ 𝑾) refers to the bias value (𝑏𝑝

ℓ), with its associated activation usually, but 

not necessarily equal to one. Activation 𝑎𝑝
ℓ  of neuron p is calculated by aggregating the 

products of prior activations and their associated weights. This aggregation is marked as 

𝑧𝑝
ℓ for convenience. 

 

Figure 11: Simple mathematical model for a neuron. Based on Russel and Norwig (2010) 

Mathematically, neurons perform a sum of products between activations of the previous 

layer and their respective weights, then apply a function on the aggregation: 

𝑧𝑝
ℓ = ∑ 𝑎𝑞

ℓ−1𝑤𝑞𝑝
ℓ

𝑁ℓ−1

𝑞=0

 

𝑎𝑝
ℓ = 𝑓(𝑧𝑝

ℓ) 

This function is the activation function (𝑓). The most common are sigmoid, tangent 

hyperbolic, RELU and leaky RELU: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑: 𝑓(𝑧) =
1

1 + 𝑒−𝑧
 

𝑡𝑎𝑛ℎ: 𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

𝑅𝐸𝐿𝑈: 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧) 

𝐿𝑒𝑎𝑘𝑦 𝑅𝐸𝐿𝑈: 𝑓(𝑧) = 𝑚𝑎𝑥(𝜀𝑧, 𝑧); 0 < 𝜀 ≪ 1 

Each of these activation functions were based and developed on practical considerations, 

rather than on observed brain activity. This is one of the reasons why neural networks 

cannot be considered accurate mathematical models of the human brain. These activation 
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functions map a value from (-∞, ∞) to a set interval, and must be differentiable over the 

same interval. Differentiability is an important aspect of activation functions, which will 

become clear once back propagation is introduced. 

In total, two neural network architectures can be developed: 

1. Feed-forward networks: connections between neurons form a directed acyclic 

graph. They have no internal state other than their weights. 

2. Recurrent networks: feeds output back into its own inputs. Their initial state 

depends on prior inputs as well as the weights, making them adept at modeling 

memory. They are better suited for problems possessing inherent sequential and 

temporal patterns, for example, text processing and NLP problems. They can be 

useful for intrusion detection if the intrusion detector is tasked to evaluate 

sequences of network packets. This temporal characteristic is not available for the 

benchmark datasets I used, therefore, though they have potential, this chapter will 

not discuss RNNs any further. 

Feed-forward neural networks are structured into layers (Figure 12), collections of 

neurons taking inputs from neurons in a preceding layer and propagating their output to 

neurons in the following layer. A layer receiving inputs from the environment is called 

an input layer, a layer propagating its outputs to the environment is called an output layer. 

All the remaining layers between input and output layers are called hidden layers. 

 

Figure 12: Architecture of a multilayer feedforward neural network. Source: own edit 
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Multilayer feed-forward neural networks are surprisingly flexible models. They can 

support both classification and regression problems. McCulloch and Pitts (1943) argued 

that a network constructed by a sufficiently large number of neurons is capable of 

approximating any desirable function with categorical or numerical output. As the 

primary use case of neural networks in intrusion detection is signature detection, 

primarily a classification task, the classification aspects of neural networks will be the 

primary focus of this chapter. 

One challenge for multilayer feed-forward networks is how to produce more than a single 

output value. In this case, original expected output vectors are available, indicated as 𝑦𝑖. 

To quantify the performance of the network, the activations of the output layer (𝑎𝑖
𝐿 = �̂�𝑖) 

are compared to this expected output. This is performed with the help of loss functions. 

In classification a particular loss function is the cross-entropy loss: 

𝐿𝑜𝑠𝑠 = −∑𝑦𝑖𝑙𝑜𝑔(𝑎𝑖
𝐿)

𝑛

𝑖=1

+
𝛼

2
‖𝑊‖2

2 

The point of a loss function is to take two vectors of class probabilities and compare them 

to one another. The difference between ground truth values and predictions is the loss for 

a given observation. Calculate the arithmetic mean of this loss for all observations to get 

the global loss of the network. Other popular loss functions include mean squared loss (or 

mean squared error, MSE) function, measuring ANN performance in regression tasks. 

Calculating cross-entropy loss, however, requires class membership vector values to be 

interpretable on a (0, 1) interval each with one single value much closer to one than the 

rest. The softmax function can calculate vectors with such criteria: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖
𝐿) =

𝑒𝑎𝑖
𝐿

∑ 𝑒𝑎𝑖𝑗
𝐿

𝑘
𝑗=1

 

Where k stands for both the number of classes and the number of output neurons. The 

expected output 𝑦𝑖 is a vector of length k, where 𝑦𝑖𝑗 = 1 if and only if the observation 

represented by 𝑦𝑖 belongs to 𝑌𝑗, otherwise 0. The softmax function takes a vector of length 

k and returns a vector at the same length with class membership probabilities. The 

probability located at index j will be the highest, if an observation belongs to 𝑌𝑗. This way, 
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the loss for one observation and the overall loss for all observations can both be 

calculated. 

One additional element in the loss function is 
𝛼

2
‖𝑊‖2

2, commonly referred to as L2 

regularization or ridge regression. The purpose of L2 is to penalize weight updates too 

great in magnitude, preventing the neural network model from overfitting the data. The 

magnitude of this regularization penalty is controlled by parameter 𝛼. Other 

regularizations are L1 and elastic net regularizations. L1 regularization (or lasso 

regression) is denoted as 𝛼‖𝑊‖1. Its main purpose, like L2, is to prevent the network 

from overfitting, but it regularizes weights (𝑤𝑞𝑝
ℓ ) to zero more, therefore it is suitable for 

feature selection or for enforcing weight sparsity. Finally, elastic net regularization 

combines the benefits of L1 (weight sparsity) and L2 (small coefficients) regularizations. 

In an elastic net α is multiplied by an additional component controlling the tradeoff 

between L1 and L2 regularization. Apart from L1, L2 and elastic net, other regularization 

techniques are available as well. One such example is the dropout rate (Srivastava et al., 

(2014)), where, during training, a fraction of neurons are temporarily excluded from the 

model at each iteration, introducing randomness to neuron activations at each hidden 

layer, making the network overall more robust and generalize better on unseen data. 

Learning in a neural network is synonymous with the minimization of the mean loss 

function. This optimization process involves the iterative incremental adjustment of W 

by taking the partial derivative of the loss function with regards to the weights. This is 

simple considering only the output layer; however, the true challenge lies in propagating 

the loss over to the hidden layers. This challenge has been solved when backpropagation 

was introduced. 

Backpropagation propagates the loss measured at the output layer towards the input layer. 

To do this, backpropagation has to determine the sensitivity of the loss function to the 

weights. This is performed for each weight by applying the chain rule twice: 

𝛻𝐿𝑜𝑠𝑠𝑊 ←
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
𝑝,𝑁ℓ
ℓ

= 𝑎
𝑁ℓ
ℓ−1 ∗ 𝑓′(𝑧𝑝

ℓ) ∗
𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑝
ℓ

 

Where 
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𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑗
ℓ
=

{
 

 
∑ 𝑤

𝑝,𝑁ℓ+1
ℓ+1 ∗ 𝑓′(𝑧𝑝

ℓ+1) ∗
𝜕𝐿𝑜𝑠𝑠

𝜕𝑎𝑝
ℓ+1

,   𝑖𝑓 ℓ 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟

𝑁ℓ+1

𝑝=0

𝑎𝑖
𝐿 − 𝑦𝑖,   𝑖𝑓 ℓ 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟

 

With the formula above, the algorithm calculates the gradient vector (𝛻𝐿𝑜𝑠𝑠𝑊), holding 

information on how much each weight needs to change to minimize the loss function: 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂𝛻𝐿𝑜𝑠𝑠𝑊
𝑡  

Where t is the iteration step and 𝜂 is a special parameter called learning rate. It is a model 

hyperparameter controlling the size of a step at each iteration to ensure the training 

reaches a global minimum. It is a sensitive value, set it too low and training will take a 

long time, set it too high and the model will fail to converge, or it will even diverge. More 

advanced optimization methods permit a dynamic learning rate, enabling the training 

process to start from higher learning rates (faster) and end on lower learning rates for 

better convergence. For example, inverse scaling learning rate reduces the initial learning 

rate by dividing it with the current iteration step (t) raised to a predetermined value. 

An iteration can be one complete pass over all (𝑋, 𝑦) input-output pairs. This is 

computationally expensive, other methods, like minibatch stochastic gradient descent 

(SGD) are preferred, where, the algorithm uses small slices of input observations before 

a single weight update, repeated for all 𝑋. A whole pass of the entire input in SGD is 

referred to as an epoch, which in turn repeats until a set number or convergence is reached. 

The other improvements to SGD involve Adam (Kingma and Ba (2014)), which 

introduced adaptive bias-corrected first and second moments to gradient descent for 

automated weight adjustments. Adam has been widely adopted as a solver for neural 

networks. 

An advantage of neural networks is that they operate as universal function approximators. 

Given enough time and input, they can learn non-linear functions of any complexity. 

The disadvantages of neural networks are: 

• The algorithm has no guarantees to finding global optimum, neural network 

instances must be trained multiple times with different weight initializations. 

• They tend to overfit presented data. This can be offset by applying L1 or L2 

regularization. 
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• Neural networks require the tuning of several hyperparameters, such as learning 

rate, the number of hidden layers and the number of neurons per hidden layer. 

Hyperparameter optimization strategies are required to find an optimal value for 

each. 

•  Neural networks are sensitive to feature scaling, mitigated by feature 

normalization. 

• Neural networks are often too complex for a human observer to understand, often 

referred to as black box systems. 

Autoencoder Networks 

Autoencoder networks are unsupervised neural network algorithms created when the 

target vectors are set to be identical to the input vectors. They are particularly useful in 

finding outlier patterns, a characteristic that can be exploited for anomaly detection. The 

architecture of a basic autoencoder network is available in Figure 13. More complex 

versions of this model have been designed, although all of them can be divided into an 

encoder, learning interesting patterns about the input data, a bottleneck creating a limited 

representation, and the decoder reconstructing the input from this limited representation. 

 

Figure 13: Architecture of an autoencoder network. Source: own edit 

Training on an autoencoder is performed using the same backpropagation process used 

to train feed-forward neural networks. The most important differences lie in the network 
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architecture, the choice of true output to compare predicted outputs to and, in the case of 

intrusion detection, in which class of traffic is provided for the network to train on. With 

these considerations an autoencoder is trained the following way: 

• The data is split to normal and anomalous (~attack) traffic 

• The autoencoder is trained only using normal traffic, thus it learns patterns 

between normal connection features only 

• Reconstruction loss on new normal connections is expected to be lower, and 

higher on attacks. This reconstruction loss, unlike with fully connected neural 

networks, is the half of the mean squared error function: 

𝐿𝑜𝑠𝑠𝐴𝐸 =
1

2𝑛
∑‖�̂�𝑖 − 𝑥𝑖‖2

2

𝑛

𝑖=1

 

Where 𝑥𝑖 stands for the true input observations and �̂�𝑖 is the reconstructed input. 

So far, I only introduced dense autoencoders with one hidden layer, but more complex 

autoencoder networks exist. By introducing additional hidden layers, one can construct 

an autoencoder capable of learning nonlinear relationships between the input features. 

These multilayer autoencoders are often referred to as deep autoencoders. 

A second restriction imposed on deep autoencoders is that neuron counts in encoder layers 

must be monotonically decreasing and monotonically increasing in decoder layers. This 

restriction can be lifted, by introducing a sparsity constraint to the network (Ng and 

others, (2011)). Sparsity in all neural networks refers to the sparsity of activations when 

a selected 𝑥𝑖 observation is fed to the network. Its main difference compared to dropout 

is that sparsity is maintained even after training has ended and a given 𝑞∗ neuron might 

activate for some 𝑥𝑖 input and not for others. Sparsity can be achieved by applying a 

constraint as regularization: 

• Regularize the loss function with L1, as lasso regression encourages sparsity. 

• Use Kullback-Leibler divergence (KL divergence). KL divergence is a measure 

of difference between two distributions. When used for sparsity in autoencoders, 

it penalizes the average activation of all neurons in all layers to a predetermined 

rate, indicated as ρ. The formula of KL divergence for hidden neuron q: 
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∑𝐾𝐿(𝜌||�̂�𝑞)

𝑁ℓ

𝑞=1

=∑𝜌𝑙𝑜𝑔
𝜌

�̂�𝑞
+ (1 − 𝜌)𝑙𝑜𝑔

1 − 𝜌

1 − �̂�𝑞

𝑁ℓ

𝑞=1

 

Where �̂�𝑞 =
1

𝑛
∑ 𝑎𝑞

ℓ(𝑥𝑖)
𝑛
𝑖=1  is the average activation of q over all 𝑥𝑖 inputs. This formula, 

like L1, is added as a regularization constraint to the loss function of the autoencoder: 

𝐿𝑜𝑠𝑠𝑆𝐴𝐸 =
1

2𝑛
∑‖�̂�𝑖 − 𝑥𝑖‖2

2

𝑛

𝑖=1

+ 𝛽∑𝐾𝐿(𝜌||�̂�𝑞)

𝑁ℓ

𝑞=1

 

Where β controls the effect of the KL divergence penalty on the loss function. The first 

part of the formula remained unchanged from ½ MSE. With sparsity introduced, neuron 

counts in encoder and decoder layers are permitted, and even encouraged, to increase 

beyond the number of preceding, as only a handful of them will be active at a time. An 

autoencoder regularized by sparsity constraints is called a sparse autoencoder (SAE). 

The last variants of autoencoders I detailed are called variational autoencoders (VAE), 

developed by Kingma and Welling (2013). Variational autoencoders are created when, 

instead of learning an arbitrary function, the model learns the parameters of a 

multidimensional distribution. Compared to previous AEs, this model can not only reduce 

input dimensionality, but it is also capable of providing new samples itself. In this regard 

VAEs can be considered as generative models. This is achieved by dividing the bottleneck 

to mean and standard deviation vectors of neurons. The outputs of these two are used 

together with a random variable drawn from a predetermined distribution (usually 

normal) to generate new samples. 

The loss of this model is the same as with sparse autoencoders: reconstruction loss 

regularized by KL divergence between the learned latent distribution and the prior 

distribution. 

An extension of VAEs can also be fed with classification target class values (𝑦𝑖) as a 

separate one hot encoded input. Then, the model is trained to learn not only a single latent 

distribution, but a set of latent distributions for each 𝑦𝑖. This model is called conditional 

variational autoencoder (Sohn, Lee and Yan, 2015). CVAEs allows more control over the 

generated samples, for example, generate observations per intrusion type to train an IDS. 

I decided to use fully connected deep autoencoder networks with no regularization for the 

model introduced in chapter 4.2.4 as part of a hybrid intrusion detector. 
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2.2.4. ADDITIONAL TECHNIQUES USED IN DATA MINING 

Machine learning algorithms form the core techniques data scientists use; however, they 

use other tools to assist them with data processing, model testing and model performance 

improvement. In this chapter I will briefly introduce these tools in more detail: model 

ensembles, synthetic sampling, hyperparameter optimization and model evaluation 

metrics. 

Ensemble methods 

The idea behind ensemble methods is to combine multiple machine learning models to 

get an aggregate prediction with the goal to provide better results than what any of them 

could achieve. In this chapter I use the term base models to describe the different machine 

learning models that contribute to the ensemble, and aggregate model to describe the 

ensemble. This chapter introduces the three most common ensemble models: bagging, 

boosting and model stacking, based on Smolyakov (2017) and Budzik (2019). 

Bagging, or bootstrap aggregation aims to sample the training data with replacement 

(bootstrap sampling) to create an ensemble of models (Figure 14). This sampling process 

is repeated for each base model, and the final decision is calculated as either an arithmetic 

mean or a simple majority vote of base model predictions. Bagging is most effective when 

the base models have low bias but high variance, typically random forests. 

 

Figure 14: Bagging model training process. Based on Budzik (2019) 

With boosting, performance is improved by concentrating modeling efforts on errors 

made by weak models (Figure 15). These base models are trained sequentially, where 

incorrectly predicted observations are weighted more than correct ones. The aggregate 
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boosting result is calculated either as a weighted arithmetic mean or by weighted majority 

voting. Models with low variance and high bias are well suited for boosting, for example, 

gradient boosting. 

 

Figure 15: Boosting model training process. Based on Budzik (2019) 

With model stacking, base model results are combined using a meta-model. This could 

be as simple as a linear function of the intermediary results, or a complex machine 

learning model itself (Figure 16). Stacking, compared to boosting and bagging, can 

reduce model variance and bias at the same time, providing powerful aggregate predictor 

models. This improvement stems from the heterogeneity of the base models, which could 

be achieved in two ways: by training models of the same kind, but on different feature 

sets, or by training different machine learning models (more common). Considering the 

advantageous property of simultaneously reducing variance and bias in model 

predictions, I decided to use this ensemble design for my intrusion detectors. 

 

Figure 16: Stacking model training process with results combination. Based on Budzik (2019) 

Ensemble models can improve results by reducing model variance, bias or both. 

Therefore, they are useful for creating aggregate models with improved classification or 
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regression performance. A drawback of model ensembles is an increase in complexity as 

multiple models have to be trained and maintained simultaneously. 

Synthetic sampling methods 

In classification, a way to combat imbalanced class values is to under-sample the majority 

class, or to over-sample the minority class. However, when class imbalance is too great, 

more sophisticated methods are needed. One such sophisticated method is synthetic 

sampling, where a machine learning model is trained to recognize relationships between 

data and a target feature with the goal to provide new artificial samples for minority 

classes, or to reduce the number of observations of the majority class, while maintaining 

patterns that make the target recognizable still. There are three methods for synthetic 

sampling: 

• Over-sampling methods, 

• Under-sampling methods and 

• Combination of over- and under-sampling methods 

The first oversampling method is SMOTE (synthetic minority over-sampling technique), 

developed by Chawla et al. (2002). In SMOTE, the minority class is over-sampled by 

selecting one observation from minority at a time and introducing new synthetic 

observations at random along the line connecting the selected observation and one of its 

k nearest neighbors from the same minority class. An advantage of SMOTE is that it 

forces the following machine learning model to create larger and less specific decision 

regions between classes forcing them to generalize better. 

By itself, I used SMOTE only in one model, however it is important building block for 

more advanced synthetic sampling methods, like SVM SMOTE, recommended by 

Nguyen, Cooper and Kamei (2009). The core purpose of SVM SMOTE remains the same, 

but instead of using the k nearest neighbor algorithm only, it also applies the maximum 

margin classification of SVMs to sample observations from border regions only. The 

benefit compared to SMOTE that it samples the border regions between majority and 

minority classes, thus improving model generalization even further. The drawback is that 

neither k nearest neighbors, nor SVMs are recognized for their fast execution on large 

amounts of data. Later, it has been empirically proven (by Lopez-Martin, Carro and 

Sanchez-Esguevillas (2019), for example), that models that were fed with observations 
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by an SVM SMOTE sampler, achieved higher classification performance, than those that 

were fed by other synthetic samplers. 

Turning to under-sampling methods, the first technique used to under-sample the training 

data is called edited nearest neighbors (ENN) created by Wilson (1972). It is based on the 

k nearest neighbor algorithm, however, instead of sampling from a line between two 

neighbors, it removes observations which do not “agree” with their neighborhood enough. 

This agreement can, for example, be described by the relative distribution of minority and 

majority class values within the neighborhood. 

A second technique (Tomek (1976)) is based on identifying Tomek links within the 

dataset. Two observations in a dataset form a Tomek link, if they are nearest neighbors 

of each other. Under-sampling with Tomek links is the removal of such observations 

either from the majority class only, or from the minority classes as well. 

I did not use edited nearest neighbors or Tomek links under-sampling for my intrusion 

detectors directly. However, they both played a role in creating combined under-, and 

over-sampling methods. I used both ENN and Tomek links in tandem with SMOTE, first 

over-sampling the minority classes, followed by under-sampling the majority class. 

Further details of how this combination works can be found in Batista, Prati and Monard 

(2004). 

Evaluation metrics 

Due to the comparability of the performance classification models, the data mining 

community developed several evaluation metrics. For almost every metric I used, the 

input has been provided by the confusion matrix, available in Han, Kamber and Pei (2011) 

and in Table 1 as well. It shows the predictions made by the classifier in rows and the 

ground truth class values in columns. The cells contain the true positive (TP), false 

positive (FP), false negative (FN) and true negative (TN) predictions. Table 1 is a 

confusion matrix for binary classification, although it can be extended for the multiclass 

case as well. 

 Ground truth 

+ - 

Prediction 
+ True positive (TP) False positive (FP) 

- False negative (FN) True negative (TN) 

Table 1: Confusion matrix for classifier performance. Source: Han, Kamber and Pei (2011) 

The most common metric based on the confusion matrix is accuracy: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

It is sensitive to high imbalance between target feature values; therefore, it is less useful 

for evaluating intrusion detection performance. Other metrics to use to extend accuracy 

are precision, recall, F1-score, the receiver operating characteristic (ROC) curve and the 

area under the ROC curve (AUC). The formula of the first three: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Precision measures the exactness of positive labeling, the coverage of the correct positive 

labels among all positive-labelled samples. Recall measures the completeness of positive 

labelling, the fraction of correctly labelled positive samples among all positive samples. 

It is often referred to as sensitivity and detection rate. The F1-score combines the two in 

a weighted harmonic mean. The weight is almost always set to one, meaning precision 

and recall are treated equally important. 

Precision, recall and F1-score are per-class measures, meaning they provide multiple 

values for each class value in multiclass classification. Sometimes, it is more desirable to 

calculate one single aggregate value describing the trained model. For these situations, 

three averaging schemes were constructed by Pedregosa et al. (2011): 

• Micro: calculates metrics globally by counting total true positives, false negatives 

and false positives. 

• Macro: calculates metrics for each label and calculate their unweighted arithmetic 

mean. This does not take class imbalance into account, which makes it easier to 

highlight performance on minority classes. 

• Weighted: calculates metrics for each class value and averages them weighted by 

the number of observations that belong to that class. This method does take class 

imbalance into account. 
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The efficiency of an intrusion detector can be measured with false positive rate as well, 

indicating the percentage of observations misclassified as positive over all observations: 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

The ROC curve mentioned earlier visualizes all possible cuts between positive and 

negative predictions. It is a measure based on sensitivity and false positive rate (or 1-

specificity) (Figure 17). In a ROC curve a good prediction with a good cut value 

converges to the top right or the bottom left corner (in the latter case, changing the class 

labels is a viable option). The diagonal line represents the results of random guessing. 

 

Figure 17: ROC curve. Source: scikit-learn developers (2018) 

The formulas for sensitivity and specificity are: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝑇𝑃
 

ROC curve is a visualization technique, it is difficult to interpret quantitatively. AUC is 

a metric can be calculated from ROC curves, which is easier to interpret as a measurement 

of overall generalization ability. A 0.5 AUC score indicates random guessing, a value 

closer to 1 an almost perfect classification. 

The metrics introduced so far are all used for evaluating classification performance. 

However, due to the application of autoencoder networks, and how they are evaluated, I 

found it useful to introduce one metric used for measuring regression performance. This 
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metric is the mean squared error, measuring the average squared difference of 

predictions from true values: 

𝑀𝑆𝐸 =
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 

Compared to the earlier formula shown in chapter 2.2.3, ŷi and yi refer to scalar ground 

truth and predicted target features, rather than vectorized features. 

All these model performance metrics have their own unique characteristics, which makes 

choosing them more challenging. Intrusion detection is a classification task, where the 

difference in the representation of attacks compared to normal traffic can be uneven. 

Accuracy and precision are less useful metrics here, as both require class values to be 

equally distributed. Although, a case could be made for accuracy, due to how common it 

is even in papers studying intrusion detection. A second characteristic of intrusion 

detection, is how expensive the wrong classification of an attack as normal traffic is, 

compared to the reverse case. This calls for the importance of recall and false positive 

rate as values better characterizing this kind of error in face of imbalanced classes. 

Personally, I opted in to demonstrating the accuracy and recall achieved by my models, 

the latter for the reason I just described, and the former for its common appearance in 

intrusion detection literature. For aggregating recall, I decided to use macro averaging, 

highlighting the imbalanced nature of the dataset I worked with. 

Hyperparameter optimization 

Machine learning models require parameters set up prior to training. These parameters 

could directly influence the performance achieved by a model, therefore an automated 

approach for selecting these is crucial. This approach is called hyperparameter 

optimization, a method wrapped over regular train-test-evaluate process of machine 

learning. In this sense, the meaning behind the notations used for {𝑋, 𝑦} is slightly 

different for hyperparameter optimization: 𝑋 indicates the hyperparameter space where 

optimization algorithms sample from, where 𝑋𝑠, s=1...m are the hyperparameters and 

𝑥𝑖 , 𝑖 = 1. . . 𝑛 are samples from the hyperparameter space. The target feature (y) is an 

outcome performance metric of the internal machine learning model, where 𝑦𝑖 is the 

metric achieved when the hyperparameter sample was 𝑥𝑖. The challenge is that no prior 

information is available on the value of 𝑦𝑖, but it can be estimated by calculating �̂�𝑖. The 
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goal of hyperparameter optimization is to find a 𝑥𝑖
∗ parameter combination, for which �̂�𝑖 

reaches its maximum (or, in case y is a loss metric, its minimum). 

First, I introduce the two most common methods for hyperparameter optimization, 

followed by more intelligent approaches. The common methods: 

• Grid search: 𝑋 is divided into equally sized segments (~grids) between 

[𝑥𝑚𝑖𝑛
𝑠 , 𝑥𝑚𝑎𝑥

𝑠 ], ∀𝑠 = 1. . . 𝑚. At each step a parameter combination from the grid is 

chosen for evaluation. The best performing combination of hyperparameters will 

be the final choice to train the machine learning model with. Grid search evaluates 

all grid combinations generated from 𝑋 exactly once, in this sense it ensures 

optimal results; however, its time complexity increases exponentially with 𝑚 and 

the number of grids selected for each 𝑋𝑠. 

• Random search: randomly generates 𝑥𝑖 values from 𝑋 a set number of times. The 

final parameter combination (𝑥𝑖
∗) is determined by the best model performance. It 

is linear in the number of trials set in advance; therefore, it calculates faster 

compared to grid search strategy; however, it does not guarantee optimal 

hyperparameters. 

Grid and random search both have their respective issues either with execution time or 

with performance. One idea to solve these issues is to find algorithms designed to 

optimize more intelligently, for example, Bayesian optimization with gaussian process 

priors (Brochu, Cora and De Freitas (2010) and Snoek, Larochelle and Adams (2012)) or 

tree-structured parzen estimators (Bergstra et al. (2011)). 

Bayesian optimization is interested in finding the maximum of function 𝑓(𝑥) = 𝑦𝑖 on a 

bounded set of hyperparameters. This function is expensive to evaluate; therefore, a 

probabilistic model is calculated to approximate it. Bayesian optimization uses all 

information (all earlier evaluations of 𝑓(𝑥)) to approximate the target metric value. This 

results in a process that can find the maximum of 𝑓(𝑥) at additional computational cost, 

which is still lower than attempting to calculate an additional value of the function to be 

approximated. For Bayesian optimization to work, two choices must be made: first, a 

prior over function must be selected to approximate 𝑓(𝑥); second, one must chose an 

acquisition function to construct a utility function from the model posterior to calculate a 

new point in 𝑋 to evaluate. 
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Gaussian processes (GP) are a good choice for the prior over function. GP is defined by 

the assumption that any finite set of points form a multivariate gaussian distribution. Each 

GP can be derived and are characterized by a mean function and a covariance (or kernel) 

function. The mean function can be set to return zero constantly for convenience. This 

leaves the covariance function, which is a choice between the squared exponential 

function (or RBF kernel), the Matérn kernel, the rational quadratic kernel, the exp-sine-

squared kernel or the linear kernel. 

Several popular choices are available for the acquisition function as well. These all 

determine which 𝑥𝑖 in 𝑋 should be evaluated next. In general, these functions depend on 

all previous �̂�𝑖 estimates, as well as the GP hyperparameters. This dependence on GP 

prior functions is characterized by the predictive mean function 𝜇(𝑥) and predictive 

variance function 𝜎2(𝑥). An additional formula is the best current value, which is denoted 

as 𝑥𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖𝑓(𝑥𝑖). The most common acquisition functions: 

Probability of improvement: 

𝑃𝐼(𝑥) = Φ(𝑍), 𝑤ℎ𝑒𝑟𝑒 𝑍 =
𝑓(𝑥𝑏𝑒𝑠𝑡) − 𝜇(𝑥) − 𝜉

𝜎(𝑥)
 

Expected improvement: 

𝐸𝐼(𝑥) = {
(𝜇(𝑥) − 𝑓(𝑥𝑏𝑒𝑠𝑡) − 𝜉)Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍), 𝑖𝑓 𝜎(𝑥) > 0

0, 𝑖𝑓 𝜎(𝑥) = 0
 

GP upper confidence bound: 

𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥) 

In the formulas above Φ(∙) and 𝜙(∙) are the normal cumulative distribution (CDF) and 

probability functions (PF) respectively. 𝜉 and 𝜅 are parameters controlling the tradeoff 

between exploitation and exploration for the two improvement functions and the upper 

confidence bound function. 

In fact, exploitation (associated with the mean function) and exploration (associated with 

the variance function) are important concepts to Bayesian optimization. The first means 

that new 𝑥𝑖 recommendations will be calculated where earlier evaluations yielded higher 

target metric values. Exploration on the other hand encourages the evaluation of regions 
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where uncertainty is high. Finding the balance between the two is one of the core elements 

of Bayesian hyperparameter optimization. 

A more demonstrative example of Bayesian optimization can be seen in Figure 18. In the 

figure, solid back line denotes the prior (and posterior) mean, blue shaded areas the prior 

(and posterior) uncertainty and black dotted line shown the true mean of function 𝑓(𝑥). 

The acquisition function is denoted as a green line. The next 𝑥𝑖 value to evaluate are 

proposed based on the maximum of the acquisition function. 

 

Figure 18: Illustration of the Bayesian optimization. Source: Brochu, Cora and De Freitas (2010) 

Bayesian optimization is a more purposeful approach compared to random search and 

converges in less total iterations compared to grid search. However, it has drawbacks: the 

more purposeful hyperparameter recommendations require additional calculation 

overhead (cubic in the dimensions of the hyperparameter space (indicated as 𝑚)), which 

makes Bayesian optimization less suitable for simple machine learning models or when 

the model has a lot of parameters to set. Moreover, kernel functions and the tradeoff 

between exploration and exploitation are themselves hyperparameters to the optimization 

process itself. Finally, Bayesian optimization can only yield continuous numeric 
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hyperparameters and it cannot provide hyperparameter values dependent on other 

hyperparameter values. 

These drawbacks have been highlighted and addressed by the tree-structured parzen 

estimators (TPE) approach by Bergstra et al. (2011). Where Bayesian optimization 

modeled 𝑃(𝑦|𝑋) directly, TPE models 𝑃(𝑋|𝑦) and 𝑃(𝑦). This 𝑃(𝑋|𝑦) is modeled by 

transforming the tree-structured generative process by replacing the distributions with 

non-parametric densities. Using different observations in these non-parametric densities, 

these substitutions represent a learning algorithm that can produce a variety of densities 

over the space of hyperparameters. TPE defines two densities for 𝑃(𝑋|𝑦): 

𝑃(𝑋|𝑦) = {
ℎ(𝑋), 𝑖𝑓 𝑦 > 𝑦∗

𝑔(𝑋), 𝑖𝑓 𝑦 ≤ 𝑦∗
 

Important to note that TPE is an algorithm which minimizes �̂�𝑖, rather than maximizing 

it. Though this change is only technical, it does affect function notation. In the formula 

above, ℎ(𝑋) represents the density formed using 𝑥𝑖 hyperparameter samples lower than 

a selected threshold y*, while 𝑔(𝑋) represents distribution from all the remaining 

observations. Unlike GP, TPE supports a soft y* threshold, in order to keep some 𝑥𝑖 

samples from X to formulate ℎ(𝑋). For example, this y* can be chosen to be some quantile 

𝛾 of the observed �̂�𝑖 values. TPE itself optimizes the expected improvement acquisition 

function, formulated as: 

𝐸𝐼𝑇𝑃𝐸(𝑋) = (𝛾 +
𝑔(𝑋)

ℎ(𝑋)
(1 − 𝛾))

−1

 

To maximize improvement, 𝑥𝑖 hyperparameter combinations which have high probability 

under ℎ(𝑋) and low probability under 𝑔(𝑋) should be selected. The tree structure enables 

it to easily draw many 𝑥𝑖 parameter combinations to evaluate. The ones with the highest 

expected improvement are selected at each iteration. 

TPE addresses issues with numerical only and independent hyperparameter features as 

well. It permits sampling discrete numerical and categorical distributions and extends 

continuous numerical values sampling with more than one distribution type to sample 

from with the help of stochastic expressions shown in Table 2. The attribute value for 

label is common for all the expressions, indicating an internal name of a given 

hyperparameter for better tracking. 
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Expression Description 

hp.choice(label, options) Returns an element from an options list. Elements can 

be nested stochastic expressions. 

hp.pchoice(label, p_options) Returns an element from a list of tuples in the format 

(prob, option). Permits the user to enforce bias among 

the choices. 

hp.uniform(label, low, high) Draws uniformly between low and high. 

hp.quniform(label, low, high, q) Draws uniformly between low and high. Better suited 

for handling discrete values. 

hp.loguniform(label, low, high) Draws values that are uniform in their exponent, from 

the interval [elow, ehigh]. 

hp.qloguniform(label, low, high, q) Draws values that are uniform in their exponent, from 

the interval [elow, ehigh]. Better suited for handling 

discrete values. 

hp.normal(label, mu, sigma) Draws a real value from a normal distribution with mu 

mean and sigma standard deviation. 

hp.qnormal(label, mu, sigma) Draws a discrete value from a normal distribution with 

mu mean and sigma standard deviation. 

hp.lognormal(label, mu, sigma) Draws values whose exponent is normally distributed 

with mu mean and sigma standard deviation. 

hp.qlognormal(label, mu, sigma, q) Draws values whose exponent is normally distributed 

with mu mean and sigma standard deviation. Better 

suited for handling discrete values. 

hp.randint(label, upper) Returns a random integer in the range [0, upper). No 

additional correlation is assumed between closer 

integer values compared to distant values during 

optimization. 

Table 2: Hyperopt (python implementation of TPE) stochastic sampling functions. Source: Bergstra, 

Yamins and Cox (2013) 

Apart from these improvements to the hyperparameter value definitions, TPE also 

improved execution time from being cubic in 𝑚 to being linear in both 𝑚 and 𝑛. With 

these advantages and considering the availability of a python implementation, I decided 

to use TPE hyperparameter optimization to improve my intrusion detectors. 

This concludes the data mining and machine learning context of my dissertation. In this 

chapter I introduced supervised and unsupervised learning and the most common 

algorithms in intrusion detection research from each. The introduction of neural networks 

and autoencoders, due to their importance to my work, received their own chapters. 

Finally, in the last part of this chapter I have shown additional techniques that I used to 

evaluate and improve the detection performance of my proposed models. Chapter 2.3 

introduces the pivotal early works on intrusion detection and reviews the research 

conducted in the literature. 

2.3.  INTRUSION DETECTION RESEARCH – RELATED WORKS 

The aim of this chapter is to briefly introduce the field of intrusion detection research with 

articles that studied it using machine learning models. I will start this chapter with the 
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most important studies in the field and follow it up with dedicated survey papers to give 

a quick look on which machine learning models can be used for intrusion detection. Then, 

I will discuss further articles that either focused on or provided single-model detectors as 

part of their research. Afterwards, I introduce papers evaluating ensemble models and 

followed by those evaluating hybrid models. Special cases of hybrid models were 

extended with variational autoencoders. I discussed them in connection with hybrid 

intrusion detectors. I highlighted papers that used at least one of two additional techniques 

for intrusion detection as well: synthetic sampling and hyperparameter optimization. 

Finally, I close this chapter by listing the issues in the field formulated by the survey 

papers introduced earlier. 

One of the first studies of intrusion detection from a data mining perspective was Stolfo 

et al. (2000). They discussed the 1999 DARPA dataset for anomaly and misuse detection. 

They performed feature selection, classification, frequent pattern detection and sequence 

analysis. By the end of feature selection, the original traffic features were divided into 

four categories: 

• Intrinsic features: features describing all network connections. 

• Time-based traffic features: aggregate features describing connections that had 

the same destination host or service as a selected connection in the prior 2 seconds. 

• Host/service-based traffic features: same as above, but instead of a 2 second 

aggregation window, the authors used the previous 100 connections. 

• Content features: features describing the content of the traffic. 

These four groups of features were used to train three machine learning models with the 

RIPPER algorithm for rule construction (RIPPER: a rule induction algorithm based on 

the “divide and conquer” principle). The target variable consisted of 5 classes: DoS 

(denial of service attacks), R2L (unauthorized access from a remote machine), U2R 

(unauthorized local access to superuser privileges), probe (traffic surveillance), and 

normal behavior. 

Stolfo et al. (2000) expected the three models to perform better on different feature 

groups: 

• The time-based traffic model: containing intrinsic and time-based traffic 

features. This proved to be the best for detecting DoS and probing attacks. 
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• The host-based traffic model: containing intrinsic and host-based traffic 

features, best for detecting slow probing attacks. 

• The content model: containing intrinsic and content features, designed 

specifically for detecting R2L and U2R attacks. 

The three models were then combined into a meta-learner, which decided on the best 

performing models for each connection. Though not explicitly stated in the paper, this 

approach can be considered as a model ensemble. 

Stolfo et al. (2000) provided an important study of intrusion detection and one of the first 

benchmark datasets, the KDD Cup 1999, however the data they used were not without 

criticism. The most prominent of which can be read in McHugh (2000). His criticisms 

can be traced back to the unit of analysis problem: a single attack pattern can be tied to a 

single connection package, or to multiple packages over time, formulating a flow. This 

causes issues with evaluation methods used by Stolfo et al. (2000) and other participants 

analyzing the KDD Cup 1999 dataset. A second criticism of the dataset by McHugh 

(2000) complained about the underlying taxonomy: it has been developed from the 

attacker’s perspective. This provides additional information for detection algorithms that 

may not be available in a realistic scenario. Instead, McHugh (2000) proposed a 

classification scheme based on the protocol layer and the protocols used, or whether a 

completed protocol handshake is required to carry out an attack. Attack distributions were 

unrealistic as well, which have been noted first a decade later by Tavallaee et al. (2009). 

Both the training and test datasets of KDD Cup 1999 contained a large number of 

redundant records (78% and 75%, respectively), which caused machine learning 

algorithms to have biased predictions, first highlighted by Tavallaee et al. (2009). Instead, 

they proposed a new dataset, the NSL-KDD dataset having better balanced target classes, 

no redundancy and less observations overall. 

The works of McHugh (2000), Stolfo et al. (2000) and Tavallaee et al. (2009) were 

pivotal, but not the only ones in intrusion detection. In their literature review, Tsai et al. 

(2009), for example, wrote about intrusion detection research between 2000 and 2007. 

The authors reported that single model classifiers were used the most, however by 2008, 

hybrid classification techniques also began to gain attention. Ensemble models were not 

analyzed in depth, partly due to how these works contributed only a small fraction in the 

evaluated literature (only ~11%). 
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Moreover, Tsai et al. (2009) have taken a look at two additional characteristics of 

intrusion detection literature: the datasets used and whether feature selection was 

considered by a paper or not. They, just as Bhuyan, Bhattacharyya and Kalita (2014), 

determined that most of the available literature used one of three datasets: KDD Cup 

1999, DARPA 1998 and DARPA 1999, being the few available benchmark datasets at 

the time. 

Bhuyan, Bhattacharyya and Kalita (2014) identified six methods used for network 

anomaly detection: statistical methods, classification, clustering and outlier detection, soft 

computing, knowledge-based models and combination learners (Figure 19) Out of them, 

classification, clustering, outlier analysis, soft computing algorithms (specifically 

artificial neural networks) and combination learners were the most researched areas. 

 

Figure 19: Classification of network anomaly detection methods. Source: Bhuyan, Bhattacharyya and 

Kalita (2014) 

Figure 20 shows the model classification scheme set up by of Ippoliti (2011). Compared 

to Bhuyan, Bhattacharyya and Kalita (2014), he grouped classification, clustering and 

outlier analysis under machine learning, distributed elements of soft computing between 

the remaining four categories and identified knowledge based and combination learners 

as rule based and hybrid approaches. 
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Figure 20: Relationship between detection methods. Source: Ippoliti (2011) 

Buczak and Guven (2015) discussed the potential of using data mining and machine 

learning algorithms for intrusion detection, more particularly for signature detection, 

anomaly detection and hybrid approaches, the latter two combined into one category due 

to their low representation in the studied literature. The covered algorithms can be seen 

in Figure 21. 

 

Figure 21: Machine learning approaches in intrusion detection. Coverage of Buczak and Guven (2015) 

The most common metrics for classifier evaluation in the literature were accuracy, 

detection rate (often referred to as recall or sensitivity), false alarm rate (or false positive 

rate) and AUC based on ROC curves. Recall and false positive rate better describe model 

performance in intrusion detection, as attacks that remain undetected are more harmful 

for an organization, as legitimate connections being detected as attacks. Accuracy for 

intrusion detection, due to the unbalanced nature of attack classes, is far less informative. 
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A more recent survey created by Molina-Coronado et al. (2020) evaluated intrusion 

detection research from the perspective of the KDD process of Fayyad, Piatetsky-Shapiro 

and Smyth (1996). Therefore, they provide a more holistic review: 

• Data selection: the system from which data is collected matters a lot. One can 

collect data from root network devices, covering a broad range of network devices 

at the cost of having less data on horizontal traffic, or from access devices, which 

provides more data on horizonal communication, but for less network devices. 

Network traffic itself can be interpreted on packet and flow level, which 

complicates analysis further. 

• Construction of data features: it is tasked to acquire features from the captured 

raw traffic data. This includes both explanatory and target features, each having 

unique challenges associated. Explanatory features can come from the various 

packet headers, or from the content, and can describe one or more connection 

flows. Features from each must be collected if the goal is to create an intrusion 

detector for a wide array of attack patterns. Additionally, labelling attacks might 

be an even greater challenge. 

• Data preprocessing and transformation: involve feature noise reduction 

(outlier and missing value imputations), categorical feature encoding, continuous 

feature discretization and numerical feature scaling. 

• Data reduction: data reduction can be achieved by reducing the number of 

features or of traffic observations. The former can be achieved by selecting useful 

features or by projecting explanatory variables into a lower dimensional space. 

For example, PCA and AE can be used for dimensionality reduction. Sample 

dimensionality reduction (where an observation in the sample represents more 

than one observation from the old dataset) is less researched within the field. 

• Data mining: data mining for intrusion detection can take the form of misuse, 

anomaly and hybrid detection. In misuse detection, the most common algorithms 

used were ANNs, SVMs, k-nearest neighbor, naïve Bayes algorithms and decision 

trees. The combination of these methods into ensemble models was also proposed 

by multiple papers. Hybrid detection was divided into four categories, shown in 

Figure 1 and discussed in chapter 2.1. A second, less common taxonomy divided 

intrusion detection to batch and incremental learning. Batch learning is more 
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common, while incremental learning is better suited for stream data processing 

architectures. 

• Evaluation: prediction performance is only one of many evaluation criteria an 

intrusion detector can face, however papers published study this characteristic 

almost exclusively. Furthermore, not every metric is equally useful, due to the 

target class imbalance experienced in the data and the fact that attacks might have 

more severe consequences for the victim. 

The most used single-model methods for intrusion detection were ANNs, SVMs, decision 

trees, k-nearest neighbor algorithms and naïve Bayes algorithms. ANNs, decision trees 

and SVMs performed well as intrusion detectors, not without drawbacks though: in 

general, ANNs and SVMs are time intensive to train, while ANNs and decision trees are 

more susceptible to overfitting. I found the following papers studying single model 

signature detection either as their pronounced focus, or as part of a comparison with more 

advanced ensemble or hybrid detectors: Bouzida et al. (2004), So-In et al. (2014), Elhag 

et al. (2015), Petersen (2015), Aghdam and Kabiri (2016), Hasan et al. (2016), Almseidin 

et al. (2017), Yin et al. (2017), Ingre, Yadav and Soni (2017), Divekar et al. (2018), 

Parampottupadam and Moldovann (2018), Sakr, Tawfeeq and El-Sisi (2019), Sapre, 

Ahmadi and Islam (2019), Mahfouz, Venugopal and Shiva (2020). 

Aghdam and Kabiri (2016) performed feature selection on the NSL-KDD and KDD Cup 

1999 datasets using ant colony optimization, a special metaheuristic approach mimicking 

the foraging behavior of real-life ants. The authors mentioned no explicit classification 

algorithm, although ant colony optimization could be utilized as one, the means of which 

I studied in Brunner (2019) as well. 

Almseidin et al. (2017) compared several models on the KDD Cup 1999 dataset, reporting 

random forest classifiers, an ensemble method, having the best overall performance in 

terms of precision, recall and AUC. Their work is not the only one which, either on 

purpose or by accident, compared single model approaches with model ensembles. The 

ensembles outperformed the single models in every case. 

Bouzida et al. (2004) experimented with k-nearest neighbor and decision tree approaches 

augmented by principal component analysis on the 10% sample of the KDD Cup 1999 

dataset. They reported good classification performance on as low as four components for 
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both models. They also reported predictions on R2L and U2R classes to be the most 

difficult. 

Elhag et al. (2015) proposed a genetic fuzzy system for classification in one versus one 

pairwise classification models rained on the 10% sample of the KDD Cup 1999 dataset. 

Their goal with it was to improve prediction performance on minority classes. The 

method they used was initially designed for association rule mining, but they extended it 

for classification. During training, just like Tavallaee et al. (2009), they removed 

duplicate observations. Performance evaluation shown comparable results to other fuzzy 

rule generation algorithms and to decision trees. Their proposed genetic fuzzy system 

performed well with underrepresented classes as well, while maintaining low false alarm 

rates. 

Hasan et al. (2016) studied the intrusion detection performance of SVM classifiers under 

different kernels. They found the Laplace kernel to provide the best performance on the 

NSL-KDD dataset, though they highlighted that SVM model performance is dependent 

on the used dataset. 

Ingre, Yadav and Soni (2017) used correlation-based feature selection and CART 

decision trees to perform predictions on the NSL-KDD dataset. They reported good 

classification performance on both binary and 5-class classification. 

Mahfouz, Venugopal and Shiva (2020) trained naïve Bayes, logistic regression, neural 

network, SVM, k-nearest neighbor and decision tree models in three setups on the NSL-

KDD dataset. The first and second setups were performed with and without feature 

selection. The third setup involved data resampling: random under sampling was used for 

majority classes, and SMOTE oversampling for minority classes. Models trained in setup 

three provided the best predictions. 

Parampottupadam and Moldovann (2018) used the H2O.ai implementation of artificial 

neural networks on a cloud architecture. Their model performed binary classification 

between normal and attack traffic on the NSL-KDD dataset, then a second neural network 

classified the attacks into multiple classes. The authors compared the performance of their 

neural network architecture with SVM, random forest, linear regression and naïve Bayes 

models. Overall, the proposed neural network architecture provided the best classification 

performance. 
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Petersen (2015) used the NSL-KDD dataset and four machine learning algorithms (ID3 

and CART decision trees, k-nearest neighbor and naïve Bayes) to perform three 

hypothetical experiments with binary, five class and 22-class classification schemes. A 

secondary analysis evaluated feature importance. The results provided shown that k-

nearest neighbor and ID3 decision tree algorithms had the best overall prediction 

performance. Out of the classification schemes, binary classification models performed 

better, however, Petersen (2015) noted, that a case for a five class classification could be 

created, as it provides additional clues for the intrusion detection system to act on. 

So-In et al. (2014) manually extended the KDD Cup 1999 dataset with a new class based 

on botnet signatures. Their model comparison covered decision trees, sequential rule 

construction, artificial neural networks, naïve Bayes, k-nearest neighbor algorithms and 

SVMs in different setups. Setup one involved binary classification between normal and 

attack traffic, setup two was 5-class multiclass attack detection and scenario three was 

6-class multiclass attack detection with the new botnet class. The authors reported good 

prediction performance, with the best performing models being decision trees, neural 

networks and k-nearest neighbor algorithms. 

Yin et al. (2017) used recurrent neural networks on the NSL-KDD dataset. Their choice 

of approach is interesting, as the original KDD Cup 1999 dataset does not contain any 

feature that is explicitly temporal, only implicitly temporal features in the form of time-

based traffic features. This lack of a temporal feature has been inherited by the NSL-KDD 

dataset and it makes sorting observations difficult be used for training RNN models, 

despite the potential gains of detecting attacks tied not only to a single traffic packet, but 

also to a flow of traffic. 

Divekar et al. (2018) used naïve Bayes, SVM, decision trees, random forests, neural 

networks and k-means clustering with majority voting over the clusters. The authors 

applied synthetic sampling and improved the models with grid search hyperparameter 

optimization as well. They reported model performances in terms of F1-score, where 

random forests performed slightly better than other, single-model classifiers.  

Sapre, Ahmadi and Islam (2019) Studied naïve Bayes, SVM, random forest, and neural 

network models for binary and multiclass classification. They reported artificial neural 

networks as the best, outperforming even random forests in some classes and setups. 
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Sakr, Tawfeeq and El-Sisi, (2019) combined binary-, and standard-based particle swarm 

optimizations (BPSO and SPSO) with support vector machines. First, feature selection 

was performed by BPSO, then a support vector machine was trained on the NSL-KDD 

dataset. SPSO played a part in the optimization of the SVM model, which managed to 

achieve good performance. 

A second group of researchers studied ensemble models with the intent of increasing 

overall intrusion detection performance by aggregating the results of multiple classifiers. 

Papers written on ensemble modeling are Chebrolu, Abraham and Thomas (2005), 

Folino, Pizzuti and Spezzano (2005), Mukkamala, Sung and Abraham (2005), Abadeh et 

al. (2007), Tian, Liu and Xiang (2009), Kevric, Jukic and Subasi (2017), Latah and Toker 

(2018) and Cavusoglu (2019). In the majority of these papers result combination has been 

based on a simple function of predictions, such as simple majority vote, average vote, 

rule-based evaluation, etc. The most common ensemble model used was the random 

forest algorithm due to its popularity. More complex boosting and stacking approaches 

were studied less in the intrusion detection literature. 

Abadeh et al. (2007) presented a parallelized fuzzy rule generation approach, each rule 

built using a genetic local search algorithm. Each set of fuzzy rules were later aggregated 

to perform ensemble classification. This approach was compared with other rule-based 

learning algorithms, where it achieved best performance. 

Tian, Liu and Xiang (2009) created a distributed learning model using artificial neural 

networks in a two-staged approach: in the first stage, a network learned a random subset 

of the KDD Cup 1999 10% dataset’s features. In the second phase, the class predictions 

of these models were collected by a final classifier improving prediction performance. 

Conceptually, this model is the most similar to a combination of ideas used for random 

forests, neural networks and stacking model ensembles. 

Chebrolu, Abraham and Thomas (2005) used a three-phased approach. They first 

performed feature selection on a sample created from the 10% sample of the KDD Cup 

1999 dataset. In the second phase, they created a Bayesian network and a CART decision 

tree, tested separately. Later, the two models were combined into a bagging classifier with 

improved overall detection performance compared to each base model. 

Folino, Pizzuti and Spezzano (2005) used distributed parallel genetic programming to 

train decision trees. These trees were then combined in an ensemble by using simple 



Csaba Brunner – Intrusion Detection by Machine Learning 

68 
 

majority vote. The solution was tested using the 10% sample of KDD Cup 1999 dataset. 

The proposed model performed well on normal, DoS and proba attacks, but struggled on 

minority classes. 

Latah and Toker (2018) experimented with decision trees, random forests, bagging trees, 

multiple boosting algorithms, k-nearest neighbor algorithms, extreme learning machines, 

neural networks, SVMs, linear discriminant analyses and naïve Bayes algorithms. Some 

of these are single-model methods, others ensemble models. The authors achieved the 

best performance on LogitBoost out of the listed detectors. 

Mukkamala, Sung and Abraham (2005) discussed three different artificial neural 

networks (different in their optimization algorithms), SVMs and multiple adaptive 

regression spline (MARS) models. These results were improved further on when the 

authors aggregated the results with majority voting. The authors created two stacking 

models: one that combined the three ANNs, and a second adding the SVM and MARS 

models to the stack. The best performing ANN was the one with back propagation, though 

both stacking models improved on the results further. 

Cavusoglu (2019) used naïve Bayes, random forest, decision tree and k-nearest neighbor 

algorithms as single-model classifiers and as candidate base models for stacking 

classifiers combined with logistic regression. The author grouped the NSL-KDD data into 

multiple samples comparing each attack class to normal traffic. Each model was trained 

and evaluated on these with the option of formulating ensembles as well. Though not a 

conscious attempt at studying ensemble models, the resulting detectors of Cavusoglu 

(2019) all ended up being random forests or stacking classifiers. 

Kevric, Jukic and Subasi (2017) compared different models based on decision trees, then 

combined them into majority voting ensembles. One example is the NBtree model, which 

is a specialized decision tree with naïve Bayes classifiers at each leaf of the tree. 

More sophisticated models combine signature and anomaly detection, resulting in hybrid 

intrusion detectors. Only a few research papers evaluated hybrid detection. These had 

shown a lot of variations on how models can be combined. Studies evaluating hybrid 

detection were Zhang and Zulkernine (2006), Zhang, Zulkernine and Haque (2008), Kim, 

Lee and Kim (2014), Parsaei, Rostami and Javidan (2016) and Yao et al. (2017). 
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Zhang and Zulkernine (2006) and Zhang, Zulkernine and Haque (2008) demonstrated the 

applicability of random forest algorithms for hybrid intrusion detection. In their papers, 

signature detection is performed using random forests, and anomaly detection with outlier 

detection techniques applied on each leaf of every decision tree in the forest. For example, 

outlier detection can be based on a similarity score between two network traffic 

observations which appear in the same leaf for a large enough number of trees. The 

authors profiled the records for outlier detection not by attack class, but by network 

service, which is available in KDD Cup 1999. 

Similarly, Kim, Lee and Kim (2014) used decision trees and one-class SVMs for their 

hybrid intrusion detector. Their approach constructed a decision tree first to classify 

attacks present in the training dataset. Attacks unknown to the model were used to train 

one-class SVM models, one for each leaf of the decision tree having unknown attack 

classes. In this combination, the model managed to achieve good predictions with a low 

false positive rate. 

Yao et al. (2017) proposed a new hybrid multi-level data mining system for intrusion 

detection. The system consists of three components. The multi-level hybrid data 

engineering component is tasked with data preprocessing and with splitting the data to 

one versus rest samples. Then performs feature selection on the samples. The second 

component is called multi-level hybrid machine learning, and it is responsible for model 

training by clustering each data group first, then classifying each cluster using either an 

SVM model, an artificial neural network, a decision tree or a random forest. These are 

not evaluated immediately, because the next component, micro expert modify generates 

“impurity data” from the misclassified traffic, then trains a new decision tree model on 

this misclassified dataset to improve predictions further. The hybrid multi-level data 

mining system achieved better performance using the KDD Cup 1999 10% sample than 

many non-ensemble and ensemble approach used before, even on the more challenging 

minority classes. 

Parsaei, Rostami and Javidan (2016) focused their efforts on the minority classes of 

NSL-KDD. They used a combination of k-means and k-nearest neighbor algorithms. 

They first clustered the training data, and calculated two distances, one from the cluster 

centroids and one from the neighborhood of each traffic record. They used this aggregate 

feature for dimensionality reduction to a single explanatory feature. This feature was used 
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to train k-nearest neighbor algorithm. To increase performance, the authors used SMOTE 

sampling as well. 

So far, I have excluded one type of hybrid intrusion detection from the previous 

paragraphs due to their unique nature. The following authors all combined autoencoder 

and variational autoencoder networks with signature detectors to achieve an even greater 

level of prediction performance: Javaid et al. (2016), Al-Qatf et al. (2018), Lopez-Martin, 

Carro and Sanchez-Esguevillas (2019) and Yang et al. (2019). The utility of autoencoders 

comes from how they can be viewed as dimensionality reduction algorithms. On top of 

that, VAEs and CVAEs also perform well as data generative models, therefore, they can 

replace synthetic sampling techniques, as well as help machine learning models acquire 

more knowledge on minority classes. 

Al-Qatf et al. (2018) combined sparse autoencoders with SVM classifiers. This has been 

achieved by training the SAE on unlabeled data to generate a low dimensional 

representation. Following this, new data with target labels are fed to the encoder layers 

only. The reduced dimension explanatory features are then fed to the SVM classifier. The 

authors did not only report improved performance, but also improved the memory 

footprint and lowered training time for the SVM model. Similarly, Javaid et al. (2016), 

combined an autoencoder with multiclass logistic regression. Both reported classification 

performance greater than ensemble models. 

Lopez-Martin, Carro and Sanchez-Esguevillas (2019) used different types of VAE 

models. The first model was a standard VAE conditioned by target labels at encoder input. 

It used cross-entropy loss regularized by KL divergence compared to standard normal 

distribution. The second variation split explanatory features at the output layer to 

numerical and categorical. The loss for numerical features was MSE, whereas the loss for 

categorical features remained the cross-entropy loss. KL divergence was not changed. 

The third model changed the conditioning: instead of the encoder input, it was applied on 

the decoder input. Out of the three models, the outputs of the third provided the best 

predictions, outperforming those using synthetic sampling. For their performance tests 

the authors used random forests, linear SVMs, logistic regression and neural networks, 

although their main focus was on sampling, rather than on prediction capabilities. 

Yang et al. (2019) combined improved CVAEs with neural networks. The improvement 

in their model was a target conditioning applied on the decoder layer only, which makes 
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their intrusion detector similar to the third model of Lopez-Martin, Carro and Sanchez-

Esguevillas (2019). The main difference was that Yang et al. (2019) re-used the encoder 

for weight initialization in the detector neural network. They carried out numerous 

performance comparisons with single-model, ensemble and other AE supported hybrid 

models as well, reporting their CVAE + NN model achieving the highest detection 

performance. 

I also identified two techniques that could increase detection performance regardless of 

the model type used. One was synthetic sampling and the other was hyperparameter 

optimization, both used infrequently in the articles I researched. Synthetic sampling has 

been utilized by Parsaei, Rostami and Javidan (2016), Divekar et al. (2018), Lopez-

Martin, Carro and Sanchez-Esguevillas (2019), Yang et al. (2019) and Mahfouz, 

Venugopal and Shiva (2020). These papers compared SMOTE with their respective VAE 

variations or used to improve detections of their model. As SMOTE and VAE fulfill the 

same purpose, it is highly discouraged to use them at the same time. Hyperparameter 

optimization was used by Zhang, Zulkernine and Haque (2008), Hasan et al. (2016), Yin 

et al. (2017), Al-Qatf et al. (2018), Divekar et al. (2018), Sakr, Tawfeeq and El-Sisi 

(2019) and Yang et al. (2019). The most used optimization strategy was grid search. 

Based on my review of the literature, I experienced a hierarchy between the studied 

techniques, starting from single-model signature / anomaly detection, followed by 

ensemble models, then by hybrid models, and finally, new data generative approaches, 

like VAE models. 

Each review article I presented earlier in this chapter provided challenges and open 

questions in intrusion detection. Bhuyan, Bhattacharyya and Kalita (2014) brought up the 

following issues, questions and research topics: 

• The nature of attacks keeps changing over time; therefore, adaptability of models 

is a necessity. 

• A high rate of false alarms should be avoided; however, it cannot be eliminated 

completely. 

• There is an overarching need for benchmark intrusion datasets. 

• A fast and appropriate feature selection for all attack classes is needed. 

• Selection of non-correlated classifiers for building an effective ensemble 

approach. 
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Buczak and Guven (2015) advised the following criteria to compare machine learning 

algorithms with each other: 

• Performance measures do not work for comparison, as the trained machine 

learning algorithms were tested using different samples of the same dataset. 

• Due to the ever-changing nature of network attacks, intrusion detectors need to 

adapt quickly. IDS model training, however, is performed when traffic is the 

lowest, usually at night. It is expected form the training process to not take 24 

hours. A relatively low training time therefore is key to evaluation. 

• Intrusions should be detected fast. Quick classification of network traffic can 

improve reaction time and shows the processing capability of the system. 

• To help administrators examine model characteristics and update the system more 

easily, a model with lower complexity is preferred, though not mandated. 

Buczak and Guven (2015) furthermore gave the following advice on creating machine 

learning models for intrusion detection: 

• Intrusion detection is a field with a rapidly changing environment. Models must 

be trained on a daily basis, or when a new intrusion is discovered. To adopt faster, 

the whole model should not be retrained again, but incrementally as the 

administrators feed it with new data. 

• The KDD Cup 1999 dataset, as a benchmark, is widely accepted and used, 

however it has its own flaws. It contains too many redundant observations and the 

target class is unevenly distributed. Many tried to combat both by sampling the 

dataset, which makes performance comparisons complicated. The creators of the 

NSL-KDD dataset addressed this redundancy; therefore, it is a preferable 

alternative. 

Dua and Du (2016) identified multiple challenges for data mining algorithms in intrusion 

detection: 

• Modeling large-scale networks and creating graphs based on large networks is a 

difficult task. 

• The volume of heterogenous data, the dynamic threats, and the severe imbalance 

between normal and attack classes complicate threat detection. 
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• New data mining methods and adaptive systems are necessary to predict future 

attacks. 

• Use of online learning methods for dynamic modelling of network data. 

• Modelling data with skewed class distributions to handle rare event detection. 

There is a fundamental asymmetry in anomaly detection problems between 

normal activities and attacks. Classification should be more focused on classifying 

minority classes as attacks or anomalies. 

• One of the biggest challenges in anomaly detection is the selection of features that 

best characterize the user, or the system usage patterns. This is often carried out 

to reduce data dimensionality. 

Molina-Coronado et al. (2020) provided the following open issues in their review article: 

• Most papers provided insufficient information on the techniques applied for 

intrusion detection which hurt reproducibility. 

• They found issues with publicly available datasets, too. A large portion of data 

preprocessing has been carried out in them in advance. The authors recommend 

not to rely on a single benchmark dataset but to use two or more instead. 

Furthermore, encrypted data is increasingly prevalent, which is not present in 

these public datasets at all. 

• They highlighted the importance of dimensionality reduction, due to the large 

number of features, which is further increased when categorical features are 

encoded. 

• Instead of batch learning, incremental learning should receive more attention in 

the future. 

• The temporal nature of network traffic is underused, despite having a lot of 

potential. 

• Intrusion detection has many more characteristics apart from detection 

performance. However, only the latter is studied in the field. 

To summarize, I identified the following areas in need of substantial attention: 

• Design hybrid detection approaches and/or ensemble models for comprehensive, 

unbiased intrusion detections. 

• Mind the data: if the KDD Cup 1999 dataset is used, then an appropriate sample, 

and a good set of features should be selected. With NSL-KDD dataset, sampling 
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can be omitted, but some form of feature selection should be performed, 

nonetheless. 

• When measuring performance, false alarm rate and recall are more important than 

accuracy. 

3. RESEARCH OVERVIEW 

This chapter provides an overview of the research I have conducted, demonstrated with 

the tools, techniques and considerations of the design science methodology and the 

CRISP-DM process. These two have many intersections, as some steps in the CRISP-DM 

process supports design science activities. 

3.1. CONTEXT 

The context of intrusion detection, apart from the details discussed in chapter 2.1, were 

elaborated in Ahamad et al. (2009). They identified five reasons for developing intrusion 

detection systems: 

• Threats from malware: hackers use malware to steal private information. They 

leverage the vulnerabilities of web site structures, social networks and document 

transmissions not scanning for malware. Once and intrusion is successful, the 

malware will track the user’s keystrokes, spy on the users browsing habits and 

send the user’s personal information to the attacker. 

• Threats from botnets: botnets are groups of hijacked machines coordinated by 

attackers. Bots in a botnet are controlled by a hidden master computer. Computer 

and internet users suffer privacy breaches or financial losses, loss of valuable data, 

and damage to computer systems caused by botnets. 

• Threats from cyber warfare: cyber-attacks are critical military actions. The 

increasing dependence of traditional infrastructure on cyberinfrastructure leaves 

many vulnerabilities for cyber warriors to exploit. Cyber defense is an inevitable, 

challenging goal of military forces around the world. An efficient cyber defense 

requires conscious effort from multiple countries, states, institutions and industry 

members, as attacks can affect all of them. 

• Threats from mobile communication: the development of mobile 

communication caused the proliferation of reliable services. Investigations shown 
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that even financial transactions appeared in mobile services, which draws the 

interest of hackers as well. The mobile infrastructure and devices provide multiple 

opportunities to steal valuable information. Institutions are developing new ways 

to protect against fraud and phishing. 

• Cyber-crimes: different jurisdictions define cyber-crime depending on how it 

correlates to local situations. Prospering e-commerce entices cyber criminals, 

many purchase attack platforms to carry out their activities. These are carried out 

by exploiting vulnerabilities in the e-commerce industries. Countering these 

activities is difficult as they do not leave traces behind. Combating cyber-crimes 

requires effort in two perspectives: first, uniform cyber laws need to be enacted. 

Second, advanced intrusion detection technology needs to be developed to defend 

against criminal activities. 

More recent developments within the context of intrusion detection are the ongoing 

monitoring and reporting on the development of malicious activities. One example is the 

McAfee Labs Threats report (Beek et al. (2019)). This report drawn attention to the 

increase of ransomware attacks, the increase of data dumps (release of sensitive customer 

data to the dark web), the increase of cyber-attacks exploiting vulnerabilities in remote 

desktop applications and in the HTTP protocol. Two attacks mentioned in the report were 

social engineering, which is still as prevalent as ever, and an increase in attacks exploiting 

the vulnerabilities of IoT devices. Many of these are not necessarily network intrusions 

themselves, more the results of a successful intrusion. 

All the above and more fuel the efforts aimed at creating new and better intrusion 

detection systems. The goals of actors in the social context can be summarized in the 

following points: 

• Risk mitigation: reduce the chance of intrusion, information loss, or fines in the 

form of potential lawsuits. Reduce system downtime due to DDoS attacks, by 

installing a traffic reduction service supported by an intelligent intrusion detector. 

• Infrastructure and national security: prevent the sabotage of key infrastructural 

elements, such as electricity and water supply, increasingly reliant on information 

infrastructure. 

• Protection of private information: restrict access to sensitive information, such as 

credit card numbers, bank account and personal information. 
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• Protection of government secrets: as an extension of the point above, departments 

store information not meant for a public audience. The exposure of these can have 

far-reaching consequences. 

I have already discussed the knowledge context of intrusion detection in chapter 2. Out 

of them I found signature and hybrid NIDS interesting to be studied deeper using 

ensemble techniques and artificial neural networks. To frame my research, I decided to 

use the CRISP-DM process model, displayed in Figure 3. 

3.2.  RESEARCH GOALS 

The goal and design problem of this dissertation is to provide a novel intrusion detection 

solution applying machine learning methods. Accordingly, the two research goals I set to 

achieve are: 

RG1. To create an intrusion detection model that can compete with the ones 

introduced in related scientific literature, measured by detection performance 

metrics. Performance in this context is described as the portion of attacks correctly 

and incorrectly classified as being part of normal activity and vice versa. 

RG2. To identify machine learning methods that can improve performance on 

complex event detection problems where target features have a high degree of 

class imbalance. Intrusion detection fits this description, as the available data is 

heavily skewed towards the more common normal, rather than the rarer malicious 

activity. Some of these candidates are synthetic sampling to feed more balanced 

training data, hyperparameter optimization to find the overall best performing 

parameters for a machine leaning model, and ensemble techniques, creating 

composite models for improved predictions. 

Based on these research goals I formulated the research questions of the next chapter. 

3.3.  RESEARCH QUESTIONS 

RQ1. Is machine learning a suitable approach for intrusion detection? If machine 

learning is a proper technique for intrusion detection, which are the appropriate 

models?  
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Finding the right machine learning model is a challenging task. It is affected by the 

selected intrusion detection method (signature detection or anomaly detection) as well as 

the available dataset and the sampling method chosen for that dataset. 

The most common and best working non-ensemble machine learning algorithms in 

intrusion detection are decision trees, artificial neural networks and k-nearest neighbor 

algorithms for signature detection. Each has drawbacks though: 

• Decision trees are prone to overfitting, unstable (a small change in training data 

can cause entirely different decision trees) and perform poorly on unevenly 

distributed training classes. 

• Artificial neural networks, like decision trees, are prone to overfitting, and 

generally have long training times. 

• K-nearest neighbor algorithms are fast to train, but need all data for accurate 

predictions, therefore they scale poorly. 

Countless studies in the literature have proven that a good combination of machine 

learning algorithms can detect intrusions well with few false alarms. 

Predictive performance is, however, not the only characteristic for intrusion detectors to 

be compared by. Training time, prediction time and model portability are three additional 

characteristics to consider. Under portability I mean how well can one move the detection 

model between two systems and how much computational resource do they require from 

the operator. However, I kept the evaluation of these aspects out of scope of this 

dissertation in favor of a more thorough study of predictions. 

I answered this research question throughout the dissertation with different machine 

learning models, most prominently in chapters 4.2.1 and 4.2.2, where I provided the 

designs of two intrusion detectors and in chapters 5.1 and 5.2, where I described the 

achieved performances of the same detectors. In addition, the analysis of the related 

literature in chapter 2.3 already provided context for this research question. 

RQ2. Which type of intrusion detection method is more effective from the 

following ones: misuse detection by classification, anomaly detection by outlier 

analysis or a combination of the previous ones?  

This is a more recent question in the field of intrusion detection, also highlighted by Dua 

and Du (2016). On one hand, signature detection can have high recall and low false 
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positive rate, is easy to implement, and provides predictions quickly. However, it is 

incapable of detecting new, unknown attacks. On the other hand, anomaly detection aims 

at building a profile of normal traffic, and then detects anomalous or attack traffic based 

on the difference from this normal profile. Anomaly detection captures unknown attacks 

better; however, it is more difficult for it to set apart attacks and anomalous traffic, as the 

latter might include unusual, yet normal connections as well, highlighted in Ippoliti 

(2011, 2013), therefore, anomaly detection will have high false positive rates. In a good 

intrusion detector, recall is high and false positive rate is low. Signature and anomaly 

detectors use compensatory detection approaches; therefore, it is a good idea to combine 

them into new hybrid detectors. 

A simple combination of the two techniques is not enough though, a more purposeful 

approach must be followed. For a hybrid detector to work, one must make two decisions: 

• Find the best candidate algorithms for the individual signature and anomaly 

detector. 

• Find a way to integrate the two detection approaches to achieve the best balance 

of recall and false positive rate. 

Good candidates for hybridization are models that do not perform conflicting operations 

on the data, for example, decision trees and one class SVM models or any autoencoder 

combined with fully connected artificial neural networks. The choice of integration can 

be simplified to one of the four alternatives shown in Figure 1 as well. 

The chapters intended to provide answers to this question are 4.2.4 and 5.4 where I design 

and evaluate a neural network stacking ensemble as a signature detector enhanced by deep 

autoencoder networks as an anomaly detector. Chapter 5.4 in particular evaluates the 

composite performance of the two models and the anomaly detection capabilities of the 

autoencoder. 

RQ3. What is the level of model performance that can be expected in an 

intrusion detection task? 

Based on reviewing the related literature, contemporary intrusion detection research is 

facing the following challenges: 

• Predominant use of the accuracy measure for performance evaluation on data with 

unevenly distributed classes. 
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• Different articles created their own samples of a chosen dataset, making 

performance comparisons between them and the proposed models difficult, if not 

impossible. 

• Focus mostly on signature detection, less on other techniques. 

• Intrusion detection is always involved with detecting minority classes. 

There is a high variation on possible model performance measurements. Therefore, I set 

up two criteria for selecting papers from the related literature to compare the proposed 

models with, in order to test the assumptions of this dissertation. 

• Emphasis on recall / detection rate: although accuracy is the most common metric, 

it is inappropriate for performing detections on imbalanced data. A better 

alternative is recall. Throughout the dissertation I favored literature with recall as 

the model performance indicator compared to those with accuracy, though, due to 

how common it is, I could not ignore accuracy completely. Moreover, I had to 

take the alternative names of recall, like detection rate and sensitivity, into account 

as well. To make the search more difficult, some papers claimed to use detection 

rate, when in reality, the definition and provided formula fitted accuracy instead. 

• Data sampling is the second source of complexity and prediction variance in the 

literature. Different samples result in different models with different performance 

measurements. Therefore, I attempted to look for papers that validated their model 

proposals with the complete test samples of the datasets they used. Similarly, I set 

up the intrusion detectors of this dissertation in the following way: I tested them 

on the complete test sample of the respective dataset, regardless of what data I 

used for training. This covered data preprocessing as well: transformations were 

performed on the test sample using calculations from the training data to avoid 

information leakage. 

I used these requirements as filters on the research papers to be used in the final 

performance comparisons in chapters 5.5 and 5.6. Apart from that, I also aimed to test 

techniques like synthetic sampling, particularly with models demonstrated in chapter 

4.2.3 and evaluated in 5.3; and advanced hyperparameter optimization with models in 

chapters 4.2.3, 4.2.4, 5.3 and 5.4 to achieve increased model prediction performance. 
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3.4.  METHODOLOGY 

The methodology I used for designing, executing and evaluating my models followed a 

top-down pattern shown in Figure 22. As the goals I set can be achieved by creating and 

evaluating an algorithmic artifact, I found design science research to be a fitting 

methodology. Furthermore, this algorithmic artifact is in fact a machine learning model, 

therefore the concepts and considerations of the CRISP-DM process model for planning, 

implementing and deploying machine learning models can be applied as well, forming 

the second methodological pillar. Finally, the designs in chapter 4 outline the exact 

process of model creation, with the necessary data preprocessing, training and evaluation 

steps involved, forming the lowest level of methodological abstraction. 

 

Figure 22: The methodological abstraction levels followed in this dissertation. Source: own edit. 

To further clarify the connection between design science research and the CRISP-DM 

process model, one must first evaluate the engineering cycle (Wieringa (2014)). The 

engineering cycle is a rational problem-solving process consisting of 5 tasks, each 

displayed in Figure 23, and described in detail together with the CRISP-DM tasks in Table 

3. 

 

Figure 23: The relationship between the Engineering Cycle and CRISP-DM. Based on: Chapman et al. 

(2000) and Wieringa (2014) 

Design science CRISP-DM Model designs
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Engineering cycle (design science) CRISP-DM 

Treatment: interaction between the artifact and 

the problem context. 

In CRISP-DM, a treatment can be an 

implemented machine learning model and its 

effect on the decision-making process. 

Problem investigation: to prepare the researcher 

for designing a treatment, by learning more about 

the problem to be treated. 

 

Business understanding: to understand the 

business background / context / problem 

Data understanding: to evaluate the available 

data sources and to understand the meaning and 

utility of data for machine learning applications. 

Treatment design: design is a decision about 

what the researcher is going to do. A specification 

is the documentation of this decision. 

Multiple methods exist to express design and 

specification within the field of machine learning. 

Data preparation: ~ transform data for machine 

learning. In some contexts, this is referred to as 

data preprocessing. 

Modeling: find applicable model for the problem 

context, design model architecture, design model 

optimization process. 

Evaluation: the design of model evaluation is 

tied to this step (train/test split, CV, nested CV, 

choice of performance metric(s)) 

Treatment validation: the goal is to predict how 

a designed treatment will perform within context 

without it being observed in said context. As 

such, the evaluation is performed under artificial 

conditions. 

Modeling, evaluation: executing the training and 

evaluation processes on separate training data. 

Treatment implementation: implementation and 

use of treatment in the original problem context. 

Deployment: live implementation of the machine 

learning model. 

Implementation evaluation: evaluate how the 

implemented artifact interacts with its real 

context. 

Deployment: performance monitoring of the 

machine learning model. Retrain in case of 

performance degradation. 

Table 3: Comparison of engineering cycle and CRISP-DM tasks. Based on: Chapman et al. (2000) and 

Wieringa (2014) 

The two methodologies are connected by their logically corresponding tasks, for example, 

problem investigation in the engineering cycle involves activities that are similar to 

activities performed during the business understanding and data understanding tasks of 

CRISP-DM. However, design cycle, the focus of design science, consists of only the first 

three tasks of the engineering cycle. Therefore, this dissertation will only discuss CRISP-

DM tasks leading up to and including model evaluation. Deployment, although an 

important task, will only be discussed tangentially in chapter 6. 

The two methodologies have differences as well. The goals of the two methodologies is 

one. The main goal of design science research is not only to deliver a well-designed, 

working artifact, but also to answer scientific questions about the artifact, at the context 

or at the relationship between the two. Comparatively, the goal of CRISP-DM is more 

practical. It is interested in delivering a machine learning algorithm, preferably as a part 

of a working business solution or service, delivering value to both the customers and the 

organization. The CRISP-DM approach therefore is more focused on evaluating the 
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business context and the effects on the business context, rather than on answering research 

questions. 

Some personalization of the CRISP-DM process model, hence, will be necessary. These 

adjustments are not only permitted, but also encouraged by the designers of CRISP-DM, 

as they intended it to be a collection of best practices within the field of data science, 

rather than a rigid standard. Some of the changes compared to the CRISP-DM process 

model are: 

• Greater emphasis on the wider context of the intrusion detection model: this 

includes both the social scientific context via literature reviews and the knowledge 

context by covering the data scientific tools and techniques in use. I covered them 

both already in chapter 2. 

• More emphasis on model evaluation involving the comparison of model 

performances: On one hand, comparisons are conducted between the different of 

intrusion detection models I delivered as part of the design process. This supports 

the disclosure rule of the design science process as well. On the other hand, I 

compared the best performing detector to other works available in the field of 

intrusion detection, placing a higher emphasis on detection rate. 

4. PROPOSED MODEL DESIGNS 

This chapter describes the design and creation of the machine learning model-based 

intrusion detection architectures. In the chapter I introduce the datasets used for model 

training and evaluation first, followed by the detailed description of model architecture 

designs. Throughout this chapter and chapter 5, I followed the CRISP-DM process, 

creating four intrusion detection model variations. 

4.1.  INPUT DATASETS 

After reviewing the literature, particularly Stolfo et al. (2000), McHugh (2000) and 

Tavallaee et al. (2009) the most common datasets for intrusion detection in use were: 

DARPA 1998 & DARPA 1999, KDD Cup 1999 and NSL-KDD. These datasets are all 

the products of an experiment conducted in 1998 by MIT Lincoln Labs to survey the state 

of the art in intrusion detection at the time. During the experiment, about 5 million records 

were collected in 5 weeks in the form of raw tcpdump logs. The data simulated the traffic 
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of a typical Air Force LAN, while the researchers carried out multiple network attacks 

against it. 

The first iteration of these experiments were the DARPA 1998 & DARPA 1999 datasets. 

These were highly criticized, particularly by McHugh, (2000). These issues have already 

been discussed in chapter 2.3. The main criticisms were the unit of analysis problem, the 

question of attack distribution and the large level of redundancy among the records. 

The unit of analysis criticism has been resolved by the KDD Cup 1999 dataset, by fixing 

the unit of analysis in network connections. The dataset itself consists of ~5 million 

network connection record for training, and another ~3 million record for testing intrusion 

detection models. The altogether ~8 million records might be too difficult for an intrusion 

detection system to handle; therefore, the authors of the KDD Cup 1999 dataset provided 

a 10% stratified sample of both the training and test datasets. The total number of features 

available is 41, with 40 explanatory and 1 target feature. Designed primarily for signature 

detection, the target feature contains numerous attack types each belonging to five distinct 

attack classes: 

• DoS: denial of service attacks aimed at disabling crucial systems or system 

components. 

• R2L: unauthorized access from a remote machine. 

• U2R: unauthorized access to local superuser (~admin) privileges by a local 

unprivileged user. 

• Probe: surveillance and probing, not attacks by themselves but could be used to 

prepare for future attacks. 

• And normal legitimate behavior. 

The assignment of each detailed attack type to their respective class is shown in Table 4. 

Some of the detailed types are only available in the test dataset of KDD Cup 1999. The 

training attack types were well documented by Stolfo et al. (2000); the test attack types, 

however, were not, which caused some confusion in the studied literature. I have 

determined a final detailed attack type to high level attack class assignment shown in 

Table 4 using a simple majority vote between relative class frequencies based on the 

assignment tables published in 10 different articles. The exact process of this is further 

demonstrated in Appendix A. 
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Class Train Test 

Normal normal normal 

DoS back, land, neptune, pod, smurf, 

teardrop 

apache2, mailbomb, processtable, 

udpstorm, worm 

Probe ipsweep, nmap, portsweep, 

satan 

mscan, saint 

R2L ftp_write, guess_passwd, imap, 

multihop, phf, spy, warezclient, 

warezmaster 

httptunnel, named, sendmail, 

snmpgetattack, snmpguess, xlock, 

xsnoop 

U2R buffer_overflow, loadmodule, 

perl, rootkit 

ps, sqlattack, xterm 

Table 4: Classification of attack types. Source: own edit (see Appendix A for details). 

Compared to the previous DARPA 1998 and 1999 datasets, the features of KDD Cup 

1999 are better organized and described, and, as a part of data preprocessing, new derived 

features were created based on domain knowledge by Stolfo et al. (2000). These features 

can be grouped into four categories: 

• Intrinsic features: features describing all network connections, regardless of user 

intentions. 

• Content features: capturing information on the content of each network 

connection. 

• Time-based traffic features: features aggregating the connections that had the 

same destination host or service as the selected connection in the prior 2 seconds. 

• Host-based traffic features: as a counterpart to time-based traffic features, host-

based traffic features were created to capture aggregate data not over the prior 2 

seconds, but over the previous 100 connections. 

Tavallaee et al. (2009) identified an issue with the KDD Cup 1999 dataset: a large number 

of redundant observations (Table 5 and Table 6). About 75% of the test set and 78% of 

the training set is duplicated. This redundancy often caused research papers prior to 2009 

to have biased intrusion detectors towards duplicate records. To alleviate this issue, 

Tavallaee et al. (2009) proposed the new NSL-KDD dataset. The authors provided two 

datasets: the first with binary labels and the second with 5-class labels, both having their 

respective training and test sets. 

 Original records Distinct records Reduction rate Final records 

Attacks 3,925,650 262,178 93.32% 58,630 

Normal 972,781 812,814 16.44% 67,343 

Total 4,898,431 1,074,992 78.05% 125,973 

Table 5: Statistics of redundant records in the KDD train set. Source: Tavallaee et al. (2009) 
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 Original records Distinct records Reduction rate Final records 

Attacks 250,436 29,378 88.26% 12,833 

Normal 60,591 47,911 20.92% 9,711 

Total 311,027 77,289 75.15% 22,544 

Table 6: Statistics of redundant records in the KDD test set. Source: Tavallaee et al. (2009) 

Apart from reducing the level of redundancy in both sets of KDD Cup 1999, Tavallaee et 

al. (2009) introduced two additional changes to the original DARPA 1998 data: first, they 

trained 21 machine learning classifiers on the reduced redundancy KDD Cup 1999 

dataset. Each record has been grouped based on how many models predicted its class 

correctly. This information was then stored as a complexity feature in addition to the rest 

of the data and provided an input to the next change. In order to make the size of the 

dataset more manageable, a random sampling has been performed, stratified by class, and 

the new complexity feature. This resulted in the creation of the NSL-KDD dataset, with 

final class membership counts shown in the final records column of Table 5 and Table 6. 

The final issue was the class distribution. Figure 24 shows this for the 10% sample of the 

KDD Cup 1999 dataset, while the same for the NSL-KDD training dataset is shown in 

Figure 25. There are too many records for DoS attacks, and not enough for the remaining 

classes. This distribution is unrealistic, a real-life environment can have a ratio closer to 

98-95% to 2-5% between normal traffic and any attacks. Nonetheless, class imbalance 

persists, the only factor that has changed is the class in majority. Neither of the two 

studied datasets proposed solutions to handle class imbalance, finding them is up to the 

person conducting research. Inequalities in class distribution in general can be corrected 

by using one of following strategies recommended by Brownlee (2015): 

• Collect more data. Because the research that produced the DARPA 1998 data 

has concluded a long time ago, this alternative is improbable. 

• Change the performance metric from accuracy to something different, 

discussed in chapter 2.2. 

• Resample the dataset: one can use oversampling on the less represented classes, 

and under sampling on the better represented ones. This serves no benefit by itself, 

as some of the minority classes have <100 observations. Therefore, even if the 

minority classes are 100% oversampled, their number is still insufficient when 

compared to majority classes, and if the majority classes were to be under 

sampled, then the size of the training data will be too small for any meaningful 

model to be trained. 
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• Generate synthetic samples: the idea behind synthetic sampling is to generate 

samples where the records are not necessarily from the original dataset but were 

created with some randomness involved, based on statistical distributions of the 

class they originate from. Some methods of generating synthetic samples are 

reversed Naïve Bayes algorithm, SMOTE, and more recently, variational 

autoencoders. This approach could work by itself, or as the second phase of a 

process aimed at creating a balanced training sample. 

• Try different algorithms: use not just one data mining algorithm on a dataset but 

try out more and see which works best. This is the thought process behind model 

ensembles. 

• Use penalized models: penalized classification imposes an additional cost factor 

to misclassification. In short, the cost of making a mistake is set to be higher for 

the minority class, compared to the majority class. 

• Use a different perspective: view the dataset from the perspective of the area 

studying it. This usually involves different machine learning algorithms, for 

example, clustering or outlier analysis instead of classification. This is the idea 

behind anomaly and hybrid detection models. 

 

Figure 24: KDD Cup 1999 class distributions on the 10% training sample. Source: own edit. 
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Figure 25: NSL-KDD train dataset class distributions. Source: own edit. 

Despite the criticisms formulated, a large portion of the literature still use the KDD Cup 

1999 and NSL-KDD datasets. Therefore, I decided to prefer the NSL-KDD dataset, in 

contrast to newer datasets. In return, these datasets have been evaluated many times 

before, and now work as benchmarks for intrusion detection models. Additionally, 

according to Stolfo et al. (2000), the core idea behind the KDD Cup 1999 dataset (and 

NSL-KDD dataset) is that training data contains one set of attack patterns, while test data 

contains a different set of attack patterns, some unavailable in the training data. These test 

attack patterns are impossible for machine learning models to learn, emulating the 

appearance of new attack types. This makes KDD Cup 1999, and NSL-KDD as an 

extension, conceptually similar to the newer intrusion detection datasets. 

4.2.  MODEL EVOLUTION 

I studied intrusion detection models created by combining machine learning algorithms 

in an ensemble. The design and implementation of one model, however, was not an easy 

task due to the specifics of the dataset. I had to perform multiple iterations to find an 

appropriate model. I discuss further elements of the CRISP-DM process in terms of these 

iterations, where each produced a new, better refined version of an intrusion detector. 

Figure 26 shows the detection models created in this iterative process: 

• Version 0 (prototype): the first prototype of the model is outlined and evaluated 

in Brunner (2017), where I published a decision tree bagging classifier trained on 
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a map-reduce-like architecture. I trained this model only on the KDD Cup 1999 

dataset. 

• Version 1 (neural network stacking ensemble): I created a stacking ensemble 

from neural networks trained on different features. I managed to improve 

performance by using a more robust sampling process and grid search 

hyperparameter optimization. In this model I transitioned between KDD Cup 

1999 and NSL-KDD, sampling both differently. 

• Version 2 (migration to TensorFlow): I moved the neural network ensemble over 

to a TensorFlow + Keras platform achieving faster training. I expected further 

improvements in prediction performance by using TPE hyperparameter 

optimization. My second goal with this iteration was to evaluate different 

variations of SMOTE sampling, namely SMOTE ENN, SMOTE Tomek, and 

SVM SMOTE. In this iteration I used the NSL-KDD dataset only. 

• Version 3 (extension with autoencoders): where I extended the best performing 

elements of earlier iterations (like SVM SMOTE sampling and TPE optimization) 

with deep autoencoder networks trained on normal traffic, creating a true hybrid 

intrusion detection approach. For training, I kept the NSL-KDD dataset. 

 

Figure 26: Iterations on the studied detection model. Source: own edit. 

Further chapters show how the modeling and model evaluation steps of CRISP-DM were 

implemented throughout the different iterations of the proposed intrusion detector. I 

Version 0
• Decision tree bagging

• Map-reduce

Version 1
• Stacking neural network

• SMOTE

• Hyperparameter 
optimization

Version 2
• Stacking neural network + Keras

• SMOTE variations

• Gaussian process + TPE 
optimization

Version 3
• Stacking neural network

• Autoencoder networks

• SVM SMOTE

• TPE optimization
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describe implementation details by how data preparation and model training were 

performed, the plans for performance evaluation and techniques how I attempted to 

improve the design of the next model with. 

4.2.1. THE DECISION TREE BAGGING MODEL 

The first machine learning model used for intrusion detection was built using decision 

trees organized into a bagging ensemble on a parallel map-reduce environment. I 

discussed this model in detail in Brunner (2017). I used Java and the WEKA API to 

implement this machine learning model. In further chapters I will refer to this intrusion 

detector as V0 model, due to it being the first model I created. This is a naming I will 

follow consistently throughout the dissertation for the other intrusion detectors as well. 

Data preparation 

 

Figure 27: Data preprocessing for the detection model prototype. Source: own edit. 

The steps of data preparation are outlined in Figure 27. I had to organize unique attacks 

into their respective classes first. To achieve the desired outcome I used an earlier 

conceptual hierarchy from which I created the categorization scheme in Table 4 and in 

Appendix A. 

Next I performed stratified sampling on the 10% sample of the KDD Cup 1999 training 

dataset. Altogether I created 4 datasets with different target features iteratively changing 

the following settings: 

• Target feature: during this first iteration, I performed binary and five-class 

classifications. I based the classes for multiclass classification on the early 

conceptual hierarchy. Binary classification was a choice between normal traffic 

and one of the four attack classes.  
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• Sample size: small or large. This, together with map-reduce parallelization had 

implications on training time only. The exact sample sizes are available in Table 

7. 

• Intent with the sample: I prepared a test and a training sample. However, due to 

frequent memory overflow errors of the Java platform, I had to swap training and 

test datasets around for the binary and multiclass classification tasks. Table 7 

shows how I performed this exactly. Training and test columns show the number 

of observations available in a given sample. 

Target variable Training Test Sample size 

5 classes 3,000 5,000 
S 

2 classes 5,000 3,000 

5 classes 6,000 10,000 
L 

2 classes 10,000 6,000 

Table 7: Sampling setup of the prototype intrusion detector. Source: Brunner (2017) 

Apart from target recategorization and data sampling, I performed no feature selection or 

feature grouping. Moreover, I transformed no numerical or categorical features either. 

Modeling 

I set up the model to work in a parallel map-reduce environment in three different 

architectures (Figure 28) each different in the number of CPUs and CPU cores used: 1 

and 2 CPUs and 2-4-8 cores. Out of these architectures my goal with the 1 processor, 2 

cores architecture was to train a benchmark classifier, to provide simple results for 

comparison with the later ensemble models trained on 4 and 8 processing cores. 

 

Figure 28: Experimental execution architectures of the V0 intrusion detector. Source: own edit. 

The first available core was reserved for a master thread tasked to distribute the stratified 

subsamples to all the remaining threads, each training a decision tree (Figure 29). When 
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done, each thread calculated predictions on the test sample. These were sent back to the 

master, where the final class of each observation was decided based on a majority vote 

between the decision tree predictions. 

 

Figure 29: The model creation and prediction process of the V0 intrusion detector. Source: own edit 

To mitigate the level of uncertainty caused by random elements of the process, I repeated 

training three times for each sample size (small or large), architecture setup (1 processor 

4 cores, 2 processors, 8 cores) and target feature kind (binary and five-class) combination. 

Altogether, including the benchmarks, I repeated the training and testing processes 28 

times. 

Evaluation 

Performance measurement and data collection were determined by target feature kind. I 

collected accuracies and macro-averaged precisions, recalls and F1-scores for five-class 

classification. I expanded these metrics with ROC AUC scores for binary classification. 

Due to my lacking understanding of model ensembles at the time, I only collected base 

classifier performance metrics, but no metrics measuring aggregate classification 

performance. Moreover, in some instances the base classifiers were unable to detect 

minority attack types, thus I had to set precision, recall and F1-score values to zero. This 

is a common behavior in many programming frameworks for machine learning. I had to 

follow this in a manual post-processing step, as the WEKA API at the time did not support 

it.  

Due to the parallelization on the map-reduce architecture, I measured execution time as 

well, although I dropped this in later models, so I could focus more on detection 

performance. 
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Potential improvements of the model 

This first version is best described as a prototype intrusion detector. It had many flaws: 

• I only measured the classification performance for each individual base model, 

the aggregate performance of the ensemble could only be evaluated as the 

arithmetic mean of each base classifier, which does not reflect the real 

classification capabilities of a bagging ensemble. 

• Java and the WEKA API, though useful on their own right, have counterparts that 

are better at performing data preprocessing, model training and testing. Three 

examples are Python, R and the KNIME Analytics Platform. The first two are 

programming languages less susceptible to malfunctions and are easier to 

maintain. Additionally, Python has readability advantage over most other 

programming languages as well. KNIME Analytics Platform is a free 

environment for developing and maintaining data workflows. Written in Java and 

originating from the WEKA API, it is an ideal choice for someone who prefers 

using the two. 

• More robust sampling methods are to be explored, having a large effect on model 

performance. 

• New machine learning models were recommended for use in detection models, 

particularly artificial neural networks. 

• Opportunities related to feature group creation were not explored. 

• Out of binary and five-class classification, only the latter should be kept, being 

greater challenge. This is supported by the nature of network intrusions as well, 

after all, different mitigation controls should be applied to DoS attacks than to 

R2L or U2R attacks. 

However, some findings of this early version are undeniably valuable. For example, the 

application of model ensembles was a forward-looking idea. With all the above 

considered, I designed the next experiment. 
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4.2.2. THE STACKED NEURAL NETWORK MODEL 

The next intrusion detection model has been implemented using the Python scientific 

stack (a collection of Python modules designed for data manipulation and data scientific 

tasks, the core modules being pandas + numpy + scikit-learn + matplotlib). I created a 

new stacking ensemble of artificial neural networks and evaluated it for detection 

performance. In the following chapters I will refer to this model as V1. 

Data Preparation 

 

Figure 30: Data preprocessing for the V1 detector. Source: own edit. 

Figure 30 shows the modifications to data preprocessing performed on the 10% sample 

of the KDD Cup 1999 dataset first, then later on the NSL-KDD dataset. I highlighted the 

new steps compared to the preprocessing of the V0 model in green, and the two altered 

steps in orange: 

• Some categorical features were recognized incorrectly as numerical by the Python 

interpreter, I corrected these in the first preprocessing step. Furthermore, as the 

second part of this process, I encoded all categorical features using one-hot 

encoding to be more appropriate for processing by the neural networks. 

• The target feature was created using the class assignments described in Table 4. I 

dropped binary classification in this iteration, however. 

• I performed a simple feature selection to remove explanatory features with no 

variance (equivalent to not having information content). I based this feature 

selection on relative deviation. 

• I fundamentally redesigned sampling generate balanced samples more efficiently. 

This process was different for the two datasets. For the 10% sample of KDD Cup 

1999, it was performed in two stages. Stage one performed a balancing stratified 
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split, where minority classes had higher probability to be selected in the sample, 

the exact sampling fractions are in Table 8. The second stage balanced the sample 

further by performing SMOTE sampling on the intermediate sample. This two-

stage approach yielded a completely balanced sample. For the NSL-KDD dataset, 

due to its more manageable size, I only used SMOTE. 

Class Normal DoS Probe R2L U2R 

Sampling fraction 2.50% 0.50% 50% 100% 100% 

Table 8: Sample fractions to balance class distributions in the 10% KDD Cup 1999 sample before 

SMOTE resampling. Source: own edit 

• I split the data to feature groups according to the findings of Stolfo et al. (2000). 

The sample was grouped into intrinsic, content, time-based traffic and host-based 

traffic feature groups. 

• As the last step of data preprocessing, I normalized the training sample with 

min-max normalization for the neural networks to reach meaningful results. 

One might ask whether the sample created from the 10% KDD Cup 1999 data is a valid 

representation of the original. I have validated this in a separate experiment where I 

repeated the proposed sampling process 150 times, then compared them to the original 

training dataset. I based this evaluation on the nonparametric two-sample Kolmogorov-

Smirnov test from statistics. The null hypothesis of the K-S test states that the two samples 

were drawn from the same statistical distribution. These K-S tests were then performed 

for each class, feature and sampling iteration. The result is a per class aggregation of the 

acceptance or rejection of the null hypothesis, where acceptance counts as 1 and rejection 

as 0. My goal with this test was to provide insights into how well the sampling matched 

the original data. 

For the NSL-KDD data, as SMOTE is guaranteed to yield a synthetic sample with a 

distribution matching the original data closely, answering the above question has no 

additional benefit. 

Modeling 

I trained multiple neural networks, one for each feature group and one as a final 

aggregator model. The modeling setup is visible in Figure 31. 
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Figure 31: The model creation and prediction process of the V1 model. Source: own edit 

An important element to stacking ensembles is the variance of the base models, which is 

usually achieved by different base models. In V1, I tried to achieve variation by feeding 

different data features to the base classifiers instead. 

I trained every model in the ensemble in a similar process. First, I optimized each with 

grid search hyperparameter optimization with five-fold CV for more stable results. The 

target metric I optimized for was recall, the hyperparameters I changed are visible in 

Table 9. The optimization process altered only the initial learning rate, the exponent for 

the decaying learning rate and the momentum for every neural network. Further settings 

available were, for example, hidden layer and neuron per hidden layer counts. In those 

cases however, grid search would have taken too long to conclude and yield an optimal 

neural network architecture. As a compromise, I gave each model a fixed architecture. 

The base classifiers were trained on three hidden layers with 40, 20 and 10 neurons 

respectively, whereas the aggregator was trained only on two hidden layers with 10 and 

5 neurons. I base my argument for the smaller architecture for the aggregator model on 

that it received only 𝑘 ∙ 5 features as input, one for each target class value per base 

classifier. 

Parameter Base models Aggregator model 

hidden layer (40, 20, 10) (10, 5) 

activation RELU 

solver Adam 

alpha (L2 regularization) 0.0001 
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Parameter Base models Aggregator model 

learning rate type inverse scaling 

initial learning rate 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9 

LR decay power 0.25, 0.5, 0.6, 0.7, 0.8, 0.9 

momentum 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

Table 9: Hyperparameter settings for the V1 detector. Source: own edit 

Evaluation 

I used the standard measures of accuracy, precision, recall and F1-score for performance 

evaluation, obtained from testing the ensemble with the dedicated test datasets of KDD 

Cup 1999 and NSL-KDD respectively. I performed transformations using the same one-

hot encoding, feature group splitting rule and normalizer objects I fitted using the training 

datasets to limit the effect of information leakage. Moreover, I performed no sampling on 

the test datasets either. 

Potential improvements of the model 

This iteration has taken a major step forward in terms of quality and classification 

performance compared to the prototype V0 model. However, I identified new issues as 

well: 

• Although I did not measure with research intent, the training process with grid 

search hyperparameter optimization took a significant amount of time, which was 

a result of multiple factors: the notoriously long training time of neural networks, 

the grid search algorithm itself and the cross-validation iterations. I found 

TensorFlow + Keras with GPU acceleration capabilities a good candidate to 

improve this training time, with the potential benefit of improving model 

performance further. 

• I performed hyperparameter optimization using grid search, though I considered 

random search at some point as well. Both have flaws, grid search takes a long 

time, while random search is not guaranteed to find global optimum. Gaussian 

and tree-structured parzen estimator hyperparameter optimization both evaluate a 

small number of combinations, but they do it more intelligently, thus converge 

faster to global optima. Moreover, they can search in larger parameter spaces, 

therefore more parameter dimensions could be evaluated. 
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• Later in the iteration, as I evaluated synthetic sampling for utility, I discovered 

multiple modifications to the SMOTE sampling algorithm. Some of these 

variations had the potential to further improve prediction performance, therefore 

I found it useful to include them in the next iteration. 

4.2.3. NEURAL NETWORKS ON TENSORFLOW AND KERAS 

The next iteration was a natural evolution of the V1 model. I created it by implementing 

two major changes to the training process shown in chapter 4.2.2: first, I changed the 

models from scikit-learn MLPClassifiers to Keras models on TensorFlow backend. 

Second, I used TPE hyperparameter optimization instead of grid search during model 

training. I refer to models created this way as V2 detectors, with variations in naming 

suggesting variations in the sampling I applied on data the models were trained with. 

According to the Google Brain Team (2015) “TensorFlow is an end-to-end open source 

platform for machine learning. It has a comprehensive, flexible ecosystem of tools, 

libraries and community resources that lets researchers push the state-of-the-art in ML 

and developers easily build and deploy ML powered applications”. Developed by 

Google, it has quickly obtained popularity in the fields of machine learning and AI 

research. 

The latest release of TensorFlow has native support for Keras, a high-level API for neural 

network architecture development. According to the Keras documentation (Chollet 

(2015)): “Keras is a high-level neural networks API, written in Python and capable of 

running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on 

enabling fast experimentation”. 

Recently, Google released TensorFlow 2.0, which tied the Keras API closer, which, at 

the same time discontinued support for Theano backend. To keep my models up to date, 

I used TensorFlow 2.0 as well. 

Data Preparation 

The data preparation step  in Figure 32, as the majority of my changes affected modeling, 

remained largely unchanged compared to the previous iteration (shown in Figure 30), 

except for two. First, I experimented with multiple variations of synthetic sampling, 

namely SMOTE ENN, SMOTE Tomek and SVM SMOTE, the former two being 
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combinational over and under sampling approaches, while the latter being a strictly over 

sampling approach. My second change was added to meet a requirement of Keras 

regarding the target class: the target needs to be represented in a number encoded format 

in order for cross entropy loss to work, which I added as the last step to preprocessing. 

 

Figure 32: Data preprocessing for the V2 models. Source: own edit 

Regarding execution speed, although more manageable, the NSL-KDD training dataset 

still contained enough observations and features to make synthetic resampling a slow 

process to execute. After taking the recommendations of (scikit-learn developers, 2018), 

the following adjustments were made to the synthetic samplers: 

• I set all their n_jobs parameter to -1. This setting enables multi-threaded execution 

during resampling, the -1 value tells the code to use all available CPU cores for 

execution, thus enabling it to take advantage of all available resources. 

• The SVM classifier used by SVM SMOTE has no n_jobs parameter, instead, it is 

optimized with the cache_size parameter. Adjusting this from the default 200 MB 

to 4096 MB enabled faster execution for SVM SMOTE as well. 

Modeling 

In the modeling phase I changed the backend and the API of the neural networks and 

introduced the new optimization strategy. The model architecture is presented in Figure 

33. 
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Figure 33: The model creation and prediction process of the V2 models implemented in Keras on 

TensorFlow backend. Source: own edit 

The architecture setup shares a lot in common with the V1 model: I trained and optimized 

each base model, then trained the aggregator on the class probability predictions of the 

base models. The differences were in the backend and the hyperparameter optimization 

strategy I used. One of the many reasons for choosing TensorFlow was a better access to 

computational resources, notably the potential to access the GPU of the computer 

modeling is performed on. A question is the degree of benefit from doing so, as GPU 

training involves a computational overhead to set the data up for processing. 

Furthermore, Bayesian model optimization together with the flexibility of TF and Keras, 

allowed training to explore a wider range of hyperparameters, for example, the number 

of hidden layers, the number of neurons per hidden layer and the activation function per 

hidden layer together with the already explored learning rate and learning rate decay over 

time parameters. This expanded optimization has the potential of finding more accurate 

predictions. I chose TPE algorithm for hyperparameter optimization, as it possessed 

advantageous properties compared even to gaussian process optimization. The target 

measure to optimize for has been the sparse categorical cross entropy loss function of the 

Keras API. 

The parameterization of TPE, however, is different than that of grid search, visible in 

Table 10. I defined the parameter settings in accordance with Bergstra et al. (2011), 

Bergstra, Yamins and Cox (2013). The details of this is visible in Table 2. Distributions 

to sample from were log uniform for learning rate and dropout rate and uniform for 

learning rate decay. I set the number of hidden layers to be chosen from a list of values, 



Csaba Brunner – Intrusion Detection by Machine Learning 

100 
 

in this case, integers between 1 and 5 inclusive. The number of hidden layers parameter 

also determined the number of neurons and activations per layer parameters (one for each 

hidden layer), each sampling from a quantized uniform distribution converted to integer 

value and a choice between sigmoid, RELU and tanh functions, respectively. This 

dependent hyperparameter value selection is one of the many advantages of the TPE 

algorithm over gaussian processes. The settings in Table 10 enabled a simple neural 

network architecture search for each base and the aggregator model alike. 

Parameter Generator function 

Learning rate hp.loguniform(10-3, 101) 

Dropout rate hp.loguniform(10-3, 5 * 10-1) 

Learning rate decay hp.uniform(0.1, 0.5) 

Hidden layer number hp.choice(1, 5) 

Neurons per layer hp.quniform(5, 50, q=1) converted to integer 

Activations per layer hp.choice(sigmoid, RELU, tanh) 

Table 10: TPE hyperparameter settings for the V2 intrusion detectors. Source: own edit 

Other parameters important to neural networks were not optimized. These were the 

number of epochs during training (set to 100), batch size (set to 1024) and a lower bound 

for learning rate reduction (set to 10-3). The learning rate reduction, together with an early 

stopping criterion with patience set to the square root of the number of epochs were added 

as callback policies expanding the capabilities of the training process and reducing 

execution time. Another unaffected parameter was L2 regularization, the coefficient of 

which I fixed at 10-3. Finally, I used the Adam solver of Kingma and Ba (2014) for 

training, just like with the V1 model of chapter 4.2.2. 

Evaluation 

The evaluation process is the same as it was in previous experiments, however, I altered 

the scope of measures as I only examined accuracy and recall. My choice for these two 

measures was influenced by their widespread use and general recommendations in the 

literature. 

The main benefit I expected from using TensorFlow and Keras were the potential of better 

optimized neural network training algorithms, which can exploit the capabilities of multi 

core CPUs as well as GPUs. Moreover, Keras models are more flexible when it comes to 

parameter settings, enabling per-layer activation functions, neuron counts, regularization, 

etc. With TPE optimization, the key advantage is that it performs a limited set of trials, 

just like how random search works, however it converges on good results faster compared 

to grid search, and, in some cases, it can even outperform it. 
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As a secondary goal, I evaluated more advanced synthetic sampling approaches as part 

of this iteration. These included SMOTE Tomek (Batista et al. (2003)), SMOTE ENN 

(Batista, Prati and Monard (2004)) and SVM SMOTE ((Nguyen, Cooper and Kamei 

2009)). Based on empirical results, I expected models trained on samples generated by 

SVM SMOTE to perform slightly better, due to how it samples from border regions. 

Potential improvements of the model 

The models trained in this iteration only performed signature detection. I planned to 

evaluate at least one hybrid intrusion detector in this dissertation, providing more insight 

to the second research question I formulated in chapter 3.3. I found a good candidate in 

the shape of autoencoder networks. Two benefits from using them are: 

• First, the least complicated single layer autoencoder networks can be viewed as a 

nonlinear extension of the PCA algorithm, therefore, they are inherently capable 

of dimensionality reduction. 

• Second, being neural networks themselves, I could integrate them into the V2 

stacking neural network architecture demonstrated in this chapter. 

4.2.4. AUTOENCODER ENHANCED STACKING NEURAL NETWORK 

The key improvement of this model version over V2 is the extension of base classifiers 

with deep autoencoder networks trained only on normal traffic. Changes to data 

preparation and modeling processes were only minor, mostly involving the usage of the 

best performing elements described in chapter 4.2.3. My goal with the addition of 

autoencoders was increasing the quality of model predictions, justifying the ordinal 

increase in the naming convention to V3 in the following chapters. 

Data Preparation 

The data preprocessing in Figure 34 only saw minor changes, aimed at optimizing the 

workflow and at synthetic sampling. I implemented the former by using new 

preprocessing tools offered by the latest release of the scikit-learn API (Pedregosa et al. 

(2011)), and by merging logically similar transformations in a single step. I managed to 

join one-hot encoding, min-max normalization and target feature numerical encoding 

together in the same preprocessing step. The second change I implemented was the use 

of SVM SMOTE sampling, as it proved to be the best performing synthetic sampling 
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process according to the studied literature, particularly to Lopez-Martin, Carro and 

Sanchez-Esguevillas (2019). 

 

Figure 34: Data preprocessing for the V3 architecture. Source: own edit 

Modeling 

Model training (Figure 35) received a major update when I added deep AEs to the base 

classifier levels. I trained and saved each of these autoencoders only on normal traffic in 

a separate process, then, before training the base models of the neural network stacking 

model, I loaded and used these autoencoders to predict all connection data. Attack 

connections are predicted as if they were normal traffic, therefore I expected the squared 

difference between the actual and predicted features to be higher for attacks than for 

normal traffic. This difference can be calculated for each observation and feature, yielding 

new datasets to train and test with. I performed the rest of model training as I described 

in chapter 4.2.3, I used the TPE algorithm for hyperparameter optimization with the same 

hyperparameter space definitions I shown earlier in Table 10. 

 

Figure 35: The model creation and prediction process of the V3 model. Source: own edit 
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I set up the architecture of the deep autoencoders differently than the architecture of the 

stacking neural network models, due to their different purpose. These different settings 

are shown in Table 11. As part of the study I performed on deep AE networks, I 

experimented with linear, sigmoid, RELU and tanh activation functions applied on all 

hidden layers of the autoencoder with the intent of using the activation which provided 

the lowest MSE on the target features. Further parameters I used were the Adam solver 

with default learning rate, and early stopping criterion, which was a policy shared between 

the autoencoders and the models of the stacking neural network with identical parameters. 

I did not perform regularization on the hidden layers of the autoencoder. 

Parameter name Parameter setting 

Activation Linear 

Layer reduction rate 2 

Optimizer Adam (LR=0.001) 

Bottleneck Round(√|𝑖𝑛𝑝𝑢𝑡|) 

Epochs 100 

Early stopping patience √𝐸𝑝𝑜𝑐ℎ𝑠 

Table 11: Autoencoder parameter settings. Source: own edit 

To better understand layer reduction rate and bottleneck parameters of Table 11, the setup 

process of one autoencoder must be understood first. I divided this process into two 

stages: 

1. Encoder construction: the input feature count is taken to be the neuron count for 

the first hidden layer. For each subsequent hidden layer, the used neuron count is 

saved to a list and the neuron count for the subsequent layer is divided by the layer 

reduction rate. Then, the next iteration is performed with the new calculated 

neuron count. This iteration continues while the current neuron count is larger 

than a predefined bottleneck parameter, set to the square root of the input feature 

count. 

2. Decoder construction: the decoder network is constructed from the reversed list 

of encoder neuron counts. 

Evaluation 

I did not change the stacking neural network performance evaluation process from the 

previous iterations described in chapter 4.2.3, I kept accuracy and recall as the core 

metrics to demonstrate. I did so to maintain the ability to compare results achieved by this 

variant with the results of previous variants. 



Csaba Brunner – Intrusion Detection by Machine Learning 

104 
 

I tested the autoencoders separately, on training and test datasets of NSL-KDD. The 

predictive performance of autoencoders is defined on how closely they can reconstruct 

data from a low-dimensional representation. This is best characterized using the MSE 

function. I performed these comparisons for each class value and feature group, expecting 

different results by both values and groups, but not much different between the training 

and test datasets. A further evaluation of autoencoders was the small optimization of the 

activation functions, which I already described. 

Potential improvements of the model 

Although this iteration had the potential for the most promising results, I still found 

opportunities for adjustments. Particularly, the following could be improved on: 

• Although NSL-KDD (and KDD Cup 1999) is a widely studied and accepted 

benchmark for comparing intrusion detectors, its source is one of the oldest in the 

field, dating back to 1999. Although both NSL-KDD and KDD Cup 1999 simulate 

the appearance of new attacks by excluding some attack categories from the 

training set, new datasets created since then may have new insights useful for 

machine learning algorithms. New candidate datasets include Kyoto 2006 (Song 

et al. (2011)), UNSW-NB15 (Moustafa and Slay (2015)) and CSE-CIC-IDS2018 

(Sharafaldin, Lashkari and Ghorbani (2018)). UNSW-NB15 looks to be the most 

promising, it is more up to date, has dedicated training and test datasets and both 

packet and flow features. 

• Deep autoencoders are just one type of autoencoders that can be effective in an 

intrusion detection environment. Newer autoencoders include sparse 

autoencoders and variational autoencoders, both used effectively for improving 

intrusion detector systems in Al-Qatf et al. (2018), Lopez-Martin, Carro and 

Sanchez-Esguevillas (2019) and Yang et al. (2019). 

• I used the results of the autoencoders as the squared difference between the 

original and the predicted features. This approach is uncommon, most studies (Al-

Qatf et al. (2018), Lopez-Martin, Carro and Sanchez-Esguevillas (2019) and Yang 

et al. (2019)) used the latent representation of a variational autoencoder to 

generate new outputs or used the reduced dimensional representation. When 

applied to the intrusion detector demonstrated in this chapter, this change would 

likely reduce model complexity to a level, where even the use of model ensembles 
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could be omitted entirely, and instead, a neural network could be trained directly 

on reduced dimensional set of features. Furthermore, it is also possible that, being 

generative models, variational autoencoders could replace synthetic sampling 

altogether. 

• Finally, the current and previous iterations all relied on feature groups proposed 

primarily by Stolfo et al. (2000). The original purpose of these feature groups was 

to provide feature subsets better suited at detecting specific classes of traffic. A 

similar process could be developed to calculate feature importance per class in a 

one vs rest setting and take the top performing features to further modeling. This 

would create an ensemble built from base classifiers performing well for on 

specific class each. For example, these base classifiers could be the encoders of 

trained autoencoder networks, although it is to be determined whether a single 

variational autoencoder would provide better predictions. 
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5. RESULTS 

In this chapter I summarize the detection results that the models achieved. I organized 

this chapter similarly to the model outline in chapter 3.4 and Figure 26: I discuss the 

results of each model in the order of their creation, going from V0 to V3. Following the 

separate evaluation of these detectors, I discuss their results in relevance to each other. 

Finally, in chapter 5.6, I take these results an compare them with results provided by 

several papers in the field of intrusion detection research to see if my detectors can 

compete in a wider scientific context. 

5.1.  DECISION TREE BAGGING RESULTS 

The results of the V0 detector can be seen in Table 12 and Table 13 . The metrics I used 

were accuracy, precision, recall, F1-score and, in the case of binary classification, AUC, 

all calculated using custom samples from the 10% KDD Cup 1999 dataset. In the original 

article of Brunner (2017) I evaluated the effects of parallelization on classification 

performance using differently sized training and test samples as well. There, I concluded 

that map-reduce parallelization and different sample sizes had no effect on the prediction 

performance of the base classifier models. Therefore, when I aggregated the performance 

metrics for demonstration in this dissertation, I filtered the effects of both characteristics 

out of the aggregate results calculation. For those interested in the original measurements, 

I made the source tables available in Appendix B. 

Binary classification (Table 12) achieved moderate accuracy and AUC at 78.8% ± 1.23% 

and 0.773 ± 0.0237 respectively. The ± components were due to the aggregation; they 

do not indicate cross validation folds. Precision was the highest metric at 0.925 ± 0.0372 

and recall and F1-score were the lowest at 0.513 ± 0.0332 and at 0.659 ± 0.0266. 

Measurement Value 

Accuracy 78.8% (±1.32%) 

Precision 0.925 (±0.0372) 

Recall 0.513 (±0.0332) 

F1-score 0.659 (±0.0266) 

AUC 0.773 (±0.0237) 

Table 12: Aggregate measurements for the binary classification case of the V0 model. Based on Brunner 

(2017) 

Comparing binary with five-class classification (Table 13), where accuracy was the 

highest at 97.9% ± 1.24% with the remaining precision (0.491 ± 0.0944), recall (0.458 
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± 0.0582) and F1-score (0.473 ± 0.0708) measurements showing worse performances. 

The high accuracy in this case is misleading, as training and test samples were not 

balanced at the time, and accuracy tends to rate classifier models better when they assign 

most observations to the majority class. 

Measurement Value 

Accuracy 97.9% (±1.24%) 

Precision 0.491 (±0.0944) 

Recall 0.458 (±0.0582) 

F1-score 0.473 (±0.0708) 

Table 13: Aggregate measurements for the five-class multiclass classification case of the V0 model. 

Based on Brunner (2017) 

Binary classification achieved better results. This is understandable as binary 

classification only requires models to make a choice between normal and attack traffic, 

also highlighted by Petersen (2015). This also means that the misclassifications made 

between the different attack classes remain masked. Depending on the intrusion detection 

controls requested, this masking may be unacceptable, as different control policies need 

to be applied for different attack patterns. Therefore, I considered studying intrusion 

detection performance as a multiclass classification problem more favorable in further 

intrusion detectors. One candidate algorithm recommended were artificial neural 

networks, preferably joined in an ensemble, for example, in the form of stacking 

classifiers. 

The results of this chapter provide one example answer to my first research question in 

chapter 3.3. 

5.2.  STACKING NEURAL NETWORK RESULTS 

The datasets I used to train the V1 ensemble were KDD Cup 1999 and NSL-KDD. Due 

to differences in dataset sizes and certain steps of data preprocessing I applied, it would 

be a mistake if I was to aggregate or even compare results achieved on the two datasets 

with each other. Therefore, I decided to show the results separately, first on KDD Cup 

1999, where I tested the stability of the custom sampling process I designed, and 

prediction performance of the models. This time I included detection performance metrics 

at base classifier and aggregator levels both, an improvement over the V0 model of 

chapter 5.1. On NSL-KDD, I evaluated detection performance only, as I simplified the 

data sampling process to only include SMOTE sampling. 
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KDD Cup 1999 - Sampling stability 

Sampling stability evaluation was designed to test the specialized two-stage sampling 

process, repeated 150 times. I used Kolmogorov-Smirnov tests at each sampling iteration 

to compare the original 10% KDD Cup 1999 dataset and the generated samples for each 

class and feature, including one-hot encoded categorical columns. I set a special decision 

column to 0 if I could not reject the null hypothesis of K-S test, 1 otherwise. The result is 

an aggregation of these decisions to target class values. Table 14 shows these aggregate 

results, containing mean rejection rate with ~95% confidence interval estimated from 

standard deviation. 

H0 Normal DoS Probe R2L U2R 

Rejected % 0.16%±0.13% 0.02%±0.04 0.00%±0.00% 0.00%±0.00% 2.73%±0.76% 

Table 14: V1 sampling validation results on KDD Cup 1999 data. Source: own edit 

Sample testing results show that probe and R2L classes matched the original data 

perfectly for all explanatory features, while DoS and normal categories matched their 

respective distributions in the majority of tests. The only exception was the U2R class, 

where 2.73% (with a confidence interval of ±0.76%) of tests rejected the possibility that 

the sample has been drawn from the same distribution as the 10% KDD Cup 1999 dataset. 

It is likely that this has been caused by how underrepresented U2R class was in the 

original dataset. 

KDD Cup 1999 - Model performance 

I trained each model (the four base classifiers and the aggregator model) using the 

preprocessed training sample and grid search hyperparameter optimization. I tested 540 

different combinations in total with exact hyperparameter values I shown earlier in Table 

9.  

I performed model testing using the dedicated test dataset of KDD Cup 1999. The results 

of this can be viewed in Table 15 and Table 16. Table 15 shows achieved model 

accuracies for each class and base model as well as accuracy achieved by the ensemble 

under the aggregator model. The best base models were those trained on intrinsic and 

host-based traffic for normal, host-based traffic for DoS, time- and host-based traffic for 

probe and R2L and host-based traffic and content for U2R classes. Overall, content model 

performed the worst, however, I cannot say it was completely redundant, as it still 

contained useful information about U2R attacks, partially confirming the findings of 

Stolfo et al. (2000). 
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The aggregator model improved accuracy further compared to the base models. The 

aggregator model improved detection accuracy for nearly every class, the only exception 

being probe detection on the model trained on host-based traffic data (99.16% against 

99.07% of the aggregator), but even there the difference is minor. 

The final row of Table 15 shows overall accuracies for each model. Despite how it seems, 

this overall accuracy value has no connection with the per-class values. Per class 

accuracies were meant to measure model performance in detecting that one class, while 

overall accuracy is measuring the performance of a model in general. Based on overall 

accuracies, the aggregator managed to improve the detections of all models, with the base 

model trained on host-based traffic features being the closest in detection. 

 Intrinsic Time-traffic Host-traffic Content Aggregator 

Normal 91.76% 79.54% 92.10% 63.26% 92.13% 

DoS 83.56% 85.11% 96.71% 17.16% 96.74% 

Probe 85.27% 99.05% 99.16% 15.86% 99.07% 

R2L 93.83% 93.36% 94.17% 74.41% 94.70% 

U2R 98.62% 86.50% 99.32% 99.77% 99.92% 

Overall 78.77% 74.94% 91.03% 15.31% 91.52% 

Table 15: Aggregate V1 model accuracy with base model accuracies measured on KDD Cup 1999. 

Source: own edit 

Table 16 shows the remaining aggregate classification measures for base and aggregator 

models. Class recall, precision and F1-scores were all macro-averaged to calculate the 

results shown in Table 16. As I mentioned before, the primary measure I evaluated was 

recall, which shown promising results with the aggregator and one base model trained on 

intrinsic features as well. However, only the aggregator model could achieve consistently 

high recall together with high precision (achieving the highest F1-score as a result). 

 Intrinsic Time-traffic Host-traffic Content Aggregator 

Recall 0.668 0.635 0.595 0.470 0.665 

Precision 0.476 0.447 0.555 0.333 0.626 

F1 score 0.402 0.442 0.525 0.269 0.582 

Table 16: Macro-averaged precision, recall and F1-score of the V1 model measured on KDD Cup 1999. 

Source: own edit 

I also attached a more detailed version of Table 16 showing base and aggregator model 

performances on intrusion class value level in Appendix C. 

NSL-KDD – Model performance 

The performance comparison on NSL-KDD dataset is available in Table 17. Out of the 

base classifiers, intrinsic model performed the best on normal class, time-based traffic 
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model detected DoS, probe and U2R attacks well and host-based traffic model was the 

best on R2L class. Content model was the worst at detecting attacks except R2L and U2R. 

The final aggregator improved on almost every class, except normal traffic, where it could 

not achieve better per class accuracy than the base classifier trained on intrinsic data. 

Based on overall accuracy, I set up the following ranking from worst to best model: 

content, intrinsic, host-traffic, time-traffic and aggregator. Performance improvement 

achieved by the aggregator model is understandable as it uses knowledge and patterns 

acquired earlier by the base classifiers. 

The results the models achieved when I used the NSL-KDD dataset for training are worse 

than the results achieved when I used the KDD Cup 1999 dataset. Due to redundancies, 

certain observations received a higher representation in training and test datasets. 

Correctly classified, these redundant records have a stronger representation in Table 15, 

compared to Table 17, where each observation is equal in importance. This is a possible 

reason why accuracies trained on KDD Cup 1999 seem to be better. 

 
Intrinsic Time-traffic Host-traffic Content Aggregator 

Normal 84.71% 80.30% 79.44% 81.58% 82.30% 

DoS 81.73% 88.14% 86.97% 70.29% 91.00% 

Probe 79.74% 94.44% 92.00% 89.26% 93.64% 

R2L 88.56% 86.46% 89.18% 89.09% 90.09% 

U2R 96.98% 99.35% 97.65% 98.07% 99.18% 

Overall 65.86% 74.34% 72.62% 64.15% 78.11% 

Table 17: Aggregate V1 model accuracy with base model accuracies measured on NSL-KDD. Source: 

own edit 

In Table 18 recall, precision and F1-score are visible, calculated on the test dataset of 

NSL-KDD. Based on recall, the intrinsic model performed best out of the base models, 

even outperforming aggregate results. With precision, it was the base model trained on 

the host-based traffic features that provided the best result, closely followed by the model 

trained on time-based traffic features, which simultaneously provided the best F1-score. 

The aggregator model managed to improve precision and F1-score compared to the base 

models. 

 
Intrinsic Time-traffic Host-traffic Content Aggregator 

Recall 0.576 0.609 0.515 0.453 0.558 

Precision 0.512 0.580 0.607 0.451 0.668 

F1 score 0.483 0.584 0.509 0.372 0.566 

Table 18: Macro-averaged precision, recall and F1-score of the V1 model measured on NSL-KDD. 

Source: own edit 
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As with the KDD Cup 1999 measurements, I published a detailed version of Table 18 in 

Appendix D for those who are interested. As I considered aggregator model performance 

to be much more important to analyze in this dissertation, I decided to exclude base model 

performance measurements from further chapters. Moreover, instead of providing class-

specific recalls, precisions and F1-scores for each model, I only shared confusion matrices 

in further appendices tied to chapters 5.3 and 5.4. I found this an easier approach to follow, 

while allowing the reader to calculate additional performance metrics as they see fit. 

The results of this and the previous chapter confirm that machine learning works as an 

intrusion detector, answering the first research question in chapter 3.3. 

5.3.  KERAS AND TENSORFLOW STACKING NEURAL NETWORK RESULTS 

I compared V2 models for performance in groups determined by the synthetic sampling 

approach. I executed all experiments according to details I explained in chapter 4.2.3, 

with 50 hyperparameter optimization iterations at first. However, with 50 iterations, the 

aggregator models started to show signs of overfitting, therefore, later I reduced the 

number of hyperparameter optimization iterations to 25. Results in this and the following 

chapters were provided by the models performing best out of these 25 iterations. 

Earlier I mentioned that a key advantage of TensorFlow is the potential execution time 

improvement on computers equipped with a GPU. This improvement is conditional, 

requiring a setup overhead from the TensorFlow backend and depends on the dimensions 

of the weight matrix. For example, a more complex model with weights in the millions, 

GPU utilization is highly beneficial, as it was determined by Lind and Pantigoso 

Velasquez, (2019) as well. As none of the models trained in this dissertation reached such 

complexities, I decided to drop GPU utilization and work with CPU only instead. 

Model prediction performances are visible in Table 19 for accuracy. The models 

performed well on each class, regardless of the sampling approach used. The class all 

models had difficulty predicting was normal, which indicates that a large portion of 

attacks were classified as normal traffic incorrectly. I excluded overall accuracies from 

Table 19, for the same reasons I highlighted while discussing the accuracies in Table 15 

(per-class and overall accuracies are different metrics). Overall accuracies were 77.09% 

for SMOTE ENN, 78.34% for SMOTE Tomek and 77.75% for SVM SMOTE. In this 
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regard SMOTE Tomek provided the best predictions, although, the differences between 

the sampling methods are rather small. 

Accuracy SMOTE ENN SMOTE Tomek SVM SMOTE 

Normal 80.67% 82.38% 80.78% 

DoS 90.16% 90.52% 90.74% 

Probe 93.01% 93.14% 93.57% 

R2L 90.68% 91.02% 90.73% 

U2R 99.66% 99.64% 99.68% 

Table 19: Aggregate V2 model accuracies. Source: own edit 

The recall values of Table 20 provide more information on predictions. The models 

provided the best results on the majority normal and DoS classes and predicted probe, 

R2L and U2R classes worse as they started belonging more and more to minority. 

Moreover, the sampling methods provided similar macro-averaged recall values ranging 

within one percentage point, with the minor advantage of SMOTE ENN sampling. 

Recall SMOTE ENN SMOTE Tomek SVM SMOTE 

Normal 0.9255 0.9198 0.9140 

DoS 0.8259 0.8592 0.8438 

Probe 0.5225 0.5580 0.5944 

R2L 0.3258 0.3289 0.3109 

U2R 0.3731 0.2985 0.2985 

Average 0.5946 0.5929 0.5923 

Table 20: Aggregate V2 model recalls. Source: own edit 

Based on the data I collected, I cannot state with certainty which synthetic sampling of 

the three evaluated can improve model performance the most, therefore, I compared the 

results with the models discussed in chapter 2.3. Lopez-Martin, Carro and Sanchez-

Esguevillas (2019) reported SVM SMOTE models to give a small advantage, therefore I 

used this sampling approach for the model described in chapter 4.2.4. To assist with 

further performance analysis, I attached the confusion matrices for all the V2 base and 

aggregator models to this dissertation in Appendix E, Appendix F and Appendix G. 

As part of my third research question, I set the goal of finding additional techniques that 

could help an intrusion detector in providing more accurate predictions. This chapter 

provided models enhanced with two such techniques: synthetic sampling and more 

advanced hyperparameter optimization. 



Csaba Brunner – Intrusion Detection by Machine Learning 

113 
 

5.4.  AUTOENCODER ENHANCED STACKING NEURAL NETWORK RESULTS 

My goal with the autoencoder iteration was to evaluate the predictive performance of a 

hybrid intrusion detection solution. I implemented this hybrid detector by extending the 

V2 model of chapter 4.2.3 with autoencoders trained on normal traffic. This process 

required evaluations on two artefacts: the autoencoders themselves, and the extended 

stacking model. 

Autoencoder model results 

I conducted two analyses on the autoencoder models: the first involved the testing and 

evaluation of the activation functions. I set this up in a way similar to grid search 

hyperparameter optimization. I measured the results of these experiments using the mean 

squared error function common in regression tasks. The measured MSE values can be 

seen in Table 21. All autoencoders, except the one trained on intrinsic data, performed 

the best with linear activation functions, while intrinsic AE performed better with RELU 

activations. Based on these results, I decided to use linear activation for each autoencoder. 

Feature Group Linear RELU Sigmoid Tanh 

Intrinsic 0.00060 0.00012 0.00205 0.00013 

Content 0.00016 0.00031 0.00186 0.00018 

Host-traffic 0.00304 0.00461 0.01012 0.00335 

Time-traffic 0.00442 0.00609 0.01096 0.00447 

Table 21: Autoencoder MSE per feature group and activation. Source: own edit 

My second analysis of autoencoders measured their performance. Just like with the 

previous analysis, I used the MSE between the original explanatory features and the 

predictions the AE models made. With this analysis I aimed to prove the usefulness of 

training autoencoders on normal traffic only. Because the models only saw normal traffic, 

their reconstruction error would be much higher on attack classes. the results of this 

analysis can be seen in Figure 36. 
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Figure 36: Per-class autoencoder model errors on NSL-KDD dataset. Source: own edit. 

Figure 36 shows the per-class and per feature group performance of the autoencoder 

models. The intrinsic and the two traffic AEs were good at differentiating DoS and probe 

attacks, R2L and U2R classes were more challenging, though: MSEs for these categories 

were similar, or even lower than what the three models achieved on normal traffic. This 

similarity, together with their minority state makes these classes even harder for machine 

learning models to detect. The last remaining content autoencoder was unique in how 

well it managed to find differences between normal and U2R traffic. This is another proof, 
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that, no matter how poorly models trained on content features perform, they still 

contribute to the overall performance. 

Based on the results in Figure 36, an autoencoder network can work as an anomaly 

detector, partially answering my second research question. 

Model performance 

Following autoencoder model predictions, the stacking neural networks were trained as 

usual. As in chapter 5.3, I show two tables, one for the accuracy measures and the other 

for recall values, both describing only the aggregator model predictive performance. 

Table 22 shows per class accuracies. The model provided the best accuracy for U2R, 

while DoS, R2L and normal also maintained high detection accuracies. Probe class 

provided the worst per-class accuracy at only 84.95%. Overall accuracy of the aggregator 

model was 74.26%, a surprisingly decreased value compared to the results published in 

chapter 5.3. 

Normal DoS Probe R2L U2R 

87.20% 90.82% 84.95% 88.84% 96.72% 

Table 22: Aggregate V3 model accuracies. Source: own edit 

Viewing the analysis from a different perspective, Table 23 shows the recalls of the 

aggregator model. The best recall values were achieved on normal, DoS and probe traffic. 

The worst achieved recall was on R2L. Their average improved compared to the earlier 

iterations. 

Normal DoS Probe R2L U2R Average 

0.8367 0.7728 0.7732 0.3262 0.5821 0.6582 

Table 23: Aggregate V3 model recalls. Source: own edit 

As in the previous chapters, I published the confusion matrices of all the trained neural 

networks in Appendix H. 

This chapter proved that hybrid models work as viable intrusion detector models. 

Additionally, the V3 model further utilized synthetic sampling and advanced 

hyperparameter optimization, providing more evidence to answer my third research 

question. 
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5.5.  COMPARISON OF EXPERIMENTAL RESULTS 

The most important conclusions can be drawn when one compares the results of each 

model variant. In this chapter, I performed this comparison between these variants on a 

per-class value basis trained on the NSL-KDD dataset. These comparisons encompass 

two metrics, accuracy and recall. To make these comparisons easier, I created a ranking 

scheme inspired by the ranking ideas outlined in Kovács and Kő (2018), adjusted to 

benefit from the characteristics of confusion matrices. 

Table 24 demonstrates the aggregator model accuracies. As in previous chapters, V1 

stands for the scikit-learn-based NN staking ensemble, V2 for the TF + Keras stack and 

V3 for the model enhanced by autoencoders. Interestingly, according to per-class 

accuracies, the V1 model outperformed the more complex Keras models, particularly in 

detecting DoS and probe attacks. Moreover, the V3 model is not necessarily the best 

performing model either, only providing better results for normal traffic. I explain this 

with the autoencoder training process and how I trained them on normal traffic. Following 

neural networks saw explanatory features that were less different from normal traffic, 

therefore they have gotten better at detecting that exact class. 

Based on overall accuracies, V2 SMOTE Tomek performed best with 78.34%, followed 

by the V1 model at 78.11% and V2 SVM SMOTE at 77.75%. The last two models were 

the V2 SMOTE ENN and the V3 detectors, both achieving 77.09% and 74.26%, 

respectively. 

  
V1 

V2 
V3 Support 

SMOT ENN SMOTE Tomek SVM SMOTE 

Normal 82.30% 80.67% 82.38% 80.78% 87.20% 9711 

DoS 91.00% 90.16% 90.52% 90.74% 90.82% 7460 

Probe 93.64% 93.01% 93.14% 93.57% 84.95% 2421 

R2L 90.09% 90.68% 91.02% 90.73% 88.84% 2885 

U2R 99.18% 99.66% 99.64% 99.68% 96.72% 67 

Table 24: Accuracy table for all model variants. Source: own edit. 

Model performance shifts when I include the recall measures of Table 25. With recall, I 

observed that the V3 model traded performance on majority classes (normal and DoS) for 

performance on minority classes, especially U2R. This caused a significant increase in 

the macro-averaged recall. 
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  V1 
V2 

V3 Support 
SMOT ENN SMOTE Tomek SVM SMOTE 

Normal 0.9452 0.9255 0.9198 0.9140 0.8367 9711 

DoS 0.8126 0.8259 0.8592 0.8438 0.7728 7460 

Probe 0.6898 0.5225 0.5580 0.5944 0.7732 2421 

R2L 0.2400 0.3258 0.3289 0.3109 0.3262 2885 

U2R 0.1045 0.3731 0.2985 0.2985 0.5821 67 

Average 0.5584 0.5946 0.5929 0.5923 0.6582 22544 

Table 25: Recall table for all experiments. Source: own edit 

I also included support values to Table 24 and Table 25. This support stands for how 

many records from the test dataset belongs to a specific class. I used these support values 

for a performance ranking as inverse class weights. First, I ranked the models for each 

class and metric, extending this ranking to the overall accuracy average precision values 

as well, assigning them artificial 50% weights. I distributed the remaining 50% between 

the classes according to the following formula: 

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡𝑗 = (1 −
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗

∑ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑗
𝑘
𝑗=1

)/(𝑘 − 1) ∗ 2 

My goal with this formula was to penalize the effect of majority classes more, and the 

multiplication by 2 in the denominator was needed to adjust the sum of weights to 50%. 

The end results of this ranking process are visible in Table 26. When ranked according to 

accuracy, the V2 SMOTE Tomek model performed best. With recall rankings, the V3 

model proved to be the best alternative. 

  
V1 

V2 
V3 

SMOT ENN SMOTE Tomek SVM SMOTE 

Accuracy 2.34 3.80 1.79 2.60 4.46 

Recall 4.30 2.53 2.79 3.66 1.73 

Table 26: Model rankings in terms of accuracy and recall. Source: own edit 

With all the above considered, determining the best intrusion detector still remains a 

challenging task, influenced by the problem the models were created to address. As the 

cost of predicting a false negative is greater, going for a high recall is preferable. Based 

on this line of thought, the V3 stacking neural network model extended with autoencoders 

is the correct model to choose. 

The models’ comparisons in this chapter provided additional information on the 

performance levels of several intrusion detectors necessary to answer the third research 

question in chapter 3.3. These models include ensemble signature detectors supported by 
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different variants of synthetic sampling and a hybrid detector model based on a deep 

autoencoder network. Depending on the choice of performance metric, stacking models 

enhanced by autoencoder networks can provide an improved detection performance. 

5.6.  COMPARISON TO EXTERNAL RESULTS 

To truly understand how the proposed model predictions performed, I compared them to 

results I found in the wider intrusion detection context. This information gathering proved 

to be a more challenging task than I anticipated at first. For example, most intrusion 

detection papers published accuracy only as the primary metric for intrusion detection. 

Accuracy alone can be a misleading measure when class imbalance is high. Recall, a 

better metric for intrusion detection is seldom published, and even if it is, it is often 

referred to by different names, like detection rate or sensitivity, or defined incorrectly 

with the formula of accuracy or other metrics. The fact that there are three different 

averaging methods for recall (macro, micro and weighted) did not help either. The third 

challenge I faced was with class assignments. Separate studies assigned detailed attack 

categories to different classes. Luckily, this issue was only prevalent in attack categories 

present in the test samples of the DARPA 1998 family of datasets, attack classes in the 

training datasets were sufficiently described in Stolfo et al. (2000). Nonetheless, this issue 

with class assignments was the main reason why I decided to conduct the analysis of 

Appendix A. With these difficulties and my earlier results in mind, I created a comparison 

table based on the key metrics I collected. 

Table 27 shows the results comparison with intrusion detection papers. I collected most 

of these from papers studying autoencoder network performance and included the 

performance of non-ensemble models as well. The mean accuracy of the available models 

was 77.72%; V2 SMOTE Tomek, V2 SVM SMOTE and V1 models managed to 

outperform this from my proposed models. Yang et al. (2019) also published model 

recalls, the average of which was 51.23%. All models published in this dissertation 

managed to perform above this value. In fact, the autoencoder enhanced model achieved 

the best recall, even in comparison to the best models in the intrusion detection literature. 

Model Accuracy Recall 

KNN (Yang et al., (2019)) 76.51% 48.3% 

Multinomial NB (Yang et al., (2019)) 78.73% 47.69% 

RF (Yang et al., (2019)) 76.49% 48.84% 

SVM (Yang et al., (2019)) 72.28% 45.88% 
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Model Accuracy Recall 

DNN (Yang et al., (2019)) 80.22% 52.77% 

DBN (Yang et al., (2019)) 80.82% 53.61% 

ROS-DNN (Yang et al., (2019)) 78.26% 49.59% 

SMOTE-DNN (Yang et al., (2019)) 81.16% 51.49% 

ADASYN-DNN (Yang et al., (2019)) 80.1% 51.47% 

ICVAE-DNN (Yang et al., (2019)) 85.97% 62.66% 

VGM + RF (Lopez-Martin, Carro and Sanchez-Esguevillas, 

(2019)) 
73.61% N/A 

VGM + Logistic Regression (Lopez-Martin, Carro and 

Sanchez-Esguevillas, (2019)) 
77.29% N/A 

VGM + Linear SVM (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019)) 
77.23% N/A 

VGM + MLP (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019)) 
79.26% N/A 

SVM SMOTE + RF (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019)) 
74.25% N/A 

SVM SMOTE + Logistic Regression (Lopez-Martin, Carro 

and Sanchez-Esguevillas, (2019)) 
76.29% N/A 

SVM SMOTE + Linear SVM (Lopez-Martin, Carro and 

Sanchez-Esguevillas, (2019)) 
77.99% N/A 

SVM SMOTE + MLP (Lopez-Martin, Carro and Sanchez-

Esguevillas, (2019)) 
77.98% N/A 

Decision Tree (Yin et al., (2017)) 74.6% N/A 

NB (Yin et al., (2017)) 74.4% N/A 

RF (Yin et al., (2017)) 72.8% N/A 

NB Tree (Yin et al., (2017)) 75.4% N/A 

MLP (Yin et al., (2017)) 78.1% N/A 

RNN (Yin et al., (2017)) 81.29% N/A 

SAE + SMR (Javaid et al., (2016)) 79.1% N/A 

AE + SVM (Al-Qatf et al., (2018)) 80.48% N/A 

Proposed V3 (AE + Stacking NN) 74.26% 65.82% 

Proposed V2 + SMOTE ENN 77.09% 59.46% 

Proposed V2 + SMOTE Tomek 78.34% 59.29% 

Proposed V2 + SVM SMOTE 77.75% 59.23% 

Proposed V1 (Stacking NN) 78.11% 55.84% 

Table 27: External comparisons in terms of accuracy and recall. Source: own edit 

The authors of Yang et al. (2019) published per-class recalls, enabling a more detailed 

comparison. In fact, global macro recalls in Table 27 were calculated from the per-class 

recalls shown in Table 28. The mean recall values based on the collected data were 95.5% 

for normal, 77.44% for DoS, 64.52% for probe, 13.84% for R2L and 4.85% for U2R 

classes. My proposed models performed under average for normal classes, above average 

for DoS, with the exception of V3, above average for probe, except for the V2 models, 

and all proposed models performed above average for R2L and U2R classes. 

Model Normal DoS Probe R2L U2R 

KNN (Yang et al., 2019) 92.78% 82.25% 59.4% 3.56% 3.5% 
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Model Normal DoS Probe R2L U2R 

Multinomial NB (Yang et al., 2019) 96.03% 37.1% 82.61% 22.22% 0.5% 

RF (Yang et al., 2019) 97.37% 80.24% 58.53% 7.55% 0.5% 

SVM (Yang et al., 2019) 92.82% 74.85% 61.71% 0% 0% 

DNN (Yang et al., 2019) 96.1% 85.4% 65.3% 14.56% 2.5% 

DBN (Yang et al., 2019) 97.04% 83.11% 69.85% 12.56% 5.5% 

ROS-DNN (Yang et al., 2019) 92.61% 80.32% 56.26% 12.75% 6% 

SMOTE-DNN (Yang et al., 2019) 96.59% 82.19% 56.75% 10.93% 11% 

ADASYN-DNN (Yang et al., 2019) 96.43% 83.28% 59.81% 9.84% 8% 

ICVAE-DNN (Yang et al., 2019) 97.26% 85.65% 74.97% 44.41% 11% 

Proposed V3 (AE + Stacking NN) 83.67% 77.28% 77.32% 32.62% 58.21% 

Proposed V2 + SMOTE ENN 92.55% 82.59% 52.25% 32.58% 37.31% 

Proposed V2 + SMOTE Tomek 91.98% 85.92% 55.80% 32.89% 29.85% 

Proposed V2 + SVM SMOTE 91.40% 84.38% 59.44% 31.09% 29.85% 

Proposed V1 (Stacking NN) 94.52% 81.26% 68.98% 24.00% 10.45% 

Table 28: Recall comparison per class. Source: Yang et al. (2019) & own edit 

The autoencoder enhanced model proposal provided the worst recall on normal 

connections and performed bad on DoS attacks compared to the measurement of Yang et 

al. (2019). The V3 model performed better, however, at predicting probe and U2R attacks 

and not much worse with R2L classes. It can be said that the V3 model traded good 

performance on majority classes for better classifications on minority classes, which also 

explains the performance degradation experienced with accuracy metrics. 

This chapter summarized several works from the related literature and compared their 

reported performance with the models’ performances I proposed in my research. Based 

on certain per-class and aggregate measures, at last one of the proposed models (V3) can 

compete and outperform works in the related literature, answering my third research 

question in chapter 3.3.  
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6. CONCLUSION 

The main goal of my dissertation was to provide a novel intrusion detection solution 

applying machine learning methods. I have introduced the field of, the data science and 

machine learning tools and techniques used for, and the literature studying intrusion 

detection first. Then, based on the design science methodology and the CRISP-DM 

process model I have designed, implemented and evaluated four intrusion detector 

models. For evaluation I compared the four models with one another first, then with 

additional model proposals from the related literature. I discussed three research questions 

in my dissertation. 

The first research question dealt with the suitability of machine learning models. Based 

on the literature review and the machine learning models I created, I proved that machine 

learning is a suitable approach for detecting intrusions. It is easy for machine learning 

models to provide accurate predictions when detecting DoS, probe and normal activity. 

Minority classes, like U2R and R2L attacks are more complicated. To overcome this 

challenge, the right course of action is not necessarily the choice of a new model. There 

is no “free lunch” in data science, there is no single best model which can give perfect 

predictions. Instead, a viable approach is to strive for ensemble models. The comparisons 

of chapter 5.2, Appendix C and Appendix D between base classifiers and aggregate 

classifiers have pointed out the usefulness of this approach. 

Speaking of ensembles, the second research question put misuse detection with ensembles 

and hybrid detection into perspective. Misuse detection can achieve good results, 

especially when the models are combined into ensembles, but it does have its limits. To 

test the magnitude of detection performance increase from hybrid detection, I created the 

model described in chapter 4.2.4. My expectation based on the literature was an intrusion 

detector that achieved an even better classification performance. The results were, 

however, more nuanced. The V3 model did achieve the best overall recall, even when it 

was compared to the related literature, but its overall accuracy suffered for it. Other 

models, like a more advanced conditioned variational autoencoder could help clarify the 

results. 

My third research question was about the levels of model performance. Primarily based 

on the related literature, I can set up a form of hierarchy between the known intrusion 

detection techniques. Single-model misuse detection can achieve acceptable detection 
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results, but better detections can be generated by ensemble models, and even better by 

hybrid approaches. Currently, data generative models, like CVAE and generative 

adversarial networks (GANs), formulate the cutting edge in intrusion detection. The 

question is whether there is a significant difference between the two approaches in terms 

of prediction performance, which is a potential topic for a future study. The dissertation 

also highlights two techniques important from a detection performance evaluation 

perspective: hyperparameter optimization and synthetic sampling. The former is 

underutilized in intrusion detection research, the most common technique used was grid 

search, when more advanced ones exist, like Bayesian optimization and tree-structured 

parzen estimators. For synthetic sampling, the most common method was SMOTE. The 

majority of the models discussed in the literature apply only the base variant of SMOTE, 

while I took a step further and compared SMOTE ENN, SMOTE Tomek and SVM 

SMOTE, However, I did not find significant differences in the predictions among the 

three. 

A different angle intrusion detection systems can be evaluated from is more practical. 

Ahamad et al. (2009) and Beek et al. (2019) reported an increase in volume and 

complexity of cyber-crimes in the last decade, showing no signs of slowing down. By 

providing inputs to alerting and prevention systems, intrusion detection could play an 

important role in a holistic information security system. My research can additionally 

provide guidance on what models do and do not work for detecting malicious activity. 

NIDS is not a one size fits all solution, though. There are many attacks, like social 

engineering that exploit the weakest link in an information security system: the human. 

An algorithm, no matter how well designed and implemented it might be, will not stop 

someone who looks like a janitor if the security guards let them in without supervision. 

The key to preventing such events is the application of defense in depth, meaning that a 

host of different controls are applied at different layers of an information system. 

Intrusion detection itself, for example, can protect the network layer or the host layer. 

Furthermore, I left the discussion of the last steps of the design science methodology and 

CRISP-DM process (Table 3 and Figure 22) out of scope for my dissertation, as that 

would have required model implementation into a live environment, which depends on 

the social context of the research process. However, if implementation is the intended 

purpose, then a more detailed context study involving the study of stakeholder goals, 
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information system entry points, particularly the review of the network protocols and 

potential open ports, the information infrastructure, and an information security audit. 

This latter shall be repeated annually to not only implement, but also maintain a high-

profile security infrastructure. 

A different approach to intrusion detection deals with its big data nature, particularly the 

velocity of modern network traffic. Here, the recommendations of Molina-Coronado et 

al. (2020) and ideas from stream processing can be applied. The recommendation is an 

intrusion detector that learns not large amounts of data at rest, but continuously as new 

observations and patterns are being provided. This concept is called incremental learning, 

and it combines well with stream processing. Furthermore, stream processing enables the 

system to benefit from the otherwise underutilized temporal nature of network traffic 

better. 

A final topic to consider during deployment is simplicity of the deployment process itself. 

Recent advances like containerization, and tools like Docker, can help tremendously with 

operation in a live environment and model maintenance. Splitting up the software 

environment to development, test and production enables the developers to find potential 

mistakes and bugs in the code, before the models get to be used. 
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9. APPENDIX 

Appendix A: As part of this dissertation, 10 independent articles were collected to verify 

which detailed class belongs to which attack category. The exact articles and the 

evaluation are visible here. After data collection, the relative frequencies of each attack 

category have been calculated. The attack category with the most “votes” became the 

final category for a given detailed attack class used later as a data preparation step prior 

to model training. 

Appendix B: Detailed performance measurements for the decision tree bagging classifier 

(V0 experiment). This intrusion detector was implemented using the map-reduce 

programming paradigm coded using the implementation of the Message Passing Interface 

in Java. Runtime considerations of this parallelization approach, however, do not affect 

classification performance, therefore measurements between parallel setups and sample 

sizes have been aggregated.  

Appendix C & Appendix D: Detailed performance measurements for intrinsic, time-

traffic, host-traffic, content and aggregator models of the V1 models measured with KDD 

Cup 1999 and NSL-KDD test datasets. Each of the base models performed poorly on 

different classes of the test set. Results were improved by the final or aggregator model. 

Appendix E, Appendix F & Appendix G: The V2 models were repeated with three 

distinct synthetic sampling processes as variants, the base and aggregator model 

confusion matrices have been provided with the intention to be used for calculating 

further performance metrics when considered necessary. 

Appendix H: confusion matrices for the V3 model. A key element of this was the 

application of autoencoder networks, a kind of neural network designed to learn an 

internal representation of the input space. Therefore, the inputs to the stacking neural 

network were comprised of the per-feature difference between the original feature values 

and those predicted by autoencoders trained on normal traffic only.  
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dos probe r2l u2r N/A Result 

apache2 Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

back Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

buffer_overflow Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

ftp_write Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

guess_passwd Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

httptunnel Test r2l r2l r2l u2r u2r u2r r2l r2l r2l r2l 0% 0% 70% 30% 0% r2l 
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ipsweep Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

land Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

loadmodule Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

mailbomb Test dos N/A N/A dos dos dos dos dos dos dos 80% 0% 0% 0% 20% dos 

mscan Test probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

multihop Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

named Test r2l r2l N/A r2l r2l r2l r2l r2l r2l r2l 0% 0% 90% 0% 10% r2l 

neptune Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

nmap Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

perl Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

phf Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

pod Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

portsweep Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

processtable Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

ps Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

rootkit Train u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 
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Detailed Class Train/ 

Test 

(Ingre, 
Yadav 

and 

Soni, 
2017) 

(Sakr, 
Tawfeeq 

and El-

Sisi, 
2019) 

(Mahfouz, 
Venugopal 

and Shiva, 

2020) 

(Yang 
et al., 

2019) 

(Latah 
and 

Toker, 

2018) 

(Aghdam 
and 

Kabiri, 

2016) 

(Saporito, 
2019) 

(Hasan 
et al., 

2016) 

(Parampottupadam 
and Moldovann, 

2018) 

(Protić, 
2018) 

dos probe r2l u2r N/A Result 

saint Test probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

satan Train probe probe probe probe probe probe probe probe probe probe 0% 100% 0% 0% 0% probe 

sendmail Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

smurf Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

snmpgetattack Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

snmpguess Test u2r r2l r2l r2l r2l u2r r2l r2l r2l r2l 0% 0% 80% 20% 0% r2l 

spy Train r2l r2l r2l r2l r2l u2r r2l r2l r2l r2l 0% 0% 90% 10% 0% r2l 

sqlattack Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

teardrop Train dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

udpstorm Test dos dos dos dos dos dos dos dos dos dos 100% 0% 0% 0% 0% dos 

warezclient Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

warezmaster Train r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

worm Test u2r dos dos r2l r2l u2r dos r2l dos dos 50% 0% 30% 20% 0% dos 

xlock Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

xsnoop Test r2l r2l r2l r2l r2l r2l r2l r2l r2l r2l 0% 0% 100% 0% 0% r2l 

xterm Test u2r u2r u2r u2r u2r u2r u2r u2r u2r u2r 0% 0% 0% 100% 0% u2r 

Appendix A: The data used to create a conceptual hierarchy, which in turn is used later to recategorize attacks in the KDD Cup 1999 and NSL-KDD datasets 
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4 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.) 

  1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c 

Accuracy 0.785 0.791 0.772 0.796 0.795 0.792 0.809 0.799 

Precision 0.959 0.975 0.866 0.967 0.965 0.902 0.903 0.969 

Recall 0.483 0.490 0.508 0.506 0.507 0.539 0.585 0.513 

F-score 0.642 0.652 0.641 0.664 0.664 0.675 0.710 0.671 

AUC 0.735 0.766 0.783 0.793 0.811 0.789 0.776 0.777 

 

8 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.) 

  1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c 

Accuracy 0.793 0.782 0.788 0.796 0.797 0.756 0.777 0.799 

Precision 0.893 0.931 0.903 0.967 0.936 0.895 0.881 0.969 

Recall 0.546 0.493 0.525 0.506 0.529 0.442 0.512 0.513 

F-score 0.678 0.644 0.664 0.664 0.676 0.592 0.648 0.671 

AUC 0.789 0.719 0.784 0.793 0.772 0.771 0.757 0.777 

 

4 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.) 

  1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c 

Accuracy 0.978 0.964 0.981 0.984 0.985 0.985 0.980 0.987 

Precision 0.477 0.449 0.513 0.511 0.532 0.558 0.489 0.576 

Recall 0.438 0.438 0.466 0.525 0.469 0.469 0.452 0.507 

F-score 0.456 0.444 0.489 0.518 0.498 0.510 0.470 0.539 

 

8 cores Small sample (3-5 000 obs.) Large sample (6-10 000 obs.) 

  1. run 2. run 3. run 1p2c 1. run 2. run 3. run 1p2c 

Accuracy 0.970 0.977 0.976 0.984 0.981 0.981 0.980 0.987 

Precision 0.397 0.467 0.476 0.511 0.513 0.445 0.470 0.576 

Recall 0.421 0.437 0.441 0.525 0.470 0.439 0.438 0.507 

F-score 0.408 0.452 0.458 0.518 0.490 0.442 0.453 0.539 

Appendix B: Detailed performance measurements for the decision tree bagging classifier 

  



 

Csaba Brunner – Intrusion Detection by Machine Learning 

 

 

135 
 

 
Intrinsic Time-traffic Host-traffic Content Aggregator  

Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score 

Normal 0.971 0.744 0.842 0.664 0.504 0.573 0.956 0.728 0.827 0.700 0.817 0.754 0.978 0.720 0.830 

DoS 0.791 0.998 0.883 0.826 0.997 0.903 0.964 0.994 0.979 0.000 0.000 0.000 0.961 0.997 0.979 

Probe 0.702 0.067 0.122 0.730 0.733 0.731 0.669 0.733 0.699 0.966 0.016 0.031 0.727 0.664 0.694 

R2L 0.074 0.555 0.131 0.000 0.000 0.000 0.058 0.308 0.098 0.071 0.493 0.123 0.088 0.585 0.152 

U2R 0.800 0.016 0.032 0.957 0.002 0.004 0.329 0.012 0.023 0.614 0.339 0.437 0.571 0.165 0.256 

Appendix C: Detailed performance measurements for intrinsic, time-traffic, host-traffic, content and aggregator models of the V1 detector on KDD Cup 1999 

 
Intrinsic Time-traffic Host-traffic Content Aggregator  

Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score 

Normal 0.857 0.801 0.828 0.736 0.792 0.763 0.928 0.696 0.795 0.750 0.809 0.778 0.945 0.726 0.821 

DoS 0.547 0.847 0.665 0.723 0.899 0.801 0.728 0.856 0.787 0.889 0.530 0.664 0.813 0.906 0.857 

Probe 0.547 0.276 0.367 0.770 0.728 0.748 0.549 0.651 0.596 0.000 0.000 0.000 0.690 0.710 0.700 

R2L 0.374 0.583 0.456 0.815 0.483 0.607 0.204 0.807 0.325 0.181 0.846 0.298 0.240 0.947 0.383 

U2R 0.552 0.054 0.098 0.000 0.000 0.000 0.164 0.023 0.040 0.448 0.070 0.121 0.104 0.053 0.071 

Appendix D: Detailed performance measurements for intrinsic, time-traffic, host-traffic, content and aggregator models of the V1 detector on NSL-KDD 
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Intrinsic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 

DoS 4086 86 654 5 0 

Normal 1110 8319 30 808 0 

Probe 1973 879 1407 611 0 

R2L 289 368 119 1081 28 

U2R 2 59 211 380 39 

Content 
Ground Truth 

DoS Normal Probe R2L U2R 
P

re
d

ic
ti

o
n

 
DoS 6315 2358 2286 1128 15 

Normal 792 7274 135 776 10 

Probe 0 0 0 0 0 

R2L 353 59 0 976 11 

U2R 0 20 0 5 31 

Time-traffic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 

DoS 5316 368 15 0 0 

Normal 921 6902 308 316 1 

Probe 566 675 1922 195 1 

R2L 615 1750 175 2358 65 

U2R 42 16 1 16 0 

Host-traffic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 

DoS 5344 515 598 31 7 

Normal 1751 8650 578 1718 26 

Probe 112 166 1206 175 3 

R2L 226 206 14 724 13 

U2R 27 174 25 237 18 

Aggregator 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 

DoS 6161 466 453 1 0 

Normal 1130 8988 702 1779 23 

Probe 78 192 1265 148 2 

R2L 89 50 1 940 17 

U2R 2 15 0 17 25 

Appendix E: V2 with SMOTE ENN sampling confusion matrices 
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Intrinsic  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 4079 86 738 5 0 

Normal 671 8312 31 807 0 

Probe 1980 884 1322 611 0 

R2L 285 370 119 1082 28 

U2R 445 59 211 380 39 

 Content 
Ground Truth 

DoS Normal Probe R2L U2R 
P

re
d

ic
ti

o
n

 DoS 0 1 0 31 0 

Normal 792 7275 135 777 11 

Probe 6315 2357 2286 1097 15 

R2L 353 57 0 976 10 

U2R 0 21 0 4 31 

Time-traffic  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5056 390 80 1 0 

Normal 1216 6861 340 330 1 

Probe 557 691 1877 175 1 

R2L 137 523 12 393 1 

U2R 494 1246 112 1986 64 

Host-traffic  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5521 516 766 28 5 

Normal 1611 8595 342 1654 20 

Probe 149 200 1273 229 5 

R2L 159 225 23 760 17 

U2R 20 175 17 214 20 

 Aggregator 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 6410 473 610 4 1 

Normal 949 8932 460 1757 28 

Probe 82 244 1351 149 1 

R2L 19 53 0 949 17 

U2R 0 9 0 26 20 

Appendix F: V2 with SMOTE Tomek sampling confusion matrices 
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 Intrinsic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 4049 87 566 3 0 

Normal 796 8256 27 798 0 

Probe 2015 940 1500 622 0 

R2L 285 369 117 1081 28 

U2R 315 59 211 381 39 

Content  
Ground Truth 

DoS Normal Probe R2L U2R 
P

re
d

ic
ti

o
n

 DoS 6315 2357 2286 1111 15 

Normal 792 7224 135 765 3 

Probe 0 1 0 17 0 

R2L 353 112 0 984 31 

U2R 0 17 0 8 18 

 Time-traffic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5378 402 111 1 0 

Normal 969 7307 268 346 2 

Probe 491 217 1916 158 0 

R2L 612 1768 124 2354 65 

U2R 10 17 2 26 0 

Host-traffic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5851 541 624 56 8 

Normal 1376 8422 512 1540 18 

Probe 96 252 1218 258 6 

R2L 117 315 25 820 17 

U2R 20 181 42 211 18 

Aggregator  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 6295 470 450 2 0 

Normal 1108 8876 532 1834 25 

Probe 36 295 1439 136 1 

R2L 21 60 0 897 21 

U2R 0 10 0 16 20 

Appendix G: V2 with SVM SMOTE sampling confusion matrices 
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 Intrinsic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 3181 111 443 4 0 

Normal 700 9379 392 1732 15 

Probe 2894 124 1263 153 0 

R2L 240 57 148 626 13 

U2R 445 40 175 370 39 

 Content 
Ground Truth 

DoS Normal Probe R2L U2R 
P

re
d

ic
ti

o
n

 DoS 0 0 0 0 0 

Normal 1 2 0 1 2 

Probe 7459 9643 2421 1905 28 

R2L 0 50 0 972 9 

U2R 0 16 0 7 28 

Time-traffic  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5171 385 298 7 0 

Normal 183 147 19 3 0 

Probe 446 498 1493 107 0 

R2L 1649 8664 454 2768 67 

U2R 11 17 157 0 0 

 Host-traffic 
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 1477 13 230 4 2 

Normal 736 5327 107 1595 16 

Probe 3381 274 1458 308 13 

R2L 741 73 58 40 6 

U2R 1125 4024 568 938 30 

Aggregator  
Ground Truth 

DoS Normal Probe R2L U2R 

P
re

d
ic

ti
o

n
 DoS 5765 72 293 10 0 

Normal 241 8125 127 914 18 

Probe 1065 1114 1872 663 2 

R2L 126 373 65 941 8 

U2R 263 27 64 357 39 

Appendix H: V3 detector confusion matrices 


