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1 Background and overview of the research

Assignment games (Shapley and Shubik, 1972) are models of two-sided matching mar-
kets with transferable utilities where the aim of each player on one side is to form a
profitable coalition with a player on the other side. Since only such bilateral cooper-
ations are worthy, these games are completely defined by the matrix containing the
cooperative worths of all possible pairings of players from the two sides.

Shapley and Shubik (1972) showed that the core of an assignment game is pre-
cisely the set of dual optimal solutions to the assignment optimization problem on the
underlying matrix of mixed-pair profits. This implies that

1. every assignment game has a non-empty core;

2. the core can be determined without explicitly generating the entire coalitional
function of the game; and

3. there are two special vertices of the core, in each of which every player from one
side of the market receives her highest core-payoff while every player from the
other side of the market receives her lowest core-payoff.

Besides the above fundamental results concerning the core, several important con-
tributions dealing with other solution concepts have been published in the last decade.
The classical solution concept proposed and studied by Von Neumann and Morgenstern
(1944) in their monumental work has remained an intriguing exception, although Soly-
mosi and Raghavan (2001) characterized a subclass of assignment games where the core
is the unique stable set. This subclass is the assignment games which are generated
from a matrix with a dominant diagonal. The existence question in the general case
was settled affirmatively by Núñez and Rafels (2013), who proved that, as conjectured
by Shapley (cf. Section 8.4 in Shubik (1984)), the union of the cores of certain derived
subgames is always a stable set. They showed this set is the unique stable set in the
principal section which contains the imputations in which every pair from the maximal
value matching gets exactly their value.
In special cases we know much more then the existence of stable sets. Shapley (1959)
considered the symmetric market game (glove market). He showed some nice properties
of the stable sets, for example every stable set is a monotonic curve end in one endpoint
of this curve every buyer gets zero payoff in the other endpoint every seller gets zero
payoff.
In the fourth section we consider Harsanyi’s criticism of stable sets. He argued that
the definition of von Neumann–Morgenstern stable set is not good because it neglects
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the effect of indirect dominance. A von Neumann–Morgenstern stable set is considered
stable because when a coalition forces to go out from the stable set there is always an
other coalition which can go back to the stable set and that is why every deviation from
the set is temporary so there is no reason to deviate from the set. Harsanyi argued it
is not always true because it can happen the players in the first dominating coalition
get strictly more in the payoff vector where the procedure arrived than in the original
one. In this case this coalition will dominate. He proposed an alternative definition of
stable set which based on a bargaining game. The stationary points (the payoff vector
where no coalition want to dominate and the bargaining process will stop) of a strong
Nash equilibrium should be called stable set instead of the original definition. He de-
fined a class of games (the absolutely stable games) in which the indirect dominance
is irrelevant. In this class it is obvious that the „original” definition of stable sets and
the proposed new one are defines the same sets. It is easy to show that the assignment
games are not absolutely stable.
In the fifth section we consider a generalization of the assignment games, the multi-
sided assignment games. The definition of multi-sided assignment games and „normal”
assignment games are very similar but the properties are very different. For example
the core of an assignment game is non-empty Shapley and Shubik (1972), but the core
of a multi-sided assignment game can be empty (Kaneko, 1982). In this class of games
we don’t know too much about stable sets. The existence is still an open question.
The only result we know is about the stability of the core in a very special case. It is
obvious that the generating matrix has a dominant diagonal is a necessary condition
of the core-stability like in the normal assignment game case (Solymosi and Raghavan,
2001). But the sufficiency was known only in the smallest „real multi-sided” case, in the
three-sided assignment games with two players in each side (Atay and Núñez, 2019).
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2 Results of the research

Before we show the results of the thesis we have to introduce some notions and defini-
tions.

A transferable utility cooperative game on the nonempty finite set P of players is
defined by a coalitional function w : 2P → R satisfying w(∅) = 0. The function w

specifies the worth of every coalition S ⊆ P . For a payoff vector x ∈ RP we denote the
sum of the coordinates in S ⊆ P by x(S)

Given a game (P,w), a payoff allocation x ∈ RP is called feasible, if x(P ) ≤ w(P );
efficient, if x(P ) = w(P ); individually rational, if xi = x({i}) ≥ w({i}) for all i ∈ P ;
coalitionally rational, if x(S) ≥ w(S) for all S ⊆ P ; where, using the standard notation,
x(S) = ∑

i∈S xi if S 6= ∅, and x(∅) = 0. We denote by I ′(P,w) the semi-imputation
set (i.e., the set of feasible and individually rational payoffs), by I(P,w) the imputation
set (i.e., the set of efficient and individually rational payoffs), and by C(P,w) the core
(i.e., the set of efficient and coalitionally rational payoffs) of the game (P,w). Semi-
imputations which are not efficient are called strict semi-imputations.

We say that allocation y dominates allocation x via coalition S (notation: y domS x)
if y(S) ≤ w(S) and yk > xk ∀ k ∈ S. We further say that allocation y dominates
allocation x (notation: y dom x) if there is a coalition S such that y dominates x via
S. We can also define the core of a game with the dominance relation. The core of a
game consist the preimputations which are not dominated by any other preimputation.
Similarly to this new definition of the core we can define the core of a set X by the
elements of X which are not dominated by any other element of X .

We say a set Z is X -stable if Z ⊆ X and

• (internal stability): there exist no x, y ∈ Z such that y dom x

• (external stability): for every x ∈ X \ Z there exists y ∈ Z such that y dom x.

This is a generalization of the stable set concept. The „normal” stable sets are the
I-stable sets (or I ′-stable sets).

A (nonempty) set Z of imputations is called a stable set if the following two condi-
tions hold:

• (internal stability): there exist no x, y ∈ Z such that y dom x

• (external stability): for every x ∈ I \ Z there exists y ∈ Z such that y dom x.

Assignment games:
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The player set is P = M ∪ N with M ∩ N = ∅, players i ∈ M = {1, . . . ,m}
are called sellers, and players j ∈ N = {1′, . . . , n′} are called buyers. The coalitional
function w = wA is generated from the m× n nonnegative matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...
am1 am2 . . . amn


consisting of the profits that pairs of a seller and a buyer can make. We define

wA(S) = max
σ∈Π(S∩M,S∩N)

m∑
i=1

aiσ(i)

Where Π(X, Y ) denotes the value of the maximal matching between sets X and Y .
In assignment game wA if domination occurs among semi-imputations it also occurs

via coalitions {i, j′} with aij > 0. We shall simply write (u; v) domij (u′; v′) if ui+vj ≤
aij and ui > u′i, vj > v′j. To emphasize the special role of the sellers and buyers, we
shall write the payoff allocations as (u; v) ∈ Rm × Rn.

2.1 Section 1: Stable sets and assignment games

• We give a new proof to the theorem of Solymosi and Raghavan (2001) which says
that the core of an assignment game is stable if and only if the matrix of the
assignment game has a dominant diagonal.
The key of the proof is Lemma 2.2.4. This lemma says that if (x; y) ∈ C and
xi + yj = aij then the vector (x(τ); y(τ)) is also an element of C for every τ ∈ R
where x(τ)

k = med(0; xk + τ ; akk) and y(τ)
k = med(0; xk − τ ; akk).

• We give a new proof for the stability of the set proposed by Shapley (Shubik,
1984). Núñez and Rafels (2013) have already proved the stability of this set but
we think our proof is easier and the characterization in the next section is the
generalization of this proof.

2.2 Section 2.: Characterization

In this section is the main theorem of the first part. We give a new characterization of
the stable sets in assignment games.

Theorem 2.2.1 A set V ⊆ I is stable in an assignment game if and only if it

1. is internally stable,
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2. is connected,

3. contains an imputation with 0 payoff to all buyers and an imputation with 0 payoff
to all sellers,

4. contains the core of the semi-imputations in the rectangular set spanned by any
two points of V.

The necessity of these properties was proved by Shapley (1959) for glove markets
(assignment games with aij = 1 for all i ∈ M and j ∈ N). The proof of the necessity
in the general case is similar to the proof of Shapley. Before the proof we need some
preparation. Suppose that V is a subset of the set of imputations which satisfies the four
conditions in 2.2.1 Theorem. We denote the coordinatewise maximum of the vectors x

and y by ∨ and the minimum by ∧. Observe that if (x; y) dominates (u1∨u2; v1∧v2),
then it also dominates (u1; v1) or (u2; v2). The set X ⊆ I ′ is said to be a lattice if for
every (u1; v1), (u2; v2) ∈ X the payoff vectors (u1∨u2; v1∧v2), (u1∧u2; v1∨v2) are also
in X . Shapley and Shubik (1972) showed that the core of an assignment game is a lattice
and Shapley (1959) showed that this also holds for stable sets in glove markets. This
property is also true in assignment games. To see this suppose that for some stable set V
the vector (u1∨u2; v1∧v2) is not in V . If it is a semi-imputation it is dominated by an
element of V . In this case this vector also dominates (u1; v1) or (u2; v2) in contradiction
with the internal stability of V . If it is not a semi-imputation then (u1 ∧u2; v1 ∨ v2) is
a strict semi-imputation and since V ⊆ I we have (u1 ∧ u2; v1 ∨ v2) /∈ V which leads
to the same contradiction. See also in Núñez and Rafels (2013).

With the lattice property of the set V we can easily see the necessity of the third
condition: since V is a closed lattice, there is a vector (u; v) ∈ V which gives the
minimal payoffs to the sellers and the maximal payoffs to the buyers. If u 6= 0, then
(0; v) is a strict semi-imputation which is not dominated by V because no buyers can
get more in V which contradicticts the external stability of V .

Since med(x, y, z) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)
where med(x, y, z) denotes the median of x, y and z, we have that the median of
every three elements of V is also in V . Observe that if (x; y) is between (u1; v1) and
(u2; v2) (which means (x; y) = med((u1; v1), (x; y), (u2; v2)), (u3; v3) domij(x; y) and
(u1; v1), (u2; v2), (u3; v3) don’t dominate each other, then
med((u1; v1), (u2; v2), (u3; v3)) domij(x; y).

If we use this observation for a vector (x; y) /∈ V which is between two elements
(u1; v1) and (u2; v2) of V , we have more than the external stability of V : we get an
element of V which dominates (x; y) and this vector is between (u1; v1) and (u2; v2).
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From this property we get immediately the necessity of the fourth condition. We can
also get the second one: we show that between every two points of V there is also a
third point. Let (u1; v1) and (u2; v2) be two elements of V . If the average of these two
points is in V then we have a third point between (u1; v1) and (u2; v2). If the average is
not in V then there is a vector (u3; v3) ∈ V which is between (u1; v1) and (u2; v2) and
this vector dominates (x; y). With the closedness of V we can prove following Shapley
(1959) that every stable set is connected. To prove the sufficiency of these properties
we need a couple of lemmas:

Lemma 2.2.1 Every set V satisfying the four properties in theorem 2.2.1 is a lattice.

Proof.
Let (u1; v1), (u2; v2) be two elements of V . Observe that the vectors (u1 ∨u2; v1 ∧ v2)
and (u1 ∧u2; v1 ∨ v2) are not dominated by any vectors between (u1; v1) and (u2; v2).
Because of the fourth condition if (u1∨u2; v1∧v2) or (u1∧u2; v1∨v2) is an imputation
then it is also an element of V . If (u1 ∨ u2; v1 ∧ v2) or (u1 ∨ u2; v1 ∧ v2) is a strict
semi-imputation, then by the fourth condition it is an element of V which contradicts
the condition V ⊆ I. If (u1∨u2; v1∧v2) or (u1∧u2; v1∨v2) is not a semi-imputation,
then the other one is a strict semi-imputation which leads to a contradiction. �

Lemma 2.2.2 Every two points of V is connected with a coordinatewise monotonic
curve in V.

Proof.

Let (u0; v0) and (u1; v1) be two elements of V . We can assume that u0 ≤ u1 and
v0 ≥ v1 because we showed in lemma 2.2.1 that (u0 ∨ u1; v0 ∧ v1) ∈ V and if there
is a monotone curve between (u0; v0) and (u0 ∨ u1; v0 ∧ v1) and another one between
(u0 ∨ u1; v0 ∧ v1) and (u1; v1) and we connect these two curves together we get a
monotone curve between (u0; v0) and (u1; v1).
Since V is connected there is a continuous curve (ut; vt)t∈[0;1] ⊆ V between (u0; v0)
and (u1; v1). Let u′t = med(u0,ut,u1) and v′t = med(v0,vt,v1). Since V is a lattice
(u′t; v′t)t∈[0;1] ⊆ V . Let u′′t = mins≤t u′s and v′′t = maxs≤t v′s. Obviously the curve
(u′′t; v′′t)t∈[0;1] is monotone, (u′′0; v′′0) = (u0; v0), (u′′1; v′′1) = (u1; v1) and since V is a
lattice (u′′t; v′′t)t∈[0;1] ⊆ V . �

With this lemma we can prove a condition which is stronger then the internal
stability.

Corollary 2.2.3 Let (x; y), (u; v) ∈ V such that xi > ui and yj > vj for some i ∈ M
and j′ ∈ N then ui + vj ≥ aij (the internal stability states only xi + yj > aij

6



Proof.
Suppose that ui + vj < aij. Let s, t ∈ R such that s + t ≤ aij, ui < s < xi and
vj < t < yj. (u ∨ x,v ∧ y), (u ∧ x,v ∨ y) ∈ V because V is a lattice. There is a
vector (x1,y1) ∈ V in the monotonic curve connecting (u; v) and (u ∨ x,v ∧ y), and
a point (x2,y2) ∈ V in the monotonic curve connecting (x; y) and (u ∧ x,v ∨ y) such
that x1

i = s = x2
i . Note that y1

j = vj and y2
j = yj. There is a vector (x3,y3) ∈ V in

the monotonic curve connecting (x1,y1) and (x2,y2) such that y3
j = t. For this vector

x3
i = s means that (x3; y3) domij(u; v) which contracicts the internal stability. �

Lemma 2.2.4 Every set V satisfying the four properties in Theorem 2.2.1 is closed.

Proof.
Let (ui; vi)i∈N ⊆ V and let (u; v) be the limit of this sequence. Since each (ui; vi) is in
V ⊆ I we get (u; v) ∈ I. By the second condition, there are elements (u; 0) and (0; v)
in V . As V is a lattice, every element of V is between these two vectors. Since each
(ui; vi) is between (u; 0) and (0; v) we get that (u; v) is also between them.
Now suppose that (u; v) /∈ V . Then (u; v) is between (u; 0) and (0; v), thus there is a
mixed pair {i; j′} which can dominate (u; v) with a vector between (u; 0) and (0; v).
Because of lemma 2.2.2, there is a vector (x; y) ∈ V between (u; 0) and (0; v) such that
xi − yj = ui − vj. If xi > ui and yj > vj then ∃k : xi > uki , yj > vkj and uki + vkj < aij in
contradiction with 2.2.3 corollary.
Now we can assume that xi ≤ ui and yj ≤ vj. Let (x1; y1) = (u∧x; v ∨ y), (x2; y2) =
(u ∨ x; v ∧ y). There are two cases:

• (x1; y1) or (x2; y2) is a semi-imputation but is not in V : assume that (x1; y1)
is this vector. By lemma 2.2.1, (u′i; v′i) = (ui ∧ x; vi ∨ y) ∈ V ∀ i ∈ N and
lim(u′i; v′i) = (x1; y1) = (u′; v′). Thus, (x1; y1) is between (0; v) and (x; y)
but between these points there is no vector which dominates (x1; y1) via the
mixed-pair {i; j′}.

• both (x1; y1), (x2; y2) ∈ V : since lemma 2.2.1, (u′i; v′i) = med((x1; y1); (ui; vi); (x2; y2)) ∈
V ∀ i ∈ N and lim(u′i; v′i) = (u; v) = (u′; v′). Thus, (u; v) is between (x1; y1)
and (x2; y2) but between these points there is no vector which dominates (u; v)
via the mixed-pair {i; j′}.

In both cases we got two points from V and a sequence (u′i; v′i) ⊆ V between them such
that the limit of this sequence is outside of the set V and this limit is not dominated by
any vector in the rectangular set spanned by the two points of V . Now change (u; 0)
and (0; v) to these two points, (u; v) to (u′; v′) and the sequence (ui; vi) to (u′i; v′i). If
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we do this step again we can exclude another possible dominating mixed-pair. After a
finite number of steps we exclude all mixed-pairs and we get two points of V and a third
outside of V between them which is not dominated by any vector of the rectangular set
spanned by the two vectors of V in contradiction with the fourth property. �

Now we can prove the sufficiency of the four conditions. The proof will be very
similar to the proof of lemma 2.2.4.

The internal stability of V is our first condition thus we only need to prove the
external stability of V . Let (u; v) be a semi-imputation outside of V . We can assume
that (u; v) is between (0; v) and (u; 0). To see this suppose that this claim does not
hold and let (u′; v′) = med((0; v); (u; v); (u; 0)). This vector is also a semi-imputation
outside of V and if this is dominated by a vector from V , this vector also dominates
(u; v).
By the fourth condition, there is at least one mixed pair which can dominate (u; v)
between (0; v) and (u; 0). The proof is similar to the proof of the closedness of V .
There are two cases:
1. There exists a mixed pair {i; j′} such that (u; v) can be dominated via this coalition
between (0; v) and (u; 0) and there is a vector (x; y) ∈ V between (0; v) and (u; 0)
such that xi > ui and yi > vj

2. For each mixed pair {i; j′} such that (u; v) can be dominated via this coalition
between (0; v) and (u; 0) there is no vector (x; y) ∈ V between (0; v) and (u; 0) with
xi > ui and yi > vj.
In the second case we can do the same as in the proof of the closedness of V because by
the internal stability of V if (u′; v′) is dominated by a vector from V the vector (u; v)
is also dominated via the same coalition.

In the first case if xi + yj ≤ aij then (x; y) dominates (u; v). Let xi + yj > aij.
Because of the connectedness of V we can assume that ui − vj = xi − yj. Let s, t ∈ R
such that s + t = aij and s − t = ui − vj = xi − yj. By lemma 2.2.2, there are two
vectors (x1; y1), (x2; y2) ∈ V such that (x1; y1) is between (0; v) and (x; y), (x2; y2)
is between (x; y) and (u; 0), x1

i = s and y2
j = t. Let (x3; y3) = (x1 ∨ u; y1 ∧ v) and

(x4; y4) = (x2 ∧x3; y2 ∨ y3) = med((x1; y1), (u; v), (x2; y2)). Since x4
i = s and y4

j = t,
the vector (x4; y4) dominates (u; v). If it is in V , we have proved that V dominates
(u; v). If (x4; y4) /∈ V then there are two cases:
1. If (x4; y4) is a semi-imputation, then it is enough to show that V dominates (x4; y4)
because if a vector from V dominates med((x1; y1), (u; v), (x2; y2)), then it also dom-
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inates one of (x1; y1), (u; v), (x2; y2). Because of the internal stability of V , we get
that this vector dominates (u; v). Thus (x4; y4) is between (x1; y1) and (x2; y2) and
between these vectors the coalition {i; j′} can’t dominate anything. Thus we excluded
one coalition.
2. If (x4; y4) is not a semi-imputation, then (u ∧ x1; v ∨ y1) or (u ∨ x2; v ∧ y2) is a
strict semi-imputation (because if (x3; y3) is a semi-imutation, then (x3∨x2; y3∧y2) =
(u∨x2; v∧y2) or (x4; y4) is a semi-imputation and if (x3; y3) is not a semi-imputation,
then (u ∧ x1; v ∨ y1) is a semi-imputation). Let this vector be (x5; y5). If (x5; y5) is
dominated by V then (u; v) is also dominated thus it is enough to show that V domi-
nates (x5; y5).

Now we can do the same, once again with (x5; y5) instead of (u; v), and (x1; y1) in-
stead of (u; 0) or (x2; y2) instead of (0; v). But now (x5; y5) is a strict semi imputation,
and because of the closedness of V there exists ε > 0 for all (x; y) ∈ V such that xi >
x5
i and yj > y5

j satisfying xi + yj > aij + ε If we do the same the coalition {i; j′} get
more than in (x5; y5) with at least ε/2 thus after a finite number of repetition we get a
vector (xk; yk) /∈ V such that xki + ykj ≥ aij. If (xk; yk) is dominated by V then (u; v)
is also dominated via the same coalition. Thus after a finite number of steps we can
exclude one coalition.

�

• Based on the above characterization we can give a simpler proof than in Núñez
and Rafels (2013) to the conjecture by Shapley is stable. It is easy to prove the
four property in 2.2.1 is true for this set.

• Núñez and Rafels (2013) proved that this set is stable and it is the unique stable
set in the principal section. Using the characterization we can get a stronger result
for uniqueness. This set is the unique stable set which contains the buyeroptimal
and the selleroptimal points of the principal section.

• The characterization works for a bigger class of games also. If we have an as-
signment game and we fix the value of the one player coalitions and the grand
coalition and increase some other the characterization of stable sets in 2.2.1 works.

• If we replace the stable set to X -stable set in 2.2.1 where X ⊆ I∗ is a closed
connected lattice the characterization also works.

• With the characterization it is easy to prove that if we know a curve between the
buyeroptimal and the selleroptimalpoint of the stable set it determines the stable

9



set. If we have two set containing the same curve then the intersection of this set
is also stable.

• Every stable set is I∗-stable and every I∗-stable set is stable.

• Let A,A′ ∈ Rm×n such that A ≤ A′ and wA(P ) = wA′(P ). If V is stable in the
assignment game belonging to the matrix A and V ′ is V-stable in the assignment
game belongs to the matrix A′, then V ′ is stable (not only V-stable) in the game
belonging to A′.

• It can be easily checked that if A and A′ differ in only one element the core of
V in the game belonging to A′ is always V -stable (and also stable) in the game
belonging to A′.

• With the last two observations we can construct stable sets, and give an other
proof to the theorem of Núñez and Rafels (2013): if A is a diagonal matrix then
the principal section is obviously stable. In the first step we increase one element
of the matrix A and take the core of the original stable set in the new game. This
set is stable in the new game. Then we increase another element of the matrix
and so on.

• We also proved that if the core of an assignment game is not stable then there is
infinite many stable set: it can be easily checked for games with two buyers and
two sellers. Similarly we can show it to assignment games with a matrix which
has only one non zero element not in their diagonal. Begin the construction in
the previous point from this infinite many stable set the procedure ends in infinite
many stable sets.

2.3 Section 3: 1-seller case

In this section we give an other characterization of stable set if there is only one
seller. We also show that the union of all stable sets can be described as the union
of convex polytopes all of whose vertices are marginal contribution payoff vectors.
You can find the proofs in Bednay (2014). In this section let the generating matrix
A = [a1, a2, . . . , an] with a1 ≥ a2 ≥ · · · ≥ an(≥ an+1 = 0).
Let X = {(u,v) ∈ I : ∀ 1 ≤ i ≤ n vi = 0 or u+ vi ≤ ai} and
U = {(u,v) ∈ I, ∀ k : ∑n

j=k vj ≤ |ak − u|+}.
Let Mi be the set of marginal payoff vectors where the seller gets exactly ai.
The results of this section:
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• Let wA be a one-seller assignment game. Then Z ⊆ I is a stable set in wA, if and
only if Z is a [0; a1]-continuous, monotone curve in X .

• Let wA be a one-seller assignment game. Then Z ⊆ I is a stable set in wA, if and
only if Z is a [0; a1]-continuous, monotone curve in U .

• U is the union of stable sets.

• U = ⋃n
i=1 conv (Mi ∪Mi+1).

• In one-seller assignment games the Shapley value is only in very special case in
U .

2.4 Section 4: Bargaining equilibrium

In this section using the characterization of stable sets in the previous sections we
showed that in assignment games the original definition of stable sets and the definition
based on the bargaining game proposed by Harsanyi (1974) are the same.

2.5 Section 5: Multi-sided assignment games

In this section we showed that the core of a multi-sided assignment game (not only in
the 2 + 2 + 2 case like Atay and Núñez (2019)) is stable if and only if the generating
(poly)matrix has a dominant diagonal (like in assignment games (Solymosi and Ragha-
van, 2001)).
The key of the proof is the following lemma:
Let A be a polymatrix with dominant diagonal and x ∈ I\C. If ai1i2...ir is a maximal
element of A and the core inequality belonging to ai1i2...ir doesn’t hold then the core
dominates x via the mixed r-tuple (i1, i2, . . . , ir).

In the 2 + 2 + 2 case we have also an other proof. In this case the structure of the
core is similar to the „normal” assignment games. A generalization of the lemma used
in the proof of the theorem by Solymosi and Raghavan (2001) in section 1 holds. We a
also showed that the 2 + 2 + 2 case is the only non-trivial case where it works.
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