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1 Research and topic selection background

The dissertation focuses on counterparty credit risk management and the Credit Valuation

Adjustment (CVA).

Counterparty credit risk refers to the risk of losses due to the default of a counterparty

in an OTC derivative contract.1 This type of financial risk belongs to the family of credit

risk, and mainly the 2008 crisis has drew attention to its relevance. The pricing of

counterparty credit risk refers to a way of measuring this risk and the price itself is called

the credit valuation adjustment. CVA is an adjustment to the value of a risk free contract

so that the new price reflects the possible losses due to the default of the parties. The

adjusted price is called risky price.

The history of counterparty credit risk dates back to the beginning of the OTC mar-

kets, but until the 2008 crisis it was considered to be insignificant. Market practices before

the crisis treated counterparty credit risk as negligible (Pykhtin and Rosen, 2010), or its

pricing was the privilege of large dealers when they entered into a transaction with smaller

counterparties (Skoglund et al., 2013). As Cesari et al. (2009) point out, the crisis re-

vealed that it is of utmost importance that all parties engaging in derivatives transactions

measure, hedge and capitalize counterparty credit risk. Thus the models of counterparty

risk management started to develop. In general, these models are described by Bielecki

and Rutkowski (2013) as follows: the objectives of the quantitative models of credit risk

are to price and hedge such contracts that are exposed to credit risk.

After the crisis the topic received a huge amount of attention that was the result of

multiple factors. The crisis removed the “too big to fail” perception from the market

and the default risk of all institutions became a real problem. This coupled with huge

losses realized due to actual default events and more importantly due to the movement

of the CVA. Regulators started to address the problems and put focus on the CVA with

the increased capital requirements. All of the above happened in the middle of a boom

in the OTC market, which inflated the value of the counterparty credit risk outstanding

on the market. Besides the practical applications, the theoretical aspect of the topic was

also engaging for researchers due to the inherent complexities of the field. Therefore the

relevance of the CVA was unquestionable. In the last couple of years, the significance

of the CVA decreased primarily due to market reforms like the clearing requirements of

the standardized OTC derivatives or the mandatory bilateral margining of non-cleared

derivatives and also due to decreased activity in the OTC markets. At the same time new

adjustments, collectively referred as XVAs emerged that inherited several properties from

the CVA. Nevertheless the topic is still critically important and it carries a large number

of questions to be answered.

The field of credit valuation adjustment can be split into multiple subcategories. First

1Counterparty credit risk can be defined more broadly as it arises from securities financing transactions

as well. I restrict the definition used here to OTC derivatives, because those represent the main focus

area of the dissertation.
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one can differentiate between accounting and regulatory CVA. The accounting CVA is the

price adjustment factor that I described above. The regulatory CVA is the by-product of

the accounting CVA, which refers to the specific capital requirements due to the movement

of credit valuation adjustment.

The complexity of the credit valuation adjustment is arising from its components. Due

to the pricing nature of the problem, one needs to compress multiple factors like default

times, actual obligation size or the loss given default to a single number. The topic of

credit valuation adjustment can be further split into subcategories based on the individual

components. Therefore one can distinguish between default time and exposure models

when modeling CVA. As a result, the calculation of the credit valuation adjustment is a

complex and computationally intensive task even for a vanilla product.

The primary purpose of the dissertation is to give a comprehensive view about the

credit valuation adjustment that is supplemented by other goals: Besides performing a

comprehensive review of CVA, I would like to highlight and introduce some specific area

of the topic in more details. In addition, I would like to develop and extend the available

toolkit by building new methods and improving existing ones. Also, I want to highlight

and assess gaps related to the CVA calculation, and if possible resolve them. Due to

space limits I will not be able to cover all aspects of the topic, but in order to stick to the

comprehensive view, each chapter can be assigned to one of the subcategories described

above. Chapters 2 and 3 are meant to cover different aspects of the (accounting) credit

valuation adjustment and the regulatory CVA is analyzed in chapter 4. Chapter 1 is a

general introduction that reviews the literature of the field and Chapter 5 concludes the

dissertation. This framework allows me to achieve my goals in a structured manner. Also

I can highlight the alternative dimensions of the topic, because among others I explain the

theorethical challenges, investigate the technical challenges of numerical methods used for

the calculation, challenge the group of risk factors relevant for CVA and present the topic

from the regulators’ point of view. Also, this framework creates a bottom-up structure

by building up the CVA starting from its components.
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2 Methods used in the dissertation

The credit valuation adjustment is the solution of a complex numerical problem that relies

on quantitative methods. Therefore in the dissertation I deal with quantitative models

that are of significant relevance with respect to both theoretical and practical aspects.

Within the field of economics the models belong to the area of mathematical finance.

In chapter 1 of the dissertation I introduce the basics of credit valuation adjustment.

I define the most important measures of counterparty risk like exposure amounts and

default probabilities. The CVA is equal to the expected loss due to the default of the

counterparties in the derivative contract. Formalizing this definition and solving the

semi-analytic formulas rely on the main results of quantitative finance.

As the credit valuation adjustment relies on exposure and default time models I per-

form a detailed analysis of these models. The credit exposure models use derivative pricing

methodologies and statistical aggregation methods to determine future exposure amounts.

The main output of these models is the future exposure distribution or a certain statistical

measure of that. Therefore these models rely primarily on stochastic and statistical anal-

ysis. Besides the analytical solutions due to the varying complexity of the applications,

one often needs to use numerical techniques to determine the exposure distributions.

The most often used approaches rely on some form of Monte Carlo simulations. Ex-

posure profiles that are one of the main inputs of the CVA can be calculated as follows:

First, future values of underlying factors are simulated on a discrete time grid up to the

maturity of the derivatives contract. Next, the derivative instrument is priced at all time

steps on all simulated paths. From the prices the exposure amounts are determined. Fi-

nally for each time step on the grid, the exposure amounts are averaged across paths to

determine the expected exposure amount.

This approach requires a large number of simulated paths that makes it computa-

tionally intensive. In fact, the second step requires analytical derivative pricing that is

not always possible so alternative approaches are used as well. In the dissertation, I use

Multi Level Monte Carlo and Least Squares Monte Carlo approaches for resolving some

of these limitations. In both cases, I describe a step-by-step algorithm to define new

methodologies.

In chapter 3, I deal with the default probability aspect of the credit valuation ad-

justment. Over the dissertation, I use reduced form default modeling that is extended

in section 3 with the effect of rating migrations. I start with the Markov-process based

approach of Lando (1998), but my model exhibits the looping default problem in a Non-

Markovian set-up. The looping default problem arises from one of the first applications

of the default contagion models by Jarrow and Yu (2001). In these models the default

intensity process of a company depends on the default event of its peers. At the same time

the peers’ default intensities depend on the company’s default event as well. This creates

a recursive problem that is called the looping default. In this set up one is not able to

simulate the intensity processes of the companies independently. Since the work of Jar-
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row and Yu (2001) multiple solutions of the looping default problem have been proposed.

Yu (2007) introduced the total hazard construction algorithm. Leung and Kwok (2005)

relied on the survival probability measure to overcome the difficulties of the simulation.

In some cases the Markov chain based solution by Walker (2006) and Leung and Kwok

(2009) can also be used. I will extend the total hazard construction approach and give a

detailed numerical algorithm that allows the application of the rating contagion model.

In section 4, I use analytical techniques to formalize the Expected Shortfall measure of

a portfolio that contains CVAs and their hedges. This sensitivity based approach allows

me to derive the regulatory capital formula. With the step by step derivation one can

see the main assumptions behind the regulatory model and perform a comparison of the

analytical model and the actual portfolio behavior to the regulatory formula that drives

the CVA capital requirements.

In all sections numerical examples are used to illustrate the approach. This way I can

assess the proposed approach from a practical point of view. The outputs of the numerical

examples are presented in figures or tables.
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3 Main results

3.1 Introducing Multi Level Monte Carlo to exposure profile

calculation

There are two main differences between lending risk and counterparty credit risk. Over

the life of a standard loan, partners can clearly be categorized as lender or borrower and

the amount owned by the borrower is well known for both parties. These two conditions

are not true for an OTC derivative contract. The contract’s value depends on the actual

underlying market factors, therefore its value changes constantly. Even the sign of the

value can change day-by-day that would swap the role of the lender and borrower. This

is the main reason why determining the credit exposure amount is a complex, computa-

tionally intensive problem.

The experience of the 2008 crisis and the regulatory pressure forced the risk manage-

ment departments of banks to go through a significant development. The measurement

and pricing of counterparty credit risk have became more complex than ever. Today,

banks’ counterparty risk management processes use a huge amount of computational re-

sources. A particularly computational intensive task is the calculation of the expected

exposure profile that is one of the main inputs of the credit valuation adjustment.

In the first part of chapter 2 I propose an alternative method for calculating the

expected exposure profile. The standard way to determine the expected exposure profile

relies on Monte Carlo simulation. As a first step multiple thousands of paths of the

underlying market variables are simulated on a discrete time grid until the maturity of

the contract. Next, the derivative instrument is priced at all time steps on all simulated

paths and the exposure amounts are determined. Finally for every time step on the

grid, the exposure amounts are averaged across paths to determine the expected exposure

amount.

As this approach requires a large number of simulated paths, the computational re-

quirements can grow significantly. For a bank with thousands of counterparties and

potentially millions of contracts the computational time is critical. I propose the Multi

Level Monte Carlo (MLMC) approach to reduce the running time.

The Multi Level Monte Carlo method was originally developed for numerical integra-

tion problems by Heinrich (2001). The first financial application can be linked to Giles

(2008). Since then it has became an important tool of financial mathematics, but the

first application in counterparty risk management was performed by Hofer and Karlsson

(2017). They estimate the CVA with different external parameters using the Multi Level

Monte Carlo method.

In contrast to previous studies that used a model parameter to distinguish between

different levels of the MLMC, I use the time dimension to separate the calculation layers.

My method is applicable to derivative contracts that depend on underlying dynamics with

the exact simulation schemes. This limits the scope of my results, but it still covers a
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wide range of models.

The main idea behind the model can be formalized as follows. The expected exposure

at t is defined as:

EE(t) = E[E(t)], (1)

where E(t) is the exposure at t. For a derivative contract with T <∞ maturity, we start

on the [a, b] interval, where [a, b] ⊂ [0, T ]. We would like to estimate the profile on this

interval. Let k = 0, 1, ..., L denote the level of the MLMC and we use the grid set-up

proposed by Heinrich (2001). The profile is estimated with the following points:{
EE(tj)|tj = a+

j(b− a)

2L
, j = 0, 1, ..., 2L

}
(2)

This means that at every step we estimate the middle point between the already estimated

points on the previous level. This allows us to utilize that around the quantity to be

estimated we already know some values of the profile. Based on Hofer and Karlsson (2017),

if there is a high correlation among these, then we can use an estimation methodology

similar to the control variates technique.

Let tj+ and tj− denote the succeeding and preceding time points of tj. If we as-

sume that ÊE(tj+) and ÊE(tj−) are known, then for the interim point we can apply the

following estimator:

ÊE(tj, tj−, tj+) =
1

NMLMC

NMLMC∑
n=1

(
E(n)(tj)−

E(n)(tj−) + E(n)(tj+)

2

)
+
ÊE(tj−) + ÊE(tj+)

2
,

(3)

that is for the estimation at tj we use the previous level’s estimated values for the neigh-

boring time points as control variates. Equation 1 confirms the applicability of this

approach:

EE(tj) = E
[
ÊE(tj, tj−, tj+)

]
. (4)

Hofer and Karlsson (2017) and Giles (2008) simulated the full paths of all underlying

factors on each level and reached high correlation by re-using the paths. In my case, at

every time step I need the underlying factors from the same time point, therefore I can

avoid simulating the whole path of the factors. The high correlation is achieved by using

the same random sample multiple times.

The power of the approach comes from using different number of simulated paths

(NMLMC) on each level. The previously estimated profile points improve the estimator,

therefore the number of paths can be reduced as we move between levels. This relaxes the

computational efforts and improves the computational time. In the dissertation I propose

an algorithm that details the implementation of the approach.

In spite of the relation to the control variates technique, I point out that the error of

the previous estimators are carried over to the next level. This reduces the efficiency of

the approach. Still numerical results suggest that the mean squared error of the estimated

profiles quickly drops below the standard Monte Carlo estimator’s MSE. As the MLMC
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Figure 1: Mean Squared Error compared to the theoretical value

Figure 2: Average Running Time
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uses fewer simulation points due to the reduction in path numbers between levels, we

can increase the initial number of paths to multiples of the original level to use the same

amount of simulations like the standard Monte Carlo method produces. The MSE with

different number of initial paths is illustrated in figure 1. At the same time, I compared the

running time of the two approaches. The results in figure 2 show that the new approach

reduces the computational time significantly.

Summary

In the dissertation, I propose a new technique to simulate expected exposure profiles. My

method relies on the Multi Level Monte Carlo approach and is applicable to models where

an exact simulation scheme exists for the underlying stochastic factors. I review some of

the previous applications of the Multi Level Monte Carlo method and place the approach

among those. I develop an algorithm for the implementation of the method and test it by

using a numerical example. In contrast to previous studies that used a model parameter

to differentiate the levels of the MLMC, I use the time dimension. The new method

improves the computational requirements and as such it reduces the computational time

significantly.

3.2 Extending the Least Square Monte Carlo method with col-

lateral delay and more efficient memory consumption

As I described earlier, the second step in the exposure profile calculation includes the

analytical pricing of the derivative contract. Without analytical formula the pricing should

be performed with other techniques. In case of complex derivatives, often Monte Carlo

simulations are used for pricing. If we want to calculate the expected exposure for such

products, we would hit the computational limits early, as we would perform an embedded

Monte Carlo simulation at all points of another Monte Carlo simulation. We need an

alternative approach to the embedded simulation.

In practice, the so called American Monte Carlo (AMC) approach is a common alter-

native. There are multiple versions of the AMC method, but these all date back to the

Longstaff-Schwartz approach originally developed for pricing American options. Besides

using it for the pricing of products with early exercise feature, the approach developed

by Longstaff and Schwartz (2001) and other AMC methods made their way to the field

of counterparty credit risk as well.

Cesari et al. (2009) used them for expected exposure calculation, while Brigo and

Pallavicini (2007) referred to a process relying on an AMC method to determine the

credit valuation adjustment. The AMC method most similar to the original approach by

Longstaff and Schwartz (2001) is called Least Square Monte Carlo (LSMC) ((Kan et al.,

2010), (Karlsson et al., 2016), (Joshi and Kwon, 2016)).

One often neglected aspect of the LSMC method was highlighted by Joshi and Kwon
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(2016). They pointed out that the regression equation was used only for the early exercise

decision and not for approximating the price. They incorporated this observation to the

CVA calculation and added minimal transfer amount and collateral thresholds to the

model. One important feature, the delay of the margin was nevertheless not incorporated

by them.

In the dissertation, first I incorporate the margin period of risk into the LSMC ap-

proach proposed by Joshi and Kwon (2016). The main equation developed by Joshi and

Kwon (2016) approximate CVA in the following form:

CV A ≈ LGD

m∑
i=1

Q(ti−1 < τ ≤ ti)E
[
D(0, ti)Π(ti, T )1(fi>0)

]
. (5)

where fi is the estimation of the so called continuation value based the regression. The

main result of Joshi and Kwon (2016) is that they use the regression for estimating only

the exercise decision. For estimating the actual price, they use the sum of the discounted

cash-flows (Π(ti, T )) on each path.

To account for the margin period of risk, I modify the equation 5 as follows:

CV A ≈ LGD
m∑
i=1

Q(ti−1 < τ ≤ ti)E
[
D(0, ti)(Π(ti, T )−Ki)1(fi−Ki>0)

]
, (6)

where the available collateral is equal to the collateral set by the CSA delayed by a certain

ζ time, i.e. Ki = Ci−δ and tj+δ − tj = ζ.

As a next step I point out that one of the disadvantages of the approach is the sig-

nificant memory consumption. The LSMC approach first calculates the value of the

underlying factors proceeding forward on the time grid. Then it moves backward and

estimates the early exercise decisions. As it is clear from equation 6, one cannot estimate

the exposure contribution to the CVA at time ti, because the collateral amount is not

available at this time point. Therefore it is suggested that the second step goes back to t0

without estimating collateral and as a new third step the algorithm starts moving forward

in time again to estimate the exposure values and calculate CVA. During these multiple

rounds of iteration, the algorithm keeps the values of the underlying factors, exposure

paths and collateral values in the memory, which is a limited resource. To reach accurate

results, one needs to increase the number of simulation paths to high levels. The more

path is used, the larger the memory consumption of the approach is. So the memory

requirements of the LSMC can easily exceed the available resources.

Therefore I introduce a method to reduce the memory consumption of the LSMC that

relies on the approach developed by Chan et al. (2006) and Hu and Zhou (2017). The main

idea is to save only the seed of the random number generator at every time step, when

we simulate the paths of the underlying factors forward in time instead of their actual

values. This will allow me to re-simulate the values whenever those are needed and not to

overload the memory of the system. In the dissertation I develop an algorithm to describe

the advanced LSMC approach with memory consumption reduction. The algorithm can
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be divided into two main steps: estimation and evaluation. In the estimation step the

coefficients of the regression are estimated, while in the evaluation step the terms of the

equation 6 are calculated.

I test the algorithms on products with and without early exercise option. I show that

our approach generates accurate results with around 30% memory reduction. Neverthe-

less, due to the re-simulation of the underlying factors, the running time increases. This

increase is not too significant, especially when the number of simulation paths is high.

The main results for a cancellable swap are presented in figures 3 and 4.

Figure 3: Memory consumption with different number of underlying paths for a

cancellable swap
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Figure 4: Running time with different number of underlying paths for a cancellable swap
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Summary

American Monte Carlo methods are often used for the credit valuation adjustment cal-

culation of complex derivative products. The applicability of the approach can be easily

extended if we incorporate the cash-flow effects of customized collateral agreements.

I propose an AMC based approach for the calculation of the CVA that incorporates

the delay of the margin. One of the main disadvantage of the extended LSMC technique

is the increased memory consumption. Increased memory requirement could result in the

reduction of accuracy if the user does not have sufficient memory capacity. Therefore the

other purpose of the section is to relax this limitation. I introduced a technique from the

American option pricing to the field of risk management, that resulted in lower memory

requirements without increasing the running time significantly.

After introducing the margin period of risk to the collateral modeling, I formalized

CVA calculation algorithms for products with and without early exercise feature. Then

I tested the approach on two numerical examples. The results suggest that the approach

results in 30% memory reduction.

3.3 Incorporating contagious effects of rating announcements

into CVA calculation

Rating agencies act as major institutions of the financial markets. On the one hand they

are responsible for providing ratings on market participants to reduce the informational

asymmetry encompassing investors. From this point of view, a rating announcement

should convey new information that is expected to impact the market factors and partici-

pants. On the other hand rating agencies try to limit the number of their actions to reduce

rating volatility. To achieve that, after an event impacting the credit quality of a com-

pany, they often wait before an announcement to confirm its permanence. This suggests

that a rating announcement is often based on stale data and questions its relevancy.

The significance of default contagion in the Credit Valuation Adjustment (CVA) mod-

eling has been pointed out in many papers. Jorion and Zhang (2009) show that the in-

crease in the spread of peers around and even days after default event are statistically

significant. Recent empirical research suggests that not only defaults, but rating change

announcements by large rating agencies are also contagious. Norden and Weber (2004)

find that Moody’s and S&P downgrades cause significant spread movement before and

also on the announcement date. Micu et al. (2004) conclude that all types of rating events

(actual rating change, review for rating change or outlook change) significantly impact

CDS spreads on the announcement day and thus convey relevant information to the mar-

ket participants. In fact these studies only deal with the direct impact on the company

that was rated (event firms) and not on its peers (non-event firms).

Wengner et al. (2015) are the first who investigate the spillover effects of rating an-

nouncement. They find that CDS spreads change significantly around upgrades and
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downgrades for both event and non-event firms. They observe that a downgrade of a

company in an industry decreases the CDS spread of its peers suggesting that a down-

grade benefits the non-event firms. On the contrary, in case of upgrades the spread of the

non-event firms increases. For event firms they conclude that spreads change significantly

across all companies, but the size of the change is different among industries.

The impact of these migrations is usually not captured in the Credit Valuation Ad-

justment calculation, while credit spreads contribute significantly to its value. I propose

an extended framework that incorporates the empirical observations. In the dissertation,

I investigate the effects of the contagion caused by rating migration on CVA by extending

the default contagion framework. For this purpose I use a scaling of the intensity process

that can be formalized as follows.

Let’s assume N companies and K possible rating categories. The initial ratings of the

companies are collected in S0 =
[
η0

1, η
0
2, ..., η

0
N

]
where η0

i ∈ {1, 2, ..., K} for i = 1, ..., N . I

will refer to the initial rating of company i. as an element of the S0 vector, i.e. S0[i] = η0
i

where i = 1, ..., N

Let λij(t) denote the intensity process at t of company i transitioning to state j con-

ditional on the previous rating migrations:

λij(t) = λij(t|Tn, Sn, Gi
n, R

i
n), (7)

where Tn = {t1, t2, t3, ..., tn} is the set of all previous rating change times, i.e. tn < t. Sn =

{S0, S1, ..., Sn} is the set of rating history of each company, where Sk =
[
ηk1 , η

k
2 , ..., η

k
N

]
are

the ratings after the k. transition. Finally Gi
n = {gi1, gi2, ..., gin̂} ⊆ Tn contains all the time

points when i migrated and riu ∈ Ri
n are the rating classes to where i moved at giu.

In the model the conditional intensity process (λij(t|Tn, Sn, Gi
n, R

i
n)) can be formalized

as:

λij(t|Tn,Sn, Gi
n, R

i
n) =

aij(t)

(
1 +

n∑
h=1

(
dle

1

(
1(Sh>Sh−1)1

)
+ dfel

1

(
1(Sh<Sh−1)1

)
+ dle

2

(
1(Sh>Sh−1)[i]

)
+ dfel

2

(
1(Sh<Sh−1)[i]

)
+d3

N∑
v=1

1((Sh[v]=K)∩(Sh−1[v]6=K))

)
e−p(t−th)

)
, (8)

where aij(t) is the unconditional intensity process, 1 = [1, 1, ..., 1] ∈ RN×1, and 1(.) refers

to the indicator process, that is interpreted on the elements of the vectors.

The comparison (Sh > Sh−1) and (Sh < Sh−1) are done on the elements of the vectors

too. Rating transitions are split to downgrades (1(Sh>Sh−1)) and upgrades (1(Sh<Sh−1)). The

1 multiplier is used to aggregate the elements of the vector across companies, alternatively

we refer to the element i of the vector by using the notation [i].

The conditional intensity process is the result of the multiplication of the unconditional

intensity process and a scaling factor. The scaling factor depends on the history of the
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rating changes and the {dle
1 , d

fel
1 , d

le
2 , d

fel
2 , d3, p} model parameters. dle

1 and dfel
1 denote the

sensitivities to the rating changes of any company, while dle
2 and dfel

2 refer to the sensitivity

to the own rating change. d3 is the value of the multiplier after a default event. Finally

p is responsible for the speed of the decay of impacts.

The above framework allows me to incorporate the observations of Micu et al. (2004),

Finnerty et al. (2013), Wengner et al. (2015) and Jorion and Zhang (2009) to the model.

With suitable parameter setting, the factor in equation 8 decreases the intensity process

of companies i′ 6= i after the downgrade of i, while increases it for i. A default event

increases the intensity process of all companies. Recent event receives larger weight due

to the exponential decay.

The scaling of the intensity process based on observed rating migrations and defaults

inherits the looping default problem. The difficulty arises from the fact that when simu-

lating the intensity process to determine the timing of the subsequent rating movement of

a given company, one needs to consider all rating movements of other companies, which

in fact also depend on the rating path of the first company. In this general framework

described above there is no analytical solution of default times available, therefore we

need to find an alternative approach to utilize our model for pricing counterparty credit

risk. In the dissertation, besides formulating a framework that incorporates the empirical

observations, I propose an algorithm that allows the application of our model. This algo-

rithm is an extension of the total hazard construction originally proposed by Yu (2007).

The main contribution of this algorithm is that it resolves the looping default problem,

so one can analyze the impact of the contagious rating migrations.

The results of some numerical examples suggest that the impact of the contagious

effect of the rating migrations on the credit valuation adjustment can be significant. The

impact depends on the initial rating of the company analyzed and the composition of

the industry. Table 1. shows that unilateral CVA changes significantly if the industry’s

rating composition is concentrated and the decay parameter takes a low value. In a more

heterogeneous industry the impact of rating contagion is small.

The results suggest that the bilateral credit valuation adjustment can magnify the

impact of rating migration contagion. This is due to the nature of the bilateral CVA

that incorporates the default probabilities of both parties. As a result it accumulates the

impact of the contagious effects. Table 2. shows that the bilateral CVA on derivative

contracts between parties from different industry groups can change significantly even

when the speed of the exponential decay is high. This observation holds for deals with

or without collateralization. Nevertheless, I cannot claim that the impact of the rating

migration contagion is always significant as the change in bilateral CVA on transactions

between counterparties from more heterogeneous groups is minor.
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Table 1: Unilateral Credit Valuation Adjustment with different underlying assumptions

p = 0.4

Aa Baa B Ca&C

No contagion 0,311 0,386 0,610 1,088

Contagion - Group 1 0,299 0,371 0,585 1,068

Contagion - Group 2 0,317 0,390 0,609 1,089

Contagion - Group 3 0,335 0,410 0,631 1,106

p = 0.7

Aa Baa B Ca&C

No contagion 0,311 0,386 0,610 1,088

Contagion - Group 1 0,303 0,376 0,595 1,077

Contagion - Group 2 0,313 0,390 0,610 1,088

Contagion - Group 3 0,324 0,401 0,625 1,099

p = 1

Aa Baa B Ca&C

No contagion 0,311 0,386 0,610 1,088

Contagion - Group 1 0,306 0,380 0,600 1,080

Contagion - Group 2 0,313 0,388 0,611 1,088

Contagion - Group 3 0,322 0,396 0,622 1,096

The industry composition is captured by the different groups. Group 1:

Aa; Aa; A; Baa, Group 2: Aa; Baa; B; Ca&C, Group 3: Ca&C; Caa;

Caa; B. Under different scenarios the counterparty is assumed to start

with ratings Aa, Baa, B, Ca&C.

Table 2: Bilateral Credit Valuation Adjustment - Group 1 vs Group 3

No Contagion Contagion

p = 0.4 p = 0.7 p = 1 p = 0.4(%) p = 0.7(%) p = 1(%)

Without Collateralization

Group 1 - Aa vs Group 3 - Baa -0,048 -0,084 -0,073 -0,063 177,1% 152,2% 133,0%

Group 1 - B vs Group 3 - Baa 0,337 0,287 0,304 0,314 85,2% 90,3% 93,3%

Group 1 - Ca&C vs Group 3 - Baa 0,897 0,861 0,873 0,881 96,0% 97,3% 98,2%

With Collateralization

Group 1 - Aa vs Group 3 - Baa -0,010 -0,014 -0,013 -0,011 144,5% 126,7% 113,7%

Group 1 - B vs Group 3 - Baa 0,044 0,038 0,040 0,042 86,4% 90,6% 94,6%

Group 1 - Ca&C vs Group 3 - Baa 0,142 0,136 0,138 0,140 95,9% 97,1% 98,4%
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Summary

In chapter 3, I focus on the impact of credit rating announcements on the credit valu-

ation adjustment. I review the empirical results of the literature and illustrate why the

contagious effects of rating migrations should be incorporated into the credit valuation

adjustment calculation.

Then I propose a model framework that reflects the impact of the up- and downgrades

on both event and non-event firms. This model can be considered as an extension of the

infectious defaults model. Since the model inherits the looping default problem, I had to

develop a general algorithm to simulate default times. To resolve this difficulty, I propose

an extended version of the total hazard construction method developed by Yu (2007).

Finally I analyze a numerical example to estimate the impact of rating migrations in the

model.

The results suggest that the impact of contagious effect of the rating migrations on the

credit valuation adjustment can be significant. In industry groups where the initial credit

ratings are concentrated, the default probabilities can change significantly. This affects

the value of unilateral credit valuation adjustment that can move to either direction.

When I decrease the persistence of the contagious effects then the changes observed in

the unilateral CVA disappear. The bilateral credit valuation adjustment reacts somewhat

differently as it aggregates the changes in the default probabilities across counterparties.

Therefore I see significant deviations even with lower persistence of the contagion. In

other cases when I analyzed more heterogeneous industry groups the changes in the CVA

are less significant.

3.4 Formalizing the model background and assessing the impact

of the new CVA capital requirements

Perhaps the most often cited sentence in the literature of the credit valuation adjustment

was published by the Basel Committee on Banking Supervision: “During the global fi-

nancial crisis, however, roughly two-thirds of losses attributed to counterparty credit risk

were due to CVA losses and only about one-third were due to actual defaults.”2

This sentence was disclosed when the Committee introduced the Basel III capital

requirements. Since then CVA capital reserves have become standard practice. Never-

theless, regulatory CVA is being reformed.

Basel Committee on Banking Supervision issued a proposal on the framework of the

new CVA capital requirement in July of 2015. This document had been followed by an in-

dustry wide quantitative impact study and multiple further guidance from the Committee

until the new framework was finalized in December of 2017.

Based on the new rules, there are two approaches available for banks to determine the

CVA capital requirements: Standard and Basic approaches. In chapter 4, we analyze the

2http://www.bis.org/press/p110601.htm
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Basic CVA approach.

The Basic CVA relies on the standardized method of the Basel III regulation. In the

first half of the chapter, I introduce the basic building blocks of the Basic CVA approach

and show how the combination of those forms the regulatory formula. Particularly, I

review the capital charge for the spread and the exposure components and I propose a

model framework that allows the quantification of these. Next I set up a portfolio of CVAs,

as derivatives and their hedges. The new BCBS formula estimates the capital charge as

the Expected Shortfall measure of this portfolio with 97.5% confidence level. Finally, I

show what kind of simplifications are implemented by the regulators to transform the ES

formula to the regulatory formula.

After deriving the regulatory formula, I start analyzing it. During the numerical ex-

amples I compare the regulatory formula, with the actual ES measure. First I investigate

the role of the correlation in the capital requirements. This is particularly important as

the level of correlation is fixed in the BCBS formula, therefore it could result in under-

estimated capital requirements. I test the impact of the original proposal and the QIS

options for various portfolios. For the original proposal I find that the CVA capital lev-

els are much higher than under the Basel III regime, and the actual capital requirement

remains always below the level prescribed by the regulators. The QIS and the final risk

weights decrease the capital requirement levels, but still overestimate the actual needs.

The level of the overestimation is the highest for well diversified portfolios, where the

correlation is zero. The approach is illustrated for an average portfolio in figure 5.

Figure 5: The impact of correlation for an average portfolio
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As a next step I analyze the role of the hedging. It is well known, that the regulatory

CVA is not aligned with the accounting CVA. This mismatch can actually cause real P&L

impact, as it happened with Deutsche Bank when they lost 94 million euro due to hedging
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according to their capital requirements (Carver, 2013). One of the requirement of the new

approach is to better align the regulatory and the accounting CVA, therefore I test if the

hedging alignment is part of the rule. I show that there is further room to improve on this.

On the one hand, I illustrate that even under the new rules a perfectly hedged portfolio

has a positive capital requirement. On the other hand, an imperfect hedge can result in

lower capital requirement than the actual need. This is shown in figures 6 and 7.

Figure 6: IG Portfolio
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Figure 7: NIG Portfolio
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Summary

In chapter 4 of the dissertation, I focus on the regulatory CVA and its reforms that are

being finalized. There are two main results of this chapter. First I derive the analytical

background of the regulatory formula. This allows us to understand the formula better,

and challenge the assumptions used when deriving it. The second result focuses on the

impact assessment of the new regulatory CVA framework. Actual impact assessment can

be completed by the industry wide quantitative impact studies, but it is important to

put more focus on certain aspects of the framework. Therefore I test the impact of the

correlation and hedging in the new rule. On the one hand, I conclude that the insensitivity

of the formula to the correlation results in significant overestimation of the capital. On

the other hand, I show that the mismatch between P&L and capital hedging still persists

and can have a significant impact.
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