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1. Introduction 

1.1. Aim of the Dissertation 

Who do you think is more satisfied with their life: someone who has won the lottery, or 

someone who became paralyzed on the same day? The vast majority who are asked this 

question would immediately choose the lottery winner. The answer seems to be obvious, 

as the lottery winner may expect more reward and less difficulty than a paralyzed person. 

Surprisingly, however, empirical research has shown that there is no significant 

difference between how people feel one year after those two dramatically different events 

(Brickman, Coates, & Janoff-Bulman, 1978). The reason for this counter-intuitive finding 

is that people eventually adopt to their new situations and, with this adaptation, their level 

of subjective well-being returns to its initial state. However, this type of adaptation does 

not occur for every event in life, since some, like unemployment, have often been found 

to have long-lasting effects1 (Lucas, Clark, Georgellis, & Diener, 2004). Nevertheless, 

Kahneman and Krueger pointed out that this example “challenges both everyday intuition 

and economic doctrine, by suggesting that in the long-run well-being is not closely related 

to one's circumstances and opportunities” (Kahneman & Krueger, 2006: 16). This 

statement calls for further research to help challenge unsubstantiated intuition. 

This dissertation is written to add to the state of the present knowledge by showing how 

specific life events affect subjective well-being in Hungary. There is growing demand for 

such research. First of all, the outcome variable of this dissertation has risen in importance 

in policy analysis since researchers have started arguing that the ultimate goal of politics 

is to produce life satisfaction, not only economic well-being (Rothstein, 2010). In contrast 

to financial welfare, subjective well-being captures what the stakeholder thinks is a “good 

life”. Understanding the stakeholder’s perspective is especially important when non-

market outcomes are involved, such as family ties or changes in social relationships 

(Rothstein, 2010; Thomas & Thomas, 1928). This dissertation investigates such 

phenomena.  

The applied theoretical framework in this dissertation is life course theory, which 

emphasizes how individuals’ life trajectories can contribute to understanding macro-level 

changes. Based on this approach, individuals are considered the agents of demographic 

change, thus one needs to focus on decision formation at this level to gain deeper 

                                                      
1 In other cases, life events have more complex effects; for example, they can have non-linear or 

heterogeneous effects (Lucas, 2007). 
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understanding about trends at the macro level (Elder, Johnson, & Crosnoe, 2003; Hitlin 

& Kirkpatrick, 2015; Kok, 2007) such as low fertility rates or widespread early 

retirement. Thus, the aim of this dissertation is to increase understanding of the micro 

mechanisms which underlie macro-level demographic changes. 

Early demographic research emphasized that individuals make life-stage-related 

decisions based on utility maximization. For example, these early theories were 

influential at explaining the decrease in fertility rate, increase in number of divorces, and 

spreading early retirement. Based on this perspective, fertility has decreased because the 

economic utility obtained from having children has decreased due to the emergence of 

social security systems (Becker, 1981; Becker & Barro, 1988; Boldrin & Jones, 2002). 

This approach has also contributed to understanding the increasing divorce rate: the 

phenomenon was attributed to the fact that females have become less dependent on males 

economically due to increasing female labour market participation and income (Becker, 

Landes, & Michael, 1977; Hannan, Tuma, & Groeneveld, 1978; Spitze & South, 1985). 

Further, spreading early retirement in Hungary has also been considered to be a reaction 

to poor labour market opportunities or economic instability after the transition (Scharle, 

2012). Despite the undeniable contribution of this early research, these arguments solely 

focused on objective economic well-being in explaining life-stage transitions.  

Recently, some scholars have suggested that subjective indicators, such as life 

satisfaction, could also capture another important component of life-stage-related 

decisions. These authors have argued that subjective well-being has become the major 

engine of the current demographic changes in contemporary developed societies, because 

today the “quest for happiness” is the major concern of individuals (Billari, 2009; 

Caldwell & Schindlmayr, 2003; Hobcraft, 2006). Thus, they emphasize that the goal of 

many individuals today is not simply to maximize economic well-being, but rather to 

obtain a higher level of subjective well-being. For example, people have a child or retire 

since it makes them more satisfied, not merely because these life events are economically 

rational. For example, Billari (2009) formulated the hypothesis that fertility rates often 

decrease in contemporary developed societies since parenthood is unsatisfactory.  

Moreover, observation of trends in subjective well-being can reveal those groups which 

are exposed to a higher level of risk at certain stages of life (Ferraro & Shippee, 2009). 

The effect of specific life events may significantly vary across different social groups 

since life trajectories have become less stable, less pre-determined, more unpredictable, 

and de-standardized (Kohli, 2007; Macmillan, 2005). Furthermore, one’s life course 
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depends on earlier stages, therefore the same event might have different consequences for 

different individuals based on the advantages and disadvantages they have accumulated 

(Kok, 2007; Kohli, 2007). Thus, the research in this dissertation was designed to capture 

the heterogeneous effects of life events on various social groups. For example, single 

parents and involuntary retirees are distinguished. Through observation of these groups, 

the dissertation seeks to contribute to understanding the inequalities that arise over a life 

course and to examine how social institutions can mitigate them.  

Up-to-date, state-of-the-art research about the effect of life events on subjective well-

being has mostly been restricted to Western countries, and little is known from Central-

Eastern Europe (Baranowska & Matysiak, 2011; Sironi & Billari, 2013). However, 

observation of this phenomenon is especially important in this region since transition 

countries historically suffer from significantly lower life satisfaction than that of Western 

European countries, even more than 20 years after the major political changes. They are 

still divided by an iron curtain of unhappiness (Guriev & Zhuravskaya, 2009). 

Furthermore, the individuals of these countries have a lower standard of living than those 

in western countries, thus in this region the options for the “quest for happiness” are 

limited. Moreover, welfare regimes differ significantly from those in better studied 

western countries (Draxler & Van Vliet, 2010; Manning, 2004; Polese, Morris, Kovács, 

& Harboe, 2014). Finally, international research findings are often mixed about the effect 

of life-course events on subjective well-being, thus there is no obvious universal effect 

which would allow us to apply the results obtained in other countries to the Central 

Eastern European context. Thus, this dissertation responds to the growing demand for 

research in the Central Eastern European region.  

More specifically, the issue is here re-examined in the Hungarian context. Hungary in 

particular represents an interesting case because it has some of the lowest levels of 

subjective well-being in the region, even compared to neighbouring countries. Moreover, 

in most cases economic development brings about higher average subjective well-being; 

however, in Hungary, economic growth between 1980 and 2004 was accompanied by a 

decrease in subjective well-being (Sacks, Stevenson, & Wolfers, 2010). Further, the 

permanently low fertility rate and high level of involuntary retirement call for research 

into the effect of parenthood and retirement. Moreover, in Hungary life transitions are 

embedded in a distinct economic, cultural and social context (See more in Chapters 4.2.4 

and 5.2.3). In Hungary until now the research has mostly been restricted to analyses of 

associations using cross-sectional data. However, with the development of computational 
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power, new methods have been invented that provide better estimations of causality.  

1.2. Research Questions 

To achieve the aims described above, three research questions were posed. First, the 

question ‘How does parenthood affect overall subjective well-being in Hungary?’ was 

addressed. Overall subjective well-being is measured here as “life satisfaction”. This 

question was tested on a longitudinal dataset. This chapter included more sub-questions; 

more specifically, it estimated the effect of (1/a) overall parenthood, (1/b) motherhood, 

(1/c) fatherhood, (1/d) having a first child, and (1/e) having a second child.  

Second, the research described in this dissertation also investigated how retirement affects 

overall subjective well-being in Hungary. To address this issue, the same longitudinal 

dataset was again used as for the previous question. Here, two sub-questions were tested. 

First, (2/a) how retirement in general changes subjective well-being was observed. Then, 

(2/b), the difference between the effect of voluntary retirement and involuntary retirement 

on subjective well-being was estimated.  

Finally, this dissertation also aimed to address how household life-cycle status affects 

domain-specific subjective well-being in Hungary. In contrast to the previous two 

research questions, this question was tested on a cross-sectional dataset which also 

enabled us to observe domain-specific subjective well-being. The effects of the following 

stages of life were estimated; (3/a) being young and childless, (3/b) being a parent with a 

young child, (3/c) being a parent with an older child, (3/d) being a single parent, (3/e) 

being a middle-aged childless person, (3/f) being an older childless person with a partner, 

and (3/g) being an older childless person without a partner. Correspondingly, the observed 

outcomes were satisfaction with life-course, future opportunities, quality of standard of 

living, family relations, health, work/job, housing, place of residence, income, and life as 

a whole (i.e. overall subjective well-being).  

1.3. Causality and Methods 

The present study intended to examine as closely as possible the causal relationship 

between certain statuses (belonging to a specified life-stage group) and subjective well-

being, and adopted the potential outcome framework for this purpose (Diamond & 

Sekhon, 2013; DuGoff, Schuler, & Stuart, 2014; Fisher, 1925; Ho, Imai, King, & Stuart, 

2011; Holland, 1986; Imai, King, & Stuart, 2007; Imai & Van Dyk, 2004; Imbens & 

Rubin, 2015; Neyman, 1923; Rosenbaum, 2002; Rosenbaum & Rubin, 1983, 1984, 

1985a, 1985b; Rubin, 1974, 1978; Stuart, 2010). In this framework, the key independent 
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variable – here, life-stage status – is called the treatment variable and the dependent 

variable –here, subjective well-being – is referred to as an outcome variable (the 

convention is used from now on). 

A causal conclusion would theoretically require a comparison of the outcome variable for 

the case in which a given individual receives treatment and the case in which this 

individual does not receive treatment. This method is, however, not feasible with respect 

to the current research topic, as an individual may only belong to a single life-stage group 

at any specific time. This problem is referred to as a fundamental problem of causal 

inference (Holland, 1986) or identification problem (Imbens & Wooldridge, 2009; Kézdi, 

2004). 

Randomized experiments overcome this obstacle by introducing a control group that does 

not receive the treatment, allowing its attributes to be compared with those of the 

treatment group. Comparability results from the individuals are assigned to either the 

control or the treatment group in a random way; therefore, the treatment and control 

groups only differ from each other due to chance (apart from the treatment itself, 

naturally). Thus, the method enables a comparison to be made between individuals who 

belong to the specified life-stage group and those who belong to the control group that is 

similar in every possible way (observed or unobserved) other than their life-stage group 

membership (Ho et al., 2007). However, the research topic at hand does not allow a 

random experiment to be conducted because the researcher cannot arbitrarily decide 

which life-stage group the person under consideration should belong to.  

In the case of the present research, I needed to rely on observational data; however, 

regarding such observational data, the control and the treatment group exhibited 

systematic differences (Rosenbaum, 2002). In other words, the members of a given life-

stage group do not differ from other members of the population in terms of their current 

life stage only, but also in terms of a number of other variables. For instance, older 

generations are typically characterized by lower levels of education than younger ones, 

thus any differences in subjective well-being between the different life-stage groups may 

also stem from their education, and not from life-stage group membership alone.  

To estimate causal relationships in the absence of the required experimental arrangement, 

this dissertation uses statistical methods to derive causal inferences from observational 

data: namely, matching, regression adjustment, and longitudinal analysis. These methods 

are aimed at estimating causality between the treatment and outcome variables by 

controlling for the common causes of the treatment and outcome variables, but omitting 
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the common outcomes of these two key variables (Elwert & Winship, 2014; Rosenbaum, 

1984).  

First, a matching method was used to establish a quasi-experimental arrangement. The 

essence of this method is to assign each member of the treatment group a non-treated 

person(s) who is (are) as similar as possible to the latter regarding every observed variable 

other than the treatment itself (Diamond & Sekhon, 2013; DuGoff, Schuler, & Stuart, 

2014; Holland, 1986; Rubin, 1974, 1978; Stuart, 2010). Thus, this method aims to 

replicate the experimental design. 

After performing matching, regression adjustment is used to increase the similarity of the 

treatment and control groups. Nevertheless, the literature on causal inference emphasizes 

that performing a matching procedure prior to running a regression model is 

indispensable, as regression alone tends to perform poorly (results could be exposed to 

interpolation and extrapolation bias) unless there is sufficient overlap between the control 

and treatment groups (DuGoff et al., 2014; Ho et al., 2011; King & Zeng, 2006; Kuo, 

2001). 

Finally, where longitudinal data were available, than a longitudinal extension of the 

matching method was used. This extension allowed us to control for time-invariant 

unobserved variables such as personality traits. More specifically, I used (in Chapters 4 

and 5) the matching method combined with a longitudinal method; the regressor variable 

method (Allison, 1990).  

Finally, sensitivity analysis was used to test how sensitive the results are to the model 

specifications. Matching and regression are able to control for observed variables only, 

whereas a longitudinal design also rules out the effect of time-invariant unobserved 

variables. However, even when these methods are used together, unobserved time-variant 

variables are not controlled for. Therefore, it is essential to test the sensitivity of the 

estimates to these omitted unobserved time-varying variables (Rosenbaum, 2002). 

However, even after the application of sensitivity analysis one cannot identify causal 

conclusions for sure. One can argue at most that the omitted variables probably do not 

modify the results to a large degree. Thus, the research described herein admittedly does 

not draw causal conclusions, but only estimates causality. 

1.4. Structure of the Dissertation 

This dissertation proceeds in the following steps to address the above-mentioned research 

questions: Chapter 2 outlines the theoretical background of this dissertation. It first 
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contains a review of the literature about subjective well-being, and then presents the main 

theoretical framework – namely, life course theory. Through this review, the main 

concepts and definitions are introduced which are essential for understanding the 

subsequent parts.  

Chapter 3 details the methods that were applied and elaborates the potential outcome 

framework which was used to estimate causal inference. More specifically, it provides 

details about matching methods, regression adjustment, longitudinal analysis and 

sensitivity analysis. The present dissertation also contributes to the methodological 

literature by presenting the different types of matching procedure in a sample dataset and 

revealing the computations underlying these complex algorithms. Furthermore, it also 

illustrates on a small sample dataset why regression adjustment without matching often 

fails to estimate causality (in a similar manner to Ho et al. [2011]).  

The three empirical studies are presented in Chapters 4, 5, and 6. These studies further 

justify the research questions by discussing existing theories, and reviewing earlier 

empirical findings. Chapters 4 and 5 focus on the effect of two specific life events on 

overall subjective well-being using a longitudinal dataset. More specifically, the first 

estimates the effect of parenthood and the second the effect of retirement. Meanwhile, 

Chapter 6 shows how life-stage status affects domain-specific subjective well-being using 

a cross-sectional dataset.  

Chapters 4 and 5 use a different approach to Chapter 6 to observe how life events affect 

subjective well-being and are based on a longitudinal dataset (Turning Points of Life 

Course), whereas Chapter 6 uses only a cross-sectional dataset. The longitudinal dataset 

enables more accurate causal estimation. However, the drawback of the longitudinal 

dataset is that it contains only limited information about domain-specific subjective well-

being (i.e. does not contain information about satisfaction with income). Thus Chapters 4 

and 5 do not distinguish domain-specific subjective well-being, but only observe overall 

subjective well-being. However, Chapter 6 contains domain-specific subjective well-

being measures as well. Thus, the cross-sectional design has less statistical power, but the 

dataset enables us to gain deeper understanding of the pluralizing effect of specific 

transitions by disentangling their effects regarding specific domains. Furthermore, this 

later study also observes hard-to-reach groups that could not be investigated in the 

representative longitudinal sample (i.e. single parents) due to the small sample size. To 

sum up, the two types of dataset supplement each other and together provide a bigger 

picture of the topic under observation.  
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At the end of the dissertation, findings are discussed (Chapter 7). This part summarizes 

the contribution of this dissertation to the state of the knowledge, explores its limitations, 

and make suggestions for further research.  

2. Theoretical Framework 

2.1. Conceptualizing Well-being 

This dissertation uses well-being as an outcome variable. There are different ways to 

conceptualize well-being, but basically all of them elaborate the somewhat vague idea of 

a “good life.” We can distinguish two kinds of well-being: objective well-being, and 

subjective well-being. The former refers to universal needs, while the latter recognizes 

psychological factors and the role of personal evaluation. In the 1970s a heated debate 

arose about the relationship between subjective and objective well-being. During this 

debate, it was realized that a relationship between subjective and objective measures 

exists, although these relationships are often weak. Cummins (2000) also points out that 

the correlations within subjective indicators and within objective indicators are stronger 

than between subjective and objective indicators. Furthermore, the Easterlin paradox also 

captures the difference between objective and subjective indicators: the theory says that 

among the developed countries there is no significant correlation between income and 

self-reported level of happiness (Easterlin, 1974). 

There have been several efforts to explain the difference between objective and subjective 

indicators. Diener, Suh, and Oishi (1997) stress that the discrepancy between subjective 

and objective indicators can be attributed to the fact that individuals compare themselves 

to a reference group, and the group of relevant others varies among life conditions and 

statuses. This theory explains why people living under favourable conditions usually 

underestimate their position. Cummins (2000) argues that people’s normal state is 

happiness, because this helps them to deal with daily challenges. He argues that people 

tend to distort reality using misperceptions in order to maintain their happiness. Thus, 

they tend to overestimate the positive nature of their lives and accomplishments. Finally, 

Michalos (1985) argues that subjective indicators depend on the will, evaluation and 

experience of the individual, and not only on their possessions.  

There has been a long debate about whether objective or subjective indicators should be 

used in policy analysis. We can primarily distinguish between two kinds of approaches: 

the Scandinavian welfare approach, and the American quality-of-life approach. The first 

evaluates level of welfare with the help of objective measures. In other words, this 
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approach defines well-being as “individuals’ command over, under given determinants, 

mobilizable resources, with whose help he/she can control and consciously direct his/her 

living conditions” (Erikson, 1974: 275). Resources can include, for example, money, 

property, knowledge, mental and physical energy, social relations, and security. So this 

approach focuses on objective indicators of living standard. In contrast, the American 

quality-of-life approach appraises welfare using subjective indicators (Erikson, 1974). 

Thomas and Thomas argued that subjective indicators are important, since “if men define 

situations as real, they are real in their consequences” (Thomas and Thomas, 1928: 571-

572). This approach emphasizes that the individual is best positioned to evaluate their 

own quality of life. This dissertation applies the American quality-of-life approach by 

using subjective indicators as outcome variables. 

Several typologies of social indicators have been developed which come in useful in 

understanding how subjective well-being is related to other social indicators. Schulz 

(2000) has distinguished four types of variables (see Table 1), which range from objective 

to increasingly more subjective measures. These set of variables are defined as social 

structure (Group A), resources and behaviour (Group B), evaluation of living conditions 

(Group C), and subjective quality of life (Group D). Groups C and D are considered to 

contain the variables in which evaluation and cognition are clearly predominant, thus one 

can consider these variables as subjective indicators.  

Table 1. Schulz typology of social indicators 

Group A    Group B Group C Group D 

Social structure 

Resources and 

behaviour (living 

conditions) 

Evaluation of living 

conditions 
Quality of life 

Socio-demographic 

(e.g. sex, age) 

Standard of living (e.g. 

housing, health) 

Domain Satisfaction, 

importance of life 

domains, perceived 

need, and fulfilment 

Well-being, 

satisfaction, and 

happiness 

 

Moreover, subjective indicators are also often categorized. Hegedűs (2002) has 

distinguished three kinds of subjective indicators. The first describes subjective well-

being in an indirect way. For example, a variable which measures one’s preferred way of 

spending taxes belongs to this category. The second type of subjective indicator measures 

well-being in a direct way. Hegedűs argues that an individual’s perception of their income 
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belongs to this category. Finally, the third type goes beyond a simple description of well-

being and also incorporates an evaluation process. For example, this third type contains 

measurements of satisfaction with life and happiness.  

Extended research has been conducted into subjective well-being,2 but nevertheless, there 

are still conflicting ways to define it. First and foremost, the concept emerged in the work 

of Aristotle, who considered subjective well-being as people’s perceptions of meaning, 

purpose and growth. This definition goes beyond the concept of happiness in its 

observation of how people realize their human potential (Graham & Nikolova, 2015). 

More recently, Diener (1984) defined subjective well-being as a general evaluation of a 

person’s life. The author considers happiness and life satisfaction to be the components 

of this concept. In contrast, Ahuvia and Friedman (1998) have said that subjective well-

being is a general and long-term state that consists of cognitive and affective components. 

Thus, they replaced the concept of happiness with life satisfaction and affect. In a recent 

article, Diener et al. (2016: 3) reviewed earlier research on subjective well-being and 

concluded that it is a “broad umbrella term that refers to all different forms of evaluating 

one’s life or emotional experience”. In this dissertation, this latter definition is used.  

Within subjective well-being we can distinguish further categories. Kahneman, Diener 

and Schwarz (1999) have also distinguished three categories of subjective well-being: life 

evaluation, hedonic well-being, and eudemonic well-being. First, life evaluation captures 

people’s thoughts about the quality of their lives and their overall life satisfaction. For 

example, the Cantril ladder is a typical way of measuring this kind of subjective well-

being, whereby individuals are asked to place themselves on eleven-point scale, in which 

the lowest number represents the worst possible life and the highest number the best 

possible life. Second, hedonic well-being captures an individual’s mood or feelings (e.g. 

experiences of happiness, sadness, and anger). The easiest way to measure this concept 

is to ask the respondent to rate how much they experience these feelings. To measure this 

aspect of subjective well-being both positive and negative feelings should be on the list 

for evaluation. Finally, eudemonic well-being focuses on individuals’ opinions about the 

meaning and purpose of their life. From these three forms of subjective well-being, this 

dissertation focuses on life satisfaction.  

The concept of subjective well-being can also be studied from a life-domain perspective. 

This approach measures well-being with multiple questions instead of just observing it 

                                                      
2 Based on Diener et al. (2016), the topic of subjective well-being was investigated in 14,000 publications 

in 2015. 
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through a single question. The single-question approach focuses on satisfaction with 

whole-of-life, while the use of a series of questions captures different life domains as the 

components of satisfaction with life as a whole. The single-question approach usually 

applies the following question: “Taken all together, how satisfied are you with your life?” 

(Easterlin, 2001; Pavot & Diener, 1993; Veenhoven, 2015). Measuring subjective well-

being with multiple questions has gained popularity in recent years (Cummins, Eckersley, 

Pallant, Van Vugt, & Misajon, 2003; Ganglmair-Wooliscroft & Lawson, 2011), and the 

Satisfaction with Life Scale is one of the most often used tools (Diener, Emmons, Larsen, 

& Griffin, 1985). Sirgy (2012) says the life domain satisfaction usually includes 

satisfaction with material well-being, work well-being, social/family well-being, leisure 

well-being, and residential well-being. Furthermore, others have also added satisfaction 

with past life course and satisfaction with future opportunities to this list (Diener & 

Seligman, 2002; Heckhausen, Dixon, & Baltes, 1989; Lachman, Röcke, Rosnick, & Ryff, 

2008; Röcke & Lachman, 2008).  

The difference between overall subjective well-being and domain-specific subjective 

well-being is that the first approach is top-down, whereas the second is bottom-up. The 

top-down perspective considers overall subjective well-being a function of personality 

and other stable factors. Thus, based on this approach, overall subjective well-being 

mediates between stable factors and satisfaction with life domains. In contrast, the 

bottom-up perspective assumes that overall life satisfaction is given as a function of 

respondents’ satisfaction with many concrete domains of life (Diener, 1984; Heller, 

Watson, & Ilies, 2004). Although these two approaches are different, they are not 

contradictory, and both can work at the same time (Erdogan, Bauer, Truxillo, & 

Mansfield, 2012).  

Numerous critiques have been articulated about the measurement of subjective well-

being. Ryff (1989), for instance, criticized this measure because he found it to be too 

atheoretical. Tversky and Kahneman (1974) have argued that individuals tend to make 

fast decisions and use cognitive short cuts (so called cognitive heuristics) when 

responding to abstract questions such as “How satisfied are you with your life?” Others 

have questioned the reliability and validity of subjective well-being by arguing that this 

measurement mostly captures how the individual feels at the time of the questionnaire. 

Some researchers have documented that the circumstances of interviews can considerably 

influence subjective well-being. For example, people tend to change their responses if 

they have found money before filling out the questionnaire; furthermore, the current 
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weather, and even the order of questions might influence answers (Schwarz, 2013).  

Despite all the critiques, subjective well-being is widely accepted as a reliable and valid 

measurement. Several pieces of research have underpinned the claim that subjective well-

being indeed measures the underlying concept as intended, and repeated tests can produce 

similar results (Diener, Sandvik, Seidlitz, & Diener, 1993; Ito, Sagara, Ikeda, & Kawaura, 

2003; Krueger & Schkade, 2008; Larsen, Diener, & Emmons, 1985; Lepper, 1998; Lucas, 

Diener, & Suh, 1996). Krueger and Schkade (2008) have pointed out that although 

subjective well-being tends to be less reliable than objective measures (i.e. income and 

education), the reliability of the former is “probably sufficiently high to support much of 

the research that is currently being undertaken on subjective well-being, particularly in 

cases where group means are being compared” (Krueger & Schkade, 2008: 23). Other 

studies have encouraged the usage of subjective measures by pointing out that they predict 

observable events well. People with higher subjective well-being are less likely to commit 

suicide (Koivumaa-Honkanen et al., 2001), have better health, die later (Palmore, 1969; 

Sales & House, 1971), and even smile more (Ekman, Davidson, & Friesen, 1990). Some 

subjective measures even do better than their corresponding objective measure at 

predicting life events. For example, subjective health status has been found to be a better 

predictor of mortality than doctoral opinions (Idler & Benyamini, 1997). 

Generally speaking, subjective well-being is influenced by individual characteristics and 

the effect of these covariates are quite stable, even in international comparison. Individual 

circumstances such as health status, income, education level, gender, and employment 

have a considerable impact on subjective well-being (Hegedűs, 2001; Hegedűs & 

Lengyel, 2002; Molnár & Kapitány, 2013; Spéder & Kapitány, 2002; Wang & Hesketh, 

2012). Furthermore, personality has been found to be a major factor in subjective well-

being (Steel, Schmidt, & Shultz, 2008), although this covariate is more significant in the 

case of happiness (Schimmack, Oishi, Furr, & Funder, 2004; Steel et al., 2008).  

This dissertation uses life satisfaction to measure well-being. In Chapters 4 and 5 the 

single question approach is used, since the measurement of life-domain satisfaction is not 

well developed in the given dataset. In Chapter 6, life domain satisfaction is already 

distinguished.  

2.2. Life Course Approach 

This dissertation estimates the effects of life events on subjective well-being in the light 

of the life course paradigm. The concept of life course can be defined as “the age-graded, 
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socially-embedded sequence of roles that connect the phases of life” (Mortimer & 

Shanahan, 2007: XI). Furthermore, life course can be also considered a paradigm. This 

paradigm has been defined as “an imaginative framework comprised of a set of 

interrelated presuppositions, concepts, and methods that are used to study these age-

graded, socially embedded roles” (Mortimer & Shanahan, 2007: XI).  

The life course approach has fundamentally changed the agenda of demographic research 

due to its multi-level nature. Similarly to the previous demographic approaches, it 

recognizes societal-level factors such as cultures, structures, institutions, political factors, 

and economic conditions which may determine the course of an individual life. However, 

it also highlights individual-level factors, thus considering the individual to be the agent 

of demographic action. As a consequence, in the 1970s demographic research shifted 

from macro- to micro-level analysis (Kok, 2007).  

This approach not only shows the individual’s life in snapshots, but also as a process in 

which every moment is determined by previous stages. In other words, previous 

experiences and decisions create both opportunities and obstacles for the individual. Since 

every life event leaves a mark on the whole life course, one cannot understand a single 

life event without considering the previous stages (Elder et al., 2003; Kok, 2007). Thus, 

early life events can have an effect on later-life outcomes. For example, childhood 

disadvantages can have an effect on subsequent body mass index (Elsenburg, Smidt, & 

Liefbroer, 2017), adult labour market income (Bartley et al., 1994; Black, Devereux, & 

Salvanes, 2007), educational attainment (Black, Devereux, & Salvanes, 2007), and 

mortality (Oreopoulos, Stabile, Walld, & Roos, 2008). Furthermore, certain life events, 

such as unemployment, have been found to have long-lasting effects on subjective well-

being (Clark, Diener, Georgellis, & Lucas, 2008). Finally, based on this approach, gender 

also plays a key role in understanding life events because females and males have 

different experiences (Krüger & Baldus, 1999). Thus, this theoretical framework calls for 

studies which recognize the time-related interdependence between various life events.  

Despite the individual focus of life course research, the approach also incorporates the 

institutions that shape individuals’ opportunities and limitations. In this approach, one of 

the influential institutions is the family within which the individual lives. Although 

“family” and “household” are not synonyms, the two concepts often overlap. Thus, along 

with recognition of the importance of the family context, observation of the household 

has also gained in importance in this paradigm (Uhlenberg & Mueller, 2003). 

Consequently, in this dissertation the household context is also considered to play a key 
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role in understanding transitions. The third empirical study in Chapter 6 has a specific 

focus on household life cycles.  

Furthermore, society as a whole shapes the life course of its citizens. Every society has 

norms concerning life courses. These norms provide information about the “desirable” 

sequence of life events. For example, norms influence thoughts about at what age 

members of society should have a child or retire. This is what Kohli (1993) calls the 

institutionalization of life course. The former author pointed out that “institutions may 

start as purposive social constructions but gradually become self-evident as they turn into 

second nature, be it in terms of a shared belief system or of a taken-for-granted structural 

reality” (Kohli, 2007: 257).  

Furthermore, life course can be directly influenced by policies or programs (such as 

education, parental leave, or retirement system reforms) that are introduced by the 

government. Such policies can contribute to the regulation or standardization of 

individuals’ life courses (Mayer & Schoepflin, 1989). Accordingly, welfare states 

influence how the individual experiences transitions such as parenthood or retirement 

(Leisering, 2003). Consequently, this dissertation places high importance on describing 

the context (namely, the Hungarian context) in which the observed transitions occur.  

In the last few decades, life courses have become less standardized, thus life events also 

have a pluralized effect. Brükner and Mayer (2005:28) argues that the idea that “lives 

have become less predictable, less collectively determined, less stable, less orderly, more 

flexible, and more individualized has become one of the most commonly accepted 

perceptions of advanced societies.” Nevertheless, the greater complexity and diversity of 

life paths means that life events such as fertility and retirement might have very different 

consequences for different social groups. Therefore, in this dissertation the conditions 

that may modify the effects of life events are also investigated. For example, the first 

empirical study not only estimates the effect of parenthood, but also evaluates how the 

number of children and gender modify this effect. Furthermore, the second empirical 

study not only focuses on the effect of retirement, but also observes whether voluntary 

and involuntary retirees experience retirement differently. 

Finally, the life course approach also provides a methodological framework. Based on 

this framework, researchers should rely on (1) individual-level data, in order to grasp 

micro mechanisms, and (2) longitudinal data, which provides a bigger picture of the 

individuals’ life course and supports the observation of interdependency between life 

stages (Elder et al., 2003). Thus this methodological framework calls for an individual-
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level longitudinal dataset such as the Turning Points of Life Course, which is used in the 

first and the second empirical study. 

For the observation of life course, one needs to distinguish between ageing effects, cohort 

effects, and stage effects. The ageing effect highlights how certain characteristics of 

individuals change over their life course, whereas the cohort effect compares people from 

different cohorts. The observation of ageing requires longitudinal data, while in the case 

of cohort effect cross-sectional data is sufficient (Frijters & Beatton, 2012; Mason & Lee, 

2006). Finally, the stage effect has to be distinguished from the previous two phenomena. 

This reflects on the effect of certain transitions such as fertility or retirement (Frijters & 

Beatton, 2012). The first and second studies in this dissertation focus on the latter concept; 

however, even in these cases one needs to have prior knowledge about the age effect, 

since ageing provides a context for any demographic life events. The third study combines 

an estimation of ageing effect and life stage effect, as in this study life cycles are defined 

by age, parenthood status, and partnership status.  
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3. Analytical Strategy 

3.1. Association and Causality 

Suppose we have a population of N  individuals3, in which each individual is indexed by 

i  ( ). Let  denote the outcome for a given individual i  and  denote a 

binary variable which takes a value of 1 if the individual receives a treatment and 0 if 

they receive the control. In the applied framework, the key explanatory variable is referred 

to as the treatment variable, therefore, this term will be used in the following parts of the 

dissertation as well. This dissertation deals with a simple treatment-and-control setting4, 

thus the  treatment variable is a binary variable. 

1

0

if i individual recieves the treatment
J

if i individual recieves the control


 


  

The ( 1)jN   number of individuals who receive the treatment  belong to the K  

treatment group, whereas the ( 0)jN   number of individuals who do not receive the 

treatment  belong to the L  control group. Let us assume that every i  individual 

either receives the treatment or does not ( i K or i L ). K  contains those k  individuals 

who actually receive the treatment  and L  contains the l  individuals who do not 

. 

One of the goals of this dissertation is to estimate causality between life stages and 

subjective well-being. Regarding causal inference I seek to measure what would happen 

to  outcome as a result of a  treatment variable. In this case, let  outcome variable 

denote subjective well-being for a given individual i , and  denote a binary variable 

corresponding to life-stage groups which takes a value of 0  if an individual is not at the 

observed life stage and 1 if the individual is. To understand the relationship between these 

two variables, two concepts need to be distinguished: association and causality. 

Association refers to dependence between two variables but does not necessary imply 

causality. For example, regarding the topic of this dissertation, one might find that there 

                                                      
3 The unit of analysis can be something other than an individual (e.g. a household, company, or country), 

but this dissertation uses individuals as the unit of analysis, so for the sake of simplicity, this chapter 

illustrates the methods using this unit. 

4 Alternatively, one may observe a continuous treatment effect or a multiple treatment effect; however, this 

subject is outside the scope of this dissertation.  
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is an association between a life stage and subjective well-being, but this does not mean 

that entering into that given life stage actually causes a change in subjective well-being.  

To better understand the difference between the two concepts, let me review the types of 

associations. Variable  and variable  can be associated with each other in three ways 

(Elwert & Winship, 2014): 

1. Either of them affects the other directly or indirectly 

2. They share a common cause 

3. They are conditioned on a common outcome (or are descendants of a common 

outcome)  

The first type of association implies causality, but the second and the third types do not 

imply causality but only association. Estimating causality requires that the latter two types 

of association be ruled out.  

The second type of association occurs, for example, when one is interested in the effect 

of parenthood on subjective well-being, but the treatment and control groups differ in 

their subjective well-being even before the birth of a child. Imagine two hypothetical 

situations: In the first situation, members of the treatment group (those who had a child) 

have significantly higher subjective well-being than the control group (those who did not 

have a child) even before exposure to the treatment (childbirth). This situation occurs if 

people with higher subjective well-being have a higher probability of having children. 

This situation is illustrated in Figure 1, which shows the distribution of the outcome 

variable in the treatment and control groups before exposure to the treatment. In this case, 

the difference in post-birth subjective well-being between the treatment and control 

groups may be attributed to pre-birth differences, not necessarily to the birth of a child. 

Thus, simple comparison of the post-treatment outcome variable might indicate a positive 

association or an insignificant association, even in the case of a negative causal effect.  

Similarly to the first hypothetical situation, one can imagine a situation in which people 

with lower subjective well-being have a higher probability of having children. The 

distribution of the outcome variable in the treatment and control groups before exposure 

to the treatment is illustrated in Figure 2. In this case, comparison of the post-treatment 

outcome can also be misleading when estimating causality: it is possible that parenthood 

indeed has a positive effect on subjective well-being, but the comparison of the mean 

shows an insignificant or even negative association between the treatment and outcome 

variables due to initial differences.  

iJ iY
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Figure 1. Distribution of subjective 

well-being before treatment in 

hypothetical situation 15 

 

Figure 2. Distribution of subjective 

well-being before treatment in 

hypothetical situation 26 

 

Further, the treated and control groups can differ from each other not only in terms of the 

outcome variable, but other covariates as well. For example, it is possible that richer 

people have a higher level of subjective well-being, and are also more likely to have 

children. In this case, the reason subjective well-being is high may not be that the given 

individual has a child, but rather that they are rich. These common causes are referred to 

as confounding variables in the statistical literature. Upon estimating causality, failing to 

account for these variables creates selection bias.  

The third case is less intuitive, but also plays a crucial role in modelling causality. Assume 

that motherhood is marginally independent from subjective well-being. Moreover, there 

are studies which show that motherhood has a negative effect on productivity (Bryson, 

Forth, & Stokes, 2015). Furthermore, other studies have found that people with higher 

subjective well-being tend to be more productive (Bryson et al., 2015). Thus conditioning 

on productivity can create a spurious association between the two key variables, even if 

they are marginally independent from each other. The common outcomes of the key 

variables are called collider variables. Conditioning on a collider variable (or any variable 

which is affected by this collider variable) creates endogenous selection bias. To avoid 

this bias when estimating causality, it is advised not to control for post-treatment variables 

(Elwert & Winship, 2014; Rosenbaum, 1984). 

However, it must be noted that controlling for only pre-treatment variables does not 

                                                      
5 Author’s own construction, produced in R.  

6 Author’s own construction, produced in R.  
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always rule out endogenous selection bias. There are some variables which are affected 

by the treatment, although they appear before exposure to the treatment. For example, 

people might anticipate an event and its effect and their expectations about the future 

might influence the present. The literature refers to this phenomenon as the anticipation 

effect. Controlling for these variables can also cause endogenous selection bias. 

Regarding the research in this dissertation, the former situation may appear when 

observing the parenthood effect. Parenthood might have an effect before birth as parents 

prepare for the arrival of a child (Baetschmann, Staub, & Studer, 2016; Balbo & Arpino, 

2016; Clark et al., 2008; Myrskylä & Margolis, 2014). As a consequence, controlling for 

only pre-treatment variables plays an important role, but it does not automatically 

guarantee that endogenous selection bias is ruled out.  

To sum up, to estimate causality one needs to include all the confounding variables, but 

omit all the possible collider variables. The longitudinal design of the present research 

can handle both issues more effectively than cross-sectional research. First, longitudinal 

analysis can control for not only observed confounding variables, but also time-invariant 

unobserved variables, thereby reducing selection bias. Moreover, a longitudinal design 

enables us to measure control variables before exposure to the treatment, which can help 

with avoiding endogenous selection bias. 

3.2. Potential Outcome Framework 

The present dissertation applies the potential outcome framework to estimate causality. 

This approach was developed by Neyman (1923) and Fisher (1925), and further 

elaborated by Rubin (1974, 1978) and others (Diamond & Sekhon, 2013; DuGoff et al., 

2014; Ho et al., 2011; P. W. Holland, 1986; Imai et al., 2007; Imai & Van Dyk, 2004; 

Imbens & Rubin, 2015; Rosenbaum, 2002; Rosenbaum & Rubin, 1983, 1985a, 1985b; 

Rubin, 1974, 1978; Stuart, 2010). Throughout the whole of the Analytical Strategy 

Chapter I refer to these authors if not otherwise indicated. This framework has been taken 

by numerous social scientists to estimate certain events, interventions or other treatment 

effects when formulating evidence-based policy or seeking to obtain a deeper 

understanding of phenomena. This chapter provides an overview of the potential outcome 

framework and the key concepts used within this framework. These concepts are applied 

in subsequent chapters which describe the methodology of this dissertation.  

The potential outcome framework assumes that any i  individual from the population has 

a greater than 0 probability of receiving the treatment, and a greater than 0 probability of 
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receiving the control as well. Further, this approach assumes that for each i  individual 

and  treatment scenario ,  potential outcome exists, which the individual 

would encounter under  treatment. In other words, for each individual two potential 

outcomes may be defined: (1) the actual outcome that they in fact experience; and, (2) a 

counterfactual outcome that they would experience if they received a different treatment 

than that which they actually do.  

Regarding this dissertation, for each individual the following two potential outcomes can 

be calculated: 

 Those who receive treatment (j=1) 

 
actual level of subjective well-being that individual i  has who belongs to 

the observed life-stage group 

 
level of subjective well-being that individual i , who belongs to the observed 

life-stage group, would have if they belonged to another life-stage group 

 
Those who do not receive treatment (j=0) 

 
actual level of subjective well-being that individual i  has who does not 

belong to the observed life-stage group 

 
level of subjective well-being that individual i , who does not belong to the 

observed life-stage group, would have if they belonged to the observed life-

stage group 

Based on the potential outcome framework, any conclusion of causality would 

theoretically require a comparison of individual outcomes under each treatment 

possibility ( 1 0i iY Y ). With regard to the present research, a key issue is determining the 

extent to which the subjective well-being of an individual i  from the given life-stage 

group  would differ if they did not belong to the aforementioned life-stage group

, permitting investigation of the effects of life stages. For i  individual, the true 

causal effect can be calculated in the following way: 

    (1) 

However, this type of comparison is not feasible in practice, given that the two potential 

outcomes cannot be observed simultaneously (one individual either receives the treatment 

or does not at any one time). Regarding the sample for the present dissertation, any one 

individual can only belong to a single life-stage group at any one time, thus, the level of 

j  ( 1,0 )j  ijY

j

1 1iY J 

0 1iY J 

0 0iY J 

1 0iY J 

( 1)j 

( 0)j 
i

1 0i i iY Y  
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subjective well-being is only observable in actual cases (  or ), but 

counterfactual cases are missing (  or ). This problem has been named 

the “fundamental problem of causal inference” by Holland (1986) and is also often 

referred to as the identification problem by economists (Imbens & Wooldridge, 2009; 

Kézdi, 2004). Table 2 illustrates the challenge of calculating the treatment effect in a 

sample dataset (See Table 27).  

Table 2. Illustrating the “fundamental problem of causal inference” 

 individual  treatment  outcome  outcome Treatment effect 

 

1 1 9 ? 9 ? ?    

2 1 8 ? 8 ? ?   

…
 

…
 

…
 

…
 

…
 

40 0 ? 8 ? 8 ?   

41 0 ? 6 ? 6 ?   

   

The collection of  observed potential outcomes (Equation 2) can be calculated in the 

following way: 

    (2) 

Although  is not identified, the expected value of the related change can be identified. 

Basically, three ways of calculating this expected value have been created. First of all, 

one can observe individuals over a short period of time when both and  outcomes 

appear, and compare these two outcomes. However, to draw causal conclusions this way 

one needs to assume (1) temporal stability, which means that  outcome is independent 

from the timing of the treatment assignment; and, (2) causal transience, which states that 

first having  outcome (receiving treatment) is transient, and does not change individual 

i  to the extent that it also affects outcome. Under these assumptions, one can state that 

“each individual in panel data is his own best control” (Hausman & Wise, 1979). The 

first and second empirical studies in this dissertation were conducted using a longitudinal 

dataset, thus this approach was also applied herein (See Chapter 3.7.6.). 

1 1iY J  0 0iY J 

1 0iY J  0 1iY J 

i J
1iY

0iY

1 0i iY Y
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1 0(1 )obs i i i iY J Y J Y    

i

1iY
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The second way of identifying the missing potential outcome is to use a random 

experimental design. One of the greatest advantages of a randomized experiment is that, 

on average, control and treatment groups are only randomly different from one another 

across all observed and unobserved variables because the subjects of the experiment are 

randomly assigned to a treatment or control group. Therefore, the average measured 

potential outcome of the control group can be used as a good estimation of the average 

potential outcome that is missing for the treatment group (more detail in Chapter 3.4).  

Third, when assignment of the treatment is not feasible, statistical adjustment may be 

used to estimate the expected value of any missing potential outcomes. Among these 

methods, the research for this dissertation employed regression adjustment, weighting, 

matching, and longitudinal analysis. Further, other methods can be mentioned here which 

would be useful for estimating causality, but which are not covered in this dissertation in 

detail. These include instrumental variables and regression discontinuity.  

Finally, the assumptions made in this framework should be noted. The potential outcome 

framework relies on the Stable Unit Treatment Value Assumption (SUTVA), which 

involves two prerequisites (Rubin, 1978). First, it assumes that the potential individual 

outcome is not affected by whether other units receive the treatment. Regarding the 

research described herein, this means that one’s subjective well-being is not affected by 

other people’s life-stage status. However, mechanisms such as social learning, social 

pressure, social contagion, and social support might violate this assumption since they 

assume that individuals interact with each other (Bernardi & Klärner, 2014; Ateca-

Amestoy, Aguilar, & Moro-Egido, 2014). One can avoid this problem by sampling a 

sufficiently large population in which interaction is less dense.  

The second prerequisite of SUTVA is that there are no different versions of treatments. 

In other words, the characteristics of an individual do not modify the given life stage 

effect on subjective well-being. In certain cases, this situation can be avoided by further 

specifying the treatment. For example, I not only observe the effect of parenthood, but 

also the effect of single parenthood (as done in Chapter 6). 

3.3. Different Types of Causal Parameters Within the Potential 

Outcomes Framework 

In this chapter I introduce the theoretical foundation of the causal parameters under the 

potential outcome framework. In practise, these parameters are calculable only if the two 

potential outcomes are measurable at the same time. As I have argued before, this is not 
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possible as one of the potential outcomes is always missing. Thus, the material in this 

subchapter is only theoretical, and the following chapters will unfold how the missing 

potential outcome can be estimated, which might also modify the calculation of the causal 

parameters.  

First of all, one can estimate the average treatment effect (ATE), which is the expected 

value of the difference between the two potential outcomes. Namely, it is the expected 

value of the difference between the outcome that the individual would have upon 

receiving the treatment and the outcome that the individual would have without receiving 

the treatment (see Equation 3). 

  (3) 

ATE represents the expected effect of the treatment on any individual from the whole 

population, regardless of whether this person would be actually eligible to receive the 

treatment. Alternatively, one can estimate the population average treatment effect for the 

treated (ATT), which only observes the treatment effect on the treatment group (See 

Equation 4). 

  (4) 

Finally, one could estimate the average treatment effect on the untreated (ATU). This 

parameter measures how the treatment would affect the control group if this group 

received the treatment (See Equation 5). 

  (5) 

The choice of ATT over ATE or ATU often depends on the given treatment. For example, 

policies are often implemented through programs targeted at a narrow population instead 

of the whole population. Numerous social policies are aimed at helping only people who 

are in need, thus only selected people are eligible to receive the treatment. To estimate 

the effects of these policies, it makes more sense to estimate ATT which only observes 

what the effect may be for those who are actually eligible for treatment.  

Regarding the present research, ATT would mean the effect of belonging to a certain life 

stage on subjective well-being for those people who actually belong to this life stage. 

More specifically, ATT involves a comparison between the level of subjective well-being 

that those have who belong to a given life stage with the subjective well-being that the 

same group of people would have if they did not belong to this life stage. In contrast, ATE 

 1 0i iATE E Y Y 

1 0 1i iATT E Y Y J     

1 0 0i iATU E Y Y J     
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would observe the effect of a life stage for the whole sample. Namely, ATE refers to the 

difference between the subjective well-being in the whole sample if everyone belonged 

to a given life stage and the subjective well-being that everyone in the sample would have 

if no one belonged to this life stage. Finally, ATU represents the effect of a life stage for 

those who do not belong to the given life stage. Meaning, ATU is a comparison of the 

subjective well-being of individuals who do not belong to a given life stage with that of 

the same individuals assuming they did belong to the former life stage . 

The association between ATE, ATT and ATU can be written as 

 , (6) 

where  refers to the probability of receiving the treatment in the population, and 

 is the probability of not receiving the treatment.  

In the case of population surveys, one can distinguish between the sample and the 

population ATEs, ATTs and ATUs. The sample parameters are respectively denoted as 

SATE, SATT and SATU, whereas the population parameters are denoted as PATE, 

PATT and PATU. The main difference between sample and population parameters is that 

the former are generalizable to the survey only, whereas the latter describe the effect 

across the whole population.  

Sample parameters are calculated as the average of the treatment effect on a sub-sample 

(SATT and SATU) or the whole sample (SATE), rather than estimating the expected 

value in the population. Equations 7, 8, and 9 specify the calculations for SATE, SATT 

and SATU, respectively:  
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  , 
(9) 

where ( 1)jN   refers to the number of treated individuals and ( 0)jN   denotes the number 

of control individuals in the sample. 

( 0)j  ( 1)j 

( 1) ( 0)ATE ATT P J ATU P J     
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The population parameters can be estimated from the sample parameters. DuGoff et al. 

(2014) have argued that the best way to estimate population treatment effects is to 

calculate the sample treatment average, and take into account the sample design by using 

sample weighting. 

3.4. Random Experiments 

Although the research described in this dissertation does not use random experiments as 

a method, they serve as the gold standard of causality, so they serve as a reference point 

for other methods as well. Classic random experiments have the three following 

characteristics (Ho et al., 2011): 

1. random selection of individuals from the whole population to the sample 

2. random treatment assignment for of all members of sample 

3. large sample size 

The first characteristic reduces selection bias by ensuring that the sample selected from 

the given population is only randomly related to the potential outcomes. Thus, the 

potential outcome in the sample should be similar to the population-level potential 

outcome. The second feature further eliminates selection bias by ensuring that the 

treatment group and control groups only randomly differ from each other, even without 

controlling for any confounding variables. In other words, this characteristic produces a 

setting in which the treatment and control groups are balanced for all covariates. Finally, 

the third characteristic ensures that the probability that something will go wrong during 

random sample selection and treatment assignment is vanishingly small due to the law of 

large numbers. Due to these features, randomized experiments produce a setting in which 

there is no systematic difference between the control and treatment group. In other words, 

such experiments have the following characteristics: 

     (10) 

With regard to the present research, use of a random experiment would imply that those 

who are at a specific life stage are selected randomly, as a consequence of which 

individuals at that given life stage ( 1j  ) are only randomly different from all other 

individuals who are not at that life stage ( 0j  ). 

Under the circumstances described in Equation 10, one can estimate the missing 

counterfactual potential outcome of the treatment group from the average potential 

outcome measured in the control group, since the following equation holds: 

1 0,i i iY Y J
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 and  (11) 

As a result, all of the causal parameters, including ATE, ATT and ATU, can be estimated 

by comparing the potential outcomes of the treatment and control groups under random 

experimental design (See Equation 12). 

  (12) 

Despite the obvious advantages of random experiments, they are typically only ideal 

types since research in the social sciences almost always fails to ensure some of the above-

mentioned characteristics. Very often, studies struggle with an insufficiently large sample 

size for financial reasons. In this case it is hard to generalize the effect of treatment since 

low sample sizes produce a large standard error. However, one can get around this 

problem by further controlling for the possible confounding variables using regression 

adjustment (Gelman & Hill, 2006). 

Also, in certain cases the first characteristic (described above) cannot be guaranteed. For 

example, laboratory experiments usually use random treatment assignment, but sample 

selection is typically not random (these studies usually recruit participants who are 

university students although the general population is older and less educated, for 

example). These studies can make causal inferences due to random treatment assignment, 

but these inferences cannot be generalized to the entire population.  

Another possible challenge with conducting experiments is that individuals may reject 

participation in a study. This problem is usually referred as the problem of non-

compliance. The problem arises from the fact that even though the selection of an 

individual from the population and treatment assignment are random, we cannot assume 

that the sample of individuals who prefer not to participate are random. If the problem of 

non-compliance arises, than one needs to find another way to control for confounding 

variables.  

Moreover, it is often unfeasible to conduct randomized experiments due to ethical or 

financial considerations. Research may also not permit the use of random treatment 

variables because researchers must not arbitrarily decide who is at a certain life stage. For 

example, the researcher cannot decide who should retire or have a child and who should 

not; thus, treatment cannot be randomized. Therefore, experiments were not used in this 

dissertation but rather observational data only (Ho et al., 2011). 

0 01 0i lE Y J E Y J          1 11 0i lE Y J E Y J         

1 01 0i lATE ATT ATU E Y J E Y J            
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3.5. Estimating Causality in Observational Data 

Observational studies are defined by Rosenboum (2002:VII) in the following way: “An 

observational study is an empirical investigation of treatments, policies, or exposures and 

the effects they cause, but it differs from an experiment in that the investigator cannot 

control the assignment of treatments to subjects.”  

As regards observational data, the treatment and control groups fundamentally differ from 

one another; that is,  is a non-random variable; individuals who are at a certain life 

stage  systematically differ from individuals who are not at this life stage . 

I will demonstrate how this arises in the case of my research questions. With regard to 

the effect of retirement, retirees differ from non-retirees (i.e. may have a different level 

of education or age), thus the difference between their subjective well-being is not solely 

determined by their activity status. Similarly, regarding the effect of parenthood 

subjective well-being is not only affected by the number of children – those who have a 

child differ from those who do not. In this case, for example, satisfaction with a partner 

can be a confounding variable. Those who have a child may be more satisfied with their 

partner before the baby is born, and satisfaction with a partner affects positively life 

satisfaction as a whole. Thus, having a child might not be the reason for changes in 

subjective well-being, but instead it is higher satisfaction with a partner that might cause 

this change.  

As those who receive treatment and those who do not receive it systematically differ from 

each other in the case of observational data, the assumption of independence in Equation 

10 is not valid for this type of research design. Since the potential outcomes are not 

independent of the treatment, the counterfactual of the treatment is still missing. Thus, 

for observational data, simply comparing the mean outcome of the control group with that 

of the treatment group would not identify the treatment effect, but only the association 

between the treatment and the outcome. To estimate causality in observational data, one 

needs to eliminate the confounding variables. 

The present research eliminates confounding variables with the help of multivariate 

regression, matching, and regressor variable methods (longitudinal analysis). Use of these 

methods involves two main assumptions: First of all, the methods estimate missing values 

by relying on the unconfoundedness assumption. Unconfoundedness denotes the 

assumption that biases found when comparing the treatment and control groups may be 

removed by holding certain covariates constant. Let me denote the fixed set of properties 

iJ

( 1)j  ( 0)j 
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of individual i as . The essence of the unconfoundedness is that treatment group 

membership is conditionally independent of the individual’s  outcome response, given 

iX
 
covariates.  

  (13) 

In other words, the outcomes expected of the treatment group in the case of 

nonparticipation are a good reproduction of the outcomes for those control individuals 

who have the same characteristics (Imbens & Wooldridge, 2009). As far as the analysis 

in the present dissertation is concerned, this expectation means that after controlling for 

iX  we can use subjective well-being measured in the control group to determine the level 

of subjective well-being of the treatment group that they would have if they were not at 

this life stage.  

The regression and matching methods only control for observed iX  confounding 

variables and assume that unobserved variables do not modify the relationship between 

the treatment variable and the outcome. The extension of these methods to longitudinal 

design can handle time-invariant unobserved variables (See Chapter 3.7.6.). However, 

even with this extension, time-variant unobserved variables are not controlled for. Thus, 

one needs to conduct sensitivity analysis to measure how unobserved effects modify the 

treatment effect (see more in Chapter 3.7.7.). 

Second, these methods require overlap between the treatment and control groups, which 

can be formalized in the following way: 

   (14) 

In other words, every individual has a non-zero probability of receiving the treatment, 

given their characteristics. Without this assumption it could happen that for a treated 

individual there is no control peer, as there is no sufficient overlap between the treatment 

and control groups. The assumption that both Equation 13 and Equation 14 are valid is 

often referred to as strong ignorability.  

There are other methods which have been developed to estimate causal effects, but which 

do not rely on the unconfoundedness assumption, such as indicator variables and 

regression discontinuity. However, these methods make other assumptions. Instrumental 

variables rely on strong assumptions about how unobserved and observed variables are 

linked to each other to rule out the effect of unobserved covariates (Angrist, Imbens, & 

iX

iY
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Rubin, 1996; Imbens & Angrist, 1994). Regression discontinuity, meanwhile, uses a 

specific research design, which is not available in the case of the present research (Imbens 

& Lemieux, 2008).  

3.6. Regression Adjustment 

One of the most popular ways of controlling for confounding variables and obtaining 

causal estimates is applying regression adjustment. This section reviews only causal 

estimations obtained from ordinary least square regression; however, the following 

statement could be extended to other types of regressions as well. The difference in 

regression methods and their assumptions are not reviewed here, but are introduced in 

foundation books on econometrics and statistics (Wooldridge, 2015).  

Let me demonstrate what estimating causality through regression in the potential outcome 

framework looks like. In the case of OLS regression, the two potential outcomes can be 

written as two parallel linear regression lines, which differ in the intercept by : 

   (15) 

  (16) 

Using Equation 15 and 16, the two regression lines can be combined into one regression 

line with the help of Equation 2, which estimates all the observed potential outcomes 

together: 

  (17) 

In Equations 16 and 17,  indicates the ATE. Further, control variables should be 

involved as described in Chapter 3.1.1. In other words, those iX  should be (1) involved 

which are the common causes of both the Y  outcome variable and J  treatment variable; 

further, those iX  should be (2) omitted which are the common outcomes of Y  and J  key 

variables. The first stipulation rules out selection bias, whereas the second guarantees that 

endogenous selection bias is avoided.  

However, even if the necessary control variables are correctly identified, regression 

adjustment can still encounter two types of additional biases. These two types of biases 

can appear due to (1) interpolation, or (2) extrapolation. To distinguish between these two 

concepts one needs to define the convex hull that is the “smallest convex set that contains 

the data” (King & Zeng 2006: 139). Figure 3 illustrates the convex hull for a hypothetical 
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dataset. In this figure, the dots are observations while around the dots there is a blue line 

which is the border of the convex hull. Inferences about observations within the convex 

hull are considered interpolation and outside this area extrapolation (King & Zeng, 2006; 

Kuo, 2001).  

Figure 3. Example of a convex hull7 

 

Interpolation bias is the result of improper adjustment of the control variables included 

within the convex hull. In the case of parametric methods, this bias can arise from using 

the wrong functional form (King & Zeng, 2006). For instance, OLS regression assumes 

a linear relationship, but sometimes this assumption is wrong (i.e. income follows an 

inverse U-shaped curve with aging, so quadratic regression would be more appropriate 

for observing the relationship between these two variables). These assumptions can be 

relaxed by using non-parametric methods such as a kernel-estimator or matching. 

However, non-parametric methods can be inappropriate for use when the sample size is 

small and one needs to involve several covariates (Arpino & Aassve, 2013).  

Extrapolation bias occurs when the distribution of any confounding variable is different 

in the treatment and control groups. In other words, there is not sufficient overlap between 

the two groups (Ho et al., 2011; King & Zeng, 2006). It is possible that certain values of 

X  covariates take on a positive probability in the control group, but no members of the 

treatment group possess this value. In this case, regression extrapolates the observations 

for the treatment group as well, which can create bias. 

As regards the present research, iX  could be the age of i  individual. Age is an important 

confounding variable as both life-stage status and subjective well-being depend on it. 

                                                      
7 Author’s own construction, produced in R.  
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However, there might not be sufficient overlap in age between those who are at a certain 

stage of life and those who are not. For example, after a certain age parenthood is very 

unlikely, especially for females8. Also, people do not usually retire at a very early age. 

Therefore, even though we have control observations for all adult age groups9, the 

treatment group is limited to a certain age group both in the case of parenthood and 

retirement. 

I demonstrate the problems with extrapolation in a hypothetical dataset in a similar 

manner to Ho et al. (2011). This hypothetical dataset can be seen in the Appendix in Table 

26. The data are shown in Figure 4, in which the observations from the control group are 

represented with red triangles and the observations from the treatment group blue squares. 

As can be seen on this graph, there is no observation in the treatment group for 4X   

and 17X  , whereas the control group contains observation on a scale of 0 25X   . 

Thus, the hypothetical dataset is not balanced in terms of X . 

Figure 4. Lack of sufficient balance between the treatment and control groups 

(Hypothetical data) 

 

Regression adjustment solves the problem of unbalanced datasets using extrapolation. In 

the case of the hypothetical data, this means that even for those X  values which do not 

contain any treated observation, the regression calculation predicts values by 

extrapolating the trends. With regard to the analysis described herein, extrapolation would 

                                                      
8 The typical reproductive age range for females is widely acknowledged as being between 15 - 49 years 

(World Health Organization, 2006). 

9 For example, national samples are used in this dissertation 
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mean that we assume that even an 80 year-old might give birth, or an 18 year-old might 

retire. 

I carried out regression on the hypothetical dataset according to Equation 17. The 

predicted values of this linear regression can be seen in Table 26 for both the treatment 

and control groups. Moreover, these predicted values are also shown in Figure 5. In this 

figure the regression line for the treated group is marked with a blue dashed line, whereas 

the regression line for the control group is marked with a solid red line. Based on this 

analysis, the  treatment effect would be 0.53 and significant at a 0.002 level. However, 

Figure 5 shows that the regression line is extrapolated for the treated group even for age 

categories for which there is no actual treated observation. Thus the treatment effect could 

be attributed to extrapolation bias.  

Figure 5. Extrapolation by regression (Hypothetical data) 

 

To highlight that the treatment effect in Figure 5 can be attributed to the extrapolation 

bias, I reduced the dataset to the area inside the convex hull, which contains observations 

from both the treatment group and control groups. Thus, only those observations were 

kept which fall into the area  (see the reduced observations in Figure 6). In 

this reduced dataset, I again performed the OLS regression (as detailed in Equation 17). 

The regression on the reduced dataset did not require extrapolation, in contrast to the 

regression run on the initial dataset. In the reduced dataset the treatment effect is already 

0 and non-significant. Thus, the positive significant treatment effect which was observed 
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for the initial dataset can only be attributed to extrapolation.  

The above-described example is often called outlier bias (Wooldridge, 2015). In such 

cases, the solution is simple; one needs to remove the outliers. However, in certain cases 

the extreme points are not so easily detected. For example, the situation is less simple 

when an imbalance is caused not by simple outliers but the treatment tends to associate 

some measures with a lower probability, causing imbalance between the treatment and 

control groups. In this case, one might consider using an algorithm, such as matching (see 

the next subchapter), which creates a more balanced dataset.  

Figure 6. Regression in the reduced dataset eliminates extrapolation bias 

 

To sum up, the above-described example has shown that in certain cases regression tends 

to perform poorly. The problems with regression adjustment arise when there is no 

sufficient overlap between the treatment and control groups. In such cases, regression 

relies on a mechanism which works very well for prediction: it extrapolates existing data 

to those cases where there are otherwise none. However, this mechanism can create biased 

causal estimations (Ho et al., 2011; King & Zeng, 2006). Thus, although data reduction 

in general can increase bias, I argue that the proper process of data reduction can also 

eliminate extrapolation bias. The initial dataset needs to be reduced in a way that the 

control observations, which are responsible for the imbalance between the treated and 

control groups, are omitted.  
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3.7. Matching Methods 

3.7.1. General Introduction to Matching 

In the previous chapter I showed that one needs to rule out all the possible confounding 

variables in order to draw causal conclusions. I further argued that this goal can be 

achieved by using random experimental design; however, this is often not feasible. In 

contrast, regression methods are more readily available, but these methods often fail to 

produce unbiased estimations in the absence of sufficient overlap between the treated and 

control groups. Therefore, I suggested circumventing the shortcomings of regression 

adjustment by reducing the dataset. However, one needs to bear in mind that data 

reduction can lead to biased estimations if not conducted properly, and there is often no 

clear-cut way to remove outliers. For instance, in the case of measuring the parenthood 

effect one should avoid including in the control group an 80-year-old woman who 

obviously could not have a child; however, there is no clear limit to the age at which men 

can have children. In this chapter I introduce a method which has been developed to 

systematically select control observations in the best possible way to estimate causality: 

the so-called matching method.  

Despite the long history of matching, this method is still the state-of-the-art as it has been 

continuously developed alongside improvements in computational capacity. Matching 

was first used in 1945 by Greenwood (1945) although the theoretical foundations were 

only developed in the second half of the century (Cochran & Rubin, 1973; Dehejia & 

Wahba, 2002; Heckman et al., 1997; Rosenbaum & Rubin, 1983, 1984, 1985a, 1985b; 

Rubin, 1973a, 1973b, 1974). Even today, the matching method still receives a great deal 

of attention as newer types of matching methods have also recently been invented (Abadie 

& Imbens, 2006; Arpino & Mealli, 2011; Chabé-Ferret, 2015; Crump, Hotz, Imbens, & 

Mitnik, 2009; Diamond & Sekhon, 2013; Ho et al., 2011; King & Nielsen, 2016; Lee, 

Lessler, & Stuart, 2010; Lunceford & Davidian, 2004).  

In short, matching methods are designed to find a missing potential outcome 

(counterfactual) by producing the best possible approximation of the experimental 

arrangement using observational data. The method entails matching i  treated 

individual(s) with one or more non-treated individual(s) who is/are as similar as possible 

to the given treated individual in all iX  regards, except for the J  treatment itself.  

The method relies on the unconfoundedness assumption (Equation 13) for calculating the 

counterfactual. In other words, the essence of the matching method is that the treatment 
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is conditionally independent of the individual’s response, given
 iX . Thus, the expected 

value of the potential outcome that i  treated individual would have if this i  individual 

did not receive the treatment can be replaced with the potential outcome that those have 

who did not receive the treatment but have the same X  properties as the given i  treated 

person (Imbens & Wooldridge, 2009). This unconfoundedness assumption is formalized 

in Equation 18. Regarding this dissertation, the equation means that we can use the control 

group matched with individuals from an observed life stage  to determine the level 

of subjective well-being that they would have if they were not at this life stage. 

  0 1, 0,i i io iE Y J X E Y J X           (18) 

As a consequence, the average treatment effect (ATT) can be calculated in the following 

way by using the matching method: 

 
1 0 1 01 1, 0,i i i i i iATT E Y Y J E Y J X E Y J X                   (19) 

Based on Stuart (2010), the implementation of the matching methods involves four major 

steps. I have added two additional steps to these initially described four steps: more 

specifically, (Step V.) the extension of matching to longitudinal design (based on Imbens 

& Wooldridge, 2009; Balbo & Arpino, 2016; Allison, 1990; Chabé-Ferret, 2015), and 

(Step VI.) sensitivity analysis (based on Rosembaum, 2002). 

Step I. Choosing a distance definition 

The ( , )D k l  measure of distance defines how similar k  treated individual ( k j ) and l  

control individuals ( l j ) are based on their X  properties. There are several types of 

distance measures which are introduced in Chapter 3.7.2. in detail. One can even combine 

the different distance measures, as genetic matching does, which is the primary method 

chosen for use in the research described in this dissertation.  

Step II. Conducting matching given the chosen distance measure   

Once the distance measure has been chosen, matching can be conducted. However, even 

with one given distance measure one can identify pairs in several ways. Thus, we can not 

only distinguish different distances, but also there are several types of algorithms for 

matching based on the selected distance measure. Different matching algorithms are 

introduced in Chapter 3.7.3. 

 

( 1)j 
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Step III. Evaluating the balance in the matched dataset 

After matching, one needs to assess the performance of the procedure. If it has failed to 

produce a balanced dataset, then the researcher should repeat Steps I and II. One can 

evaluate the balance based on descriptive statistics, or a display of the distribution of the 

propensity score in the treatment and the control group before and after matching. See 

more about this in Chapter 3.7.4. 

Step IV. Analysis of the treatment effect on the matched data 

Matching aims only to balance the observed covariates between the treated and control 

groups, and does not provide an estimation of the treatment effect itself. Thus after 

balancing the dataset by matching one needs to conduct a t-test or regression to obtain the 

causal parameters (See more in Chapter 3.7.5). 

Step V. Extension of matching to longitudinal design 

The matching method can be also extended to longitudinal design, which enables the 

researcher to rule out time-invariant confounding variables as well. The longitudinal 

extension of matching is detailed in Chapter 5.7.6. This dissertation applies genetic 

matching using longitudinal data. 

Step VI. Conducting sensitivity analysis   

Sensitivity analysis aims to estimate the sensitivity of the estimation to the omitted 

confounding variables. This dissertation applies Rosenbaum’s (2002) sensitivity analysis 

for this purpose (See more in Chapter 3.7.7).  

In the following subchapters, I describe these steps in more detail.  

3.7.2. Types of Distance Measures 

There are several ways to define the distance between k  treated individual ( k j ) and l  

control individual ( l j ) (Deza & Deza, 2009). Here I introduce the most common ways 

which are particularly noteworthy; namely, exact distance, propensity score, Euclidean 

distance, normalized Euclidean distance, Mahalanobis distance, and genetic matching 

distance.10 I demonstrate in the following part of this chapter the calculation of the 

different distance measures for a small sample dataset (See Table 27), which is a reduced 

version of the dataset used for estimating the effect of parenthood. In this dataset the J  

treatment variable is parenthood status, the Y outcome is subjective well-being; further, 

                                                      
10 MatchIt package also contains several other distance measures. See more about them in Ho et al. (2011). 
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three matching variables are used. These variables are income ( 1X ), satisfaction with 

housing ( 2X ), and age ( 3X ). 

I. Exact distance: 

Exact matching is the most intuitive type of matching as it allows for zero distance 

between the treatment group and control groups in terms of all the v number of matching 

variables. So this method matches a k  treated individual to all of the control individuals 

with exactly the same vX  properties.  

 

for   

(20) 

This distance measure is an ideal solution for matching as it can produce unbiased results. 

However, exact matching is not feasible most of the time using real data. Let us assume 

that we have a high dimensional dataset with 1 2 3, , ... vX X X X  covariates which also 

contains several continuous variables. In this case, there is a very small chance that for k  

treated individual  k j  we will find a l  control individual  l j  who is similar in all 

of the v  aspects to the i  individual. As a result, several treated individuals will not be 

matched. This problem is often referred to in the literature as the curse-of-dimensionality 

(Blackwell, Iacus, King, & Porro, 2009). 

To illustrate this problem, let us assume that one desires to obtain better balance on the 

sample dataset based on satisfaction with housing and age. Figure 7 shows that only two 

pairs are found by exact matching11 (the matches are indicated with a dashed red circle). 

In practice, this would mean that only two pairs from the fifteen are matched. However, 

if we wished to match using the third variable as well, then even these two pairs would 

not meet the requirements of exact matching. As a result, in the case of exact matching 

often the vast majority of observations remain unmatched, which creates biased 

estimations.    

 

  

                                                      
11 These matches are Units 1 and 29, and Units 2 and 41. 

0
( , ) vk vl

vk vl

if X Xexact

if X XD k l
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Figure 7. Sample dataset by age and satisfaction with housing 

 

In order to deal with the curse-of-dimensionality of exact matching, Coarsened Exact 

Matching (CEM) has been developed. This involves, prior to running exact matching, 

coarsening the continuous variables to meaningful categorical variables, and after 

matching returning them to the original (uncoarsened) variables (Blackwell et al., 2009).  

II. Propensity score: 

Another potential way to measure distance is to reduce the multivariate dimensions to a 

one-dimensional scalar. The most commonly used method for this purpose is propensity 

score matching (King & Nielsen, 2016; Rosenbaum, 2002; Rosenbaum & Rubin, 1983, 

1985a, 1985b; Rubin, 1973a). A propensity score estimates the probability of receiving a 

treatment given the i  subject’s viX  observable properties. It can be formally defined in 

the following way: 

  (21) 

Although ( )i vie X  is unknown in the sample, it can be estimated by logistic regression of 

the Y  treatment on the vX  covariates: 

 
 

0

ˆ ( )
ln

ˆ1 ( )

i vi
v vi

i vi

e X
X

e X
     


   

(22) 

Thus the propensity score is the reduction of the v  dimensional viX  vector to a one-

dimensional ( )i vie X  scalar. This score asymptotically balances the viX  confounding 
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variables. Once this scalar has been calculated for each observation, the distance metrics 

can be defined between any given two units in the following way: 

  (23) 

Similarly to the illustration of exact matching, I also illustrate how to calculate propensity 

scores in the sample dataset (data is available in Table 27). See the joint distributions of 

the three matching variables (age, satisfaction with housing, and income) in Figure 8. The 

goal of the propensity score is to reduce the information provided by these three variables 

to a one-dimensional scalar. 

Figure 8. The joint distribution of the three confounding variables in the sample dataset 

 

To calculate the propensity score, a logit model can be applied in which J  treatment 

variable is regressed on income 1( )X , satisfaction with housing 2( )X , and age 3( )X . 

 
0 1 1 2 2 3 3

( 1)
ln

( 0)

P J
X X X

P J
    

 
        

 
  

(24) 

The predicted probability of this model gives the propensity scores (See Equation 22). 

Regarding this sample dataset, the distribution of the propensity scores can be seen in 

Figure 9; further, Table 27 contains the propensity score of each observation calculated 

based on Equation 24. 

  

( , ) ( ) ( )
propensi

k vk l vl
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Figure 9. Density of propensity scores in the sample dataset 

 

As a result, the distance between two units can be easily calculated by taking the absolute 

value of the difference between their propensity scores according to Equation 23. For 

example, the distance between Unit 1 (whose propensity score is 0.66) and Unit 16 

(whose propensity score is 0.40) is 0.26. 

 
1 1 16 16(1,16) ( ) ( ) 0.66 0.40 0.26v

Propensity Scor

v

e
D e X e X      (25) 

Consequently, for other units the distance can be calculated in a similar manner. See the 

distance metrics, defined based on propensity scores, between the treated units and the 

control units in Table 3.  
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Table 3. Distance between treated and control units based on their propensity score 

using the sample dataset 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

17 0.62 0.40 0.67 0.54 0.50 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

18 0.62 0.40 0.67 0.54 0.51 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

19 0.54 0.31 0.58 0.46 0.42 0.58 0.81 0.02 0.22 0.32 0.57 0.73 0.65 0.69 0.04 

20 0.24 0.01 0.28 0.16 0.12 0.28 0.51 0.33 0.08 0.02 0.26 0.42 0.35 0.39 0.26 

21 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

22 0.25 0.02 0.29 0.17 0.13 0.29 0.52 0.32 0.07 0.03 0.28 0.44 0.36 0.40 0.25 

23 0.34 0.12 0.39 0.26 0.23 0.39 0.61 0.22 0.02 0.12 0.37 0.53 0.46 0.49 0.15 

24 0.65 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

25 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.77 0.81 0.17 

26 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

27 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

28 0.61 0.39 0.66 0.53 0.49 0.66 0.88 0.05 0.29 0.39 0.64 0.80 0.73 0.76 0.12 

29 0.00 0.22 0.04 0.08 0.12 0.04 0.27 0.56 0.32 0.22 0.03 0.19 0.12 0.15 0.49 

30 0.53 0.31 0.57 0.45 0.41 0.57 0.80 0.03 0.21 0.31 0.56 0.72 0.65 0.68 0.04 

31 0.31 0.08 0.35 0.23 0.19 0.35 0.58 0.26 0.01 0.09 0.33 0.50 0.42 0.46 0.19 

32 0.66 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

33 0.23 0.01 0.28 0.15 0.11 0.28 0.50 0.33 0.09 0.01 0.26 0.42 0.35 0.38 0.26 

34 0.10 0.13 0.14 0.02 0.02 0.14 0.37 0.47 0.22 0.12 0.13 0.29 0.21 0.25 0.40 

35 0.33 0.11 0.38 0.25 0.22 0.38 0.60 0.23 0.01 0.11 0.36 0.52 0.45 0.48 0.16 

36 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

37 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.85 0.77 0.81 0.16 

38 0.20 0.03 0.24 0.12 0.08 0.24 0.47 0.37 0.12 0.02 0.23 0.39 0.31 0.35 0.30 

39 0.06 0.17 0.10 0.03 0.06 0.10 0.33 0.51 0.26 0.16 0.08 0.24 0.17 0.21 0.44 

40 0.66 0.44 0.71 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

41 0.22 0.00 0.27 0.14 0.11 0.27 0.50 0.34 0.09 0.01 0.25 0.41 0.34 0.38 0.27 

 

Despite the advantages of propensity scores, this distance method has also been the 

subject of several critiques since the dimension reduction can leave crucial information 

unincorporated. Most recently, King and Nielsen (2016) have shown that propensity score 

matching generates higher levels of bias and model dependence than other matching 

methods. However, they have also argued that propensity scores can come in useful when 

combined with multivariate matching methods (such as genetic matching). Moreover, 

propensity scores are a widely used method of displaying improvements in balance (See 

Chapter 3.7.4.). 

III. Multidimensional distances: 

Other distance measures do not reduce dimensions, but are rather intended to measure the 

distance in a more dimensional space. One of the most basic multidimensional distance 
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metrics is Euclidean distance (Deza & Deza, 2009) which is the geometric distance 

between two units in a multidimensional space. More specifically, this distance can be 

formulated as: 

 
  

2( , ) ( )
v

Euclidean

vk vl
l

D k l X X  , 
(26) 

where v  is the number of variables used for calculating distance. Regarding the sample 

dataset (See Table 27), the Euclidean distance between Unit 1 and Unit 16 (based on 

values for age, satisfaction with housing and income) can be calculated in the following 

way: 

 2 2 2(1,16) (4 10) (26 30) (55.24 42.58) 14.6EuclideanD         (27) 

Consequently, the Euclidean distance can be calculated between the other treated and 

control units (see Table 4.). 
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Table 4. Euclidean distance between treated and control units in the sample dataset 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 14.6 9.3 15.8 17.6 10.2 12.3 102.0 15.7 12.7 30.1 8.9 25.5 22.7 116.1 13.9 

17 25.3 18.4 26.6 30.1 23.7 25.7 103.3 15.0 21.0 32.1 26.3 36.0 32.5 115.6 17.8 

18 24.3 20.5 25.6 37.9 30.0 26.1 94.3 24.5 28.6 25.0 31.2 32.7 29.2 106.2 26.8 

19 29.8 21.0 30.5 15.1 14.5 27.7 116.8 3.1 9.4 44.2 19.4 41.8 38.8 130.1 2.8 

20 11.5 2.0 11.8 21.1 11.2 10.3 99.6 18.1 13.1 27.8 12.3 24.6 21.5 113.5 16.9 

21 14.6 9.3 15.8 17.6 10.2 12.3 102.0 15.7 12.7 30.1 8.9 25.5 22.7 116.1 13.9 

22 37.5 30.2 37.7 9.0 17.8 34.2 126.5 18.9 15.7 54.8 21.7 48.4 46.2 140.8 15.8 

23 150.5 157.6 150.8 179.3 170.0 154.1 65.6 172.6 172.4 132.3 166.9 141.5 142.6 48.7 173.5 

24 34.7 29.1 36.1 41.1 35.3 35.8 103.4 24.7 32.2 36.2 37.7 43.7 40.2 114.4 28.1 

25 46.2 37.7 47.2 39.0 37.3 45.9 123.1 22.4 31.9 53.6 42.0 57.7 54.2 134.3 26.3 

26 46.3 42.3 47.5 56.6 50.2 48.2 100.4 40.1 47.3 41.9 52.4 53.2 49.9 109.4 43.6 

27 37.3 30.7 38.6 39.8 35.0 38.0 108.6 22.6 31.2 40.7 38.1 47.2 43.6 119.7 26.4 

28 32.8 24.0 33.7 21.1 20.0 31.3 117.5 4.8 14.8 45.1 24.6 44.7 41.5 130.4 8.3 

29 0.0 9.7 2.2 29.2 19.9 3.9 89.3 28.6 23.7 19.0 16.9 13.3 10.2 103.7 27.3 

30 32.4 23.0 32.7 16.2 15.8 30.4 119.9 8.3 9.8 47.5 22.2 45.1 42.1 133.2 8.0 

31 12.6 17.6 13.9 39.0 29.8 16.1 81.3 33.3 32.0 8.7 27.6 15.3 12.1 94.8 33.4 

32 35.6 29.4 36.9 39.8 34.5 36.4 106.1 22.9 31.0 38.3 37.3 45.1 41.6 117.2 26.6 

33 21.5 14.8 22.1 9.5 5.5 18.4 110.1 12.6 7.1 38.3 7.8 32.5 30.1 124.3 9.1 

34 24.4 17.3 24.3 7.0 4.6 21.2 113.7 15.8 6.1 42.5 10.2 35.9 33.6 128.0 12.1 

35 25.6 18.3 26.3 8.4 8.6 22.7 113.9 10.2 7.2 41.9 12.0 36.7 34.2 128.0 6.3 

36 48.1 45.8 49.4 62.3 55.2 50.6 93.1 46.7 53.0 40.1 56.5 53.1 50.0 101.5 49.9 

37 40.9 33.0 42.0 37.6 34.4 40.8 116.2 20.2 29.6 47.0 38.5 51.8 48.3 127.4 24.2 

38 11.8 6.1 12.8 18.7 9.8 9.5 100.3 17.5 12.9 28.5 8.6 23.7 20.8 114.5 15.7 

39 37.4 30.4 37.3 10.4 17.8 34.1 126.6 22.8 16.6 55.7 22.0 48.4 46.4 141.1 19.4 

40 42.8 37.9 44.1 50.7 44.8 44.3 103.3 33.9 41.6 40.9 47.2 50.7 47.3 113.1 37.5 

41 9.7 0.0 10.1 22.9 13.0 9.0 97.6 19.7 15.1 25.8 13.4 22.9 19.7 111.4 18.7 

   

However, as the control variables do not usually use the same scale, their contribution to 

the Euclidean distance measure is also different. Also, in my example dataset the three 

control variables are measured on different scales. Therefore, the Euclidean distance 

would be developed primary on the basis of income since the scale of this variable is 

much wider than the scaling of the other two control variables. To overcome this 

challenge, one can standardize these variables. This normalized Euclidean distance can 

be written in the following way: 

 2( )
( , )

v
Normalized Euclidean vk vl

l
v

X X
D k l




  , 

(28) 

where v  is the variance of v  variable. Equation 28 can be also written in the following 

way: 
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 1( , ) ( ) ( )
Normalized Euclidean T

k l k lD k l X X D X X     ,  (29) 

where D  is a diagonal matrix containing the variances ( 1 2 3( , , ... )vD diag     ), iX  

matrix contains all the v  covariates for i  individual, and TX  is the transpose of the 

matrix X . Regarding the example dataset, one could calculate the normalized Euclidean 

distance between Unit 1 and Unit 16 in the following way: 

2 2 2(4 10) (26 30) (55.24 42.58)
(1,16) 2.18

7.91 237.61 1323.62

Normalized Euclidean
D

  
     

(30) 

Respectively, Table 5 displays the normalized Euclidian distance between each treated 

and control observation in the sample dataset. 

Table 5. Normalized Euclidean distance between treated and control units in the sample 

dataset 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 2.18 2.85 2.88 0.95 2.16 1.84 3.00 1.02 2.51 1.37 0.88 0.98 1.03 3.67 0.88 

17 2.04 2.40 2.62 1.69 2.03 1.90 3.12 0.63 2.11 1.26 1.69 1.95 1.72 3.41 0.86 

18 1.89 2.17 2.41 1.93 1.95 1.83 2.92 0.96 1.97 1.16 1.89 2.10 1.81 3.10 1.16 

19 1.78 2.24 2.41 0.97 1.63 1.55 3.29 0.15 1.84 1.29 1.08 1.60 1.38 3.73 0.14 

20 0.83 0.06 0.48 2.25 0.83 1.17 3.27 2.25 0.51 1.94 2.22 2.65 2.26 3.31 2.20 

21 2.18 2.85 2.88 0.95 2.16 1.84 3.00 1.02 2.51 1.37 0.88 0.98 1.03 3.67 0.88 

22 1.75 2.30 2.37 0.30 1.50 1.42 3.50 0.97 1.85 1.62 0.64 1.42 1.28 4.07 0.73 

23 4.67 4.94 4.91 5.35 5.15 4.74 2.56 4.87 5.20 3.90 5.06 4.54 4.44 1.95 4.95 

24 3.03 3.37 3.61 2.50 3.04 2.89 3.57 1.49 3.11 2.07 2.51 2.61 2.49 3.83 1.71 

25 2.85 2.99 3.31 2.53 2.74 2.78 3.97 1.43 2.69 2.24 2.62 2.95 2.73 4.11 1.69 

26 3.47 3.65 3.94 3.29 3.51 3.42 3.89 2.21 3.47 2.61 3.29 3.39 3.21 3.91 2.46 

27 3.09 3.41 3.66 2.53 3.07 2.95 3.72 1.51 3.13 2.17 2.57 2.71 2.58 3.97 1.74 

28 2.25 2.68 2.87 1.41 2.14 2.03 3.45 0.44 2.30 1.55 1.50 1.87 1.72 3.88 0.63 

29 0.00 0.81 0.71 1.64 0.55 0.39 2.68 1.82 0.80 1.27 1.51 1.84 1.46 2.94 1.71 

30 1.34 0.75 1.18 2.34 1.09 1.58 3.80 2.14 0.61 2.21 2.40 2.97 2.58 3.81 2.14 

31 1.24 1.85 1.91 1.33 1.44 1.06 2.28 1.02 1.69 0.25 1.13 1.21 0.86 2.70 0.99 

32 3.04 3.38 3.61 2.48 3.03 2.89 3.63 1.46 3.10 2.10 2.51 2.63 2.51 3.90 1.69 

33 1.87 2.52 2.56 0.53 1.78 1.52 3.11 0.86 2.14 1.32 0.54 1.01 0.95 3.74 0.64 

34 0.76 0.69 0.76 1.79 0.38 0.92 3.43 2.03 0.39 1.91 1.80 2.36 2.00 3.66 1.92 

35 2.25 2.88 2.94 0.85 2.15 1.91 3.31 0.96 2.49 1.58 0.91 1.22 1.25 3.96 0.81 

36 3.73 3.96 4.22 3.47 3.80 3.66 3.87 2.43 3.79 2.76 3.45 3.46 3.32 3.92 2.67 

37 2.90 3.14 3.42 2.43 2.83 2.78 3.80 1.35 2.84 2.12 2.50 2.75 2.57 4.01 1.60 

38 1.13 1.78 1.82 0.72 1.11 0.81 2.76 0.88 1.47 0.84 0.59 1.10 0.76 3.26 0.69 

39 1.27 0.99 1.04 2.15 0.89 1.42 3.92 2.46 0.78 2.45 2.21 2.82 2.48 4.12 2.34 

40 3.46 3.72 3.99 3.07 3.48 3.36 3.87 2.02 3.49 2.53 3.08 3.17 3.03 4.02 2.26 

41 0.81 0.00 0.45 2.27 0.85 1.17 3.22 2.26 0.55 1.92 2.22 2.64 2.24 3.26 2.21 
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However, even if the variables use the same scale, one should take into account the 

collinearity between them. If the two (or more) variables are correlated with each other, 

then the same information would be taken into account multiple times when calculating 

the distance. For example, in the sample dataset age and satisfaction with housing are 

correlated. See the covariance matrix in Table 6.  

Table 6. Covariance matrix in the sample dataset 

 

 

Satisfaction with 

housing 

Age Income 

Satisfaction with housing   7.91 20.67 -1.67 

Age 20.67 237.67 67.27 

Income -1.67 67.27 1323.62 

 

As a result, one needs to take into account the correlation between the variables, not just 

the variance of each variable. For this the Mahalanobis distance can be used, which is 

defined in the following way: 

 1( , ) ( ) ( )T

k l k

Mahala bis

l

noD k l X X S X X     , (31) 

where S  is the sample covariance matrix of X . Thus, the normalized Euclidean distance 

is equal to the Mahalanobis distance when there is no collinearity between the variables 

(Equation 31 and 29 differ only in this aspect).  

Equation 32 demonstrates how to calculate the Mahalanobis distance between Unit 1 and 

Unit 16, while the rest of the distances can be consequently calculated (See Table 7.). 

 

(32) 

 

  

 

1
4 10 7.91 20.67 1.67

(1,16) 26 30 20.67 237.67 67.27 4 10 26 30 55.24 42 2.31

55.24 42 1.67 67.27 1323.62

MahalanobisD
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Table 7. Mahalanobis distance between treated and control units using the sample 

dataset 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 2.31 3.28 3.08 0.85 2.33 1.86 2.98 1.42 2.92 1.54 0.74 0.97 0.94 3.77 1.19 

17 1.71 2.14 2.23 1.86 1.66 1.65 3.32 0.65 1.83 1.30 1.93 2.48 2.03 3.39 0.92 

18 1.61 1.84 1.99 2.25 1.63 1.70 3.27 1.11 1.64 1.38 2.29 2.80 2.30 3.14 1.35 

19 1.61 2.26 2.25 1.11 1.44 1.36 3.39 0.15 1.83 1.29 1.27 2.02 1.60 3.72 0.17 

20 1.11 0.06 0.56 2.77 1.05 1.57 3.69 2.21 0.52 2.12 2.81 3.43 2.88 3.36 2.29 

21 2.31 3.28 3.08 0.85 2.33 1.86 2.98 1.42 2.92 1.54 0.74 0.97 0.94 3.77 1.19 

22 1.85 2.68 2.54 0.35 1.65 1.44 3.50 1.05 2.23 1.63 0.70 1.61 1.33 4.07 0.77 

23 4.37 4.67 4.53 5.27 4.86 4.48 2.62 4.80 4.94 3.79 5.01 4.65 4.42 1.73 4.88 

24 2.52 2.89 3.02 2.39 2.49 2.43 3.63 1.28 2.61 1.88 2.45 2.87 2.52 3.71 1.52 

25 2.59 2.51 2.83 2.91 2.41 2.67 4.36 1.66 2.24 2.45 3.06 3.67 3.23 4.17 1.96 

26 3.03 3.00 3.28 3.45 3.02 3.13 4.20 2.23 2.86 2.65 3.52 3.94 3.52 3.88 2.51 

27 2.59 2.91 3.07 2.45 2.53 2.51 3.79 1.31 2.62 2.01 2.54 2.99 2.64 3.85 1.56 

28 1.97 2.55 2.59 1.41 1.83 1.75 3.53 0.38 2.14 1.49 1.56 2.20 1.84 3.84 0.54 

29 0.00 1.09 0.78 1.84 0.55 0.49 2.83 1.61 0.99 1.17 1.80 2.33 1.78 2.87 1.57 

30 1.79 0.86 1.37 3.14 1.53 2.18 4.39 2.38 0.85 2.66 3.26 3.98 3.43 4.01 2.53 

31 1.10 1.99 1.82 1.43 1.33 0.87 2.41 1.02 1.79 0.26 1.30 1.68 1.15 2.69 0.98 

32 2.53 2.90 3.03 2.38 2.49 2.45 3.69 1.26 2.60 1.92 2.46 2.89 2.54 3.77 1.50 

33 2.00 2.94 2.76 0.44 1.96 1.55 3.10 1.17 2.56 1.43 0.46 1.13 0.93 3.79 0.89 

34 0.79 0.81 0.76 2.10 0.40 1.08 3.62 1.78 0.44 1.86 2.18 2.90 2.37 3.59 1.78 

35 2.36 3.28 3.11 0.73 2.30 1.92 3.29 1.34 2.87 1.71 0.78 1.24 1.18 4.03 1.10 

36 3.15 3.25 3.48 3.42 3.18 3.19 4.01 2.26 3.11 2.60 3.46 3.78 3.41 3.76 2.52 

37 2.49 2.65 2.88 2.57 2.37 2.49 4.02 1.34 2.35 2.13 2.69 3.24 2.84 3.97 1.62 

38 1.15 2.10 1.91 0.83 1.17 0.74 2.81 0.85 1.76 0.81 0.79 1.48 0.98 3.25 0.65 

39 1.28 0.97 1.02 2.43 0.88 1.54 4.08 2.17 0.67 2.36 2.55 3.31 2.81 4.02 2.17 

40 2.91 3.08 3.30 3.03 2.89 2.92 4.00 1.85 2.86 2.38 3.09 3.50 3.13 3.88 2.12 

41 1.09 0.00 0.53 2.77 1.06 1.56 3.64 2.22 0.56 2.10 2.81 3.41 2.86 3.31 2.30 

 

Just like the previous distance measures, the Mahalanobis distance has also some 

limitations. Most of all, this metric performs poorly when the covariates have non-

ellipsoidal distributions (e.g. a normal or t distribution). In this case, the covariance matrix 

might fail to account for collinearity because the distribution of covariates might differ 

more than their means and variance (e.g. momentum). In the case of non-ellipsoidal 

distributions, propensity score matching could be a better solution. Moreover, other 

scholars have found that the Mahalanobis distance, similarly to exact matching, performs 

poorly when the number of the covariates are too high; more specifically, more than eight 

(Sekhon, 2009; Stuart, 2010). 

The empirical studies in this dissertation employ a genetic matching distance measure,12 

                                                      
12 The analysis was performed using MatchIt software, which runs in the R environment. 
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which relies on a genetic search algorithm to maximize the balance between the treatment 

and control groups through the generalization of the propensity score and Mahalanobis 

distance matching (Diamond & Sekhon, 2013; Sekhon, 2008; Sekhon & Grieve, 2008). 

First, the Mahalanobis metric must be transformed by using Cholesky decomposition13 

and adding a weight parameter: 

 1 2 1 2( , ) ( ) ( ) ( )Genetic T T

k l k lD k l X X S W S X X        , (33) 

where 
1

2S


 is the Cholesky decomposition of the S  covariance matrix and W  is a 

positive definite weight matrix which contains a set of weights for each X  covariate. 

Besides the covariates, the propensity score can also be used in this matching mechanism, 

and thus can also influence the distance metrics with a given weight.  

This distance measure runs a genetic search algorithm to find W  matrix such that the 

optimal balance between the treatment and control groups is identified. A genetic search 

algorithm is a strategy for running multiple local search algorithms in parallel. Local 

search algorithms initially select a starting point randomly, keep track only of current 

states, and move to neighbouring states (i.e. local modification). Thus, these strategies 

optimize the solution by considering local modifications only. By running multiple local 

searches at the same time, a genetic algorithm is not only able to conduct local 

modifications but can use combinations of the states of different local searches, creating 

a better starting point for a new local search (Holland, 1992; Selman & Gomes, 2006).  

More specifically, genetic matching relies on a loss function when searching for the 

optimal W  matrix. This loss function can be specified by the user. The default loss 

function, which was used in this dissertation as well, minimizes the difference between 

the units based on P-values from Kolmogorov-Smirnov distributional tests14 and paired 

t-tests15. The algorithm initially proposes a set of weights for the variables which are used 

iteratively to produce the subsequent set of weights. Each set of candidate weights is 

called a generation. Every subsequent generation is a better candidate for being the 

optimal W  matrix in terms of the loss function than the previous generations (Diamond 

& Sekhon, 2013; Sekhon, 2008; Sekhon & Grieve, 2008).  

                                                      

13 that is,  
1 1
2 2

T

S S S , in which 
1

2S  is a lower triangular matrix with positive diagonal elements 

14 for multinomial and continuous variables 

15 for dichotomous variables 
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As the calculation of the weight matrix requires huge computational power and long 

iterations, the present dissertation will not demonstrate how to obtain it, but only how to 

calculate the distance measure once the W  matrix is obtained. Using the GenMatch 

package of R, the genetic matching process finds the following W  matrix for the sample 

dataset 

550.44 0 0

0 14.97 0

0 0 902.30

originalW

 
 


 
  

. The matches do not change when this W  

matrix is divided by any positive scalar. Thus, this example divides the weight matrix by 

1000 in order to obtain a more compact result (Diamond & Sekhon, 2013). As a result, 

0.55 0 0

0 0.02 0

0 0 0.90

W

 
 


 
  

. To obtain the genetic matching distance, one also needs to 

calculate the Cholesky decomposition of the S  covariance matrix (See in Table 6), which 

is 
1 2

0.41 0 0

0.04 0.07 0

0 0.01 0.03

S 

 
 

 
 
  

 in the sample dataset.  

Based on these measures, the distance between Unit 1 and Unit 16 can be calculated in 

the following way: 

 

1 2 1 2

1 16 1 16(1,16) ( ) ( ) ( )

0.41 0.04 0.00 0.55 0 0 0.41 0 0 6

6 4 12.66 0 0.07 0.01 0 0.02 0 0.04 0.07 0 4

0 0 0.03 0 0 0.90 0.00 0.01 0.03 12.66

2.93

Genetic T TD X X S W S X X        

        
       

          
       
              



 

((34) 

Similarly to these cases, the distance between other units can be calculated too.  

One advantage of this method is that genetic matching significantly reduces bias 

compared to pre-existing matching methods and can replicate even better the 

experimental benchmarks. Diamond and Sekhon (2013) contributed to the debate about 

labour economics by showing how to reproduce the result of an experiment (LaLonde, 

1986) on observational data. The authors pointed out that previous matching methods 

have failed to produce reliable results due to poor balance, but genetic matching is able 

to replicate the experimental benchmark. Similarly, Sekhon and Grieve (2008) have also 

shown that genetic matching is able to replicate the results of a clinical experiment, in 

contrast to the previously described matching methods. Therefore, this dissertation uses 
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the genetic matching distance technique as well.  

3.7.3. Types of Matching Algorithms 

After selecting the distance measure, one needs to find a method to match units based on 

this given metric. For example, genetic matching, which is applied in the empirical part, 

also can be conducted with several types of algorithm. The package I used by default use 

the algorithm which was described by Abadie and Imbens (2006)16. This subchapter 

summarizes the most commonly used algorithms. However, before describing the given 

algorithms, I discuss a few questions which arise in the case of all kinds of matching 

algorithms. Namely, (1) how many matches should be selected, and (2) whether matching 

should be with or without replacement.  

The first question concerns the number of matches. Researchers are generally advised to 

match all the treated units; however, one can manipulate how many control units should 

be matched. A  control unit may be either matched ( 1)m   or not ( 0)m  . In the case 

of a large initial dataset, one might consider selecting multiple controls for one treated 

unit. In this case, the treated unit is compared to the average of the selected control units. 

Thus, the average treatment effect introduced in Equation 3 can be reformulated in the 

following way: 

1 0
ˆ

i iATE E Y Y  
 

, (35) 

where 0
ˆ
iY  is the average of the outcomes of the ( 0, 1)j mN    number of matched control 

units 0 0
: 0( 0, 1)
: 1

1ˆ( )i i
i Jj m
i M

Y Y
N  



  . The other types of causal parameters can consequently be 

calculated by replacing 0iY  with 0
ˆ
iY . The number of matches obviously implies a trade-

off. If ( 0, 1)j mN    is too small, the sample size is also too small, which increases the 

variance. However, if ( 0, 1)j mN    is large, then worse matches would be selected as well, 

which can distort the results. The research in this dissertation does not allow only one 

control unit for each treated unit, which is the default setting in the applied package. 

                                                      
16 This algorithm applies a bias correction that renders simple nearest-neighbor matching estimators 1/2N

-consistent and asymptotically normal (Abadie and Imbens, 2006). 

l



  

64 

 

The second decision concerns whether matching should be conducted with or without 

replacement. Matching with replacement means that a control individual can be matched 

to more than one treated individual, whereas matching without replacements means that 

one control unit can be considered only once in the matching procedure. This issue also 

suggests a trade-off between bias and variance. The research in this dissertation uses the 

default setting, which allows replacement.  

In the following sections, the different types of matching algorithms, such as nearest 

neighbour matching, optimal matching, subclassification and weighting adjustment, are 

discussed in detail. These algorithms are illustrated based on the propensity distance (this 

distance between observations can be seen in Table 3) calculated for the sample dataset 

(as seen in Table 27). 

I. Nearest neighbour 

One of the most common ways of finding matches is applying nearest neighbour 

matching. This matching algorithm chooses for each k  treated individual one or more l  

control individuals which is/are closest to individual k  based on the chosen distance 

measure. The ( )M l  matched control individuals for k  treated individual can be obtained 

by the following optimization: 

  
0

( ) arg min ( , )
j

M l D k l


  (36) 

The simplest form of nearest neighbour matching is 1:1 matching which selects for each 

k  treated individual one l  control individual at the smallest distance from individual k . 

In contrast, one might select more control individuals for each treated individual. 

The results of this matching algorithm significantly depend on the order in which treated 

units are matched. The R package that was used can distinguish three types of orders. 

First, one might match treated individuals to control individuals starting from the highest 

value of the distance measure to the lowest value. Second, one might match in order from 

the lowest distance to the highest. Finally, one might choose treated individuals in a 

random order and match them to the closest available control units.  

This dissertation demonstrates (in Table 8) 1:1 nearest neighbour matching without 

replacements on the propensity score distance calculated for the sample dataset (see the 

calculations in the previous chapter). Matching is conducted in a way that first the 

smallest value of distance measures is matched and then matching continues in increasing 

order of distances values.  
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In Table 8 the smallest distance is 0 between Unit 1 and Unit 29, and also 0 between Unit 

2 and Unit 41. Thus first these pairs are matched. These steps remove Units 1, 2, 29, and 

41 from further consideration because each unit can be matched only once in the case of 

1:1 matching without replacements. The second largest value in the distance matrix is 

between Unit 10 and Unit 41  (10,41) 0.0055
propensity score

D  . But control Unit 41 has 

been selected already, hence this pairing is not realized. Similarly to this case, the third 

lowest distance, which is between Units 2 and 33  (2,33) 0.0068
propensity score

D  , also 

does not result in matching since Unit 2 has been already selected before. The fourth 

lowest distance is between Unit 9 and 31  (9,31) 0.0116
propensity score

D   and, since 

neither of these observations has been matched before, these two units are matched. The 

algorithm continues in this way, selecting the matches until for each treated unit 

( 15)kID   one control unit ( 16)lID   is selected. Consequently, Unit 1 is matched to 

Unit 29, 2 to 41, 3 to 22, 4 to 39, 5 to 34, 6 to 20, 7 to 23, 8 to 19, 9 to 31, 10 to 33, 11 to 

38, 12 to 35, 13 to 21, 14 to 16, and 15 to 30. Table 8 shows the distance values for each 

pair (pairs which were selected are highlighted in bold and red colour). 
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Table 8. 1:1 nearest neighbour matching based on propensity score using the sample 

dataset 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

17 0.62 0.40 0.67 0.54 0.50 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

18 0.62 0.40 0.67 0.54 0.51 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

19 0.54 0.31 0.58 0.46 0.42 0.58 0.81 0.02 0.22 0.32 0.57 0.73 0.65 0.69 0.04 

20 0.24 0.01 0.28 0.16 0.12 0.28 0.51 0.33 0.08 0.02 0.26 0.42 0.35 0.39 0.26 

21 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

22 0.25 0.02 0.29 0.17 0.13 0.29 0.52 0.32 0.07 0.03 0.28 0.44 0.36 0.40 0.25 

23 0.34 0.12 0.39 0.26 0.23 0.39 0.61 0.22 0.02 0.12 0.37 0.53 0.46 0.49 0.15 

24 0.65 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

25 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.77 0.81 0.17 

26 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

27 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

28 0.61 0.39 0.66 0.53 0.49 0.66 0.88 0.05 0.29 0.39 0.64 0.80 0.73 0.76 0.12 

29 0.00 0.22 0.04 0.08 0.12 0.04 0.27 0.56 0.32 0.22 0.03 0.19 0.12 0.15 0.49 

30 0.53 0.31 0.57 0.45 0.41 0.57 0.80 0.03 0.21 0.31 0.56 0.72 0.65 0.68 0.04 

31 0.31 0.08 0.35 0.23 0.19 0.35 0.58 0.26 0.01 0.09 0.33 0.50 0.42 0.46 0.19 

32 0.66 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

33 0.23 0.01 0.28 0.15 0.11 0.28 0.50 0.33 0.09 0.01 0.26 0.42 0.35 0.38 0.26 

34 0.10 0.13 0.14 0.02 0.02 0.14 0.37 0.47 0.22 0.12 0.13 0.29 0.21 0.25 0.40 

35 0.33 0.11 0.38 0.25 0.22 0.38 0.60 0.23 0.01 0.11 0.36 0.52 0.45 0.48 0.16 

36 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

37 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.85 0.77 0.81 0.16 

38 0.20 0.03 0.24 0.12 0.08 0.24 0.47 0.37 0.12 0.02 0.23 0.39 0.31 0.35 0.30 

39 0.06 0.17 0.10 0.03 0.06 0.10 0.33 0.51 0.26 0.16 0.08 0.24 0.17 0.21 0.44 

40 0.66 0.44 0.71 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

41 0.22 0.00 0.27 0.14 0.11 0.27 0.50 0.34 0.09 0.01 0.25 0.41 0.34 0.38 0.27 

  

Nearest neighbour matching applies a greedy local search algorithm. This means that in 

each step moves are made which result in the greatest improvement of an objective 

function (here, the minimization of the distance measure). A common complaint 

regarding this optimization mechanism is that it leads to a local optimum, which is not 

necessarily the global optimum. Regarding matching, this means that this algorithm might 

match the closest two units in each step, but the process will not necessarily produce the 

minimal total distance between all the matched pairs at the end of matching. Generally, 

greedy nearest neighbour matching has been found to perform well when there are a 

sufficient amount of good matches, but it is not a good choice when there is prominent 

competition for good control individuals (Gu & Rosenbaum, 1993). 
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II. Optimal matching 

In contrast to simple nearest neighbour matching, optimal matching relies on a global 

search algorithm. This method searches for a solution which minimizes overall distance. 

Thus, this method aims to find  1, 1
(1), (2), (3), ... ( )

j m
M M M M N

 
 matches in a way 

that minimizes 
1

( , ( ))
kN

k

D k M l




 

total distance between the matched pairs (Gu & 

Rosenbaum, 1993; Rosenbaum, 1989; Stuart, 2010). 

This algorithm uses network flow theory for optimization. Networks are used as a 

metaphor to demonstrate this solution. Based on this method, vertexes consist of N  

treated and control units, a source, and a sink. The arrows between the vertexes contain 

information about the cost of connecting a treated unit to a potential control unit, which 

is defined as the distance between given treated and control units. The algorithm aims to 

minimize the cost by finding the shortest flow between the source and the sink. The 

network flow is shown in Figure 10 for the first three treated and first three control units 

of the sample dataset. This simple form of network can be extended by including all 

possible pairs and looking for more than one match. 

Figure 10. Demonstration of network flow theory in the first three rows and columns of 

the sample dataset 

 

  

There are several ways of finding the minimum cost flow in a network through 

computational processes. One of the optimization methods is referred to as the cost 

reducing cycle. This method starts with a matched sample – for example, the result of 

greedy nearest neighbour matching – and then searches for alternative networks which 

have a lower total distance. The alternative networks are obtained by matching the 

unmatched units (utilizing unused flow capacity), and unmatching previously matched 

units and matching them to other units (rechannelling existing flows). See more about 

different ways of conducting optimal matching in Rosenbaum (1989). 
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Optimal matching is conducted here using the Matchit R package. Table 9 shows the 

propensity distance metrics and highlights those values which were chosen by the optimal 

matching algorithm. By optimal matching, Unit 1 is paired with Unit 23, 2 with 31, 3 with 

29, 4 with 34, 5 with 16, 6 with 21, 7 with 41, 8 with 19, 9 with 35, 10 with 20, 11 with 

22, 12 with 33, 13 with 38, 14 with 39, and 15 with 30.  

Table 9. Optimal matching based on propensity score using the sample dataset 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

17 0.62 0.40 0.67 0.54 0.50 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

18 0.62 0.40 0.67 0.54 0.51 0.67 0.89 0.06 0.30 0.40 0.65 0.81 0.74 0.77 0.13 

19 0.54 0.31 0.58 0.46 0.42 0.58 0.81 0.02 0.22 0.32 0.57 0.73 0.65 0.69 0.04 

20 0.24 0.01 0.28 0.16 0.12 0.28 0.51 0.33 0.08 0.02 0.26 0.42 0.35 0.39 0.26 

21 0.26 0.04 0.31 0.18 0.15 0.31 0.54 0.30 0.05 0.05 0.29 0.45 0.38 0.42 0.23 

22 0.25 0.02 0.29 0.17 0.13 0.29 0.52 0.32 0.07 0.03 0.28 0.44 0.36 0.40 0.25 

23 0.34 0.12 0.39 0.26 0.23 0.39 0.61 0.22 0.02 0.12 0.37 0.53 0.46 0.49 0.15 

24 0.65 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

25 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.77 0.81 0.17 

26 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

27 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

28 0.61 0.39 0.66 0.53 0.49 0.66 0.88 0.05 0.29 0.39 0.64 0.80 0.73 0.76 0.12 

29 0.00 0.22 0.04 0.08 0.12 0.04 0.27 0.56 0.32 0.22 0.03 0.19 0.12 0.15 0.49 

30 0.53 0.31 0.57 0.45 0.41 0.57 0.80 0.03 0.21 0.31 0.56 0.72 0.65 0.68 0.04 

31 0.31 0.08 0.35 0.23 0.19 0.35 0.58 0.26 0.01 0.09 0.33 0.50 0.42 0.46 0.19 

32 0.66 0.43 0.70 0.57 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.84 0.77 0.81 0.16 

33 0.23 0.01 0.28 0.15 0.11 0.28 0.50 0.33 0.09 0.01 0.26 0.42 0.35 0.38 0.26 

34 0.10 0.13 0.14 0.02 0.02 0.14 0.37 0.47 0.22 0.12 0.13 0.29 0.21 0.25 0.40 

35 0.33 0.11 0.38 0.25 0.22 0.38 0.60 0.23 0.01 0.11 0.36 0.52 0.45 0.48 0.16 

36 0.66 0.44 0.71 0.58 0.54 0.71 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

37 0.66 0.43 0.70 0.58 0.54 0.70 0.93 0.09 0.34 0.44 0.68 0.85 0.77 0.81 0.16 

38 0.20 0.03 0.24 0.12 0.08 0.24 0.47 0.37 0.12 0.02 0.23 0.39 0.31 0.35 0.30 

39 0.06 0.17 0.10 0.03 0.06 0.10 0.33 0.51 0.26 0.16 0.08 0.24 0.17 0.21 0.44 

40 0.66 0.44 0.71 0.58 0.54 0.70 0.93 0.10 0.34 0.44 0.69 0.85 0.78 0.81 0.17 

41 0.22 0.00 0.27 0.14 0.11 0.27 0.50 0.34 0.09 0.01 0.25 0.41 0.34 0.38 0.27 

 

One way to compare how well a matching algorithm has performed is to consider the total 

distance between the matched pairs 
1

( , ( ))
kN

k

D k M l


 . In the sample dataset this 

measurement is 2.78 in the case of optimal matching, and 2.86 in the case of nearest 

neighbour matching. This difference demonstrates that even though the nearest neighbour 

algorithm may be optimal in each separate step, it can be suboptimal globally. Further, 

Table 9 shows that, in contrast to nearest neighbour matching, optimal matching does not 
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choose any of the two 0.00 distance values since they might be optimal in a local search 

algorithm but are suboptimal globally.  

However, both nearest neighbour and optimal matching might leave a lot of information 

unincorporated. These algorithms select only a limited number of control units for each 

treated individual,17 although there might be more suitable control units available. 

Moreover, these methods mostly enable us to estimate ATT. The methods introduced in 

the following chapter use all units, which enables us to estimate ATE as well.  

III. Subclassification 

Subclassification matching divides the units into subclasses in a way that every unit 

within the subclasses is as similar to each other as possible (the researcher does not 

discard any of the units, thus all of them belong to one of the subclasses). The treatment 

effect is first calculated for every subclass separately, and the average of these treatment 

effects gives the overall treatment effect (Cochran, 1968; Lunceford & Davidian, 2004; 

Stuart, 2010; Yang, Imbens, Cui, Faries, & Kadziola, 2016).  

The major issue in the case of subclassification is the number of subclasses. Rosenbaum 

and Rubin (1984) have found that the application of five subclasses based on the 

propensity score can remove at least 90% of the bias in estimating the treatment effect. 

Further, Lunceford and Davidian (2004) have argued that one only needs to use a higher 

number of subclasses if the number of observations is higher.  

Figure 11 shows the results of subclassification matching based on propensity scores on 

the sample dataset. This figure also demonstrates one of the major drawbacks of this 

algorithm. More specifically, almost all the subclasses either include only treated or only 

control units (except for the third subclasses) due to pronounced initial differences 

between the treated and control group. The problem with this is that the calculation of the 

treatment effect in the subclasses requires at least one control and one treated unit. Thus, 

in certain subclasses the treatment effect cannot not be calculated at all, however, 

discarding some of the subclasses from the calculation of the overall effect can lead to 

biased estimations.  

  

                                                      
17 For example, the method presented above selects only one control unit for each treated unit, but this 

number can also be increased. 
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Figure 11. Subclassification based on propensity scores on the sample dataset  

 

One extension of subclassification is full matching, which overcomes the above-

mentioned problem by creating subclasses in which there is at least one treatment unit 

and at least one control unit (Hansen, 2004; Stuart, 2010). Thus, comparison within the 

subclasses is guaranteed. Figure 12 shows the subclasses that full matching would have 

created based on propensity scores for the sample dataset. This figure demonstrates that 

full matching ensures that there is at least one treated and one control unit in every 

subclass. However, due to this property, this algorithm sometimes matches pairs which 

are quite far from each other. 

Figure 12. Full matching based on propensity scores for the sample dataset 

 

Subclassification methods are suitable for use when one aims to avoid the discarding of 

observations (or in other words, wants to estimate ATE). However, these methods are not 
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the best choice if some of the units have a zero probability of receiving the treatment. In 

this case, one needs to estimate ATT by removing some of the control units. 

IV. Weighting adjustment 

Matching weights are produced in all matching mechanisms to award different levels of 

importance to the control units when estimating the treatment effect. 1:1 nearest 

neighbour and optimal matching produce a very simple weight which takes a value of 1 

if the unit is matched and 0 if the unit has been discarded. Other methods might match 

more control units to a treated unit, but they weight them based on their importance in the 

matching. Often, each control unit receives a weight which is proportional to the number 

of treatment units to which they were matched. This weighting is also used in the 

empirical part of this dissertation. 

Further, the inverse probability of treatment weighting is a particularly noteworthy 

method. This technique defines for each i  individual a iw
 

weight which is 

1

ˆ ˆ1

i i
i

i i

J J
w

e e


 


 . Thus, the process of calculating this matching weight resonates with 

the Horvitz–Thompson estimator for calculating survey weights (Czajka, Hirabayashi, 

Little, & Rubin, 1992; Horvitz & Thompson, 1952). A disadvantage of this weighting 

technique is that the method might produce weights with overly large variance (Osborne, 

2008). Thus, one runs the risk that the estimations are the result of the estimation 

procedure instead of the actual probabilities. Therefore, some scholars have suggested 

trimming these weights to obtain more reliable results (Scharfstein, Rotnitzky, & Robins, 

1999).  

Another weighting technique which is widely used is weighting by the odds. This 

technique is particularly appropriate for estimating ATT. In this case, the weights can be 

defined as
ˆ

(1 )
ˆ1

i
i i i

i

e
w J J

e
   


. Alternatively, one can use also kernel weighting, 

which is mostly popular among economists. This technique applies a distance function 

with a bandwidth parameter which controls the smoothness of the estimate (Stuart, 2010).  

3.7.4. Evaluating the Balance on the Matched Dataset 

After matching is conducted, one needs to evaluate the balance between the treatment and 

control groups on the matched dataset. A well balanced dataset is indispensable for 

quantifying to what extent the difference between the control group and treatment groups 
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can be attributed to the treatment effect rather than the difference in composition of the 

two groups. Good balance means that the treatment and control groups only randomly 

differ from each other in all covariates (Stuart, 2010). In the case of exact matching, the 

balance between the treatment group and control groups is guaranteed; however, this is 

not so obvious in the case of the other matching methods.  

Ho et al. (2011) has proposed that the balance can be assessed by devising a descriptive 

statistic that summarizes how the mean and the standard deviation of the various variables 

have changed in the treatment and control groups upon matching (see Tables 28, 30, 32, 

34, 36, 38, and 39).18 Based on these statistics, we could conduct a t-test or other 

procedures to see whether the treatment group and control groups differ from each other 

significantly. But Imai et al. (2007) have pointed out that such a procedure would be 

highly misleading and should never be used to assess balance. The reason for this can be 

summarized the following way. First, balance is about the sample, not about the 

population. Second, hypothesis tests measure not only balance, but often statistical power 

as well. As a result, this dissertation uses descriptive statistics instead of hypothesis tests. 

Furthermore, one-dimensional measures can also be used to capture the balance between 

the treatment and control groups. More specifically, an improvement in balance may also 

be captured by displaying a histogram of the propensity score (See Equations 21 and 22) 

before and after matching in the treatment and control groups. Figures 16, 17, 18, 19, 20, 

21, 22, and 23 serve to illustrate this concept for different treatment conditions in the 

empirical research part of this dissertation. Further, Figure 13 illustrates a histogram for 

the genetic matching conducted on the sample dataset. In this figure raw data refer to the 

initial dataset before matching and matched data refer to the one after matching. Although 

in this dataset the number of observations is too small to see considerable differences, 

even here matching is able to increase the overlap between the treatment group and 

control groups to some extent. There is a significantly higher number of units which have 

a propensity score of between 0.0 and 0.1 (which signifies very low probability of 

receiving the treatment) in the initial control group than in the initial treatment group. 

Matching in this case removes these control units.  

 

 

                                                      
18 In these tables, distance refers to logit propensity scores (in the case of genetic matching this occurs by 

default).  
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Figure 13. Propensity score distribution before and after matching on the sample dataset 

 

3.7.5. Analysis of the Treatment Effect on the Matched Data 

A matching method in itself can only ensure the appropriate balance between the 

treatment and control groups; however, it is incapable of estimating causal relationships. 

Therefore, a t-test or a regression analysis must be conducted for that purpose. DuGoff et 

al. (2014) argue that matching should be followed by multivariate regression analysis that 

involves the control variables that are used in matching to further improve the balance 

between the treatment and control groups. As a result, the research for this dissertation 

involved running multivariate OLS regression (and its extension to longitudinal design) 

after matching, controlling for the same variables which were used during matching.  

Finally, an important issue is how to combine matching weights with sampling weights 

when estimating the treatment effect. Sample weights play an important role in the present 

research as it seeks to specify population-level inference. In the first and second empirical 

studies, sampling weights are especially important due to the longitudinal design 

(especially in the second one, which deals with older people who have a higher chance of 

dropping out during the observation period due to mortality), whereas the sampling 

weights are also necessary for the third study due to stratified sample design. In this later 

sample, certain life-stage groups were over- or underrepresented in the data (i.e. single 

parents were overrepresented) to achieve a sufficient sample size in each life-stage group. 

Thus, one needs to apply sampling weights to estimate the treatment effect at the 
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population level. DuGoff et al. (2014) suggest that the original sampling weights should 

also be involved in the matching process if we are to reach conclusions pertaining to the 

entire population. They also advise creating a new weight variable for the purpose of the 

regression estimation, generated as the product of the sampling weight and the matching 

weight. The empirical studies in this dissertation consequently use weights.  

3.7.6. Extension of Matching to Longitudinal Design 

Longitudinal datasets are widely used for estimating causal inference as they represent a 

powerful tool for capturing missing potential outcomes, as described in Chapter 3.2. In 

my dissertation two empirical studies applied the matching method on a longitudinal 

dataset; more specifically, the first and second empirical studies. First, in this subchapter 

I briefly discuss how longitudinal analysis can be used to estimate the treatment effect. 

After that, I review the literature about the extension of the matching method to 

longitudinal data. This subchapter is mostly based on Allison (1990), Athey and Imbens 

(2006), Balbo and Arpino (2016), Chabé-Ferret (2015), and Imbens and Wooldridge 

(2009) (I refer to these authors if not otherwise indicated). 

The longitudinal data include the pre-post treatment setting, thus each variable is 

measured both before and after treatment. In the present research, the treatment 

(parenthood in the first empirical study, and retirement in the second) occurs always 

between the first wave ( 1t  ) and the second wave ( 2t  ). The treatment effect is 

observed between the first wave ( 1t  ) and the second wave ( 2t  ) to measure the short-

term change, and between the first wave ( 1t  ) and fourth wave ( 4t  ) to measure the 

long-term change. For the sake of simplicity, I only demonstrate the longitudinal data 

analysis for the short-term effect, although the method is applicable for analysing the 

changes between the first and fourth wave.  

In order to estimate the   treatment effect (i.e. ATE), one could apply a Difference-in-

Difference estimator (DiD estimator). This method calculates the difference between the 

control and treatment groups over time. Let 
t

ij
Y  denote i  individual’s subjective well-

being at time t  who has received j  treatment between times 1 and 2. In order to obtain a 

DiD estimator, one can extend the equation for linear regression (Equation 17) with a t  

time dimension. In the first period, no one has received the treatment yet 

 1i J t for i   ; however, in the second period the treated individuals receive the 

treatment. Consequently, the regression can be formalized for times 1 and time 2 
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respectively: 

   
1 1 1

i i i iY X A            (37) 

 2 2 2

i i i i i iY X A J               , (38) 

where   is the intercept in time 1,   is the difference in the intercept between time 2 

and 1, 
t

iX  are the time-varying covariates and iA  the time-invariant covariates. 

Differencing Equations 37 and Equation 38 removes the iA  time-invariant covariates, but 

t

iX  time-varying confounding variables still remain in the equation. Thus, these variables 

need to be controlled for when estimating the treatment effect. More formally, the DID  

treatment effect can be calculated in the following way:  

 2 1 2 1 2 1( ) ( )i i i i DID i i iY Y X X J              (39) 

DiD indeed identifies the causal effect when certain assumptions hold. First and foremost, 

this method posits the same assumptions as an OLS regression. Furthermore, the 

identification of the treatment effect by DiD requires that the common-trend assumption 

also holds. This assumption is that the difference over time in the potential non-treatment 

outcome should be conditionally independent from the treatment group membership 

given X covariates (Lechner, 2011). More formally, this assumption states: 

 

  (40) 

In the case of random treatment assignment, one does not necessarily need to control for 

time-varying confounding variables, thus any differentiation in the 
t

iX  covariates can be 

also ignored, giving the following equation: 

 2 1 2 1( )i i DID i i iY Y J          (41) 

Equation 41 can be written in the following way as well: 

 2 2 1 1 2 1 2 1

1 0 1 0 1 1 0 0( ) ( ) ( ) ( )DID Y Y Y Y Y Y Y Y         , (42) 

2 1 2 1

0 0 0 0

2 1

0 0

( , 1) ( , 1) ( , 0) ( , 0)

( ) ( )

E Y X x J E Y X x J E Y X x J E Y X x J

E Y X x E Y X x x X
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where 
t

jY  is the average subjective well-being of the J  treatment group at time t . 

Consequently, 
1

1Y denotes the average subjective well-being measured in the first wave 

for the treatment group and 
1

0Y  for the control group. Furthermore, let 
2

1Y  denote the 

average subjective well-being measured in the second wave for the treatment group and 

2

0Y  for the control group. In this case, 
1 1

1 0Y Y  indicates the initial difference between the 

treatment and control group, whereas 
2 2

1 0Y Y indicates the difference between the 

treatment group and the control group after exposure to treatment. After differentiating 

between treatment groups, one needs to differentiate over time as well, which gives the 

treatment effect (second part of Equation 42). Similarly, one can differentiate first over 

time and then by treatment group (third part of Equation 42). The “double difference” in 

this dissertation would mean that the life stage effect is given as the difference between 

those who belong in the second wave to the observed life-stage group and those who do 

not, over time.  

Figure 14 illustrates the DiD approach in the case of random treatment assignment on the 

sample dataset. First, assume that the iJ  treatment variable is random, and thus we do 

not need to control for any 
t

iX  covariates, thus Equation 41 and 42 can be used to estimate 

the treatment effect. In Figure 14 the dashed blue line refers to the change in the outcome 

among the treatment group, and the solid red line refers to the trajectory of the outcome 

among the control group. Based on the trends in the control group and the initial starting 

point of the treatment group we can predict what would happen with the treatment group 

in the case of not receiving the treatment. For this estimation we rely on the common-

trend assumption of DiD, which states that the slope of the regression line would be the 

same for the treatment group in the case of not receiving the treatment as it was in the 

control group. Thus, this unobserved regression line should be perceived as a line parallel 

to the control regression line (red solid line) from the 
1

1Y  initial state of the treatment 

group. The dotted blue line represents the counterfactual changes in the treatment group 

that would occur if this group did not receive the treatment. The treatment effect is the 

difference between the second wave states of the actually observed treatment outcome 

(dashed blue line) and the sample (dotted blue line) treatment outcome.     
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Figure 14. Difference-in-Difference on the sample dataset (assuming random treatment 

assignment) 

 

 

This figure also shows how to calculate the treatment effect based on Equation 42 on the 

right side of the graph. Under random assignment conditions, the actual treatment effect19 

on the sample dataset would be calculated by DiD in the following way: 

 2 2 1 1

1 0 1 0( ) ( ) (7.3 6.7) (6.9 7.0) 0.7DID Y Y Y Y           (43) 

Another approach, which is similar to DiD is the regressor variable method (Allison, 

1990). This method involves a 
1

iY  lagged outcome variable as predictor, which can be 

formulated in the following way20: 

 2 1 1 1

1 2i i i i regressor i iY Y Y X J                (44) 

This method assumes unconfoundedness given the lagged value of the outcome variable 

(
1

iY ) and the lagged values of the predictor variables
1( )iX . In other words, it assumes 

                                                      
19 However, this example does not actually show the treatment effect as 

iJ  treatment variable was not 

actually assigned randomly, thus, even though this method rules out time invariant confounders it does not 

control for time-variant confounders.  

20 This method is equivalent to regressing 2

iY  on 1

iY instead of regressing 2 1

i iY Y  on 1

iY . These two 

methods give the same estimate for the treatment effect (Allison, 1990; Baltagi, 2014). However, the 

research in this dissertation employed the later version as it is more widely used in the literature (Balbo & 

Arpino, 2016; Imbens & Wooldridge, 2009). 
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that the treatment group membership is conditionally independent of the individual’s 
2

iY  

response at time 2, given 
1

iX  and 
1

iY measured at time 1. 

   2 1 1,i i i iY J X Y   (45) 

As I have shown before, one of the main advantages of the DiD approach is that it is able 

to rule out iA  time-invariant confounders once the common-trend assumption holds. The 

regressor variable method also controls for iA  time-invariant confounding if the 

unconfoundedness assumption holds (Equation 45). By including 
1

iY  variable as a 

predictor, iA  time-invariant confounders are controlled for under the unconfoundedness 

assumption, because the effect of iA  time-invariant confounders on 
2

iY  is already 

manifested in 
1

iY . For example, let us assume that we wish to observe the parenthood 

effect ( J ) on subjective well-being (Y ). As in Chapter 3.1, we recognise that the 

common cause of both the treatment and the outcome should be ruled out. One might 

argue that personality traits might be such a common cause which would cause selection 

bias in the estimate. Personality traits are often considered to be time-invariant (Le 

Moglie, Mencarini, & Rapallini, 2015). This implies that personality affects subjective 

well-being in the same way every time. Thus, controlling for the lagged value of 

subjective well-being controls for the effect of personality traits at a later period as well.  

Both DiD and the regressor variable method are powerful tools for estimating causality 

once longitudinal data is available;21 however, these two methods substantively differ 

from each other in terms of their assumptions. The DiD approach requires the common-

trend assumption (Equation 40). This assumption also implies that controlling for the 
1

iY  

lagged outcome would create obstacles to the comparison as this lagged value might be 

correlated with the i  error term. In contrast, the regressor variable methods make the 

assumption of unconfoundedness (Equation 45). Imbens and Wooldridge (2009) 

generally favour the regressor variable method which relies on the unconfoundedness 

                                                      
21 Alternatively, one could use fixed or random effect models as well but these models require two or more 

pre-treatment periods. Technically I could have used these methods, since I have three waves (thus I could 

have observed the treatment after two pre-treatment periods). However, I was interested in the short- and 

long-term changes that occurred after the treatment, thus I only used one period before the exposure to the 

treatment, and two afterwards. This setting is not suitable for the application of fixed or random effect 

models. 



  

79 

 

assumption. “As a practical matter, the DID approach appears less attractive than the 

unconfoundedness based approach in the context of panel data. It is difficult to see how 

making treated and control units comparable on lagged outcomes will make the causal 

interpretation of their difference less credible, as suggested by the DID assumptions.” 

(Imbens & Wooldridge, 2009: 68) In contrast, others have argued that the DiD approach 

might work better in certain cases (Allison, 1990; Chabé-Ferret, 2015). The present 

research used the regressor variable method in line with Imbens and Wooldridge’s (2009) 

suggestion. 

Both the DiD and regressor variable method can be applied together with the matching 

method, which enable us to combine the advantage of both. These combinations improve 

the robustness of the matching method through eliminating possible time-invariant 

unobservable variables, but maintain the advantages of the matching method too. They 

can be combined with matching by first running matching on a certain set of control 

variables, and then applying the given longitudinal method to the same set of variables. 

The combination of matching and DiD approach is called Difference In Difference 

Matching (Chabé-Ferret, 2015), but this was not used in this dissertation. This dissertation 

combines matching with the regressor variable method. 

In the case of a combination of the regressor variable method and matching, one conducts 

matching on the lagged predictor variables and the lagged outcome variable. Arpino and 

Aassve (2013) suggest that individuals in the treatment group should be matched with 

individuals in the control group that have similar values (including the outcome variable 

itself) before the treatment, and changes in outcomes should be compared. The first and 

second empirical studies employed this method. More specifically, in the present research 

individuals who belonged to a life stage (e.g. had a child, or retired) between the two 

waves were matched with individuals who did not belong to this given life stage at the 

end of the observational period, but who had had similar properties initially, including 

subjective well-being.  

To sum up, a longitudinal design is suitable for eliminating selection bias (See Chapter 

3.1.) by controlling for confounding variables to a higher degree than cross-sectional data 

would allow. Table 10 summarizes what types of confounding variables matching 

combined with longitudinal analysis controls for. It rules out all observed covariates and 

time-invariant unobserved confounders. However, it should be emphasized here that even 

this method cannot control for time-variant unobserved covariates (See Table 10). The 

next chapter introduces the sensitivity analysis that can be conducted to estimate the 
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sensitivity of the results to these variables. 

Table 10. What types of variables does matching on longitudinal data control for? 

 Time-variant Time-invariant 

Observed confounding variable Controlled Controlled 

Unobserved confounding variable Not controlled Controlled 

  

Another crucial advantage of longitudinal design is that it can help to avoid endogenous 

selection bias (See Chapter 3.1.) which arises from controlling for collider variables. 

These collider variables are the common outcomes of the treatment and the outcome 

variable, thus they are mostly post-treatment variables. Therefore, controlling for only 

pre-treatment variables is considered to be the best way of avoiding having to control for 

collider variables (Elwert & Winship, 2014; Rosenbaum, 1984). A longitudinal design 

enables us to use only those 
1

iX  covariates which are measured before exposure to the 

treatment; therefore, it is suitable for eliminating endogenous selection bias. 

Consequently, the research in this dissertation also controls for only the pre-treatment 

variables in Chapter 4 and 5 when longitudinal design was available.  

3.7.7. Sensitivity Analysis 

Given that the estimations of causality depend on the validity of the unconfoundedness 

assumption (Equations 13 and 45), capturing the sensitivity of this assumption is clearly 

important. This dissertation employs the Rosenbaum (2002) sensitivity analysis to assess 

to what degree the results are sensitive to a given quantifiable increase in uncertainty.  

Let us assume again that every i  individual either receives the treatment or does not

( )i K or i L  . K  contains those k  individuals who actually received the treatment 

( 1)j   and L  contains those l  individuals who did not receive the treatment ( 0)j  . 

Further, ( )m l  individuals are those control individuals who were matched to a treated 

individual. Let ( 1)iP J   be the probability that i  individual receives the treatment. 

If there were no hidden bias in the study, than ( 1)iP J   would be the function of the 

observed covariates iX  for all i  individuals. In contrast, there is a hidden bias if a k  treated 
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individual and a ( )m l  control individual have the same covariates ( )k m lX X , but they 

have a different chance of receiving the treatment ( )( 1) ( 1)k m lP J P J   . The odds that 

k  treated individual will receive the treatment is ( 1) ( 0)k kP J P J  and the odds that 

( )m l  control individual who is matched to k  treated individual will also receive the 

treatment would be ( ) ( )( 1) ( 0)m l m lP J P J  . Rosenbaum (2002) proved that the odds 

ratio for the odds for k  treated individuals and odds for ( )m l  matched control individuals 

is bounded by the   parameter and the reciprocal of the   parameter:  

 
  

( ) ( )

( 1) ( 0)1

( 1) ( 0)

k k

m l m l

P J P J

P J P J

 
  

  
, (46) 

for all k  and ( )m l .    

The test relies on this   parameter that assumes a certain degree of departure from the 

unconfoundedness assumption; that is, from the random assignment of the treatment 

given the controlled covariates. If 1  , then for every  treated individual and ( )m l  

matched control individuals with the same covariates ( )k m lX X  would have an equal 

chance of receiving the treatment ( )( 1) ( 1)k m lP J P J   ; in other words, the study 

would be free of bias. If 2  , then given k  treated individual and ( )m l  matched control 

individual with the same covariates ( )k m lX X , one could be twice as likely as the other 

to receive the treatment.  

During the sensitivity analysis one observes how much the inferences about the treatment 

effects can be altered by hidden biases with various   parameters. If the results remain 

significant even for a high value of  , then there is a robust treatment effect even if the 

unconfoundedness assumption (Equations 13 and 45) do not stand entirely and some 

confounders were not controlled for. This dissertation reports the critical value of   

parameters using a 90% confidence level. There is no straightforward and reliable critical 

  value which should be considered statistically valid, but DiPrete and Gangl (2004) 

suggest that a value of 1.5 or over should be considered a robust result in the social 

sciences. Sensitivity analysis was conducted using the rbound package, which runs in the 

R environment (Keele 2010). 

  

k
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4. Estimating the Effect of Parenthood on Subjective Well-

being 

4.1. Introduction 

Developed countries have for decades been experiencing below-replacement level 

fertility. This situation has caught the attention of scholars and decision makers alike due 

to its implications for population ageing and associated costs. Researchers have argued 

that one of the reasons for this low fertility is that potential parents do not perceive that 

having children will sufficiently increase their subjective well-being (Aassve, Arpino, & 

Balbo, 2016; Billari, 2009; Le Moglie et al., 2015; Luppi, 2016; Margolis & Myrskylä, 

2015; Parr, 2010). Consequently, a growing number of scientific papers have investigated 

whether having children actually leads to a decrease in subjective well-being. So far, most 

longitudinal evidence has come from western countries, finding that parenthood in 

general has a positive effect on subjective well-being (Balbo & Arpino, 2016; 

Baranowska & Matysiak, 2011; Kohler, Behrman, & Skytthe, 2005; Mikucka, 2016; Le 

Mogliea et al., 2015; Pollmann‐Schult, 2014). However, inconsistencies remain regarding 

how the effect of having children changes in specific circumstances; for example, when 

children grow older, and according to the parity and gender of the parents (Angeles, 2010; 

Baetschmann et al., 2016; Balbo & Arpino, 2016; Baranowska & Matysiak, 2011; Clark 

& Georgellis, 2013; Frijters & Beatton, 2012; Keizer, Dykstra, & Poortman, 2010; Kohler 

et al., 2005; Mikucka, 2016; Myrskylä & Margolis, 2014; Pollmann‐Schult, 2014).  

The present chapter contributes to the current debate by examining this issue in the 

Hungarian context. Although the topic has received significant attention in the West, in 

Central-Eastern Europe – the area in which fertility is the “lowest-low” (Kohler, Billari, 

& Ortega, 2002) – only limited research has been undertaken (Baranowska & Matysiak, 

2011; Sironi & Billari, 2013). However, in the affected region fertility decisions are 

embedded in a very different economic, cultural, and social context than in Western 

countries. Firstly, a lower standard of living in CEE countries may limit individuals’ 

options in their quest for happiness (Szalai, 1991). Secondly, the low level of 

childlessness in the CEE region indicates that the above-average fertility rate is mainly 

attributable to a low level of second births (Miettinen & Szalma, 2014; Szalma & Takács, 

2015). Finally, individuals in CEE countries have historically had a significantly lower 

level of life satisfaction than those in Western European countries (Guriev & 

Zhuravskaya, 2009). Within CEE countries, this dissertation focuses on Hungary, which 

is an especially interesting case since the relatively high level of child poverty, 
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persistently low fertility rate, and low level of subjective well-being is exceptional, 

exceeding that of most neighbouring countries (Guriev & Zhuravskaya, 2009; Spéder & 

Kapitány, 2014; Szalma & Takács, 2015). Finally, in this country there has been no 

research to date about the effect of parenthood on subjective well-being using longitudinal 

data. 

The hypotheses that will be tested are based on a set of four theories. First, the value of 

children theory has emphasized the positive side of having a child (Hoffmann & 

Hoffmann, 1973; Nauck, 2007). Second, others have claimed that parenthood is also 

associated with enormous costs (Lavee, Sharlin, & Katz, 1996; Stanca, 2012; Twenge, 

Campbell, & Foster, 2003; Zimmermann & Easterlin, 2006). Third, the demand and 

reward theory emphasizes that the positive and the negative effects of having a child 

offset each other. This latter theory also postulates that the rewards of parenthood decline 

with the ageing of the child; consequently, parenthood should have also a declining effect 

on subjective well-being (Hansen, 2012; Nomaguchi, 2012; Nomaguchi & Milkie, 2003; 

Umberson, Pudrovska, & Reczek, 2010). Finally, set-point theory argues that the effect 

of parenthood is only temporary, thus subjective well-being eventually returns to its pre-

birth baseline level (Headey & Wearing, 1989; Kammann, 1983; Lykken & Tellegen, 

1996).  

The hypotheses are tested by using state-of-the-art methods. Investigation of the causal 

relationship between parenthood and subjective well-being poses statistical challenges, 

since only observational data are available. The present study applies genetic matching 

using longitudinal data. The advantage of the technique is due to a combination of 

matching and longitudinal analysis, which enables us to control for both time-invariant 

and observed time-variant confounders. The method of matching using longitudinal data 

has been used in the international literature (Baetschmann et al., 2016; Balbo & Arpino, 

2016; Sironi & Billari, 2013) to analyse the effects of fertility; however, this method has 

never been applied to examine the relationship between fertility and subjective well-being 

in Hungary.  

Overall, this research finds that parenthood has a positive, long-lasting effect on 

subjective well-being. Moreover, not only a first child but also a second child appears to 

increase subjective well-being. This finding raises the question why the total fertility rate 

has persistently remained less than two in Hungary. One answer concerns the moderating 

effect of gender. The research finds that both women and men benefit from having a child 

in the short term, but in the long run fatherhood has no positive significant effect on 



  

84 

 

subjective well-being. This finding is crucial as childbearing decisions typically involve 

shared decision making, thus both genders should experience an increase in subjective 

well-being for parity progression (Aassve et al., 2016). However, the other findings 

described in this chapter indicate that subjective well-being is probably not the main 

driver of the low fertility rate in Hungary.  

4.2. Background 

4.2.1. General Effects of Parenthood 

Parenthood has complex consequences on subjective well-being, as this life event is both 

simultaneously rewarding and stressful. It is not surprising, therefore, that various – 

sometimes conflicting – theories have emerged about the topic. This study reviews value 

of children theory, the cost of children approach, demand and reward theory, and set-

point theory. 

First of all, value of children theory postulates that parenthood has a positive effect on 

subjective well-being. This theory argues that children fulfil different parental needs. 

Hoffmann and Hoffmann (1973) suggested several ways in which children can modify 

parental satisfaction, such as by strengthening primary group ties, providing 

entertainment, expanding the sense of self, creating a social identity and a sense of 

achievement, providing economic utility, and generating an advantage in terms of social 

comparison. Furthermore, this theory also claims that parenthood has a persistent effect 

as ageing children fulfil different types of needs throughout their entire lives (Nauck, 

2007). 

Others have emphasized that parenthood can have a negative effect on subjective well-

being by drawing attention to the cost of children. Hansen (2012) distinguishes between 

psychological cost, marital cost, financial cost, and opportunity cost in relation to 

childbearing. The concept of psychological cost recognizes that fertility increases 

financial stress (Stanca, 2012; Zimmermann & Easterlin, 2006), worsens work-family 

balance (Craig, 2016; Kimmel & Connelly, 2007), and reduces personal freedom 

(Twenge et al., 2003). Marital cost refers to child-related decreases in the quality of a 

partnership (Lavee et al., 1996). Child also come at a substantial financial cost (Evertsson, 

2016; Reizer, 2011). Finally, parents face opportunity costs which affect their careers, 

education, and leisure time (Sanchez & Thomson, 1997). Further, the cost of children 

approach assumes that subjective well-being increases over time due to a decrease in 

costs. Based on this theory, childbearing-related costs generally decrease as children grow 



  

85 

 

up, since parents with younger children are more likely to be exposed to financial 

problems (Nelson, Kushlev, & Lyubomirsky, 2014), an overwhelming amount of 

housework (Nomaguchi & Milkie, 2003), intense work-family conflict (Nomaguchi, 

2009), marital conflict (Nelson et al., 2014; Nomaguchi & Milkie, 2003), sleep 

disturbance (Nelson et al., 2014), a shortage of leisure time (Claxton & Perry‐Jenkins, 

2008), and a loss of networking time (Munch, McPherson, & Smith-Lovin, 1997). 

Further, demand and reward theory argues that both the positive and the negative effects 

of having children should be taken into account as these effects offset each other 

(Nomaguchi, 2012; Nomaguchi & Milkie, 2003; Umberson et al., 2010). In general, this 

approach emphasizes that the benefits of having a child, or more specifically, relationship 

satisfaction with a child, is the key to understanding changes in the effects of parenthood. 

Nomaguchi (2012) found that the rewards that parents obtain from their children decline 

as the child grows older. The author claims that emotional benefits are greatest when the 

child is less than five years old. Thus, this theory assumes that the effect of parenthood 

should decline as a child grows up (Nomaguchi, 2009, 2012; Nomaguchi & Milkie, 2003). 

Furthermore, set-point theory also claims that this transition has a declining effect on 

subjective well-being. However, this theory is more restrictive than demand and reward 

theory as it also specifies that this effect not only declines but entirely disappears in the 

long run. This theory claims that people have a stable baseline level of subjective well-

being which is determined by personality traits and other genetic factors (Headey & 

Wearing, 1989; Kammann, 1983; Lykken & Tellegen, 1996). According to this theory, 

after major life events, such as having a child, individuals eventually adopt to their new 

situation and their subjective well-being returns to the initial baseline level (Myers, 1999). 

The theory, thus, posits that parenthood only temporarily alters subjective well-being, but 

does not have a significant effect in the long run. Although this theory has been influential 

and supported by several research efforts (Headey & Wearing, 1989), other studies have 

recently questioned it by showing that adaptation to life events is not universal (Diener, 

Lucas, & Scollon, 2006; Headey, 2006). 

Up-to-date empirical evidence about the causal relationships between parenthood in 

general and subjective well-being is mostly restricted to observations from western 

countries where longitudinal data were available. The majority of the state-of-the-art 

research on longitudinal data has found a positive effect for the average person (Balbo & 

Arpino, 2016; Baranowska & Matysiak, 2011; Kohler et al., 2005; Mikucka, 2016; Le 

Mogliea et al., 2015; Pollmann‐Schult, 2014), while only limited evidence has shown an 
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insignificant effect (Angeles, 2010; Keizer et al., 2010). In contrast, cross-sectional 

studies, which often cover non-western countries, produced mixed evidence. The 

majority of cross-sectional research finds a negative link between parenthood and 

subjective well-being (Hansen, 2012; McLanahan & Adams, 1987; Stanca, 2012; 

Vanassche, Swicegood, & Matthijs; 2013), although some has found a positive link 

(Aassve, Goisis, & Sironi, 2012).  

State-of-the-art longitudinal research projects are able to observe how the effect of 

parenthood changes over time. All of the reviewed papers found that subjective well-

being indeed declines with the ageing of the child, which finding is in line with the 

demand and reward approach. Further, and consistent with set-point theory, some of the 

former has shown that subjective well-being not only declines but also returns to the pre-

birth baseline. (Balbo & Arpino, 2016; Clark et al., 2008; Frijters & Beatton, 2012; 

Myrskylä & Margolis, 2014). Other empirical evidence is at odds with the set-point theory 

and shows that this effect remains significant even in the long run (Baetschmann et al., 

2016; Mikucka, 2016; Pollmann‐Schult, 2014).  

Moreover, parenthood not only affects subjective well-being after the birth of a child, but 

before the birth too as parents prepare for the new arrival. The literature refers to this 

phenomenon as the anticipation effect, whose existence is supported by several studies 

(Baetschmann et al., 2016; Clark et al., 2008; Frijters & Beatton, 2012; Mikucka, 2016; 

Myrskylä & Margolis, 2014). Although there is consensus about the existence of such an 

effect, there is mixed empirical evidence about how much time before the birth this 

phenomenon occurs. Most studies have found that the impact occurs in the year before 

childbirth (Baetschmann et al., 2016; Clark et al., 2008; Mikucka, 2016; Myrskylä & 

Margolis, 2014), although a piece of research identified the anticipation effect only 6-9 

months before the birth (Frijters & Beatton, 2012), and other authors as far in time as 2–

3 years before the birth, but only for females (Clark & Georgellis, 2013).  

In Hungary no research project has so far evaluated the causal relationship between 

parenthood and subjective well-being on longitudinal data. However, there are some 

studies in which the impact of parenthood was not the main point of interest but where 

subjective well-being was regressed using a series of control variables, including the 

presence of children. Molnár and Kapitány (2013) found that individuals who are on 

parental leave have significantly higher subjective well-being than the rest of the 

population. However, Molnár and Kapitány (2006) previously also found that fertility is 

negatively associated with satisfaction with income.  
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Comparative cross-sectional research also often included Hungary in the study of how 

macro-level factors mediate the relationship between parenthood and subjective well-

being. However, the goal of these studies was not to determine causality, and they often 

arrived at different conclusions. Aassve et al. (2012) found that in richer Western 

countries there exists a significant positive effect between parenthood and subjective 

well-being, but in Eastern European countries the relationship is rather negative. In 

contrast, Billari (2009) concluded in his descriptive analysis that even in Eastern 

European countries, including Hungary, there is a positive effect. Finally, Margolis and 

Myrskylä (2011) found that it is especially in the former socialist countries that a higher 

number of children can be associated with higher satisfaction. 

4.2.2. Parity Specific Parenthood Effects 

Most research focuses on examining the effect of a first child on subjective well-being, 

although subsequent children might have different effects than the first. First, set-point 

theory recognizes parity differences in the parenthood effect on subjective well-being. 

This theory assumes that the transition to parenthood associated with the first child is 

more novel than the birth of the subsequent children. Thus, the effect of parenthood is 

stronger with the first child, and weaker effects on well-being are associated with higher-

order children (Aassve et al., 2012; Mikucka, 2016). 

Demand and reward theory posits the moderating effect of parity based on a comparison 

of the marginal utility and marginal cost of having a child. First, empirical results show 

that the law of diminishing marginal utility also apply to the value of children, thus, the 

reward of having a child decreases with each additional child (Nauck, 2007; Nomaguchi, 

2012). Second, there is inconsistency in the empirical findings about the marginal cost of 

children. On the one hand, some studies emphasize that the marginal cost of children 

diminishes – for example, marginal financial costs can decrease since items can be shared 

between siblings (such as furniture or clothes) (Thévenon, 2010). On the other hand, other 

research finds that marginal costs actually increase with each additional child - some 

studies have shown that households with more children are exposed to a proportionately 

greater risk of poverty and higher opportunity costs than families with fewer children 

(Troske & Voicu, 2009). Considering marginal utility and marginal costs together, several 

authors have argued that additional children are less ‘beneficial’, thus, elicit less 

subjective well-being (Aassve et al., 2012; Mikucka, 2016). 

The vast majority of the state-of-the-art longitudinal studies have found that first children 

have a positive effect on subjective well-being (Baetschmann et al., 2016; Balbo & 
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Arpino, 2016; Baranowska & Matysiak, 2011; Clark et al., 2008; Clark & Georgellis, 

2013; Frijters, Johnston, & Shields, 2011; Kohler et al., 2005; Matysiak, Mencarini, & 

Vignoli, 2016; Mikucka, 2016; Myrskylä & Margolis, 2014), but a few research projects 

have not supported this finding (Angeles, 2010; Pedersen & Schmidt, 2014). Further, 

several empirical studies have supported set-point theory and demand and reward theory 

by finding that the effect of parenthood gradually decreases for higher-order children. 

These studies have found that second children have a non-significant (Angeles, 2010; 

Baranowska & Matysiak, 2011; Kohler, et al., 2005; Pollmann‐Schult, 2014) or only a 

temporary effect (Balbo & Arpino, 2016; Matysiak et al., 2016; Myrskylä & Margolis, 

2014). However, Mikucka (2016) found that second children have a strong and lasting 

effect; furthermore, first children elicit less subjective well-being than second children 

for women. 

4.2.3. Gender Specific Parenthood Effects 

Men and women experience the transition to parenthood differently as they face distinct 

child-related opportunities and restrictions. However, the moderating effect of gender is 

especially important as couples generally make fertility decisions together (Bauer & 

Kneip, 2012). Thus, if only one of the genders derives well-being from parenthood, this 

may create obstacles to parity progression. For example, Aassve et al. (2016) found, based 

on British data, a multiplicative effect for partners’ subjective well-being on parity 

progression. Further, they found that females’ subjective well-being matters more in 

decisions about the first child, whereas males’ subjective well-being has more influence 

over decision-making about higher-order children.  

Various theories have been developed to understand how gender differences are reflected 

in the parenthood effect on subjective well-being. Firstly, the value of children theory 

argues that, on average, females benefit more from having children than males since 

women more often claim that children strengthen primary group ties, provide fun, expand 

the self, and create social identity. However, this theory also claims that parenthood is 

rewarding for both genders, since both parents are more liable to claim than childless 

people that children provide fun, bring love and companionship, and expand the self 

(Hoffman & Hoffman, 1973; Hoffman, Thornton, & Manis, 1978).  

In contrast to value of children theory, the cost of children approach emphasizes that 

women might be more heavily burdened during parenthood, indicating that women 

experience more negative effects on their subjective well-being after the arrival of 

children. During parenthood women tend to experience higher stress (Nomaguchi & 
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Milkie, 2003), greater work-life conflict (Goldsteen & Ross, 1989), more household and 

parenthood duties (Baxter, Hewitt, & Haynes, 2008; Bianchi, Robinson, & Milke, 2006; 

Bird, 1999), worse career opportunities (Bianchi, 2000), and have less leisure time (Craig 

& Mullan, 2013; Mattingly & Bianchi, 2003). Moreover, several studies have emphasized 

the gender inequality in childrearing activities. Men tend to engage in more enjoyable 

activities, such as playing, whereas women undertake more time-inflexible, day-to-day 

care, or management activities (Musick, Meier, & Flood, 2016; Raley, Bianchi, & Wang, 

2012; Sayer, Bianchi, & Robinson, 2004). However, in general financial-related stress is 

more pronounced for men than women as males experience more pressure to provide for 

their families (Pollmann‐Schult, 2014). 

In contrast to these theories, the cost of children approach emphasizes that women might 

be more heavily burdened during parenthood, indicating that women experience more 

negative effects on their subjective well-being after the arrival of children. During 

parenthood women tend to experience higher stress (Nomaguchi & Milkie, 2003), greater 

work-life conflict (Goldsteen & Ross, 1989), more household and parenthood duties 

(Baxter et al., 2008; Bianchi et a., 2006; Bird, 1999), worse career opportunities (Bianchi, 

2000), and have less leisure time (Craig & Mullan, 2013; Mattingly & Blanchi, 2003). 

Moreover, several studies have emphasized the gender inequality in childbearing 

activities. Men tend to engage in more enjoyable activities, such as playing, whereas 

women undertake more time-inflexible, day-to-day care, or management activities 

(Musick et al., 2016; Raley et al., 2012; Sayer et al., 2004; Yeung et al., 2001). However, 

in general financial-related stress is more pronounced for men than women as males 

experience more pressure to provide for their families (Pollmann‐Schult, 2014).  

Empirical findings are also inconsistent about the moderating effect of gender. First, most 

studies have found that women have higher subjective well-being after having a child 

than men (Angeles, 2010; Baranowska & Matysiak, 2011; Baetschmann, et al., 2016; 

Clark & Georgellis, 2013; Kohler et al., 2005; Myrskylä & Margolis, 2014; Sironi & 

Billari, 2013). Furthermore, some of these studies have found that fatherhood has non-

significant (Sironi & Billari, 2013) or only a temporary effect (Baranowska & Matysiak, 

2011). Second, other research has found that both genders equally benefit from having a 

child (Pollmann‐Schult, 2014). Finally, some studies have even supported the idea that 

men benefit more from having children in terms of subjective well-being (Aassve, et al., 

2012; Balbo & Arpino, 2016; Nelson, Kushlev, English, Dunn, & Lyubomirsky, 2013), 

while some research claims that only fathers benefit significantly from parenthood 
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(mothers do not) (Aassve et al., 2012; Nelson, et al., 2013). 

4.2.4. The Hungarian Context  

The focus of this dissertation is Hungary, where the fertility rate has been decreasing for 

40 years, births per women have remained under 1.5 for 25 years, and between 2009 and 

2011 this country had the lowest fertility rate among all EU countries (See the fertility 

rate in the European Union in 2010 on the left side of Figure 15). There are multiple 

reasons for the relatively low fertility level in Hungary, including poor economic 

conditions, the dismantling of institutions, value shifts, and social anomie (Spéder & 

Kapitány, 2014). Further, empirical studies suggest that the low number of children can 

mostly be attributed to the fact that second children are not being born, whereas 

childlessness still plays a relatively minor role in the low levels of fertility (Miettinen & 

Szalma, 2014; Szalma & Takács, 2015). Figure 15 (right-hand side) illustrates the low 

level of childlessness in Hungary, displaying the proportion of woman living without their 

own children in the European Union. Moreover, Hungarians generally have strong 

intentions of having children, since there is a considerable gap between the ideal and 

actual number of children (Molnár, 2009; Kapitány & Spéder, 2015). The low level of 

childlessness and high ideal number of children together indicate that in Hungary the 

value of children is still relatively high, despite the low fertility rate.  

Figure 15. Fertility statistics in the European Union22 

 

                                                      
22 The figure is the author’s own work based on Ewen Gallic’s blog (Access: http://egallic.fr/en/european-

map-using-r/). It was produced in R. Source of fertility rate (left-hand side): Eurostat, Source of 

childlessness (right-hand side): OECD (http://www.oecd.org/els/family/database.htm#structure) 
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Institutional arrangements are able to influence the effect of fertility on subjective well-

being to a large degree. Hungary is an exceptional case due to the generosity of the family 

support system. By law, parents are eligible to 24 weeks’ leave at 70% of average pre-

birth salary, with no ceiling on payments. Moreover, after this period parents receive flat-

rate benefits until the child’s third birthday (Makay, 2015). This is one of the longest 

terms of parental leave in Europe, and, as a consequence, its generosity leads one to 

expect that the short-term cost of children would be relatively low, and the short-term 

positive impact on subjective well-being relatively strong.  

However, the long period of paid parental leave is paired with low opportunities for 

flexible work, such as part-time jobs, and poor access to child-care (Radó, Nagy, & 

Király, 2016). These factors encourage parents to exhaust the three-year period of 

parental leave, thereby increasing the opportunity cost of children in the long run. As it is 

usually females who take parental leave, they are penalized more (Aassve et al., 2012, 

Bartus, Murinkó, Szalma, & Szél, 2013). However, the high opportunity cost for women 

can also create spillover effects on males’ subjective well-being, since in male-

breadwinner households it is typically men who experience financial-related stress 

(Pollmann‐Schult, 2014). Taken as a whole, the accumulation of costs of childbearing 

generated by the Hungarian social security system may also reflect on subjective well-

being. One might expect that long-term effect of parenthood on subjective well-being 

would be relatively worse in Hungary than in western countries.  

4.3. Hypotheses 

This chapter employs three research questions, defined as the following: how does the 

effect of parenthood on subjective well-being change (1) with the ageing of the child, (2) 

by parity of children, and (3) by the gender of the parents? To investigate these questions, 

often competing hypotheses are formulated based on the state-of-the-art empirical 

evidence, the theoretical background, and the Hungarian context.  

Hypothesis 1A. The parenthood effect decreases with the age of the child. This 

hypothesis is supported by all of the reviewed research projects which analysed 

longitudinal data. The decreasing effect is consistent with demand and reward theory and 

set-point theory. Further, the tendency for wellbeing to decrease over time is also 

consistent with Hungarian social policy context, which supports childbearing in the short 

run, but creates opportunity costs in the long run (Bartus et al., 2013; Makay, 2015). 

Hypothesis 1B. Parenthood has a positive long-lasting effect on subjective well-
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being, even in the long run. This expectation is consistent with some of the empirical 

evidence (Baetschmann et al., 2016; Mikucka, 2016; Pollmann‐Schult, 2014). Further, it 

is in line with value of children theory. 

Hypothesis 1C. Parenthood has only a temporary positive effect on subjective well-

being or no effect at all. This hypothesis is also in line with much international evidence 

(Balbo & Arpino, 2016; Clark et al., 2008; Frijters & Beatton, 2012; Myrskylä & 

Margolis, 2014). Further, such a temporary effect is consistent with set-point theory. 

Hypothesis 2A. The first child increases subjective well-being to a higher degree 

than the second child. This claim is in line with the majority of the state-of-the-art 

longitudinal studies (Balbo & Arpino, 2016; Baranowska & Matysiak, 2011; Kohler et 

al., 2005; Matysiak et al., 2016; Myrskylä & Margolis, 2014; Pollmann‐Schult, 2014). 

Also, it supports set-point theory and demand and reward theory. 

Hypothesis 2B. Second children either do not have an effect, or have only a 

temporary effect on subjective well-being. This hypothesis is based on findings from 

the majority of state-of-the-art international research projects (Balbo & Arpino, 2016; 

Baranowska & Matysiak, 2011; Matysiak et al., 2016; Myrskylä & Margolis, 2014; 

Kohler et al., 2005; Pollmann‐Schult, 2014). Further, this expectation is consistent with 

set-point theory. This proposition explains the low incidence of second children in 

Hungary (Miettinen & Szalma, 2014; Szalma & Takács, 2015). 

Hypothesis 2C. Second children elicit long-lasting positive changes in subjective 

well-being. Only limited research has supported this claim (Mikucka, 2016) although it 

is in line with previous studies which found that the value of children is high in Hungary 

(Molnár, 2009). Furthermore, there is evidence that second children are sometimes 

associated with lower marginal costs than first children (Thévenon, 2010), which could 

explain this expectation as well. 

Hypothesis 3A. Parenthood has a long-lasting effect on both mothers and fathers. 

This expectation is based on some of the empirical evidence (Mikucka, 2016; Pollmann‐

Schult, 2014) and is in line with value of children theory, which emphasizes that 

parenthood can be rewarding for both genders. 

Hypothesis 3B. Mothers experience only a temporary effect or no effect at all. This 

hypothesis is also in line with some of the empirical studies (Aassve et al., 2012; Balbo 

& Arpino, 2016; Clark & Georgellis, 2013; Keizer et al., 2010; Myrskylä & Margolis, 

2014; Nelson et al., 2013). It is also consistent with set-point theory. Furthermore, 
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Hungarian mothers face particularly high opportunity costs in the long run due to long 

parental leave (Aassve et al., 2012, Bartus et al., 2013). 

Hypothesis 3C. Fathers experience only a temporary effect or no effect at all. This 

expectation is also supported by international research projects (Baranowska & Matysiak, 

2011; Clark & Georgellis, 2013; Keizer et al., 2010; Myrskylä & Margolis, 2014; 2016; 

Sironi & Billari, 2013). Further, this hypothesis is also consistent with set-point theory. 

Moreover, it is also in line with nature of the Hungarian social support system, since the 

long period of parental leave in Hungary creates a higher level of stress for males as their 

partners are outside the labour force, and thus they become the main breadwinners 

(Pollmann‐Schult, 2014). 

4.4. Data 

The empirical foundation of the first (Chapter 4) and second (Chapter 5) empirical studies 

in this dissertation was the Turning Points of Life Course survey (also known as 

Hungarian Generations and Gender Survey), a longitudinal piece of research carried out 

by the Hungarian Demographic Research Institute. The first wave of data for this 

undertaking was collected between November 2001 and January 2002 (hereafter, 

2001/2002), the second between November 2004 and January 2005 (hereafter, 

2004/2005), the third between November 2008 and January 2009 (hereafter, 2008/2009), 

and the fourth between November 2012 and January 2013 (hereafter, 2004/2005). The 

research described in Chapter 4 and 5 uses data from those waves in which subjective 

well-being was measured (the first, the second and the fourth). 

The first wave was representative of Hungarian residents aged between 18-75 years, 

which was gradually extended with a sample to replace young people. Respectively, the 

last wave contained respondents between 18-86 years. Initially, the raw dataset (i.e. the 

dataset before matching) was not reduced by age or any other control variable (see more 

in the chapter on Analytical Strategy). However, the matched dataset which is used for 

estimating causality reduced the initial dataset to create a balance between the treatment 

and control groups. 

Longitudinal data are never free of sample attrition. In the last wave, 8103 people were 

addressed, whereas twice as many (16363) participated in the first wave. The most 

frequent reason for dropping out from the study was refusal to participate. Between the 

first and the second wave 6% of the initial sample refused to answer, whereas this 

percentage reached 11% in the fourth wave. However, the major advantage of this research 
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was that less than 8% of the initial sample dropped out due to moving to an unknown 

destination throughout the whole period of research. The high drop-out rate, just like the 

other missing data, might cause biased estimations. This problem was handled with 

longitudinal weighting (see more about the weighting of the given dataset in Bartus 

[2015]). 

In the following subchapters, the applied variables are introduced. Concerning these 

variables, there are several similarities between this chapter and the next chapter. First, 

the majority of the matching variables are the same in these two studies. Second, in both 

cases matching variables and control variables coincide, therefore the same set of 

covariates are used for matching and estimating the treatment effect using the regressor 

variable method (See Equation 44). Finally, the outcome variables are also defined in the 

same way.  

4.4.1. Treatment Variables 

Table 11 summarizes the treatment variables in this study, which are (1) parenthood in 

general, (2) motherhood, (3) fatherhood, (4) having a first child, and (5) having a second 

child. This table also details the compositions of the treatment and control groups. In all 

cases, those whose child(ren) was (were) born between the first wave (2001/2002) and 

2003 were omitted from the analysis to eliminate the anticipation effect.23  

                                                      
23 The claim to a one-year anticipation effect is in line with the vast majority of the literature (Baetschmann 

et al., 2016; Balbo & Arpino, 2016; Clark et al., 2008; Frijters & Beatton, 2012; Myrskylä & Margolis, 

2014; Pollmann‐Schult, 2014). To my knowledge, only one study has found that this impact appears 2-3 

years before birth for women (Clark & Georgellis, 2013). Thus, I also tried to match individuals two years 

before childbirth, but this generated similar results to the scenario that I had obtained assuming a one-year 

anticipation effect. As a result, I narrowed down the anticipation effect to one year, which permits a higher 

number of observations than a longer anticipation period would.  
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  Table 11. Description of the observed treatments in Chapter 4 

Observed 

phenomenon 
Treatment group Control group 

General 

effect of 

parenthood 

Those whose child(ren) was (were) born 

between 2003 and the second wave 

(2004/05), but to whom no children were 

born between the first wave (2001/02) and 

2003 

Those to whom no children were 

born between the first (2001/02) 

and second wave (2004/05) 

The effect of 

motherhood 

Women whose child(ren) was (were) born 

between 2003 and the second wave 

(2004/05), but to whom no children were 

born between the first wave (2001/02) and 

2003 

Women to whom no children were 

born between the first (2001/02) 

and second wave (2004/05) 

The effect of 

fatherhood 

Men whose child(ren) was (were) born 

between 2003 and the second wave 

(2004/05), but to whom no children were 

born between the first wave (2001/02) and 

2003 

Men to whom no children were 

born between the first (2001/02) 

and second wave (2004/05) 

The effect of 

the first child 

Those who had their first child between 

2003 and the second wave (2004/05) 

Those who remained childless 

between 2003 and the second 

wave (2004/05) 

The effect of 

the second 

child 

Those who had their second child between 

2003 and the second wave (2004/05), but 

to whom no children were born between 

the first wave (2001/02) and 2003 

Those who had a child before the 

first wave (2001/02), but to whom 

no children were born between 

the first wave (2001/02) and 2003 

   

For estimating the overall effect of parenthood, information about the birth of children 

was required. In the second wave of the research, respondents were asked to list details 

about all of their children, including year of birth. This question served to measure the 

treatment variable, which took a value of 1 if a respondent’s child(ren) was (were) born 

between 2003 and the second wave (2004/05) and 0 if they did not. 

Further, the parity effect was distinguished by reducing the initial dataset for (1) those 

who had had no children before the observation period, and (2) those who had had only 

one child before the observation period. Firstly, the dataset which contained those who 

were initially childless was used to distinguish the effect of the first child. Here, the 

treatment variable was awarded a value of 1 if the respondent had had a first child between 

2003 and the time of the second wave (2004/2005), and a value of 0 if this person had 

remained childless. Secondly, the dataset including those who initially had one child was 

used to estimate the effect of the second child. In these cases, the treatment variable took 
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a value of 1 if the respondent had had an additional child between 2003 and the time of 

the second wave (2004/2005), and a value of 0 if they had not. 

Finally, the distinct effect of motherhood and fatherhood was observed by splitting the 

initial dataset between women and men. Afterwards, the same treatment variables which 

had been developed to measure the overall effects of parenthood were applied to these 

two subgroups. 

4.4.2. Outcome Variables 

In contrast to the cross-sectional data, Turning Points of Life Course research does not 

include domain-specific subjective well-being in detail. Thus, in this case I needed to 

focus only on overall subjective well-being. Subjective well-being was measured in both 

waves with the following question: “On an eleven-point scale, how satisfied are you with 

the trajectory of your life?” This variable used a value of 0 to mean ‘not satisfied at all’, 

and a value of 10 for ‘completely satisfied’. The outcome variable was the change in 

subjective well-being before and after exposure to treatment. More specifically, the 

change in subjective well-being was calculated in terms of the change in life satisfaction 

between the first and second waves to measure short-term change24, and between the first 

and fourth waves for estimating long-term change25. Subjective well-being was treated as 

an interval variable as other studies have found that it makes little difference treating this 

variable as an ordinal (Ferrer‐i‐Carbonell & Frijters, 2004). 

4.4.3. Matching Variables 

As argued in Chapter 3.1., those variables should be involved as covariates that have an 

effect on the treatment and the outcome, although they should not be affected by the 

treatment variable (Elwert & Winship, 2014; Heckman et al., 1997). Thus, one should 

involve only pre-treatment covariates which are less likely to be affected by the treatment 

(Elwert & Winship, 2014; Rosenbaum, 1984). Therefore, all the matching variables were 

measured in the first wave (2001/2002) at least one year before exposure to treatment. 

Previous research in this topic has identified the confounding variables (e.g. Balbo & 

                                                      
24 Children were born between 2003 and 2004/2005, whereas we observed a change in subjective well-

being between 2001/2002 and 2004/2005, thus the effect of having a zero- to two-year-old child is observed 

here. With children of this age, parents are entitled to parental leave in Hungary. Therefore, the generosity 

of parental leave directly influences the short-term effect. 

25 Children were born between 2003 and 2004/2005, whereas we observed a change in subjective well-

being between 2001/2002 and 2012/2013, thus the effect of having a seven- to ten-year-old child is observed 

here. 
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Arpino, 2016; Baranowska & Matysiak, 2011; Myrskylä & Margolis, 2014; Sironi & 

Billari, 2013) which were included in this research too. 

Matching variables included demographic and socio-economic variables. Education was 

categorized as primary or less, secondary vocational, general secondary, and tertiary. 

Four categories of residence were distinguished: villages, smaller cities, bigger cities, and 

the capital city. Age (given in years) and equivalent household income (thousand HUF) 

were measured as a continuous variable. Gender was also controlled for. Further, 

subjective health status was measured using the following question: “On an eleven-point 

scale, how satisfied are you with your health?” Higher scores indicated higher satisfaction 

with health. Satisfaction with housing was measured in a similar way as satisfaction with 

health. Further, perceived well-being was also included, as measured with the following 

question: “How would you rate your standard of living?” This variable took a value of 0 

to mean the worse living standard imaginable, and 10 to indicate the best standard of 

living. Finally, the first wave value for subjective well-being, which was measured 

similarly to the outcome variable, was also involved. 

I also controlled for labour-market-related characteristics. In general, the analysis 

incorporated data relating to whether the respondent had ever experienced unemployment 

(0 if respondent had experienced unemployment; 1 if never). An attitude variable was 

also included to measure whether respondents enjoyed working. Individuals were asked 

to rate the validity of the statement “I usually do not enjoy working” using a four-point 

scale (value of 1: respondent considered statement not valid at all; value 4: completely 

valid). Moreover, labour market status was categorized as employed, entrepreneur or self-

employed owner, unemployed, and other non-working. Furthermore, type of work was 

also classified as blue-collar and white-collar. The former group was used to refer to those 

who undertook manual work26 and the latter one to professional jobs27. Finally, data about 

whether the respondents’ jobs were private or public was collected. 

Family-related characteristics were also controlled for. Marital status was recorded as 

single, married living together, married living apart, divorced, and widow/er. Satisfaction 

with partner was categorized as does not have a partner, dissatisfied, neutral, rather 

satisfied, very satisfied, and no answer. Partner activity status was measured similarly to 

                                                      
26 such as farmers, traders, manufacturers, service providers, skilled workers, unskilled workers, semi-

skilled workers, and temporary workers 

27 such as production managers, top managers, middle managers, lower-level managers, subordinate non-

manual workers with degrees, subordinate graduate non-manual workers, subordinate non-graduate non-

manual workers, and temporary non-manual workers 
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the respondent’s own labour market status (employed, entrepreneur or self-employed 

owner, retired, unemployed, and other non-working). Moreover, the analysis recorded 

how many children the respondent had. 

To estimate the subgroup effect of parenthood, certain matching variables were omitted 

since they played a role in conceptualizing the treatment variable. For example, gender 

was not controlled for when estimating the effect of mother or fatherhood. Similarly, 

number of children was not used as a matching variable when estimating the effect of the 

first or second children, but played an important role in estimating the general and gender-

specific effect of parenthood. In these latter cases, the number of children guaranteed that 

the parity effect was controlled for. 

See the distribution of the matching variables in Tables 28, 30, 32, 34, and 36 for different 

subgroups. These tables also shows the balance improvement after matching28.  

4.5. Results 

4.5.1. General Effects of Parenthood 

First, the correlation between subjective well-being and the birth of a child was analysed. 

Results are displayed in Table 12. In all waves, people whose child was born during the 

observation period had higher subjective well-being than those to whom no children were 

born. This finding is in line with earlier studies which found a positive correlation 

between childbearing and subjective well-being in Hungary (Billari, 2009; Margolis & 

Myrskylä, 2011; Molnár & Kapitány, 2013). Moreover, the longitudinal design allows 

observation of the change in subjective well-being over time. This analysis reveals that 

people whose child was born in the observation period experienced a significantly greater 

increase in subjective well-being between 2001/2002 and 2004/2005 compared to those 

to whom no children were born. However, there is no significant difference between the 

two groups in terms of the change between 2001/2002 and 2012/2013. Thus, the arrival 

of a new child appears to be associated with an increase in subjective well-being in the 

short term, but not the long term. 

  

                                                      
28 The values displayed in these tables are not weighted but the sample weights are instead involved as a 

matching variable. This is due to the special requirement of using sample weights in matching (See more 

about this in Chapter 3.7.5.). 
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Table 12. Difference in subjective well-being between those to whom a child was born 

between 2003 and 2004/2005 and those to whom no children were born in this period 

(mean, standard deviation, and level of significance) 

    Child was born 

during the 

observation 

period 

Child was not 

born during the 

observation 

period 

Sig. 

  Mean SD Mean SD  

Subjective well-being measured in 

2001/2002 (1-3 years before treatment 

group had a child) 

7.01 0.11 6.53 0.03 0.01 

Subjective well-being measured in 

2004/2005 (0-2 years after treatment group 

had a child) 

7.38 0.11 6.55 0.03 0.01 

Subjective well-being measured in 

2012/2013 (7-10 years after treatment 

group had a child) 

7.44 0.11 6.95 0.03 0.01 

Change in subjective well-being between 

2001/2002 and 2004/2005 0.37 0.12 0.02 0.03 0.01 

Change in subjective well-being between 

2001/2002 and 2012/2013 
0.43 0.13 0.42 0.03 0.93 

    

The mean differences in subjective well-being might be attributable to a factor other than 

the birth of the child. For example, people whose child was born in the observation period 

were on average 28 years old in the first wave, whereas those to whom no children were 

born were on average 46 years old. This difference is crucial, as ageing itself can have an 

effect on subjective well-being, regardless of parenthood status (Blanchflower & Oswald, 

2008; Gwozdz & Sousa-Poza, 2010). In order to rule out confounding variables, those to 

whom a child was born in the observation period (i.e. treatment group) were matched to 

those to whom no children were born in this period (i.e. control group) using genetic 

matching. This process reduced the number in the control group from 6331 to 259 but 

caused no change in the number in the treated group (307). More about the improvement 

in balance can be found in the Appendix in Table 28 and Figure 16.  

In contrast to the simple correlation analysis (see in Table 12), the multivariate analysis 

(see Table 13) reveals that parenthood has a large positive significant effect both in the 

short and the long run, even though the effect decreases over time. The estimated 

treatment effect in this research is 0.56 in the short run and 0.39 in the long run, which is 

higher than what was found, for example, in Great Britain (0.20 in the short run and 0.04 
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in the long run) when similar methodology was applied (Balbo & Arpino, 2016).  

The multivariate result is consistent with Hypothesis 1A, which predicted a decreasing 

effect on subjective well-being with the ageing of the child. This result is in line with 

demand and reward theory. Whereas the Hungarian social security system might also 

underpin the decrease in effect through modifying the cost of children in two ways: firstly, 

the generous parental leave diminishes the short-term costs of having a child, and 

secondly, the system of long periods of parental leave is associated with low access to 

child-care facilities and flexible job arrangements, which has a negative long-term effect 

on parents’ employment. Moreover, the findings are also in line with Hypothesis 1B, 

which predicts that the arrival of a new child has a long-lasting positive significant effect 

on subjective well-being, based on value of children theory. However, this finding 

contests Hypothesis 1C by suggesting that the subjective well-being of parents does not 

return to the pre-birth baseline level even seven to ten years after the birth. Thus, the 

empirical evidence presented in this research contradicts set-point theory. Also, findings 

from the Hungarian case appear to be similar to those from other countries where 

parenthood is persistently linked to higher subjective well-being (Baetschmann et al., 

2016; Mikucka, 2016; Pollmann‐Schult, 2014). 

Table 13. Parenthood status in regression models after matching (regression coefficient, 

and level of significance) 

 Parenthood status 

Short-term change (between 2001/2002 and 2004/2005) 0.56*** 

Long-term change (between 2001/2002 and 2012/2013) 0.39** 

Note: This table contains only the treatment variable; the entire analysis can be seen in Table 29.   

P-values: ***<0.001, **<0.05, *<0.1    

   

I used Rosenbaum’s (2002) sensitivity analysis to bound the treatment effect estimates. 

The general  parameter is 1.45 in terms of the short-term effect, and 1.32 for the long-term 

effect. The parameter for the short-term effect is close to the 1.5 threshold, which suggests 

the robustness of the estimates and indicates that it is very unlikely that an unobserved 

difference in covariates would change the inference of the short-term effect. However, 

the 
long term

general

  parameter for the long-term effect on parenthood is more significantly below 

this threshold. Thus, parenthood also has a long-term positive effect at a level, but it is 
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more sensitive to unobserved confounders. 

4.5.2. Parenthood Effects According to Parity 

Next, the analysis estimated separately (1) the first child effect, and (2) the second child 

effect. In the first case, the treatment group contained those whose first child was born 

between 2003 and 2004/2005, whereas the control group contained respondents who 

remained childless during this period. In the second case, the treatment group referred to 

those whose second child was born between 2003 and 2004/2005, and the control group 

to those who had no additional children in this period, but had had one before the first 

wave of data collection.  

First, the correlation between parenthood and subjective well-being is analysed in terms 

of parity. Table 14 displays the results. Having a child is associated with higher subjective 

well-being both before and after birth, regardless of whether the child is a first or second 

one. However, only the first child appears to increase subjective well-being significantly 

in the short term. 
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Table 14. Difference in subjective well-being between those to whom a child was born 

between 2003 and 2004/2005 and to whom no children were born by parity of children 

(mean and level of significance) 

 First child Second child 

 First child 

was born 

during the 

observation 

period 

First child 

was not 

born during 

the 

observation 

period 

Sig. Second 

child was 

born during 

the 

observation 

period 

Second 

child was 

not born 

during the 

observation 

period 

Sig. 

Subjective well-being 

measured in 2001/2002 

(1-3 years before 

treatment group had a 

child)  

6.85 6.27 0.01 7.33 6.31 0.01 

Subjective well-being 

measured in 2004/2005 

(0-2 years after treatment 

group had a child) 

7.33 6.25 0.01 7.59 6.45 0.01 

Subjective well-being 

measured in 2012/2013 

(7-10 years after 

treatment group had a 

child) 

7.16 6.40 0.01 7.79 6.74 0.01 

Change in subjective 

well-being between 

2001/2002 and 2004/2005 

0.48 -0.02 0.02 0.30 0.14 0.59 

Change in subjective 

well-being between 

2001/2002 and 2012/2013 

0.31 0.13 0.63 0.47 0.43 0.86 

 

Again, matching was undertaken to obtain sufficient balance between the treatment and 

control groups, a process which is necessary for making unbiased causal inference. In 

terms of measuring the first child effect, matching reduced the control group from 726 to 

89 responses but did not modify the size of the treatment group (134). In the case of the 

second child, matching reduced the dataset from 1274 control individuals and 82 treated 

individuals to 63 control and 82 treated. The improvement in balance can be seen in 

Tables 30 and 32, and in Figures 17 and 18. 

Matching using longitudinal data (see in Table 15) revealed that both the first child and 

the second child had a positive effect both in the short and long run. This evidence is at 

odds with Hypothesis 2B and supports Hypothesis 2C. The fact that even second children 
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have a lasting positive effect on subjective well-being is especially interesting in light of 

the relatively low number of second children in Hungary.  

Nevertheless, this model unexpectedly revealed that the effect of the first child is greater 

than that of the second child in the short term, but the opposite is true in the long term. 

Thus, Hypothesis 2A stands only in the case of a short-term effect and is not supported 

in case of a longer one. Application of the demand and rewards approach (Nomaguchi, 

2012; Nomaguchi & Milkie, 2003; Umberson et al., 2010) would suggest that this finding 

is due to changes in marginal utility and cost (i.e. in the short term the marginal utility of 

having a child decreases faster than the marginal cost, however, in the long run marginal 

utility increases faster than marginal cost). Further, the short-term moderating effect of 

parity may be also explained by set-point theory (Headey & Wearing, 1989; Kammann, 

1983; Lykken & Tellegen, 1996), which argues that novelty is higher with the first child 

and adaptation to parenthood is stronger in the case of the higher-order children, thus, 

first children should elicit greater changes than second children. However, this theory is 

clearly at odds with the observed long-term effects. 

Table 15. Parenthood status in the regression models before and after matching 

according to parity of children (regression coefficient and level of significance) 

    Fist child Second child 

Short-term change (between 

2001/2002 and 2004/2005) 
0.81*** 0.51** 

Long-term change (between 

2001/2002 and 2012/2013) 
0.54** 0.69** 

Note: This table contains only the treatment variable. The whole regression can be seen in Table 31 (for the 

first child effect) and Table 33 (for the second child effect). P-values: ***<0.001, **<0.05, *<0.1  

 

Again, Rosenbaum’s (2002) sensitivity analysis was conducted to measure the robustness 

of the estimations. The estimations for the first child effect were fairly robust both in 

terms of short-term changes (  parameter: 1.55) and long-term changes (  

parameter: 1.47). The estimation of second children effects was highly robust in terms of 

the measurement of long-term changes ( parameter: 1.62); however, the 

estimation of short-term effects of the second child was slightly more sensitive to 

unobserved confounders (  parameter: 1.42).  

short term

first

 long term

first
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4.5.3. Parenthood Effects in Terms of Gender 

In this section, the effect of parenthood is described separately by gender. In case of 

motherhood effect, the treatment group contained women whose child was born between 

2003 and 2004/2005, while those women to whom no children were born in this period 

belong to the control group. In case of fatherhood effect, the treatment group referred to 

men whose child was born in the observation period, and the control group to those men 

to whom no children were born in this period. 

The results of correlation analysis is displayed in Table 16. Among women those whose 

child was born in the observation period had higher level of subjective well-being than 

women to whom no children were born in this period, both before and after the childbirth. 

In contrast, men whose child was born between 2003 and 2004/2005 did not differ from 

other men to whom no children were born during this period either before birth 

(2001/2002) or long after it (2012/2013). However, even fathers reported to having higher 

subjective well-being than other men for a short time (0-2 years) after the arrival of the 

child. Regarding the changes between waves, motherhood was not associated with a 

change in subjective well-being in the short term or long term, whereas fatherhood was 

associated with a short-term increase in subjective well-being. 
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Table 16. Difference in subjective well-being between those to whom a child was born 

between 2003 and 2004/2005 and those to whom no children were born in this period 

by gender (mean and level of significance) 

    Women  Men 

 Child was 

born during 

the 

observation 

period 

Child was 

not born 

during the 

observation 

period 

Sig. Child was 

born during 

the 

observation 

period 

Child was 

not born 

during the 

observation 

period 

Sig. 

Subjective well-being 

measured in 2001/2002 

(1-3 years before 

treatment group had a 

child)  

7.31 6.53 0.01 6.75 6.49 0.17 

Subjective well-being 

measured in 2004/2005 

(0-2 years after treatment 

group had a child) 

7.61 6.56 0.01 7.15 6.50 0.01 

Subjective well-being 

measured in 2012/2013 

(7-10 years after 

treatment group had a 

child) 

7.51 6.87 0.01 7.24 6.94 0.22 

Change in subjective 

well-being between 

2001/2002 and 2004/2005 

0.30 0.03 0.11 0.40 0.01 0.02 

Change in subjective 

well-being between 

2001/2002 and 2012/2013 

0.20 0.34 0.50 0.49 0.45 0.98 

 

Similarly to the previous cases, causality was estimated by reducing the initial dataset to 

create a more balanced one. In the case of females, matching reduced the control group 

from 3156 to 105, and maintained the 163 members of the treatment group. In the case of 

males, matching decreased the number of members of the control group from 2806 to 95, 

while the number of individuals in the treated group stayed at 127. Tables 34 and 36 and 

Figures 19 and 20 show how the balance between the treatment group and control groups 

greatly improved upon matching. 

In contrast to the correlation using raw data (see in Table 16), matching using longitudinal 

data (see in Table 17) shows that motherhood has a high and long-lasting positive effect. 

Moreover, the latter model confirms that fatherhood has a moderate positive effect in the 

short term, and no effect in the long term. This finding is in line with Hypothesis 3C, but 
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it contests Hypothesis 3A and 3B. Thus, results are in line with the claims of set-point 

theory only for males. However, value of children theory was confirmed for females, but 

not for males. Furthermore, demand and reward theory can explain results concerning 

gender differences in terms of costs and benefits. According to this approach, the finding 

shows that for females the benefits outweigh the costs, but for males the costs offset 

benefits in the long run. Finally, this finding is in line with the results of some earlier 

studies conducted in other countries (Baranowska & Matysiak, 2011; 2016; Sironi & 

Billari, 2013). 

Table 17. Parenthood status in the regression models before and after matching by sex 

(regression coefficient and level of significance) 

 Women Men 

Short-term change (between 

2001/2002 and 2004/2005) 
0.64*** 0.46** 

Long-term change (between 

2001/2002 and 2012/2013) 
0.48** 0.28 

Note: This table contains only the treatment variable. The whole regression can be seen in Table 35 

(motherhood effect) and Table 37 (fatherhood effect). P-values: ***<0.001, **<0.05, *<0.1  

  

Sensitivity analysis on the estimations of motherhood effect reveals that the results are 

fairly robust (  parameter: 1.64 for short-term effect; 1.58 for long-term effect). 

However, the short-term effect of fatherhood is less robust (  parameter: 1.26). Thus, 

although fatherhood also has a significantly positive short-term effect, this result is more 

sensitive to unobserved confounders. As a consequence, the gender differences in terms 

of the parenthood effect might be even more pronounced than this analysis has suggested.  

4.6. Discussion 

During the last decades, the effect of parenthood on subjective well-being has been 

identified as the missing link in understanding recent fertility trends (Billari, 2009). 

Consequently several other scholars have also argued that the phenomenon can shed light 

on the underlying process behind fertility decisions and the low fertility rate (Aassve et 

al., 2016; Le Moglie et al., 2015; Luppi, 2016; Margolis & Myrskylä, 2015; Parr, 2010). 

However, there is still little known about the parenthood effect on subjective well-being 

in CEE countries where fertility is “the lowest-low”. The goal of this chapter was to 

female

male
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extend the research about the parenthood effect on subjective well-being to Hungary. 

By combining longitudinal data analysis with the matching method, this article has made 

further steps to estimate causality between parenthood and subjective well-being. Similar 

methodology has been used to estimate this relationship in the international literature 

(Baetschmann et al., 2016; Balbo & Arpino, 2016; Sironi & Billari, 2013); however, no 

prior research has applied this technique in Hungarian data. The application of the 

approach is highly beneficial since by using these methods one can control for all the 

time-invariant unobserved confounding variables and all observed confounding variables. 

Furthermore, this method can eliminate the extrapolation and interpolation bias, which 

prevalent in regression models (Ho et al., 2011; King & Zeng, 2006).  

Overall, the research described in this chapter finds that parenthood has a large and long-

lasting positive effect on subjective well-being. The finding resonates with some of the 

state-of-the-art international studies (Baetschmann et al., 2016; Mikucka, 2016; 

Pollmann‐Schult, 2014). Furthermore, it supports value of children theory (Hoffmann & 

Hoffmann, 1973; Nauck, 2007). Nevertheless, the evidence that parenthood has a slightly 

decreasing effect supports the demands and rewards approach. This theory suggests that 

the effect declines as children age due to worsening parent-children relationships 

(Nomaguchi, 2012). However, this result is at odds with set-point theory, which argues 

that major life events are able to alter subjective well-being only temporarily since people 

adopt to their new situations eventually (Headey & Wearing, 1989; Kammann, 1983; 

Lykken & Tellegen, 1996). Finally, the identification of a decreasing effect is also in line 

with the Hungarian social policy context which supports parents in the short run, but 

creates opportunity costs in the long run through provision of long parental leave (Bartus 

et al., 2013; Makay, 2015). 

This chapter also documented the moderating effect of parity. The effect of having a first 

child over remaining childless, and the effect of having a second child over having only 

one child was estimated. It was shown that not only the arrival of the first child, but also 

the second permanently increases subjective well-being. These findings are exceptional 

in international comparison, since only in Russia has it been found that second children 

have such a long-term effect (Mikucka, 2016). Moreover, these results raise the question 

why Hungarians do not have more second children even though doing so could positively 

impact life satisfaction. Understanding this paradox is crucial as the low Hungarian 

fertility rate is mainly attributable to the low number of second children (Miettinen & 

Szalma, 2014; Szalma & Takács, 2015). 
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Moreover, the research also looked at the moderating effect of sex and revealed that only 

females witness a long-lasting increase in subjective well-being, whereas parenthood has 

no long-lasting effect on males. This finding is in line with previous research conducted 

in the CEE countries, and more specifically, in Poland (Baranowska & Matysiak, 2011) 

and in Bulgaria (Sironi & Billari, 2013). As this result was only found in the CEE 

countries, it might be characteristic of this region. Since couples make decisions about 

transitions to parenthood together, the experience of both sexes matters in fertility-related 

decisions (Aassve et al., 2016). Therefore, the fact that fatherhood does not have a long-

lasting positive effect may be contributing to the low fertility rate in Hungary and in other 

countries in the region. This finding suggests that further research in which sample size 

allows for the further elaboration of the effect of fatherhood by also incorporating the 

parity effect is needed. 

To sum up, the argument that life satisfaction matters in understanding fertility trends 

makes only a limited contribution to the discussion about why the fertility rate is 

persistently low in Hungary. The only trend with subjective well-being which could 

contribute to such a low fertility rate is the fact that fatherhood does not cause a 

significant, long-term effect on life satisfaction. However, every other subgroup reported 

to experiencing positive changes upon the arrival of children. As a result, in Hungary one 

needs to go beyond observing subjective well-being to understand the low fertility rate. 

The major limitation of this research is that even though unobserved time-invariant and 

all observed confounding variables were controlled for, however, unobserved time-

variant confounding variables could not be controlled. First, pre-birth expectations about 

how children affect subjective well-being were not taken into account, since this variable 

was neither measured nor can it be assumed that it is time-invariant. However, Kravdal 

(2014) argues that it is important to take into account this factor, suggesting that it can 

significantly influence parenthood-related choices (as those who expect to have an 

enjoyable parenthood are more likely to have children than those who fear an undesirable 

parenthood). Similarly to most of the pre-existing studies in this field, the findings of the 

present study might be subject to this selection bias. Second, this chapter did not control 

for events which occur after treatment took place (i.e. post-birth divorce). In general, 

statisticians emphasize that one should not control for such variables when estimating 

causality, since these variables are most of the time affected by the treatment (i.e. they 

can be collider variables, as described in Chapter 3.1.) and controlling for them can create 

endogenous selection bias (Elwert & Winship, 2014; Rosenbaum, 1984). Although it is 
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unlikely, we note that this practice might create selection bias if the given post-treatment 

variable were indeed not influenced by the treatment. Third, intention to have a further 

child was not controlled for, as this variable might be also affected by the treatment (i.e. 

it might also be a collider variable). Intention not only affects parity progression but can 

also be affected by future parenthood status since parenthood might be anticipated upon 

formulating this intention. Thus, intention is similar to post-treatment variables in the 

sense that (1) controlling for them can create endogenous selection bias if they were 

affected by the treatment, but (2) omitting them might create selection bias if they were 

indeed not affected by the treatment. I deal with intention to have a further child in a 

similar manner as I do for other possible collider variables, not controlling for them to 

avoid endogenous selection bias. To sum up, several variables were not controlled for due 

to lack of data access or statistical considerations which might have created selection bias. 

The present research has made an attempt to assess how sensitive the results are to a 

certain amount of selection bias using sensitivity analysis (Rosenbaum, 2002), finding 

that most of the results are fairly robust in terms of the estimation of the short-term effect, 

although weaker for the long-term overall effect and the short-term effect of second 

children and fatherhood. Future research could also test how robust the results are in terms 

of the moderating effects of certain post-treatment variables (such as divorce, 

unemployment), poor post-birth work-life balance, or intention to have further children 

(Matysiak et al., 2016).  

To obtain deeper understanding about the changes in subjective well-being upon 

parenthood, this dissertation also devotes a chapter to observing which life domain is 

affected the most by parenthood. Thus, Chapter 6 not only observes overall life 

satisfaction, but also analyses the effect of domain-specific subjective well-being. 

However, prior to providing details about this, the next chapter (Chapter 5) shows how 

retirement affects overall subjective well-being.  
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5. Estimating the Effect of Retirement on Subjective Well-

being 

5.1. Introduction 

Understanding the meaning of retirement in the life course of individuals has become a 

highly relevant policy field. Knowing the impact of retirement on well-being might help 

us to evaluate the effectiveness of the pension system; especially in ageing societies where 

the sustainability of the pension system has been endangered, and governmental spending 

on the pension system has grown. Despite the relevance of this topic, the previous 

empirical results produced mixed evidences (Barrett & Kecmanovic, 2013; Bonsang & 

Klein, 2012; Charles, 2002; Fonseca, Kapteyn, Lee, & Zamarro, 2017; Henning, 

Lindwall, & Johansson, 2016; Heybroek, Haynes, & Baxter, 2015; Kesavayuth, 

Rosenman, & Zikos, 2016; Latif, 2011; Luhmann, Hofmann, Eid, & Lucas, 2012).  

This lack of empirical evidence is not surprising since there are several theoretical 

perspectives that can be employed to investigate the impact of retirement on subjective 

well-being. Role theory assumes positive changes in subjective well-being upon 

retirement, while in contrast, role-strain theory predicts negative changes, whereas 

continuity theory postulates insignificant changes. Further, set-point theory assumes that 

retirement should not have a long-term effect (Headey & Wearing, 1989; Kammann, 

1983; Lykken & Tellegen, 1996). Finally, the resource-based dynamic perspective 

emphasises that an individual’s resources (such as education or whether retired 

voluntarily or involuntarily) will determine whether retirement is a positive or negative 

experience for the given person (Wang, Henkens, & van Solinge, 2011).  

Although this topic has received great attention in western countries, there is still little 

known about retirement effects on subjective well-being in Central-Eastern Europe 

(CEE). Such a research is important as the CEE countries are facing with similar 

challenges due to population ageing as the western social security systems (Simonovits, 

2009), thus, the estimation of the effects of retirement might shed a light on underlying 

processes which needs to be addressed by policy measures. A positive relationship 

between retirement and subjective well-being would provide further explanation about 

the early labour market exit in this country, which is especially widespread in the CEE 

countries. Whereas, a negative relationship between retirement and subjective well-being 

would call for further active ageing policies.  

The present chapter extends the scope of the evidences to Hungary. Observing the 
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Hungarian case is important as in this country the retirement system is embedded in a 

different context than in the well-observed western countries. In absolute terms, the 

Hungarian elderly is poor in European comparison (Szalai, 1991; Zaidi, 2011). However, 

this can be mainly attributed to the fact that Hungarians are in general poorer than their 

western peers. In relative terms, the Hungarian elderly is doing well compared to the rest 

of society as the Hungarian pension system has high pension replacement rate 

(Monostori, 2015; OECD, 2015; Zaidi, 2009). Thus, in the one hand, Hungarian elderlies 

might face with limited opportunities and more restrictions around retirement than their 

western peers. But on the other hand, the transition from work to retirement cannot be 

considered a financial shock in this country. Furthermore, the absolute deprivation and 

unfavourable labour market opportunities of the Hungarian elderlies also generated 

exceptionally high incident rates of involuntary retirement (Dorn & Sousa-Poza, 2010; 

Kohli, 2014; Szalai, 1991). Thus, this dimension requires further investigation. Finally, 

the observation of subjective well-being is utmost important since in Hungary the level 

of subjective well-being is significantly lower than in the Western European countries 

(Guriev & Zhuravskaya, 2009).  

The research question at the hand requires the estimation of causality on observational 

data. The present study applies the genetic matching on longitudinal data, which method 

controls for both observed confounding variables and unobserved time-invariant 

variables. Thus, I am able to control for pre-retirement characteristics to a large degree, 

which helps to distinguish accumulated disadvantages from transition related risks. Most 

recently this method has been used for estimating the effects of various life events such 

as parenthood (Baetschmann, et al., 2016; Balbo & Arpino, 2016; Sironi & Billari, 2013), 

but it has never been applied for the observation of retirement effect on subjective well-

being. Similarly to the previous study (Chapter 4), the empirical foundation of this 

research was the Turning Points of Life Course survey (Hungarian Generations and 

Gender Survey). 

Based on my estimations, retirement does not have a statistically significant effect on 

subjective well-being. In fact, this result provides evidence that the Hungarian pension 

system is able to facilitate the transition from work to retirement. However, I also show 

that voluntary retirement does have an effect on subjective well-being: voluntary retirees 

achieve higher subjective well-being than their involuntary peers when previously 

existing differences are controlled for.  
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5.2. Background 

5.2.1. The Effect of Retirement on Subjective Well-being in General 

The effect of retirement on subjective well-being is not obvious as it is a complex life 

event which can bring about multiple changes in individuals’ lives. There are five main 

theories that provide an explanation for how well-being changes upon retirement. Role 

theory argues that employment is a significant source of identity (Ballweg, 1967; Ellison, 

1968; George & Maddox, 1977; Carter & Cook, 1995). Since the individual loses his or 

her important role after retirement, one can assume that subjective well-being will 

decline. In contrast, advocates of the role-strain theory argue that retirement, in effect, 

relieves individuals from expectations, which leads to an increase in their subjective well-

being. Furthermore, retirees can devote more time to their families or to leisure, which 

might further increase well-being (Shultz, Morton, & Weckerle, 1998).  

Further, continuity theory argues that subjective well-being is not affected by retirement 

since individuals try to maintain their standard of living, their self-esteem, and their values 

over time (Atchley 1971, 1989; Kim & Moen, 2002). More specifically, Atchley (1971) 

argued that employment is not as important as has been suggested by role theory and role-

strain theory, claiming that identity is based on multiple sources such as family and social 

networks, not solely on employment status. Furthermore, Atchley also argued that even 

after retirement people tend to consider themselves as still belonging to their prior 

occupational group. Thus, they can transfer some aspects of their former occupations 

(such as skills) to their retired life. 

Further, set-point theory can be mentioned here as well (see a description of this theory 

in more detail in Chapter 4.5.1.). This theory argues that even if a life event has a short 

term effect, this effect will diminish over time as individuals tend to adopt to their new 

circumstances (Headey & Wearing, 1989; Kammann, 1983; Lykken & Tellegen, 1996). 

Thus, this theory argues that retirement does not affect subjective well-being in the long 

term.  

Finally, Wang et al. (2011) have developed a new theoretical framework; namely, the 

resource-based dynamic perspective, which integrates the previous approaches. It aims 

to understand how retirement affects well-being by building on the life course approach 

and the resource perspective. Based on this approach, certain factors provide resources 

which can foster retirement adjustment processes. These factors include individual 

attributes (such as good health), pre-retirement job-related characteristics (such as 
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unemployment before retirement, or work stress), family-related characteristics (such as 

marital status), transition-related characteristics (such as voluntary retirement) and 

finally, post-retirement activities (such as leisure activities). This theory does not provide 

a universal answer to how subjective well-being changes upon retirement but rather 

focuses on the interindividual differences in experiencing the transition from work to 

retirement.  

International research has produced mixed evidence about the effects of retirement on 

subjective well-being. There are some research projects which have found a positive 

relationship (Barrett & Kecmanovic, 2013; Charles, 2002; Gall, Evans, & Howard, 1997, 

1997; Johnston & Lee, 2009; Kesavayuth et al., 2016; Montizaan & Vendrik, 2014). 

Others have suggested that life satisfaction diminishes after retirement (Bossé, Aldwin, 

Levenson, & Ekerdt, 1987; Coursolle, Sweeney, Raymo, & Ho, 2010; Nikolova & 

Graham, 2014; Szinovacz & Davey, 2004). Furthermore, some others have shown that 

retirement has no significant effect on subjective well-being at all (Baker, Gruber, & 

Milligan, 2009; Bonsang & Klein, 2012; Börsch-Supan & Jürges, 2006; Clark & Fawaz, 

2009; Davis, 2012; Fonseca et al., 2017; Heybroek et al., 2015; Latif, 2011; Luhmann et 

al., 2012).  

To summarize these results, Luhmann et al. (2012) have carried out a meta-analysis on 

the effect of retirement on subjective well-being. They have found that retirement is 

typically a neutral life event which has costs as well as benefits. However, this analysis 

does not attempt to capture differences between welfare states, countries, time of 

observation, and the applied methods. Thus, their meta-analysis may disguise significant 

relationships by aggregating conflicting results. However, Henning et al. (2016) also 

undertook a short review of the topic and found no systematic difference between 

countries, the time of observation, and methods. This review paper also concludes that 

the effect of retirement is mostly neutral, and sometimes even a positive life event.  

To date, no serious effort was made to examine the impact of retirement on subjective 

well-being in Hungary. Previous studies provided only descriptive evidence. Molnár 

(2004) has shown that 60-75-year old citizens have the same subjective well-being as 

younger Hungarians. However, the analysis of a retrospective question showed that, the 

60-75-year old population experiences more decline in their life conditions than younger 

people do. Furthermore, the most unsatisfied people are those who have just retired. 

Another line of research was by Monostori (2008), who already had longitudinal data. 

However, she has not estimated causality either, rather, she has provided a detailed 
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analysis of retired people’s stratification by subjective well-being. Monostori has found 

that retirees’ subjective well-being can be explained mostly “by the health status, the 

equivalent household income and whether somebody has experienced unemployment 

during his or her life course” (Monostori 2008: 109).  

5.2.2. The Effect of Voluntary Retirement on Subjective Well-being 

There are multiple ways to define voluntariness of retirement. Desmet, Jousten, and 

Perelman (2005), for instance, split the population of retirees into two subgroups. They 

referred to those people who retire due to bad labour market conditions as the true 

unemployed, while they used the term optimizers for those who actually have an 

opportunity to follow individual utility maximization. Dorn and Sousa-Poza (2010) 

considered voluntary retirees those retirees who prefer retirement over the continuation 

of their job. Based on their definition, involuntary retirees were those who retire due to 

labour market constraints. They stressed that involuntary retirement is usually caused by 

unexpected constraints such as sickness or unemployment. This dissertation uses Dorn 

and Sousa-Poza’s definition of voluntary and involuntary retirement.  

Three sets of theories which were detailed in the previous subchapter also pose 

expectations about how retirement effects differ between those who retire voluntarily and 

those who do so involuntarily. First, continuity theory does not differentiate based on the 

form of retirement and suggests that retirement should not have an effect on anyone. 

Therefore, based on this theory we may expect that voluntary and involuntary retirees 

will not differ in terms of subjective well-being trends around retirement once we take 

into account pre-retirement differences. Second, the resource-based dynamic perspective 

assumes that retiring voluntarily instead of retiring involuntarily provides resources for 

coping with this transition (Wang et al., 2011). Thus, this theory predicts that, even when 

pre-retirement characteristics are taken into account, the level of subjective well-being of 

voluntary retirees increases to a greater extent than that of involuntary retirees. Finally, 

set-point theory suggests that life events may have an important short-term impact on 

subjective well-being, although convergence to original levels will occur as people adapt 

to their new situations (Headey & Wearing, 1989; Kammann, 1983; Lykken & Tellegen, 

1996). As a consequence, potential differences between voluntary and involuntary 

retirees regarding how their subjective well-being changes upon retirement should 

disappear over time. 

International research also produced mixed results concerning the effects of voluntary 

and involuntary retirement. Bonsang and Klein (2012) have found that voluntary 
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retirement is the best predictor of retirement-related change in subjective well-being. 

Based on their work, involuntary retirement has a negative effect on subjective well-being 

mainly because people experience a higher decrease in satisfaction with the household 

income than what they gain with the increase in satisfaction with leisure. Bonsang and 

Klein (2012) have also shown that involuntary retirement is similar to unemployment, 

because individuals do not work; although, they in fact intend to do so. Consequently, 

several studies supported that involuntary retirement worsen the subjective well-being 

(Barrett & Kecmanovic, 2013; Bender, 2012; Shultz et al., 1998). In contrast, Abolhassani 

and Alessie (2013) have suggested that neither voluntary nor involuntary retirement have 

any significant effect on current life satisfaction.  

5.2.3. The Hungarian Context 

After the transition as the economy has changed from centrally planned state economy to 

market economy several people lost their job and unemployment peeked, which was 

mostly absorbed by the early retirement system (Szalai, 1991). However, in the last 20 

years, various policy measures have entered into force in this country, all aiming to extend 

working careers and by that mitigate the negative consequences of ageing (Monostori, 

2015). But still employment rates of men aged 60-64 was the lowest in Hungary in the 

observation period (2001 and 2010) among the OECD countries (Ebbinghaus & 

Hofäcker, 2013).  

The situation of the Hungarian elderly is rather different from what people experience in 

western countries. In absolute terms, the Hungarian elderly face a lower standard of living 

than their western peers. In terms of severe material deprivation, 65+ year-old Hungarian 

men are ranked 22nd and Hungarian women 23rd among the 28 European member states 

for this risk. However, absolute poverty may be mainly attributed to the fact that 

Hungarians in general are not doing as well as their western peers. In comparison to the 

whole of society, the relative income position of the Hungarian elderly is one of the best 

in the European Union. A formerly median-level earner in Hungary presently receives a 

pension which amounts to 94% of their previous earnings (Monostori, 2015). 

Furthermore, as Table 18 shows, the at-risk-of-poverty ranking, which is a relative 

poverty measurement, for 65 year-or-older males is the 3rd lowest and for females the 

lowest in Hungary among all European countries. As a result, the transition to retirement 

cannot be considered a financial shock in this country. Finally, the high absolute poverty 

and low relative poverty of elderly Hungarians is not only exceptional in the European 

context, but exceeds that of Visegrad countries as well.  
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Table 18. Poverty of the Hungarian elderly (65+) compared to Visegrad and European 

countries in 201529 

  Hungarian Visegrad 330 EU28 
Hungarian 

rank31 

Severe material 

deprivation 

female 16.4 8.1 6.3 22nd 

male 10.4 5.8 4.5 23rd 

At-risk-of-poverty32 

female 4.1 10.4 16.0 1st 

male 4.8 5.4 11.8 3rd 

   

Finally, another major characteristic of the Hungarian retirement system which makes 

this study highly relevant is that this country has the highest rate of involuntary retirement 

among the OECD countries (Dorn & Sousa-Poza, 2010; Kohli, 2014). Kohli (2014) has 

found that 41.5% of the Hungarian males retire involuntarily, whereas this measure is 

39.1% for women. Dorn and Sousa-Poza (2010) used a different definition, but they 

arrived at a similar conclusion in that involuntary retirement is alarmingly high in 

Hungary compared to other OECD countries. Based on the data from the 1997 

International Social Survey Program, they have shown that the percentage of involuntary 

early retirees in Hungary was 62.1% of all early retirees. Previous studies in this issue 

claim that the high incidence rate of involuntary retirement can be attributed to the lack 

of demand for workers (Dorn & Sousa-Poza, 2010; Szalai, 1991), poor labour market 

position (Radó, 2012), alternative commitments (such as care responsibilities) (Kohli, 

2014) or to health limitations (Kohli, 2014; Radó, 2012). All these factors related to the 

deprived status of the Hungarian elderly in absolute terms. Dorn and Souse-Poza (2010) 

say that the low standard of living in Eastern Europe inhibited voluntary retirement even 

among well-educated people, while Radó (2012) found that involuntary retirement is 

closely related to low pre-retirement social status and bad labour market position.  

5.3. Hypotheses 

The goal of this chapter is twofold: First, it aims to estimate the effect of retirement on 

                                                      
29 Data: Eurostat, Róbert Iván Gál’s calculation 

30 Visegrad 3: unweighted average of data from the Czech Republic, Poland and Slovakia 

31 HU rank: position of Hungary among the EU28 countries 

32 Threshold: 60% of median equalized income after social transfer 
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subjective well-being. Second, it also contributes to understanding the pluralized effect 

of retirement on subjective well-being by comparing how this life event affects voluntary 

and involuntary retirees. I formulate the following hypotheses based on the international 

empirical evidence and the Hungarian context.  

Hypothesis 1. Retirement does not affect subjective well-being significantly either in 

the short or long term. This hypothesis is consistent with continuity theory (Atchley 

1971, 1989; Kim & Moen, 2002) and the majority of international findings (Baker et al., 

2009; Bonsang & Klein, 2012; Börsch-Supan & Jürges, 2006; Clark & Fawaz, 2009; 

Davis, 2012; Fonseca et al., 2017; Heybroek et al., 2015; Latif, 2011; Luhmann et al., 

2012). On the one hand, retirement should not have a negative effect since, on average, 

this life event is not a financial shock, as reflected in the low level of relative poverty 

among the Hungarian elderly compared to the rest of society. On the other hand, neither 

should retirement have a positive effect in Hungary since the Hungarian elderly are also 

faced with a very low standard of living in absolute terms which limits the opportunities 

to increase subjective well-being and enjoy retired life.  

Hypothesis 2. Retirement does not have significantly different effects on voluntary 

and involuntary retirees when their pre-retirement social and economic status are 

taken into account. Previous Hungarian research has shown that voluntary and 

involuntary retirees differ according to their pre-retirement status to a large degree (Radó, 

2012). These initial dissimilarities might explain away all differences after retirement. 

Further, this hypothesis is in line with some of the international findings about this topic 

(Abolhassani & Alessie, 2013). Finally, this expectation is also in line with continuity 

theory (Atchley 1971, 1989; Kim & Moen, 2002).  

5.4. Data 

Similarly to the previous chapter, this study also relies on the Turning Points of Life 

Course survey. Consequently, the outcome variables and most of the matching variables 

are the same in these two chapters, therefore these variables will be only briefly 

mentioned here (See more about them and about the dataset in general in Chapter 4.4.). 

This subchapter will only detail those variables which are new compared to the previous 

study. Furthermore, the treatment effect is estimated the same way as in the previous 

chapter (through matching and the application of the regressor variable method based on 

Equation 44).  
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5.4.1. Treatment Variables 

This empirical study was designed to observe two treatment variables; (1) retirement, and 

(2) voluntary retirement. Table 19 describes these treatment variables and also highlights 

their compositions. 

Table 19. Description of the observed treatments in Chapter 5 

Observed 

phenomenon 
Treatment group Control group 

Retirement 

effect 

Those who retired between the first 

(2001/02) and second waves 

(2004/05) 

Those who did not retire between the 

first (2001/02) and second waves 

(2004/05), and were not retired yet in 

the first (2001/02) 

Voluntariness 

of retirement 

effect 

Those who voluntarily retired 

between the first (2001/02) and 

second waves (2004/05) 

Those who involuntarily retired 

between the first (2001/02) and 

second waves (2004/05) 

  

Firstly, retirement was measured in the second wave of the research (2004), which 

contains information about who retired between 2001 and 2004. Retirement is a binary 

variable in this dissertation. It takes a value of 1 if someone retired between 2001 and 

2004, and a value of 0 if they did not retire33. Those people who retired before 2001 are 

not included in the analysis. After deletion of the missing values, the sample consisted of 

306 people who retired between 2001 and 2004, and 4209 respondents who did not. 

Second, whether somebody retired voluntarily or involuntarily was also observed in the 

second wave (2004). This variable was measured based on three questions: (i) whether it 

was the respondent’s decision to retire, (ii) whether the interviewee is satisfied with the 

timing of retirement, and (iii) whether fear of unemployment played a role in the decision. 

This variable takes two values: voluntary or involuntary retirement. Those people are 

considered voluntary retirees who (1) did not want to retire later, (2) made the decision 

about their own retirement, and (3) did not make this decision due to fear of 

unemployment. All the rest are considered involuntary retirees. Descriptive statistics 

shows that only 51.63% of respondents (158) retired voluntarily while 48.37% of them 

                                                      
33 There is empirical evidence that retirement, similarly to parenthood, can have an effect even one year 

before the transition occurs (Kesavayuth et al., 2016). This phenomenon is referred to as the anticipation 

effect in the literature. I eliminated the anticipation effect by omitting from the analysis those who retired 

between the first wave (2001/2002) and 2003. However, the treatment effect was similar with and without 

consideration of the anticipation effect. Since the sample size is higher without considering anticipation, I 

display only these results. 
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(148) were involuntary retirees. 

5.4.2. Outcome Variables 

Subjective well-being was measured in the same way as in the previous study (See more 

in Chapter 4.4.2.)  

5.4.3. Matching Variables 

Similarly to the previous study, matching variables included demographic and socio-

economic variables such as education, residence, age, subjective health status, income, 

and the first wave value for subjective well-being. Further I also controlled for labour-

market-related characteristics such as unemployment history, enjoyed working or not, 

labour market status, types of work, private or public jobs. Family-related characteristics 

were also controlled for such as marital status, satisfaction with partner, partner’s labour 

market status, number of children, and number of grandchildren.  

Although most of these matching variables were defined the same way as in the previous 

chapter (see Chapter 4.4.) there are some differences. In this study, partner’s labour 

market status was categorized as employed, entrepreneur or self-employed owner, 

unemployed, retired, and other non-working. Thus, retired people were also distinguished 

in this study who had previously belonged to the ‘other non-working’ category. Further, 

in this study the number of children were distinguished based on their gender. This was 

necessary as previous studies found that male and female children contribute to their 

parents’ subjective well-being to the same extent when they are not yet adults (Margolis 

& Myrskyla, 2016). However, adult male and female children might elicit different 

subjective well-being in old age since they differ from each other in terms of keeping 

contact with the elderly parents (Dykstra & Fokkema, 2011; Silverstein & Bengtson, 

1997; Suitor & Pillemer, 2006), and providing intergenerational transfers (Dwyer & 

Coward, 1991; Horowitz 1985; Örkény, Koltai, & Székelyi; 2011; Stone et al., 1987). 

Finally, this study also incorporated the number of grandchildren besides the number of 

children. This was necessary, as some empirical evidence has found that grandchildren 

have an effect on subjective well-being (Powdthavee, 2011). 

5.5. Results 

5.5.1. The Effect of Retirement on Subjective Well-being in General 

As a first step, the effect of retirement on subjective well-being was calculated by 

comparing the means of those who retired between 2001 and 2004 and those who were 



  

120 

 

non-retirees in 2004 (see Table 20). In all waves, non-retired people have a significantly 

higher level of subjective well-being. However, there is no significant difference between 

the two groups in terms of change in subjective well-being either in the short or long term. 

This means that retirement is not accompanied by a change in subjective well-being. 

Table 20. Difference in subjective well-being between retired and non-retired people 

(mean, standard deviation, and level of significance) 

 Retired between 

2001 and 2004 

Non-retired in 

2004 

ANOVA 

P-value 

 Mean SD Mean SD 

Subjective well-being measured in 

2001 (0-3 years before the treatment 

group retire) 

6.37 2.06 6.81 1.89 0.01 

Subjective well-being measured in 

2004 (0-3 years after the treatment 

group retire) 

6.47 1.91 6.82 1.86 0.01 

Subjective well-being measured in 

2012 (8-11 years after the treatment 

group retire) 

6.84 2.21 7.12 2.05 0.01 

Change in subjective well-being 

between 2001 and 2004 
0.10 2.20 0.01 1.98 0.39 

Change in subjective well-being 

between 2001 and 2012 
0.47 2.43 0.31 2.26 0.17 

   

A comparison of means, however, provides insight only into correlation but not causality. 

Since retired and non-retired groups systematically differ from each other, there may be 

confounding variables which modify the relationship between retirement and change in 

subjective well-being (i.e. the level of subjective well-being prior to retirement). Thus, 

one needs to rule out the confounding variables. 

First, I conducted regression adjustment on the initial dataset (before matching) by using 

the regressor variable method (See Equation 44). The estimated results of this model can 

be seen in Table 21 (Model 1). This table highlights the estimations for key variables 

(namely, their coefficients and the significance level) whereas the coefficients of the rest 

of the control variables are provided in the Appendix (Tables 40 and 41). The retirement 

effect in this model is not significant either in the short or long term. However, as I argued 
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in Chapter 3, regression adjustment often fails to create an unbiased estimation when the 

balance is poor between the treatment groups. As Table 38 and Figure 21 in the Appendix 

show, the balance in this case is rather poor, thus further investigation is needed to rule 

out extrapolation and interpolation bias. 

In order to increase the balance between the treatment and control groups, a matching 

method was applied. Due to this matching, the number of respondents in the treated group 

(those who retired in the observation period) remained at 339, while the number of 

respondents in the control group (those who did not retire during the observation period) 

decreased from 4209 to 250. Figure 21 and Table 38 also show the improvement in 

balance. The treatment effects were again obtained by using the regressor variable 

method, but this time on the matched dataset. See the results in Table 21, Model 2. The 

retirement effect on subjective well-being is still insignificant even after eliminating the 

possibility of extrapolation and interpolation bias. This result supports Hypothesis 1. 

Table 21. The variable retirement in the regression models before and after matching 

 

 

Model 1: Raw data 

regression adjustment 

Model 2: Matched 

data regression 

adjustment 

Short-term change (0-3 years after retirement) 0.07 -0.07 

Long-term change (8-11 years after retirement) -0.01 -0.16 

Note: This table contains only the treatment variable; the entire analysis can be seen in Tables 40 and 41. 

P-values: ***<0.001, **<0.05, *<0.1 

 

5.5.2. The Effect of Voluntary Retirement 

Although retirement may have no significant effect on subjective well-being, it can have 

different consequences for those who retire voluntarily and those who do so involuntary. 

Firstly, a simple mean difference was observed in subjective well-being (see Table 22). 

In particular, this dissertation has found that voluntary retirees have a significantly higher 

level of subjective well-being than involuntary retirees, both before and after retirement. 

However, the two groups do not differ significantly from each other in change in 

subjective well-being, neither in the short run, nor in the long run. 
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Table 22. Difference in subjective well-being between voluntary retired and involuntary 

retired people (mean, standard deviation, and level of significance) 

  

This finding suggests that voluntary and involuntary retirees experience similar changes 

at the time of their retirement. However, one should make certain whether this non-

significant correlation actually stems from the voluntariness of retirement or is simply 

attributable to initial differences in the compositions of voluntary and involuntary retirees. 

For this purpose, confounding variables are again ruled out by using the regressor variable 

method (See Equation 44) with matching (Model 1 in Table 23) and without matching 

(Model 2 in Table 23).  

Model 1 (See Table 23) observes the relationship between voluntary retirement and 

subjective well-being on the raw data (before matching). This model shows that voluntary 

retirement has no significant relationship with change in subjective well-being either in 

the short or long term. However, as argued in the Analytical Strategy chapter, this 

regression adjustment often fails to produce an unbiased estimation when there is no 

sufficient overlap between the treated and control groups, while Table 39 and Figure 22 

show that the balance between voluntary and involuntary retirees is indeed rather poor in 

the raw dataset. Although they used different samples, earlier studies that applied 

regression adjustment might have also been subject to such bias by omitting to improve 

    Voluntary Retirees Involuntary Retirees ANOVA 

P-value 

 Mean SD Mean SD  

Subjective well-being 

measured in 2001 (0-3 years 

before retirement) 

6.72 2.05 6.01 2.10 0.01 

Subjective well-being 

measured in 2004 (0-3 years 

after retirement) 

6.81 1.91 6.29 1.94 0.01 

Subjective well-being 

measured in 2012 (8-11 

years after retirement) 

7.23 2.22 6.53 2.89 0.01 

Change in subjective well-

being between 2001 and 

2004 

0.09 2.08 0.28 2.45 0.41 

Change in subjective well-

being between 2001 and 

2012 

0.52 2.42 0.52 2.44 0.98 
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the balance between the two subgroups (Abolhassani and Alessie, 2013; Barrett and 

Kecmanovic, 2013; Bonsang and Klein, 2012). 

Matching was performed to improve the balance. The matching procedure identified a 

total of 225 retirees (158 voluntary) who satisfied the matching criteria. Thus, matching 

significantly reduced the sample size compared to the pre-matching state (306 

observations). However, in the case of matching, only the raw dataset needs to be 

sufficiently large. Unbiased estimates can also be obtained using an even smaller set of 

matched data provided that this is well balanced. The improvement in balance in all 

covariates can be seen in Table 39 and Figure 22 in the Appendix. These figures show a 

significant improvement in balance compared to the raw dataset, thus reducing the 

exposure to extrapolation and interpolation bias. As a result, Model 2, using the matched 

data, provides a less biased causal estimation than Model 1, which uses raw data. 

In contrast to Model 1, Model 2, using matched data (See Table 23), shows that retirement 

induces higher subjective well-being among voluntary retirees than among involuntary 

retirees when the composition of these two groups is taken into account. Furthermore, 

this effect remains significant 8 - 11 years after retirement, thus contradicting set-point 

theory. The short-term effect is similar or higher than what previous research suggested34, 

whereas the long-term effect is higher here than what was found in previous studies. 

However, this long-term effect is less than it is 0 - 3 years after retirement, thus some 

adaptation to retirement might indeed occur. Further, the positive short-term and long-

term effects of the voluntariness of retirement are also at odds with continuity theory, a 

finding which was predicted in Hypothesis 2.  

  

                                                      
34 Albohassani and Alessie (2013) have found a very small and insignificant effect of voluntary retirement 

(-0.038) and involuntary retirement (-0.145), whereas Bonsang and Klein (2012) found that voluntary 

retirement increases subjective well-being by 0.147 unit and involuntary retirement significantly decreases 

it by -0.526 unit. 
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Table 23. The variable voluntary retirement in the regression models before and after 

matching 

 Model 1: Raw 

data regression 

adjustment 

Model 2: Matched 

data regression 

adjustment 

Γ 

Short-term change (0-3 years after 

retirement) 
0.31 0.82*** 1.85 

Long-term change (8-11 years after 

retirement) 
-0.12 0.58** 1.32 

Note: This table contains only the treatment variable; the entire analysis can be seen in Tables 42 and 43. 

P-values: ***<0.001, **<0.05, *<0.1 

  

As was mentioned in the methodology section, Rosenbaum’s (2002) sensitivity analysis 

should be used for bounding the treatment effect estimates. This Γ parameter is 1.56 for 

estimating the short-term effect while 1.13 for estimating the long-term effect. The 

parameter of the short-term effect is above 1.5, set as a threshold, which provides 

evidence for the robustness of the estimates. This suggests that it is very unlikely that an 

unobserved difference in covariates would change the inference in the case of the short-

term effect. However, the Γ parameter of the long-term effect is below this threshold. 

Thus, although voluntary retirement has also a positive long-term effect, this result is 

more sensitive to unobserved confounders. 

5.6. Discussion 

The aim of this study was to extend the research about the effect of retirement on 

subjective well-being to Hungary. A growing number of international research projects 

have produced inconsistent results concerning how they answer this research question 

(Henning et al. 2016; Luhmann et al. 2012; Wang et al. 2011), whereas no research has 

been done in the Hungarian context so far. However, more evidence in this area could 

contribute to the policy agenda in terms of reforming the Hungarian social security system 

which is endangered by population ageing. This chapter has argued that evidence from 

better observed western countries cannot be applied in the present context since Hungary 

is an extreme case. It has a higher rate of absolute poverty among the elderly in 

comparison to western countries, although the retirement system is able to maintain the 

pre-retirement earning profiles to a large degree.  

I have found that retirement has no significant effect on subjective well-being in Hungary. 
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The insignificant effect resonates with some of the previous international studies (Baker 

et al., 2009; Bonsang & Klein, 2012; Börsch-Supan & Jürges, 2006; Clark & Fawaz, 

2009; Davis, 2012; Fonseca et al., 2017; Heybroek et al., 2015; Latif, 2011; Luhmann et 

al., 2012). This finding hence reflects the fact that the Hungarian social security system 

can successfully facilitate the transition from work to retirement. Despite the fact that the 

Hungarian elderly are not doing as well as their western peers, the Hungarian retirement 

system is able to mitigate this disadvantage due to a high net pension replacement rate. 

Furthermore, the lack of a positive relationship shows that the widespread practice of 

early labour market exit cannot be explained by increasing subjective well-being upon 

retirement. Although there is growing interest in the demographic literature which claims 

that subjective well-being may be the “missing link” in understanding decisions about life 

events (Billari, 2009), this argument makes no contribution to understanding early 

retirement in Hungary. Finally, this finding supports so-called continuity theory (and 

contests both role theory and role-strain theory), which assumes that individuals’ well-

being is not influenced by retirement, since individuals try to maintain their standard of 

living, their self-esteem, and their values during their entire life course. 

Besides the overall effect of retirement, the present chapter also observed how voluntary 

retirement can facilitate the transition from work to retirement. It is particularly 

interesting in Hungary, because the country has the highest involuntary retirement rate 

among developed countries. The present study suggests that voluntary retirees experience 

greater shifts in subjective well-being than involuntary retirees do after controlling for 

previously existing differences between the two groups. This result implies that even 

when lifelong accumulated advantages are taken into account (such as pre-retirement 

income or health), the transition has distinct effect on voluntary and involuntary retirees. 

This result is at odds with continuity theory and supports what the resource-based 

dynamic perspective assumes. Further, this finding is in line with some of the previous 

research findings in this area (Barrett & Kecmanovic, 2013; Bender, 2012; Shultz et al., 

1998). As a result, the high incidence of involuntary retirement raises equity-related 

questions as well. Thus, this chapter shows that decreasing involuntary retirement by 

enabling the elderly to stay in the labour market as long as they wish is of utmost 

importance in Hungary. However, this must not be done at the expense of higher 

unemployment among older people, as it is already high in Hungary (Micheel, Roloff, & 

Wickenheiser, 2011).  

Moreover, the effect of the voluntariness of retirement is persistent over time and only 
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slightly diminishes a decade after retirement. These results contribute to the existing body 

of research that tested set-point theory following different life events. Authors such as 

(Lucas et al., 2004; Clark 2008) have suggested that although set-point theory seems to 

make correct predictions in many cases, there are some events – like unemployment – 

that seem to permanently alter the level for the set point. According to the present results, 

it seems that involuntary retirement belongs to this category. Clearly, the empirical 

evidence found in the research for this study does not support the claim that people 

eventually entirely adapt to their new situations. However, adaptation does seem to occur 

to a certain extent as the difference in subjective well-being between voluntary and 

involuntary retirees declines over time. 

The previous chapter and the present chapter have focused on how certain life events 

influence overall subjective well-being. The following chapter extends the scope to 

include an investigation of the effects of the whole life course on several life domains. 

Thus, this last empirical chapter aims to provide a more in-depth analysis of the topic 

described above.   
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6. Estimating the Effects of Household Life-cycle on Overall 

and Domain-specific Subjective Well-being 

6.1. Introduction 

The previous two chapters documented the effects of parenthood and retirement on 

overall subjective well-being. The questions arose whether (1) other kinds of life events 

have effects too, and (2) whether life events have a distinct effect on specific satisfaction 

measures in different domains. Therefore, this study estimates the effect of household life 

cycles on domain satisfaction.  

Household life-cycle theory argues that households follow a specific life path, and 

changes in their demographics are accompanied by adjustments in their lifestyles and 

well-being. The theoretical approach has had undiminished popularity since its early 

application in sociology; however, the operationalization of the concept has changed 

continuously and has been criticized due to the inherent flaws of the life cycle concept 

(see for example Derrick and Lehfeld [1980]). One of the most-frequently cited of the 

early models was developed by Wells and Gubar (1966). Their model consists of nine 

life-cycle stages that are defined according to the age, marital status and employment 

status of the household head, and the age of the youngest child in the family. However, 

the greatest deficiency of the early models is that they take into account only classic 

family types, unlike modern life cycle models. An example of the latter is Gilly and Enis’s 

(1982) model, which incorporates modern types of cohabitation and, hence, addresses 

single-parent households separately.  

Life stages can have complex consequences on overall subjective well-being as they can 

influence the specific domains in a distinct way. For example, motherhood can be 

rewarding, as females often spend more time with the family after giving birth 

(Nomaguchi, 2012; Nomaguchi & Milkie, 2003), although this life event may decrease 

opportunities to be engaged in gainful employment (Sanchez & Thomson, 1997). This 

part of the dissertation aims to capture such complex effects by observing domain-specific 

subjective well-being. Most of the previous studies have focused only on a certain life 

event, or only on one specific sub-domain. Only a few studies have observed the effect 

of all life stages on domain-specific subjective well-being, and most of these were either 

admittedly explanatory or observed only the effect of ageing instead of the effect of life 

stages (Bardo, 2017; Schafer, Mustillo, & Ferraro, 2013).  

The present study, similarly to the previous two studies, intends to approximate as closely 
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as possible the causal relationship between belonging to a life-cycle group and subjective 

well-being. Again, to achieve this goal a matching method was used. However, in contrast 

to the previous empirical chapters, for this research only cross-sectional data were 

available. 

6.2. Background 

6.2.1. Ageing and Overall Subjective Well-being 

The life-course perspective emphasizes understanding how subjective well-being changes 

across the entire lifespan. Accordingly, in the literature the change in subjective well-

being with ageing is often studied controlling for the influence of variables such as 

income and education. Even after taking into account these stable demographic variables, 

ageing can be influential in understanding satisfaction with life.  

International empirical results with regard to ageing effects on overall subjective well-

being are highly controversial. For Western European countries, it has been shown 

severally that subjective well-being follows a U-shaped curve with ageing, which means 

that a typical individual’s subjective well-being reaches its minimum in middle age. 

Accordingly, U-shaped curves have been found across many studies, including Clark and 

Oswald (1994, 2006), based on the British Household Panel Survey and a General Health 

Questionnaire; McAdams, Lucas, and Donnellan (2012), based on the British Household 

Panel; Lang, Llewellyn, Hubbard, Langa, and Melzer (2011), based on a Health Survey 

for England; and Van Landegham (2008, 2012), based on a German Socio-Economic 

Panel. Moreover, Blanchflower and Oswald (2008) observed 72 countries and showed 

that a U-shape curve is valid for each of them. On the contrary, some studies have found 

an inverted U-shape curve for the US (Mroczek & Spiro 2005, Easterlin 2006, Easterlin 

& Sawangfa 2007). Some authors have found that the U-shaped curve vanishes after 

controlling for socio-demographic variables (Gwozdz & Sousa–Poza 2010, Frijters & 

Beatton 2012, Kassenboehmer & Haisken-DeNew 2012), and some studies have found a 

decline in subjective well-being with ageing (Gwozdz & Sousa–Poza 2010), or non-

significant effect (Costa et al., 1987). Thus, ageing can be seen as having different effects 

in different countries and under different circumstances. It is important to note that 

Steptoe, Deaton, and Stone (2015), and Lengyel and Janky (2002) have found that the 

association between subjective well-being and ageing is independent from demographic 

variables.  

The Hungarian results about the correlation between ageing and subjective well-being are 
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also controversial. Graham and Pozuelo (2017) found that subjective well-being across 

individual life-cycles is U-shaped in Hungary. However, the majority of scholars argue 

that a U-shaped relationship is valid for only rich English-speaking countries, whereas in 

middle-income countries, and especially in former Soviet countries, the elderly seem to 

be the most dissatisfied age group (Deaton, 2008; Neulinger & Simon, 2011; Steptoe et 

al., 2015).  

Furthermore, there have been studies even in Hungary which observed how ageing affects 

subjective well-being by controlling for social economic variables. The majority of these 

studies have found a U-shaped relationship between the two key variables (Blanchflower 

& Oswald, 2008; Graham & Pozuelo, 2017; Hajdu & Hajdu, 2013; Molnár & Kapitány, 

2006; Spéder & Kapitány, 2002). More specifically, they found that the relatively low 

subjective well-being of the elderly can be explained by their lower level of income and 

declining health status. Up to now, only limited research has found a non-significant 

relationship (Murinkó, 2007), or negative relationship35 (Lengyel & Janky, 2002).  

6.2.2. Life Events and Overall Subjective Well-being 

Besides the observation of ageing, there is growing interest in how specific life events 

change overall subjective well-being. Chapter 4 detailed the parenthood effect and 

Chapter 5 detailed the retirement effect. Both of these chapters argued that these life 

events have complex effects by introducing the conflicting theoretical background. In 

general, state-of-the-art longitudinal studies have found that parenthood has an initially 

positive effect on overall subjective well-being, which effect disappears or at least 

decreases when the child grows up (Balbo & Arpino, 2016; Baranowska & Matysiak, 

2011; Kohler et al., 2005; Mikucka, 2016; Le Mogliea et al., 2015; Pollmann‐Schult, 

2014). There is mixed evidence about the effect of retirement, but meta-analyses have 

found that this life event is mostly neutral or even positive (Henning et al., 2016; 

Luhmann et al., 2012).  

This chapter also differentiates life cycles based on partnership status. Based on previous 

empirical studies, we know that divorce and widowhood have generally negative effects 

on subjective well-being (Amato & Hohmann‐Marriott, 2007; Bierman, Fazio, & Milkie, 

2006; Giczi, 2008; Hohmann-Marriott & Amato, 2008; Hughes & Waite, 2009; Lorenz, 

Wickrama, Conger, & Elder Jr., 2006), while marriage and partnership seem to have a 

                                                      
35 In this study, the age variable was included but the square of age was not, which could have actually 

shown the non-linear effect of age.  
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positive effect (Graham & Pozuelo, 2017; Molnár & Kapitány, 2006; Murinkó, 2007). 

Finally, this chapter also observes how partnership status modifies the relationship 

between parenthood and subjective well-being.36 There is consistent evidence that single 

parents are less satisfied with their lives than non-single parents. The prior group has less 

access to economic resources and less time to spend with their children, thus childbearing 

is more demanding for them (Hansen, 2012). However, there is mixed evidence about the 

effect of single parenthood compared to remaining childless. Some scholars have argued 

that childbearing outside of a union is also becoming a viable strategy, therefore single 

parents are more satisfied than childless people (Kohler et al., 2005; Margolis & 

Myrskylä, 2015). Others have found that the disadvantage of being a single parent is so 

large that such individuals have even worse subjective well-being than their childless 

peers (Nelson et al., 2014; Nomaguchi & Milkie, 2003). Finally, some scholars have 

found that the difference in the level of subjective well-being between single parents and 

childless adults is not significant (Aassve, Goisis, & Sironi, 2012; Baranowska & 

Matysiak, 2011). 

6.2.3. Ageing and Domain-specific Subjective Well-being 

Ageing can have a complex effect on subjective well-being, which can be captured by 

observing the distinct effects on different domain-specific subjective well-being 

measures. In this section I review earlier findings about the ageing effect on domain-

specific subjective well-being, while the subsequent chapter summarizes the literature 

about the effect of life events on domain-specific subjective well-being.  

Certain domain-specific indicators consistently found to decline with ageing include 

satisfaction with health status (Easterlin, 2006) and satisfaction with future opportunities. 

The first indicator declines as objective health status also decreases with age. 

Furthermore, the latter measurement decreases over time since younger people tend to 

evaluate their future opportunities more optimistically than the elderly, who tend to accept 

that their situations might not change (Heckhausen et al., 1989; Lachman et al., 2008; 

Röcke & Lachman, 2008).  

Other domain-specific subjective well-being measurements tend to increase with ageing. 

First, income and standard of living tend to increase over time (Diener & Eunkook Suh, 

1997; Easterlin, 2006; George, 1992; Plagnol, 2011; Plagnol & Easterlin, 2008). One 

                                                      
36 This issue was not observed in Chapter 4 due to the insufficiently low number of single parents in the 

longitudinal sample.  
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might expect that these measures would change according to the actual earning profile, 

which follows an inverted U-shaped curve, with a peak at midlife. However, empirical 

studies have shown otherwise. There are several theories about why subjective financial 

indicators move independently from objective measures, including those which recognize 

decreasing needs and expectations, increasing assets, and a reduction in the dependency 

burden as children grow up and parents die (Diener & Eunkook Suh, 1997; Easterlin, 

2006; George, 1992; Plagnol, 2011; Plagnol & Easterlin, 2008). Second, satisfaction with 

life-course often also increases since the elderly recall positive events more often than 

younger people (Heckhausen et al., 1989; Lachman et al., 2008; Röcke & Lachman, 

2008). Third, satisfaction with housing also tends to increase over the life course (Adams, 

1992; Fernández-Carro, Módenes, & Spijker, 2015; Russell, 2008). This measurement 

changes with the needs and characteristics of living arrangements. On the one hand, 

housing-related needs change as the number of people living together varies over the life 

course (Miller & Crader, 1979), and with ageing new needs arise such as the requirement 

to live near to certain services (Fernández-Carro et al., 2015; Russell, 2008). On the other 

hand, the characteristics of housing also change over the life course (e.g. owning or 

renting accommodation). Needs usually fluctuate with ageing (Fernández-Carro et al., 

2015; Miller & Crader, 1979; Russell, 2008), but the characteristics generally improve 

(Andrews & Sánchez, 2011).  

Finally, empirical results have produced mixed evidence about the effect of ageing on 

satisfaction with family relationships and satisfaction with jobs. First, satisfaction with 

family relationships is mostly influenced by satisfaction with children and partner. 

Satisfaction with children usually decreases (Nomaguchi, 2012), whereas satisfaction 

with partner either also decreases (Blood & Wolfe, 1960) or follows a U-shaped curve 

(Rollins & Cannon, 1974; VanLaningham, Johnson, & Amato, 2001). Second, studies are 

inconclusive about how job satisfaction changes over time. Most show that job 

satisfaction follows a U-shaped curve with ageing (Clark, Oswald, & Warr, 1996; 

Gazioglu & Tansel, 2006; Hochwarter, Ferris, Perrewe, Witt, & Kiewitz, 2001; Zacher, 

Jimmieson, & Bordia, 2014), but some scholars have found an inverted U-shaped curve 

(Easterlin, 2006) or a positive relationship (Besen, Matz-Costa, Brown, Smyer, & Pitt-

Catsouphes, 2013; Ng & Feldman, 2010).37  

In Hungary only limited research has observed how domain-specific subjective well-

                                                      
37 This positive relationship resonates with the results of early studies on this topic (Glenn, Taylor, & 

Weaver, 1977; Lindström, 1988; O'brien & Dowling, 1981; Weaver, 1980; White & Spector, 1987).  
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being changes over the life course, and these research projects were not usually intended 

to estimate causality. Murinkó (2007) observed the correlation between age and domain-

specific satisfaction. She found that satisfaction with health decreases with age, whereas 

satisfaction with income stagnates over the life course. Further, she found that the 

trajectory of satisfaction with work and family differs among females and males. In the 

case of females, these two measures are initially high in the twenties, decrease in the 

thirties, peak in the forties, and gradually decrease thereafter. In the case of males, 

satisfaction with family does not vary over the life course, although satisfaction with work 

decreases with age.  

Other Hungarian studies have controlled for stable demographic variables using 

multivariate regression, but they only focused on one domain. There is evidence that 

satisfaction with work increases with age (Medgyesi & Róbert, 2000), whereas 

satisfaction with economic status follows an inverted U-shaped curve, taking into account 

demographic variables (Molnár & Kapitány, 2006).  

6.2.4. Life Events and Domain-specific Subjective Well-being 

Most studies which observe the effect of life events on domain-specific subjective well-

being, consider only one life event or only one domain at one time. In the following 

section I summarize these studies.  

First of all, previous research has found that marriage and partnership have positive 

effects on satisfaction with health (DeMaris, 2017), family relationships (Ubesekera & 

Luo, 2008), and financial satisfaction (Stevenson & Wolfers, 2009). Some research 

projects have also found that these life events have positive (Bowen, Radhakrishna, & 

Keyser, 1994; Khaleque & Rahman, 1987), or insignificant (Scott, Swortzel, & Taylor, 

2005) effects on job satisfaction. 

Second, parenthood has also been found to have distinct effects on life domains. Financial 

satisfaction, job satisfaction, and health satisfaction is expected to decrease since having 

children involves significant objective cost (Hansen 2012; Reizer, 2011). In fact, there is 

evidence that job satisfaction decreases upon parenthood (Holtzman & Glass, 1999), 

although using longitudinal data Bernardi, Bollmann, Potarca, and Rossier (2017) found 

that this indicator decreases significantly only for females. Further, previous studies have 

shown that parenthood has a negative effect on satisfaction with health (Newman, 2008) 

and satisfaction with housing (Miller & Crader, 1979). In contrast, parenthood influences 

satisfaction with family relationships rather positively, although this event has dissimilar 
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effects on relationships with different family members. On the one hand, this may 

decrease since satisfaction with the partner tends to decrease after childbirth (Lawrence, 

Rothman, Cobb, Rothman, & Bradbury, 2008; Pollmann-Schult, 2013; Rollins & 

Cannon, 1974; Twenge et al., 2003; VanLaningham et al., 2001). On the other hand, 

satisfaction with family relationships is expected to increase as satisfaction with a child 

can compensate for worsening partnership satisfaction (Nomaguchi, 2012).  

This study also considers how single motherhood affects domain-specific subjective well-

being. Previous studies in this field showed that single parents experience lower 

satisfaction with their life-course, and satisfaction with the future. Further, single parents 

might experience high levels of work-family conflict which can have negative effects on 

their job satisfaction (Burden, 1986; Matjeke, 2016). However, their level of satisfaction 

with health (Herbst, 2012) and satisfaction with their financial situation (Medgyesi & 

Zólyomi, 2016) do not differ significantly from the rest of the population. 

6.3. Hypotheses 

In this study, the following hypotheses are tested, which are consistent with the state-of-

the-art empirical research on this topic: 

Hypothesis 1: Overall subjective well-being follows a U-shaped curve with ageing, once 

confounding variables are controlled for.  

Hypothesis 2: The elderly are more satisfied than the rest of society with their financial 

situation, standard of living, housing, and previous life course, when confounding 

variables are taken into account.  

Hypothesis 3: The elderly are less satisfied than the rest of the society with their future 

opportunities, health status, and family relationships, when confounding variables are 

taken into account.  

Hypothesis 4: Parenthood has an initially positive effect on overall subjective well-being, 

but this effect disappears as the child grows up. 

Hypothesis 5: Parenthood has a positive effect on satisfaction with family relationships.  

Hypothesis 6: Parenthood has a negative effect on satisfaction with standard of living, 

satisfaction with job, satisfaction with income, satisfaction with health and satisfaction 

with housing. 

6.4. Data 

This study uses cross-sectional data which were collected with the help of face-to-face 
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interviews by Ipsos from a national sample of 1000 respondents (final respondent number 

after refusal) using random sampling in Hungary on March 2014. The questionnaire was 

developed by Ágnes Neulinger, Katalin Melles, and Márta Radó.  

All respondents were the primary shoppers in the given household, where the primary 

shopper was identified by means of the following question: “Which member of your 

family does the shopping (compiles the shopping list) most frequently; who makes the 

purchase decisions?” This filter question was necessary because the treatment variable 

of this analysis is household life cycle, whereas the outcome – subjective well-being – 

cannot be measured at the household level. Thus, the household had to be narrowed down 

to one person who could report his or her level of subjective well-being. We chose the 

primary shopper for this purpose, as this member of the family is most aware of their 

household income and expenditure, and the household situation in general.38 

Data collection was stratified according to ten life-cycle stages (See description below), 

and 100 persons were selected from each group. This approach was intended to ensure 

the appropriate number of responses from each life stage. Due to the stratification 

sampling method, the sample was originally not representative of the country’s entire 

population; therefore, a weight variable was created to draw conclusions at the national 

level as well. This weight was created by the Hungarian Ipsos.  

The following sub-chapters introduce the treatment, outcome and matching variables. The 

estimation of the treatment effect is calculated by matching and then regression 

adjustment (See Equation 17).  

6.4.1. Treatment Variables 

Life-cycle stages constitute the treatment variable in the analysis. This variable included 

information about the individual’s gender, age, partnership status, their partner’s age 

(where appropriate), and the number and ages of any children in the household (where 

appropriate). These life-cycle stages were mutually exclusive and collectively exhaustive; 

that is, every individual was certain to fit into one, but only one, of the categories. Based 

on these variables, the following ten life-cycle stages can be distinguished: 

1. Young alone: Those respondents, who were 34 years old or younger and were 

childless, but did not live together with a partner.  

                                                      
38 Furthermore, in the paper, which was published in the International Journal of Consumer Studies, we 

also observed the direct effect of life cycle on subjective well-being controlled for expenditure structure. 

Expenditure structure is a variable which is hard to measure and the primary shopper can recall this best.  
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2. Young with a partner: Those respondents, who were 34 years old or younger (if 

the respondent was male than the partner was 34 years or younger), and they were 

childless, but they lived together with their partner.  

3. Full nest 1: Those respondents, who were cohabiting with their partner and lived 

together with a child aged below 6 (if there were more children than the youngest 

is aged below 6). 

4. Full nest 2: Those respondents, who were cohabiting with their partner and lived 

together with a child aged between 6 and 18 (if there were more children than the 

youngest is aged between 6 and 18). 

5. Full nest 3: Those respondents, who were cohabiting with their partner and lived 

together with a child aged above 18 (if there were more children than the youngest 

is aged above 18). 

6. Single parent 1: Those respondents, who did not live together with their partner 

(or had no partner at all), but lived together with a child aged below 18 (if there 

were more children than the youngest is aged below 18). 

7. Single parent 2: Those respondents, who did not live together with their partner 

(or had no partner at all), but lived together with a child aged above 18 (if there 

were more children than the youngest is aged above 18). 

8. Middle aged without child: Those people, who were between 35 and 64 (if the 

respondent was male and had a partner than the partner was between 35 and 64 

years), and did not have a child, but might or might not have a partner living 

together. 

9. Empty nest cohabiting: Those people, who were 65 years or older (if the 

respondent was male than his partner was 65 years old or older) they were 

cohabiting with their partner, but they were not together with a child. 

10. Empty nest alone: Those respondent, who were aged above 65 and they did not 

have neither partner nor child living together with them. 

Due to the requirements of the modelling only seven life-cycle stages were used as I 

needed to recode Stage 1 and 2 (Young alone and Young with a partner), Stage 4 and 5 

(Full nest 2 and Full nest 3), and Stage 6 and 7 (Single parent 1 and Single parent 2). 

These recorded life stages were called respectively Young childless, Full nest 2, and 

Single parent. 

For each life-cycle stage a binary variable was created that took a value of 1 if the 

respondent was at the given life stage, and 0 otherwise. Thus, in this study I always 
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compare whether someone belongs to a certain life stage against belonging to the rest of 

the population. In other words, the control group is always constituted by all of those 

people who do not belong to the observed life stage.  

6.4.2.  Outcome Variables 

Both a single question on whole-of-life satisfaction and multiple questions about different 

life subdomains were applied using a 10-point Likert scale. These were measured with 

the following question: “Please indicate how satisfied you are with the following things. 

If you are not satisfied at all, say 0; if completely satisfied, say 10. How satisfied are you 

with...?” 

- Your life-course 

- Your future opportunities 

- Your quality of living standard 

- Your family relations 

- Your health 

- Your work/job 

- Your housing 

- Your place of residence 

- Your income 

- Your life as a whole 

The last variable, satisfaction with whole life, is referred to as overall subjective well-

being from now on. Other elements will be referred to as domain-specific subjective well-

being. 

6.4.3. Matching Variables 

Subjective well-being is influenced by a large number of factors other than life stages. 

The variables that might have concealed or explained the relationship between the two 

variables were controlled for; in other words, stable socio-demographic variables, and life 

course-related factors. The analyses were controlled for education, settlement type, 

gender, income, nature of employment (whether the respondent is employed in the public 

sector, and whether she/he has ever been unemployed), number of wage-earners in the 

household, and perceived health status (this later variable was not included upon 

estimation of satisfaction with health). However, the variables that determined the 

respondents’ membership in the given life-cycle stage, such as age or household size, 

were not controlled for. In selecting the variables to be controlled, all of the relevant 

research findings concerning demographic trends, fertility and parenthood, and subjective 
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well-being were considered; see for example the works of Balbo et al. (2016). The 

variable mentioned here was also used in the regression adjustment; in other words, the 

matching variables coincide with the control variables. 

6.5. Results 

In line with previous studies, the present results suggest that perception of overall 

subjective well-being varies across life-cycle stages. The last row of Table 24 shows the 

correlation between life stages and overall subjective well-being. According to this table, 

young childless people and couples with a young child have the highest life satisfaction, 

while single parents, empty nest couples, and empty nest singles were found to have the 

lowest level of subjective well-being.  

The analysis of domain-specific subjective well-being shows that satisfaction with life-

course, future opportunities, quality of living standard, health, and housing tend to 

decrease with age. However, satisfaction with family relationships peaks at mid-life, 

except for with single parents who experience below-average family satisfaction. Based 

on these results, most of the domain-specific indicators are lowest when the child leaves 

the parental house or someone raise a child without a partner, which is also reflected in 

the significantly below average overall subjective well-being.  
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Table 24. Correlation between subjective well-being and life-cycle stages (regression 

coefficient and significance) 

 

Young 

childless 
Full nest 1 Full nest 2 

Single 

parent 

Middle 

aged 

without a 

child 

Empty 

nest 

cohabiting 

Empty nest 

alone 

Life-course 0.04  0.05  0.04  -0.12 *** 0.06  -0.07 ** -0.08 ** 

Future 

opportunities 

0.12 *** 0.05  0.04  -0.09 *** -0.02  -0.16 *** -0.06  

Quality of living 

standard 

0.07 ** 0.03  0.06  -0.11 *** 0.04  -0.10 *** -0.07 ** 

Family 

relationships 

-0.03  0.07 ** 0.09 *** -0.08 *** 0.10 *** -0.15 *** -0.05  

Health 0.18 *** 0.12 *** 0.04  0.04  -0.21 *** -0.29 *** -0.10 *** 

Work/job 0.04  0.04  0.01  -0.06  0.00  -0.02  -0.06  

Housing 0.02  0.02  0.05  -0.05  0.04  -0.09 *** -0.03  

Place of residence 0.03  0.05  0.02  -0.07 ** -0.01  -0.02  0.01  

  Income  0.04  0.01  0.05  -0.08 ** 0.02  -0.05  -0.06 ** 

Overall subjective 

well-being 

0.07 ** 0.07 ** 0.04  -0.09 *** 0.01  -0.12 *** -0.07 ** 

Note: P-values: ***<0.001, **<0.05, *<0.1  

   

Table 24 shows only correlation. To estimate causality, a matching method is combined 

with regression adjustment (See Equation 17) here. Without matching, a regression 

adjustment might fail to produce unbiased results. More specifically, matching is 

necessary before regression adjustment if the dataset is not well-balanced, which is the 

case here since the treatment and control groups considerably differ from each other. 

Figure 23 in the Appendix illustrates this by displaying the propensity score distribution 

before and after matching in the treatment and control groups for one life-cycle group, 

while the overlap is similar in the case of the other life-cycle groups.  

The effect of belonging to a certain life-cycle on overall subjective well-being is shown 

in Table 25. These findings suggest that having a young child and when children leave 

the parental home are indeed the two most satisfactory periods of life, whereas there is 

no life stage which significantly differs in a negative direction from the other life stages. 

This result is at odds with Hypothesis 1, which postulated that overall subjective well-

being should follow a U-shaped curve. For a U-shaped curve to exist, young childless   
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people and empty nest singles should be more satisfied than this study found. However, 

this study supports the claim that individuals in one of the elderly life stages — more 

specifically, empty nest families — are more satisfied than the average. Finally, 

Hypothesis 4, which stated that parenthood has an initially positive effect, is supported 

for those parents who have a partner. However, single parents were not differentiated 

according to the age of the child, thus, the initial period of parenthood – which was 

satisfactory for couples – cannot be traced for them. But the insignificant negative 

coefficients suggests that single parents do not benefit from having a child.  

Table 25. Estimating causality between subjective well-being and life-cycle stages by 

matching and multivariate regression (regression coefficient and significance) 

 

Young 

childless 
Full nest 1 Full nest 2 

Single 

parent 

Middle 

aged 

without a 

child 

Empty nest 

cohabiting 

Empty nest 

alone 

N before matching 

(control/treatment) 

500/207 638/69 568/139 561/146 630/77 633/74 635/72 

N after matching 

(control/treatment) 

140/207 52/69 86/139 111/146 73/77 40/74 32/72 

Life-course -0.08  0.33  0.10  -0.37  -0.21  1.07 ** -0.21  

Future 

opportunities 

-0.01  0.16  -0.11  -0.42  -0.27  0.75 ** -0.49  

Quality of living 

standard 

-0.09  0.01  0.15  -0.24  -0.11  0.51  -0.20  

Family 

relationships 

-0.34  0.80 ** 0.81 *** -0.68 ** 0.24  0.72  -0.96 ** 

Health 0.98 ** -0.37  -0.12  0.10  0.23  -1.67 *** -1.02 ** 

Work/job -0.36  -0.11  0.38  -0.07  -0.21  -  -  

Housing -0.49 ** 0.60  0.55 ** 0.10  -0.09  0.21  -0.54  

Place of residence -0.26  0.28  0.13  -0.04  -0.11  0.06  -0.31  

  Income  -0.24  0.13  -0.32  -0.21  -0.36  0.27  0.89 ** 

Overall subjective 

well-being 

-0.15  0.60 ** 0.01  -0.19  0.02  0.63 ** -0.34  

Note: This table contains only the treatment variables; the entire analysis can be requested from the author 

of this dissertation. P-values: ***<0.001, **<0.05, *<0.1 

    

The results of the matching procedure suggest that some of the domain-specific subjective 

well-being measures change in old age (See Table 25). First, I found that certain measures 

are above average for the elderly. Both satisfaction with the life-course and future 
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opportunities peak in old age when the respondent is cohabiting with his or her partner. 

The first finding supports Hypothesis 2, which states that the elderly tend to recall their 

past more positively than younger people. But the second finding is at odds with 

Hypothesis 3, which postulated that young people should be more optimistic about their 

future opportunities. Unexpectedly, the elderlies are not more satisfied with their housing 

than the rest of the society, however, aging might have a positive effect on this domain 

as young childless people below average satisfied with it. Further, satisfaction with 

income is also above average for those elderly who live without a partner and a child, 

which is line with Hypothesis 2.  

Other domain-specific measures decrease with age. Unsurprisingly, satisfaction with 

health gradually decreases over the life course. Further, satisfaction with family 

relationships is significantly below average in old age when the respondents do not live 

together with their partners, or their children. These results were predicted in Hypothesis 

3.  

Parenthood elicits changes in certain measures of domain-specific well-being. 

Satisfaction with family relationships peaks when the respondents live together with their 

child and partner. This finding is in line with Hypothesis 5. However, single parents face 

significantly below average family satisfaction, which is inconsistent with Hypothesis 5. 

In other words, the birth of a child can compensate for the often reported decline in 

satisfaction with the partner, but it cannot compensate for the lack of a partner. 

Furthermore, satisfaction with housing also peaks when couples have an older child, 

which was not expected based on the previous studies. Surprisingly, this research has 

found that living together with a child when the partner is also present does not have any 

negative effect on any domain-specific measures. This finding is at odds with Hypothesis 

6, which expected that the costs of children would be manifested in changes in domain-

specific subjective well-being. 

Finally, satisfaction with certain life domains does not vary across the life course, which 

is unexpected based on the literature. More specifically, satisfaction with quality of living 

standard, place of residence, and job are not influenced by life stages after the potentially 

confounding variables are controlled for. This means that all the differences that one can 

see in the correlation analysis can be attributed to the fact that individuals of certain life 

stages differ in their socioeconomic status.  
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6.6. Discussion 

The present analysis employed a quasi-experimental design to assess the household life-

cycle effects on subjective well-being. This approach provides a deeper understanding of 

subjective well-being throughout the whole life course and allowed for the differentiation 

between satisfactions with domains. Previous studies in this field have mainly focused on 

overall subjective well-being instead of domain-specific well-being (Balbo & Arpino, 

2016; Clark et al., 2008; Clark & Oswald, 2006; Fonseca et al., 2017; Pollmann‐Schult, 

2014), even though such an approach is widely recognized. However, those studies which 

observed domain-specific subjective well-being over the life course either narrowed their 

focus to only one specific life event (Bernardi et al., 2017; Lapa, 2013) or one specific 

domain (Clark et al., 1996; Glenn et al., 1977; Plagnol, 2011; Rollins & Cannon, 1974; 

Zacher et al., 2014) or they observed ageing effects on subjective well-being instead of 

life-cycle effect (Bardo, 2017; Schafer et al., 2013). Thus, there is only limited research 

on this topic (Easterlin, 2006), especially in Hungary. 

Although the vast majority of earlier research found that subjective well-being follows a 

U-shaped curve with age after controlling for confounding variables (Blanchflower & 

Oswald, 2008; Graham & Pozuelo, 2017; Hajdu & Hajdu, 2013; Molnár & Kapitány, 

2006; Spéder & Kapitány, 2002), the research behind this paper does not support this 

relationship entirely. A U-shaped curve would imply that young people and the elderly 

have above average life satisfaction. On the one hand, contrary to expectations, this study 

showed that young childless people do not differ from the average significantly, which 

might be attributed to their below average satisfaction with housing. On the other hand, 

some of the elderly indeed reported above average life satisfaction. More specifically, 

those who live together with their partner are more satisfied with their life than average, 

but those who live alone do not differ from the average. The difference between the 

elderly living with or without their partners can be also captured in their different levels 

of domain-specific subjective well-being. The presence of a partner makes the elderly 

more satisfied with several life domains (namely, life course, future opportunities, and 

family relationships) than the average, which was not found for those elderly people who 

live alone. However, elderly people living alone reported above average satisfaction with 

their income, in contrast to the elderly cohabiting with their partners.  

This study found that parenthood has an initially positive effect on life satisfaction when 

the partner is present. This result is in line with the findings of the majority of the 

international literature (Angeles, 2010; Balbo & Arpino, 2016; Baranowska & Matysiak, 
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2011; Kohler et al., 2005; Mikucka, 2016). Further, the observation of domain-specific 

well-being helps create a deeper understanding of why couples with young children report 

above average life satisfaction. The presence of a child and a partner is associated with 

significantly higher satisfaction with family relationships. So, this domain could be 

responsible for the increase in overall subjective well-being upon the arrival of the child. 

However, the presence of a child does not necessarily lead to an increased level of 

subjective well-being under every circumstance. Parenthood only has a positive effect on 

overall subjective well-being in the case that a partner is present and the youngest child 

is under six years old (Full Nest 1 life cycle), whereas single parents and parents with 

partners and older children do not differ significantly from the rest of the population. 

Furthermore, the results about the empty-nest life stages revealed that the subjective well-

being of cohabiting is above the population average, signifying that children leaving the 

parental home might be a positive life event.  

This research is original in that the pairing of individuals is performed using genetic 

matching, which appeared as a novel method in the international literature only a few 

years previously, while its merits have been recognized in pre-existing research (Balbo & 

Arpino, 2016; Diamond & Sekhon, 2013; Sironi & Billari, 2013). However, one 

limitation of this analysis is the cross-sectional design. Further, the relatively small 

sample size may have had an effect on the outcome of the analysis. Finally, the Hungarian 

context also restricts the generalizability of the research findings and calls for future 

research.  
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7. Summary and Conclusion 

7.1. The Objectives of the Dissertation 

This dissertation has documented the relationship between belonging to a certain life 

stage and subjective well-being. A growing number of studies have emphasized that 

individuals engage in certain life changes if they benefit from those given transitions in 

terms of subjective well-being (Billari, 2009; Caldwell & Schindlmayr, 2003; Hobcraft, 

2006). Therefore, observation of this topic can contribute to understanding macro-level 

demographic changes. For example, if parenthood did not make people more satisfied 

with their lives, this could trigger a decrease in the fertility rate. The dissertation applies 

the life course paradigm as a theoretical framework, which also emphasizes that one needs 

to observe individuals’ life trajectories in order to understand macro-level demographic 

changes (Elder et al., 2003; Kok, 2007).  

Furthermore, the research topic of this dissertation also reveals inequalities which emerge 

over the life course (Ferraro et al., 2009). This dissertation observes marginalized groups 

such as single parents and involuntary retirees. Thus, it also sheds light on groups which 

should be better supported by the social security system. 

Although a growing number of international studies have examined the effects of life 

transitions on subjective well-being, there is still little known about this topic in Hungary. 

This is unfortunate, as this country permanently has one of the lowest levels of life 

satisfaction among the OECD countries (Guriev & Zhuravskaya, 2009). Furthermore, 

Hungarians also have a very low standard of living, which limits opportunities to increase 

subjective well-being. The economic, social, and cultural differences (Draxler & Van 

Vliet, 2010; Manning, 2004; Polese et al., 2014) between Hungary and better observed 

western countries may also modify the relationship between life-stage status and 

subjective well-being. Thus, the present dissertation discusses in detail the Hungarian 

context of parenthood and retirement.  

This dissertation was designed to extend prior knowledge by estimating causal 

relationships using the state-of-the-art causal inference approach (Diamond & Sekhon, 

2013; DuGoff et al., 2014; Fisher, 1925; Ho et al., 2011; Holland, 1986; Imai et al., 2007; 

Imai & Van Dyk, 2004; Imbens & Rubin, 2015; Neyman, 1923; Rosenbaum, 2002; 

Rosenbaum & Rubin, 1983, 1984; Rubin, 1974, 1978; Stuart, 2010). Causal relationships 

are here estimated by using statistical methods, more specifically, the matching method 

(see Chapter 6) and its extension to longitudinal data (Chapters 4 and 5). These methods 
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come in useful when randomized experiments are not feasible. This is the case with this 

research, since we cannot arbitrarily choose who should experience a life transition (e.g. 

have a child), thus the treatment variable cannot be manipulated and, as a consequence, 

cannot be randomized. In the Analytical Strategy chapter I unfold the advantages and the 

limitations of different types of matching methods.  

This work contains three empirical studies which observe from different perspectives how 

subjective well-being changes over the life course. The first and the second studies focus 

on the effects of specific life transitions on overall subjective well-being using a 

longitudinal dataset. More specifically, parenthood and retirement transitions are 

investigated in these chapters, whereas the third study estimates how domain-specific 

subjective well-being measures change over the whole life course using a cross-sectional 

dataset. The third empirical study and the other two studies complement each other since 

the third study details domain-specific subjective well-being, but the other two have more 

power to estimate causality due to the longitudinal data that is available. These studies 

cannot be fully compared, as the populations were somewhat different (the third study 

observed only the primary shoppers, who are mostly women, whereas the first and the 

second studies used a nationally representative sample), but in the following subchapters 

I synthesize the related findings.  

7.2. Summary of Empirical Findings 

The present dissertation has found that subjective well-being varies across the life course. 

Most earlier studies suggested that overall subjective well-being follows a U-shaped 

curve with ageing in Hungary, after controlling for social economic variables 

(Blanchflower & Oswald, 2008; Graham & Pozuelo, 2017; Hajdu & Hajdu, 2013; Molnár 

& Kapitány, 2006; Spéder & Kapitány, 2002). This finding implies that young people and 

the elderly are the two most satisfied age groups. But the findings of the third empirical 

study (Chapter 6) in this dissertation does not entirely support this link. It shows that 

young childless people and the elderly who live alone are not more satisfied with their 

lives than the rest of society. However, the elderly who live with their partners and who 

are without children indeed seem to enjoy above-average life satisfaction.39 

The observation of domain-specific subjective well-being contributes to understanding 

why, contrary to expectations, overall subjective well-being does not follow a U-shaped 

                                                      
39 Further, those who live together with their children were not distinguished based on their age, therefore 

this study cannot conclude anything about the domain-specific well-being of the elderly who live together 

with offspring. 
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curve. First of all, the unexpectedly low overall subjective well-being of the young and 

childless might be attributed to their poor housing opportunities, since these young people 

report significantly below average satisfaction with housing. The difference in domain-

specific subjective well-being among the elderly with or without a partner might also 

explain why the prior group reports significantly above average subjective well-being, 

whereas the latter one does not differ from the average. This study found that the presence 

of a partner and the absence of a child make the elderly significantly more satisfied with 

their life-course and future opportunities than the rest of society. In contrast, the absence 

of both a partner and a child leads the oldest respondents to be less satisfied with their 

family relationships, and they do not differ from the rest of the population in terms of 

their satisfaction with their life course and future opportunities. However, members of 

this latter life-cycle group are more satisfied with their income than average, which is not 

true for the elderly who have a cohabiting partner.  

Further, this dissertation estimated the effect of parenthood on subjective well-being 

using both cross-sectional data (Chapter 6) and longitudinal data (Chapter 4). Both the 

longitudinal and the cross-sectional analyses support the claim that parenthood in general 

has an initially positive effect on overall subjective well-being. This result is in line with 

the vast majority of international studies that used longitudinal data (Balbo & Arpino, 

2016; Baranowska & Matysiak, 2011; Kohler et al., 2005; Mikucka, 2016; Pollmann‐

Schult, 2014). Moreover, this finding supports the value of children theory, which 

predicts a positive effect based on the argument that children fulfil different parental 

needs (Hoffmann & Hoffmann, 1973; Nauck, 2007). 

Both the longitudinal (Chapter 4) and the cross-sectional analyses (Chapter 6) support the 

claim that parenthood in general has an initially positive effect on overall subjective well-

being. However, these studies do not agree concerning the longer-term effect. On the one 

hand, the cross-sectional analysis found that parenthood has no effect in the long term, 

since those parents whose (youngest) child is over six years of age are not more satisfied 

with their life than other members of society. On the other hand, the longitudinal study in 

Chapter 4 found that parenthood has a long-lasting effect on subjective well-being that is 

significant even 7-10 years after childbirth. Thus, the cross-sectional study supported set-

point theory, but the longitudinal one did not. This theory postulates that parenthood has 

only a temporary effect, since after this event individuals eventually adopt to their new 

situation and their subjective well-being returns to the initial baseline level (Headey & 

Wearing, 1989; Kammann, 1983; Lykken & Tellegen, 1996). Nevertheless, both studies 
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are in line with the expectations of the demands and rewards approach, which suggests 

that the effect declines as children age due to worsening parent-children relationships 

(Nomaguchi, 2012). The cross-sectional and longitudinal studies may have arrived at 

different conclusions about the long-term effect of parenthood due to their different 

methodological approaches or their different sample composition. Moreover, the 

longitudinal research followed parents only until their children were 7-10 years old. Thus, 

it is possible that parenthood has a long-lasting effect only until children are 10, after 

which adaptation takes place, as reflected in the cross-sectional results.  

The positive general effect of parenthood was further specified by distinguishing the 

parenthood effect according to (1) the gender of the parent, (2) the parity of the child, and 

(3) the partnership status of the parent. First, the longitudinal study (Chapter 4) observed 

the distinct effect of motherhood and fatherhood. The study reveals that motherhood is 

more rewarding than fatherhood both in the short- and the long-term. Moreover, the 

positive effect related to fatherhood does not have a significant effect in the long term, 

whereas those for motherhood are long lasting. This result is consistent with previous 

studies which found that motherhood is more rewarding than fatherhood (Angeles, 2010; 

Clark et al., 2008; Baranowska & Matysiak, 2011; Baetschmann et al., 2016; Kohler et 

al., 2005; Myrskylä & Margolis, 2014; Sironi & Billari, 2013), while positive effect on 

fatherhood is temporary (Baranowska & Matysiak, 2011). Second, the longitudinal data 

analysis also revealed that both the first and second children have positive long-lasting 

effects, a finding which is in line with some of the empirical studies (Matysiak et al., 

2016; Mikucka, 2016; Myrskylä & Margolis, 2014; Pollmann‐Schult, 2014). Finally, the 

cross-sectional analysis (Chapter 6) showed that single parenthood does not have a 

significant effect on overall subjective well-being, which finding is also consistent with 

some international results (Aassve et al., 2012; Baranowska & Matysiak, 2011). 

Moreover, the third empirical study (Chapter 6) contributed to understanding the complex 

effect of parenthood by investigating how it influences different measures of domain-

specific well-being. First, parenthood does not have any significantly negative effect on 

any life-domain measure when partners cohabit. This suggests that the costs of children 

(Hansen, 2012) are not manifested in changes in domain-specific subjective well-being. 

Further, parenthood significantly increases satisfaction with family relationships when 

partners cohabit. However, several studies have argued that this domain might suffer upon 

the arrival of a child since satisfaction with a partner tends to decrease at this time 

(Lawrence et al., 2008; Rollins & Cannon, 1974; Twenge et al., 2003; VanLaningham et 
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al., 2001). The positive effect of parenthood on satisfaction with family relationships 

shows that the creation of new family ties with the child can compensate for the possible 

decrease in partnership satisfaction. However, the absence of a partner suppresses this 

otherwise positive effect, since single parents experience below average satisfaction with 

family relationships. 

Further, Chapter 6 analyses how the retirement transition affects overall subjective well-

being using longitudinal data. This study demonstrates that retirement does not have a 

significant effect on overall subjective well-being. This finding resonates with most of 

the previous international studies (Baker et al., 2009; Bonsang & Klein, 2012; Börsch-

Supan & Jürges, 2006; Clark & Fawaz, 2009; Davis, 2012; Fonseca et al., 2017; Heybroek 

et al., 2015; Latif, 2011; Luhmann et al., 2012) and also supports continuity theory, which 

argues that, in the case of life transitions, people aim to maintain their standard of living, 

their self-esteem and their values and, as a consequence, their subjective well-being 

(Atchley 1971, 1989, Kim & Moen 2002). We cannot disentangle how retirement affects 

domain-specific subjective well-being since the cross-sectional study, which observed 

domain-specific measures, did not distinguish retirees, but only those who were older 

than 65 years and living without their children. However, the situation of the elderly living 

without children might also reflect on retirement effects to a certain degree, since 95% of 

them were retired. Based on this proposition, retirement may negatively affect satisfaction 

with health. Further, if a partner is present then retirement might influence positively 

satisfaction with life course, and satisfaction with future opportunities. However, in the 

absence of a partner retirees might experience below average satisfaction with family 

relationships but above average satisfaction with income.  

Besides these findings, the research described in this dissertation was able to identify 

certain social groups which were exposed to a higher level of risk when encountering a 

given transition. First, the second empirical study (Chapter 5) found that those who retire 

involuntarily benefit less from this transition than those who retire voluntarily, even when 

pre-retirement differences are taken into account. This finding is in line with the 

conclusions of previous research projects which have found that it matters whether 

retirement is voluntary or involuntary (Barrett & Kecmanovic, 2013; Bender, 2012; 

Shultz et al., 1998). Further, this disadvantage of involuntary retirees is permanent over 

time (even over the long term). Therefore, involuntary retirement shows similarities with 

unemployment, which has also proven to be resistant to adjustment in the literature (Lucas 

et al., 2004). Second, the third empirical study (Chapter 6) highlights the disadvantage of 
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being a single parent compared to becoming a parent with a cohabiting partner. The 

finding is that although parents who live together with a partner have significantly higher 

overall subjective well-being, this is not true of those who raise their child(ren) alone. By 

observing how individuals varied according to the measures of domain-specific 

subjective well-being, I found that the lower overall well-being among single parents is 

mostly attributable to their lower level of satisfaction with family relationships.  

7.3. Main Contributions of the Dissertation 

This dissertation contributes to our prior knowledge in several major ways. First and 

foremost, it extends the scope of research about the effect of life events on subjective 

well-being in Hungary. This topic has been the subject of growing attention in western 

countries, but there is still little known about the issue in Hungary, and in general in the 

CEE countries. Observation of this issue in different countries is of utmost importance, 

as in each country life events are embedded in a different economic and cultural context, 

thus one may expect that individuals will react in a different way to these transitions under 

different circumstances. 

A key strength of the present studies is that they use the state-of-the-art matching method 

to estimate causality between belonging to a certain life stage and subjective well-being. 

Furthermore, when longitudinal data were available (Chapters 4 and 5), the matching 

method was extended to longitudinal data analysis. The application of longitudinal data 

can rule out unobserved time-invariant heterogeneity, whereas matching eliminates 

interpolation and extrapolation bias. Thus, the applied methods bring us one step closer 

to obtaining unbiased causal estimations (Ho et al., 2011; King & Zeng, 2006). In the 

international literature, matching using longitudinal data analysis has already been 

undertaken to estimate the effect of certain life events such as parenthood (Balbo & 

Arpino, 2016; Sironi & Billari, 2013). However, to my knowledge no prior research has 

applied this technique to estimate the effect of retirement. Furthermore, a matching 

method has been never used in the Hungarian context to investigate the effect of life 

events on subjective well-being.  

The first empirical study (Chapter 4) contributes to understanding why fertility is the 

lowest of the low in Hungary. The hypothesis has arisen that the low fertility rate might 

be a consequence of unsatisfactory parenthood (Billari, 2009). Therefore, the effect of 

parenthood on subjective well-being was identified as the “missing link” in understanding 

parity progression (Aassve et al., 2016; Le Moglie et al., 2015; Luppi, 2016; Margolis & 

Myrskylä, 2015; Parr, 2010). As a consequence, a growing number of studies have 
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investigated this effect. In Chapter 4 I describe how this hypothesis was tested in the 

Hungarian context. Overall, the research described in this chapter found that fertility has 

a long-lasting positive effect on subjective well-being. Moreover, not only the first child 

but also the second one generates an increase in subjective well-being. This finding is 

especially important as the low number of second children depresses the fertility rate in 

Hungary (Miettinen & Szalma, 2014; Szalma & Takács, 2015). The only result which 

might explain the low fertility rate relates to the moderating effect of gender. This 

dissertation shows that women benefit from having children both in the short and long 

term, whereas men experience only a temporary short-term increase in subjective well-

being upon the arrival of a child. The effect of fatherhood is important as parenthood 

typically involves a joint decision, thus both genders should benefit from this life event 

in terms of realizing further parity progression (Aassve et al., 2016). To sum up, the 

research described in this chapter finds that the pre-existing theory that uses the link 

between parenthood and subjective well-being to explain fertility trends make a limited 

contribution to the discussion about the Hungarian situation. Thus, there appear to be 

other reasons for the low fertility rate in this country.  

The second study (Chapter 5) tested whether the social security system is able to provide 

a smooth transition from work to retirement. This is an especially urgent question as the 

current retirement system needs to be reformed to be sustainable. However, before any 

reform can take place one needs to understand how the current system works. Overall, 

the related research finds no evidence that retirement affects subjective well-being. Thus, 

the present retirement system appears to be able to facilitate the transition from work to 

retirement even in a country where the standard of living is generally low. However, 

voluntary retirees achieve a significantly higher level of subjective well-being after 

retirement than those who retire involuntarily, even when the accumulated differences 

between the two groups are taken into account. Therefore, it appears that involuntary 

retirement might be creating a new form of inequality, alongside more traditional forms 

of disparities. 

The third empirical study (Chapter 7) contributes to understanding the pluralized effect 

of life stages. First of all, the study aimed to capture the complex effects of life stages on 

different life domains by using domain-specific subjective well-being instead of only 

using overall life satisfaction. This is an important goal, as certain life events can have 

contradictory effects on different life domains (Bardo, 2017; Bernardi et al., 2017; Lapa, 

2013; Schafer et al., 2013). For example, this research found that being young and 
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childless affects satisfaction with health positively, but satisfaction with housing 

negatively. Furthermore, this study also observed the pluralized effect of life events by 

further elaborating life-stage groups. The same life events may have different effect on 

distinct groups (Hansen, 2012). The parenthood effect on individuals, for example, 

significantly depends on whether they are raising a child alone or with a cohabiting 

partner.  

Besides the empirical contributions, the present dissertation made a further attempt to 

compare how different types of matching methods are calculated and when these methods 

should be used. The Analytical Strategy chapter (Chapter 3) illustrated the computational 

background of these methods using a small sample dataset. To my knowledge, no prior 

work has systematically compared the differences between matching methods this way.  

7.4. Limitations and Suggestions for Further Research 

This dissertation has some limitations. First of all, the available datasets in Hungary are 

either cross-sectional or do not provide a whole picture of the domain-specific measures. 

This is unfortunate, as state-of-the-art longitudinal data analysis may not be used to 

observe domain-specific effects. Future research should deal with this issue.  

Furthermore, the methodology that was applied uses the Stable Unit Treatment Value 

Assumption (SUTVA), which presupposes that (1) the potential outcome for an 

individual is not affected by whether other units received the treatment or not, and (2) that 

treatment does not have different versions (Rubin, 1978). As I explain below, I should 

acknowledge that to a certain degree both of these conditions were violated, but not to the 

degree that they discredit the validity of the results. I do believe that future research 

should and could address these issues.  

The implication of the first assumption of SUTVA for this research is that any given 

individual’s subjective well-being should depend only on this person’s life-stage status, 

without being influenced by the life-stage status of others. However, this assumption may 

be violated due to social learning, social pressure, social contagion, and social support 

mechanisms (Bernardi & Klärner, 2014; Ateca-Amestoy et al., 2014). For example, 

imagine that your best friend had a child with whom you interacted frequently after their 

birth. You saw how satisfied the child made your friend, so you decided to have your own 

child too. Thereafter, the birth of your own child increased your satisfaction with your 

life. Can you state in this situation that your subjective well-being was independent of the 

life-stage status of others? In reality, it was your own child that directly increased your 
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level of satisfaction, but this child is the ‘outcome’ of your best friend’s fertility, thus 

your level of well-being was also affected by your friend’s life-stage status. This example 

illustrates how the first assumption of SUTVA is violated once respondents interact. The 

present dissertation tackles this problem by observing a sufficiently large sample, in 

which interactions are rare. However, future research on this topic should take into 

account the fact that individuals are embedded in social networks.  

The second assumption of SUTVA implies that the effect of belonging to a given life 

stage should not depend on individuals’ characteristics. This prerequisite can be ensured 

by further specifying life events. The analysis in the first empirical study, for example, 

not only observes the general effect of parenthood, but also analyses the moderating effect 

of gender and parity. However, certain subgroups should have been further distinguished, 

but the sample size was too small for the dataset to be split. For example, it would have 

been interesting to distinguish the effects of motherhood and fatherhood by parity as well. 

Further, one could also observe the diverse effect of life events based on income or 

education level. Moreover, although single parenthood was observed in Chapter 6 using 

cross-sectional data, this effect could be also observed in longitudinal data to obtain more 

precise casual estimations. Finally, the effect of other atypical forms of parenthood, such 

as early or late parenthood, are also important issues for future research.  

Moreover, the limited length (11 years) of the longitudinal study (Turning Points of Life 

Course) creates a barrier to following respondents long after their exposure to the 

treatments, although the effects of life events can change in the long term. For example, 

the first empirical study in this dissertation (Chapter 4) could only observe how parents 

benefit from having a child whose age ranged from 0-10 years old. This period of time 

enabled us to test whether children contribute to parental well-being as consumption 

goods (Becker & Barro, 1988). However, children can also be investment goods since 

they often provide financial and emotional support for their elderly parents when they 

grow up (Boldrin, De Nardi, & Jones, 2015; Caldwell, 1978; Caldwell, 1982; Leibenstein, 

1957; Neher, 1971). Thus, one may only capture the entire effect of parenthood by 

observing this effect from the birth of the child until the end of the parents’ lives. 

However, this was not feasible, since there have not yet been any longitudinal studies that 

capture such a long period of time in Hungary. Therefore, extending the longitudinal 

research with further data would be beneficial for understanding this topic more in depth.  

Also, the frequency of data collection in the longitudinal study created limitations. The 

longitudinal research at hand was repeated only every 3-4 years; furthermore, the third 
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wave could not be used in the present analysis since at that time subjective well-being 

questions were not asked. However, previous research has shown that the effect of life 

events tends to change annually or even monthly (Clark et al., 2008; Mikucka, 2016; 

Pollmann-Schult, 2013). Thus, more frequent data collection in the future could also 

reveal unexpected patterns.  

Another limitation is that we might not have been able to control for all possible 

confounding variables, which is otherwise essential for estimating causality. Although 

the research for this dissertation took steps to rule out confounding variables by applying 

matching on longitudinal data (see Chapters 4 and 5) which controls for all unobserved 

time-invariant variables and observable variables, even these studies could not rule out 

unobserved time-variant confounding variables. For example, Kravdal (2014) has argued 

that all previous estimations about the effect of parenthood were biased since none of 

these studies controlled for expectations about the effect of parenthood. This variable can 

cause selection bias since those who had expected to have an enjoyable parenthood were 

more likely to have a child than those who had not been looking forward to this event. 

Similarly, this argument can be applied to expectations about retirement which could 

distort estimations about the effect of retirement. Other confounding variables should also 

have been taken into account, but the dataset did not contain them. For example, work 

life balance should ideally have been controlled for to estimate the effect of parenthood 

on subjective well-being, since prior research has found that this variable influences the 

effect of parenthood (Bernardi et al., 2017; Matysiak et al., 2016). In order to tackle the 

problem of selection bias, this dissertation conducted sensitivity analyses (Rosenbaum, 

2002). The majority of these indicated fairly robust findings, which means that the results 

would have been unlikely to change if further matching variables had been involved.  

The problem of post-treatment variables also needs to be mentioned here. Imagine that 

we are interested in the effect of the first child using the available longitudinal dataset. 

As the observational period in this dataset was quite long (0-3 years in case of the short-

term effect, but 7-11 years in case of the long-term effect), it is possible that in this period 

not only was a first child born, but the parents may also have divorced. In this case, 

observed changes in subjective well-being might have occurred due to the divorce 

(Amato, 2004; Johnson & Wu, 2002). On the one hand, divorce can be a consequence of 

having a child. For example, parenthood often decreases satisfaction with a partner, 

sometimes leading to divorce (Lawrence et al., 2008; Pollmann-Schult, 2013; Rollins & 

Cannon, 1974; Twenge et al., 2003; VanLaningham et al., 2001). In this case, divorce 
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would be a collider variable, and controlling for it would cause endogenous selection bias. 

On the other hand, divorce can be also independent from having a child even if it occurs 

after childbirth. In this case, not controlling for divorce can cause selection bias. In 

general, statisticians have suggested not controlling for post-treatment variables as they 

are typically influenced by the treatment (Elwert & Winship, 2014; Rosenbaum & Rubin, 

1984). Thus, in the research for this dissertation I followed statisticians’ advice to control 

only for pre-treatment variables. However, I acknowledge the problem. Conducting a 

sensitivity analysis was also important due to these variables. Further, future research 

should also observe the sensitivity of these effects by controlling for post-treatment events 

as well.  

Finally, this dissertation was not designed to capture all life events. In the future, other 

life events could be investigated with the same methodology. For example, future 

research could observe the effect of leaving the parental home on domain-specific 

subjective well-being. This research could help identify policies which should be created 

to improve young adults’ lives. 
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Appendix  

Table 26. Hypothetical situation to illustrate extrapolation 

 explanatory 

variable 

 outcome for 

treated units 

Prediction for 

treated units  

outcome for 

control units 

Prediction for 

control units 

1   1.37237 0.1 0.84048 

2   1.46786 0.11 0.93597 

3   1.56335 0.12 1.03146 

4   1.65884 0.13 1.12695 

5   1.75433 0.14 1.22244 

6 2.10 1.84982 2.30 1.31793 

7 2.40 1.94531 2.40 1.41342 

8 2.30 2.0408 2.70 1.50891 

9 2.20 2.13629 2.60 1.6044 

10 2.50 2.23178 2.00 1.69989 

11 2.10 2.32727 2.10 1.79538 

12 2.00 2.42276 2.50 1.89087 

13 2.60 2.51825 2.20 1.98636 

14 2.70 2.61374 2.30 2.08185 

15 2.40 2.70923 2.40 2.17734 

16 2.30 2.80472 2.10 2.27283 

17   2.90021 2.5 2.36832 

18   2.9957 2.49 2.46381 

19   3.09119 2.48 2.5593 

20   3.18668 2.47 2.65479 

21   3.28217 2.46 2.75028 

22   3.37766 2.45 2.84577 

23   3.47316 2.44 2.94126 

 

  

 

  

X 1iY
0iY
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Table 27. Sample dataset to illustrate the “fundamental problem of causal inference”, 

distance matrices, matching and longitudinal analysis 

ID 

Satisfaction 

with housing Age Income Treatment 

 

Propensity 

score 

Life 

satisfaction 

1. wave 

Life 

satisfaction 

2. wave 

1  4 26 55.24 1 0.66260 8 9 

2 2 31 47.14 1 0.43815 7 8 

3 2 25 55.24 1 0.70724 5 5 

4 8 23 26.51 1 0.58176 7 7 

5 4 26 35.35 1 0.54626 7 9 

6 5 24 52.02 1 0.70686 10 9 

7 7 27 144.51 1 0.93326 9 7 

8 8 40 30.66 1 0.09913 7 7 

9 3 31 32.05 1 0.34393 7 7 

10 7 34 72.25 1 0.44364 7 8 

11 8 22 39.31 1 0.69000 7 7 

12 9 20 65.99 1 0.85081 7 5 

13 8 23 64.10 1 0.77812 5 7 

14 5 37 158.38 1 0.81436 6 8 

15 8 36 30.17 1 0.16826 5 7 

16 10 30 42.58 0 0.39814 10 9 

17 8 48 43.35 0 0.04162 5 6 

18 7 50 53.03 0 0.03981 5 2 

19 8 38 28.28 0 0.12401 7 5 

20 2 31 45.12 0 0.42596 5 6 

21 10 30 42.58 0 0.39814 10 9 

22 8 26 18.00 0 0.41458 7 8 

23 7 58 202.31 0 0.32026 8 8 

24 10 59 46.24 0 0.00796 7 8 

25 8 62 26.51 0 0.00326 6 6 

26 9 72 54.80 0 0.00135 10 8 

27 10 60 41.04 0 0.00601 5 5 

28 9 44 28.28 0 0.05155 6 6 

29 4 26 55.24 0 0.66260 9 8 

30 2 38 25.21 0 0.13299 3 3 

31 7 35 63.58 0 0.35550 7 7 

32 10 59 43.35 0 0.00742 8 8 

33 9 28 34.47 0 0.43136 7 8 

34 3 25 30.93 0 0.56415 10 8 

35 10 30 30.66 0 0.33038 8 8 

36 10 73 63.58 0 0.00140 10 10 

37 9 60 33.14 0 0.00508 5 5 

38 7 29 44.19 0 0.46493 8 8 

39 2 22 18.10 0 0.60685 4 2 

40 10 68 49.71  0 0.00216 8 8 

41 2 31 47.14 0 0.43815 5 6 
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Table 28. Balance improvement in matching those to whom a child was born between 

2003 and 2004/2005 (treatment group) with those to whom no children were born in 

this period (control group) 

 

 Raw Data Matched Data 

 Treatment Control Treatment Control 

 Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD 

Distance  0.21 0.14 

 

0.04 0.08 0.21 0.14 

 

0.20 0.14 

Satisfaction with life  7.09 1.83 6.60 1.94 7.09 1.83 6.98 1.69 

Recent perceived well-being  6.49 1.78 5.86 1.81 6.49 1.78 6.47 1.61 
Sex Male (R) (R) (R) (R) (R) (R) (R) (R) 

 Female 0.53 0.50 

 

0.59 0.49 0.53 0.50 

 

0.50 0.50 
Education Primary or less  (R) (R) (R) (R) (R) (R) (R) (R) 

 Vocational secondary 

school 

0.32 0.47 0.29 0.45 0.32 0.47 0.33 0.47 
 General secondary 0.34 0.47 0.31 0.46 0.34 0.47 0.32 0.47 
 Tertiary 0.21 0.40 0.15 0.36 0.21 0.40 0.21 0.41 

Satisfaction with housing  6.86 2.24 7.22 2.29 6.86 2.24 6.96 2.04 
Age  27.5

8 

5.01 45.9

8 

14.2

1 

27.5

8 

5.01 27.9

5 

5.94 
Residence Capital city (R) (R) (R) (R) (R) (R) (R) (R) 

 Bigger city 0.24 0.43 0.22 0.41 0.24 0.43 0.21 0.40 
 Smaller city 0.26 0.44 0.30 0.46 0.26 0.44 0.22 0.41 
 Village 0.42 0.49 0.36 0.48 0.42 0.49 0.48 0.50 

Subjective health status  8.41 1.55 7.00 2.33 8.41 1.55 8.57 1.39 
Equivalent household 

income 

 50.8

1 

34.3

5 

 

48.9

3 

34.9

2 

50.8

1 

34.3

5 

 

47.8

0 

31.1

5 Labour market status Employed (R) (R) (R) (R) (R) (R) (R) (R) 
 Self-employed 0.07 0.26 

 

0.06 0.23 0.07 0.26 

 

0.05 0.22 
 Unemployed 0.08 0.27 0.05 0.21 0.08 0.27 0.08 0.27 
 Other non-working 0.18 0.39 0.38 0.49 0.18 0.39 0.18 0.38 

 Has ever experienced  

 unemployment 

0.49 0.50 0.50 

 

0.47 0.49 0.49 0.50 0.50 

Workplace Owned by the state (R) (R) (R) (R) (R) (R) (R) (R) 
 Private 0.50 0.06 0.33 0.47 0.50 0.06 0.52 0.50 
 Non respond 0.27 0.50 0.44 0.50 0.27 0.50 0.25 0.43 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) (R) (R) 
 White collar  0.38 0.49 

 

0.37 0.48 0.38 0.49 

 

0.39 0.49 
Marital status Single (R) (R) (R) (R) (R) (R) (R) (R) 

 Married living together 0.57 0.50 0.66 0.47 0.57 0.50 0.61 0.49 
 Married living apart 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10 
 Widow 0.00 0.00 0.08 0.28 0.00 0.00 0.00 0.00 
 Divorced 0.07 0.25 0.09 0.29 0.07 0.25 0.03 0.17 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Employed 0.46 0.50 0.35 0.48 0.46 0.50 0.49 0.50 
 Self-employed 0.06 0.24 0.06 0.24 0.06 0.24 0.05 0.21 
 Retired 0.01 0.1 0.21 0.41 0.01 0.1 0.00 0.00 
 Unemployed 0.06 0.08 0.04 0.19 0.06 0.08 0.04 0.20 
 Other non-working 0.15 0.24 0.05 0.23 0.15 0.24 0.14 0.35 
 No answer 0.17 0.38 0.05 0.22 0.17 0.38 0.17 0.38 

Satisfaction with partner Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.02 0.14 0.05 0.22 0.02 0.14 0.02 0.14 
 Neutral 0.06 0.24 0.08 0.26 0.06 0.24 0.04 0.20 
 Rather satisfied 0.28 0.45 0.26 0.44 0.28 0.45 0.24 0.43 
 Very satisfied 0.43 0.50 0.34 0.47 0.43 0.50 0.48 0.50 
 No answer 0.12 0.32 0.04 0.20 0.12 0.32 0.11 0.32 

Number of children  0.82 1.00 

 

1.62 1.12 0.82 1.00 

 

0.81 0.95 
Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 

 Disagree 0.25 0.43 0.21 0.41 0.25 0.43 0.19 0.39 
 Rather agree 0.12 0.33 0.14 0.35 0.12 0.33 0.12 0.32 
 Completely agree 0.04 0.19 0.05 0.22 0.04 0.19 0.03 0.16 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.07 0.25 0.10 0.29 0.07 0.25 0.06 0.24 
 Rather agree 0.43 0.50 0.45 0.50 0.43 0.50 0.42 0.50 
 Completely agree 0.50 0.50 0.41 0.49 0.50 0.50 0.51 0.50 

Sample weights  0.93 0.20 

 

0.99 0.20 0.93 0.20 

 

0.94 0.18 
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Table 29. Regression models for matched data about the effect of having a child on 

change in life satisfaction (coefficients and significances40 ) 

 

 
Short-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2004/2005) 

Long-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2012/2013) 

(Intercept)  3.61 ** 2.28  

Parenthood  0.56 *** 0.39 ** 

Satisfaction with life  -0.71 *** -0.83 *** 

Recent perceived well-being  -0.06  0.14 ** 

Sex Male (R)  (R)  

 Female 0.33 * -0.22  
Education Primary or less  (R)  (R)  

 Vocational secondary 

school 

0.28  0.19  
 General secondary 0.31  0.14  
 Tertiary 0.66 * 0.49  

Satisfaction with housing  0.06 * 0.05  
Age  -0.01  -0.02  

Residence Capital city (R)  (R)  
 Bigger city -0.34  0.25  
 Smaller city -0.27  0.25  
 Village -0.32  0.02  

Subjective health status  0.09 * 0.06  
Equivalent household income  0.00  0.00  

Labour market status Employed (R)  (R)  
 Self-employed 0.15  0.37  
 Unemployed 0.53  0.48  
 Other non-working 0.79  0.20  

Has ever experienced unemployment  -0.13  -0.01  

Workplace Owned by the state (R)  (R)  

 Private 0.15  0.37  
 Non respond -0.82  -0.17  

Last (most important) work Blue collar (R)  (R)  
 White collar  0.41 * 0.08  

Marital status Single (R)  (R)  
 Married living together 0.13  -0.27  
 Married living apart -1.33 ** 0.48  
 Divorced -0.28  -0.16  

Partner labour market status Does not have partner (R)  (R)  
 Employed 0.17  0.77  
 Self-employed 0.62  0.46  
 Retired -1.33  0.92  
 Unemployed 0.29  0.99 * 
 Other non-working 0.13  0.15  
 No answer 0.15  0.19  

Satisfaction with partner Does not have partner (R)  (R)  
 Dissatisfied -1.58 ** -1.02  
 Neutral -0.12  -0.13  
 Rather satisfied -0.20  -0.54  
 Very satisfied 0.11  -0.32  

Number of children  -0.10  0.23 * 
Does not enjoy working Completely disagree (R)  (R)  

 Disagree -0.21  0.11  
 Rather agree 0.10  0.20  
 Completely agree 0.30  -0.90 * 

Trust in the future Completely disagree (R)  (R)  
 Disagree 0.92  2.23 * 
 Rather agree 0.51  2.53 ** 
 Completely agree 0.54  2.78 ** 

Sample weights  0.21  -0.50  

                                                      
40 Levels of significance: ***<0.001, **<0.05, *<0.1  
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Table 30. Balance improvement in matching those to whom the first child was born 

between 2003 and 2004/2005 (treatment group) with those who remained childless 

(control group) 

 

 Raw Data Matched Data 

 Treatment Control Treatment Control 

 Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD 

Distance  0.45 0.20 0.10 0.15 0.45 0.20 0.42 0.23 

Satisfaction with life  6.94 1.46 6.32 1.91 6.94 1.46 6.87 1.44 

Recent perceived well-being  6.43 1.48 5.92 1.83 6.43 1.48 6.39 1.51 
Sex Male (R) (R) (R) (R) (R) (R) (R) (R) 

 Female 0.54 0.50 0.43 0.50 0.54 0.50 0.55 0.50 
Education Primary or less  (R) (R) (R) (R) (R) (R) (R) (R) 

 Vocational secondary 

school 

0.38 0.48 0.31 0.46 0.38 0.48 0.37 0.48 
 General secondary  0.42 0.49 0.37 0.48 0.42 0.49 0.49 0.50 
 Tertiary 0.12 0.28 0.15 0.36 0.12 0.28 0.10 0.30 

Satisfaction with housing  7.12 2.07 7.04 2.34 7.12 2.07 7.05 1.94 
Age  25.8

9 

4.23 36.7

7 

15.1

2 

25.8

9 

4.23 26.0

6 

5.61 
Residence Capital city (R) (R) (R) (R) (R) (R) (R) (R) 

 Bigger city 0.22 0.41 0.21 0.41 0.22 0.41 0.19 0.40 
 Smaller city 0.25 0.44 0.29 0.45 0.25 0.44 0.32 0.47 
 Village 0.47 0.50 0.36 0.48 0.47 0.50 0.43 0.50 

Subjective health status  8.47 1.61 7.55 2.28 8.47 1.61 8.49 1.49 
Equivalent household 

income 

 55.1

2 

29.7

9 

55.2

2 

46.3

1 

55.1

2 

29.7

9 

53.5

4 

28.1

3 Labour market status Employed (R) (R) (R) (R) (R) (R) (R) (R) 
 Self-employed 0.10 0.21 0.06 0.23 0.10 0.21 0.08 0.28 
 Unemployed 0.06 0.25 0.07 0.25 0.06 0.25 0.05 0.22 
 Other non-working 0.04 0.38 0.24 0.42 0.04 0.38 0.02 0.15 

 Has ever experienced  

 unemployment 

0.50 0.50 0.50 0.49 0.50 0.50 0.50 0.50 

Workplace Owned by the state (R) (R) (R) (R) (R) (R) (R) (R) 
 Private 0.68 0.50 0.43 0.50 0.68 0.50 0.68 0.47 
 Non respond 0.10 0.43 0.31 0.46 0.10 0.43 0.07 0.26 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) (R) (R) 
 White collar  0.29 0.44 0.38 0.49 0.29 0.44 0.34 0.47 

Marital status Single (R) (R) (R) (R) (R) (R) (R) (R) 
 Married living together 0.34 0.40 0.19 0.39 0.34 0.40 0.35 0.48 
 Married living apart 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.09 
 Widow 0.00 0.00 0.05 0.22 0.00 0.00 0.00 0.00 
 Divorced 0.02 0.18 0.05 0.22 0.02 0.18 0.00 0.00 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Employed 0.43 0.43 0.14 0.35 0.43 0.43 0.43 0.50 
 Self-employed 0.06 0.16 0.02 0.16 0.06 0.16 0.05 0.22 
 Retired 0.00 0.00 0.09 0.29 0.00 0.00 0.00 0.00 
 Unemployed 0.08 0.20 0.02 0.15 0.08 0.20 0.06 0.24 
 Other non-working 0.04 0.06 0.01 0.12 0.04 0.06 0.04 0.19 
 No answer 0.22 0.36 0.13 0.34 0.22 0.36 0.22 0.42 

Satisfaction with partner Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.01 0.14 0.02 0.14 0.01 0.14 0.00 0.00 
 Neutral 0.04 0.18 0.04 0.19 0.04 0.18 0.03 0.17 
 Rather satisfied 0.23 0.29 0.10 0.30 0.23 0.29 0.24 0.43 
 Very satisfied 0.33 0.38 0.14 0.35 0.33 0.38 0.32 0.47 
 No answer 0.22 0.36 0.13 0.34 0.22 0.36 0.22 0.41 

Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.25 0.43 0.23 0.42 0.25 0.43 0.18 0.39 
 Rather agree 0.16 0.37 0.17 0.37 0.16 0.37 0.19 0.39 
 Completely agree 0.03 0.25 0.05 0.22 0.03 0.25 0.01 0.12 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree  0.07 0.34 0.09 0.29 0.07 0.34 0.06 0.24 
 Rather agree 0.50 0.50 0.44 0.50 0.50 0.50 0.49 0.50 
 Completely agree 0.42 0.49 0.44 0.50 0.42 0.49 0.45 0.50 

Sample weights  0.91 0.17 1.03 0.29 0.91 0.17 0.89 0.20 
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Table 31. Regression models for matched data about the effect of having a first child on 

change in life satisfaction (coefficients and significances41 ) 

 
 

Short-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2004/2005) 

Long-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2012/2013) 

(Intercept)  1.52  6.26 ** 

First child  0.81 *** 0.54 ** 

Satisfaction with life  -0.96 *** -0.71 *** 
Recent perceived well-being  0.18 ** -0.04  

Sex Male (R)  (R)  
 Female 0.28  -0.08  

Education Primary or less  (R)  (R)  
 Vocational secondary 

school 

0.48  0.75  
 General secondary  0.61  0.43  
 Tertiary 1.08 * 1.13  

Satisfaction with housing  0.01  -0.03  
Age  0.02  -0.06 * 

Residence Capital city (R)  (R)  
 Bigger city 0.43  1.04 * 
 Smaller city 0.39  0.22  
 Village 0.93 * 0.53  

Subjective health status  0.09  0.01  
Equivalent household income  0.00  0.00  

Labour market status Employed (R)  (R)  
 Self-employed -0.05  0.64  
 Unemployed -1.21  -0.71  
 Other non-working -3.02 * -1.60  

Has ever experienced unemployment  0.15  -0.07  

Workplace Owned by the state (R)  (R)  

 Private 0.46  0.94 ** 
 Non respond 0.95  1.56  

Last (most important) work Blue collar (R)  (R)  
 White collar  0.09  0.27  

Marital status Single (R)  (R)  
 Married living together -0.09  -0.39  
 Married living apart -0.91  1.02  
 Divorced -1.94 ** -0.70  

Partner labour market status Does not have partner (R)  (R)  
 Employed 0.11  0.79  
 Self-employed 0.47  0.88  
 Retired -0.11  0.86  
 Unemployed 0.55  1.25  
 Other non-working 0.43  0.25  

Satisfaction with partner Does not have partner (R)  (R)  
 Dissatisfied 0.13  0.91  
 Neutral 0.56  0.28  
 Rather satisfied -0.16  -0.62  
 Very satisfied 0.23  -0.95  

Does not enjoy working Completely disagree (R)  (R)  
 Disagree -0.04  0.55 * 
 Rather agree 0.05  0.10  
 Completely agree 1.08  -0.26  

Trust in the future Completely disagree (R)  (R)  
 Disagree 1.57  0.29  
 Rather agree 0.52  0.57  
 Completely agree 1.00  1.28  

Sample weights  0.42  -1.78 * 

 

  

                                                      
41 Level of significance: ***<0.001, **<0.05, *<0.1 
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Table 32. Balance improvement in matching those to whom the second child was born 

between 2003 and 2004/2005 (treatment group) with those who had no additional child 

in this period but already had one from earlier (control group) 

 

 Raw Data Matched Data 

 Treatment Control Treatment Control 

 Mea

n 

SD Mea

n 

SD Mea

n 

SD Mea

n 

SD 

Distance  0.47 0.27 0.04 0.11 0.47 0.27 0.39 0.23 

Satisfaction with life  7.36 1.69 6.41 1.92 7.36 1.69 7.45 1.41 

Recent perceived well-being  6.66 1.56 5.77 1.80 6.66 1.56 6.66 1.46 
Sex Male (R) (R) (R) (R) (R) (R) (R) (R) 

 Female 0.60 0.49 0.64 0.48 0.60 0.49 0.61 0.49 
Education Primary or less  (R) (R) (R) (R) (R) (R) (R) (R) 

 Vocational secondary 

school 

0.07 0.26 0.24 0.43 0.07 0.26 0.04 0.19 
 General secondary  0.31 0.46 0.28 0.45 0.31 0.46 0.26 0.44 
 Tertiary 0.36 0.48 0.35 0.48 0.36 0.48 0.48 0.50 

Satisfaction with housing  6.72 2.11 7.23 2.32 6.72 2.11 6.80 2.06 
Age  28.1

1 

3.51 49.6

7 

13.7

5 

28.1

1 

3.51 29.2

5 

5.38 
Residence Capital city (R) (R) (R) (R) (R) (R) (R) (R) 

 Bigger city 0.38 0.49 0.25 0.43 0.38 0.49 0.34 0.48 
 Smaller city 0.28 0.45 0.29 0.46 0.28 0.45 0.29 0.46 
 Village 0.25 0.43 0.28 0.45 0.25 0.43 0.24 0.43 

Subjective health status  8.41 1.27 6.68 2.33 8.41 1.27 8.64 1.51 
Equivalent household 

income 

 51.3

9 

37.7

1 

48.9

9 

31.1

2 

51.3

9 

37.7

1 

45.8

2 

25.5

1 Labour market status Employed (R) (R) (R) (R) (R) (R) (R) (R) 
 Self-employed 0.06 0.24 0.06 0.24 0.06 0.24 0.04 0.19 
 Unemployed 0.08 0.28 0.04 0.19 0.08 0.28 0.08 0.28 
 Other non-working 0.32 0.47 0.44 0.50 0.32 0.47 0.32 0.47 

 Has ever experienced  

 unemployment 0.51 0.50 0.31 0.46 0.51 0.50 0.53 0.50  
Workplace Owned by the state (R) (R) (R) (R) (R) (R) (R) (R) 

 Private 0.39 0.49 0.30 0.46 0.39 0.49 0.32 0.47 
 Non respond 0.42 0.50 0.48 0.50 0.42 0.50 0.40 0.49 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) (R) (R) 
 White collar  0.53 0.50 0.42 0.49 0.53 0.50 0.55 0.50 

Marital status Single (R) (R) (R) (R) (R) (R) (R) (R) 
 Married living together 0.82 0.38 0.68 0.47 0.82 0.38 0.78 0.42 
 Married living apart 0.01 0.11 0.01 0.10 0.01 0.11 0.01 0.11 
 Widow 0.00 0.00 0.10 0.30 0.00 0.00 0.00 0.00 
 Divorced 0.04 0.19 0.15 0.36 0.04 0.19 0.01 0.11 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Employed 0.53 0.50 0.36 0.48 0.53 0.50 0.62 0.49 
 Self-employed 0.08 0.28 0.05 0.21 0.08 0.28 0.08 0.28 
 Retired 0.01 0.11 0.27 0.44 0.01 0.11 0.00 0.00 
 Unemployed 0.02 0.15 0.03 0.17 0.02 0.15 0.01 0.11 
 Other non-working 0.18 0.38 0.04 0.20 0.18 0.38 0.13 0.34 
 No answer 0.13 0.34 0.03 0.18 0.13 0.34 0.13 0.34 

Satisfaction with partner Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.04 0.19 0.05 0.22 0.04 0.19 0.01 0.11 
 Neutral 0.09 0.29 0.09 0.28 0.09 0.29 0.12 0.33 
 Rather satisfied 0.36 0.48 0.26 0.44 0.36 0.48 0.32 0.47 
 Very satisfied 0.46 0.50 0.36 0.48 0.46 0.50 0.47 0.50 
 No answer 0.02 0.15 0.03 0.16 0.02 0.15 0.06 0.24 

Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.27 0.45 0.19 0.40 0.27 0.45 0.29 0.46 
 Rather agree 0.06 0.24 0.14 0.34 0.06 0.24 0.06 0.24 
 Completely agree 0.00 0.00 0.05 0.23 0.00 0.00 0.00 0.00 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.08 0.28 0.11 0.32 0.08 0.28 0.02 0.15 
 Rather agree 0.35 0.48 0.45 0.50 0.35 0.48 0.35 0.48 
 Completely agree 0.56 0.50 0.39 0.49 0.56 0.50 0.62 0.49 

Sample weights  0.91 0.24 0.99 0.21 0.91 0.24 0.93 0.20 
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Table 33. Regression models for matched data about the effect of having a second child 

on change in life satisfaction (coefficients and significances42 ) 

 

 

  

                                                      
42 Level of significance: ***<0.001, **<0.05, *<0.1  

  

Short-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2004/2005) 

Long-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2012/2013) 

(Intercept)  5.15 ** 2.99  

Second child  0.51 ** 0.69 ** 

Satisfaction with life  -0.74 *** -0.99 *** 
Recent perceived well-being  0.04  0.07  

Sex Male (R)  (R)  
 Female 0.23  0.91 ** 

Education Primary or less  (R)  (R)  
 Vocational secondary 

school 

-0.21  -0.36  
 General secondary  -0.69  -0.32  
 Tertiary -0.43  0.04  

Satisfaction with housing  0.01  0.07  
Age  0.01  -0.01  

Residence Capital city (R)  (R)  
 Bigger city 0.35  0.50  
 Smaller city 0.43  1.47 ** 
 Village -0.44  -0.12  

Subjective health status  -0.14  0.04  
Equivalent household income  0.00  0.00  

Labour market status Employed (R)  (R)  
 Self-employed 0.49  -0.19  
 Unemployed -1.53  -0.23  
 Other non-working -0.86  0.44  

Has ever experienced unemployment  0.03  0.01  

Workplace Owned by the state (R)  (R)  

 Private 0.08  0.26  
 Non respond 0.92  -1.42  

Last (most important) work Blue collar (R)  (R)  
 White collar  0.57  0.02  

Marital status Single (R)  (R)  
 Married living together 0.99 ** 0.48  
 Married living apart -0.50  0.90  
 Divorced 1.09  1.68 * 

Partner labour market status Does not have partner (R)  (R)  
 Employed -1.80  0.96  
 Self-employed -1.12  1.34  
 Retired -0.73  0.20  
 Unemployed -4.87 ** 3.00  
 Other non-working -2.44  1.77  

Satisfaction with partner Does not have partner (R)  (R)  
 Dissatisfied -0.47  0.23  
 Neutral 1.31  0.33  
 Rather satisfied 2.11 ** 0.84  
 Very satisfied 2.70 ** 1.53 * 

Does not enjoy working Completely disagree (R)  (R)  
 Disagree 0.49  0.67 ** 
 Rather agree -0.06  0.65  

Trust in the future Completely disagree (R)  (R)  
 Rather agree -0.76  0.63  
 Completely agree -0.42  0.92  

Sample weights  0.57  0.15  



  

162 

 

Table 34. Balance improvement in matching women to whom a child was born between 

2003 and 2004/2005 (treatment group) with women to whom no children were born in 

this period (control group) 

 

 Raw Data Matched Data 

 Treatment Control Treatment Control 

 Mean SD Mean SD Mean SD Mean SD 

Distance  0.42 0.26 0.03 0.09 0.42 0.26 0.36 0.25 

Satisfaction with life  7.37 1.78 6.59 1.95 7.37 1.78 7.19 1.82 

Recent perceived well-being  6.71 1.69 5.86 1.82 6.71 1.69 6.56 1.53 
Education Primary or less  (R) (R) (R) (R) (R) (R) (R) (R) 

 Vocational secondary 

school 

0.28 0.45 0.20 0.40 0.28 0.45 0.28 0.45 
 General secondary 0.37 0.49 0.35 0.48 0.37 0.49 0.38 0.49 
 Tertiary 0.23 0.42 0.15 0.35 0.23 0.42 0.18 0.39 

Satisfaction with housing  7.06 2.36 7.30 2.27 7.06 2.36 7.20 2.17 
Age  26.6

8 

3.89 48.4

0 

12.9

6 

26.6

8 

3.89 27.7

5 

6.44 
Residence Capital city (R) (R) (R) (R) (R) (R) (R) (R) 

 Bigger city  0.24 0.43 0.23 0.42 0.24 0.43 0.20 0.40 
 Smaller city 0.23 0.42 0.30 0.46 0.23 0.42 0.30 0.46 
 Village  0.45 0.50 0.35 0.48 0.45 0.50 0.43 0.50 

Subjective health status  8.31 1.52 6.73 2.35 8.31 1.52 8.37 1.58 
Equivalent household 

income 

 51.1

0 

29.3

3 

47.1

9 

29.7

8 

51.1

0 

29.3

3 

43.0

3 

21.9

9 Labour market status Employed (R) (R) (R) (R) (R) (R) (R) (R) 
 Self-employed 0.04 0.20 0.03 0.18 0.04 0.20 0.02 0.14 
 Unemployed 0.06 0.24 0.04 0.19 0.06 0.24 0.06 0.23 
 Other non-working 0.30 0.46 0.46 0.50 0.30 0.46 0.33 0.47 

 Has ever experienced  

 unemployment 

0.45 0.50 0.50 0.46 0.45 0.45 0.50 0.50 

Workplace Owned by the state (R) (R) (R) (R) (R) (R) (R) (R) 
 Private 0.43 0.50 0.25 0.43 0.43 0.50 0.41 0.49 
 Non respond 0.37 0.48 0.51 0.50 0.37 0.48 0.38 0.49 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) (R) (R) 
 White collar  0.47 0.50 0.44 0.50 0.47 0.50 0.44 0.50 

Marital status Single (R) (R) (R) (R) (R) (R) (R) (R) 
 Married living together 0.56 0.50 0.66 0.47 0.56 0.50 0.60 0.49 
 Married living apart 0.02 0.13 0.01 0.11 0.02 0.13 0.02 0.14 
 Widow 0.00 0.00 0.13 0.34 0.00 0.00 0.00 0.00 
 Divorced 0.06 0.24 0.12 0.32 0.06 0.24 0.06 0.23 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Employed 0.59 0.50 0.34 0.47 0.59 0.50 0.61 0.49 
 Self-employed 0.10 0.30 0.08 0.28 0.10 0.30 0.04 0.20 
 Retired 0.01 0.08 0.24 0.43 0.01 0.08 0.01 0.08 
 Unemployed 0.07 0.25 0.03 0.18 0.07 0.25 0.07 0.25 
 Other non-working 0.02 0.13 0.01 0.10 0.02 0.13 0.02 0.14 
 No answer 0.14 0.34 0.03 0.17 0.14 0.34 0.14 0.34 

Satisfaction with partner Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.03 0.17 0.07 0.26 0.03 0.17 0.07 0.26 
 Neutral 0.06 0.24 0.08 0.28 0.06 0.24 0.06 0.23 
 Rather satisfied 0.32 0.47 0.26 0.44 0.32 0.47 0.26 0.44 
 Very satisfied 0.37 0.48 0.30 0.46 0.37 0.48 0.37 0.49 
 No answer 0.14 0.34 0.03 0.18 0.14 0.34 0.14 0.34 

Number of children  0.75 0.90 1.83 1.03 0.75 0.90 0.92 0.93 
Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 

 Disagree 0.25 0.44 0.20 0.40 0.25 0.44 0.09 0.29 
 Rather agree 0.08 0.27 0.13 0.34 0.08 0.27 0.08 0.27 
 Completely agree 0.02 0.13 0.05 0.22 0.02 0.13 0.01 0.08 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.07 0.25 0.10 0.30 0.07 0.25 0.06 0.24 
 Rather agree 0.47 0.50 0.46 0.50 0.47 0.50 0.44 0.50 
 Completely agree 0.45 0.50 0.40 0.49 0.45 0.50 0.48 0.50 

Sample weights  0.86 0.17 0.97 0.19 0.86 0.17 0.87 0.17 
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Table 35. Regression models for matched data about the effect of having a child on 

change in life satisfaction among women (coefficients and significances43 ) 

  

Short-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2004/2005) 

Long-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2012/2013) 

(Intercept)  3.57 ** 5.08 ** 

Motherhood  0.64 *** 0.48 ** 

Satisfaction with life  -0.67 *** -0.73 *** 
Recent perceived well-being  0.10  0.07  

Education Primary or less  (R)  (R)  
 Vocational secondary 

school 

0.15  -0.38  
 General secondary -0.74 * -0.86 * 
 Tertiary -0.43  -0.82  

Satisfaction with housing  -0.05  -0.02  
Age  -0.01  -0.06 * 

Residence Capital city (R)  (R)  
 Bigger city -0.78 ** 0.45  
 Smaller city -0.85 ** -0.02  
 Village -0.71 * -0.29  

Subjective health status  0.08  0.02  
Equivalent household income  0.00  0.00  

Labour market status Employed  (R)  (R)  
 Self-employed -0.05  -0.72  
 Unemployed 0.57  -0.26  
 Other non-working 1.00  0.67  

Has ever experienced unemployment  -0.14  -0.14  

Workplace Owned by the state (R)  (R)  

 Private 0.12  0.48  
 Non respond -1.03  -0.68  

Last (most important) work Blue collar (R)  (R)  
 White collar  0.66 ** 0.79 ** 

Marital status Single (R)  (R)  
 Married living together 0.52 * 0.31  
 Married living apart -1.44 ** 0.73  
 Widow -0.17  0.02  
 Divorced 0.52 * 0.31  

Partner labour market status Does not have partner (R)  (R)  
 Employed -0.03  -0.36  
 Self-employed 0.30  -0.14  
 Retired -0.05  -0.72  
 Unemployed 0.03  -0.81  
 Other non-working -1.04  0.50  
 Does not answer 0.30  -0.50  

Satisfaction with partner Does not have partner (R)  (R)  
 Dissatisfied -1.67 ** -0.89  
 Neutral -0.67  0.34  
 Rather satisfied -0.41 * -0.04  
 Very satisfied 1.41  -1.11  

Number of children  -0.11  0.23  
Does not enjoy working Completely disagree (R)  (R)  

 Disagree -0.49 * -0.03  
 Rather agree 0.59 * 0.20  
 Completely agree -0.98  -3.01 ** 

Trust in the future Completely disagree (R)  (R)  
 Disagree 3.21 *** 3.21 ** 
 Rather agree 1.76 ** 2.47 ** 
 Completely agree 1.98 ** 3.04 ** 

Sample weights  -0.08  -0.84  

  

                                                      
43 Level of significance: ***<0.001, **<0.05, *<0.1  
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Table 36. Balance improvement in matching men to whom a child was born between 

2003 and 2004/2005 (treatment group) with men to whom no children were born in this 

period (control group)  

 

 Raw Data Matched Data 

 Treatment Control Treatment Control 

 Mean SD Mean SD Mean SD Mean SD 

Distance  0.32 0.22 0.04 0.09 0.32 0.22 0.30 0.22 

Satisfaction with life  6.81 1.84 6.55 1.89 6.81 1.84 6.72 1.54 

Recent perceived well-being  6.23 1.83 5.80 1.79 6.23 1.83 6.29 1.71 
Education Primary or less  (R) (R) (R) (R) (R) (R) (R) (R) 

 Vocational secondary 

school 

0.37 0.48 0.41 0.49 0.37 0.48 0.39 0.49 
 General secondary 0.32 0.47 0.25 0.43 0.32 0.47 0.26 0.44 
 Tertiary 0.18 0.39 0.15 0.36 0.18 0.39 0.20 0.41 

Satisfaction with housing  6.62 2.11 7.22 2.26 6.62 2.11 6.93 2.01 
Age  28.8

6 

5.90 46.8

2 

13.7

6 

28.8

6 

5.90 29.9

4 

9.08 
Residence Capital city (R) (R) (R) (R) (R) (R) (R) (R) 

 Bigger city 0.28 0.45 0.21 0.41 0.28 0.45 0.24 0.43 
 Smaller city 0.30 0.46 0.29 0.45 0.30 0.46 0.31 0.46 
 Village 0.35 0.48 0.38 0.49 0.35 0.48 0.39 0.49 

Subjective health status  8.50 1.59 7.13 2.27 8.50 1.59 8.50 1.63 
Equivalent household 

income 

 51.2

6 

39.7

8 

50.9

5 

42.7

9 

51.2

6 

39.7

8 

48.2

8 

30.0

5 Labour market status Employed (R) (R) (R) (R) (R) (R) (R) (R) 
 Self-employed 0.12 0.32 0.10 0.30 0.12 0.32 0.07 0.26 
 Unemployed 0.08 0.27 0.06 0.23 0.08 0.27 0.08 0.27 
 Other non-working 0.05 0.21 0.29 0.46 0.05 0.21 0.05 0.21 

 Has ever experienced  

 unemployment 

0.53 0.50 0.50 0.48 0.53 0.50 0.50 0.50 

Workplace Owned by the state (R) (R) (R) (R) (R) (R) (R) (R) 
 Private 0.61 0.49 0.42 0.49 0.61 0.49 0.59 0.49 
 Non respond 0.14 0.35 0.36 0.48 0.14 0.35 0.13 0.33 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) (R) (R) 
 White collar  0.29 0.46 0.26 0.44 0.29 0.46 0.32 0.47 

Marital status Single (R) (R) (R) (R) (R) (R) (R) (R) 
 Married living together 0.61 0.49 0.72 0.45 0.61 0.49 0.66 0.48 
 Married living apart 0.00 0.00 0.01 0.08 0.00 0.00 0.00 0.00 
 Widow 0.00 0.00 0.03 0.16 0.00 0.00 0.00 0.00 
 Divorced 0.06 0.24 0.07 0.25 0.06 0.24 0.04 0.20 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Employed 0.32 0.47 0.38 0.48 0.32 0.47 0.36 0.48 
 Self-employed 0.02 0.13 0.03 0.18 0.02 0.13 0.02 0.13 
 Retired 0.01 0.09 0.21 0.41 0.01 0.09 0.01 0.09 
 Unemployed 0.05 0.21 0.04 0.20 0.05 0.21 0.02 0.15 
 Other non-working 0.28 0.45 0.11 0.31 0.28 0.45 0.31 0.46 
 No answer 0.21 0.35 0.05 0.22 0.21 0.35 0.17 0.37 

Satisfaction with partner Does not have partner (R) (R) (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.01 0.09 0.03 0.18 0.01 0.09 0.01 0.09 
 Neutral 0.05 0.21 0.07 0.25 0.05 0.21 0.04 0.20 
 Rather satisfied 0.24 0.43 0.26 0.44 0.24 0.43 0.22 0.42 
 Very satisfied 0.50 0.50 0.42 0.49 0.50 0.50 0.51 0.50 
 No answer 0.10 0.30 0.04 0.19 0.10 0.30 0.10 0.30 

Number of children  0.94 1.15 1.61 1.07 0.94 1.15 0.98 0.92 
Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 

 Disagree 0.26 0.44 0.22 0.42 0.26 0.44 0.22 0.42 
 Rather agree 0.15 0.36 0.15 0.35 0.15 0.36 0.20 0.40 
 Completely agree 0.06 0.24 0.05 0.22 0.06 0.24 0.05 0.21 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) (R) (R) 
 Disagree 0.06 0.24 0.10 0.30 0.06 0.24 0.03 0.18 
 Rather agree 0.38 0.49 0.46 0.50 0.38 0.49 0.40 0.49 
 Completely agree 0.55 0.50 0.41 0.49 0.55 0.50 0.57 0.50 

Sample weights  1.00 0.21 1.04 0.20 1.00 0.21 0.99 0.20 
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Table 37. Regression models for matched data about the effect of having a child on 

change in life satisfaction among men (coefficients and significances44) 

  

Short-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2004/2005) 

Long-term effect 

(change in life 

satisfaction between 

2001/2002 and 

2012/2013) 

(Intercept)  4.08  -1.12  

Fatherhood  0.46 ** 0.28  

Satisfaction with life  -0.71 *** -0.78 *** 
Recent perceived well-being  -0.12  0.14  

Education Primary or less  (R)  (R)  
 Vocational secondary 

school 

0.50  -0.36  
 General secondary 0.44  0.09  
 Tertiary 1.07  0.89  

Satisfaction with housing  0.10  0.01  
Age  0.00  0.00  

Residence Capital city (R)  (R)  
 Bigger city 0.28  0.78  
 Smaller city 0.33  0.65  
 Village -0.08  0.65  

Subjective health status  0.07  0.07  
Equivalent household income  0.00  0.00  

Labour market status Employed (R)  (R)  
 Self-employed 0.42  0.26  
 Unemployed -1.78  0.51  
 Other non-working -2.10  -0.35  

Has ever experienced unemployment  0.19  0.06  

Workplace Owned by the state (R)  (R)  

 Private 0.29  0.09  
 Non respond 1.11  -0.91  

Last (most important) work Blue collar (R)  (R)  
 White collar  0.19  -0.77  

Marital status Single (R)  (R)  
 Married living together -0.22  -0.56  
 Divorced 0.03  -0.64  

Partner labour market status Does not have partner (R)  (R)  
 Employed 0.68  1.19 * 
 Self-employed 0.93  2.19 * 
 Retired 1.02  5.35 ** 
 Unemployed 1.00  2.47 ** 
 Other non-working 1.14 . 0.91  
 No answer 0.47  0.79  

Satisfaction with partner Does not have partner (R)  (R)  
 Dissatisfied -1.16  -1.45  
 Neutral -0.20  -0.83  
 Rather satisfied -0.04  -1.00  
 Very satisfied 0.30  -0.63  

Number of children  -0.10  0.21  
Does not enjoy working Completely disagree (R)  (R)  

 Disagree 0.46  0.33  
 Rather agree 0.23  0.04  
 Completely agree -0.04  -0.58  

Trust in the future Completely disagree (R)  (R)  
 Disagree -0.50  4.09 ** 
 Rather agree -0.92  3.93 ** 
 Completely agree -0.51  4.28 ** 

Sample weights  -0.18  0.59  

 

  

                                                      
44 Level of significance: ***<0.001, **<0.05, *<0.1 
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Table 38. Balance improvement in matching those who had retired between 2001/2002 

and 2004/2005 (treatment group) with those who did not (control group) 

 

 Raw Data Matched data 

 Treatment Control Control 

 Mean SD Mean SD Mean SD 

Distance  0.39 0.24 0.05 0.10 0.31 0.21 
Satisfaction with life  6.38 1.96 6.76 1.88 6.45 1.63 

Recent perceived well-being  5.60 1.87 6.03 1.76 5.68 1.57 
Sex Male (R) (R) (R) (R) (R) (R) 

 Female 0.50 0.50 0.56 0.50 0.50 0.50 
Education Primary or less  (R) (R) (R) (R) (R) (R) 

 Vocational secondary  0.30 0.46 0.32 0.47 0.30 0.46 
 General secondary  0.30 0.46 0.36 0.48 0.30 0.46 
 Tertiary 0.14 0.35 0.17 0.38 0.14 0.35 

Satisfaction with housing  7.26 2.33 7.02 2.26 7.21 2.07 
Age  52.70 6.56 35.95 10.16 50.70 6.00 

Residence Capital city (R) (R) (R) (R) (R) (R) 
 Bigger city 0.20 0.40 0.22 0.41 0.20 0.40 
 Smaller city 0.33 0.47 0.29 0.45 0.27 0.45 
 Village 0.34 0.47 0.38 0.49 0.39 0.49 

Subjective health status  6.34 2.26 7.84 1.90 6.43 1.84 
Equivalent household income  54.47 48.87 49.91 37.79 53.38 36.89 

Labour market status Employed (R) (R) (R) (R) (R) (R) 
 Self-employed  0.12 0.32 0.08 0.27 0.07 0.25 
 Unemployed 0.07 0.26 0.07 0.25 0.05 0.22 
 Other non-working 0.09 0.29 0.14 0.34 0.06 0.22 

Has ever experienced unemployment 0.36 0.44 0.48 0.43 0.49 0.33 
Workplace Owned by the state (R) (R) (R) (R) (R) (R) 

 Private 0.47 0.50 0.47 0.50 0.42 0.49 
 Non respond 0.18 0.39 0.21 0.41 0.13 0.33 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) 
 White collar  0.31 0.46 0.39 0.49 0.33 0.47 
 Never had. no respond 0.01 0.09 0.00 0.03 0.00 0.00 

Marital status Single (R) (R) (R) (R) (R) (R) 
 Married living together 0.74 0.44 0.64 0.48 0.80 0.40 
 Married living apart 0.02 0.13 0.01 0.09 0.01 0.12 
 Widow 0.09 0.29 0.02 0.15 0.09 0.29 
 Divorced 0.11 0.32 0.08 0.28 0.06 0.25 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) 
 Employed 0.37 0.48 0.45 0.50 0.41 0.49 
 

 

Self-employed 0.05 0.22 0.08 0.27 0.05 0.22 
 Retired 0.27 0.45 0.06 0.24 0.28 0.45 
 Unemployed 0.04 0.19 0.05 0.21 0.03 0.17 
 Other non-working 0.05 0.22 0.14 0.26 0.03 0.17 
 Do not answer 0.03 0.17 0.08 0.27 0.02 0.13 

Satisfaction with the partner Does not have partner (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.06 0.24 0.05 0.21 0.06 0.24 
 Neutral 0.08 0.27 0.08 0.27 0.07 0.26 
 Rather satisfied 0.28 0.45 0.28 0.45 0.30 0.46 
 Very satisfied 0.36 0.48 0.32 0.47 0.38 0.49 
 Does not answer 0.03 0.17 0.06 0.24 0.01 0.12 

Number of female children  0.99 0.99 0.88 1.10 1.00 0.87 
Number of male children  1.04 1.01 0.95 1.12 1.06 0.92 
Number of grandchildren  0.06 0.24 0.02 0.15 0.05 0.22 

Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) 
 Disagree 0.19 0.39 0.22 0.42 0.17 0.38 
 Rather agree 0.16 0.36 0.15 0.35 0.16 0.36 
 Completely agree 0.06 0.25 0.04 0.20 0.06 0.24 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) 
 Disagree 0.10 0.30 0.08 0.27 0.09 0.28 
 Rather agree 0.52 0.50 0.46 0.50 0.60 0.49 
 Completely agree 0.32 0.47 0.44 0.50 0.30 0.46 

Sample weights  1.02 0.20 1.00 0.21 1.00 0.16 
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Table 39. Balance improvement in matching those who retired voluntary between 

2001/2002 and 2004/2005 (treatment group) with those who retired involuntary (control 

group) 

 

 Raw Data Matched data 

 Treatment Control Control 

 Mean SD Mean SD Mean SD 

Distance  0.68 0.22 

 

0.35 0.25 0.63 0.23 
Satisfaction with life  6.80 1.86 6.07 1.99 6.59 1.84 

Recent perceived well-being  5.96 1.69 5.32 1.89 6.03 1.48 
Sex Male (R) (R) (R) (R) (R) (R) 

 Female 0.47 0.50 0.53 0.50 0.55 0.50 
Education Primary or less  (R) 0.37 (R) (R) (R) (R) 

 Vocational secondary  0.24 0.43 0.35 0.48 0.30 0.46 
 General secondary  0.34 0.47 0.28 0.45 0.32 0.47 
 Tertiary 0.24 0.43 0.07 0.25 0.22 0.41 

Satisfaction with housing  7.54 2.17 

 

7.07 2.35 7.46 2.23 
Age  55.42 4.01 

 

51.20 6.86 54.40 4.20 
Residence Capital city (R) (R) (R) (R) (R) (R) 

 Bigger city 0.25 0.43 0.16 0.36 0.22 0.42 
 Smaller city 0.30 0.46 0.35 0.48 0.23 0.42 
 Village 0.24 0.43 0.41 0.49 0.29 0.46 

Subjective health status  7.06 2.03 

 

5.72 2.29 7.22 1.74 
Equivalent household income  68.02 64.09 

 

43.11 21.04 58.25 25.01 
Labour market status Employed (R) (R) (R) (R) (R) (R) 

 Self-employed  0.13 0.34 0.09 0.28 0.07 0.26 
 Unemployed 0.01 0.11 0.12 0.33 0.01 0.11 
 Other non-working 0.06 0.24 0.11 0.30 0.07 0.26 

Has ever experienced unemployment 0.25 0.43 0.46 0.50 0.30 0.46 
Workplace Owned by the state (R) (R) (R) (R) (R) (R) 

 Private 0.53 0.50 0.42 0.50 0.57 0.50 
 Non respond 0.09 0.29 0.24 0.43 0.08 0.28 

Last (most important) work Blue collar (R) (R) (R) (R) (R) (R) 
 White collar  0.44 0.50 0.23 0.42 0.39 0.49 
 Never had. no respond 0.01 0.08 0.01 0.12 0.00 0.00 

Marital status Single (R) (R) (R) (R) (R) (R) 
 Married living together 0.77 0.42 0.70 0.46 0.80 0.40 
 Married living apart 0.01 0.11 0.02 0.14 0.01 0.11 
 Widow 0.10 0.30 0.09 0.28 0.09 0.29 
 Divorced 0.09 0.29 0.14 0.35 0.09 0.30 

Partner labour market status Does not have partner (R) (R) (R) (R) (R) (R) 
 Employed 0.35 0.48 0.36 0.48 0.38 0.49 
 

 

Self-employed 0.07 0.26 0.05 0.21 0.06 0.23 
 Retired 0.33 0.47 0.22 0.41 0.34 0.48 
 Unemployed 0.02 0.14 0.05 0.23 0.01 0.08 
 Other non-working 0.03 0.22 0.08 0.26 0.02 0.14 
 Do not answer 0.02 0.17 0.01 0.08 0.00 0.00 

Satisfaction with the partner Does not have partner (R) (R) (R) (R) (R) (R) 
 Dissatisfied 0.06 0.23 0.05 0.23 0.03 0.18 
 Neutral 0.07 0.26 0.07 0.26 0.04 0.19 
 Rather satisfied 0.30 0.46 0.25 0.43 0.40 0.49 
 Very satisfied 0.37 0.49 0.37 0.48 0.34 0.48 
 Does not answer 0.02 0.49 0.03 0.16 0.00 0.00 

Number of female children  0.97 0.96 0.99 0.95 0.87 0.78 
Number of male children  1.04 0.99 1.06 1.04 0.92 0.74 
Number of grandchildren  0.13 0.34 0.09 0.29 0.13 0.34 

Does not enjoy working Completely disagree (R) (R) (R) (R) (R) (R) 
 Disagree 0.14 0.31 0.24 0.43 0.11 0.32 
 Rather agree 0.11 0.31 0.20 0.40 0.07 0.26 
 Completely agree 0.08 0.28 0.05 0.21 0.06 0.25 

Trust in the future Completely disagree (R) (R) (R) (R) (R) (R) 
 Disagree 0.10 0.30 0.11 0.31 0.06 0.23 
 Rather agree 0.48 0.50 0.54 0.50 0.46 0.50 
 Completely agree 0.36 0.48 0.28 0.45 0.44 0.50 

Sample weights  0.98 0.17 1.04 0.22 0.95 0.18 
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Table 40. Regression models about the effect of retirement on change in life satisfaction 

between 2001/2002 and 2004/2005 (coefficients and significances45) 

 

 
Raw data 

correlation 

Raw data 

regression 

adjustment 

Matched data 

regression 

adjustment  

(Intercept)  0.04  3.79 *** 2.46 ** 

Retirement  0.13  0.07  -0.07  

Satisfaction with life    -0.74 *** -0.85 *** 

Recent perceived well-being    0.08 *** 0.12 ** 

Sex Male   (R)  (R)  

 Female   0.15 ** -0.02  

Education Primary or less    (R)  (R)  

 Vocational secondary    0.22 ** 0.11  

 General secondary    0.22 ** 0.31  

 Tertiary   0.50 *** 0.58  

Satisfaction with housing    0.06 *** 0.11 ** 

Age    -0.01 ** 0.01  

Residence Capital city   (R)  (R)  

 Bigger city   0.00  0.19  

 Smaller city   -0.08  0.12  

 Village   -0.06  0.11  

Subjective health status    0.04 ** 0.04  

Equivalent household income    0.01 *** 0.01 * 

Labour market status Employed   (R)  (R)  

 Self-employed    0.00  -0.49  

 Unemployed   -0.05  0.30  

 Other non-working   0.13  0.48  

Has ever experienced unemployment    -0.15 ** -0.48 ** 

Workplace Owned by the state   (R)  (R)  

 Private   0.01  0.02  

 Non respond   -0.13  -0.27  

Last (most important) work Blue collar   (R)  (R)  

 White collar    0.06  -0.24  

 Never had. no respond   0.97 * 0.49 ** 

Marital status Single   (R)    (R)  

 Married living together   0.17 * -0.32  

 Married living apart   -0.06  0.42  

 Widow   -0.20  0.14  

 Divorced   -0.18 * -0.21  

Partner labour market status Does not have partner   (R)  (R)  

 Employed   0.11  1.63 ** 

 Self-employed   0.09  1.17  

 Retired   0.02  1.37 * 

 Unemployed   -0.05  1.58 * 

 Other non-working   0.12  1.70 ** 

 Does not answer   0.13  0.42  

Satisfaction with the partner Does not have partner   (R)  (R)  

 Dissatisfied   -0.30  -0.70  

 Neutral   -0.03  -0.74  

 Rather satisfied   0.10  -0.85  

 Very satisfied   0.32  -0.43  

Number of female children    0.01  0.23 ** 

Number of male children    0.01  0.12  

Number of grandchildren    0.32 ** 0.27  

Does not enjoy working Completely disagree   (R)  (R)  

 Disagree   -0.02  0.20  

 Rather agree   -0.05  0.07  

 Completely agree   0.02  0.05  

Trust in the future Completely disagree   (R)  (R)  

 Disagree   -0.03  -0.40  

 Rather agree   0.10  -0.33  

 Completely agree   0.22  -0.16  

Sample weights    0.04  0.34  

                                                      
45 The level of significance: ***<0.001, **<0.05, *<0.1 



 

 

Table 41. Regression models about the effect of retirement on change in life satisfaction 

between 2001/2002 and 2012/2013 (coefficients and significances46) 

 

 
Raw data 

correlation 

Raw data 

regression 

adjustment 

Matched data 

regression 

adjustment  

(Intercept)  0.34 *** 5.27 *** 4.72 *** 

Retirement  0.14  -0.01  -0.16  

Satisfaction with life    -0.81 *** -0.83 *** 

Recent perceived well-being    0.08 *** -0.02  

Sex Male   (R)  (R)  

 Female   -0.04  0.08  

Education Primary or less    (R)  (R)  

 Vocational secondary    0.05  0.19  

 General secondary    0.06  0.66 ** 

 Tertiary   0.23 * 0.54  

Satisfaction with housing    0.08 *** 0.10 ** 

Age    0.00  0.03 ** 

Residence Capital city   (R)  (R)  

 Bigger city   -0.09  0.03  

 Smaller city   -0.11  0.07  

 Village   -0.08  0.03  

Subjective health status    0.05 ** 0.07  

Equivalent household income    0.01 *** 0.00  

Labour market status Employed   (R)  (R)  

 Self-employed    -0.04  0.06  

 Unemployed   -0.33  0.21  

 Other non-working   -0.35 * 0.09 ** 

Has ever experienced unemployment    -0.15 ** -0.63  

Workplace Owned by the state   (R)  (R)  

 Private   0.10  0.39  

 Non respond   0.13  0.05 ** 

Last (most important) work Blue collar   (R)  (R)  

 White collar    0.09  0.22  

 Never had. no respond   -1.11  -0.54 *** 

Marital status Single   (R)  (R)  

 Married living together   -0.11  0.19  

 Married living apart   -0.13  -0.72  

 Widow   -0.52 ** -0.43  

 Divorced   -0.45 *** -0.36  

Partner labour market status Does not have partner   (R)  (R)  

 Employed   0.15  -0.07  

 Self-employed   0.15  -0.17  

 Retired   -0.14  -0.34  

 Unemployed   0.19  -0.11  

 Other non-working   -0.20  0.54  

 Does not answer   0.12  0.20  

Satisfaction with the partner Does not have partner   (R)  (R)  

 Dissatisfied   -0.35  0.78  

 Neutral   -0.11  0.09  

 Rather satisfied   0.15  0.05  

 Very satisfied   0.35  0.71  

Number of female children    0.05 * 0.17 * 

Number of male children    0.06 * 0.02  

Number of grandchildren    0.22  -0.09  

Does not enjoy working Completely disagree   (R)  (R)  

 Disagree   -0.06  -0.20  

 Rather agree   -0.12  0.04  

 Completely agree   0.06  0.20  

Trust in the future Completely disagree   (R)  (R)  

 Disagree   -0.39 ** -0.99 ** 

 Rather agree   -0.03  -0.22  

 Completely agree   0.11  -0.47  

Sample weights    -0.70 *** -1.37 ** 

                                                      
46 The level of significance: ***<0.001, **<0.05, *<0.1  
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Table 42. Regression models about the effect of voluntarism retirement on change in 

life satisfaction between 2001/2002 and 2004/2005 (coefficients and significances47) 

 

 
Raw data 

correlation 

Raw data 

regression 

adjustment 

Matched data 

regression 

adjustment  

(Intercept)  0.35 ** 3.97 * 1.41  

Voluntarism of retirement  -0.28  0.31  0.82 *** 

Satisfaction with life    -0.79 *** -0.83 *** 

Recent perceived well-being    0.14  0.20 ** 

Sex Male   (R)  (R)  

 Female   -0.22  -0.08  

Education Primary or less    (R)  (R)  

 Vocational secondary    -0.23  -0.76 ** 

 General secondary    0.11  -0.16  

 Tertiary   0.26  -0.13  

Satisfaction with housing    0.09 * 0.15 ** 

Age    -0.02  0.02  

Residence Capital city   (R)  (R)  

 Bigger city   0.56  0.88 ** 

 Smaller city   0.20  0.29  

 Village   0.05  0.01  

Subjective health status    -0.05  -0.13 * 

Equivalent household income    0.00  0.00  

Labour market status Employed   (R)  (R)  

 Self-employed    -0.65 * -0.79 * 

 Unemployed   0.69  -0.12  

 Other non-working   0.89  0.13  

Has ever experienced unemployment    -0.71 ** -0.57 ** 

Workplace Owned by the state   (R)  (R)  

 Private   -0.28  -0.12  

 Non respond   -0.64  -0.09  

Last (most important) work Blue collar   (R)  (R)  

 White collar    -0.24  -0.55  

 Never had. no respond   0.20  0.78  

Marital status Single   (R)  (R)  

 Married living together   0.52  2.00 * 

 Married living apart   0.63  2.08  

 Widow   0.62  1.60  

 Divorced   0.50  1.80 ** 

Partner labour market status Does not have partner   (R)  (R)  

 Employed   -0.08  2.56 * 

 Self-employed   -0.07  2.84 ** 

 Retired   0.13  2.86 ** 

 Unemployed   -0.26  3.41 ** 

 Other non-working   0.29  2.91 * 

 Does not answer   0.19  1.47  

Satisfaction with the partner Does not have partner   (R)  (R)  

 Dissatisfied   0.12  -3.26 ** 

 Neutral   -0.25  -3.09 ** 

 Rather satisfied   0.29  -2.45 * 

 Very satisfied   0.54  -2.33 * 

Number of female children    0.27 ** 0.07  

Number of male children    0.19 * 0.13  

Number of grandchildren    0.44  0.41  

Does not enjoy working Completely disagree   (R)  (R)  

 Disagree   0.56 * 0.18  

 Rather agree   0.35  -0.36  

 Completely agree   0.05  -0.11  

Trust in the future Completely disagree   (R)  (R)  

 Disagree   -0.58  -0.48  

 Rather agree   -0.83 * -0.48  

 Completely agree   -0.49  -0.37  

Sample weights    0.95  0.42  

                                                      
47 The level of significance: ***<0.001, **<0.05, *<0.1 
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Table 43. Regression models about the effect of voluntarism retirement on change in 

life satisfaction between 2001/2002 and 2012/2013 (coefficients and significances48) 

 

 
Raw data 

correlation 

Raw data 

regression 

adjustment 

Matched data 

regression 

adjustment  

(Intercept)  0.57 *** 5.17 ** -0.10  

Voluntarism of retirement  -0.09  -0.12  0.58 ** 

Satisfaction with life    -0.90 *** -0.82 *** 

Recent perceived well-being    -0.15 * -0.07  

Sex Male   (R)  (R)  

 Female   0.07  0.08  

Education Primary or less    (R)  (R)  

 Vocational secondary    0.02  -0.11  

 General secondary    0.80 * 1.12 ** 

 Tertiary   0.78  0.63  

Satisfaction with housing    0.11 * 0.09  

Age    0.01  0.01  

Residence Capital city   (R)  (R)  

 Bigger city   0.44  0.78 * 

 Smaller city   0.39  0.10  

 Village   0.43  0.08  

Subjective health status    0.16 ** 0.12  

Equivalent household income    0.00  0.00  

Labour market status Employed   (R)  (R)  

 Self-employed    0.49  0.40  

 Unemployed   -0.15  -1.47  

 Other non-working   -0.95  0.26  

Has ever experienced unemployment    -0.85 ** -0.99  

Workplace Owned by the state   (R)  (R)  

 Private   0.35  0.51  

 Non respond   0.98  0.16  

Last (most important) work Blue collar   (R)    (R)  

 White collar    -0.02  -0.10  

 Never had. no respond   -1.04  -1.66 ** 

Marital status Single   (R)  (R)  

 Married living together   1.44 * 3.45 ** 

 Married living apart   1.39  3.42 * 

 Widow   0.48  1.43  

 Divorced   0.63  1.86 * 

Partner labour market status Does not have partner   (R)  (R)  

 Employed   0.16  -1.24  

 Self-employed   0.02  -1.20  

 Retired   -0.26  -1.60  

 Unemployed   -0.22  -3.07  

 Other non-working   1.00  0.47  

 Does not answer   -0.45  -0.88  

Satisfaction with the partner Does not have partner   (R)  (R)  

 Dissatisfied   1.04  1.17  

 Neutral   -0.30  0.02  

 Rather satisfied   0.11  0.35  

 Very satisfied   0.19  0.16  

Number of female children    -0.04  -0.06  

Number of male children    -0.15  -0.07  

Number of grandchildren    -0.23  -0.14  

Does not enjoy working Completely disagree   (R)  (R)  

 Disagree   -0.11  -0.13  

 Rather agree   0.26  -0.46  

 Completely agree   0.40  0.22  

Trust in the future Completely disagree   (R)  (R)  

 Disagree   -1.00 * -0.51  

 Rather agree   -0.29  0.45  

 Completely agree   -0.16  0.39  

Sample weights    -1.09  1.65  

                                                      
48 The level of significance: ***<0.001, **<0.05, *<0.1 
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Figure 16. The difference in propensity score between the treatment group (those to 

whom a child was born in the observation period) and control groups for estimating the 

effect of parenthood 

 

Figure 17. The difference in propensity score between the treatment group (those to 

whom the first child was born in the observation period) and control groups for 

estimating the first child effect 
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Figure 18. The difference in propensity score between the treatment group (those to 

whom the second child was born in the observation period) and controls group for 

estimating the second child effect 

 

Figure 19. The difference in propensity score between the treatment group (women to 

whom a child was born in the observation period) and control groups for estimating the 

motherhood effect 
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Figure 20. The difference in propensity score between the treatment (men to whom a 

child was born in the observation period) and control groups for estimating the 

fatherhood effect 

 

Figure 21. The difference in propensity score between the treatment (retirees) and 

control groups (non-retirees) for estimating the retirement effect 
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Figure 22. The difference in propensity score between the treatment (voluntary retires) 

and control groups (involuntary retires) for estimating the voluntary retirement effect 

 

Figure 23. The difference in propensity score between the treatment (full nest 2) and 

control groups (the rest of the population) for estimating the household life-cycle effect 
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