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INTRODUCTION 

 

Energy market participants face several risks in making operational and strategic decisions 

in the short or longer term. The handling and measurement of the majority of these risks 

have developed simultaneously with techniques commonly used in financial markets or as 

an extension of these methods adapted to the peculiarities of the energy market.  

 In parallel with the progress of liberalisation, EU objectives are bringing into 

prominence the necessity of realising successful energy efficiency, energy saving and the 

reduction of consumption. At the same time, those basic conditions that permit periodic 

checks of energy consumptions are gradually initiated with the spread of smart metering 

which often allows online tracking. Besides these basically micro level tendencies 

(interpreted at the level of the consumer) there are system level tendencies that manifest 

themselves, for example, in the handling of system level balancing problems or in the effort 

to decrease system level loss. 

 Although the source of the highest potential risks on the energy market is basically 

price, as a result of the above, consumer level behaviour becomes increasingly important 

besides the portfolio level and has growing business value from the points of view of not 

only energy companies and consumers, but also from the perspective of system operators.1 

On the electricity market, which is related to the topic of this paper – but also on other 

markets – there are more and more applications where it is not enough to be aware of the 

(expected) consumption but its uncertainty also needs to be considered, and the resulting 

risk needs to be dealt with.  

Such a field is, for example, determining the portfolio level electricity demand 

(scheduling), hedging the portfolio in the long term, or the calculation of tariffs in relation 

to individual consumers.  Certainly the above listed examples are interrelated on the one 

hand, cross-sectionally (the portfolio level curve is the sum of consumer curves) and on the 

other hand regarding time series (ex-post energy costs that occur as a result of forecasting 

errors while scheduling is added to the portfolio during the financial year).  

                                                           
1 The proportion of the effect of consumer behaviour depends on the current energy market circumstances, 

such as energy market regulations and political decisions, as it is difficult to promote and encourage consumer 

saving with a downward pressure on prices. 
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Highlighting the importance of the topic from a financial perspective, let us examine 

the dayahead hourly spot and balancing energy price2 trends in Hungary since the January 

of 2016.  

Figure 1: The historical variation of balancing energy and dayahead hourly prices 

  

Source: author’s (partly) own calculations based on HUPX Ltd.3 and MAVIR Ltd.4data and author’s own 

figure. 

Highlighting only a few weeks’ dayahead hourly spot prices of the January months of 

2016 and 2017 it can be seen that the supply side shocks (such as power plant outages, the 

lack of low-priced import power, etc.) can make off-peak, but especially peak consumption 

more expensive. Besides, observing the monthly average values, it is obvious what position 

the purchasing of positive (upward) balancing energy or the sell of negative (downward) 

balancing energy mean (compared to spot prices) for the ex-post trading and settlement of 

actual deviations from the schedule resulting from over- or underconsumption (see the left 

side of Figure 1); and how important the evaluation consumption-related volume 

uncertainty is.  

Among the supply shocks it is definitely worth mentioning renewable energy 

producers (whose making headway is not at all unrelated to political fights). They increase 

                                                           
2 For the exact definitions and explanations of terms used in the introduction see the subsequents chapters of 

the dissertation. 
3 Data source: www.hupx.hu, the company operating the Hungarian power exchange market: Hungarian 

Power Exchange (HUPX) Ltd. 
4 Data source: www.mavir.hu, the Hungarian power transmission system operator company: MAVIR 

Hungarian Independent Transmission Operator Company Ltd. 
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the volatility of prices because of the weather-dependent uncertainty of supply, so they 

mean risk to the power system imbalance. High power price – thinking about the relatively 

low price-inflexibility of consumption – may also be caused by demand side shocks5, 

though they are ceteris paribus less likely to result in truly extreme phenomena in terms of 

prices or volumes.  

It is often difficult and/or expensive to ensure the supply-demand balance of the 

power system at all times by the controlling of the supply (power plant) side. For this 

reason, it is not only the possible role of consumer habits but also their uncertainty in 

realising supply-demand balance that come to the fore. This is due to the fact that consumer 

habits are somewhat more adaptable, manageable. 

The need for the quantification of the latter has greater emphasis on more developed 

markets. As an example, demand side management activities may be mentioned. On these 

markets it is a priority to achieve consumption reduction by tariff schemes in the short term 

(which means the involvement of the consumer in the balancing procedure, among others) 

or to guarantee longer term energy saving and to investigate related investment decisions. 

In these areas, the explicit consideration of risk cannot be avoided in any way, as these 

questions relate to establishing new pricing logic as well. 

Obviously, regarding the practical tasks above, it would be way beyond the scope of 

this research to provide comprehensive answers. The aim is much rather to contribute to 

overcoming the above listed challenges by the methodologically well-grounded 

consideration of consumption risks. 

In connection with the magnitude of the uncertainty of consumption, let us look at the 

following very simple statistical measures regarding the Hungarian system load, and an 

individual consumption curve (see Table 1).  

The role of uncertainty is naturally much greater in individual consumption curves. 

Therefore, dispersion measures are typically higher (e.g.: standard deviation – often used to 

measure risk –, or the range obtained as a result of the subtraction of minimal from 

maximal values), though the degree differs by consumer. Such results are of course rough 

estimations, and do not have any fundamental explanation. 

                                                           
5 In extreme summer heat, the more intensive use of air conditioners may cause extreme consumption peaks. 

For example, year 2015 was the first year where the yearly summer peak load exceeded the yearly winter 

peak load (6 456 vs. 6 447 [𝑀𝑊]).   
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Table 1: Descriptive statistics of the Hungarian system load and a consumer curve 

Time series Mean 
Standard 

deviation 
Minimum Maximum 

System load [𝑀𝑊] 4933.7 682.7 3047.7 6486.6 

measure expressed in the ratio of the mean [%] 13.8 61.8 131.5 

Individual curve [𝑘𝑊] 8.0 5.3 2.9 25.8 

measure expressed in the ratio of the mean [%] 65.5 35.8 321.4 

Source: author’s own calculations and table. 

As it is conventionally done in the literature dealing with a variety of risks, 

measuring risks is mostly expressed in money terms. This is also convenient for the 

investigation of energy markets (as financial losses may occur whether it is a wholesale 

transaction or a retail level consumer contract). In connection with the topic of this 

dissertation, however, apart from the financial processes the physical processes can also be 

interpreted and evaluated in themselves. For this reason, the analyses in this study use 

primarily consumption (load) time series. In international, especially English language 

literature, the use of the term load curve is more widespread than consumption curve. The 

difference between the two is, inter alia, in measurement unit; in this dissertation load is 

usually measured in [𝑘𝑊] and consumption in [𝑘𝑊ℎ], nevertheless, the results and 

conclusions are independent from the terms used or measurement units.6,7  

The purpose of this study is on the one hand, the appropriate modelling of 

consumption; and on the other, to develop a method for the appropriate measurement of 

consumption risks that is methodologically well-grounded and can also be easily 

interpreted, applied and used in practice. For the latter, only ad-hoc measures and rules of 

thumb exist; and classical techniques provide few opportunities, especially for modelling 

uncertainty.  

There is a wide range of (far from uniform) literature on consumer profiles and their 

applications. These profiles are achieved as a result of using basically quantitative methods, 

and they describe how consumption is dependent on various seasonal, calendar or other 

effects8. 

                                                           
6 In a quarter-hourly time series the average 1 [𝑘𝑊] load realised in a given quarter-hour equals 1 [𝑘𝑊] ∙
1

4⁄ [ℎ] = 1
4⁄ [𝑘𝑊ℎ] consumption.   

7 A similar difference in measuring units exists in natural gas industry where consumption is measured either 

in [𝑚3] or [𝑇𝐽], but since the gas year of 2015/2016 nomination (the submission of gas demand, the natural 

gas counterpart of scheduling) is done in [𝑘𝑊ℎ] here as well. 
8 Based on the literature, there is no single, general-scope definition. 
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The following contour plot (which will be described in more detail in this paper) 

demonstrates how much consumption can vary in time: it gives a compact picture of the 

yearly (𝑦 axis) and daily (𝑥 axis) behaviour by indicating different load levels with 

different colours. Throughout this dissertation, the comparison of such plots will be very 

suggestive of how much heterogeneous the patterns are that need to be captured during 

profiling, already at the level of expected values.  

Figure 2: The contour plot of a portfolio time series  

 

Source: author’s own figure (R). 

 Since consumption itself is stochastic, its risk, uncertainty or portfolio effects also 

need to be taken into consideration in a similar way as it is usually done in financial time 

series. The fundamental difference in its handling is the result of the fact that consumption 

(and its uncertainty, as we shall see) is much more likely to lend itself to being modelled by 

various fundamental variables than the financial time series themselves. Hence the range 

of possible methods that are applicable is necessarily different, although some degree of 

analogy or parallelism exists. What is meant in this dissertation by modelling of 

‘consumption-related uncertainty’, that is, modelling of ‘volume risk’, is the description of 

the behaviour of irregular component in consumption.  

In the completion of the empirical results in this paper – through the relaxation of the 

requirement of the constant standard deviation of error terms that applies to classical 

regression time series – the standard errors calculated are conditional (time-dependent) with 

respect to given independent variables. This model-based calculation of conditional 

standard errors is definitely a new outcome; such empirical results are few and scarce in the 
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related literature. In this dissertation results seen in Figure 3 will also be computed for 

individual curves. The investigation will focus on when and to how extent the uncertainty 

of consumption is higher or lower, and what fundamental explanation can be provided.  

Figure 3: The average of conditional standard errors in a consumer load curve (winter weekdays) 

 

Source: author’s own calculations (R) and figure (R). 

In parallel with the logic of the previous two illustrative research results, the 

dissertation examines the following fields: 

- how various consumption time series can be characterised; which so-called stylized 

facts that are otherwise described by any model of consumption need to be captured 

in the course of profiling as well; 

- what trends can be explored in consumption uncertainty of various consumption 

time series; can (multiple) seasonal or any other regular pattern be observed that 

otherwise also characterises the consumption time series themselves; 

- how all of the above can be modelled with a special focus on, for example, the 

simultaneous handling of the nonlinearity – especially (among others) weather-

dependency – and heteroscedasticity (non-constant standard deviation over time). 

The following hypotheses have been formed to investigate the above questions, fields: 

- H1: In electricity consumption curves the intraday seasonality is the primary source 

of variance in the curves. 

- H2: As compared to the so-called classical methods (that rely on the typical daily 

profile) the extraction of the relevant individual features of the curve opens a new 

avenue towards the development of more realistic profiles. 
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- H3: Assuming constant standard deviation of the residuals results in either the 

under- or in certain periods the overestimation of the volume risk.   

- H4: Volume risk is not constant over time, but varies depending on various 

exogenous variables, seasonal and calendar effects.  

The first chapter deals with fields of application of consumer profiling. It is 

described what specifically is meant by profile and profile-risks, and the one (volume risk) 

that receives special emphasis in this paper.  

Subsequently, stylized facts will be examined for various consumption time series, 

with particular attention to multiple seasonality and the highly different behaviour of 

stochastic errors for each curve. These methods, though rarely used in practice, point to 

important relationships that may not be obvious based on, for example, a time series figure. 

The perspective taken during the analyses – in light of the results of previous studies 

(described later on in this paper) underlines the usefulness and justifiability of the novel 

viewpoint of this dissertation.  

The second chapter is a review of the essential literature. The most commonly used 

methodological – basically various clustering and regression – techniques are overviewed 

briefly. A separate section is devoted to the most important aspects of the treatment of 

temperature variables. Highlighting the substantive part of a previous publication of the 

author of this dissertation, it is shown through the example of a natural gas consumption 

time series how the role of irregular effects of temperature or its magnitude can be 

measured and how nonlinearity can be dealt with in an elegant way. The chapter will also 

cover the reasons why these kinds of techniques are not so advantageous in profiling – 

whether it be methodological issues (e.g.: too many preadjustment steps), problems in 

interpretation or the applicability of the results (if, for example, some relevant features 

remain hidden).  

The third chapter discusses the methods used to reach the empirical results of this 

study. As some of these results are common in stochastic time series analysis the emphasis 

is rather on outline the framework of methods used. It describes the essence of the periodic 

autoregressive (PAR) model9 and the possible procedures used for analyses. This is lesser 

known in practice, but is essentially an extension of the classical ARMA model and its 

useful properties can be exploited both in integrated and stationary time series.  

                                                           
9 Periodic autoregresive model. 
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Figure 4: Results of mixture clustering on the example of daily average temperature – natural gas 

consumption 

 

Sources: author’s own calculations (R) and figure (R). 

The chapter comprises mostly of the discussion of the methodological (and 

theoretical) background of mixture models (especially the Gaussian mixture model). The 

detailed discussion is needed, inter alia, because this methodology has seldom been used so 

far in practice in the field of energy. Therefore, an empirical example will be used to 

illustrate (on domestic natural gas consumption data) how the method can be applied for the 

modelling and capturing of the relationships within a varying covariance structure of the 

variables. The assumption (starting point) of the mixture model has a central role both in 

profiling and in measuring the uncertainty of consumption, which is that the covariance 

structure of the variables in the sample is not constant: this is markedly important both in 

modelling the expected value and regarding standard error. The figure is telling of this 

logic: the relationship between variables differ by ‘groups of dots’ and it is clear that the 

dispersion of these ‘groups of dots’ are not the same either. The former phenomenon will 

manifest itself in capturing nonlinearity and heteroscedasticity. 

The chapter contains a number of formulas and interpretations that do not appear 

even in foreign language literature, although they show more distinctly how mixture model 

based regression and classical multivariate regression are related, which is extremely useful 

regarding the results of this study. At the end of the chapter there will be a discussion of the 

use of mixture models in profiling in previous studies that have different focus from this 

dissertation, thereby providing the transition to the introduction of the new empirical 

results.  

The fourth chapter contains the empirical research results of this study concerning 

the creation of consumer profiles and the measurement of their volume risk. In the sections 
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on both profiling and uncertainty, classical techniques appear partly to serve as a 

benchmark, to provide a basis for comparison of the new results, partly with an exploratory 

purpose.  

It will also be examined how the framework of mixture models can add to the 

creation of so-called profile groups, that is, groups of consumers that can be characterised 

by similar consumer behaviours. To illustrate the difference, the results are compared to a 

classical (regression-based) technique. It is also shown what can be considered as a 

‘typical’ consumption pattern using the logic of the new methodology. 

Using the results of the methods of classical regression time series models, it was 

examined what – basically heteroscedastic – behaviour can be observed in residuals, the 

behaviour of which may also differ by consumer. The findings are then compared to a 

simpler, so-called heuristic indicator that is used in practice to measure volume risk. It will 

also be shown that by an appropriate modelling of covariance structure the variation of 

time-dependent standard error can be modelled well with mixture regression. 

On the whole it can be said that the results of this dissertation contribute to 

Hungarian and international research results and applications, inter alia, the 

following: 

- In the field of consumer profiling this thesis examines an area which takes into 

account uncertainty in defining consumer profile, which is more suited to the 

requirements continuously emerging in practice. 

- The methodology used here – which has seldom been used in profiling – is such that 

it can model both consumption and its uncertainty as a function of various 

exogenous variables that mean basically seasonal or calendar effects. 

- It is shown that the mixture model – which has various favourable properties even 

purely methodologically – can capture the fundamental reasons of consumption, to 

which the formation of profile groups has already given very good (indirect) 

evidence.  

- Mixture regression is suitable for capturing the heteroscedastic behaviour of the 

error term, which is evidenced by investigating the consistency of errors and the 

calculated conditional standard deviations and the underlying factors. It is also 

shown that using mixture regression, it is possible – on average – to reach a much 
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narrower confidence interval compared to the practically almost unusably wide 

interval of classical techniques.  

- The dissertation has a number of implications building on which either results 

shown here or their energy market (for instance, natural gas market) application 

may also open avenues for further research. 

It is a pronounced and by all means highly important outcome of the dissertation that it 

implements the Gaussian mixture regression building on the R Project software package. 

Besides the completion of the listed tasks and the evaluation of the results, this is an 

important milestone of this research.   
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1. APPLICATION EXAMPLES AND TERMINOLOGY OF CONSUMER 

PROFILING 

 

Both the literature and applications are rather heterogeneous regarding the definitions of 

(consumer) profiling and (consumer) profile. This may be due to fact that the meaning of 

the term ‘profile’ is often dependent on its field of application, and accordingly, the 

methods used may be diverse.  

The term ‘curve’ is commonly used in business applications and theory 

(methodology) as well. On the energy market what are meant by curve may be load curves 

representing load, or price curves representing price time series. In different statistical or 

data mining fields there is an increasing interest in theoretical and empirical studies related 

to processes where the studied phenomena under examination are functionals, curves or 

time series.10 

What definitely needs to be established is that consumer profiling means a basically 

methodological, modelling procedure that describes the temporal variation of the 

consumption or load curve for each individual consumer (or portfolio), and how it is 

dependent on seasonal and calendar effects. A reasonable requirement that such a task 

should meet is that profiles should be able to capture the so-called stylized facts that 

characterise curves in a general sense.  

The dissertation focuses mainly on consumer profiling and on creating consumption 

or load curve profiles; therefore, besides the most important applications and terminological 

issues, the empirical study of stylised facts of consumption time series is the other main 

topic of this chapter. The two terms used (consumption and load curve) mainly reflect the 

differences between technical and business-economic aspects. This paper uses the two 

terms simultaneously (on the level of terminology, the term ‘consumption curve’ is 

preferred, but calculations are performed on ‘load curves’), the results and conclusions of 

this study are independent from this.  

1.1. Price- and volume uncertainty on the energy market  

On the energy market the supply and demand need to be in balance at all times. The 

demand may be hedged by so-called standard products (for example yearly, quarterly, 

                                                           
10 From the perspective of the dissertation the following terms may be relevant: functional data analysis, 

functional clustering, curve clustering, time series clustering. See more on this in Chapter 2. 
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monthly, etc. base load and peak load products11), then on the day before delivery the open 

position can be hedged ex-ante with hourly products on the dayahead market (or with 

quarter-hourly products in the intraday market). Deviations from the schedule are settled 

ex-post on the balancing energy market. The time-dependency of trading various electricity 

products is shown in Figure 5. 

Figure 5: Wholesale products in the electricity market 

Ex-ante Ex-post 

standard product12 

(forward products, FM, FW … WE, DA 

for base and peak periods, etc.) 

dayahead (spot), intraday, 

hourly, quarter-hourly products 
balancing energy 

Source: author’s own diagram. 

The prices of various electricity products are determined by the merit order curve as 

the supply curve, given the current demand conditions. Figure 6 is an example of a merit 

order curve which shows the marginal costs of power plants as a function of (built-in) 

capacity.  

Figure 6: Power plant merit order curve 

  
a) shift of demand curve b) shift of supply curve 

Source: author’s own figure (Excel). 

Renewables with a zero marginal cost are on the left side of the merit order curve, 

followed by nuclear plants, coal and gas-fired (OCGT and CCGT13) plants. The oil-fired 

power plants operating at a high marginal cost are on the right side of the merit order curve. 

                                                           
11 The base load product is available on every day of the week in every hour. The peak load product is only 

available on weekdays between 8:00 and 20:00.  
12 The forwards may apply to further expiry dates. The closest expiry dates are the front month, front week, or 

even the next day (dayahead), but this category contains products that are available in the subsequent few 

weekends or days as well. 
13 The common short form OCGT refers to open cycle gas turbine, and CCGT refers to combined cycle gas 

turbine power plants, the latter represents higher efficiency. 
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As the figure shows, the determination of the market clearing price may be influenced by 

the relative position of the demand curve and the supply curve.14 

Hence, price determination may be partly demand-driven: the higher electricity 

demand (the demand curve with a right shift on the left figure) of weekday and peak 

periods, or temperature-dependent periods result ceteris paribus in higher electricity prices. 

As electricity as a product cannot really be substituted, cannot be stored (or is extremely 

difficult to), the demand is relatively price-inflexible, the electricity prices are highly 

volatile; there may easily be increased prices or peaks (even spikes).  

Figure 7: The historical trend of the Hungarian dayahead electricity market prices 

  

Source: author’s own figures (Excel) based on HUPX Ltd. data. 

In recent times the supply-driven nature of prices is gaining more attention (often 

spiced with political fights). The outages of (conventional) power plants may result in 

higher electricity prices. A very good example for this is the January(-February) period in 

2017, when record-high prices occurred on HUPX15 on the dayahead spot market16 partly 

as a result of power plants outages caused by the extreme cold, partly due to planned 

maintenance; in addition, to the lack of often available low-priced import electricity from 

southern countries. 

                                                           
14 In the figure on the right a supply shock is shown, where the growing renewable capacity shifts the supply 

curve right. See the later part of the section on this. 
15 See the so-called inside information website of HUPX (the short name of the Hungarian power exchange) 

https://www.insideinformation.hu/hu/pubpages/newslistmain.aspx. 
16 There was a trading day in the first half of January when several hourly prices exceeded the historical 

maximum. 
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Figure 7 supports claims in previous sections about the average monthly base load 

and peak load prices on HUPX. On the right side, a week was chosen from the January 

months of 2016 and 2017 to illustrate the magnitude of the ominous price trend.  

Of course, volatility of prices is not only related to such classical outage risks of 

conventional power plants. The production of those renewables (wind- and solar power 

plants) that are on the left side of the merit order is highly weather-dependent, which 

introduces a producer with a new kind of risk on the left side of the supply curve. Risk here 

is not only caused by the exceptional variability of their production, but also forecasting 

and consequently the outstanding uncertainty of the dayahead production (schedule) 

submitted. As an illustration of this, let us examine some measures of the Hungarian wind 

power generation trend since the beginning of 2016 (see Table 2).  

Table 2: Descriptive statistics of the Hungarian wind power generation in 2016 

Wind power generation 
Mean 

[MW] 
Standard deviation 

[MW] 
Range17  

[MW] 

Actual 71 77 311 

Planned 76 70 298 

Actual-planned difference - 4 31 344 

Source: author’s own table based on MAVIR Ltd. data. 

The total installed capacity of Hungarian wind turbines (approx. 300 MW) is by an 

order of magnitude lower than the average values of the Hungarian system load (which, 

depending on the season means a daily mean load between 4000 and 5500 MW, see Table 

24 in the Appendix). In any event, it is notable that the range of differences between actual-

planned productions is fairly high. That is, there is a risk not only in whether the renewable 

capacity between 0-300 MW is actually there and available on the left side of the merit 

order; it is also a question to what level of certainty we can determine the value of 

production. Due to weather-dependency, the latter cannot be planned in a way that it is 

usually done for conventional power plants.  

This dissertation does not deal with supply side uncertainty and its measurement, 

although further consideration and application of the results from the supply side 

perspective is definitely worthwhile and opens up new avenues for further research. The 

above short example referring to supply side uncertainty draws attention primarily to the 

fact that management of the demand side uncertainty – which can be dealt with to a certain 

                                                           
17 Range is the difference of the maximal and minimal generation values. 
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extent by demand side management – may have an important role (this issue will be 

discussed later).   

Returning to the prices of various products on the electricity market, Figure 8 shows 

trends in hourly dayahead prices, balancing energy prices and system level balancing 

energy volumes since January of 2016. The dayahead prices are determined through 

auctioning. The decision about which power plants will supply the balancing energy that is 

required because of deviations from the schedule is governed by the transmission systems 

operator, essentially on merit order basis.  

Examining the figure it can be stated that the average price of the upward balancing 

energy exceeds by orders of magnitude the dayahead hourly prices, and at the same time 

moves closely together with the upward balancing energy amount as opposed to the 

downward direction. The monthly averaging on prices obviously hides short term (e.g. 

intraday) tendencies, but it is clear that balancing volumes are higher on weekdays, apart 

from the season. Behind this, on the one hand, is the higher consumption uncertainty of 

weekdays, and on the other, there are structural reasons. The morning ramps of weekdays 

are higher in magnitude and speed than those of weekends; and here, power plants on the 

balancing energy market have a great role in adjusting supply to the demand, as the 

schedule only provides a quarter-hourly step-by-step constant load18. Nevertheless, the 

supply-demand balance needs to be maintained at all times. Besides demand side 

explanations, a huge amount of system level balancing energy may be due to power plant 

capacity failures (that is, supply side causes), which is particularly outstanding in the 2017 

January period.  

Apart from the above, system level results suggest that there may be some regular 

pattern in demand side uncertainty (maybe even seasonally?), which is realised in system 

level deviations of actual versus planned consumption; in addition the realisations on the 

level of smaller portfolios or individual consumers may be very similar in a qualitative 

sense. A favourable outcome of having a system level example here is that it draws 

attention to both the macro level and supply side related aspects of the problem.  

                                                           
18 In practise, this rather means hourly steps, which induces the use of even more balancing energy. That is, 

even if quarter-hourly load is estimated correctly, balancing energy will still be needed. 
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Figure 8: The historical trends of the hourly dayahead and balancing energy prices19 

 

Source: author’s own figure (party own calculations) based on MAVIR Ltd. data. 

One of the central topics of this dissertation is that consumption is basically a 

stochastic process, and the role of random shocks may be smaller or greater depending on 

the given consumption time series. Applications in practice pose more and more 

requirements where besides consumer behaviour, its uncertainty also needs to be known.  

In part due to reducing energy costs and also because of global trends (environmental 

protection, saving energy resources, etc.) the active participation of consumers on the 

energy market is increasing. These are more widespread on developed markets, and on less 

developed markets appear in large consumers. The essence of demand side management 

(DSM) is that the continuous balance of supply and demand at all times cannot only be 

maintained by the management and controlling of power plants. Demand side management 

may have various technical or economical (micro- or macro level) goals, including the 

following:  

- smoothing the consumption curve by decreasing peak consumption and increasing 

off-peak or super off-peak consumption, which may help decrease system loss, or 

delay of big investment decisions; 

                                                           
19 Based on MAVIR publications average prices are the following: the average balancing energy price is the 

average of the positive and negative balancing energy prices of the quarter-hourly settlements; the HUPX 

price is the average of the HUPX hourly prices exchanged on the official exchange (FX) rate valid on the 

given day of the settlement period.  
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- decreasing electricity procurement costs by shifting peak consumption to a period 

where energy price is lower; 

- decreasing balancing power costs by shifting consumption in the case of a major 

deviation from the schedule; 

- mitigation of uncertainty resulting from the changeable and hardly predictable 

(possibly decentralised) renewable energy production. 

Realisation (even partially) of these poses various future challenges to energy market 

operators. If, for example, shift in energy usage becomes habitual behaviour that would 

mean a structural reshaping of profiles and this in turn would have consequences for the 

balancing energy market. It would be challenging from the aspects of both system 

balancing and infrastructure for system operators.20 The various long and short term aims of 

shift in energy usage involve many pricing challenges and tasks. Due to the fact that 

deviation from the schedule is a recurring issue here, together with the statistically 

grounded evaluation of significant changes in baseline consumption scenario, the 

handling and modelling of consumer related uncertainty will increasingly become a central 

theme in the future.  

In the introduction so far the emphasis has been more on system level questions. In 

what follows, the focus will be mainly on profiling and its applications in practice, but as 

we shall see, the two are not completely independent from each other. 

  

                                                           
20 Although smoothing daily consumption is among the main goals of demand side management, what is 

usually mentioned here is reducing extreme consumption – there is a wider range of available tools, though. 

Without aiming to give a comprehensive list, the handling of daily consumption may involve some of the 

following solutions: peak clipping, valley filling, strategic conservation, strategic load growth, load shifting; 

see more on this in: Macedo et al. [2015]. 
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1.2. Some application examples on profiling  

Regarding the application of consumer or demand side profiling, the following can be 

identified - without aiming to give an extensive list: 

- scheduling, 

- (short and long term) hedge of consumer portfolio, 

- pricing of the so-called conventional contracts21, 

- demand side management, 

- creating portfolios, balancing groups. 

As this dissertation places great emphasis on the uncertainty of consumption, the 

possible fields of application will be discussed with regard to what extent the involvement 

of this uncertainty can modify or complement the regular decision-making process which 

only examines the expected value of consumption, and is less concerned with uncertainty. 

At the same time, this approach highlights the fact that it is becoming an increasingly 

realistic requirement from profiling that it deals with uncertainty appropriately; which 

results in drawing important conclusions from both theoretical (methodological) and 

practical aspect. From a methodological perspective this is off the beaten track, it is not 

really examined; and its application in practice has not yet taken place even for classical 

techniques.  

It is worth mentioning that profiling as a term usually appears in the examination of 

patterns in consumption curves; however, the term is often used in other instances, such as 

the analysis of portfolio level curves.  

1.2.1. Short and long term hedging and pricing  

Referring back to the relative price evolution of various electricity market products, given 

the risk-avoiding trader behaviour, the fear from high dayahead or balancing energy prices 

may result in overhedging. In the following, it will be shown through examples what this 

exactly means.  

                                                           
21 The so-called full supply and schedule contracts are such. In a full supply contract, the trader ensures 

supplying the demand of the customer, and the customer assures the acceptance of the energy supplied. In a 

schedule contract the customer and the trader give an undertaking as to the supply and acceptance of a 

specified quantity.  
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In Hungary, the dayahead schedule needs to be created in quarter-hourly resolution, 

which is one single curve consisting of 96 quarter-hours. As a first thought, it is best to set 

the quarter-hourly forecast of the dayahead load as the dayahead schedule.22  

Figure 9: The schematic representation of determining the schedule23  

 
 

a) without considering uncertainty b) with the consideration of uncertainty 

Source: author’s own diagram (Excel). 

The positive balancing energy price (when consumption is higher than the schedule) 

is generally much higher and the negative balancing energy price (when consumption is 

lower than the schedule) is generally much cheaper24. For this reason, it might happen that 

traders deviate upwards from the forecast25. The uncertainty of load time series is not 

necessarily constant in time, and due to this, the schedule needs to be set for more uncertain 

quarter-hours at a much higher value than the expected load (in such cases, the balancing 

energy price is usually higher) than otherwise. In financial terms, due to risk avoiding 

behaviour, the extent of overhedge is higher in more uncertain periods and lower in less 

                                                           
22 The dayahead schedule may of course be still changed within the day by modifying the schedule if there is 

enough liquidity on the intraday market. 
23 Schedule means a higher (upward shifted) schedule compared to the forecast load due to risk avoidance. CI 

lower means the lower limit of the confidence interval for the load given a chosen level of confidence, CI 

upper denotes the upper limit here and in Figures 10-11-12.  
24 The practice is actually much more complicated, as the price of balancing energy is not only a function of 

the balancing group but also of the system imbalance.  
25 This may be due to risk avoidance mentioned above, but also occur as a result of speculations. 
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uncertain periods. The additional cost that incurs from overhedging can be understood as a 

risk premium for the avoidance of high balancing energy prices.  

Figure 9 is a schematic representation of this problem. Of course, in the example for 

the identification of the appropriate schedule it is necessary to consider not only the 

uncertainty of load, but the prices as well. This question is dealt with in Lo and Wu’s 

[2003] study.  

Of course, the risk avoiding behaviour presented here may also be valid for the long 

term (actually, logically it precedes the scheduling example in time, though in this way, it 

is simpler to introduce the problem). In this case, overhedging compared to what may be 

explained by the expected load can be optimal, which is likely to mean overhedging at a 

larger amount in peak periods. This strategy is illustrated in Figure 10.  

Figure 10: Incomplete hedging of consumer demand with base load and peak load products  

  

a) without considering uncertainty b) with the consideration of uncertainty 

Source: author’s own figure (Excel). 

Actually, this logic also appears in the pricing of (mainly larger) consumers. With 

the progress of liberalisation, consumers entering the free market can choose which trader 

they buy energy from, and traders can decide for themselves what tariff they offer to each 

customer. Knowledge of consumer habits, and thus of consumer profiles, is especially 
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needed for full supply contracts26, as in fair pricing every single consumer should obtain a 

price appropriately tailored to their consumption habits. A single consumption curve may 

be regarded a consumer demand that can be hedged with the purchase (or sale) of 

wholesale products. The consumer that expectedly consumes more in peak period pays a 

higher price for the energy than whose peak period consumption is lower. Taking one 

step further in the consideration of consumption uncertainty, if the consumption is more 

uncertain in peak periods, then as a result of possibly higher than expected consumption 

levels of uncertain hours a higher price is given by allocating more peak products.27 

This dissertation does not intend to develop such a forecasting or optimisation 

(operational research) logic, because it is beyond the scope of this paper. The chapter on 

research results, though, provides an excellent basis for such studies. 

1.2.2. Demand side management 

Familiarity with consumer habits is not negligible here either – it may actually have a much 

more central role, and of course, various consequences on pricing. Such tariff scheme is for 

example the so-called Time of Use (ToU) tariff, when prices differ according to time zones 

(for example peak or off-peak); or another one is the so-called Real Time Pricing (RTP), 

where the price risk of procurement is passed on to the consumer; but other techniques may 

exist when only deviations from the profile are priced real time. 

Demand side management can be interpreted not only in the short term but also with 

a long term perspective. For example in the case of various energy saving projects it needs 

to be considered – for example in an office building – that the peak period consumption is 

typically more uncertain than off-peak period; therefore, the uncertainty of the amount of 

expected savings based on calculations of past load data (that is, the so-called benchmark 

profile) is season-dependent. Companies specialised in energy saving (the so-called ESCO-

s, energy saving companies or energy service companies) that sign contracts with 

costumers to realise a given amount of saving for them in a given period of time should 

                                                           
26 In schedule contracts, the quantity of energy is given in detailed resolution; in this case, under- and over-

procurement may only occur due to technical failures and may pose a risk, but these are usually settled 

contractually.  
27 Of course, there are consumers not metered regularly, where reading of meters only takes place in fixed 

intervals (see e.g. submitting meter reading), and the pricing logic shown here cannot be applied. Still, 

settlement is based on profiles. The basis of profile grouping may be based on a smaller sample of consumers 

– whose time series data is available. Then, having created profile groups, some classification methodology is 

used to investigate which non-consumption properties (e.g. scope of business activity) explain the profile 

groups (as classes) based on metering data, and on these grounds not metered consumers can also be assigned 

to a profile group. 
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definitely take this uncertainty into consideration (see for example: Srivastav et al. [2013], 

Heo et al. [2012], Manfren et al. [2013]).   

Figure 11: The evaluation of the significance of saving in energy use 

  

Source: author’s own figure (Excel). 

Figure 12: The evaluation of the significance of shifting energy use28 

  

Source: author’s own figure (Excel). 

Figures 11-12 demonstrate that deciding about whether there has been a significant 

amount of saving or shift in energy use in the case of a certain consumer is a question that 

cannot be answered without explicitly dealing with uncertainty.  

                                                           
28 Notations of the figure indicate that the energy saved in the peak period is shifted to the off-peak period. 
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This kind of long term, or even sustainable consumer activity appears not only in the 

motivation to achieve savings, but also in the spread of the so-called microgeneration, 

which may also regarded as a demand side investment decision. Appropriate knowledge of 

the consumer profile is also important here, as it is advantageous if the microgeneration 

production profile can match the consumer profile of the household (see for example: Hino 

et al. [2013]).29 

Obviously, the above fields of application require the technical capacity for 

computerised recording, which enables analysis of high frequency consumption 

measurements. In relation to demand side management activities it cannot be avoided to 

obtain the most detailed information of the consumption habits of the consumers. 

1.2.3. Building portfolios and creating balancing groups  

Although it was not mentioned in previous sections, it should be noted that consumers 

typically consume not in themselves, but as part of a portfolio. This portfolio may be a 

trading portfolio or a balancing group through which deviations from the schedule are 

settled through the allocation of balancing energy.   

Portfolio effect actually often means that taking together a mainly peak period 

consumer with a mainly non-peak period consumer the outcome is a two-consumer 

portfolio with an almost base load profile, that is, primarily the contribution to the portfolio 

in terms of the expected value.  

The schematic representation of this can be seen on the left side of Figure 13. 

Although there is uncertainty in consumption for every consumer; these may be interrelated 

(may correlate) to different extents. The resultant uncertainty on the portfolio level is 

represented on the figure by arrows and horizontal lines. If the value of the correlation 

coefficient of the uncertainty of two consumption curves is lower than +1, the so-called 

diversification effect will set in. This means that such uncertainty related to consumption 

can be diversified in a similar way as the often investigated market risk (see for example: 

Brealey-Myers [2005]) or liquidity risk (see for example: Váradi [2012]) in finance.30 This 

                                                           
29 It often happens, for example, that the batteries are used to handle the limited storability of the energy 

produced. 
30 In a simpler form, formally written, it is as follows: Let us assume that for one consumption time series the 

standard deviation of the error term is 𝑠1, and for the other 𝑠2. If the sum of the two consumption time series 

is examined, the standard deviation of the sum is – from the sum of the variance and twice the covariance – 

𝑠12 = √𝑠1
2 + 𝑠2

2 + 2 ∙ 𝜌 ∙ 𝑠1 ∙ 𝑠2, where 𝑠12 is the standard deviation of the sum of the two consumption time 

series, and 𝜌 is the linear correlation coefficient of the error terms of the two consumption time series. It is 



25 
 

diversification effect is time-dependent, as it cannot be stated unequivocally either for 

standard deviation or for the correlation coefficient that they are constant.  

Figure 13: The schematic representation of the portfolio effect  

  

a) without considering uncertainty b) with the consideration of uncertainty 

Source: author’s own figure (Excel). 

The importance of what is discussed here is in that for any pricing task related to an 

individual consumer, the price should contain only non-diversifiable risk, as this is what 

cannot be eliminated by the portfolio effect. Returning to Figure 13, the uncertainty related 

to the value of the expected load is just such a non-diversifiable risk, which cannot be 

eliminated even by joining an ascending number of curves in a portfolio.  

A similar application that touches upon the relationship between uncertainty and the 

portfolio effect can be found, for example in Levy’s [2013] study, which deals with a 

complex pricing problem in a market environment where demand side management is 

applied, however, the handling of consumer related uncertainty is relatively simple, less 

grounded in empirical data.  

Obviously, the study of portfolio effect is much more complex: not only consumption 

and pricing risks, but the availability of wholesale products also need to be taken into 

account. This means that if a typically peak period consumer is put into the same portfolio 

with a typically off-peak period consumer, the portfolio effect can prevail if the portfolio 

                                                                                                                                                                                 
clear that the standard deviation of the sum is only 𝑠1 + 𝑠2, that is, the sum of the two standard deviations, if 

the correlation coefficient between the error terms equals exactly +1. 
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level demand curve can be hedged with a base load product. Base load products show more 

liquidity, which also contributes to the portfolio effect. In fact, disregarding uncertainty in 

consumption, this is what is also often meant by portfolio effect in actual practice.  

1.3. Profile and profile-related risks  

After a review of application examples, this section provides a more detailed definition of 

the term profile: its various uses in the related literature, as well as what is meant by profile 

in this paper. A separate section is devoted to risks related to the variation of consumption. 

The literature review focusing on mainly methodological issues has a place in another 

chapter; here the point is rather to see what previous studies focussed on in terms of 

terminology. 

1.3.1. Definition of consumer profile  

The term profile appears in various ways even in the literature on energy.31 On the whole it 

is true that profiling usually covers some typing, seeking and creating typical patterns, 

which may appear on the level of a single consumer or group of consumers.32  

Using Barnaby Pitt’s definition (Pitt [2000]) by profiling (load profiling) we mean 

the modelling of how the daily load shape, that is, the daily load profile, is related to such 

factors as temporal variables, weather or other features that characterise consumers. The 

relationship between these factors and consumption is often nonlinear, and there are lots of 

interaction effects (see more on this in Chapter 2). The weather-dependent part is usually 

separated with some method from the consumption time series (for example, using some 

regression technique), and the time series after the removal of this effect is used from then 

on.  

Of course, profiling makes sense for individual consumption curves, but in practice 

the aim is very often to group consumers with similar profiles, that is, similar consumer 

behaviour, to make consumer profile groups. This task is basically a methodological 

problem, as it is essentially about clustering time series.  

                                                           
31 The aim of profiling itself is usually similar everywhere. There are characteristics, specialities that apply in 

various energy sectors – regarding regulation, the progress of liberalisation, but also the physical processes in 

the background. As the empirical part of this paper works with electricity consumption curves, most of the 

time we deal with electricity specific terms and terms that apply to all energy sectors.  
32 Otherwise, instead of the term typical the expression average often appears concerning profiles. Even the 

mode as a typical value is often replaced with values that result from averaging – specifically in connection 

with results are deliberately not mentioned here.  
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It is important to state that the majority of methods even to this day still builds on the 

formation of a daily representative load curve by consumer (representative load curve, 

RLC, see for example: Tsekouras et al. [2008]) which are often thought to represent typical 

daily load. Although these are easy to interpret and their use is practical from the 

perspective of creating groups, in most cases what are produced are constructed, derived, 

not actually realised values. In the majority of methods, it is possible to produce daily 

profiles conditional on given circumstances (such as summer, winter, transition period, 

or applying to different days of the week, etc.).  

By profile (Typical Daily Profile, TDP), Espinoza et al. [2005] mean a daily shape 

where the effect of every exogenous variable (seasonal and calendar effect variable) is 

removed, but with the help of regression equations it is possible to produce daily profiles 

given a number of different conditions supplied by independent variables. The profile 

definition (daily representative load profile, RLP) provided by Carpaneto et al. [2003] is 

identical with the profile definition used in many different countries. In their study, the 

derivation of individual consumer profiles is completed under the assumption of various 

exogenous variable values (e.g.: weather-dependency, activity, available electrical devices, 

etc.) and loading conditions (e.g.: winter/summer, weekday/weekend, etc.). Of course, in 

such cases, there may be more daily load profiles according to different loading conditions. 

Chicco [2012], for example creates daily profile (representative load pattern) according to 

the above definition with the averaging of the measured values of a few collected days with 

the given loading conditions. In the studies by Tsekouras et al. [2007] and Tsekouras et al. 

[2008] the consumer profile is produced by the clustering of the daily load curves. The 

most obvious choice is to choose the profile from the cluster (group) with the highest 

frequency. 

If the focus is not grouping those that share similar profiles (this is a common goal of 

studies in profiling) but how an individual consumer contributes to the load profile of a 

portfolio, then it is not only the shape but also the level of the curve that has a role. As a 

consequence, in this dissertation, profiling is meant as modelling how (daily) load 

shape and (daily) load level are dependent on various factors, such as temporal 

variables, weather, or features that characterise different consumers. That is, the 

definition provided by Pitt (Pitt [2000]) is extended: the load profile involves the level 

besides the shape, because using any type of normalisation the information concerning the 

level of consumption is lost.  
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 It is difficult to find similar, publicly available results related to profiling in the 

Hungarian literature. According to the Electricity Act LXXXVI, the definition of profile is 

the following: a normalised annual consumer electricity demand curve created by statistical 

analysis expressed in 1000 [𝑘𝑊ℎ] per year (see: Act LXXXVI of 2007 on Electricity). This 

profile is also a composite of typical daily profiles, and this normalised curve can be 

rescaled from 1000 [𝑘𝑊ℎ] according to the annual consumption of the given consumer.  

 The discussion in the previous paragraphs centred on a given consumption curve. It 

may also happen that the definition of profile(s) is not based on an individual curve, but on 

the sum of curves in a profile group. This is especially useful if the consumer is not one that 

is metered regularly, or if the individual curves are too noisy and it is more sensible to draw 

conclusions about typical tendencies on the basis of the sum, where random effects – even 

if not in the most elegant way – are removed.  

1.3.2. Profile-related risks 

It is especially true for individual consumers that consumption-related risk occurs not only 

due to the irregular effect, but there are other risks that are typically less describable in a 

model-based manner.  

Figure 14 depicts the various risks in a schematic form,33 which are obviously shown 

(and discussed) separately, but of course, in practice they occur combined (mixed), often 

blurring each others’ effects.   

1.3.2.1. Profile risk: shape and quantity  

There are basically two types of risks understood as types of profile risk (see: Junghans 

[2015]): shape risk and quantity risk. 

Shape risk occurs when the shape of the consumer profile changes (for example due 

to changes in the daily schedule of a factory). What is meant by quantity risk is when the 

shape of the profile does not change, but the level of the total consumption does (for 

example in the period of economic boom). These are factors whose effects – especially on 

shorter consumption curves – are difficult to detect using statistical or similar quantitative 

tools; hence they are dealt with using simpler assumptions.  

                                                           
33 As shape and quantity risk can often be handled only manually, in an ad-hoc manner, they are less likely to 

appear in academic work as opposed to volume risk. There are ambiguities in terms and notions used, which 

will be avoided here by using the previously fixed definition (which otherwise coincides with applications in 

practice).  
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Figure 14: The schematic representation of profile-related risks  

 

Source: author’s own figure (Excel). 

Therefore, what is meant by profile risk is primarily when the consumer profile itself, 

its shape and/or level (that is, its quantity) undergoes structural change due to various 

external factors. Profile risk involves the effect of temperature variables as well, as profile 

(shape, level) is affected by them, and pose a risk. Being stochastic variables, irregular 

effect also plays an important role here (see more in this in Chapter 2). However, the latter 

is a field which requires more serious methodological techniques than ad-hoc, rule-of-

thumb-like approaches.  

1.3.2.2. Volume risk 

Even if there is no change in the profile, consumption obviously does not always follow the 

path defined by the profile; smaller or larger deviations may still occur. There are various 

terms to define this phenomenon, among others, it may be called volume risk (e.g. 

Junghans [2015]), forecasting risk, or reliability risk (e.g. Srivastav et al. [2013]). The 

source of volume risk is basically the random or irregular factor (interpreted in the classical 

sense) and can rather be modelled by statistical or other quantitative methods. The 

emphasis is then on the appropriate representation of the random, unsystematic behaviour.  
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1.4. The empirical examination of stylized facts in consumption time 

series  

In the same way as financial markets (see: Cont [2001] or electricity prices (see: Marossy 

[2010]), or even the relationships or interaction between energy markets and financial 

markets (see for example: Leng et al. [2014]), it is likewise possible to formulate so-called 

stylised facts for consumption time series. These are basically qualitative attributes that can 

be regarded as true and valid for the majority of consumption time series. It can be required 

from any model of consumption time series that it captures these stylised facts as accurately 

as possible. These stylised facts for consumption time series are the following – among 

others: 

- high time-dependency, 

- lack of stationarity in the strict sense,34 

- multiple (yearly, weekly, intraday) seasonality, 

- weather-dependency, 

- nonlinearity and the presence of interaction effects, 

- heteroscedasticity, that is, time-dependent dispersion. 

Instead of the detailed study of the above with traditional methods35 it is intended to 

show a few relatively simpler, but in practice, less used figures or relationships that work 

well to represent certain characteristics whose presence or absence is often difficult to 

confirm. The stylized facts can obviously be captured in the results and figures. The 

approach of the discussion serves as a foundation for the presentation of the author’s own 

empirical research results in a way that it is shown how previous research results are 

satisfactory but at the same time, their shortcomings are also revealed.  

The figures in this section are organised around the logic of the consumption shape 

and level – consumption risk – temperature-dependency triplet. This is an intuitively 

good way to demonstrate the contribution of the dissertation by the irregular treatment of 

the last three elements of the list above compared to classical solutions – keeping simplicity 

in mind. 

                                                           
34 See the chapter on methodology for further information. 
35 For example, calculations of autocorrelation coefficients, tests for stationarity, etc. See more on these in for 

example: Hamilton [1994], Maddala [2004], Ramanathan [2003]. 
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In answering the research questions the data used here and in Chapter 4 are the 

individual load curve data of a Hungarian trading company in quarter-hourly resolution, 

and the Hungarian system load data publicly available from the MAVIR Ltd. website. 

1.4.1. Load shape and level 

Regarding the daily shape of curves, many studies on profiling distinguish between the 

features in Figure 15 or their transformation of some kind. Especially concerning individual 

consumption curves, it can readily be conceived that the transformation of these features in 

the form of simple or more complicated measures is often not enough for an appropriate 

description. In this section, contour plots will be used to show what features the curve 

shape and level, or its variability may have in various curves. 

Figure 15: Features that describe the shapes of load curves 

 

Source: author’s own figure. 

The essence of the contour plot is that it transforms the variation of a variable (let 𝑧 =

𝑓(𝑥, 𝑦) be this variable) into a two dimensional figure as a function of two variables (let 

them be 𝑥 and 𝑦) in a way that identical 𝑧 values are connected with a line. These lines are 

the contour lines. It has increasingly become common with the more extensive use of 

graphical tools and representation that different colours are used for different levels. This 

way, the spatial representation of the third dimension (𝑧) can be practically replaced by 

using colours even with two-dimensional display options.36 In the figures here variables 𝑥 

                                                           
36 Based on the short description above, it can be seen that contour plots may be familiar from many different 

fields. They are used in cartography to draw the identical heigths above/below the sea levels around given 

meridian and parallel arcs, or to represent atmospheric pressure in meteorology, etc. At the same time, the 

isoquant curves used in microeconomy can be regarded such contour plot figures, alongside with 

indifference curves to whose curve dots identical output levels and identical demand side utility can be 

attached (see for example: Varian [2004]). 

morning ramp 

evening setback 

peak period 

off-peak period 
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and 𝑦 denote quarter-hours of a day and days of a year, while variable 𝑧 – as their function 

– denotes the load values at a given time.37 

Based on Figure 16 about the Hungarian system load time series it can be seen that 

the lowest load values apply in the morning hours up to 5:30-6:00, then the daily ramp 

happens at the same time throughout almost the whole year (between 6:00 and 7:00, the 

white line after the 20th quarter-hour of the day). The red lines after this indicate peak 

periods. The horizontal white lines among them represent the lower loads of weekend days.  

Figure 16: The contour plot of the Hungarian system load and the time series figure of some chosen 

days  

  

Source: author’s own figure (R). 

The second peak at the end of the day is displayed clearly on the figure. Its course is 

mainly connected with the time of the sunset, especially during weekdays. As in winter 

periods the sun sets between 4-5 pm, the second peak within the day starts at this time, and 

lasts much longer than in the summer, when the second peak is smaller both in magnitude 

and length. To support this, the right side of Figure 16 shows the development of the daily 

load in winter, summer and transition periods. 

In addition, the effect of the two hottest periods of the summer of 2011 can clearly be 

seen (around the 200th and 240th days) where the peak during the day is much darker – this 

period gets a colour similar to the dark red colour of winter periods.  

                                                           
37 The range of load values were divided – with 30 class boundaries – into 29 equidistant intervals, and each 

load value was assigned to the appropriate interval. The values belonging to the medium (15 th) interval are 

white in the contour plot. The higher the load of the interval that the values belong to, the darker red colour 

they get, while the lower the load of the interval, the darker blue they get in the figure. With this number of 

intervals, the figures show a nice colour gradient effect.  
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Besides all this, the figure nicely shows the effect of daylight saving time change (in 

2011 it happened on 27th March and 30th October). 

The narrower, typically blue lines can be found around the 75th, 120th, 160th, 300th 

days and at the top of the figures mark successively greater, longer holiday periods (not 

falling only on weekends). The positions of the lines are easy to identify based on the table 

below (the table contains those holidays that fall not only on weekends):38 

Holiday Day of the year 

1st January (Saturday) 1st 

15th March (Tuesday, a four-day long weekend) 74th 

24th-25th April (Easter) 114-115th 

1st May (Sunday) 121st 

12th-13th June (Pentecost) 163-164th 

20th August (Saturday) 232nd 

23rd October (Sunday) 296th 

1st November  (Tuesday, a four-day long weekend) 305th 

24th -26th December (Saturday-Monday, Christmas) 358-360th 

31st December-1st January (New Year’s Eve)  365th and 1st 

Source: author’s own table. 

Figure 17 shows the Hungarian system load with a portfolio and the contour plots of 

some chosen individual curves. 

The so-called sunset effect (that is, when the sun sets earlier, therefore we need to 

turn on the lights earlier) also appears on the portfolio contour plot (Figure 17). As this is a 

portfolio that includes business consumers, the peak period typically ends at around 18:00 

in the afternoon, and for this reason the effect is slightly smaller. Even in the portfolio the 

effect of temperature in winter and summer periods is apparent, including those two 

summer periods that were incredibly hot.39 The big summer holiday period around 20th 

August (which is approximately between the 200th and 240th days) can be clearly seen here, 

as the morning ramp occurs a bit later and the consumption level is also a bit lower. 

                                                           
38  August 20th was a weekend day, but the typical summer holiday period is shown on the figure around it (it 

is similar to the so-called ‘between Christmas and New Year period’). 
39 Both were out of the big summer holiday period around the 20th August. 
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Figure 17:  Contour plots of portfolios and individual consumer load curves 

 

 

 
a) Hungarian system load b) Portfolio 

  

c) Curve C25 d) Curve C66  

  

e) Curve C96 f) Curve C109 

Source: author’s own figure (R). 
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The above can be complemented mainly with the consumer-specific properties of 

contour plots of individual curves. It can be clearly seen in the case of company V25 that 

the winter temperature effect is stronger and that there is practically a complete stop in 

holiday periods. As for company V66, it has highly regular load characteristics and – a bit 

interestingly – the summer temperature effect is only prevalent in extremely hot periods, 

otherwise it is not observable. In V109, summer temperature-dependency is obvious, while 

in V96, winter is apparent. In the case of the latter, there is a longer level shift around the 

200th day for about one and a half - two months, which is probably due to some structural 

reason (e.g.: it may be a factory with some facilities shut down).  

1.4.2. The intraday distribution of loads 

The intraday distribution deserves a separate section as it is very telling of the shape of the 

daily profile, and behind the changes in the intraday distribution, there are often 

identifiable fundamental factors (e.g. often temperature). The advantage of this kind of 

investigation is that in the literature, profiles are usually made on the basis of daily shapes. 

The study of the intraday distribution is telling of the consumption-related uncertainty, 

which is given priority in this dissertation. Exactly for the purpose of the methodological 

underpinning of distribution-centeredness, this section may seem more technical compared 

to the others. Here, measures that characterise distribution (quartiles, range, minimum, 

maximum, etc.), their variation, (un)stability are at least as important as the fundamental 

reasons behind them.  

The figures in this section show the time series of the selected (of course, not 

representative) weeks below (and the corresponding boxplots40): 

 

                                                           
40 Elements of a boxplot are defined by three values: the lower quartile, the median and the upper quartile. 

This way half of a day’s quarter-hourly load values appear in a boxplot. Outside the box the two upward and 

downward reaching lines stretch between the lowest and highest load values. If a value is higher than the 

upper quartile by 1.5 times of the interquartile range (the so-called inner fence) or is smaller than the lower 

quartile by at least 1.5 times of the interquartile range, the value is regarded an outlier and is marked with a 

red dot on the figures (and in this case, the lines stretching upwards and downwards reach only until the above 

mentioned 1.5 times distance). Of course, the choice of the inner fence at 1.5 times the interquartile range is a 

subjective decision, other multipliers may also be chosen, which will obviously have an effect on the figure 

(with a smaller multiplier, more values will be regarded outliers). 

Note. Quartiles are measures used in descriptive statistics to help describe the distribution of some variable. 

The lower quartile is the value compared to which a quarter of the observations is lower and a three-fourths is 

higher. The middle quartile (median) is where half of the observations has a lower and the other half has a 

higher value. The upper quartile is the value compared to which three-fourths of the observations is lower and 

a quarter is higher.  
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Period (Season) Start End 

Winter 17-01-2011 00:00 CET41 23-01-2011 23:45 CET 

Summer 18-07-2011 00:00 CEST42 24-07-2011 23:45 CEST 

Transition (spring and autumn) 18-04-2011 00:00 CEST 24-04-2011 23:45 CEST 

Source: the author’s own table  

The left side of the a) part of Figure 18 shows the quarter-hourly historical loads of 

the chosen weeks and the right side shows boxplots representing the Hungarian system load 

in daily resolution.  

It is possible to draw conclusions based on the figure as those that were seen in 

relation to contour plots (for example in winter, the level of consumption is higher due – 

directly or indirectly – to the heating and the illumination effects, besides, in summer the 

cooling effect resulting from the increased use of air conditioners increases the peak period 

consumption levels).  

It is also shown that the so-called winter off-peak period consumption level is higher 

(obviously due to the heating effect), and by season, the different nature of the morning 

ramp and the position of peaks and their levels within the day (for example, in summer the 

cooling effect results in a higher afternoon peak than is produced by the evening 

illumination effect when the cooling effect is not so influential).43 

The intraday distribution of loads is asymmetric independently of the season; it is 

leant to the right (that is, it is left-skewed), as the range of values above the median is much 

narrower than of the values under the median within a day. This asymmetry is slightly 

weaker at weekends, as weekend load in daytime is lower compared to weekdays. 

Independently from seasonal periods the range of Mondays is wider, which can be 

explained by the fact that the ‘ramp period’ needs to start from a lower level, as a result of 

the weekend before them.  

It appears that the other main source of asymmetry within a day is temperature, as 

the distribution is much more asymmetrical on winter days and warmer summer days than 

otherwise44. This is due to the fact that in these periods, the temperature effect (whether 

cooling or heating effect) causes higher peak period load levels. These effects influencing 

                                                           
41 CET: Central European Time, (UTC + 1 hour), UTC: Coordinated Universal Time 
42 CEST: Central European Summer Time, this applies in the summer time period instead of CET (UTC + 2 

hours) 
43 In the evenings, household cooling use only applies in extreme heat, but it is by magnitude smaller than the 

peak period (workplace) use. 
44 The second week of July and the first few days of the first week of July were the hottest days in this 

summer. 
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the daily distribution may of course be combined. In the table in Appendix C) the above 

statements can be followed numerically. What is most important are, of course, not the 

exact values of the numbers but it is worth following through and unravelling the 

tendencies in the relative standard deviation or the variation of the skewness measure.  

Based on the boxplots, it can also be said that there are hardly any outliers – based on 

the definition of a boxplot – and those few that appear in transition and off-peak period 

hours. One should be careful with the handling of outliers, though, as the boxplots were 

made in daily resolution; therefore, outliers are evaluated as such – based on the position of 

the box belonging to a given day and as a function of the corresponding interquartile range. 

Neither time-dependence, nor fundamental causes are considered here.  

Figure 18 shows the figures of the Hungarian system load, the portfolio and  

individual curves, this way both similarities and differences are very easy to notice.  

The role of winter heating and summer cooling effects appear similarly in the 

portfolio compared to the Hungarian system load. The weekend load level, however, is 

much lower than on weekdays, and in this period, the heating and cooling effects have little 

influence. It is important to state that – as opposed to the Hungarian system load – the 

ranges of weekday daily loads and the position of the median are much more stable.  

The evolution of Friday afternoons and the weekend setback are much more 

considerable and clear: the time series figures show that the Friday peak period is much 

shorter and based on the boxplots, ceteris paribus the range is smaller than the daily 

maximum. 

As regards the individual consumer load curves, in curve C25 the differences are 

mainly in peak period loads between seasons. Both figures suggest that it is mainly the 

winter temperature effect that needs to be considered. What make the load curve special are 

rather the quick Monday morning ramp and the slow setback (lasting until the middle of 

Saturday), otherwise the weekdays can be regarded identical. Therefore, the variation of 

the curve can best be characterised by a ramp at the beginning of the week, a weekend 

setback period, the weekday periods (shifted by the temperature in winter) and there is a 

weekend period, with basically constant load.  
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Figure 18: Weekly load time series and the related boxplots of portfolios and individual consumer load 

curves 

  
a) Hungarian system load 

  
b) Portfolio 

  
c) Curve C25  

Table is continued on the next page.  
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Table continued from the previous page.  

  
d) Curve C66 

  
e) Curve C96 

  
f) Curve C109 

Source: author’s own calculations (R) and figures (R). 
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Figures of company C66 suggest that the distribution of weekdays is extremely 

stable, and the load of weekdays and weekends in off-peak periods is practically constant. 

Temperature effect only occurs in the summer (on Monday, Tuesday, that is, on the 

previously mentioned warmer days the peak period load is higher), and the winter peak 

period load level is somewhat higher than in transition periods.  

In the curve of company C96 only the off-peak approximately 1 [𝑘𝑊] and the peak 

period 5-8 [𝑘𝑊] regimes alternate quite regularly, weekends and weekdays do not differ 

either. As a reflection of this, daily distributions are also very stable with a right-skewed 

asymmetry all the way, as the ratio of peak period values during the day is much lower. 

Regarding the effect of temperature, only winter heating effect can be considered. 

Curve C109 – as opposed to the previous one – is characterized by summer 

temperature effect, but this is only characteristic in peak periods, otherwise, the daily 

minimum level remains constant independently from the season (disregarding a few 

summer days).  

1.4.3. Temperature-dependency 

Relying on results in the literature (see Chapter 2) it can be stated that out of the weather 

factors that have an effect on electricity consumption, it is temperature that has the greatest 

effect. Based on Figure 19 it can be seen very well that this effect varies by curve. In the 

sample period, concerning the Hungarian system load, the heating threshold value (under 

which the so-called heating effect applies) starts at around 12-13 °𝐶, while the cooling 

threshold value (above which the so-called heating effect applies) is at around 21-22 °𝐶. 

Between these two values, the temperature effect does not apply. In a consumer portfolio, it 

is basically these two threshold values that seem valid, though it is worth noting that in 

actual practice, these are considered for the calculation of the so-called heating degree-days 

(𝐻𝐷𝐷) and cooling degree-days (𝐶𝐷𝐷) (see more on these in Chapters 2 and 4 as well). 

Regarding the Hungarian system load +1 °𝐶 seems to have a somewhat stronger 

influence regarding the cooling effect than the heating effect. It is also clear that this only 

applies for weekdays. At weekends the behaviour of the heating effect is more or less 

similar to weekdays, the behaviour of the heating effect is a bit milder, and cannot be 

characterised by a very clear tendency.    
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Figure 19: Portfolios and individual consumer loads as a function of temperature 

  

a) Hungarian system load  

(weekdays (black) – weekends (red)) 

b) Portfolio 

(weekdays (black) – weekends (red)) 

  

c) Curve C25 

(weekdays (black) – weekends (red)) 

d) Curve C66 

(weekdays (black) – weekends (red)) 

  

e) Curve C96 

(weekdays (black) – weekends (red)) 

f) Curve C109 

(weekdays (black) – weekends (red)) 

 Source: author’s own figures (R). 
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In the portfolio the weekday heating and cooling effects are almost the same, at 

weekends both are weaker.  

Obviously, in individual curves the situation is more complicated in analyses of this; 

in addition, the random component has a much greater effect. It is similarly outlined how 

the loads are concentrated, grouped depending on the temperature on weekdays and at 

weekends, when the dispersion is smaller or greater.45 This latter perspective will be 

important in the rest of this dissertation.  

1.4.4. Conclusions 

When formulating the conclusions, it is worth returning to the statement that the 

results shown have aimed at drawing attention to phenomena important from the 

perspective of this dissertation focussing on the consumption shape and level – 

consumption risk – temperature-dependency triplet.  

The contour plots give a compact picture of the level and shape of the consumption – 

including effects that apply in different extents in various curves. These effects include 

calendar effects (detecting the effects of weekdays, weekends, holidays), temperature-

dependency, illumination (or sunset) effect and the effects of other structural changes.  

Most academic work dealing with profiling approaches it from creating or forming 

daily profiles, therefore it was considered appropriate to study the distribution of load 

values for various seasons within a day. Fundamentally, similar statements were formulated 

regarding contour plots, but here it is much easier to check to what extent the distribution 

of one day’s load values can be viewed as stable or unstable, and what factors (e.g. 

temperature) may have an effect on the distribution of the load values of each day. This 

way, information is gained about not only consumption level and shape, but also about their 

risk and uncertainty. Obviously, the various types of risks (such as profile- or volume risk) 

cannot be quantified using these methods, only assumptions can be formulated regarding 

their behaviour.  

Complementing the above, the approach of temperature-load scatter plots appears 

later in the section of the dissertation on mixture models. As a preliminary to the results 

there, this section has offered an opportunity to get an insight into how quarter-hourly load 

curves are concentrated and grouped in the temperature-load dimension.  

                                                           
45 In C25, for example, the load is constant at weekend days. Figure 19 a) is a bit disturbing, because the 

weekend setback lasts until the middle of Saturday; however, in this period temperature – understandable – 

does not really have a significant effect on the load. 
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Although it is true that the formation of daily profiles is appropriate in a certain 

sense – and above all, is easy to interpret – but at the same time, it is not always 

efficient, as typical daily profiles are not necessarily formed along daily shapes. If the 

formation of profiles is performed by daily discretisation, it might mean the unnecessary 

estimation of many parameters, but may also result in drawing misleading conclusions. In 

other words, the grouping of consumption values is not necessarily most efficiently 

modelled along daily profile curves, though examining contour plots vertically this appears 

to be a good approach. A line (or some lines) of the contour plot that is in some form 

typical, is (more or less) similar to the other lines, while there are ramps, peaks and 

setbacks with different degrees of differences. The results here only have informational 

purposes; this is what is pointed out for example by the difficult and misleading 

identification of the outlier values with the method shown here from daily discretisation.  

The above analyses, though from a different perspective, support the hypothesis 

H1, which proposes that in electricity consumption curves the main source of variance 

in curves is intrday seasonality – that is, this hypotheses cannot be rejected. This can 

be seen from the daily variation of boxplots and the organisation of the colour scale of the 

contour plots. This result could have been very easily reached by variance analysis (see 

Appendix C)), but the prior aim of this chapter was to find out and reveal the 

mainsprings and major relationships behind the variation of time series, especially to 

provide a picture of the heterogeneity of individual consumption behaviour highlighting 

the complexity of goals formulated by dissertation.   
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2. PREVIOUS RESEARCH RESULTS ON CONSUMER PROFILING 

 

Identification of consumer profiles goes hand in hand with creating consumer profile 

groups that include those that share similar profiles. For this reason, this chapter reviews 

research results that have been reached so far related to time series clustering, and in a 

narrower sense, energy (consumption) time series clustering. In connection with this, the 

so-called curve feature is essentially the relevant information extracted about typical 

consumption patterns in a specific instance of practical usage.  

These tasks are closely related to the appropriate handling of weather induced effects; 

therefore, this is the topic of the second part of the chapter. Building on a previous 

publication of the author it is shown what consequences the most commonly used solutions 

in the handling of weather induced effects have for both profiling, modelling and evaluation 

of the related uncertainty.  

2.1. The two-step consumption time series clustering 

Based on the literature on profiling, this section gives an overview of the general 

framework used for creating consumer profiles and consumer profile groups. Practically, 

this means the adaptation of two-step or two-stage clustering to consumer profiles. Here, 

besides the applied clustering techniques (2nd step) what is more stressed and industry-

specific is that curve features are produced (as a 1st step) to describe consumption curves to 

represent compressed information.46 The overview starts with a short introduction to time 

series clustering. 

2.1.1. Time series clustering in general 

As it is commonly known, the aim of clustering is essentially grouping observations in a 

way that those within the group are as similar as possible, while compared to each other, 

the groups differ as much as possible. Algorithms used in time series clustering and curve 

clustering are often based on similar techniques – using some time series characteristics – 

such as clustering techniques in general (see, for example: Liao [2015]). 

                                                           
46 As in consumption time series there are typically huge amounts of datum per time series (e.g. the 

consumption curve for a year – in a non-leap year – consists of 365 ∙ 24 = 8760 hours or 365 ∙ 96 = 35040 

quarterhours), as a first step, it is always necessary to carry out some form of information extraction. 
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Related to this topic, Table 3 shows two possible classifications from two important 

studies that synthesise the applied methods (Liao [2005] and Jacques-Preda [2013]).47 

Table 3: Possible classifications of time series clustering algorithms  

Classification by Liao Classification by Jacques and Preda  

1. raw data clustering 

2. feature-based clustering 

3. model-based clustering 

1. raw data clustering 

2. two-stage clustering 

3. nonparametric clustering 

4. model-based clustering 

Source: table edited by the author. 

The first techniques are in both cases clustering techniques that work with raw data 

(the original time series), interpreting them either in time or frequency domain. It is 

essential in feature-based or two-step clustering that the first step is to extract some relevant 

feature from the raw data, and then clustering takes place in this domain. Among 

nonparametric techniques there are techniques that perform clustering by using various 

distance or similarity measures. The advantage of model-based clustering is that clustering 

and dimension reduction happen in one step by the estimation of the model that best suits 

the data. In a slightly misleading way, Liao lists here the type of clustering where (similarly 

to feature-based clustering) some parameters of the models applied to the time series (as 

some results obtained from time series models) serve as a basis for clustering.  

2.1.2. The general framework for profiling 

The framework used by Chicco in Figure 20 (see: Chicco [2012]), is the application of two-

step or two-stage clustering on consumer profiling.  

Pre-clustering is a phase in clustering where the so-called curve features are 

produced. These are the features that presumably represent the variation of consumption 

well.48 This is followed by the compilation of input data. 

Clustering itself is not only creating clusters with some chosen clustering technique, 

but it also means the formation of cluster representatives and evaluating the appropriateness 

of the clustering results by clustering validity indicators.  

                                                           
47 In their article Jacques and Preda (Jacques-Preda [2013]) summarise clustering techniques for functions 

(functional data clustering), but they note that in most cases the data to be analysed manifest themselves as a 

function of time as a continuous variable. This field is becoming increasingly popular as a subfield of 

functional data analysis (FDA). 
48 Curve features are understood in the majority of the applications as features that characterise the whole 

curve compressed in one single day’s profile, as it was mentioned in the definition of profile before. 
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Figure 20: The procedure of profiling consumption curves 

DATA COLLECTION AND PROCESSING FOR ANALYSIS 

- recording curve data (metering under previously defined loading conditions) 

- detecting and managing bad data 

 

PRE-CLUSTERING PHASE 

- selection of representative curve features and 

- building an input matrix that contains them 

 

CLUSTERING PHASE 

- formation of clusters with the chosen clustering algorithm  

- formation of cluster-representatives   

- calculating clustering validity indicators for the evaluation of clustering efficiency 

 

POST-CLUSTERING PHASE 

- formation of final consumer groups and profiles 

- calculating further information (needed e.g. for the pricing of curves)  

Source: author’s own figure based on Chicco [2012]. 

The last, so-called post-clustering phase means creating consumer groups and final 

consumer profiles49. The final number of consumer groups does not need to be identical 

with the number of clusters resulting from the clustering process50, because in actual 

practice a market participant may not be able to manage many clusters in a transparent way, 

thus in such cases some form of aggregation is necessary.  

Obviously, our goal is not to explain all the above steps in detail. However, from the 

perspective of this paper it is highly important to see how the curve features to be used in 

clustering are produced. This also includes the pre-adjustment of the time series, which in 

most cases means the removal of or dealing with the effects of temperature (see more about 

this in the second part of this chapter).  

                                                           
49 These final profiles are basically those daily profiles produced in various conditions that have also been 

mentioned in connection with the definition of profiles (such as profiles that apply in summer, winter, 

transition periods, different days of the week, or even a combination of these, etc.). For a very neat 

classification of these see: Pitt [2000]. 
50 Various clustering validity indicators exist for the methodologically appropriate decision about the number 

of clusters; see more on this in Chicco [2012]. 
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2.1.3. Producing curve characteristics to be used in profiling  

The curve features that describe each consumption curve in clustering can be produced in 

many ways. A possible classification of these can be found in Table 4, which was compiled 

on the basis of how they have been produced so far according to the literature.  

Table 4: A possible classification of curve features to be used in profiling 

Daily representative load curves (RLC)  
Features produced 

with other 

methods 

shape parameter- 
time  

domain- 

frequency  

domain- 
model- 

based features produced 

Chicco et al. 

[2005] 

Chicco 

[2012] 

Carpaneto et al. 

[2003] 

Espinoza et al. 

[2005] 

Räsänen et al. 

[2010] 

Mathieu et al. 

[2011] 

Li et al. 

[2010] 

Carpaneto et al. 

[2006] 

Hino et al. 

[2013] 

Srivastav et al. 

[2013] 

 
Macedo et al. 

[2015] 

Chicco et al. 

[2005] 

McKenna et al. 

[2014] 

Verdú et al. 

[2006] 

 
Panapakidis et al. 

[2012] 

Panapakidis et al. 

[2014] 
  

 
Panapakidis et al. 

[2014] 
   

 
Tsekouras et al. 

[2007] 
   

 
Tsekouras et al. 

[2008] 
   

Source: author’s own compilation and table. 

It is clear that in most cases features that characterise consumption curves are 

produced on the basis of some daily representative load curve. Such is the previously 

mentioned representative load curve (RLC) whose production is summarised in Tsekouras 

et al. [2008], for example. Chicco (see: Chicco [2012]) assumes that a one-day load curve 

(consisting of 96 quarter-hours) is already available, which means using the mean of 

quarter-hourly load values of ‘representative’ weekdays from the transition period of the 

total load curve.51 A study which essentially combines the two solutions, the RLC-based 

(two-step) consumer segmentation, is the article by Tsekouras et al. [2007]. These methods 

assume that consumption curve clustering is produced from daily hourly or quarter-hourly 

representative load curves, that is, from characteristics produced based on time domain 

features. 

It is a possible (and simpler) method, though, to extract further relevant information 

from the available daily RLC, which in the Table 3 were labelled shape parameters.  In 

                                                           
51 As this concerns the transition period, the removal of  the effect of temperature is not dealt with in the 

study. 
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Chicco et al.’s [2005] work, these are the so-called shape factors.52 In Mathieu et al.’s 

[2011] study, they are called load shape parameters.53 The drawback of these methods is 

that the measures cannot always be determined definitely, for example for load curves 

where there are two peak periods within a day (as it very commonly happens in household 

consumption).  

Chicco et al. [2005] use a frequency domain based approach (Fourier transform) for 

the representation of daily load curves instead of the time-domain method mentioned in the 

previous paragraphs. A solution very similar to this is used in the studies by Carpaneto et 

al. [2003], Carpaneto et al. [2006] and Panapakidis et al. [2014], among others. In all these 

studies the main idea is to transform the daily RLC into frequency-domain, and perform 

clustering on the results thus derived.  

In the methods reviewed so far, this RLC often means a daily load curve from the 

transition period which is either the mean of the load values of one or more days, or the 

result of daily load curve clustering (see: Chicco [2012], Tsekouras et al. [2007]).  

It is worth using a different category for the so-called model-based solutions, where 

the daily representative load curve is produced with the assumption of estimating an 

underlying model. Examples to this are the studies by Hino et al. [2013] and McKenna et 

al. [2014], where the daily load curve is modelled as a mixture of normal density functions, 

and the classification of daily curves is done on the basis of results thus derived. Espinoza 

et al. [2005] use a completely different solution based on a time series regression technique, 

where the effects of all exogenous variables (such as temperature, days of the week, etc.) 

are removed.  

Besides, there are other solutions where daily RLCs are not produced (or at least, not 

with the aim of clustering consumption curves). In Räsänen et al.’s [2010] study the 

                                                           
52 These shape parametres are the following: 

- average daily load / maximal daily load,  

- average daytime load / maximal daytime load, 

- minimal daily load / average daily load,  

- average evening, night load / average daily load,  

- average load measured in dinnertime / average daytime load, 

- minimal daytime load / average daytime load. 
53 These load parametres are the following: 

- Near-Base Load [NBL, kW]: the 2.5th percentile of daily loads, 

- Near-Peak Load [NPL, kW]: the 97.5th percentile of daily loads, 

- High-Load Duration [HLD, hour]: the length of the time period when the value of load is closer to 

NPL than it is to NBL, 

- Rise Time [hour]: the length of the time period until load reaches the beginning of HLD from NBL, 

- Fall Time [hour]: the length of the time period until load reaches NBL from the end of HLD. 
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method uses dimension reduction (self-organizing maps (SOM)) on the basis of times 

chosen randomly (but identically) from time series, then groups the curves with similar 

characteristics by K-Means clustering or hierarchical clustering. Srivastav et al. [2013] use 

mixture models for estimating typical consumption patterns. This will be described in detail 

in a subsequent chapter. Verdú et al. [2006] perform dimension reduction on weekly load 

time series using the SOM method as well. 

2.1.4. Clustering algorithms used in profiling  

Table 5 contains, without aiming to give an exhaustive list, the most commonly used 

clustering algorithms for creating profile groups, and some applications of these. 

The application of the methods is extremely wide ranging even beyond their use in 

energy; therefore, the advantages and drawbacks that are generally known also apply here. 

In selecting the best method, the right question to ask is rather how strongly the advantages 

and drawbacks affect the results of profiling in particular cases. 

Although iterative K-Means clustering and its variants (K-Means++, fuzzy K-Means) 

are fairly simple, there is a drawback to all of them: they require the a priori knowledge of 

the number of clusters.  

The advantage of the various hierarchical clustering techniques is that many distance 

and similarity measures can be used, whereas in an agglomerative case, for example, the 

various techniques for merging can produce highly different results, and – normally – it is 

impossible to reassign a load curve into another cluster during the agglomeration steps.  

K-Medoid clustering also allows the use of various distance measures, but compared 

to K-Means clustering it is a more robust solution. The so-called medoid of the resulting 

clusters will be the observation compared to which the other cluster members are closest, 

that is, it can also be regarded as a representative observation characterising the cluster (as 

opposed to the centroid which is sensitive to averaging).  

It is clear that the application of various artificial neural network (ANN) solutions is 

on the rise in the field of clustering tasks as well, and besides dimension reduction, they are 

used for creating groups. Often, they do not appear alone, as the so-called self-organising 

maps (SOM) map the examined input variables – similarly to multidimensional scaling – 

into a lower, usually two-dimensional space, and clustering itself is performed by the 

already listed clustering techniques. 
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Table 5: Clustering algorithms used in profiling 

Clustering algorithm Application 

K-Means clustering 

Chicco et al. [2005] 

Chicco [2012] 

Espinoza et al. [2005] 

McKenna et al. [2014] 

Panapakidis et al. [2014] 

Räsänen et al. [2010] 

Tsekouras et al. [2007] 

Tsekouras et al. [2008] 

K-Means++ clustering Panapakidis et al. [2014] 

Fuzzy K-Means clustering 

Chicco et al.  [2005] 

Chicco [2012] 

Tsekouras et al. [2007] 

Tsekouras et al. [2008] 

Hierarchical clustering 

Chicco et al. [2005] 

Chicco [2012] 

Hino et al. [2013] 

Panapakidis et al. [2014] 

Räsänen et al. [2010] 

Tsekouras et al. [2007] 

Tsekouras et al. [2008] 

K-Medoid clustering Panapakidis et al. [2012] 

Follow-the-leader (FDL) and its variations 

Carpaneto et al. [2003] 

Carpaneto et al. [2006] 

Chicco et al. [2005] 

Chicco [2012] 

Artificial Neural Networks (ANN) Macedo et al. [2015] 

Self-organizing Maps (SOM) 

Chicco et al. [2005] 

Panapakidis et al. [2014] 

Verdú et al. [2006] 

Tsekouras et al. [2008] 

Canonical Variate Analysis (CVA)  

and discriminant analysis 
Li et al. [2010] 

Source: author’s own compilation and table. 

In a similar way, canonical variate analysis (CVA) is not capable of clustering in 

itself. Here, clustering is based on canonical variables derived from between and within 

group covariance matrices (for example, in Li et al.’s [2010] study, using linear 

discriminant analysis). 

Numerous other solutions exist; further information about them can be found, for 

example, in the literature listed in the Table above. 
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2.2. Capturing the effect of weather variables in energy time series 

A fundamental question in relation to profiling consumption curves is dealing with the 

effects of various exogenous variables, such as variables describing weather, besides 

deciding about which effects of these variables are or are not regarded as part of the 

profile. As variables describing weather are basically stochastic in the same way as 

consumption is, deviations from the typical (or expected) value and their effects on 

consumption are highly relevant from the perspective of profiling (i.e. seeking typical 

consumption patterns). 54 

2.2.1. The relationship between weather variables and consumption  

The quantification of weather variable effects is an extremely complex task. This does not 

only relate to exploring the existence of a relationship, but also how the effect of each 

variable can be captured most effectively. This involves the decisions about sampling 

(observation) frequency, using various structures for lagged variables, or other 

transformations performed on weather variables (such as the consideration of daily 

average-, or daily peak periods, etc.). 

Regarding weather variables, the following are most often used: temperature, 

humidity, wind, the ratio of cloud coverage and precipitation (see: Pitt [2000]). Beyond the 

fact that the relationship between them is basically nonlinear, there are also interaction 

effects. 

Nonlinearity that characterises temperature is usually managed by using heating and 

cooling degree-day (HDD and CDD, see: Sugár [2011] or Mák [2015]). Espinoza et al. 

[2005] likewise define the energy demand that arises as a result of the heating or cooling 

effect (HR and CR, that is, heating and cooling requirement). 

Inclusion of interacting variables is supported if there are certain variables that 

reinforce or weaken each others’ effects. Out of the other weather variables the effect of 

humidity is primarily relevant in the summer, when due to the sultry weather the use of air 

conditioners increases (cooling effect or often referred to as discomfort effect). The role of 

the wind is more significant in winter, especially when it is very cold, because then the co-

occurrence of cold and wind greatly increases our sensation of coldness (that is, the winter 

                                                           
54 Obviously, besides variables that describe temperature it is usually necessary to somehow deal with 

seasonality, outliers, etc.; the specific way in which it is done depends on the methodology used.  



52 
 

heating effect will be even stronger; this is called wind-chill effect). Effects like this or 

similar to this can appear in a model in many different ways.  

One solution is – similar to degree-days – to use formulas arrived at through practical 

experience and empirical research. Meteorological institutions have many kinds of wind-

chill formulas.55 The so-called humindex (humidity index), for example, is used for 

modelling the previously mentioned discomfort effect.56 

Obviously, in some instances these indicators are not the most appropriate (likewise 

in the case of heating and cooling degree-days the use of 12 of 21°𝐶 as threshold values, 

and the calculation of upward or downward deviations from this, as suggested by Sugár 

[2011] is not always optimal). Explorative solutions may be used to remedy all of this, such 

as MARS (Multiple Adaptive Regression Splines), for example, which is capable of 

capturing both nonlinearity and interactions without resorting to formulas obtained by 

empirically researched formulas. It makes it possible to reveal both threshold values and the 

possible interaction effects through a basically exploratory method, by the evaluation of 

exact measures (such as model selection criteria).  

Throughout the research it is often a difficulty that appropriate quality data are not 

available for the analysis (for example, OMSZ (Hungarian Meteorological Service) data are 

                                                           
55 Some of these can be summarised as follows: 

- Canada: 

𝑇𝑤𝑐 = 13.12 + 0.6215𝑇𝑎 − 11.37𝑉+0.16 + 0.3965𝑇𝑎𝑉+0.16, 

where: 

o 𝑇𝑤𝑐  is the so-called wind-chill index, measured on °𝐶 scale, 

o 𝑇𝑎 is the temperature of the air, 

o 𝑉 is the windspeed on 10 metres (km/h), 

- the United States: 

𝑇𝑤𝑐 = 35.74 + 0.6215𝑇𝑎 − 35.75𝑉+0.16 + 0.4275𝑇𝑎𝑉+0.16, 

where: 

o 𝑇𝑤𝑐  is the so-called wind-chill index, measured on °F scale, 

o 𝑇𝑎 is the temperature of the air, 

o 𝑉 is the windspeed on 10 miles (mph), 

The above calculations apply only below 10°𝐶 (50°F), above 4.8 km/h (3.0 mph), these are the two threshold 

values in excess of which the combined, interaction effect of the variables is relevant. 
56 This is calculated in the following way: 

𝐻𝑢𝑚𝑖𝑛𝑑𝑒𝑥 = 𝑇𝑎𝑖𝑟 + 0.5555 [6.11𝑒
5417.7530(

1

273.16
−

1

𝑇𝑑𝑒𝑤
)
− 10], 

where: 

- Tair is the temperature of the air in °𝐶, 

- Tdew is the dewpoint in K-degree. 

As there might be some approximating conversion between dewpoint and humidity, humindex can actually be 

used to quantify the interaction effect of temperature and humidity. 
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not available for free, even for research purposes; and internet data sources – often freely 

accessible – are not reliable enough).  

Though slightly more indirectly related to this topic, it is worth mentioning that there 

might be some lagging in the effect of temperature (that is, the tth period consumption is not 

only influenced by the tth period, so-called spot temperature). Various (usually simpler) 

techniques have been developed to manage this, which is summarised here briefly through 

the solutions most commonly used concerning temperature:  

- the use of some lags, that is, inclusion of data on the temperature of previous 

periods (Tt−1, Tt−2 …) besides the tth period temperature (Tt), 

- the use of exponential weighting, that is, instead of 𝑇𝑡, using rather: 

𝑇𝑡(𝛼) = 𝛼 ∙ 𝑇𝑡 + (1 − 𝛼) ∙ 𝑇𝑡−1(𝛼)        (where 0 < 𝛼 < 1), 

- the use of the Noon Effective Temperature (NET) defined by Elexon [2013], which 

produces the temperature relevant for the description of consumption on the given 

day from the average of the previous day and the day before that by fixed weighting 

in the following way: 

𝑇𝑡
𝑁𝐸𝑇 = 0.57 ∙ 𝑇𝑡 + 0.28 ∙ 𝑇𝑡−1 + 0.15 ∙ 𝑇𝑡−2. 

- and another such solution on the Hungarian natural gas market is the so-called 

sliding weighted average temperature used to calculate profiles for consumers 

(whose consumption is not measured regularly), which considers the temperatures 

of the days preceding the tth day with gradually decreasing weight. 

2.2.2. Capturing the effect of weather variables in profiling  

As a consequence of their stochastic nature, there are two perspectives from which 

the effects of weather variables can be looked at: 

- directly modelling the effect of the weather variable itself, or  

- directly modelling the effect of deviation from the typical (average) tendency, the 

naturally occurring irregular behaviour of the weather (as a stochastic) variable. 

The adaptation of these two options for the field of profiling can be summarised as 

follows: 

- removal of the total effect of the weather variable from the profile, that is the effect 

of the weather is not part of the profile at all, or  
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- only the irregular effect of the weather variable is removed during profiling, so that 

only the typical (average) weather effect is included in the profile. 

Typically, it is the first solution that is used in the related literature and, apart from a 

few exceptions, out of the variables that describe weather only temperature is taken into 

account. 

Räsänen et al. [2010] use a simple regression technique to eliminate the effects of 

temperature in each of the four seasons in order to allow for nonlinearity (such as winter 

and summer temperature effects). Because of the difficulty in defining the beginnings and 

endings of seasons this is a disadvantageous and not too elegant solution.  

Espinoza et al. [2005] define heating and cooling requirements separately (HR and 

CR, see further chapters about this), which is more elegant; however, the threshold values 

used for degree days may be problematic. 

Pitt’s [2000] study considers the effects of more weather variables, even profiling is 

performed by dividing the consumption time series into so-called weather dependent and 

weather independent parts. Weather variables are handled using the MARS (Multiple 

Adaptive Regression Splines) method which allows for the exploration and estimation of 

the best combinations of nonlinear and interaction effects to fit the time series. It is worth 

noting, however, that a solution such as this, which takes many weather variables into 

consideration, is very rare.  

 Mutanen et al. [2011] use a method that slightly differs from the previous ones, as 

correction is carried out for identical days and months, and it uses deviations from the 

mean for both temperature and consumption. The disadvantage of this method is that 

temperature-dependency can differ greatly within days as well, and this – while not to a 

great extent – influences the results, that is, it does not work so well in the case of multiple 

seasonality. In Section 2.2.4, dealing specifically with the extreme effect of temperature, it 

has been shown that a similar solution can work well with monthly data (Mák [2015]). In 

that part of the paper conclusions that apply to profiling are also described.  

The phenomenon that traditionally the whole effect of the weather is removed while 

profiling can be explained by the fact that profiling is applied to more or less previously 

defined groups (e.g.: there is either winter or summer temperature-dependency for 

everyone, or both, or neither). This is not a problem when the ‘only’ aim is to create 

homogenous groups, and individual consumption behaviour is not relevant (neither in terms 
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of typical patterns nor uncertainty). Weather-dependency may be weaker or stronger for 

each consumer (which may be relevant in any individual treatment, for example, individual 

pricing), even uncertainty may be weather-dependent.  

2.2.3. The extreme (irregular) effect of temperature 

Sections 2.2.3. and 2.3.4. contain the slightly modified version of parts of an earlier study 

that are relevant for the purposes of this paper.  

The more or less extreme values that occur in the variation of weather are not 

occasional fluctuations, but smaller or larger deviations from the mean that are constantly 

present; therefore, their classic modelling as outliers is disadvantageous, and not exactly 

appropriate.  

The quantification of such irregular effects is important in the short and long run (this 

section focuses on issues related to the long term). As uncertainty (which is not like a 

structural break, for example) is constantly present, the management and quantification of 

the related risks is important and needs constant control, whether it be regulations or long 

term portfolio management, both on the supply (identification of necessary contracted 

volumes in the long run) and demand side (forecasting consumption).  

This section describes, with the use of the seasonal adjustment methodology, to what 

extent stochastic shocks caused by temperature can affect the results of modelling (for 

example, the seasonal adjustment itself, or the identification of outliers) and what 

improvements in results can be achieved by their explicit management. 

The aforementioned extreme (irregular) feature can of course be dealt with using the 

estimation of a regression model (similar to regARIMA known in the methodology of 

seasonal adjustment), as the decomposition of the time series is basically independent from 

this, because it is used, inter alia, for the pre-adjustment of the time series.  The 

methodology of seasonal adjustment – as an additional benefit – has provided an 

opportunity for both handling ‘classic’ outliers 57 and the validation of results (see, for 

example slidings span diagnostics). As the methodology of seasonal adjustment is not so 

directly related to the topic of this paper, this section focuses only on the handling of the 

effect of temperature, and only these parts of the earlier study (Mák [2015]) will be 

presented here.  

                                                           
57 These are the following: additive outlier (AO), level shift (LS) and transitory change (TC). 
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Among the previously published results was the construction of an easily 

interpretable model that takes into account the nonlinear relationship of temperature and 

consumption from two aspects. On the one hand, it considers the effect of temperature as 

relevant only under a certain threshold level; this way, the use of heating degree-day is 

supported in the models. This solution is equivalent with other solutions typically used in 

this field. On the other hand, the model calculates with the monthly (heating) degree-day 

deviations from the mean, which makes it possible to consider the fact that the effect of 

temperature is not necessarily the same below the above mentioned threshold level.  

Results shown here have numerous important consequences that are relevant from the 

aspect of profiling. These will be summarised at the end of the section, supplementing the 

study with some further model runs.  

2.2.4. Seasonal adjustment and the removal of extreme (irregular) effect of temperature 

in the Hungarian natural gas consumption  

This section presents part of an earlier study (Mák [2015]). Although the study is related to 

Hungarian natural gas consumption, it is important from the perspective of this dissertation 

to discuss how the effects of deviation from the mean temperature can be included in a 

model. 

2.2.4.1. Data used in the analysis 

The natural gas consumption data used in the empirical part of this study are from the 

Eurostat database58 and temperature data were obtained from the Pestszentlőrinc weather 

station of Hungarian Meteorological Service.59  

Figure 21 shows how temperature and natural gas consumption are related with 

regard to monthly average temperature and consumption data between 2006 and 2013. It is 

easy to see that above an average temperature of 15-16 °𝐶 consumption is around a 

relatively stable level and as monthly average temperature drops, the value of consumption 

rises. Under the given threshold the relationship may even be called linear; however, 

disregarding the highest consumption values (which, otherwise, is January 2006, the 

coldest month of the observed period60), the linear relationship is not so evident anymore.  

                                                           
58 http://ec.europa.eu/eurostat/, in thousand terajoules (TJ)  
59 http://www.varaljamet.eoldal.hu/cikkek/climate_budapest.html, in Celsius (°𝐶) 
60 The only month colder than this was the February of 2012, however, because of the decreasing trend the 

consumption was much lower, despite the extreme cold. 

http://ec.europa.eu/eurostat/
http://www.varaljamet.eoldal.hu/cikkek/climate_budapest.html
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Figure 21: Hungarian natural gas consumption as a function of temperature, 2006–2013 

 

Source: author’s own (Excel) figure based on Eurostat data. 

The threshold value of 15-16 °𝐶 can be taken into account in basically two ways. One 

way to calculate HDD (heating degree-day) is to calculate the downward deviations from 

the traditionally 16 °𝐶-threshold (and their sum), and the other option is to only calculate 

with temperature values below 15 °𝐶 (and only those), and take the value of their 

deviations from 18 °𝐶 (and the sum of these values). The two methods expressed with 

formulas are the following: 

1st method: 

HDD = max(0, 16 °𝐶 – temperature), 

2nd method:  

HDD = 18 °𝐶 – temperature, if temperature ≤ 15 °𝐶, 

HDD = 0 °𝐶, otherwise. 

The calculation used in the second method can be done in a more sophisticated way 

(see for example Howden et al. [2001]); but in any case, the empirical studies prove that the 

latter method ensures a better fit, and it is also the formula used by Eurostat.  

In this paper, the 2nd method was used for calculations.61 Figure 22 shows the 

temporal fluctuation of HDD calculated on the bases of natural gas consumption and 

temperature for the period between 2006 and 2013. The downward trend in consumption is 

                                                           
61 If daily data are available, aggregating the values calculated from them gives the monthly and yearly 

values, etc. As credible data dating back to 2006 are not available in daily resolution, and Eurostat only 

publishes such data until 2009, in the study – lacking daily data – results calculated from monthly means were 

used. 
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visible – which is not only due to the economic crisis of 2008 – as well as the higher 

consumption in colder winters, and lower in warmer winters; moreover, it shows the outlier 

effect of the cold in February 2012. 

Figure 22: Hungarian natural gas consumption and HDD, 2006-2013 

 

Source: calculations and figure by the author (Excel) based on Eurostat data. 

Summarising the empirical claims made here, the HDD-method in itself is only 

capable of modelling the heating effect, but in observations of values under the threshold 

level, it only describes the relationships as linear. Still, the figures suggest that the 

relationships are not necessarily linear even under the threshold value.  

This section shows a possible solution for the modelling and quantification of the 

latter empirical fact. Using the methodology shown, it will also be examined how the model 

can be used to deal with extreme temperature effects. It seems obvious to define the 

calculated HDDs and the deviations from the mean HDD, and use them as variables. The 

deviation may thus be positive or negative, depending on whether the given month was 

rather cold or warm compared to the average trend. As the months of December, January 

(and even February) are typically colder than the other months, it is practical to calculate 

the deviations from the mean by month. That is, to calculate the mean HDD looking at only 

the months of January62 and to examine the differences between each January value and 

this mean – and proceed in the same way for all the other 11 months. This way, it is true for 

                                                           
62 Mean here refers the mean in the sample period. 
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every month that the mean deviation from the mean HDD as a reference level is exactly 

zero (as the mean deviation from the mean is zero). 

2.2.4.2. Estimation results  

Results shown in this section were reached using the X-13ARIMA and X-13ARIMA-

SEATS methods, and the Excel programme. The detailed steps will not be described, only 

the main results, and the difficulties and decisions that were made in the modelling process. 

HDD-deviations as exogenous variables (using the terms used by the seasonal adjustment 

software: user-defined variables) will be investigated for their influence on the quality of 

seasonal adjustment. This needs to be highlighted here, as seasonality in natural gas 

consumption is primarily influenced by the temperature, where the role of the stochastic 

nature is extremely great, therefore, it may have a considerable effect on the stability of 

seasonal adjustment.63   

It may appear as if seasonality were a field rather distant from the topic of this paper. 

Its presence here, though, is supported by the fact that it may be one of the aims of profiling 

to calculate a typical (an average) trend, to arrive at a time series that is free from all sorts 

of irregular effects. Compared to the methodology shown here, the task is somewhat more 

complicated in profiling. For the methodology of seasonal adjustment in Hungarian see 

Sugár [1999a] and Sugár [1999b]. 

Concentrating primarily on the final results, this section shows how they were 

calculated with and without HDD-deviations. A lesson learned here is that the explicit 

inclusion of extreme temperature effects produces a better established model, for example, 

concerning the automatic selection of various structural breaks. The Reader may find the 

results of the most important tests and diagnostics in the cited paper.   

Proceeding to the results of HDD-deviations (see Table 6), HDD-deviations of June, 

July and August have not been tested, as in these summer months the value and deviation 

of HDD was zero in the sample. The months of May and September each showed positive 

HDD values in the sample, but even here, HDD-deviations are not considered to be 

significant.  

As the model was fitted after logarithmic transformation of the original time series, 

the time series can be written as an exponential function of various independent (or 

explanatory) variables. 

                                                           
63 This will be examined using one of the well-known diagnostics of the X-13ARIMA method (sliding spans). 

The results arrived at will not be explained here, they can be found in the cited study (Mák [2015]). 
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In this case – as we know – the coefficients (let us mark ß) are not interpreted 

directly, but as exp(ß), due to the exponential function formula. That is, if the parameter for 

the month of January is 0.0363, then exp(0.0363) = 1.0370, that is, if the month of January 

is 1 °𝐶 colder than the mean (that is, the value of HDD-deviation is 1 °𝐶 higher), then the 

value of natural gas consumption is, ceteris paribus, on average 3.70 percent higher. The 

coefficients of the others months can be calculated and interpreted in a similar way.   

Table 6: The main results of the regression model on the example of Hungarian natural gas 

consumption 

Variable Coefficient Standard error t-value 

intercept –0.0010 0.0016 –0.68 

LS_2008_oct –0.2203 0.0494 –4.46 

HDD_deviation_jan 0.0363 0.0075 4.85 

HDD_deviation_feb 0.0478 0.0066 7.30 

HDD_deviation_mar 0.0556 0.0101 5.53 

HDD_deviation_apr 0.0749 0.0145 5.17 

HDD_deviation_oct 0.0439 0.0111 3.96 

HDD_deviation_nov 0.0427 0.0091 4.70 

HDD_deviation_dec 0.0320 0.0093 3.46 

peak_deviation_summer 0.0001 0.0001 1.78 

Source: author’s own calculations (X-13ARIMA-SEATS) and table.  

Finally, it might be worth observing some figures to see what advantages building 

temperature into the model has from the perspective of seasonal adjustment.  

Without the inclusion of HDD-deviations the seasonally adjusted time series, that is, 

the original time series after the removal of the seasonal component, is rather zigzag, as the 

temperature induced irregular effect is still there (see Figure 23). This is particularly 

outstanding on the winter of 2011/2012, when February was very cold. The period around 

the economic crisis has a similar zigzag shape. As it was mentioned in the original study, 

this model did not recognise the structural breaks during the crisis either. 

A similar phenomenon can be observed in the examination of SI ratios64, where these 

values show great variability within a month (See Figure 24). 

                                                           
64 SI ratio is the sum of the seasonal (free from regression effects, the latter ones are defined by the user or 

built-in ones) and the irregular components (see below) in the framework of seasonal adjustment. It is only 

briefly noted here what it means to define components and the relationships between them that provide the 

starting point concerning seasonal adjustment. In an additive model the time series can be written as: 

𝑌 =  𝑇 +  𝐶 +  𝑆 +  𝑇𝐷 +  𝐻 +  𝑂 +  𝐼, 
where the components are the following: 

𝑇 – is long term trend, 
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Figure 23: Final results of seasonal adjustment without and with using HDD-deviations 

  

Source: author’s own calculations (X-13ARIMA-SEATS) and figure (Excel).  

Figure 24: SI ratios without and with using HDD-deviations 

  

Source: author’s own calculations (X-13ARIMA-SEATS) and figure (Excel).  

Having built HDD-deviations into a model, the outcome is a much less rugged, 

seasonally adjusted time series, as HDD-deviations were defined as part of the seasonal 

                                                                                                                                                                                 
𝐶 – represents the effect of the midterm cycle, 

𝑆 – is the seasonality that describes regular fluctuation in a year, 

𝑇𝐷 – represents the effect of the different number of working days, 

𝐻 – represents the effect of holidays, 

𝑂 – represents the effects of observed outliers, 

𝐼 – is the error term (irregular component). 

There are, among others, multiplicative and log-additive models, which involve writing the model as the 

product of these components or the sum of their logarithms. 
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component. The effect of the economic crisis is clearly recognisable both in the trend, and 

the seasonally adjusted time series (see Figure 23). Continuing the previous line of thought, 

here SI ratios fluctuate much less within each month (see Figure 24). 

2.2.4.3. Removal the extreme (irregular) effect of temperature  

Table 7 shows the estimated values of HDD-deviation coefficients and the results derived 

from them. According to this, if January is 1 °𝐶 colder than the mean (the mean January 

value), then the consumption is ceteris paribus 3.70 percent higher on average (in February 

this value is 4.90, in March 5.72).  

The results are not surprising in that December and January are typically the coldest; 

therefore, if in these months the temperature is 1 °𝐶 lower, the consumption does not 

increase so much as in other months. This is partly because heating systems have their 

limits, and partly because if temperature decreases from –1 °𝐶 to –2 °𝐶, it has a greater 

effect than if it decreases from –5 °𝐶 to –6 °𝐶 (for example, due to economising). This also 

probably explains why the April value is the highest. 

Table 7: The values of HDD-deviation parameters and their corresponding interpretations on the 

example of Hungarian natural gas consumption 

Month ß 
exp(ß) – 1 

[percentage] 

January 0.0363 3.70 

February 0.0478 4.90 

March 0.0556 5.72 

April 0.0749 7.78 

May * * 

June ** ** 

July ** ** 

August ** ** 

September * * 

October 0.0439 4.49 

November 0.0427 4.36 

December 0.032 3.25 

* The parameter is not significant. 

** Without parameter estimation (HDD-deviation zero). 

Source: author’s own calculations (X-13ARIMA-SEATS) and table (Excel).  

It may, of course, occur in an extremely cold May or September too (although it is 

rare, because the heating season typically starts in the middle of October), but this does not 

cause excess heating effect, hence HDD-deviation in these months is not significant. 
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Consequently, if there is HDD-deviation in September, correction with this is not needed 

either. In January months 1 °𝐶 of HDD-deviation causes ceteris paribus 3.70 percent higher 

consumption. Therefore, if a January was 1 °𝐶 colder than the mean, the temperature 

corrected consumption of this month needs to be decreased to 3.70 percent lower than the 

actual consumption, because the excess consumption was caused by the weather being 

colder than the mean; if it was 2 °𝐶, then double the amount, and so on. The correction is 

also valid vice versa, that is, if a January was 1 °𝐶 warmer than the mean, than the 

temperature corrected consumption of this month needs to be raised by 3.70 percent, as the 

weather being warmer than the mean was the cause of the lower consumption.  

Figure 25: Temperature corrected natural gas consumption, 2006–2013 

 

Source: author’s own calculations (X-13ARIMA-SEATS) and figure (Excel). 

In general, temperature correction in the above model can be performed as follows:  

𝑌 ∙  𝑒𝑥𝑝( − 𝛽 ∗  𝐻𝐷𝐷 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛), 

where 

Y – contains data of the original time series, 

ß – denotes the coefficients for the estimated HDD-deviation, 

HDD-deviation – denotes the monthly time series of HDD-deviation. 

Figure 25 shows the temperature corrected times series of the Hungarian gas 

consumption based on the formula above.  

It is observable that while, for example, in 2006/2007 the winter was relatively mild, 

the temperature corrected quantities there are higher than the actual quantities, while in the 

extremely cold February of 2012, the correction was downward.  
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Figure 26 shows the aggregate of the previous results according to gas year. A gas 

year lasts from 1st July to 30th June in the next calendar year, this way, the gas year does not 

cut the winter in two, and the effect of relatively mild or cold winters can be evaluated 

more easily (see gas years 2006-2007 and 2010-2011). 

Figure 26: Temperature corrected natural gas consumption according to gas year, 2006–2013 

 

Source: author’s own calculations (X-13ARIMA-SEATS) and figure (Excel).  

2.2.4.4. The main conclusions from a profiling perspective 

Though this study uses monthly resolution time series, at a first glance, it provides a 

technique that can be easily adapted for the removal of extreme weather (temperature) 

effects from daily, hourly or quarter-hourly time series.  

Profile may as well be defined with the removal of the effect of weather 

(temperature) deviation from its typical (average) tendency. For this reason, the results 

shown here may be interpreted as a kind of profiling, as this can also be regarded as the 

derivation of the consumption under given typical (average) temperature circumstances. As 

a matter of fact, this method is also used by Mutanen et al. [2011]. The technique, however, 

is not so advantageous if applied to high-frequency time series, which can be explained by, 

inter alia, the multiple (intraday and yearly) seasonality in temperature and by phase shifts 

(if summer or winter starts earlier or later). It becomes more difficult to define what typical 

(average) temperature means in a given point in time65; besides, this form of discretisation 

may result in too high standard deviation, as a result of which certain coefficients do not 

                                                           
65 Mutanen et al. [2011] use a technique where group means are made on the basis of differentiating months 

or days of the week; what is meant here by irregular temperature effect is the deviation from the partial 

means.  
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seem significant. This kind of technique is able to handle nonlinearity primarily in 

aggregate (for example, monthly or quarterly) time series.  

Given the focus of the analysis in this section, it deals less with time-dependent 

dispersion, heteroscedasticity; however, some related statements can be made to 

supplement the discussion above.  

Based on Figure 21, natural gas consumption seems to have constant standard 

deviation in temperature-dependent and non-temperature-dependent periods. Though it was 

not among the results of this section, it might provide a useful foundation for the rest of the 

dissertation to perform the seasonal adjustment working only with HDD instead of HDD-

deviations, and without the logarithmic transformation. Appendix D) nicely shows that if 

the model here is applied on a non-logarithmised time series, there is some loss in the 

stability of SI ratios within months (Appendix D, Figure d)); and working with HDD 

instead of HDD-deviations, there is even more of such loss (Appendix D), Figures a) and 

c)).66,67  

Another important experience is that the regular ‘yearly shape’ of SI ratios only 

appears if models involving HDD-deviations are used. The reason behind this may be that 

in such cases HDD and the seasonal components after the removal of regression effects are 

correlated, and if so, the removal of the HDD effect itself – from the viewpoint of the 

dissertation as well – is not (so) appropriate. This problem is similar to the problem of 

multicollinearity (the - strong - correlation of independent variables). It is like including 

seasonal (monthly) dummy variables in multivariate regression, where not only the 

interpretation but also the logic of regression decomposition are difficult to realise.  

It should be noted that slight heteroscedasticity is present even in the example here 

(that is, the dispersion of temperature-dependent periods is somewhat higher). This, 

however, is less apparent in Figure 21 due to the higher summer consumption levels at the 

beginning of the time period. Since this is an aggregate and not very long (a few 100 or 

1000 element) time series, heteroscedasticity – due to these properties – is much less 

detectable numerically (for example, using statistical tests), but is much more apparent 

graphically (see for example: figures in Appendix D)).  

                                                           
66 Concerning the results that appear in the Appendix – for ease of comparison – no monthly varying HDD-

deviation parameters are estimated. 
67 As a matter of fact, similar conclusions can be drawn based on the residuals of the SARIMA model. The 

illustrative opportunity for interpretation is provided by the framework of seasonal adjustment and the 

relatively more elegant analysis using the SI ratios. 
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High-frequency (hourly, quarter-hourly) time series are typically more 

heteroscedastic (like it was assumed while examining stylized facts). Moreover, the 

problem of handling the nonlinearity (or additionally, to interaction effects) arises in an 

even more complex way, and for this reason, the co-presence of the two phenomena and 

their appropriate treatment is even more critical. The similar practical transformation of the 

variables of a basically linear model is not necessarily plausible. In addition, the outcomes 

of the present technique are not so advantageous either, as both logarithmising and the use 

of HDD-deviations handled (basically ‘eliminated’, removed) heteroscedasticity.68 

Summarising the above, if the behaviour of the irregular component of the time series 

is relevant from the research perspective, the removal of the total effect of temperature 

(HDD) is not really advantageous from neither technical nor interpretational aspects. The 

removal of the irregular temperature effect is likely to reduce the heteroscedasticity of 

consumption. Similar tendencies are also valid concerning high-frequency time series, with 

the presence of the difficulties mentioned at the beginning of this section.  

The listed results and experiences can all be regarded important both from the aspect 

of choosing the appropriate methodology and for formulating future research questions. 

A supplement to all this is the theoretical consideration that one of the major sources 

regarding the variation and uncertainty of the otherwise typically price inflexible electricity 

consumption is weather (primarily temperature). For this reason, removing its effect and the 

analysis of the so-called (extreme) temperature-free time series may be a limiting factor 

regarding possible analyses, relevant methods and conclusions that could be drawn.  

As a closure of the topic of handling temperature (weather) effects and as a 

preliminary to the subsequent chapter, it should be stressed in connection with the 

methodology applied here, that profiling itself is in many aspects similar to seasonal 

adjustment (for example in pre-adjustments, decomposition logic, existence of multiple 

solutions, etc.) and the complexity of the latter method may be revealing regarding 

profiling as well. However, this dissertation does not deal with the possibility of applying 

such a multi-stage complex methodology.  

                                                           
68 Logarithmic trasformation – that results in different function form and parameter interpretation – is 

otherwise often used in practice, for example when the logarithm of consumption is represented as a function 

of temperature (cf. the scatter plots in Section 1.4). This implies that the effect of 1°𝐶 is much more related 

with the relative (%) variation of consumption than with its absolute variation. The model selection criteria in 

this study have also validated this concept.  
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3. AN OVERVIEW OF METHODS USED IN THIS DISSERTATION AND THEIR 

APPLICATIONS IN PROFILING 

 

The part of Chapter 1 on examining stylised facts that characterise consumption curves 

contained the short overview of some methods because of their simpler logic, and often 

because of their being less known or less widely used.  

The classical (or so regarded) stochastic time series regression models serve as a 

benchmark, or reference point in Chapter 4, discussing the empirical research results of this 

paper, therefore, they will only be reviewed here briefly. The SARIMA model is often 

referred to as the basic model of stochastic time series analysis. The periodically 

autoregressive model – as an extension of that – and the methodological background of its 

practical application on stationary time series that relates to the topic of this paper will be 

dealt with here – drawing on a previous publication by the author on the same topic (Mák 

[2014a], Mák [2014b]). 

The majority of the methodological review consists of mixture models and within that 

the overview of the Gaussian mixture model; including, among others, the more detailed 

description of the regression approach building on it (the so-called Gaussian mixture-

regression). This is supported by the fact that this field is lesser known, especially in the 

Hungarian literature and practice. The chapter closes with the presentation of the previous 

results of mixture models from the energy (partly profiling) field.  

3.1. Classical stochastic time series regression models  

One of the central concepts of stochastic time series analysis is stationarity. Among other 

things, the importance of stationarity is essentially in that stationary time series can be 

modelled in the framework of stochastic time series analysis. If this is not met, then the 

time series needs to be transformed in some way to become stationary. From the 

perspective of this paper, it is worth mentioning that the error term (the stochastic shock) 

has a different kind of role in case of stationary and non-stationary (integrated) time series 

both in terms of methodology and (practical) consequences. Before writing of these 

classical time series models, these issues will be discussed less formally. Further detail can 

be found in the related literature (see, for example: Hamilton [1994], Maddala [2004], 

Ramanathan [2003]). 
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3.1.1. The definition of stationarity and testing for unit root 

A time series has weak or covariance stationarity if its expected value and variance are 

constant in time. A time series is strictly stationary if for any 𝑡1, 𝑡2  … 𝑡𝑚 time set it is true 

that its joint probability distribution is identical with the joint probability distribution of any 

𝑡𝑘+1, 𝑡𝑘+2  … 𝑡𝑘+𝑚 time set, where 𝑘 is any integer. This means that the joint distribution of 

the variables only depends on the distances of 𝑡1, 𝑡2  … 𝑡𝑚 times from each other, but not on 

𝑡. Weak stationarity does not imply strict stationarity, however, it is not true vice versa, as 

the higher order moments are not necessarily time-independent.  

Unit root tests69 are basic tools for identifying the presence or absence of 

stationarity. The most widespread versions that are still used to this day are the ADF-test 

(Augmented Dickey-Fuller-test (Dickey-Fuller [1979]), KPSS-test (Kwiatkowski-Phillips-

Schmidt-Shin-test, Kwiatkowski et al. [1986]); and for time series influenced by seasonal 

factors, for example, HEGY-test may be used to test for the presence of seasonal unit root 

(Hylleberg et al. [1990]). 

3.1.2. The role of the error term in integrated time series  

It is especially true for energy time series that non-stationarity has two main sources: the 

presence of trend and seasonality. Concerning trend, there may be two cases: the presence 

of deterministic or stochastic trend (that is, it has a unit root) – or in rare instances, both. 

Making a parallel with seasonality, it can also be modelled in a deterministic or stochastic 

way. If non-stationarity is due to a deterministic origin, the role of the error term is 

practically the same as for stationary time series. This is described in the following section.  

If the source of non-stationarity is of a stochastic kind, it can be handled by non-

seasonal (first) differencing (𝑦𝑡 − 𝑦𝑡−1) or seasonal differencing (in general 𝑦𝑡 − 𝑦𝑡−𝑠
70); 

application of the latter, though, has to fulfil two extremely marked and serious 

assumptions: on the one hand, the presence of all unit roots (one non-seasonal and (𝑠 − 1) 

seasonal; due to which the problem of overdifferencing may occur) and on the other hand, 

the independence of the non-seasonal and the corresponding seasonal components. In the 

author’s studies that have been cited earlier (Mák [2014a] and Mák [2014b]) the 

requirements for the relaxing of this assumption of independence regarding the model 

                                                           
69 Unit root is an expression related to the formal definition of the SARMA model in Section 3.1.4. A process 

is stationary if the roots of the difference equation are outside the unit circle, and a unit root process is one 

where there roots are on the unit circle. 
70 𝑠 refers to the periodicity of the time series. 
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components are discussed in detail together with its implications for testing for 

stationarity.71 

For the purposes of this paper it would rather be worth highlighting that the 

framework introduced in these studies is capable of examining the fluctuation of shocks 

over time, that is, which seasons are the ones that have the largest long-run effect and are 

more likely to be incorporated into the value of the time series, or which ones undergo the 

heaviest impact from the accumulation of shocks. As the long term incorporation of 

shocks and their appearance in the time series differ seasonally, the model can be viewed as 

the coherent modelling of stochastic trend and seasonality (that are not independent from 

each other). In other words, it means that the risks are not identical across seasons, and this 

solution can handle this season-dependent risk in case of integrated time series.  

3.1.3. The role of the error term in stationary time series  

In stationary time series – as opposed to integrated time series – stochastic shocks do not 

have a permanent effect on the expected value of the time series on the long term.72 Based 

on the assumptions of classical multivariate regression model the error term is White Noise 

(WN), that is: 

- it has zero mean, 

- its standard deviation is constant in time (that is, it is homoscedastic),  

- its values are independent from each other in time (that is, it is not autocorrelated). 

In practice, however, it is not true in most cases that the error term is perfectly 

random, that is, an independent, identically distributed (IID) random variable.  

In financial time series, one of the most conspicuous characteristics is the 

phenomenon of time-dependent dispersion, or heteroscedasticity. According to the 

empirical experience in the financial area (the so-called volatility clustering (see Cont 

[2005])) in certain periods prices are more hectic, more widely dispersed than they are in 

other periods, which is one of the risks posed by stationary time series.  

                                                           
71 The studies show with the use of the periodic autoregressive model structure how the presence or absence 

of stationarity can be tested for if the stochastic trend and seasonality are not independent from each other. 

Relaxing of the assumption of independence, that is, the assumption that the value of the seasonal component 

is dependent on the trend (or vice versa), is usually identified in practice as the multiplicative relationship of 

the components. Therefore, the technique demonstrated there can also be practically seen as testing for unit 

root in a multiplicative model environment. Otherwise, there are techniques that help the selection between 

additive and multiplicative models, but the discussion of this would exceed the scope of this paper (see more 

on this in Sugár [1999a], [1999b]). 
72 This means that those time series are also regarded stationary which are only stationary with the inclusion 

of various deterministic variables (like e.g. analytical trend, dummy variables).  



70 
 

This heteroscedasticity on the energy market appears due to fundamental reasons 

(e.g.: daily seasonality, seasons, temperature) more often than in financial markets, but at 

the same time, it is also a much less mapped and modelled field.  

Figure 27 shows the fluctuation of the SARMA model residuals fitted on a heavily 

winter weather-dependent time series (heating/warming energy use, heat consumption). It is 

a slightly more than two-year-long hourly resolution time series where the standard 

deviation of the residuals is higher in winter periods and lower in summer periods.73 The 

tendency that characterises the standard deviation can be explained by the (low) 

temperature and human activity, and the resulting ‘increased’ random behaviour.  

Figure 27: The fluctuation of residuals in a SARIMA model 
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Source: author’s own figure (EViews) based on the author’s calculations (EViews).  

In financial markets the fundamental stock price models are less likely to be short 

term, besides for the short term the use of (G)ARCH-type models is more widespread 

((G)ARCH, (generalized) autoregressive conditional heteroscedasticity, see: Bollerslev 

[1986], Engle [1982]). In the variance equation written here (which is the explicit 

realisation of modelling standard deviation) their use with additional fundamental variables 

is not so advantageous anymore.74 

                                                           
73 On the horizontal axis ‘unfortunately’ only times appear, not dates. 
74 In (G)ARCH models as compared to the  SARIMA specification (see Section 3.1.4) the 𝜀𝑡 residual 

component is not assumed to be White Noise, its standard deviations is the function of time, as follows:  

𝜀𝑡 = 𝜎𝑡 ∙ 𝑢𝑡, 

where the time series of the so-called underlying residuals is a White Noise process, that is 𝑢𝑡  ~ 𝑊𝑁(0, 𝜎2). 

Beyond the mean equation the variance equation needs to be estimated to model the non-constant dispersion 

of residuals over time. A general GARCH(q,p) model can be written as:  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 +
𝑞
𝑖=1 ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 .
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It is worth mentioning that heteroscedasticity may have various sources. In energy 

time series the appropriate quantification of nonlinearity is highly relevant. There are 

many options for its modelling (the degree-day method is such, or in an exploratory view, 

the use of MARS75 type models), therefore it is worth examining if heteroscedasticity is 

caused by the inappropriate quantification of linearity or is there because of the omission of 

some other variable.  

Time-varying dispersion or heteroscedasticity does not have a negative effect on 

estimated parameters; they are unbiased, which means that such models work very well, for 

example, in forecasting. The standard errors of parameters, however, are biased and 

inconsistent.  

3.1.4. Seasonal autoregressive moving average (SARMA) model 

The basic tools for the analysis of stationary time series are the so-called autoregressive 

moving average (ARMA) models, written: 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2+. . . +𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡,  

where 𝜀𝑡 is the error term, which is assumed to be White Noise (𝜀𝑡~𝑊𝑁(0, 𝜎2)) and 𝑡 =

1, 2, …  𝑇, where 𝑇 is the length of the observed time series, 𝑝 is the number of AR 

(autoregressive), and 𝑞 is the number of MA (moving averages) terms. Resulting from the 

presence of autoregressive terms the value of the time series at a given time depends on the 

past time values of itself, that is, its past realisations. The moving average terms mean that 

the value of the time series at a given time is dependent on the past errors. The extension 

of ARMA models with seasonal lags is found, for example, in Box and Jenkins [1976]. 

Seasonal lags are built into the SARMA (seasonal autoregressive moving average) model 

in a similar way as non-seasonal lags, where in the notation 𝑃 usually refers to the number 

of seasonal AR (autoregressive) and 𝑄 to the number of seasonal MA (moving average) 

terms.76 

                                                                                                                                                                                 
where 𝑞 is the order of ARCH terms, 𝑝 is the order of GARCH terms. Accordingly, the conditional variance 

of a given period is dependent on the squared residuals of the previous period and the conditional variance of 

the previous period, in addition, and the so-called unconditional or long term variance can be easily derived. 

Definition of conditional variance in the framework of another model (mixture regression) will surface later in 

the section. 
75 MARS, multiple adaptive regression splines (see more on this in: Friedman [1991]). 
76 It is only for clarification of terminology that in models where the original time series was made stationary 

after 𝑑 non-seasonal or 𝐷 seasonal differentiation are generally denoted by 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃,𝐷, 𝑄)𝑆 (the 

notation 𝑝 and 𝑞 for the number of AR and MA lags, and 𝑃 and 𝑄 are the number of seasonal AR and 

seasonal MA lags is already known). 
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Estimation of SARMA model parameters is normally performed by the Maximum 

Likelihood (ML) procedure.77 It is worth noting that besides autoregressive and moving 

average terms, the models may include exogenous variables (that is how SARMAX models 

are produced), which in case of energy time series typically means dummy variables that 

represent seasonality or variables that describe weather. There is an abundance of literature 

in Hungarian as well about multivariate regression analysis (see for example: Hunyadi-Vita 

[2003], Kerékgyártó et al. [2008]) besides other previously mentioned studies that discuss 

the topic primarily from the perspective of econometric applications. 

3.1.5. Periodic autoregressive (PAR) model 

This section contains highlights from two more detailed studies (see Mák [2014a] and Mák 

[2014b]) that concentrate primarily on integrated time series from practical aspects as 

well.78 Here, the emphasis is on stationary processes regarding possible analyses relevant 

for the discussion in this study. 

3.1.5.1. Definition of the model 

Starting out from the classical autoregressive model of order p: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2+. . . +𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡, 

where 𝜀𝑡 error term is White Noise (𝜀𝑡 ~ 𝑊𝑁(0, 𝜎2)); its extension to a periodic 

autoregressive model of order 𝑝 is the following (for the sake of simplicity, quarterly time 

series is assumed): 

𝑦𝑡,𝑠 = 𝜙1,𝑠𝑦𝑡−1 + 𝜙2,𝑠𝑦𝑡−2+. . . +𝜙𝑝,𝑠𝑦𝑡−𝑝 + 𝜀𝑡, 

where according to periodicity in quarterly time series 𝑠 =  1, 2, 3, 4. The formula shows 

that  𝜙𝑝,𝑠 parameters that pertain to lags of order 𝑝 are seasonally or periodically varying. 

The alternating of autoregressive coefficients from period to period is supported 

empirically by the fact that in different time series the value of the first quarter does not 

depend in the same way on the fourth quarter of the previous year as the second quarter on 

                                                           
77 Choosing the right number of lags is usually performed using correlogram and/or model selection criteria. 

The most commonly used model selection criteria in practice are Maximum Likelihood-based model 

selection criteria, Akaike information criterion (𝐴𝐼𝐶 = −2(𝑙𝑛 𝐿) + 2𝑚) and Schwarz information criterion 

(𝐵𝐼𝐶 = −2(𝑙𝑛 𝐿) + 𝑚(𝑙𝑛 𝑛)). In the above 𝑚 denotes the number of independent variables and 𝐿 is the value 

of the optimalised likelihood function. The criterion minimum marks the model to be chosen. The error term 

of a well-specified SARMA model is White Noise, besides the correlogram there are other methods for 

testing for White Noise, such as Ljung-Box Q-test (see: Ljung-Box [1978]), or Breusch-Godfrey LM-test 

(see: Breusch [1978], Godfrey [1978]). 
78 This is the so-called Periodically Integrated Autoregressive (PIAR) model. 
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the first, etc. As different autoregressive coefficients are estimated for each period, the 

model is also suitable for the estimation of periodically varying autocovariance. 

It is also worth mentioning how the model is written as a system of equations (as this 

approach is the most plausible for the empirical part of the paper), where the number of 

equations is – obviously – identical with the number of seasons, that is:  

𝛷0𝑌𝑇,𝑠 = 𝛷1𝑌𝑇−1,𝑠 + 𝛷2𝑌𝑇−2,𝑠+. . . +𝛷𝑝𝑌𝑇−𝑝,𝑠 + 𝑇, 

where the error terms of vector 𝑇 = [𝜀𝑇,1   𝜀𝑇,2   𝜀𝑇,3   𝜀𝑇,4   ]
𝑇
 are White Noise 

(𝜀𝑇,𝑠 ~ 𝑊𝑁(0, 𝜎2)) and 𝑠 =  1, 2, 3, 4 . 

The variables in the system of equations are 𝑌𝑇,𝑠 = [𝑦𝑇,1   𝑦𝑇,2   𝑦𝑇,3   𝑦𝑇,4   ] and 

𝑌𝑇−1,𝑠 = [𝑦𝑇−1,1   𝑦𝑇−1,2   𝑦𝑇−1,3   𝑦𝑇−1,4   ]; these yearly vectors contain quarters of the 

years 𝑇 and (𝑇 –  1). It can be seen that the indices of the 𝑦𝑡  variables observed quarterly 

are changed. The time variable 𝑡 recorded quarterly is replaced by 𝑇, 𝑠 variables, which also 

record quarterly data, but at the same time show which year and which quarter it is.  

In matrices that contain parameters the first index refers to the order of lag, the 

second shows to which period’s equation the given time lag order applies; thus simplifying 

the above to a model with four lags, the parameter matrices are the following: 

𝛷0 =

[
 
 
 

1 0 0 0
−𝜙1,2 1 0 0

−𝜙2,3 −𝜙1,3 1 0

−𝜙3,4 −𝜙2,4 −𝜙1,4 1]
 
 
 
, and 𝛷1 =

[
 
 
 
𝜙4,1 𝜙3,1 𝜙2,1 𝜙1,1

0 𝜙4,2 𝜙3,2 𝜙2,2

0 0 𝜙4,3 𝜙3,3

0 0 0 𝜙4,4]
 
 
 

 

For example, the first row of the 𝛷1 matrix shows how the first quarter of year 𝑇 

depends on the first, second, third and fourth quarters of year (𝑇 –  1). Obviously, the order 

of the arrangement in the matrix is the reverse of what the order of the time lag would 

suggest, as the first quarter of year 𝑇 is preceded by the fourth quarter of year (𝑇 –  1), 

whose coefficient for this reason is 𝜙1,1. 

Based on the above, the system of equations can be reconstructed in the following 

way (after rearrangement – see previous paragraph):  

𝑦𝑇,1 = 𝜙1,1𝑦𝑇−1,4 + 𝜙2,1𝑦𝑇−1,3 + 𝜙3,1𝑦𝑇−1,2 + 𝜙4,1𝑦𝑇−1,1 + 𝜀𝑇,1 

𝑦𝑇,2 = 𝜙1,2𝑦𝑇,1 + 𝜙2,2𝑦𝑇−1,4 + 𝜙3,2𝑦𝑇−1,3 + 𝜙4,2𝑦𝑇−1,2 + 𝜀𝑇,2 

𝑦𝑇,3 = 𝜙1,3𝑦𝑇,2 + 𝜙2,3𝑦𝑇,1 + 𝜙3,3𝑦𝑇−1,4 + 𝜙4,3𝑦𝑇−1,3 + 𝜀𝑇,3 

𝑦𝑇,4 = 𝜙1,4𝑦𝑇,3 + 𝜙2,4𝑦𝑇,2 + 𝜙3,4𝑦𝑇,1 + 𝜙4,4𝑦𝑇−1,4 + 𝜀𝑇,4 
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It is noteworthy that matrices have practical content, as 𝛷0 contains parameters that 

pertain to the quarters of the same year, while 𝛷1 contains this information for the previous 

year.  

In summary, the PAR model reviewed here may be written in several ways. The first 

way presented here makes it easier to interpret the basic notion behind the model. Writing it 

as a system of equations may appear strange compared to the traditional one equation 

formula of univariate autoregressive models, still, as a result of its periodicity it is a 

practical representation on the one hand, and on the other, can be used to derive certain 

results. Options for model selection are identical with those in classical multivariate 

regression methodology.  

3.1.5.2. Calculating the long term equilibrium (mean)79 

In a previous section it was assumed that the time series is centred, that is, its expected 

value is zero; therefore, none of the model formulas contained the intercept term. There are 

practical applications when this solution is not appropriate. In this case the model written in 

a matrix form is modified according to the following:  

𝛷0𝑌𝑇,𝑠 = 𝐶 + 𝛷1𝑌𝑇−1,𝑠 + 𝛷2𝑌𝑇−2,𝑠+. . . +𝛷𝑝𝑌𝑇−𝑝,𝑠 + 𝑇, 

where 𝐶 contains the periodically constant parameters (which may be identical or different 

across periods). If the time series is stationary, the long term average, that is, expected 

value of the time series can be defined:  

𝐸(𝑌𝑇,𝑠) = (𝛷0 − 𝛷1 − 𝛷2 …− 𝛷𝑝)
−1

𝐶, 

where 𝐸(. ) denotes the expected value. The formula can be obtained easily, because if this 

long term average really exists, then 𝐸(𝑌𝑇,𝑠) = 𝐸(𝑌𝑇−1,𝑠) = 𝐸(𝑌𝑇−2,𝑠) =. . . = 𝐸(𝑌𝑇−𝑝,𝑠), 

besides 𝐸(𝑇) = 0, which easily yields the above formula.80 

There will be applications in this dissertation were besides the intercept and 

autoregressive terms there will be other exogenous variables among the independent 

variables (e.g.: heating or cooling degree-day values). Following Espinoza et al. [2005] 

profile can be interpreted as a daily curve in hourly or quarter-hourly resolution, from 

                                                           
79 Though the title may seem too general, the application of the result as profile makes it highly relevant from 

the perspective of this dissertation.  
80 The result though is nothing else, but the generalisation of long term mean formula for the well-known 

AR(p) model, which is the following: 

𝐸(𝑦𝑡) =
𝑐

1−𝜙1−𝜙2…−𝜙𝑝
 , 

where parameters 𝜙1, 𝜙2… 𝜙𝑝 denote the coefficients of the given autoregressive terms. 
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which the effects of all the other variables have been removed. This is equivalent with the 

notion that the values of all exogenous variables (such as degree-day values, various 

dummy variables) are made equal to zero, and the above formula is used. Thus the 

previously described long term equilibrium (mean) can be interpreted as a definition for 

profile.81 This will be discussed further in the chapter on empirical results.  

3.2. Mixture models 

The application of the so-called (Finite) Mixture Models (that use a finite number of 

components) is gaining ground in an increasing number of fields, and provides a basis form 

many future applications in practice. Mixture Models (MM) have appeared in many fields 

including biology, agriculture, medicine, economics or signal processing (see for example: 

McLachlan-Basford [1988], McLachlan-Peel [2000]). The family of mixture models 

includes many applications. It involves the representation of the distribution of various 

phenomena as a mixture of known distributions (such as normal distribution), clustering, 

discriminant analysis or regression estimation based on mixture models. 

The methodologies used in this paper are the Gaussian Mixture Model (GMM) and a 

regression approach based on it; these will be reviewed in detail. It is an advantage of the 

model and one of the reasons for using it in this paper, that the standard errors of point 

estimates of the dependent (output) variable can be written as a function of the given values 

of the independent variables, therefore, the model may be suitable for dealing with 

heteroscedasticity more fundamentally. This section contains many formulas that cannot 

be found in other studies and that show – not necessarily obvious – similarity to 

classical multivariate regression. Besides, the paper uses high resolution (quarter-hourly) 

time series, which usually requires deviation from the general estimation procedure, which 

is also new compared to other empirical studies (see for instance the examples of Section 

3.3.3). The methodological background to this is provided by the application of mixture 

models that is based on random sampling, besides using clustering and discriminant 

analysis (see for example: Fraley-Raftery [2000]). 

                                                           
81 The article also mentions that heteroscedasticity can be handled in the PAR model (as an extention of the 

basic model described here) in a way that periodically different residual standard variance is estimated (which 

on a quarter-hourly basis would mean 96 further estimated parameters). This, however, does not take into 

account the difference in heteroscedacticity between e.g. weekdays-weekends and seasons.  
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3.2.1. Description of the mixture model (MM) and the Gaussian mixture model (GMM)  

Given data 𝑦 with independent observations (𝑦1, 𝑦2  … 𝑦𝑛) of number 𝑛, that is 𝑦 =

(𝑦1, 𝑦2  … 𝑦𝑛), where: 

- 𝑦𝑖 is a vector of size (𝑚 × 1) containing the attributes of observation i (𝑖 =

1, 2 …  𝑛), 

- 𝑛 is the number of observations, 

- 𝑚 is the number of attributes. 82 

Let us assume that the observations are generated by a mixture distribution with 𝐾 

components whose density function can be written as: 

𝑓(𝑦) = ∏ ∑ 𝜏𝑘 ∙ 𝑓𝑘(𝑦𝑖|𝜃𝑘)
𝐾
𝑘=1

𝑛
𝑖=1 , 

where: 

- 𝑓(. ) is the density function of the mixture distribution, 

- 𝑓𝑘(. ) is the density function of component 𝑘, 

- 𝜃𝑘 denotes the parameters that describe component 𝑘, 

- the prior probability 𝜏𝑘 is the probability of observation 𝑖 belonging to component 

𝑘, 

- 𝑘 denotes the components (𝑘 = 1,2, …  𝐾), and 

- 𝐾 is the number of mixture components. 

In most cases – as in this paper – it is assumed that the distribution of component k is 

normal, that is 𝑓𝑘(. )  denotes the multivariate normal Gaussian density function 

parameterized by mean vector 𝜇𝑘 and covariance matrix Ʃ𝑘 parameters, so the distribution 

of component k can be written: 

𝑓𝑘(𝑦𝑖|𝜃𝑘) = 𝜑(𝑦𝑖|𝜇𝑘, Ʃ𝑘) =
1

|2𝜋Ʃ𝑘|−1/2 𝑒𝑥𝑝 [−
1

2
(𝑦𝑖 − 𝜇𝑘)

𝑇Ʃ𝑘
−1(𝑦𝑖 − 𝜇𝑘)], 

where: 

- 𝜑(. ) is the multivariate normal Gaussian density function, 

- |.| is the determinant. 

                                                           
82 The term attribute used in international, mainly data mining literature is identical with the term variable in 

regression terminology. 
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Components are normally identified as clusters when applied for grouping in the 

framework of mixture models and clustering, so in the rest of this paper the terms cluster 

and component may be used interchangeably: with the former term denoting interpretation 

and the latter emphasising the methodological approach.  

3.2.2. Expectation-Maximization (EM) estimation procedure 

Estimation of mixture model parameters is carried out by the Maximum Likelihood (ML) 

method, the Expectation-Maximization (EM) algorithm (see for example: Dempster et al. 

[1977], McLachlan-Krisnan [1997]).83 The EM algorithm consists of the successive 

iteration of estimation steps (E-step) and maximization steps (M-step). 

The algorithm views observations as an incomplete data set (with missing, 

unobserved variables), which means that they are thought of as pairs of variables (𝑦𝑖, 𝑧𝑖). 

Here, variable 𝑧𝑖 is not observed, it denotes the so-called indicator variable which shows 

which observation belongs to which component. That is, 𝑧𝑖𝑘 equals 1, if observation 𝑖 

belongs to component 𝑘, otherwise it is 0.84 In so far as these component memberships 𝑧𝑖𝑘 

are missing or non-observed values, they need to be estimated when using the EM 

algorithm, which is realised in the form of posterior probabilities 𝑝𝑖𝑘. 

Let 𝜓 = (𝜏1, 𝜏2 … 𝜏𝐾 , 𝜃1, 𝜃2 … , 𝜃𝐾) denotes the parameters to be estimated, that is 

the prior probabilities of the components and the parameters of the normal distribution. The 

likelihood-function is the following: 

𝐿(𝑦) = ∏ ∏ 𝑓𝑘(𝑦𝑖|𝜃𝑘)
𝑧𝑖𝑘𝐾

𝑘=1
𝑛
𝑖=1 , 

and the loglikelihood-function is: 

𝑙𝑜𝑔(𝐿(𝑦)) = 𝑙(𝑦) = ∑ ∑ 𝑧𝑖𝑘 ∙ 𝑙𝑜𝑔(𝑓𝑘(𝑦𝑖|𝜃𝑘))𝐾
𝑘=1

𝑛
𝑖=1 . 

                                                           
83 It is worth noting that the structure of the covariance matrix Ʃk in the mixture model can be defined in 

several ways. According to the general, so-called unconstrained version (see: Banfield-Raftery [1993]), the Ʃ𝑘 

covariance matrix can be written as:  

Ʃ𝑘 = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇 , 

where:  

- 𝐷𝑘 denotes the orthogonal matrix of eigenvectors, 

- 𝐴𝑘 is the diagonal matrix (whose diagonal elements are proportional to the eigenvalues of the 

matrix), 

- 𝜆𝑘 denotes the so-called constant of proportionality. 

These parameters may be different by cluster or there may be constraints for each parameter. In Fraley and 

Raftery’s study there are examples for which specific cases are equivalent with which clustering techniques 

(for example: Fraley-Raftery [2000], Fraley-Raftery [2007]), as the eigenvalue decomposition of the 

covariance matrix Ʃk described above is only a framework. This paper will always use the general, 

unconstrained version, as it was found in the other reviewed literature (e.g.: Srivatstav et al. [2013], Eirola-

Lendasse [2013]). 
84 Of course, this way it is also true that ∑ 𝑧𝑖𝑘 = 1𝐾

𝑘=1  for every observation 𝑖. 
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Given the observations 𝑦 = (𝑦1, 𝑦2  … 𝑦𝑛) of number 𝑛, iteration (𝑟 + 1) means 

performing the following steps.  

In the E-step on the basis of the set of parameters in iteration r, that is 𝜓(𝑟), for every 

observation 𝑖 the posterior probability 𝑝𝑖𝑘 of belonging to the component 𝑘 is calculated: 

𝑝𝑖𝑘
(𝑟+1) =

𝜏𝑘
(𝑟)

∙𝑓(𝑦𝑖|𝜃𝑘
(𝑟)

)

∑ 𝜏𝑘
(𝑟)

∙𝑓(𝑦𝑖|𝜃𝑘
(𝑟)

)𝐾
𝑘=1

, 

and in addition, using this, the value of the 𝑄 function is calculated, which provides the 

expected value of the loglikelihood that applies to the whole data set given the estimated 

parameters and the observed values of the variables in the sample, that is: 

𝑄(𝜓|𝜓(𝑟)) = ∑ ∑ 𝑝𝑖𝑘
(𝑟+1)

𝑙𝑜𝑔(𝑓𝑘(𝑦𝑖|𝜃𝑘))
𝐾
𝑘=1

𝑛
𝑖=1 . 

Using the calculated posterior probabilities 𝑝𝑖𝑘
(𝑟+1)

 as weights in the M-step the values 

of the parameter set 𝜓(𝑟+1) are obtained by maximising the Q function, which means 

optimising in the following way: 

𝜓(𝑟+1) = 𝑎𝑟𝑔 max
𝜓

𝑄(𝜓|𝜓(𝑟)) , 

or written differently: 

𝑄(𝜓|𝜓(𝑟))  
𝜓
→ 𝑚𝑎𝑥,85 

whose result gives the optimal solution, that is, the estimated values of the parameters in 

the (𝑟 + 1) iteration: 

𝜓(𝑟+1) = (𝜏1
(𝑟+1)

, 𝜏2
(𝑟+1)

… 𝜏𝐾
(𝑟+1)

, 𝜃1
(𝑟+1)

, 𝜃2
(𝑟+1)

… 𝜃𝐾
(𝑟+1)

). 

As a result of the M-step, the prior probabilities of the components can also be 

expressed using the following formula: 

𝜏𝑘
(𝑟+1) =

∑ 𝑝𝑖𝑘
(𝑟+1)𝑛

𝑖=1

𝑛
. 

The E- and M-steps are iterated successively until the parameter estimations start to 

converge, or a maximal iteration number is reached. The choice between the models is 

based on model selection criteria (e.g.: 𝐴𝐼𝐶, 𝐵𝐼𝐶). Model selection criteria are helpful not 

only in determining the optimal number of variables but also the optimal number of 

                                                           
85 The two ways to write the optimalisation task mean the same; the second may be simpler, the first is a bit 

more formal. The argmax notation is the short form of the expression arguments of maxima and marks those 

points of the domain of some function at which the function values are maximal. 
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components, which is one of the advantages of model-based clustering as opposed to other 

clustering solutions.86 

3.2.3. An empirical example on the daily natural gas consumption data of Budapest  

For ease of understanding the use of mixture models, model-based clustering is 

demonstrated on a simpler example, comparing the results to those of a traditional 

clustering method, K-Means clustering, which is again iterative. Some results are in 

Appendix B). Figure 28 shows the procedure of K-Means clustering, the so-called pseudo-

code that summarises its logic.  

Figure 28: The pseudo-code of K-Means clustering 

1. (random87) selection of starting cluster centroids of number k 

REPEAT  

2. assignment of observations to clusters  

     a.     calculating the distance between observations and cluster centroids  

     b.      assigning observations to the cluster from whose cluster centroid the distance is the shortest  

3. recalculating cluster centroids  

     a.      calculating average observations by cluster and 

     b.      identifying it as a clustercentroid  

UNTIL the given convergence-criterion is met 

Source: author’s own figure. 

Figure 29: Hungarian daily gas consumption, daily average temperature and daily average 

temperature – gas consumption scatter plot 

   

Source: author’s own figure (Excel). 

                                                           
86 The formula of the 𝐵𝐼𝐶 criterion – with the known formula – is: 𝐵𝐼𝐶 = −2 ∙ 𝑙(𝑦) + 𝑙𝑜𝑔(𝑛) ∙ 𝑏𝑝, and the 

formula of the 𝐴𝐼𝐶 criterion is: 𝐴𝐼𝐶 = −2 ∙ 𝑙(𝑦) + 2 ∙ 𝑏𝑝, where 𝑏𝑝 marks the number of estimated 

parameters (which may differ according to the structure of the covariance matrix). 
87 The random selection of initial cluster centroids can be ensured in various ways. The conventional K-

Means clustering and K-Means++differ basically in that in K-Means++ they are selected more efficiently; 

therefore, the running time is shorter than using the conventinal method which, in addition, is often stuck in a 

local optimum.  
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The differences between the clustering techniques are shown on the evolution of the 

daily natural gas consumption in Budapest88. The development of the natural gas and 

temperature time series is shown in Figure 29. Clustering will be performed in the space of 

these two variables or attributes (temperature and gas consumption), that is, the 

observations to be grouped are the days. Based on the figure on the right side, it can be 

assumed that at least two clusters need to be created, one for temperature-dependent and 

another for temperature-independent days.  

Selecting only year 2014 the results of K-Means clustering are shown on Figure 30. 

As for K-Means clustering previous knowledge of the number of the clusters is required, 

the results are shown for 2, 3 and 4 clusters as well. 

The bottom line of the figure shows the ratio of the so-called Between Sum of 

Squares (BSS) and Total Sum of Squares (TSS). In K-Means clustering this ratio can (also) 

be relied on in selecting the optimal number of clusters89. Given the selected number of 

clusters between 2 and 10, Table 19 in the Appendix shows these values. At the same time, 

besides the fact that deciding on the number of clusters in this way is fairly inconvenient 

(between 4-5 clusters, where there is a break in the BSS/TSS trend) the interpretation of the 

results is not too neat either. As Figure 30 shows, the clusters seem to be organised around 

the bands parallel with the temperature axis (which is especially visible when using fewer 

clusters).  

Figure 30: The results of K-Means clustering on the example of daily average temperature – gas-

consumption  

Number of clusters: 2 Number of clusters: 3 Number of clusters: 4 

   
BSS / TSS = 79.7% BSS / TSS = 90.2% BSS / TSS = 94.4% 

Source: author’s own calcuations (R) and figure (R). 

                                                           
88 Data source: FGSz Ltd. (the Hungarian natural gas transmission system operator), www.fgsz.hu  
89 Of course, there are much more complex, sophisticated indicators for the selection of the most appropriate 

number of clusters. 

http://www.fgsz.hu/
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As opposed to K-Means clustering, mixture clustering has the advantage that there 

the selection of the number of clusters is or may be determined automatically, based on 

model selection criteria (BIC), therefore, it is not necessary to assume a priori knowledge 

of the number of clusters. In Table 20 in the Appendix the minimum of BIC marks the 

cluster to be selected, and for this reason, the mixture model selected contains four clusters 

(components).  

As it was mentioned in the previous section, for every observation the probabilities of 

belonging to a cluster will be calculated, whose sum for each observation is 1 (or 100%). 

When wishing to assign observations clearly to a cluster, cluster membership is produced 

by the maximum of the conditional probabilities, that is, every observation will be 

classified in the cluster where it is most likely to belong. Based on this, the left side of 

Figure 31 shows the 4 clusters thus created. Days marked with green are not weather- 

dependent, and the remaining weather-dependent days can be divided into three parts. Red 

marks the days where the so-called heating effect starts to apply (the so-called transition 

periods), black marks the days which are obviously temperature-dependent, and blue marks 

the colder days. For each different cluster the weather-dependency of the consumption is 

different. We may imagine fitting regression lines on the 4 ‘groups of dots’90, or could 

examine the direction of the axes of the ellipses91 in the figure to support this.  

Figure 31: Results of mixture clustering on the example of daily average temperature – gas 

consumption 

classification uncertainty 

  

Source: author’s own calculations (R) and figures (R). 

                                                           
90 In what follows, the regression based on mixture model assumes such logic; though not by each ’group of 

dots’, but for the full data set using posterior probabilities as weights.  
91 The ellipses show contours according to the 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 value of the two-dimensional 

normal distribution. 
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Figure 31 represents the uncertainty of classification. The uncertainty of classifying 

observation (𝑢𝑖) can be defined as follows: 

𝑢𝑖 = 1 − max
𝑘

𝑝𝑖𝑘, 

that is, the maximum probability of classification is subtracted from 1, or 100%. The lower 

the maximal posterior probability is for an observation, the more uncertain the 

classification is.  

Using the graphs of the R programme the colours of the clusters are inherited from 

the graph that represents classification, and an observation is marked with a bigger and 

darker symbol if its uncertainty is higher. Without knowledge of the specific values, it is 

clear that uncertainty is higher on the domain where clusters slightly intersect, and that 

uncertainty is highest on the intersections of the coldest (blue colour) and colder (approx. 

below 10 °𝐶) days, and in transition (red colour) days.  

Obviously, cluster centroids can be calculated here as well (see Table 21): in clusters 

where the daily average temperature is lower the daily average consumption is higher. 

These can be treated as typical, representative consumption patterns resulting from normal 

distribution. This statement will be further discussed in Chapter 4 on profiling, 

constructing typical consumption patterns.  

It is worth examining the distribution of days by months and by days of the week 

(between weekdays and weekends) (see Tables 22 and 23). It clearly shows the distribution 

of days among months resulting from their weather dependency (extremely cold, cold, 

transition and no heating) and the related gas consumption. In addition, it shows that the 

distribution of weekdays and weekends within a cluster is approximately the same (the ratio 

of weekends is around 2/7 = ~28.6% everywhere), which means that there is no separate 

weekend cluster, as the effect of heating is much more dominant than the weekly calendar 

effect.92 

As this section had mainly didactic purposes, it has raised a number of questions and 

possible analyises that cannot be discussed here in enough detail. Only one of these will be 

mentioned here, which is important regarding the rest of this dissertation. The question is if 

observations have different dispersions by cluster (here, for example the dispersion of 

weather-independent days with a given temperature seems much lower, but it looks as if the 

same was true for extremely cold days) then to what extent can they be transformed to 

                                                           
92 This statement is important because in energy time series the variance explained by different levels of 

seasonality is completely different.  
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measure uncertainty of consumption?93 In the rest of this chapter the methodological aspect 

of this question will be discussed, and in the following empirical chapter, the results will be 

presented using quarter-hourly power consumption time series.  

3.2.4. Further methodological questions related to the Gaussian mixture model   

This section reviews some methodological questions that remain after the general 

discussion of the EM algorithm and the GMM.  

3.2.4.1. Determining the initial cluster memberships and posterior probabilities 

The disadvantage of using the conventional EM algorithm is that it may easily stuck in a 

local optimum or in ‘itself’ it does not find a solution that can be interpreted easily. As the 

final result depends on how initial cluster memberships or initial parameters are obtained, 

these can be determined manually, but usually it is advisable to run the procedure multiple 

times using some randomized initial cluster membership values or parameters (for more on 

this topic see: e.g.: Biernacki et al. [2003]). 

It is also a possible solution to apply other, modified EM algorithms first (such as: 

CEM, SEM, hierarchical EM), then use their results (initial cluster memberships values or 

parameters) as a basis for the conventional EM algorithm.  

3.2.4.2. Hierarchical model based clustering  

In the package 'mclust’ of the R Project programme used in this dissertation, the initial 

cluster memberships are obtained by using the so-called hierarchical EM algorithm. 

Hierarchical model based clustering is agglomerative, that is, each observation forms a 

unique cluster at the start. The procedure is based on maximizing the so-called 

classification loglikelihood (cl) which may be written as: 

𝑐𝑙(𝜓|𝑧1, 𝑧2 …𝑧𝑛, 𝑦1,𝑦2 …𝑦𝑛 ) = ∑ ∑ 𝑙𝑜𝑔(𝜏𝑘𝑓𝑘(𝑦𝑖| 𝜃𝑘)){𝑖|𝑧𝑖=𝑘}
𝐾
𝑘=1 , 

where {𝑖|𝑧𝑖 = 𝑘} is the set of observations that belongs to component 𝑘. Due to the 

presence of this {𝑖|𝑧𝑖 = 𝑘} condition, the previous conventional EM algorithm cannot be 

applied here. The step-by-step merging of clusters ensures that the value of classification 

likelihood increases at the highest possible rate in each step. Of course, in the last step all 

observations are classified as belonging to one cluster. The advantage of this solution is that 

                                                           
93 Section 2.2 has already addressed a similar question in connection with the extreme (random) effect of 

temperature.  
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as a result of the hierarchical, agglomerative solution the evolution of merging steps is not 

dependent on the number of clusters.   

3.2.4.3. Gaussian mixture model in discriminant analysis  

Using the logic of mixture models it is possible to perform discriminant analysis as well, 

which as opposed to clustering is a so-called supervised procedure. Here, known 

classification is modelled using various (independent) variables while in clustering there is 

no ex-ante classification, but observations regarded in some way similar are classified into 

one cluster or group (the so-called unsupervised procedure).  

In the framework of mixture models there are various options for this (see: Fraley-

Raftery [2000]): 

- Eigenvalue Decomposition Discriminant Analysis (EDDA), and 

- Mixture Discriminant Analysis. 

The former assumes a single normal component for each class, the latter allows 

fitting a mixture model as a density estimate for each class. 

This dissertation uses the EDDA discriminant analysis method. Essentially, this is 

nothing else but the completion of one (discrete) M-step and E-step. While performing the 

discrete M-step the highest of the posterior probabilities for each observation that results 

from the mixture clustering is equalled to 1, and all the others to 0. An M-step is run on the 

data set, and then the observations that do not form part of the classification procedure can 

be assigned in the E-step to the cluster where the posterior probability is the highest.  

3.2.5. The regression approach based on the Gaussian mixture model (GMR) 

The Gaussian mixture regression is based on the Gaussian mixture model by identifying 

one of the variables as the dependent (output) variable, and a regression is written using the 

other variables as independent (input) variables. 

The notations used in the previous section is slightly modified for the purposes of the 

regression application: 

- 𝑦𝑖 is the value of the dependent variable for observation 𝑖, 

- 𝑥𝑖 is the vector of the length (𝑝 × 1) that contains the values of the independent 

variables for observation 𝑖 (𝑖 =  1, 2 …  𝑛), 

- 𝑛 is the number of observations, 
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- 𝑝 is the number of independent variables. 

Previously, the variables were uniformly denoted by 𝑦𝑖 and the number of variables 

𝑚. Besides, where needed, matrix representation will be used in the overview of the 

literature on Gaussian mixture regression. 

3.2.5.1. Derivation of the Gaussian mixture regression  

To facilitate understanding and a better parallel with the results of the literature, 

partitioning of the mean and the covariance matrix may be done as follows:  

𝜇𝑘 = [
𝜇𝑌

𝑘

𝜇𝑋
𝑘], with the sizes: [

1 × 1
𝑝 × 1

], 

and 

Ʃ𝑘 = [
Ʃ𝑌𝑌

𝑘 Ʃ𝑌𝑋
𝑘

Ʃ𝑋𝑌
𝑘 Ʃ𝑋𝑋

𝑘 ], with the sizes: [
1 × 1 1 × 𝑝
𝑝 × 1 𝑝 × 𝑝

], 

where the partitioned means and covariance matrices are likewise weighted means and 

weighted covariance matrices using the posterior probabilities 𝑝𝑖𝑘 as weights, that is: 

𝜇𝑦
𝑘 =

𝑌𝑇𝑑𝑖𝑎𝑔(𝑊𝑘)

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

,  𝜇𝑥
𝑘 =

𝑋𝑇𝑑𝑖𝑎𝑔(𝑊𝑘)

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

, 

ƩXX
k =

XTWkX

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

,  ƩXY
k =

XTWkY

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

, 

ƩYX
k =

YTWkX

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

,  ƩYY
k =

YTWkY

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)𝑛
𝑖=1

. 

where: 

- 𝑋 is a matrix of size (𝑛 × 𝑝) containing the 𝑥𝑖 independent variables , 

- 𝑊𝑘 is a diagonal matrix of size (𝑛 × 𝑛) containing the 𝑝𝑖𝑘 weights for each 

component 𝑘,  

- 𝑌 is a vector of size (𝑛 × 1) containing the values of the dependent variables 𝑦𝑖, 

- 𝑘 =  1 …  𝐾 denotes the components. 

The regression coefficients for each component 𝑘 are obtained by the weighted least 

squares method on 𝑦1, 𝑦2… 𝑦𝑛 and 𝑥1, 𝑥2… 𝑥𝑛 variables with using the posterior 

probabilites 𝑝𝑖𝑘  as weights, that is: 

𝛽𝑘̂ = (𝑋𝑇𝑊𝑘𝑋)−1𝑋𝑇𝑊𝑘𝑌, 

or they can be obtained by using a different formula based on the partitioned covariance 

matrices: 
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𝛽𝑘̂ = Ʃ𝑌𝑋
𝑘 (Ʃ𝑋𝑋

𝑘 )
−1

. 

The variance of the error terms for each component 𝑘 is: 

𝜎𝑘
2̂ =

∑ 𝑝𝑖𝑘(𝑦𝑖−𝑥𝑖
𝑇𝛽𝑘̂)

2𝑛
𝑖=1

∑ 𝑝𝑖𝑘
𝑛
𝑖=1

, 

or with a matrix formula: 

𝜎𝑘
2̂
(𝑟+1)

=
(𝑌 − 𝑋𝛽𝑘̂)

𝑇
𝑊𝑘(𝑌 − 𝑋𝛽𝑘̂)

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

= 

=
𝑌𝑇𝑊𝑘𝑌 − (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑌 − 𝑌𝑇𝑊𝑘𝑋𝛽𝑘̂ + (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑋𝛽𝑘̂

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

= 

=
𝑌𝑇𝑊𝑘𝑌 − (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑌 − 𝑌𝑇𝑊𝑘𝑋𝛽𝑘̂ + (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑋(𝑋𝑇𝑊𝑘𝑋)−1𝑋𝑇𝑊𝑘𝑌

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

= 

=
𝑌𝑇𝑊𝑘𝑌 − (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑌 − 𝑌𝑇𝑊𝑘𝑋𝛽𝑘̂ + (𝛽𝑘̂)

𝑇
𝑋𝑇𝑊𝑘𝑌

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

= 

=
𝑌𝑇𝑊𝑘𝑌 − 𝑌𝑇𝑊𝑘𝑋𝛽𝑘̂

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

=
𝑌𝑇𝑊𝑘𝑌 − 𝑌𝑇𝑊𝑘𝑋(𝑋𝑇𝑊𝑘𝑋)−1𝑋𝑇𝑊𝑘𝑌

∑ 𝑑𝑖𝑎𝑔(𝑊𝑘)
𝑛
𝑖=1

 

which, written with the partitioned covariance matrices is identical with: 

𝜎𝑘
2̂ = Ʃ𝑌𝑌

𝑘 − Ʃ𝑌𝑋
𝑘 (Ʃ𝑋𝑋

𝑘 )
−1

Ʃ𝑋𝑌
𝑘 . 

Regarding 𝛽𝑘̂ and 𝜎𝑘
2̂ the results are obviously the same as the results of other studies 

in the literature (see for example: Srivastav et al. [2013]), but the derivation of the formulas 

is also detailed here.94 

3.2.5.2. Conditional mean and standard deviation of the dependent variable  

The component-based calculation of the conditional mean and conditional standard error is 

based on conditional mean and conditional standard deviations for each component using 

                                                           
94 The results obtained here may look strange, however, the differences compared to the classical multivariate 

regression are only do to the weighting with posterior probabilities. In classical multivarate regression the 

formula for estimated parameters written with the matrix formula used here is: 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, 

The regression equation is: 

𝑦̂𝑖 = 𝛽̂0 + 𝛽̂1𝑥𝑖1 + 𝛽̂2𝑥𝑖2 + ⋯ 𝛽̂𝑝𝑥𝑖𝑝, 

or put differently: 

𝑦̂𝑖 = 𝑥𝑖
𝑇𝛽̂, 

and the variance of the error term is: 

𝜎 2̂ =
∑ (𝑦𝑖−𝑥𝑖

𝑇𝛽̂)
2𝑛

𝑖=1

𝑛−𝑝−1
. 

This way, it is much easier to see the similarity between the results of classical multivariate regression and 

mixture regression. 
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posterior probabilities as weights. Assuming normal distribution for each component, the 

density function of the dependent variable 𝑦𝑖 can be written – based on Srivastav et al. 

[2013] – as: 

𝛷(𝑦𝑖, 𝜆(𝑥𝑖)) = ∑ 𝑝𝑖𝑘 ∙
1

√2𝜋𝑠𝑖𝑘

𝐾
𝑘=1 ∙ 𝑒𝑥𝑝 (−

1

2
(
𝑦𝑖−𝑚𝑖𝑘

𝑠𝑖𝑘
)
2

), 

where 𝜆(𝑥𝑖) = {𝑝𝑖𝑘,𝑚𝑖𝑘, 𝑠𝑖𝑘}. That is, as seen from the notation, the value of the 

parameters {𝑝𝑖𝑘,𝑚𝑖𝑘, 𝑠𝑖𝑘}  depends on the given values of independent variables 𝑥𝑖. 

The calculation of probabilities 𝑝𝑖𝑘 is the same as before: 

𝑝𝑖𝑘 =
𝜏𝑘∙𝑓(𝑦𝑖|𝜃𝑘)

∑ 𝜏𝑘∙𝑓(𝑦𝑖|𝜃𝑘)𝐾
𝑘=1

. 

The values of the other parameters are: 

𝑚𝑖𝑘 = 𝜇𝑌
𝑘 + Ʃ𝑌𝑋

𝑘 (Ʃ𝑋𝑋
𝑘 )

−1
(𝑥𝑖 − 𝜇𝑋

𝑘), 

and 

𝑠𝑖𝑘
2 = Ʃ𝑌𝑌

𝑘 − Ʃ𝑌𝑋
𝑘 (Ʃ𝑋𝑋

𝑘 )
−1

Ʃ𝑋𝑌
𝑘 . 

It is easy to see that the formula of 𝑚𝑖𝑘 is nothing else but a substitution in the 

regression equation assuming that there is no constant. So the formula is written for centred 

variables (that is, for variables from which the corresponding means are substracted 

resulting in zero-mean variables), which means the following:  

𝑚𝑖𝑘 − 𝜇𝑌
𝑘 = Ʃ𝑌𝑋

𝑘 (Ʃ𝑋𝑋
𝑘 )

−1
(𝑥𝑖 − 𝜇𝑋

𝑘) = 𝛽𝑘̂(𝑥𝑖 − 𝜇𝑋
𝑘), 

It is familiar from general regression terminology that if regression is estimated with 

an intercept using the original variables, and without an intercept using centred variables, 

the estimated 𝛽𝑘̂ parameters are the same.  

The formula of 𝑠𝑖𝑘
2  is identical with the residual variance per component. 

From the above it follows that the expected value and variance of the output variable 

(that is, the squared standard error) can be written as: 

𝑦̂𝑖 = ∑ 𝑝𝑖𝑘 ∙ 𝑚𝑖𝑘
𝐾
𝑘=1 , 

and 

𝑣𝑎𝑟(𝑦̂𝑖) = ∑ 𝑝𝑖𝑘 ∙ (𝑠𝑖𝑘
2 + 𝑚𝑖𝑘

2 )𝐾
𝑘=1 − (∑ 𝑝𝑖𝑘 ∙ 𝑚𝑖𝑘

𝐾
𝑘=1 )2. 

The well-known formula that variance is the difference of the squared quadratic mean 

and the squared arithmetic mean is used twice in deriving the variance of the output 

variable.  
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3.2.5.3. Confidence interval for the dependent variable  

In the mixture regression described here there is no way to calculate confidence 

interval in the conventional way, as the underlying distribution is the estimated mixture 

distribution.95 The integral of the conditional density function described in the previous 

section can also be written (based on Srivastav et al. [2013]) as:  

𝛷(𝑦𝑖, 𝜆(𝑥𝑖)) = ∑
𝑝𝑖𝑘

2
(1 + 𝑒𝑟𝑓 (

𝑦𝑖−𝑚𝑖𝑘

√2𝑠𝑖𝑘
))𝐾

𝑘=1 , 

where erf( . ) is the so-called Gaussian error function. This is used in the theory of 

probability and statistics, and it is related to the distribution function of standard normal 

distribution in the following way: 

𝛷(𝑥) =
1

2
+

1

2
𝑒𝑟 𝑓 (

𝑥

√2
) =

1

2
(1 + 𝑒𝑟 𝑓 (

𝑥

√2
)), 

from which formula its relationship with the above formula is quite obvious.  

For the calculation of the lower limit of the confidence interval with α confidence 

level it needs to be defined which value 𝑦𝐿, if integrated from -∞ to value 𝑦𝐿,  gives the 

integral value 
𝛼

2
, that is, the 𝑦𝐿 value is sought where the condition below applies: 

𝛼

2
= ∑

𝑝𝑖𝑘

2

𝐾
𝑘=1 (1 + 𝑒𝑟𝑓 (

𝑦𝐿−𝑚𝑖𝑘

√2𝑠𝑖𝑘
)). 

In calculating the upper limit of the confidence interval with α confidence level it 

needs to be defined which 𝑦𝑈 value, if integrated from value 𝑦𝑈to +∞,  gives the integral 

value  
𝛼

2
, that is, the 𝑦𝑈 value is sought where the condition below applies: 

1 −
𝛼

2
= ∑

𝑝𝑖𝑘

2

𝐾
𝑘=1 (1 + 𝑒𝑟𝑓 (

𝑦𝑈−𝑚̂𝑖𝑘

√2𝑠̂𝑖𝑘
)). 

The above equations can be solved using, for example, the Newton-Raphson-method 

(see for example: Srivastav et al. [2013]). 

This dissertation used a different, iterative method to identify the upper limit of the 

confidence interval in a way that the value of the mixture distribution function was 

calculated for the point estimation, for a much higher value compared to point estimation, 

and for the mean of these two. If the value of the mean is higher than 1 −
𝛼

2
, the upper limit 

of the confidence interval is between this mean and the point estimation, so the logic 

                                                           
95 The formula of the confidence interval in classical multivariate time series regression – using the notations 

of the previous footnote – is the following symmetrical interval: 𝑦̂𝑡 ± 𝑡
1−

𝛼

2
(𝑛 − 𝑝 − 1) ∙ 𝜎̂, where instead of 

index 𝑖 index 𝑡 is used to empasize the time series feature. 
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described was successively applied until the deviation from the 1 −
𝛼

2
 probability was 

minimal. The solution can be used for the lower limit of the confidence interval as well. 

The iterative method described here definitely converges to adequate results, as the 

distribution function of the mixture distribution – due to the characteristics of the 

distribution function itself – is monotonically non-decreasing. 

3.2.6. Gaussian mixture regression for time series  

In previous sections it was mentioned that the Gaussian mixture model is often applied for 

time series, e.g.: in speech recognition or signal processing. Then, the task becomes 

multivariate in a way that in addition to the time series observed the other variables are 

obtained by producing the lags of the time series itself.96 Eirola and Lendasse [2013] 

review the use of the regression application of the Gaussian mixture model for time series, 

including its application for forecasting and interpolating missing data. 

When there is a given stationary time series 𝑧 = (𝑧1, 𝑧2 … 𝑧𝑇  ) of length 𝑇, the 

following data matrix can be produced using the lags of the time series: 

𝑦 = [

𝑧1 𝑧2 … 𝑧𝑑

𝑧2 𝑧3 … 𝑧𝑑+1

⋮ ⋮ ⋮
𝑧𝑛−𝑑+1 𝑧𝑛−𝑑+2 … 𝑧𝑛

] = [

𝑦1

𝑦2

⋮
𝑦𝑛−𝑑+1

], 

where one row of matrix 𝑦 is a vector with 𝑑 number of elements. In total, there is 𝑑 

number of variables together with the original time series, and because of the lags the total 

sample available becomes shorter; of length (𝑛 − 𝑑 + 1). Having clarified this, the 

Gaussian mixture model can be written with normal density functions as: 

𝑓(𝑦) = ∏ ∏ 𝜏𝑘 ∙ 𝜑(𝑦𝑖|𝜇𝑘, Ʃ𝑘)
𝐾
𝑘=1

𝑛−𝑑+1
𝑖=1 , 

where 𝜑(𝑦𝑖|𝜇𝑘, Ʃ𝑘) is the density function of the multivariate normal distribution, with 

mean vector 𝜇𝑘 and covariance matrix Ʃ𝑘 for each component 𝑘, and mixture weights 𝜏𝑘. 

From this point on estimation follows the procedure as described in the previous section, 

and the regression application is likewise valid.  

Correction of the results may be necessitated by the time lags, as the variables are not 

independent from each other. Eirola and Lendasse [2013] suggest a solution that performs 

                                                           
96 Regression applications of the Gaussian mixture model, for example, in the fields of speech recognition or 

signal processing, practically rely only on autoregressive variables, typically in constructions where for a 

given periodic sign 𝑡 the other variables are created with calculating the lags of order 2, 4, 6…  or 6, 12, 18…. 

Instead of the term autoregressive, the so-called delay embedding is much more widespread. See more on 

these in: Shekofteh-Almasganj [2013] and Povinelli et al. [2004]. 
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an ex-post correction of parameters estimated by the EM algorithm. Their results suggest 

that correction is only needed when there are many estimated components.97  

3.3. Mixture models and their applications on energy time series 

As a preamble to the discussion of the empirical research results in this paper, some of the 

favourable properties of mixture models will be highlighted here, because they are 

exploited both in other studies and in the present dissertation. An evident field of 

application is the model-based representation of load curve features, where the underlying 

assumption is that the dispersion of load values is multimodal, and the load values are 

basically organised, concentrated (clustered) around these modes. Using the Gaussian 

mixture model a practical advantage lies in the interpretation of these. The other useful 

field of application is the examination of phenomena whose dispersion cannot be 

described by classical distribution functions. This may mean the presence of multiple 

modes or heteroscedasticity (time-dependent dispersion).  

This section reviews the fields of application where mixture models have been 

applied in modelling energy, as the dissertation aims to contribute to such practical 

applications.  

3.3.1. Construction of typical daily consumption curves 

Due to the fact that recently more and more high resolution data are becoming available 

concerning individual consumers, the discovery of typical consumption patterns is an ever-

present and extensively studied topic, and applications of the Gaussian mixture models 

have appeared in several studies.  

The vast majority of the applications build basically on the clustering of daily 

consumption curves similarly to the previously reviewed methods. Some of them are 

relevant for the understanding of the empirical results of this dissertation; therefore, a few 

                                                           
97 The reason for the necessity of correction is that the lagged variables – apart from being lagged – are 

identical with the original time series. Thus it is a requirement that the global mean for each variable should 

be equal, and the global covariance matrix should be symmetrical and Toeplitz-type (using the mixture 

weights for the calculations regarding the global parameters). All the decreasing diagonals of the latter are the 

same, that is:  

Ʃ = [

𝑟(0) 𝑟(1) … 𝑟(𝑑)

𝑟(1) 𝑟(0) … 𝑟(𝑑 − 1)

⋮ ⋮ ⋮
𝑟(𝑑) 𝑟(𝑑 − 1) … 𝑟(0)

], 

where 𝑟(𝑘) denotes the autocovariance coefficient of time series 𝑧 with lag 𝑘. The practical explanation of 

this is that, for example, the autocovariance value between the time series and its first lag, between its first 

and second lags, etc., should have the same value.  



91 
 

will be reviewed in more detail. Giving emphasis to the author’s own empirical results and 

their novelty, some of the results will be reproduced here on the data analysed in the 

empirical parts of the thesis.  

McKenna et al. [2014] explore typical consumption patterns on water consumption 

data obtained from smart metering. In this study, mixture model is used in a way that an 

(average) daily consumption curve is regarded as a density function, which is expressed as 

a mixture of normal density functions. Of course, it is required from a density function that 

its integral – that is, the area under the density function – equals 1 (100%). This way, the 

estimation of the mixture density function is capable of recording the daily shape. To arrive 

at the final result, it is necessary to rescale the values of the density function in a way that 

after rescaling, the area under the curve gives the daily total consumption. Using the 

mixture distribution parameters (mean, standard deviation and the ratio of mixture 

components) as in McKenna et al.’s [2014] study, the consumers themselves can be 

clustered; which is performed by the classical K-Means clustering here, and as a result, in a 

fairly disadvantageous way, because it does not make full use of the special (mixture 

distribution type) property of the parameters.  

Another important statement of the study is that instead of hourly resolution time 

series it is possible to obtain much more stable results using half-hour interpolated data 

(using the so-called Hermite type interpolation polynomials98), which is definitely 

promising regarding high resolution metering data; though interpolation also means the 

smoothing of time series, which – as opposed to half-hourly measurements – might blur or 

smooth some features. On the whole, a disadvantage of the solution is that the mixture 

density function is fitted on daily averages and not data for each separate day. In the latter 

case, derivation of the typical daily curve by consumer would need to be solved (for 

example, by using some clustering technique to produce daily profiles for each consumer, 

then grouping these consumers using these daily profiles – in this case, however, it should 

be handled somehow if the number of daily profiles is different for each consumer, which 

suggests that the modelling on daily averages used by the authors is an elegant avoidance of 

this problem).  

Hino et al. [2013] also performs clustering of daily consumption curves in both time 

series (the grouping of a consumers’ daily consumption curves) and cross-sectional 

                                                           
98 On Hermite type interpolation see more at: https://en.wikipedia.org/wiki/Hermite_interpolation. 

https://en.wikipedia.org/wiki/Hermite_interpolation
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(grouping many consumers’ consumption curves on the same day) dimensions. In this 

study, a daily consumption curve is regarded as a density function produced by the mixture 

of normal distribution density functions.  

Figure 32: Fitting the mixture density function on daily load curves (load curve C109) 

  
a) Histogram created on the basis of quarter-

hourly load values and mixture density 

function. 

b) Rescaled mixture density function, normal 

distribution components and the quarter-

hourly load values. 

Source: author’s own results (R) and figure (R). 

Figure 33: Fitting the mixture density function on daily load curves (load curve C148) 

  
a) Histogram created on the basis of quarter-

hourly load values and mixture density 

function. 

b) Rescaled mixture density function, normal 

distribution components and the quarter-

hourly load values. 

Source: author’s own results (R) and figure (R). 

The clustering of days, however, has a much more sophisticated methodology here:  

by applying the so-called symmetrical generalised Kullback-Leibler (divergence) distance 

measure (which is basically used to measure the differences between distributions, 
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developed further by the authors) in the framework of hierarchical clustering.99 The other 

great advantage of the study is that the metering results are on a per second basis, which 

makes fitting the density functions highly plausible (as a day consists of 24 ∙ 60 ∙ 60 =

86400 seconds). The following figures show the mixture density functions fitted on daily 

curves for some curves that are used in this paper as well.  

On the whole, this solution is a really good instrument for estimating where the daily 

peaks are, and on the long run, how they shift or change. This is not only interesting on the 

level of consumers, but also on an aggregate (even system) level of consumption. 

Examination of how spikes shift is one of the important research questions of studies 

focused on long term consumption saving or consumption shifting. It is a more 

strategically oriented field of research which brings us further than the scope of this 

dissertation.   

3.3.2. Modelling the distribution of consumption using mixture density function  

The basic idea in the studies by McKenna et al. [2014] and Hino et al. [2013] is that 

the mixture density function describes daily consumption characteristics, and does so in a 

way that if there is more energy consumed in a given (unit of) time, then the value of the 

density function is higher, while at other times it is smaller (that is, the likelihood of the 

consumption of a unit of energy is higher in some periods than in others). Singh et al. 

[2010] model the distribution of half-hourly consumption data using the estimates of 

mixture density functions, that is, it is not the modelling of when the consumption of a unit 

of energy is most likely, but the modelling of which consumption levels are the ones where 

half-hourly consumptions typically (are most likely to) pool, cluster.100 

The following figures show histograms from the compiled data of some quarter-

hourly load curves, and the fitted mixture density functions including the normal 

distribution components. For C25, the lower weekend and higher weekday consumption 

levels are typical, but on the whole, five components were estimated. It is similar to what 

can be seen regarding C109, where the two components with higher average consumption 

                                                           
99 It has a relatively simple, closed formula for normal distribution, in case of mixture of normal distributions 

the value can be approximated (see: Hershey-Olsen [2007]); see also: the chapter presenting the author’s own 

empirical research results. 
100 In addition, in Singh et al.’s [2010] study there is an example using the mixture model for the joint 

distribution of two time series, which may provide a promising basis for examining the portfolio effect in the 

future.  



94 
 

probably indicate summer (weather-dependent) and non-summer (not weather-dependent) 

consumption levels.  

Indeed, the multivariate extension of the analyses seems to be much more forward-

looking (e.g.: taking into consideration the effect of temperature). There will be an example 

of this in this section, and in fact, the dissertation also follows a similar path. The need for a 

multivariate extension also arises in Hino et al.’s [2013] study (see the previous section), 

but there the inclusion of this extra information can be conceived in the framework of a 

multi-step solution.  

None of the above studies have examined consumption together with the factors that 

influence it (such as weather or the effect of the time of day) or applied these in mixture 

modelling. The rest of this section shows just such a publicly available example.  

Figure 34: Fitting the mixture density function on the empirical distribution of load values 

  
a) Curve C25 b) Curve C109 

Source: author’s own results (R) and figure (R). 

3.3.3. Modelling the distribution of consumption using mixture density function and 

regression 

Relatively few examples exist for the application of mixture regression, but Srivastav 

et al.’s [2013] study is one of them. The study shows how cooling energy use can be 

modelled in the framework of a mixture model using the variables of temperature, humidity 

and solar radiation for both daily and hourly resolution time series.  

In the article, the advantage of using the mixture model is not primarily in that the 

modes of the components can be regarded as typical consumptions, but that through using 

mixture regression it enables the calculation of such, localised confidence intervals that can 

be written as a function of the given independent variables. As a possible field of 

application the authors mark opportunities regarding electricity savings pricing, because if 
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the consumption risk varies seasonally, the risk of savings that can be realised from 

consumption also varies.   

Figure 35: Estimation of the mixture model and visual representation of the fitting per variable pairs  

 

Source: Srivastav et al. [2013] 

Returning to the modes of the components, the drawback (or not necessarily an 

advantage) of this solution is that the typical value of a component (or cluster) – the mean 

vector of multidimensional normal distribution – does not give a typical daily profile, 

which is otherwise common in literature and applications concerning typical consumption 

patterns. The advantage, though, is that it is possible to directly derive confidence intervals 

(there are examples of indirect solutions, but based on previous experience, these are not 

the best, see more in this in Section 4.2 about Subbarao et al.’s [2011] kNN- method); in 

addition, it is relatively fast (compared e.g. to the Gaussian process-based regression).  

Technically, because of the assumption of multidimensional normality of the 

variables the confidence interval for the dependent variable of the regression can also be 

derived from the mixture of normal distributions; there is no closed formula for that. The 

above mentioned study is thus related to such applications of mixture models where the 

purpose of modelling is to relax the assumption that the error term of the regression 

model is an independent, identically distributed (normal) random variable. In actual 

practice in energy consumption time series the time-dependent dispersion, 

heteroscedasticity, is the most obvious example that – together with the lack of normality 

(the latter is even less likely to be fulfilled in the case of power price time series) – the 

above mentioned IID feature does not apply.  
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In the authors’ study, when discussing the results it is difficult to see, but the 

underlying assumption of using multivariate mixture models is exactly that clustering 

observations in the given variables’ dimensions is possible. Cluster (or group) observations 

are characterised by different covariance structures and dispersion, whose results can be 

captured in the error terms in the course of regression fitting.  
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4. CONSIDERING UNCERTAINTY OF CONSUMPTION IN PROFILING – 

EMPIRICAL RESEARCH RESULTS 

 

In practice it is increasingly becoming a requirement from profiling that it should properly 

describe not only the expected consumption characteristics, but also the uncertainty of 

consumption. This was kept in mind while choosing the methods used in the empirical 

research. 

When examining the stylized facts of consumption time series, it seemed to be 

obvious that uncertainty is to some extent related to variables to which the characteristics of 

time series themselves are related (such as temperature, multiple seasonality, etc.).  

This chapter shows a solution for profiling that suits the above requirements, as it 

deals with both the expected value of consumption and its dispersion. The chapter also 

shows how this solution allows the extraction of additional information following from the 

model structure used. The results are presented in comparison with models that may be 

regarded classical, where the consideration of uncertainty is not originally an aim in itself, 

or has a subsidiary role and is thus difficult to derive.  

4.1. Creating typical consumption patterns  

It has already been mentioned that literature on profiling – independently of whether it 

focuses on a single consumption curve in itself, or the grouping of similar curves – aims at 

deriving typical daily (consumption) profiles as a final output (this may be performed by 

using some clustering technique based on daily discretisation, or some regression 

methodology based on removing the effects of different variables). An indisputable 

advantage of this is its simplicity and easy interpretation. Emphasising the results of this 

particular paper, the benchmark will be a similar solution using regression logic.  

The output of the mixture model is not directly comparable to the output of classical 

profiling solutions, and for this reason, the comparison can only be formulated in a 

qualitative sense, highlighting the advantages and disadvantages of the different methods. 

At the same time, this is an explanation of the title of this section (the term ‘typical 

consumption patterns’), because independently of the methodology typical consumption 

pattern may be some daily profile, but also the parameter set of the mixture model to be 

shown here (the composite of prior or mixture probabilities, means and covariance 
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matrices).101 Curve feature (as extracted information that applies to the curve; also used in 

Section 2.1.3) is basically the statistical, methodological counterpart of typical consumption 

pattern, which is often – in a slightly misleading way – called profile. This may be due to 

the fact that the curve feature often occurs in the form of a curve (after the removal of 

various effects) called typical daily profile curve.  

4.1.1. Using the mixture model to create typical consumption patterns  

The mixture model used in profiling is shown in detail on a portfolio curve, then 

highlighting the most important results, it is also described for individual curves. These are 

preceded by the description of the methodological steps used in the calculations.  

4.1.1.1. Description of the applied methodology 

In the mixture model the observations to be clustered are quarter-hours, which means the 

treatment of 35 040 observations for a yearly curve (365 days * 96 quarter-hours/day). A 

drawback of using mixture models is that for a large number of observations, they work 

slower (because of the longer running time of the optimisation of the objective function). It 

is not very practical to use the hierarchical model-based clustering for the calculation of 

initial cluster memberships in this case either (as hierarchical clustering procedures are not 

used by large samples in general). For this purpose, the integrated use of mixture clustering 

and mixture discriminant analysis is accomplished in this paper (EDDA method, see for 

example: Banfield-Raftery [1993]). The main steps can be summarised as follows: 

1. A random sample was selected from the whole 2011 year, which means 35 040 / 8 = 

4 380 quarter-hours. 

2. Clustering was performed on its 20%, that is, on 4 380 / 5 = 876 quarter-hours, 

using unrestricted covariance matrix. 102,103 

3. Building on clustering, the EDDA method was performed as described below: 

a. The probabilistic classification was discretised based on the posterior 

probabilities calculated in the 2nd step. This means that each quarter-hour 

was assigned to the cluster where the posterior probability of the component 

                                                           
101 In the title of the section the term ‘typical consumption patterns’ appears instead of profiling, because in 

the majority of  studies related to profiling profile appears as some typical daily curve. In the solution used in 

this paper the typical, characteristic values are derived directly from the results and the parameters of 

components – as we shall see at the end of the section – can likewise be interpreted well.  
102 This is what is typically used in the reviewed literature, see Chapter 3. 
103 The choice of both the eighth part of the year and the 20% was made via a subjective but empirical way, 

after having tried out many different options. 
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is maximal and this maximal posterior probability was equalled to 1 

(100%), and the others were equalled to 0. The discriminant analysis was 

carried out by this discretised classification and by using independent 

variables, which means performing a single M-step and a single E-step.  

b. As results of the M-step, the estimated parameters were produced (prior- or 

mixture probabilities, means and covariance matrices),  

c. and in the E-step the posterior probabilities of cluster memberships were 

calculated using the estimated parameters. The M-step only uses the quarter-

hours used in clustering, but the E-step uses the whole random sample        

(4 380 quarter-hours). Of course, even the total number (that is 35 040) 

quarter-hours can be used in the E-step.104 

The main advantage of the solution is its speed and transparency, but simultaneously, 

it uses the favourable property of model-based clustering that it aims basically at 

identifying structure; therefore, the existence of only a small sample is not a problem. This 

is especially useful from the aspect that for each curve it is only one year’s data that are 

available, hence there are very few extremely cold or hot days where the temperature-load 

relationship may be different from typical (that is, not so extreme winter or summer days). 

Another advantage of random sampling is that this way the quarter-hours in the analysis 

may be regarded independent from each other. In the estimation of the mixture model, 

independence is assumed, which is hardly ever true in practical applications – but with a 

random sample the task fits the model assumptions better.  

Besides the quarter-hourly time series, the following variables were used in the 

clustering of the quarter-hours: 

1. daily average temperature data, 

2. signed, squared deviations in minutes for the given quarter-hour from the time of 

sunrise and sunset within the day, 

3. one period (that is, one quarter-hour), and one day (that is, 96 quarter-hours) lags of 

the time series. 

                                                           
104 If not all quarter-hours are used, then the unused quarter-hours can be used for out-of-sample assessments 

(see the section on regression applications). 
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Daily average temperature is important for handling the winter heating and summer 

cooling effects, and at the same time, it may be regarded as a proxy variable for the 

handling of (yearly) seasonality. One day lag can be used for the treatment of weekly 

seasonality (thinking about the one-day (that is, 96 quarter-hours) distances between 

Fridays-Saturdays or Sundays-Mondays). The point of using squared distance from the 

time of sunrise and sunset is that they capture daily seasonality (temporal behaviour) and 

will support grouping in this dimension. After squaring, it is important to maintain the 

value as signed because of the position within the day. The yearly variation of the latter 

variables nicely echoes the tendency of the length of days. It is primarily not the specific 

values of the variables, but much rather the ‘shape’ that may be reminiscent of the yearly 

variation of the sunset-effect already seen in the contour plots in Section 1.4.105 Thanks to 

squaring, the sunrise variable ‘expands’ the end of the day, while the sunset variable 

‘expands’ the beginning of the day, which will be useful in clustering (see later). 

Figure 36: Variation of the signed, squared differences of quarter-hours from the time of sunrise and 

sunset  

  

Source: author’s own figures (R). 

The components produced while applying the mixture model do not necessarily need 

to form separate groups. It often happens that similar components close to each other are 

regarded one group. As each component is represented with a normal density function the 

distances between the components are practically measured with the so-called Kullback-

Leibler divergence (or distance) measure, which serves to compute the distances between 

probability distributions. If 𝑝𝑖(𝑥) and 𝑝𝑗(𝑥) are two distribution functions, they are defined 

as (see for example: Cover-Thomas [1991]): 

                                                           
105 A similar construction will appear in Section 4.1.2 at the description of classical solutions.  
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𝐷(𝑝𝑖, 𝑝𝑗) = ∫ 𝑝𝑖(𝑥)𝑙𝑜𝑔
𝑝𝑖(𝑥)

𝑝𝑗(𝑥)
𝑑𝑥

∞

−∞
. 

If the two density functions are normal distributions with means 𝜇𝑖 and 𝜇𝑗, and with 

standard deviations 𝜎𝑖 and 𝜎𝑗 , the formula is simplified to the following closed formula: 

𝐷(𝑝𝑖, 𝑝𝑗) =
1

2
[𝑙𝑜𝑔 (

𝜎𝑗
2

𝜎𝑖
2) +

𝜎𝑖
2

𝜎𝑗
2 − 1 +

(𝜇𝑖−𝜇𝑗)
2

𝜎𝑗
2 ]. 

The Kullback-Leibler divergence – being an entropy measure106 – is not 

symmetrical107, and for this reason usually both 𝐷(𝑝𝑖, 𝑝𝑗) and 𝐷(𝑝𝑗, 𝑝𝑗) values are 

computed, and their average is used as a measure of distance, that is: 

𝐷𝐾𝐿(𝑝𝑖, 𝑝𝑗) =
𝐷(𝑝𝑖,𝑝𝑗)+𝐷(𝑝𝑗,𝑝𝑗)

2
, 

where 𝐷𝐾𝐿(𝑝𝑖, 𝑝𝑗) denotes the values to be used in the subsequent part of this chapter.  

4.1.1.2. Results of the portfolio load curve  

Results using the previously described variables are shown on scatter plots for the portfolio 

in Figure 37. The different colour groups of dots denote different components. In the 

centres of the ellipses are the means of the components, and the ellipses draw the line 

corresponding to the mean ± standard deviation regarding the pairs of variables – in the 

same way as it was seen in Section 3.2.2 on the example of the Budapest daily natural gas 

consumption.  

Figure 37. b) shows how, for example, Mondays and Sundays are separated, which 

are usually different in terms of load characteristic (they are almost parallel with the 𝑦 and 

𝑥 axes, successively). Figures c) and d) show the clustering result as a function of the times 

of day. In these, the red and blue ’groups of dots’ in the bottom right corner denote the 

early morning hours. While in Figure c) they are not so nicely separated along those two 

dimensions, they do in Figure d). This is why it is useful to include the variables that 

indicate difference from both the sunrise and sunset in clustering. Compared with Figure e) 

not only the markedly better separation is visible, but also that one denotes the summer, the 

other the winter morning quarter-hours. It nicely outlines the temperature-dependency of 

                                                           
106 It is also common to use the term relative entropy for the same notion, see for example: 

http://mathworld.wolfram.com/RelativeEntropy.html. 
107 In connection with similarity or distance measures the requirement that they should be symmetrical is 

usually formulated, that is, the similarity or distance should not depend on the order (that is, the distance of A 

from B should be the same as the distance of  B from A). In the case of more complex measures this is often 

not fulfilled, in such cases it is common that similarity and distance are calculated in both directions and their 

averages are used. 

http://mathworld.wolfram.com/RelativeEntropy.html
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the load as well, especially in the daytime hours. The positions of the ellipses were possible 

to foresee based on the scatter plots in Section 1.4, but there the focuses were only on 

temperature and load variables.  

Figure 37: Estimation of the mixture model and visual representation of the goodness of fit for pairs of 

variables for the portfolio  

  
a) Load and the 1st lag of the load  b) Load and the 96th lag of the load 

  
c) Load and the signed, squared deviation from the 

time of sunrise  

d) Load and the signed, squared deviation from the 

time of sunset 

 
e) Load and temperature 

Source: author’s own calculations (R) and figures (R). 

Although it may be projected from the scatter plots, it can also be examined which 

quarter-hours belong to which component. The 2nd-3rd-8th components contain mainly 

morning, while 4th-9th-10th-11th components contain primarily evening and the other 
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components contain peak period hours. In the same way, it can be examined which 

components have a larger or smaller role in the description of weekdays and weekends. 

Figure 38 shows the distribution of hours, months, weekdays and weekends among the 

components.108 

Highlighting just a few more components, the 6th component marks the peak period 

quarter-hours of the summer weekdays, when due to the use of air conditioners the cooling 

effect is prevalent. The 9th and 10th components mark evening (partly setback) period 

quarter-hours of winter and summer months. An interesting – but absolutely logical – result 

is that the 3rd component which groups morning ramp periods has a much smaller ratio in 

weekend quarter-hours than during weekdays. Of course, the distribution of the 

components is not so ‘clear’, as a quarter-hour was assigned to a component where the 

posterior probability was highest; however, most quarter-hours can be the realisation of 

more components.  

Closely related to this, Figure 38 shows the dendrogram made on the basis of the 

Kullback-Leibler divergence. The merging was performed using Ward’s agglomeration 

logic (see later). 

Based on the two dimensional figures and the distributions within the components 

practically every component can be regarded as a single component. The dendrogram, 

however, may be used to identify which components are similar, or in the case of merging 

of overlapping components it can also be used for the ease of interpretation.109 

If we wish to group components, three main groups can be identified (these could be 

predicted on the basis of Figure 38): 

- 1st group: 2nd, 3rd and 8th components (morning quarter-hours), 

- 2nd group: 4th, 9th, 10th and 11th components (evening quarter-hours), 

- 3rd group: 1st, 5th, 6th and 7th components (peak period quarter-hours). 

Seeing the merging steps it seems that the time of day is one of the primary 

discriminative factors. The time of day is much more of a determining factor in clustering 

                                                           
108 Of course, besides the ones that appear here, it is possible to make scatter plots for the other pairs of 

variables. In the figures here one of the pairs of variables is always load, thinking about regression, the 

dependent variable in the regression approach based on the mixture model. 
109 A similar, likewise entropy-based logic for merging components can be found in Baudry et al.’s [2010] 

study. 
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than for example, temperature, which has a smaller effect on the distribution of the load 

values of each day (see for example the boxplots in Section 1.4). 

Figure 38: The composition of components in the portfolio110 

  

 

Source: author’s own calculations (Excel) and figure (Excel). 

Figure 39: Dendrogram based on the distances between components in the portfolio 

 

Source: author’s own calculations (R) and figure (R). 

                                                           
110 C1, C2 … C11 denote the 1st, 2nd … 11th components. The notation will be similar in the next section as 

well.  
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4.1.1.3. Results of individual load curves  

In connection with individual curves similar conclusions can be drawn as about the 

portfolio. The next figure shows the dendrogram based on the Kullback-Leibler divergence 

of the components (familiar from the previous section), and the composition of components 

is shown in some individual curves.  

The ratio of hours within the components compared with the dendrogram show that 

for all three curves it is mostly ‘time of day’ that determines grouping. Some results worth 

mentioning are highlighted here.  

In C25, for example, the components that record the Saturday setback after the Friday 

night and the Monday morning quick ramp are the 9th and 4th components successively. As 

their variability does not really change during the year, clearly, these components have 

approximately the same ratio in every month. Quite spectacularly, in the case of C79 three 

components (the 1st, 4th and 5th) describe the variation of the summer load, which is 

primarily explained by the fact that the dispersion of the curve in this period greatly 

exceeds that of other months’ (see Section 4.2 as well). As in C109 there is only a minor 

difference between weekdays and weekends, it is not surprising that the quarter-hours in 

weekdays and weekends are distributed among the components uniformly (that is, the 

‘weight’ of each component in the description of weekdays and weekends is approximately 

the same).  
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Figure 40: The composition of components and dendrograms based on the distances between 

components in individual curves 

C25 C79 C109 

   

   

   

   

Source: author’s own calculations (R and Excel) and table (R and Excel). 
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4.1.2. Using classical time series regression to create typical consumption patterns 

Using classical time series regression in profiling is based on the periodic autoregressive 

(PAR) model described in the chapter on methodology.  

4.1.2.1. Description of the methods used  

The regression solution aiming at the formation of profiles is based on the notion that 

thanks to regression logic the effect of certain variables can be removed from the time 

series. In short, if the value of all exogenous variables is equalled to zero, the so-called 

typical daily profile (TDP) is identical with the quarter-hourly long term mean (see Section 

3.1.5); meanwhile, the given consumption may differ from this due to exogenous variables 

and the realisations of the error term.  

Table 8 below contains the exogenous variables used in regression. 

Table 8: Independent variables used in regression and their short description (PAR model) 

dummy variables denoting quarter-hours 
the value of the dummy variable is 1, if it is the given 

quarter-hour of the day, otherwise it is 0  

dummy variable denoting weekend days 
the value of the dummy variable is 1, if it is the 

quarter-hour of a weekend day, otherwise it is 0  

interaction variables denoting quarter-hours on 

weekends 

 

variables that are constructed as interaction (that is, 

as product) of dummy variables denoting quarter-

hours and dummy variables denoting weekend days  

variables denoting holidays and other special days 

(official non-working days and transferred days)111 

the value of the given dummy variable is 1, if it is the 

quarter-hour of a given holiday, official non-working 

day or transferred working day, otherwise it is 0 

 

the so-called sunset-effect 
the signed deviation of the sunset time from 18:00, 

see Figure 41 below 

heating degree-day (𝐻𝐷𝐷) 
the downward deviation of temperature from 12°𝐶 to 

capture the heating effect 

cooling degree-day (𝐶𝐷𝐷) 
the upward deviation of temperature from 21°𝐶 to 

capture the cooling effect  

Source: author’s own table. 

The bottom row of Figure 41 shows the temperature and sunset-effect variables also 

used in the regression model. To support the inclusion of these variables in the model, the 

upper rows of the figure show the load curves of the portfolio itself and its contour plot 

shown previously.  

                                                           
111 These are the following (referring to the whole 2011 year): 

- holidays: 1st January, 15th March, 24-25th April, 1st May, 12-13rd June, 20th August, 23rd October, 1st 

November, 24-26th December 

- official non-working days: 14th March, 31st October 

- transferred working days: 19th March, 5th November.  

In addition, transferred working days include days that are between two winter holidays (from 27 th to 31st 

December), because while they are weekdays, in most cases (if possible) these days are holiday periods, as in 

transferred working days. 
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Including the sunset-effect in the way it is shown in the table means applying the 

technique also used by the distribution systems operator in Great Britain (Elexon [2013]). It 

is very similar to using the variable with the content of the length of day (the period 

between sunrise and sunset in hours, see Sugár [2011]). The technique used here is a bit 

more realistic given that the shifts resulting from changing our clocks also appear in the 

variable, as it could be noticed in the contour plots in the tendencies of the time series. The 

fluctuation of the sunset variable used here is almost a one-to-one representation of the 

shape in the contour plot after its rotation by 90 degrees.112 

Figure 41: The effect of temperature and sunset on the load in the portfolio 

 

 
a) Load time series b) Contour plot of the load time series  

 
 

c) Temperature variable d) Sunset-effect variable 

Source: author’s own calculations (R) and figures (R). 

The use of heating and cooling degree-days with the threshold values of 12 and 21 °𝐶 

may not be the most optimal solution resulting in the best fit in all the time series. 

However, using these will suffice here; the techniques providing the best fit (that is, 

                                                           
112 This latter effect can be seen much better on the Hungarian system load time series. 
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producing the maximal coefficient of determination, R2) do not have a significant effect on 

the results. According to Sugár [2011] these two threshold values provide the best fit if 

applied to the Hungarian system load.113 In the figure, the areas covered by the blue and 

read squares are aimed at illustrating, highlighting this seasonally different effect of the 

temperature.  

Some additional remarks need to be added primarily to the construction of dummy 

variables. Usually the regression model is written in a way that assuming one intercept 

term, the estimated coefficients of the dummy variables shift this intercept (if the values of 

the variable equal 1). For example, given the intercept term, 95 dummy variables can be 

defined to estimate the effects of quarter-hours, with a chosen quarter-hour as a reference 

category. A technique equivalent to this without an intercept is the inclusion of 96 dummy 

variables, but thinking about writing the periodic autoregressive model as a model 

including 96 equations, estimating 96 intercept terms the same result can be arrived at.  

Briefly summarising the essence of all this, during the estimation of typical daily 

profiles, all of the effects of the – exogenous – variables that appear in the table are 

removed and the long term equilibrium of the 96 quarter-hours are computed on the basis 

of 96 intercept terms. These typical daily profiles will appear as compressed information (in 

other words: curve feature) in what follows.  

4.1.2.2. Results on the portfolio and individual consumer load curves  

This section only deals with results derived from the PAR model, that is, typical daily 

profiles (TDPs).  

In Figure 42, what can be seen are the variations of daily load curves in a winter, 

summer and transitory period and the typical daily profiles (TDPs) for the portfolio and the 

C109 individual curve (referring to the other curves see the first figure of Appendix E)).   

It can be seen very clearly that the effects of exogenous variables have been removed, 

thus the shape of the curves resembles the shape of the (non-temperature-dependent) 

transition period the most. Besides, of course, the typical daily profile is basically a smooth, 

noise-free curve with the removal of realisations of the error term. It is worth noting that 

the winter and summer temperature effects do not modify the shape of the curve in the 

                                                           
113 Although it is common to use the threshold level of 16°𝐶 for heating degree-day in natural gas 

consumption, the value concerning electricity is lower. This can be explained by the phenomenon that the 

consumption of heating systems can be notable when it is much colder.  
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same way within a day: for the winter effect it is more likely that it occurs in the first part 

of the day, while in the summer period it appears in the middle of the day, in the afternoon. 

(It is not so evident on the C109 curve, where there is only summer temperature-

dependence.) 

Figure 42: The variation of daily load curves and typical daily profiles (TDPs) in the portfolio and the 

C109 individual curve  

  

Source: author's own calculations (R) and figure (R). 

Figure 43: Normalised typical daily profiles (TDPs) in individual curves  

 

Source: author’s own calculations (R) and figures (R). 

Figure 43 shows the normalised114 typical daily profiles calculated for different 

curves. It is apparent that this classical method also captures a number of features (e.g. 

peak–off-peak ratios, location of peak period(s) within the day). However, it is also visible 

                                                           
114 Normalising supports the visualisation here. It is used in profiling so that the level of the curve does not 

influence the results. Normalising means using the following formula: 
𝑇𝐷𝑃𝑡

𝑇𝐷𝑃𝑚𝑎𝑥
⁄ , where 𝑇𝐷𝑃𝑡  is the 

quarter-hour value at time 𝑡 of  𝑇𝐷𝑃, and 𝑇𝐷𝑃𝑚𝑎𝑥 is  the maximum value of TDP. 
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that not only noise, but everything that is a likely realisation of profile related risk is also 

removed. This, regarding its content, is not so advantageous, but the smoothness of the 

curve, their noise (and basically risk)-free nature are all useful in clustering with TDPs 

using classical clustering methods.  

4.1.3. Creating profile groups 

The main focus of this dissertation is rather the exploration of individual consumer 

behaviour; therefore, this section is meant as a supplement to the previous research results, 

and also as providing a foundation for future research efforts. Nevertheless, its relationship 

with the previous section is strong. This way, the quality of the information compression 

realised for each individual curve can be monitored better. Methodologically, it manifests 

itself in the use of the Kullback-Leibler divergence – from the aspect of mixture models. 

The relationships between the curves that have different consumption patterns may be 

studied in two main dimensions: 

1. on the one hand, based on typical consumption patterns the consumers with similar 

load features can be grouped into homogenous (profile) groups,  

2. on the other hand, for each individual curve, it is possible to rank them according to 

a(n abstract) measure (the given value of distance) how much the profile of a given 

curve is different from the profile of the whole portfolio. 

Formation of profile groups is, of course, performed in both classical regression 

approach and the mixture-model.  

4.1.3.1. Description of the methods used  

In mixture models distance is measured using the Kullback-Leibler divergence that is valid 

for Gaussian mixture distributions. Parameters of the mixture models are regarded as curve 

features that describe the curve well; therefore, this measure is capable of measuring their 

distances and differences.   

Let us assume that 𝑝𝑖(𝑥, 𝜃𝑖) and 𝑝𝑗(𝑥, 𝜃𝑗) (or in a shorter form 𝑝𝑖(𝑥) and 𝑝𝑗(𝑥)) are 

the two Gaussian mixture distribution functions. Then the formula of the distance measure 

can be approximated (based on Hershey-Olsen [2007]) as follows: 

𝐷(𝑝𝑖, 𝑝𝑗) = ∫ 𝑝𝑖(𝑥)𝑙𝑜𝑔
𝑝𝑖(𝑥)

𝑝𝑗(𝑥)
𝑑𝑥

∞

−∞

= 
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= ∑ 𝜋𝑚 ∙ 𝑙𝑜𝑔
∑ 𝜋𝑚∗ ∙ 𝑒𝑥𝑝 (−𝐷(𝛷𝑚, 𝛷𝑚∗))

𝑀
𝑚∗=1

∑ 𝜔𝑚∗∗ ∙ 𝑒𝑥𝑝 (−𝐷(𝛷𝑚, 𝛷𝑚∗∗))
𝑀∗∗
𝑚∗∗=1

𝑀

𝑚=1

, 

where: 

- {𝜋𝑚∗}𝑚∗=1
𝑀∗  and {𝜔𝑚∗∗}𝑚∗∗=1

𝑀∗∗  denote the probabilities of the Gaussian mixture-

distributions, where the number of components is 𝑀∗ and 𝑀∗∗, 

- 𝛷 denotes the appropriate normal density function, 

- 𝜃𝑖 = {𝜋𝑚∗, 𝜇𝑚∗, 𝜎𝑚∗}𝑚∗=1
𝑀∗  and 𝜃𝑗 = {𝜋𝑚∗∗, 𝜇𝑚∗∗, 𝜎𝑚∗∗}𝑚∗∗=1

𝑀∗∗  denote the parameters 

of the normal distribution components. 

Of course, the distance measure is not symmetrical here either, and for this reason 

what is used is the mean of the 𝐷(𝑝𝑖, 𝑝𝑗) and 𝐷(𝑝𝑗, 𝑝𝑖) values: 

𝐷𝐾𝐿(𝑝𝑖, 𝑝𝑗) =
𝐷(𝑝̃𝑖,𝑝̃𝑗)+𝐷(𝑝̃𝑗,𝑝̃𝑗)

2
, 

where 𝐷𝐾𝐿(𝑝𝑖, 𝑝𝑗) denotes the distance measure used to compare the curves in the rest of 

this section. 

The advantage of the distance measure is that it uses the assumption that each 

component is described by the multidimensional normal distribution. It is not 

necessary that the number of components in the two mixture distributions are equal. 

With the classical technique the distances between the curves are defined using the 

Euclidean distance with the following familiar formula: 

𝐷𝑒𝑢𝑐𝑙(𝑇𝐷𝑃𝑗 , 𝑇𝐷𝑃𝑘) = √∑ (𝑇𝐷𝑃𝑖𝑗 − 𝑇𝐷𝑃𝑖𝑘)296
𝑖=1 , 

where 𝑇𝐷𝑃𝑗 and 𝑇𝐷𝑃𝑘 denote the typical daily profiles of the 𝑗th and 𝑘th curves, 𝑇𝐷𝑃𝑖𝑗 and 

𝑇𝐷𝑃𝑖𝑘 denote their values in quarter-hour 𝑖. 

Distances were calculated at all times for normalised curves.  

Both with classical and mixture models Ward’s agglomeration method with 

hierarchical clustering was used. The Ward’s method or Ward’s minimum variance method 

is an algorithm that is often used in hierarchical agglomerative clustering. Its main idea is 

the minimisation of the variance within clusters. According to the logic of hierarchical 

clustering the step-by-step merging of clusters is done in a way that the variance within the 

clusters increases to the smallest extent as a result of the agglomeration. 
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4.1.3.2. Formation of profile groups of curves with similar consumption patterns115 

The following figures show the matrices containing the distances of pairs of curves in the 

two solutions, and the dendrograms based on them created by hierarchical clustering – in 

only a few curves. In the distance matrices the highest and lowest distance values are in 

bold.  

Based on the different merging distances reflected in the dendrograms, it can be 

stated that the two solutions give basically the same group assignments (classifications). 

The conclusion is much more interesting from the perspective of why the two techniques 

have lead to approximately the same results.  

Figure 44: Distance matrices created by TDP-based clustering and mixture clustering  

Euclidean distance matrix 

(TDP-based clustering) 

Kullback-Leibler divergence (distance) matrix 

(mixture clustering) 

         C25     C35     C66    C79  C109 

𝑑 =

[
 
 
 
 

0
2.26 0
𝟐. 𝟓𝟓 𝟎. 𝟕𝟏 0
1.87 0.88 0.93 0
1.47 2.15 2.31 1.68 0 ]

 
 
 
 

, 

          C25       C35       C66      C79   C109 

𝑑 =

[
 
 
 
 

0
32.08 0
70.74 14.57 0
25.88 12.19 𝟏𝟐. 𝟏𝟖 0
17.10 16.86 𝟕𝟑. 𝟖𝟒 17.14 0 ]

 
 
 
 

 

Source: author’s own calculations (R) and figures (R). 

Figure 45: Dendrograms based on the distances between the curves  

TDP-based clustering Mixture clustering 

  

Source: author’s own calculations (R) and figures (R). 

In the TDP-based solution C35 and C66 are merged first, as both their peak and off-

peak period variations are very similar. C79 differs from them basically in that the off-peak 

load is slightly higher in level compared to the other two. Compared to this, the evening 

load is much higher in the other curves and their shape is also very different; for example in 

C109 there are two intraday peaks (the second is slightly lower).      

                                                           
115 For an easier tracing of results see the Figures in Appendix E). 
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According to the solution based on the mixture model the two curves that are most 

similar to each other are C66 and C79, which is not surprising, because in both, the 

weekend load is practically constant. What is especially important, the weekday off-peak 

load level is practically identical with the flat level of the weekend load. Otherwise, 

there is only summer temperature-dependency in both. C35 differs from them only in that it 

also shows winter temperature-dependency – most certainly, this is the reason why C35 

joins this cluster as a third member, as the weekday off-peak and weekend load level are 

related to each other in the same way as those of C66 and C79. The weekend loads are not 

constant in C25 and C109, in C25 there is a long Saturday setback, and in C109 there are 

weekend variations that are identical to weekdays. The most distinctive factor in C25, 

however, is not the presence of non-constant weekend load’ (as it is only the first part of 

Saturdays), but that compared to the C35-C66-C79 triplet, the level of the weekend load is 

significantly lower than the level of the weekday off-peak load. The above also provide 

appropriate explanation as to why C25 stands out most among the curves (this is where the 

means of the distances from the other curves is highest (the first column of the distance 

matrix), somewhat higher than in C109 (the last column of the distance matrix)).  

Technically, Table 9 does not provide any additional information, but it supports 

what has been stated above: the distances of the curves from the portfolio can be seen as 

measured by the Kullback-Leibler divergence and by the Euclidean distance: 

Table 9: Distances of consumer curves from the portfolio 

Distance measure / Curve C25 C35 C66 C79 C109 

Euclidean distance 0.79 1.63 1.91 1.29 1.13 

Kullback-Leibler divergence 23.68 33.36 79.19 63.01 20.41 

Source: author’s own calculations (R) and table. 

Based on the Kullback-Leibler divergence, the curves that are closest to the portfolio 

are C25 and C109, as their load at weekends is not baseload like in the portfolio.  

The reason why the difference between the distances is relatively smaller regarding 

the Euclidean distance is definitely that it “does not consider” the weekends, and it can only 

draw conclusions from the weekday daily forms. C25 seems to be closer because regarding 

the morning ramp and the evening setback; this is what – on weekdays – mostly resembles 

the portfolio.  
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4.1.3.3. Formation of profile groups of curves with similar consumption patterns 

(extended example) 

Regarding the extended example, the difference is not only in the ‘suggested’ number of 

clusters (in a TDP-based model choosing four (or even three) clusters is advised, while 

using the mixture model, it is better to choose three clusters,116 see Figure 46), but also in 

how they are assigned to groups. It is clear that both techniques regard C1 as an outlier 

observation; it forms a one-member cluster in both types of group assignments 

(classifications). The outlier nature is caused by the fact that in the case of this consumer 

the off-peak and weekend loads are practically zero, while it is higher in the other 

curves. C47, based on the typical daily profile (see earlier in Figure 43) is somewhere 

between C1 and the five-member cluster. From there, the TDP-based technique can be 

traced easily. Figure 47 shows the same typical daily profiles as Figure 43; the identical 

colours indicate identical cluster memberships.  

Figure 46: Dendrograms based on the distances between the curves (extended example) 

TDP-based clustering Mixture clustering 

  

Source: author’s own calculations (R) and figure (R).  

C1 seems to be more similar to the C25-C108-C109 triplet’s cluster using the mixture 

model, because these are the ones where there is a second evening peak (or a rather high 

evening load level – as in C25). This feature is not noticed by the TDP-based technique, 

and as a result, C1 is placed closer to the cluster where the off-peak loads are lowest (see 

the six-member cluster on the left side of Figure 46).  

                                                           
116 If the outlier C1 curve is regarded as a separate cluster in both cases, see also in the main text.  
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Figure 47: The result of clustering normalised typical daily profiles (TDPs)  

 

Source: author’s own calculations (R) and figure (Excel).  

Using the mixture model, the only real difference between the two techniques is in 

the six-member cluster. The level of weekend load is much smaller in every curve 

compared to weekdays (in C66 and C79 the expected value is practically constant). The 

guiding principle of the formation of clusters is probably that in C35 and C47 there is a 

very strong winter-dependency, while in C66 and C79 only the summer temperature-

dependency is strong. Temperature modifies the peak–off-peak ratios compared to periods 

without a temperature-dependency, but still, the TDP-based model can only consider the 

latter due to the construction of the typical daily profile (that is, removing the effect of all 

exogenous variables).  

Although the tracing and decomposition of the two types of methods was not very 

easy, the examples have shown the advantages of the mixture model. Here, they were most 

apparent in their role in the more fundamental representation of the daily profile and the 

role of the effect of temperature in the formation of clusters.   

The two techniques shown (the TDP-based and the mixture model) are considerably 

different in their philosophy. While this was not discussed in this chapter in detail, it is still 

worth mentioning the number of estimated parameters used by the different techniques. 

In the classical technique the number of estimated parameters is 294.117 The number of 

estimated parameters used in the mixture model is provided by the following formula: 

                                                           
117 Checking it on the basis of Table 8 containing the independent variables, the number of 294 is the sum of 

the following: 96 quarterhour dummy, 1 weekend dummy, 95 interaction dummy, 3 so-called special day 

dummy, 1 sunset-effect, 1 heating effect, 1 cooling effect, and 96 autoregressive coefficients. 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 21 41 61 81

n
o

rm
al

iz
ed

 T
D

P

quarter-hour

C25

C35

C66

C79

C109

C1

C4

C27

C108

C47



117 
 

(𝐾 − 1) + 𝐾 [𝑑 +
𝑑(𝑑+1)

2
], 

where 𝐾 denotes the number of components and 𝑑 denotes the number of variables. The 

first term in the formula is the number of prior probabilities, the number of means and the 

numbers of estimated covariance matrix parameters per component are given in square 

brackets. The estimated parameters depending on the number of components is shown in 

Table 10. In this study the number of variables is always 6, that is, for 10-11 components 

the number of estimated parameters is more or less similar to classical techniques. In the 

majority of the cases, much more components have not been estimated. The differences are 

not really large; especially in view of the fact that in the mixture model not only the 

expected value, but variance is also estimated. This way, much more relevant and useful 

information is extracted. The number of estimated parameters for each curve and the values 

of the model selection criteria are in Table 11.  

Table 10: The number of estimated parameters depending on the number of components using mixture 

models 

No. of comp. 1 2 3 4 5 6 7 8 9 10 

No. of est. par. 27 55 83 111 139 167 195 223 251 279 

No. of comp. 11 12 13 14 15 16 17 18 19 20 

No. of est. par. 307 335 363 391 419 447 475 503 531 559 

Source: author’s own calculations and table.  

Table 11: Model selection criteria and the number of estimated parameters using mixture models  

Curve C25 C35 C66 C79 C109 

BIC 140 376 122 375 102 456 109 914 136 212 

No. of comp.  13 11 13 9 10 

No. of est. par. 363 307 363 251 279 

Curve C1 C4 C27 C108 C47 

BIC 60 362 93 320 101 882 138 566 93 149 

No. of comp.  13 11 7 11 11 

No. of est. par. 363 307 195 307 307 

Source: author’s own calculations (R) and table.  

4.1.4. Results, summary of conclusions 

In this chapter, the description of the results for one single load curve served two 

main goals: to understand the logic of the mixture model and to provide a foundation for 

the sections on volume risk. The extent to which the parameters of components – as the 

statistical counterparts of typical consumption profile (or curve features) – show a more 

realistic picture of each curve was only truly revealed during the clustering process, through 
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the comparison of various curves. It was found that the mixture model can capture the 

structure of the whole curve much better (regarding both the daily shape, and the peak–off-

peak, weekday/weekend periods). Therefore, the H2 hypothesis cannot be rejected: by 

estimating the individually characteristic components for each curve, the mixture 

model supports the formation of much more realistic profiles than the classical 

solutions.  

The advantage of the technique based on the mixture model is obviously in that it 

considers the whole distribution of load variation, and works basically with compressed 

information, while using classical models, it is rather information loss that can be 

observed. This occurred here, in the present examples, during the construction of typical 

daily profiles (TDP), where the effects of weekend, temperature, etc. were also removed.  

The mixture model used in the chapter form groups based on covariance structure, 

whose output does not directly include the typical daily profile in the classical sense. The 

produced typical consumption patterns, the so-called components, do not follow the logic 

of daily discretisation. They are not organised along days, but along the co-movement and 

distribution of the variables used. Of course, typical daily profiles can be produced here 

(due to the regression method building on the mixture model, see: next section), but a 

typical (or expected) daily profile is produced from the mixture of more components.  

Clearly, this does not suggest that classical (daily profile based) techniques are 

useless, as a major part of the variance of the curve is explained by the intraday variability 

of the load, and these techniques can capture that. In individual curves, the weekend load is 

so negligible compared to weekdays that the information thus neglected does not mean 

much of a loss. In addition, based on for example yearly or weekly seasonal behaviour, it is 

possible to assign consumers to macro categories, and perform clustering within those.  

Based on the second example it is much easier to see the advantage of the mixture 

model that it deals with the daily shape in a more fundamental manner (see for example: 

daily peak periods, temperature-dependency). The reason for this is probably that through 

the Kullback-Leibler divergence, it also takes standard deviation (covariance) into account. 

Besides shape, risk is taken into account when forming groups; this way, it is not only 

the curves that have a similar profile, but also those with similar risk features that are 

assigned to the same group with this method. 
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4.2. Modelling the uncertainty of consumption  

Describing the uncertainty of consumption, that is, volume risk means the characterisation 

of the behaviour of the irregular component. The task assumes having some kind of a 

model, based on which the realisations of irregular components are generated. Of course, in 

practice this is not always satisfied, so there are simpler heuristic methods to measure 

volume risk, which are useful even if not having a specific model.  

Classical time series regression models (SARMA and PAR118) are used to investigate 

to what extent the techniques that assume the constant dispersion of the irregular 

component cannot handle consumption uncertainty, in addition, depending on time they 

under- or overestimate it. The results allow us to conclude that the heteroscedastic feature 

of time series is basically characterised by seasonal or calendar effects, that is:  

1. as multiple seasonality appears in the expected value of consumption time series, 

this multiple seasonality also appears in the variance of time series in the same way;  

2. this way, it seems plausible to choose a technique which describes the variance of 

the time series as a function of the independent variables in the same way as the expected 

value of the time series itself.  

The regression approach based on the Gaussian mixture model provides just such an 

option that fulfils all the above requirements. Using this, so-called conditional standard 

errors and confidence intervals are calculated, and it is shown how consistent they are with 

the realisations of the irregular component. The results are illustrated on various individual 

curves, stressing the general usability of the results, and their practical (also financially 

measureable) usefulness compared to classical methods.  

4.2.1. Volume risk in classical time series regression models  

This section describes, besides the results of using classical time series regression, a so-

called heuristic method that is easy to implement in practice to measure volume risk.  

4.2.1.1. The heuristic method to measure volume risk 

Lo-Wu [2003] suggests the so-called risk index for the measurement of volume risk if not 

having a forecasting model. Due to the fact that forecasting errors can also be regarded as 

                                                           
118 In the chapter on methodology it was described in detail that technically the difference is only in that the 

PAR model estimates periodically (in this case, quater-hourly) different autoregressive coefficients (which in 

this way means – ceteris paribus – 95 more estimated parameters). Due to the appropriate extension of the 

classical SARMA logic the PAR model is also regarded as a classical time series model.   
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the realisations of the differences from the forecast (expected) value, this is a suitable 

measure of volume risk. In Hungary the quarter-hour is the smallest interval that can be 

traded on the market; therefore, it is reasonable to use this resolution to calculate the risk 

index, so in the following 𝑘 =  1, 2 …  96 denotes the quarter-hours. Essentially, the risk 

index is a standard deviation-type measure and is calculated as follows:  

𝑅𝑘 = √
1

𝑛
∑ (𝐿𝑘𝑖

− 𝐿𝑘𝑖
̅̅ ̅̅ )

2𝑛
𝑖=1 , 

where:  

- 𝑅𝑘 denotes the so-called risk index of the 𝑘th quarter-hour,  

- 𝑛 is the length of the sample period (the number of periods used in the calculations),  

- 𝐿𝑘𝑖
 denotes the load increment in the 𝑘th quarter-hour in the sample period,  

- 𝐿𝑘𝑖
̅̅ ̅̅   denotes the mean of the load increments in the 𝑘th quarter-hours in the sample 

period.  

Due to the multiple seasonality assumed based on previous results, it is worth 

calculating the variation of the risk index separately for each season and day type 

(weekdays and weekends). The results are examined concerning the portfolio. The relevant 

risk indices can be seen in the following figures,119 where despite the noisy nature, the basic 

tendencies are shown in the sense that it can be seen where the volume risk may be higher 

or lower. Before summarising these, some scepticism concerning the results should be 

raised.  

Clearly, it is an advantage of the technique described that with the choice of the 

appropriate sample size, uncertainty can be calculated based on the specific period (e.g. the 

preceding two weeks) that is regarded manually, subjectively the most characteristic. 

Another methodological advantage is that the measure is based on the standard deviations 

of the same hours; and standard deviation is otherwise a measure of risk and 

uncertainty. But at the same time, its arbitrariness is indeed a disadvantage. What it 

actually means is that the selected length of the sample period can only be defined based on 

experience. If the period is too short, the existence of small sample size may be 

problematic (the variation of the risk index will be too noisy), but if the chosen period is 

too long, the ‘localisation’ will not be valid.  

 

                                                           
119 The figures were calculated for a quater-hourly resolution, using the whole-year time series. 
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Figure 48: The variation of risk indices in the portfolio 
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Source: author’s own calculations (R) and figures (R). 

Neither is there any fundamental justification to these calculations, as the volume risk 

of a given day is based on the preceding days, which is a very simple, ’naive’ method. On 

the other hand – even assuming a large sample size – these risk indices remain quite hectic, 

because they are not so smooth and even at the very best, only uncertain tendencies can be 

gathered, which makes their application unfeasible in practice. With such a simple 

calculation logic, it is difficult to decide if the peaks are real or not, or if they actually 

reflect higher risk in a given period. This unquestionably points toward the need to use 

some model-based approach.120  

4.2.1.2. The model-based exploration of the characteristics of volume risk 

The modelling of curves with classical time series techniques was performed using 

SARMA and PAR regressions. As only one year of data is available for individual curves, 

                                                           
120 As an alternative, the technique that is often used is the examination of the standard deviations derived by 

computing the increments on the same hours of the previous week. This is rather a logically similar pair of the 

method where in practice the load of a given day is forecast using the load of the same day from the previous 

week – this, so-called weekly risk index, is much more widespread in practice. Though the conclusions using 

this indicator are qualitatively similar, the risk index studied here is the one that can be practically compared 

to model-based results. Otherwise, an application (software) implemented by the Enoro Smart Energy 

Management measures the uncertainty or variability of a consumer curve in such a way (as well) – based on 

weekly increments, see: http://www.enoro.com/. Of course, in such applications calculations disregard 

holidays, transferred working days, and days with 23 or 25 hours due to clock changes. 

http://www.enoro.com/
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the estimation was made for the whole sample. As a consequence, the out-of-sample 

performance cannot be evaluated, but by all means, the examination of the latter – that is, 

making forecasts – needs to be treated as a separate issue.  

The aim here is primarily the exploratory description (or verification) of the problem 

concerning the extent to which classical methods over- and underestimate volume risk, and 

in which period this is so. The discrete steps are described in more detail about the 

portfolio; a separate section contains the comparative study of individual curves.  

Table 12: Independent variables used in regression and their short description 

dummy variables denoting hours121  

the value of the dummy variable is 1, if it is a 

quarter-hour of the given hour of the day, 

otherwise it is 0  

dummy variable denoting weekend days122  
the value of the dummy variable is 1, if it is the 

quarter-hour of a weekend day, otherwise it is 0  

interaction variables denoting quarter-hours on 

weekends 

 

variables that are constructed as interaction (that 

is, as product) of dummy variables denoting hours 

and dummy variables denoting weekend days  

variables denoting holidays and other special days 

(official non-working days and transferred days)  

the value of the given dummy variable is 1, if it is 

the quarter-hour of a given holiday, official non-

working day or transferred working day, 

otherwise it is 0 

the so-called sunset effect  
the signed deviation of the sunset time from 

18:00, see also: Figure 46 below 

heating degree-day (HDD) 
the downward deviation of temperature from 

12°𝐶 to capture the heating effect 

cooling degree-day (CDD) 
the upward deviation of temperature from 21°𝐶 to 

capture the cooling effect 

Source: author’s own table.  

The independent variables used in regression estimation are in Table 12. Apart form 

the different treatment of the effects of quarter-hours (different or equal in an hour) the 

variables are the same as the ones that were used in creating typical consumption patterns 

in Section 4.1. At this point, it needs to be added to the above that a major advantage of 

the mixture regression used in this chapter is that variable transformations, such as 

the ones that were used for calculating degree-days from temperature need not be done, 

because the model deals with nonlinearity automatically. Here, the stress is not only on 

                                                           
121 It would also be possible to use dummy variables denoting quater-hours (in the same way as it was done in 

the chapter on profiling), but this would mean having to use 95 variables instead of 23; and including 

interaction variables would mean having to work with even more estimated parameters. The choice between 

the two solutions can be tested for using model selection criteria, but this will be not introduced here.  
122 Of course, it would be possible to use as many dummy variables as needed to differentiate the effects of all 

the days of the week; that is, to use 6 dummy variables instead of 1; however, being parsimonious is also 

regarded more important here. 
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nonlinearity, but also on automatism, as the choice of threshold levels in individual curves 

– keeping at degree-days – can be difficult and inefficient to accomplish.  

The choice among classical regression models is based on the Schwarz-Bayes 

informational (BIC) criteria (see Table 13).  

Table 13: Measures describing the goodness of fit in classical regression models123 for the portfolio 

Model BIC RMSE [kW] MAPE [%] MAE [kW] 

ARMA(1, 0) 272 989.81 11.81 1.56 9.05 

ARMA(2, 0) 272 980.76 11.81 1.56 9.05 

ARMA(0, 1) 358 614.89 40.04 4.90 29.59 

ARMA(0, 2) 332 575.50 27.61 3.50 20.77 

ARMA(1, 1) 273 009.57 11.80 1.56 9.05 

SARMA(1, 0)(1, 0)96 270 413.01 11.51 1.52 8.83 

SARMA(1, 0)(0, 1)96 271 077.58 11.48 1.52 8.84 

SARMA(0, 1)(0, 1)96 348 205.91 34.50 4.32 25.79 

PAR(1) 270 483.40 11.28 1.49 8.64 

PAR(2) 270 212.60 11.03 1.46 8.47 

PAR(3) 270 506.20 10.92 1.44 8.36 

Source: author’s own calculations (R) and table. 

Regarding strictly only the minimum of the BIC criterion, PAR(2) should be chosen, 

but considering the 96 more estimated parameters, the decrease achieved on the model 

selection criterion is not so considerable, therefore SARMA(1, 0)(1, 0) 96 and PAR(1) could 

                                                           
123 The measures that appear in the table below are used in evaluating the goodness of fit of the model and the 

quality of forecasts (𝑦𝑖  denotes the realised values of the time series, 𝑦̂𝑖 denotes the values estimated based on 

the model, and ℎ  is the length of the time series in the examination of in-sample fit, or the length of the 

horizon in forecasting): 

Name of the measure Formula 

Mean Squared Error 𝑀𝑆𝐸 =
∑ (𝑦𝑖 − 𝑦̂𝑖)

2ℎ
𝑖=1

ℎ
 

Root Mean Squared Error 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2ℎ
𝑖=1

ℎ
 

Absolute Percentage Error 𝐴𝑃𝐸𝑖 =
|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖

 

Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =
∑ 𝐴𝑃𝐸𝑖

ℎ
𝑖=1

ℎ
 

Mean Absolute Error 𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑖̂|

ℎ
𝑖=1

ℎ
 

RMSE considers greater errors with larger weight (that is why it is better for evaluating in-sample fit), while 

𝑀𝐴𝑃𝐸 can be used to express mean error in percentages, hence it is a measure independent from the 

measurment unit, which is a useful characteristic in making comparisons. 
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be chosen. The results also show that the models that deal with time dependency only in the 

moving average term (that is, dealing with it in the error term) have a much worse fit.124,125  

Although among the measures in the table (for exact definitions, see footnote) for in-

sample evaluations usually RMSE is used, it is worth examining the others to derive some 

additional information. The others might be more useful in forecasting, or for out-of-sample 

evaluations. The majority of studies on assessing fit and forecast prefers using relative (%) 

errors, and MAPE primarily. The disadvantage of this is that errors are characteristically 

higher in peak periods, when the load values are – usually – higher. This way, a greater 

error in absolute value may seem relatively smaller. Likewise, an error made when the load 

is lower may seem much higher considering the level of load, thus increasing the value of 

MAPE in an unreasonable extent. Consequently, the values of MAPE are decreased by the 

errors in the more expensive (peak) periods, and increased by the errors in the cheaper (off-

peak) periods. Considering all of these, the MAE indicator seems to be the best choice for 

energy time series126 as differences resulting from the errors made will need to be handled 

in volume, that is, in [𝑘𝑊ℎ]. 

Proceeding to the investigation of errors, Figures 49-50 show the residuals of the 

SARMA(1, 0) (1, 0) 96 model with the confidence band at a 95% confidence level for the 

whole year and the three chosen weeks previously investigated in Section 1.4.  

Of course, the confidence band remains constant, and on the whole, the majority of 

residuals are within the confidence band. The fitted model is regarded suitable if 5% of the 

residuals are outside the confidence interval at the 95% confidence level (or in general, at a 

                                                           
124 Considering, however, that the peak value of loads in the examined time series is around 1000-1200 [𝑘𝑊], 
any model fit can be regarded appropriate, but if the emphasis is on better fit (and more accurate forecasts), it 

is worth choosing some autoregressive model. But if the emphasis is on interpreting parameters (betas), due to 

their ceteris paribus-type interpretation, it is only possible in models where there is no autoregressive term. In 

this case, it is only possible to choose models that include moving average terms. 
125 The interpretation of the parameters is in itself useful, as it supports the decomposition of the time series 

along the independent variables, but its practical importance is somewhat smaller. As the aim here is not 

primarily the evaluation of accuracy but that of volume risk, this focus supports the idea of choosing the 

model with the best fit (the ones that contain an autoregressive term), and examine the behaviour of residuals 

in this relation.  

In subsequent chapters we shall see that in individual consumption curves it is usually not the moving average 

but the autoregressive term that gives a more accurate capture of temporal behaviour. This probably assumes 

that there is some slight trend in the time series. This phenomenon can be captured in practice on the out-of-

sample forecasts. Even in the case of very complicated and complex models, it may happen that forecasts with 

multiple periods ahead are under- or overestimated. This may be explained either by the slight trend, or the – 

often occurring but hardly noticeable – level shifts, that might be captured by more complicated techniques. 

This, inter alia, is the reason why out-of-sample performance should be treated as a separate field. 
126 Not mentioning the power price rate time series, where there may also be negative prices; APE and MAPE 

would take negative values in these hours, therefore, its application is not advantageous in any way. 
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confidence level of (1–α) % its α %). Its value in this case is 5.61 % (see Table 14), which 

means that the model can be regarded appropriate on the whole, or globally, because the 

difference from 5% is negligible.    

Figure 49: The variation of the SARMA(1, 0)(1, 0)96 model residuals in the portfolio  

 

Source: author’s own calculations (R) and figure (R). 

Figure 50: The variation of SARMA(1, 0)(1, 0)96 model residuals in the portfolio for some weeks  

Winter Summer Transition 

   

Source: author’s own calculations (R) and figure (R). 

The reason why the proportion of observations outside the confidence interval is 

close to what was expected can probably be explained by the calculation logic of the 

regression model. The principle of the procedure is that the squared difference of the actual 

and the model-based prediction value of the dependent variable should be minimal. The 

standard error (as a standard deviation-type measure) of the model due to the greater 

differences will be very high. For this reason, regarding all the residuals, the ratio of 

observations outside the confidence band – exactly because of the width of the confidence 



126 
 

band – are approximately correct (even though based on the figures – from the other aspect 

– in certain periods the confidence band might seem unnecessarily wide).  

The previous figures may be created for models with similarly good fit, but the 

differences are negligible (this can be inferred from the similar results of Table 14 and 

Figure 51 on PAR(1) and ARMA (1, 0) models.).127 

Table 14: The ratio of observations outside the confidence interval (CI95)128 and the average size of the 

confidence interval for the portfolio (classical regression models) 

Model 
Ratio 

[%] 

Average CI95 

[kW] 

SARMA(1, 0)(1, 0)96 5.61 45.12 

PAR(1) 5.75 44.01 

ARMA(1, 0) 5.66 46.30 

Source: author’s own calculations (R) and table. 

For a more detailed insight into the assumed seasonal heteroscedastic behaviour of 

errors it is worth looking into the variation of the ratio of the observations outside the 

confidence interval (see Figure 51) in various periods (for example: seasons, days of the 

week, hours in the day). If the hypothesis of constant standard deviation is correct, there 

should only be random deviations from – the expected – 5% level (marked by a red line in 

the figure) regarding the ratios of observations outside the confidence interval in various 

periods. In winter and summer months, when the consumption is temperature-dependent, 

the ratio of observations outside the confidence interval is somewhat higher. At weekends, 

the ratio of observations outside the confidence interval is well below 5%129, while on 

weekdays it considerably exceeds it, just as in morning or peak period hours. 

                                                           
127 The lower standard error due to the higher number of estimated parameters is reflected in the average sizes 

of the confidence intervals. 
128 Here, and in subsequent tables, CI95 denotes the confidence intervals at a confidence level of 95%. 
129 In Figures 51-52 this is what was most spectacular: the confidence band, which remains constant in the 

observed period is much wider in weekend periods and weekday off-peak hours as what seems to be 

explained by the fluctuation (dispersion) of the residuals. 
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Figure 51: The ratio of observations outside the confidence interval (CI95) for the portfolio (classical 

regression models) 
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Source: author’s own calculations (R) and figures (R). 

This heteroscedastic behaviour can obviously be tested for using any 

heteroscedasticity test. The added value of the results here is primarily in that it was also 

revealed what the essential characteristics of heteroscedasticity are. This is a rather 

financial logic, where it is also important to measure the risks of more volatile and less 

volatile periods in an accurate and consistent way. However, there, heteroscedasticity is 

of a completely different nature, which supports the use of different kinds of methods.  

Regarding the classical models, the conclusion mainly concerns the shortcoming that 

the distribution of errors outside the confidence interval is not uniform. This means that 

volume risk is under- or overestimated by an order of magnitude depending on the time 

period. This way, the results lead us to conclude that it is necessary to calculate some time-

dependent, conditional standard error (higher in some periods, lower in others). The 
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calculation of the standard deviation of the residuals fitted to the grouping shown in Figure 

51 is definitely a sound basis concerning the appropriate time-dependent magnitude. Figure 

52 shows the quarter-hourly standard deviations of the residuals with the grouping used in 

calculating the risk index.  

Figure 52: The standard deviation of residuals in the SARMA(1, 0)(1, 0)96 model for the portfolio 
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Source: author’s own calculations (R) and figures (R). 

The figures are practically identical with the related figures of the risk index, 

therefore, in summary, the findings are the following: 

- the volume risk is lower at weekends and higher on weekdays,  

- the volume risk is characteristically the highest during morning ramps and 

the evening setbacks (around 18:00-20:00), 

- the volume risk of the daytime (around 10:00-18:00) ‘real’ peak period is 

lower than the risk of the ramp and setback periods, but higher than those of night-

time and early morning hours.  

The behaviour of morning ramp and setback periods can basically be explained by 

human activity, which is negligible in off-peak periods, and is most uncertain in morning 

ramp and setback periods (which have the highest gradient). Only summer is an exception 

to this, where peak periods have the highest risk – this is mainly due to the cooling use of 
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electricity. The most important findings and conclusions are summarised in the next 

section.  

4.2.1.3. Summary of results and conclusions 

As both risk index and the standard deviation of residuals calculated in the appropriate 

resolution are standard deviation-type measures, they are both equally suitable for 

measuring risk. Nevertheless, the residuals calculated from the model in themselves – 

beyond being model-based – have seemingly little added value compared to the risk index, 

as the variation of the residuals contradicts the – constant – confidence interval resulting 

from the model.  

The magnitude of the coincidence of the risk index and the standard deviation of 

residuals is otherwise present as a result of the assumption of linearity. The fact that the 

risk index was calculated from the standard deviations of the load increments, the mean of 

these increments is what a linear model can capture. As the standard deviation appears in 

the errors that remain after using a linear model, consequently, the two solutions lead to 

similar results.130  

It might appear at first sight that there is something referring to the inappropriately 

handled sunrise and sunset effect (which changes throughout the day) or some other 

seasonality behind the higher dispersion of morning ramp and evening setback periods. 

However, in the case of SARMA(1, 0)(1, 0)96 due to using the 96th lag, this effect is dealt 

with very well (the improvement of indicators measuring goodness of fit compared to the 

ARMA(1, 0) model is largely due to this), as a result, it is presumably not some omitted, 

inappropriately handled seasonality that explains the phenomenon. Compared to the risk 

index, the model-based approach is a more elegant solution, because the omission of a 

relevant variable may be the cause of the heteroscedastic behaviour. All of this, however, 

cannot be tested for if not having a model.  

This section has concentrated so far on a better fit. This way, it has been an 

abandoned feature that the periodic autoregressive model – by estimating different 

autoregressive coefficients for each period (that is, quarter-hour) assumes that the 

autocovariance function – of course, with the condition of given exogenous variables – is 

                                                           
130 Similarly to the risk index, the absolute (not relative, interpreted in %) increments are calculated if it can 

be assumed about the variation of the phenomenon that the absolute periodic change can be regarded constant, 

that is, the phenomenon can be characterised by a linear tendency. This is exactly the linearity assumption that 

lies behind the SARMA model.  
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not constant, but only periodically constant.131 In theory, the possibility is given that the 

estimation of periodically different autoregressive coefficients slightly changes the 

behaviour of the residuals, since the quarter-hourly different autoregressive coefficients 

actually handle some quarter-hourly different seasonal effect. Based on the results of Table 

14 and Figure 51 the patterns of the ratios of the residuals outside the confidence band have 

not changed considerably due to the inclusion of the periodically changing autoregressive 

coefficient.  

It is definitely worth mentioning here that Subbarao et al.’s [2011] so-called kNN-

method follows a logic for calculating the confidence interval which uses the residuals of 

the model that describes consumption – basically, with a historical (empirical) method; 

with the addition that for a given point in time it uses a sample of the errors of some past 

time periods that can be regarded similar based on a well-defined distance measure.132 The 

interval limits (or bounds) are derived from this sample by calculating percentile values. 

The time-dependence of interval bounds is provided by the distance measure. However, as 

the standard deviations of errors are fairly high in themselves (see for example Figure 52, 

but the adverse effect of outliers or multicollinearity may also be thought of), this noisiness 

also appears in confidence intervals, which is not so advantageous.  

4.2.2. Modelling volume risk with mixture regression  

The model used for the quantification of volume risk is identical with the one used in 

an earlier section (Section 4.1) on the formation of typical consumption patterns. There, 

only part of the total year available was used for the estimation, which provides an 

opportunity to perform the out-of-sample evaluation on the remaining period.  

The aim of this section is to examine whether – using the logic described in the 

previous section – it is possible to calculate conditional standard error using regression 

                                                           
131 Of course, it is possible to test for whether the estimation of a periodically autoregressive coefficient (that 

is, the periodically different autocovariance) is necessary. This can be performed by an F-test, using the model 

selection criteria in Table 13, or the likelihood-based test building on it. 
132 The logic of the distance measure lies in the logic of the Euclidean distance. It weighs the distances among 

the values of the independent variables of times by the variables’ partial effect on the dependent variable 

(assuming for example multivariate linear regression, the weights would be the estimated beta parameters). In 

the calculation of the confidence interval, the number of 𝑘 closest neighbouring errors are considered. The 

extent to which the confidence interval becomes dependent on the specific values of the independent variable 

is influenced by the value of 𝑘, which definitely means some form of abritrariness; however, neither a too 

high nor a too low value is really suitable (it is blurring the dependence of the given specific value of the 

independent variable in case of large sample size or results in the hectic behaviour of the confidence interval 

in case of small sample size). 



131 
 

based on a mixture model, and whether it is possible to derive confidence interval on the 

dependent variable (load) which consistently reflects the volume risk at the given time.  

The comparison between classical time series regression and mixture regression 

results in this section – similarly to the section on typical consumption patterns – can only 

be qualitative, as due to the different model constructions the independent variables are not 

the same. The results are detailed here regarding the portfolio; and it is primarily the most 

important conclusions that are mentioned with the comparison to the classical solutions 

concerning individual curves.  

4.2.2.1. Capturing the characteristics of volume risk 

Table 15 shows the in-sample and out-of-sample goodness of fit measures of the mixture 

model. The aim is not primarily to improve the model fit or forecast. It is much more 

stressed that the performance of mixture regression is approximately the same as that of 

classical time series regression models.  

Table 15: The variation of goodness of fit measures of models for the portfolio 

Model Prediction 
RMSE 

[kW] 

MAPE 

[%] 

MAE 

[kW] 

SARMA(1, 0)(1, 0)96 In-sample 11.51 1.52 8.83 

GMR 
In-sample 12.23 1.60 9.27 

Out-of-sample 12.28 1.62 9.38 

Source: author’s own calculations (R) and table. 

The ratio of observations outside the 95% confidence interval (see Table 16) slightly 

exceeds 5% (as in classical models)133, but a more relevant statement is formed on the basis 

of the subsequent Figure 53. 

Table 16: The ratio of observations outside the confidence interval (CI95) and the average size of the 

confidence interval for the portfolio 

Model Prediction 
Ratio 

[%] 

Mean CI95 

[kW] 

SARMA(1, 0)(1, 0)96 In-sample 5.61 45.12 

GMR 
In-sample 6.69 43.89 

Out-of-sample 6.82 43.94 

Source: author’s own calculations (R) and table. 

                                                           
133 There still might be many reasons behind the differences in exceeding the 5% such as the lack of the 

relevant independent variable, the inappropriate handling of the independent variable, or the wrong 

assumption about the distribution of the error term, etc. 
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The distribution of the observations outside the confidence interval is much more 

uniform than they were using the classical models; that is, the ratio of observations outside 

the confidence interval is approximately the same for every month, weekday and weekend, 

and hour. The relevant statement here is the more uniform distribution during the day, and 

the smoothing of the periodically (regularly, seasonally) occurring inequalities.   

Figure 53: The ratio of observations outside the confidence interval (CI95) for the portfolio (mixture 

regression) 
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Source: author’s own calculations (R) and figure (R). 

In the following, it can be examined numerically if the standard errors estimated for 

the various quarter-hours are consistent with the standard deviations of the residuals of 

the various quarter-hours. The calculations of the conditional standard errors (or conditional 

standard deviations) were of course according to what was described in Section 3.2.5 on the 

methods used. The conditional standard deviation of the dependent variable, similarly to its 

conditional expected value (using the notation of the referred chapter, it is the 𝑦̂𝑖, and 

square root of 𝑣𝑎𝑟(𝑦̂𝑖), that is, meant as standard deviation) is to be understood with the 

condition of the given independent variable values. In light of the results here this is what 

the methodological realisation of calculating time-dependent standard errors means.  

As conditional standard deviations and of course, residuals, may differ from quarter-

hour to quarter-hour, in order to get a compact picture of their variation, it is worth 
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examining the standard deviations of residuals and the mean of the conditional standard 

deviations estimated on the basis of the mixture model for every quarter-hour according to 

seasons (winter, summer, transition) and day types (weekdays, weekends) (see Figures 54-

55). This kind of discretisation has already appeared at the heuristic measures and the 

classical time series models. Here, it mainly serves the rough validation of the results. It 

should be stressed that regarding conditional standard deviations ‘means’ are presented 

here; but they may be different – depending on the independent variables – in different 

quarter-hours.  

Again, it can be stated according to the uncertainty measures (that is, standard errors) 

calculated on the basis of the model that the uncertainties of morning and early morning 

hours are the smallest, while the risks of the morning ramps and evening setbacks are 

relatively high. In addition, the risk of daytime at weekends (in the hours that correspond to 

peak period hours) is smaller than on weekdays. The figures here reflect a shape similar to 

what has been shown in an earlier section concerning the standard deviation of residuals. 

Some differences may occur, which is due to the fact that – in contrast with techniques used 

in previous sections – the mixture model is capable of identifying nonlinear relationships 

in an automatic, exploratory way (as opposed to the previous classical models assuming 

linearity).  

A last note to the conclusion is that it is true that the results in this section do not 

contradict the hypotheses or the results in previous sections in the variation of volume risk. 

What is more important is that the model that was estimated calculates standard errors that 

are consistent with the standard deviation of the residuals. In the figures, the aspect from 

which the standard deviations of residuals and the means of standard errors can be seen is 

the similarity of the shapes of the curves (the range of the 𝑦 axes are the same, which 

definitely makes the comparison easier). The use of mixture regression is, inter alia, in this 

consistence and the underlying or supplementary model-based approach.134  

  

                                                           
134 Figures 54-55 include the results inside the sample; as practically, there are no differences between the in-

sample and out-of-sample results. 
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Figure 54: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for the portfolio (in-sample results, weekdays) 
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Source: author’s own calculations (R) and figure (R). 

Figure 55: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for the portfolio (in-sample results, weekends)  

Source: author’s own calculations (R) and figure (R). 
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4.2.2.2. Volume risk of individual curves and their comparative analysis 

Table 17 shows some goodness of fit measures in some individual consumer curves. No 

major differences have been found between the results of classical regression and mixture 

models regarding goodness of fit, indeed, mixture regression often outperforms the other.  

Table 17: The variation of goodness of fit measures of models for individual curves  

Curve Model Prediction 
RMSE 

[kW] 

MAPE 

[%] 

MAE 

[kW] 

C25 

ARMA(1, 0) In-sample 0.93 9.11 0.65 

GMR 
In-sample 0.93 8.40 0.65 

Out-of-sample 1.01 8.51 0.69 

C35 

ARMA(1, 0) In-sample 0.66 4.62 0.36 

GMR 
In-sample 0.62 4.40 0.36 

Out-of-sample 0.59 4.35 0.34 

C66 

ARMA(1, 0) In-sample 0.40 5.06 0.24 

GMR 
In-sample 0.36 4.43 0.22 

Out-of-sample 0.38 4.48 0.22 

C79 

ARMA(1, 0) In-sample 0.39 19.90 0.48 

GMR 
In-sample 0.64 16.58 0.41 

Out-of-sample 0.64 16.63 0.41 

C109 

ARMA(1, 0) In-sample 1.64 9.22 1.23 

GMR 
In-sample 1.59 8.60 1.17 

Out-of-sample 1.64 8.95 1.21 

C1 

ARMA(1, 0) In-sample 0.10 36.55 0.05 

GMR 
In-sample 0.10 34.77 0.05 

Out-of-sample 0.10 33.78 0.05 

C4 

ARMA(1, 0) In-sample 0.17 11.15 0.11 

GMR 
In-sample 0.18 11.55 0.11 

Out-of-sample 0.17 11.48 0.11 

C27 

ARMA(1, 0) In-sample 0.25 11.36 0.18 

GMR 
In-sample 0.25 11.18 0.18 

Out-of-sample 0.25 11.32 0.18 

C108 

ARMA(1, 0) In-sample 1.62 11.09 1.23 

GMR 
In-sample 1.54 10.25 1.17 

Out-of-sample 1.59 10.32 1.20 

C47 

ARMA(1, 0) In-sample 0.18 10.32 0.11 

GMR 
In-sample 0.19 10.13 0.11 

Out-of-sample 0.19 10.84 0.11 

Source: author’s own calculations (R) and table. 

The conclusion that can be drawn from Table 18 is much more important. The ratio 

of observations outside the confidence interval is also somewhat different from 5%, 

similarly to what was calculated with SARMA models. However, in subsequent figures, it 
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will be visible that occurrences outside the confidence-interval are much more uniformly 

distributed – similarly to what was observed in the portfolio.  

Table 18: The ratio of observations outside the confidence interval (CI95) and the average size of the 

confidence interval for individual curves 

Curve Model Prediction 
Ratio 

[%] 

Mean CI95 

[kW] 

C25 

ARMA(1, 0) In-sample 6.29 3.64 

GMR 
In-sample 7.96 3.13 

Out-of-sample 7.87 3.32 

C35 

ARMA(1, 0) In-sample 4.41 2.59 

GMR 
In-sample 7.12 1.78 

Out-of-sample 7.09 1.67 

C66 

ARMA(1, 0) In-sample 7.89 1.55 

GMR 
In-sample 7.23 0.99 

Out-of-sample 7.72 1.00 

C79 

ARMA(1, 0) In-sample 7.90 2.62 

GMR 
In-sample 6.35 1.92 

Out-of-sample 7.07 1.87 

C109 

ARMA(1, 0) In-sample 5.72 6.45 

GMR 
In-sample 6.33 5.61 

Out-of-sample 7.04 5.64 

C1 

ARMA(1, 0) In-sample 6.99 0.38 

GMR 
In-sample 6.70 0.23 

Out-of-sample 6.69 0.24 

C4 

ARMA(1, 0) In-sample 5.79 0.68 

GMR 
In-sample 7.91 0.56 

Out-of-sample 7.66 0.56 

C27 

ARMA(1, 0) In-sample 5.95 0.97 

GMR 
In-sample 6.77 0.87 

Out-of-sample 7.04 0.85 

C108 

ARMA(1, 0) In-sample 5.28 6.35 

GMR 
In-sample 7.50 5.46 

Out-of-sample 7.90 5.48 

C47 

ARMA(1, 0) In-sample 6.11 0.72 

GMR 
In-sample 7.20 0.55 

Out-of-sample 7.44 0.55 

Source: author’s own calculations (R) and table. 

From a practical perspective it is a much more relevant finding that the average size 

of the confidence interval is much smaller in mixture regression. The last column of Table 

18 shows these results. It was earlier indicated at the portfolio, but its discussion here is 

more sensible. In SARMA models, the confidence interval at 95% confidence level is 

produced in the following – familiar – way: 



137 
 

𝑦̂ ± 1.96 ∙ 𝑠𝑦̂, 

where 𝑦̂ is the value of point estimation, 𝑠𝑦̂ denotes standard error, and 𝑡1−
𝛼

2

(∞) = 1.96 is 

the value of the confidence multiplier at a high (marked by ∞) sample size. The width of 

the confidence interval in this case, given its symmetry, is 2 ∙ 1.96 ∙ 𝑠𝑦̂, and will obviously 

be the average width of the confidence interval everywhere else due to the assumption of 

constant dispersion. 

Using a mixture model, it is not directly the standard error that is used (as the error 

does not necessary have normal distribution and the confidence interval is not necessarily 

symmetrical at all times, so the mixture feature is inherited by the error term). With the 

method of calculation described in the chapter on methodology (Section 3.2.5) the 

confidence interval is calculated as the difference of the interval limits in the following 

way: 

𝑦̂𝑢 − 𝑦̂𝐿, 

where 𝑦̂𝑢 denotes the upper limit of the confidence interval and 𝑦̂𝐿 is the lower limit of the 

confidence interval. These differences may vary for any given time, and their averages for 

each curve give the results appearing in the last column of the table using a mixture model.   

In some cases (C35, C66, C79, C1 and C47), the average width of the confidence 

interval decreases by more than 25%, but a 10% decrease can be found in other cases as 

well compared to the classical time series regression. It is sensible to show the width of the 

confidence-interval in mean value, but its practical use for a variation of a curve 

examined in a given interval is relevant as a sum. This means that it is possible to give a 

much smaller interval concerning the daily, weekly, monthly, etc. variation of a curve, at 

which intervals the actual values occur with a certain probability.   

Figure 56 illustrates graphically the variation of the average confidence intervals. As 

in trading practice it is more sensible to distinguish between peak and off-peak periods than 

weekdays and weekends, the columns show the average interval sizes of peak and off-peak 

periods using mixture regression. (The width of the confidence interval in case of classical 

regression is obviously always the same independently of the time period.) As these results 

(e.g. the risk of off-peak may be even only half of the peak period risk) are also verifiable 

from the former figures of quarter-hourly resolution, additional useful information is 

provided by Figure 57, where these interval sizes are paired with the same period average 

loads of the curves.  
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Figure 56: Average confidence interval using SARMA and mixture models for individual curves135 

 
Curve C25 C35 C66 C79 C109 C1 C4 C27 C108 C47 

Degree of 

decrease 

[%] 

11 33 36 28 13 38 18 11 14 24 

Source: author’s own calculations (R) and figure (Excel). 

Figure 57: Average confidence interval using SARMA and mixture models for individual curves 

(extended figure) 

 

Source: author’s own calculations (R) and figure (Excel). 

                                                           
135 On the figure CI denotes the confidence interval at 95% confidence level. 
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Following the previous section, it is worth examining the variation of the errors of the 

SARMA model for each curve, and how much the mixture model could adjust to this by a 

more consistent modelling of heteroscedasticity. Figures 58-61 show the observations 

outside the confidence interval in both cases. In some curves the standard deviations of the 

residuals and the means of conditional standard deviations in Figures 62-71 describe similar 

tendencies in all instances.136 In the figures the variation of standard deviations is much 

smoother – despite having a small sample – compared to the standard deviation of 

residuals, as the conditional standard deviations are computed (that is, model-based) values. 

The advantage of the model-based approach is clear, compared to either heuristic methods, 

or any technique based on residuals generated by a model (such as the previously 

mentioned kNN-method). 

Some relevant results are worth highlighting – without aiming at a comprehensive 

description – regarding individual curves.  

In C25 and C35 it is clear that a spectacular improvement has been achieved 

regarding weekday-weekend and early morning hours in that the occurrences of residuals 

outside the confidence interval are more uniform. In the standard errors of C25 it is also 

easy to see that the winter and summer temperature effects affect the variation of 

uncertainty during daytime in a different way (more prevalent in morning hours in winter 

and in the afternoon in summer).  

C66 is probably a factory with a ’strict’ working schedule, where occurrences outside 

the confidence interval using the SARMA model only happen on weekdays in peak periods, 

which was very nicely handled by the model. Besides, summer (otherwise, rather extreme) 

temperature-dependence results in a somewhat higher standard error in the summer peak 

period.  

C79 is special in that the summer behaviour of the curve is highly different from the 

other periods, primarily regarding the variance. This was the main source of occurrences 

outside the confidence interval in the SARMA model, and capturing of the ’special’ 

difference of the covariance structure is nicely presented in this case.  

The curve of C109 can also be characterised by summer temperature effect and two 

daytime peak periods in consumption. These two features are reflected in the behaviour of 

                                                           
136 Only in-sample results are listed here, as the differences between in-sample and out-of-sample results are 

negligible.  
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the SARMA model residuals and the means of the conditional standard deviations (anyway, 

the second peak is much smaller).  

The higher uncertainty in the evolution of the SARMA model residuals caused by 

winter temperature-dependence can also be seen in C1. Here, the mixture model would 

definitely estimate higher standard errors.   

As for C27, being a curve with practically no temperature effect, only the different 

degree of the uncertainties of peak and off-peak periods can be seen. Concerning C108, the 

uncertainties of the relatively early morning and late night peak periods should be noted.  

Regarding C47 both temperature-dependence and the uncertainty of the daytime 

shape are reflected well in the variation of standard errors.  
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Figure 58: The ratio of observations outside the confidence interval (CI95) for individual curves 

(SARMA model) 

C
2

5
 

   

C
3

5
 

   

C
6

6
 

   

C
7

9
 

   

C
1

0
9
 

   

Source: author’s own calculations (R) and figures(R). 
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Figure 59:  The ratio of observations outside the confidence interval (CI95) for individual curves 

(mixture regression) 
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Source: author’s own calculations (R) and figures (R). 



143 
 

Figure 60: The ratio of observations outside the confidence interval (CI95) for individual curves 

(SARMA model) 
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Source: author’s own calculations (R) and figures (R). 
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Figure 61: The ratio of observations outside the confidence interval (CI95) for individual curves 

(mixture regression) 
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Source: author’s own calculations (R) and figures (R). 
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Figure 62: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C25 (in-sample results, weekdays) 

Winter Summer Transition 

   

   

Source: author’s own calculations (R) and figures (R). 

Figure 63: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C25 (in-sample results, weekends) 

Source: author’s own calculations (R) and figures (R). 
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Figure 64: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C66 (in-sample results, weekdays) 

Winter Summer Transition 

   

   

Source: author’s own calculations (R) and figures (R). 

Figure 65: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C66 (in-sample results, weekends) 

Source: author’s own calculations (R) and figures (R).  

Winter Summer Transition 
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Figure 66: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C109 (in-sample results, weekdays) 

Winter Summer Transition 

   

   

Source: author’s own calculations (R) and figures (R). 

Figure 67: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C109 (in-sample results, weekends) 

Source: author’s own calculations (R) and figures (R). 

Winter Summer Transition 
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Figure 68: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C108 (in-sample results, weekdays) 

Winter Summer Transition 

   

   

Source: author’s own calculations (R) and figures (R). 

Figure 69: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C108 (in-sample results, weekends) 

Source: author’s own calculations (R) and figures (R). 
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Figure 70: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C47 (in-sample results, weekdays) 

Winter Summer Transition 

   

   

Source: author’s own calculations (R) and figures (R). 

Figure 71: The standard deviation of mixture regression residuals and the average conditional 

standard deviations for C47 (in-sample results, weekends) 

Source: author’s own calculations (R) and figures (R). 

Winter Summer Transition 
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4.2.2.3. Summary of results and conclusions  

This section has examined to what extent the constant standard error produced by classical 

time series regression models is inconsistent with empirical experience. Using the logic 

shown in the previous section it was checked how the standard deviation varies in different 

time periods, and what the ratio of observations outside the confidence interval is. If the 

hypothesis of heteroscedasticity is correct, at a 95% confidence level 5% of the 

observations should be outside the confidence interval at all times (with random differences 

allowed). The results unanimously show that in certain periods the number of observations 

outside the confidence interval exceed the 5% tendentiously, while in other periods it is far 

behind it. In this behaviour, however, an obvious regular, seasonal tendency can be noticed. 

Though it is different by curve, on the whole it is true, that it is multiple seasonality that 

characterises each individual curve, describing not only the characteristics of consumption, 

but also its uncertainty and dispersion.  

It was investigated whether the derivation of standard errors estimated by mixture 

regression and the confidence intervals are consistent with each other. It was found that the 

method described is capable of capturing the heteroscedasticity in time series, and the ratio 

of observations outside the confidence interval is much more uniformly distributed around 

the ratio indicated by the confidence level. The errors estimated by mixture regression are 

slightly different from the errors produced using classical techniques (though there are no 

major differences in goodness of fit), but this is probably due to the fact that mixture 

regression can capture nonlinear relationships.  

Based on the above, neither hypothesis H3, nor H4 can be rejected. That is, 

based on hypothesis H4, volume risk is not constant in time, the risk changes in time 

depending in different exogenous variables, seasonal and calendar effects, that is, it is 

characteristically higher:  

- on weekdays than at weekends and on holidays,  

- in weekday peak periods than in off-peak periods, and  

- in periods when consumption is weather-dependent. 

Although it seems obvious in hindsight, it is an almost unexpected result that 

regarding a great number of curves the highest risk was found in the morning ramp and the 

evening setback.  

According to hypothesis H3 it is true that assuming the constant dispersion of 

errors, the volume risk is underestimated in some periods and overestimated in 
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others. In connection with this, it was an advantageous outcome that with the estimation of 

the appropriate (heteroscedastic) model, it was possible to give a much narrower 

confidence interval for the expected value of the dependent variable on the whole. It is also 

an empirical experience that the standard errors of classical time series regression are so 

great, and result in such wide confidence interval that are not meaningful and are 

inapplicable in practice.  

In the variation of standard errors, the position of intraday peak periods was 

continually observable; also, how winter and summer temperature affects the uncertainty of 

both morning ramp and daytime peak periods. Regarding the magnitude of standard errors 

(whether investigated as aggregated, see Figures 56-57 or seasonally separated, see Figures 

62-71) it can be said that depending on the curve, the uncertainty of off-peak periods is 

often half of or even smaller than the uncertainty of peak periods. Comparing the 

uncertainty of these off-peak periods with the results estimated by the classical time series 

regression, the differences in magnitude are even more observable.  
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SUMMARY OF THE KEY FINDINGS OF THE DISSERTATION 

 

The dissertation focussed on consumer profiles and the modelling of volume risk stemming 

from the irregular behaviour in the variation of consumption. This chapter summarises what 

conclusions can be formulated on the basis of empirical results.  

A) The examination of stylized facts of consumption time series  

Various individual curves have been examined to discover the main features that can 

determine the characteristics of a curve that need to be considered in the identification of 

the typical consumption pattern. These were typically not classical statistical tests but 

simpler calculations or figures that are relatively rarely used in the concise description and 

characterisation of a curve.  

The research results regarding this can be summarised briefly as follows:  

- Contour plots have been used to examine the distribution of load values 

throughout a whole year to explore information such as: 

o how the level of peak period, off-peak period, weekday and weekend load 

and the daily position of peak periods change throughout the year,  

o to what extent the load is influenced by public holidays, 

o what conclusions can be drawn about the effects of the temperature, 

o and in the case of which curves it is apparent that the so-called ‘illumination 

effect’ (caused by the sunset) can clearly be observed, a phenomenon whose 

such transparent detection in an empirical study is unprecedented – it is 

usually only referred to by relying on heuristics. 

- Scatter plots were used to reveal weather-dependency, especially how much it 

differs by curve in different seasons or on days of the week; besides, how load 

values are grouped and clustered as a function of the temperature. 

- Boxplots and descriptive statistics (mean, measures of dispersion, skewness and 

kurtosis) were used to analyse the distribution of loads within a day, on weekdays 

and weekends, moreover, in winter, summer and transition periods. They were used 

to check: 

o how stable or unstable the intraday distribution is by curve,  
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o how intraday distribution is modified by various seasonal factors or the 

temperature, and  

o when stochastic shocks have a greater role in the case of different curves.  

Considering the results of the research, it can be said that the highest ratio of the 

variance of the electricity consumption curves can be explained by intraday 

seasonality, therefore hypothesis H1 cannot be rejected. On these grounds it has been 

concluded that creating typical daily profiles – which is common practice – is basically a 

fine technique, though typical consumption patterns are not necessarily formed 

according to the daily shapes and their efficient modelling is not necessarily carried out 

along that.  

B) Using the mixture model for creating typical consumption patterns  

Contrary to traditional techniques, in this dissertation it is not daily load curves that are 

clustered, but quarter-hourly times (as observations) according to the resolution of the time 

series, which in turn provide the basis for results that are called typical. In the Gaussian 

Mixture Model (GMM) estimated by the so-called Expectation-Maximization (EM) 

procedure, those times belong to a cluster whose values appear together with the greatest 

likelihood in the same cluster. The aim of this dissertation is twofold: on the one hand, it 

aims at constructing typical, representative consumption patterns; but on the other hand, the 

uncertainty related to consumption is also interesting. For this reason, the co-movement 

between consumption and its lags or potentially available exogenous variables also receive 

emphasis.  

The above mentioned model-based clustering methodology can handle many of the 

problems that have surfaced in connection with profiling in a more efficient way than the 

other well-known techniques, hence:  

- Classifying individual consumption patterns has been performed without the need to 

preadjust time series, among others, for example: 

o removing outliers, or  

o removing the effect of (irregular, extreme) temperature or other weather 

effect.  

- The technique is essentially multivariate  which – as opposed to the techniques 

often used in practice and in academic studies – groups the time series values not in 
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themselves, but together with some variables that describes temporal attributes or 

seasonality (e.g. weather). This way, of course, the extension with other exogenous 

variables remains an option. This opportunity does not really appear in most 

profiling methods, due to the difficulties of preadjustment, among others.  

Given the construction of the mixture model, the advantage of the method is that both 

interaction effects between variables and the nonlinearity are captured without an explicit 

definition of these effects. This was revealed in the covariance-matrix estimations that were 

different by cluster, because involving these effects is usually supported by the underlying 

assumption that the covariance structure of the variables is not constant in the whole 

sample. The latter property is especially important in the regression application of the 

model, because the simultaneous handling of the (nonlinear or interaction) effects 

between the variables and heteroscedasticity require more attention. The results are 

convincing regarding both profiling and the modelling of uncertainty in that the stylised 

facts that characterise consumption can be fundamentally captured and quantified.   

Attention has been drawn to this in connection with a previous research result of 

this dissertation related to Hungarian natural gas consumption. It was also stated that 

either the removal of the total effect of temperature or the irregular effect of 

temperature may have many unfavourable consequences, especially if we also intend to 

model the uncertainty of consumption time series (in the previous case the temperature 

effect can often not be separated appropriately using the regression decomposition logic; in 

the latter case, what is removed is the heteroscedastic feature). In addition, theoretical 

considerations also support the idea that the weather-dependent part of consumption should 

not be separated (as temperature has a great influence on the value of consumption, and 

even its uncertainty), but instead, some multivariate technique needs to be used.  

It has been shown that the parameters of the mixture model components (the mean 

and of the covariance matrix of the multivariate normal distribution) can be understood as 

extracted information which helped cluster and group various individual consumption 

curves. The results have been compared with a technique that may be regarded classical. 

Measuring distance was performed using the so-called Kullback-Leibler divergence 

which at the same time can be used to measure the distances of the components of each 

curve.  
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The formation of profile groups has been performed in this paper especially to prove 

and illustrate better information extraction. The results have shown that groups are formed 

rather according to fundamental features that describe consumption, such as, for example 

the weekday peak-off-peak consumption ratio, the level of weekend consumption compared 

to weekdays, the nature of temperature-dependency (the latter may also influence the 

seasonal peak-off-peak ratio), the position of the peak period within a day, etc.  

The method has many favourable features from methodological aspects. The 

typical consumption that represents clusters can be obtained naturally as a mode (the mean) 

of the estimated multidimensional normal distribution components. This releases the often 

occurring problem of what the typical value to represent the cluster should be (it is usually 

the mean that is used), because the typical, characteristic value is basically the mode. In the 

same way, it is rather a methodological advantage that the mixture model is not sensitive to 

having a small sample, as – being a model-based technique – it recognises structure. This 

feature has already been taken advantage of in the calculations. Another advantage is that 

the choice of the optimal number of clusters may be selected objectively, through model 

selection criteria.  

A difference, not so much in methodology but rather in approach, is that in the 

classical case the various category-type variables are basically dummy variables encoded in 

1-0 values. Conversely, in the mixture model these roles are taken over by components 

(specifically, component memberships marked 𝑧𝑖 replaced by the posterior probability of 

belonging to a component marked 𝑝𝑖𝑘 during the estimation, see the chapter on methods) – 

as a consequence, the category-type information can be exploited not only regarding the 

expected value but also for the description of dispersion.  

Based on all of the above results it has been concluded that the profile group 

formation based on the mixture model gives much more realistic results compared to 

classical techniques. Besides the numerous advantages of mixture models, they 

perform grouping with the observations considering not only the expected value, but 

also the dispersion, that is, basically the uncertainty or risk. Therefore, the related 

hypothesis H2 has not been rejected either.  
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C) Using heuristic and classical stochastic time series methods to measure 

uncertainty of consumption 

The investigations that have been performed in this dissertation to measure the irregular 

behaviour by curve will be described here. Based on the standard errors calculated using 

classical time series techniques, SARMA and PAR regression, confidence intervals were 

produced. It has been found that assuming constant standard deviation, on the whole, the 

uncertainty of each curve is estimated fairly well, but in certain periods the risk is over- or 

underestimated, and thus the assumption of a constant confidence interval does not fit the 

empirical findings. This was examined by investigating the ratio of observations that are 

outside of the 95% confidence interval. If the interval is ‘correct/appropriate’, for every 

month, weekend and weekday and every (quarter-)hour 5% of the observations should be 

outside the interval (of course, random deviations are allowed). Experience, however, 

shows that while depending on the curve, it is generally true that in peak periods, in 

morning ramps and evening setbacks, on weekdays, and in the summer and winter, this is 

well beyond 5%, and at other times, it is much lower.137  

Studying the standard deviations of errors (residuals) in classical time series 

regressions the following conclusion has been reached regarding the time-dependent risk 

of consumption:  

- the uncertainty of peak period consumption is higher, 

- the risk of off-peak period consumption is lower, 

- in many curves the morning ramps and evening setbacks have the highest 

uncertainty,  

- in periods when consumption is weather-(temperature-)dependent, the risk of 

consumption is typically higher ceteris paribus.138 

Experience may differ by curve, nevertheless, they are perfectly consistent with the 

results reached by the calculation of heuristic measures (risk index) that are often used in 

practice; the major advantage of the model-based approach is its well-grounded nature (see 

for example the issue of omitted variables, the handling of time-dependency, etc.). 
                                                           
137 The performance of PAR regression can be suprising in the sense that this method estimates periodically 

varying autocovariance through periodically (quarter-hourly) alternating autoregressive coefficients, which 

could partly deal with heteroscedasticity but based on the results of this paper, this time-dependent 

autocovariance did not prove to be a satisfactory solution.  
138 Weather (temperature) – as we know – is a stochastic variable in itself, and the gain of not removing the 

effect of temperature in profiling is reflected in this important statement.   
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 More accurate or grounded statements than the above cannot be formulated, due 

partly to the fact that ‘grouping’ residuals (based on seasons, days of the week) is not 

forward-looking in any way; moreover, as a consequence of the noisy, hectic nature of the 

calculated results mainly questionable statements can be made even using time series 

models.  

Hypothesis H3 then has not been rejected, that is, depending on the time, risk is 

either under- or overestimated for each curve in classical regression approaches that 

assume constant standard deviation for the error term.  

D) Using mixture models to measure the uncertainty of consumption 

Based on the summary of experiences, the regression application of the mixture model 

(which was also used for profiling) has produced so-called conditional, time-dependent 

standard errors and confidence intervals that are in line with the risks of consumption.  

It has been investigated how much the confidence intervals produced based on 

mixture regression meet the requirements (the 95% confidence intervals have also been 

calculated for mixture regression), or in different terms, how much the standard deviation 

of errors (e.g. calculated for hours, weekdays/weekends, months) is consistent with the 

standard errors calculated on the basis of mixture regression.   

Based on the results, it has been shown that mixture regression can represent the 

time-dependent uncertainty of consumption (the ratio of observations that are outside the 

confidence interval is much more consistent than with classical models), and generally they 

are roughly identical with the expectations formulated on the basis of heuristic measures 

and SARMA model residuals. The source of differences in this case may basically be that 

the SARMA model is linear, while mixture regression is not, therefore, a better capturing of 

nonlinear relationships may produce slightly different results.  

An advantage of using mixture regression is that standard errors can be written as 

functions of the independent variable, that is, with the condition of the independent 

variables, in this way, writing the seasonal behaviour of the uncertainty of the consumption 

with the same variables as the seasonal behaviour of the consumption curve itself. The 

standard errors reflect not only which periods show higher uncertainty within the day, week 

or year, but also though to a different degree for each curve, that the winter temperature 

increases rather uncertainty of the morning periods, while the summer increases the 

uncertainty of the afternoon periods.  
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Based on classical and mixture regression calculations, H4 hypothesis has been 

accepted, that is, it is true that the consumption risk is typically not constant in time, it 

is higher on weekdays, in peak periods and also in weather-dependent periods; that is, 

it is characterised by multiple seasonality, as is consumption itself.  

The importance of the results lies in that  

- the profile and the uncertainty of consumption (modelling of volume risk) is 

performed in a unified framework,  

- the application of mixture regression offers promising results, and its energy market 

use can be regarded relatively new, 

- in such regression applications of the mixture model, the backtest of the results has 

not occurred in any earlier study. The regression application itself (and certain steps 

of the clustering) is not directly performed by using a publicly available R Project 

package, therefore, its implementation also formed part of the study. 

Beyond what has been discussed in the formulated hypotheses, it is an important 

result that the width of the confidence interval produced by mixture regression is 

(though to a different degree in each curve) much smaller than what is arrived at 

using classical techniques. The latter result is also important because the confidence 

interval that is produced in time series models is in the majority of the cases very wide, and 

is not really suitable for practice. This chapter has also examined how the average width of 

the confidence interval changes in peak and off-peak hours, compared to the average loads 

of this period.  

Because of the averaging obviously only approximations are possible, but most 

certainly the uncertainty of prices must have similar features. This inevitably draws the 

attention to specific outstanding goals of demand side management and their necessity; 

thinking about the smoothing of the consumption curve, for example, or the decreasing of 

the balancing energy costs resulting from actual-planned deviations or even the decreasing 

of peak–off-peak ratio resulting from shifts in energy use.  

It definitely needs to be added to the evaluation of the results that the methods 

examined and used have made it possible to not only investigate and measure when the 

uncertainty of consumption is highest, but also to what extent. It is also essential for the 

potential applications (whether in connection with classical field or the field of demand side 

management).  



159 
 

AVENUES FOR FURTHER RESEARCH AND APPLICATION IN PRACTICE 

 

There have been various references in the empirical part of the paper to the use of the 

results in practice, and in connection with this to new directions for further research. These 

will be summarised in this chapter.  

A possible further research opportunity may be the examination of profile groups 

based on mixture models on hundreds or thousands of curves, and the completion of 

comparative analysis with classical techniques. In the dissertation, the emphasis is much 

more on the uncertainty-related evaluation than on an analysis of such great amount. It is 

definitely worth examining how much the profile grouping changes as a result of the fact 

that the mixture model essentially extracts the whole information from the curve. The 

emphasis is from the methodological – and practical – perspective on better 

information extraction and the exploitation of capturing uncertainty. In the course of 

such an extended study, of course, a number of questions may arise in connection with 

grouping; such as choosing the optimal number of clusters, examining the indicators that 

evaluate the appropriacy of the result of the clustering, etc. It is necessary to examine these 

in dealing with such a huge dataset.  

In practice, it is often a problem that the time series is not available for the whole year 

in the case of individual consumption curves. As the mixture model is less sensitive to 

small sample size, it is worth examining – within sensible limits – whether it is more 

efficient or whether it yields more applicable results compared to more sample size 

sensitive solutions in such cases where the information is available only for a fraction of a 

year.  

Although it is true that mixture regression produced consistent standard errors with 

residuals, globally, the ratio of observations outside the confidence interval is still higher 

than what is expected based on the confidence level (however, it has been shown that the 

performance of SARMA models is roughly similar). It is worth investigating if working 

with the mixture of other distributions instead of the normal distribution produces better 

results. The fact that the ratio of observations outside the confidence interval is higher than 

what is explained by the confidence level points to the necessity of using fat-tailed 

distributions. Testing this hypothesis and seeking a general, easy-to-apply technique for 

such an amount of a heterogeneous set of curves is definitely an exciting research task.  
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Another possible direction for further research involves the inclusion of further 

weather (or other types of) variables besides temperature – even for the handling of the 

phenomenon mentioned above. Regarding weather variables it is of course inevitable that 

their quality is appropriate, because even the literature is not uniform in this respect – such 

as in the case of temperature (often not even concerning the existence of the relationship). 

Nevertheless, as the effect of the temperature is by far the strongest, in longer term 

planning or in the planning of the yearly consumption of a consumer, temperature may be 

enough. The inclusion of other variables can only have real benefits if it is, for example, 

separately measured energy use that needs to be modelled. All of this, of course, requires 

appropriate technical infrastructure – even in terms of the frequency of metering (recording 

data) in the case of both consumption and exogenous variables.  

In this dissertation it has often been stressed that ‘classical’ profiling techniques 

applied on curves after having removed weather effects show fewer options for progress; 

especially considering that the weather-dependent part of consumption is more difficult 

to influence, and is more price-inflexible. These results in connection with measuring 

weather-dependent uncertainty are definitely a useful starting point for related studies.  

What is definitely a promising opportunity for further development in the future is the 

examination of the portfolio effect mainly with regard to modelling the correlation 

between error terms. An approximate estimation of this may be the calculation of linear 

correlation coefficients for various periods. Based on the example in Appendix F) it is 

deemed likely that the degree of the diversification of volume risk is time-dependent, as the 

correlation of residuals139 is also time-dependent. Nevertheless, quantification may be 

possible in the framework of the mixture model. As mixture models estimate the 

components of variables with different covariance structures, and this is transformed to 

errors as well, it may ease modelling of the co-movement of errors, covariance – that is, 

essentially the portfolio effect – in one single step.  

For every statistical model it is important to evaluate the out-of-sample performance. 

This dissertation provided only limited opportunities to do so, as only yearly curves were 

available. The evaluation of static forecasts (that is forecasts for one period ahead) has 

essentially taken place; therefore, an especially interesting field is the creation and 

evaluation of dynamic forecasts (that is forecasts for multiple periods ahead).  

                                                           
139 Even its significance, or the lack of it. 
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Besides the above, there are further potential fields of research that are slightly 

different from the focus of this dissertation, but need to be mentioned here. The chapter on 

the previous research results has – for example – mentioned a technique (also empirically 

reproduced here) where each daily curve has been modelled as a mixture of the normal 

distribution density functions. The method can potentially estimate the time of peak within 

a day. Nowadays it is gaining an important role as there are many such tendencies (such as 

the spread of electric cars) that – if they gain greater volume – can fundamentally reshape 

system level daily profile with the shifting of daily peaks – both in time and magnitude.  

It is worth noting that the formulation of the first hypothesis of this paper was 

induced by the fact that profiling uses basically daily profile curves. As the highest ratio of 

the variance explained of the curves is by intraday seasonality, these techniques do not 

provide such misleading results in the case of electricity curves. As a consequence it is 

worth examining other energy sectors (such as natural gas, where for many consumers the 

heating effect is dominant) not only from the perspective of profiling, but also regarding 

volume risk, where an important proportion of the variance is not dominated by the 

intraday seasonality, but by the weather. Here, mixture model based profile may have an 

even greater benefit compared to classical techniques than what has been shown in this 

paper.  

Likewise interesting is the field of examining the uncertainty of the supply side (in 

electricity markets, basically the power plants) in addition to the demand side. The 

difficulty here often lies in the fact that in the case of weather-dependent suppliers it is 

necessary to have local, onsite weather data (wind speed, solar radiation, cloud coverage, 

humidity, etc.) measured on the place of production; as the information from classical 

meteorological data services is often not quite appropriate. At the same time, the 

fundamental exploration of nonlinearity or the interaction effects between variables and the 

simultaneous quantification of uncertainty (see for example the evaluation of the reliability 

of production schedules) is a requirement here as well, and the examples for the 

simultaneous modelling of both on the supply side is scarce.  

In connection with this, it is also important to match both the demand and the 

supply side both in profile and in the uncertainty of the profile. It is especially important to 

highlight here the increasing spread of domestic smart metering in the future, where the 

quantity of data to become available – with the more exact knowledge of the behaviour of 
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small consumers – will provide useful additional information on the evaluation of domestic 

(household) energy production projects. 

  



163 
 

APPENDICES 

 

A) Statistical software packages and the most important functions used for 

calculations 

The majority of calculations in this dissertation were performed using the R Project 

statistical software package. This section will give an overview of what packages, functions 

were used. This is important to have a clearer view of the methodological arc of the 

dissertation; in addition, there are elements of the calculations for which it was necessary to 

implement commands and calculations in so-called user-defined functions (for example: the 

regression approach that builds on the mixture model). There are empirical results in the 

dissertation that were not arrived at by using R, which will also be highlighted here.  

The most important methods used for a great proportion of the empirical studies in 

this paper were realised by the following packages (Chapter 4):  

- for SARMA regressions (seasonal autoregressive moving average regression) the 

package ’stats’140 was used,141 

- PAR regressions (periodic autoregressive regression) were made using package 

‘partsm’142, 

- Gaussian mixture models were estimated by the EM (Expectation-Maximization) 

procedure using the package ‘mclust’143, 

- the commands of the EDDA discriminant analysis based on the Gaussian mixture 

model are the author’s own functions building on the results of ‘mclust’ as this is 

not an in-built function in the R package, 

- the commands of the regression based on the Gaussian mixture model are the 

author’s own functions building the results of ‘mclust’, as there are no functions for 

regression applications of the Gaussian mixture model in the R package. 

                                                           
140 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html 
141 In a few cases – in the earlier phases of the study – in the making of SARMA regressions, Gretl was used 

(http://gretl.sourceforge.net/), which is excellent software for econometric, regression solutions, and is also 

open source. 
142 https://cran.r-project.org/web/packages/partsm/index.html 
143 https://cran.r-project.org/web/packages/mclust/index.html 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
http://gretl.sourceforge.net/
https://cran.r-project.org/web/packages/partsm/index.html
https://cran.r-project.org/web/packages/mclust/index.html
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Further functions of the empirical results with smaller emphasis or functions used in 

the representation, description of previous research results found in the literature are the 

following: 

- fitting of the mixture density functions (Section 3.3) was made using the package 

‘mclust’, 

- package ‘stats’ was used for K-Means clustering (Section 3.2.3) and hierarchical 

clustering (Section 4.1), 

- package ‘graphics’144 was used to make contour plots (Section 1.4), 

- boxplots were made using package ‘ggplot2’145 (Section 1.4), 

- the package ‘monomvn’146 was used for the calculation of the Kullback-Leibler 

divergence in hierarchical clustering; the estimation applied to the mixture of 

normal distributions was based on the author’s own function using Hershey-Olsen 

[2007]. 

The results of the irregular effects of temperature (and their effects on seasonal 

adjustment) were produced by X13-ARIMA seasonal adjustment method – also from one 

of the previous studies by the author, using the X13-ARIMA-SEATS147 seasonal 

adjustment software (there is also an interface package called ‘seasonal’148 in R, through 

which the functions of X13-ARIMA-SEATS can be called); Figure 27 (Section 3.1.3) used 

to visualise heteroscedasticity is the result of the SARIMA regression made in the 

EViews149 econometric software.   

 

  

                                                           
144 https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/00Index.html 
145 https://cran.r-project.org/web/packages/ggplot2/index.html 
146 https://cran.r-project.org/web/packages/monomvn/index.html 
147 https://www.census.gov/srd/www/x13as/ 
148 https://cran.r-project.org/web/packages/seasonal/index.html 
149 http://www.eviews.com/home.html 

https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/00Index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/monomvn/index.html
https://www.census.gov/srd/www/x13as/
https://cran.r-project.org/web/packages/seasonal/index.html
http://www.eviews.com/home.html
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B) Empirical example of the natural gas consumption data of Budapest – 

some calculation results 

This appendix contains some results of the K-Means and mixture clustering described in 

Chapter 3 on the natural gas consumption data of Budapest.  

Table 19: BSS/TSS ratios in K-Means clustering on the example of daily average temperature – natural 

gas consumption  

Number of clusters 2 3 4 5 6 7 8 9 10 

BSS/TSS (%) 79.7 90.2 94.4 96.4 97.8 98.2 98.3 98.7 99.0 

Source: author’s own calculations (R) and table. 

Table 20: BIC criteria in mixture clustering on the example of daily average temperature – natural gas 

consumption  

Number of clusters 1 2 3 4 5 6 

BIC 17 127.6 16 328.3 16 221.0 16 213.2 16 254.4 16 304.1 

Source: author’s own calculations (R) and table. 

Table 21: Cluster centroids in mixture clustering on the example of daily average temperature – 

natural gas consumption  

Variable / Cluster 1. (blue) 2. (black) 3. (red) 4. (green) 

temperature [°C] -1.45 7.57 14.89 20.31 

natural gas consumption [thousand m3] 9 376.74 5 889.05 2 211.55 1 184.04 

Source: author’s own calculations (R) and table. 

Table 22: The distribution of days among clusters and months on the example of daily average 

temperature – natural gas consumption (mixture clustering) 

Cluster/Month  Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Total 

1. (blue) 36.4 31.8 0 0 0 0 0 0 0 0 4.6 27.3 100.0 

2. (black) 16.4 15.0 17.9 5.0 0 0 0 0 0 7.1 20.7 17.9 100.0 

3.  (red) 0 0 7.6 29.1 26.6 0 0 0 10.1 26.6 0 0 100.0 

4. (green) 0 0 0 0 8.1 24.2 25.0 25.0 17.7 0 0 0 100.0 

Source: author’s own calculations (R) and table. 

Table 23: The distribution of days among clusters and weekdays/weekends on the example of daily 

average temperature – natural gas consumption (mixture clustering) 

Cluster/Day of the week Weekday Weekend Total 

1. (blue) 72.7 27.3 100.0 

2. (black) 74.3 25.7 100.0 

3.  (red) 67.1 32.9 100.0 

4. (green) 71.0 29.0 100.0 

Source: author’s own calculations (R) and table. 
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C) Examination of stylized facts of load time series  

The appendix contains some supplementary results related to Section 1.4 on the 

examination of stylized facts of load curves. Table 24 shows the descriptive statistics of the 

weekly time series of the Hungarian system load, which is worth examining in parallel with 

the boxplots found in Section 1.4.  

Table 24: Descriptive statistics of the weekly time series of the Hungarian system load in daily 

resolution150 

   Measure Season Mon Tue Wed Thu Fri Sat Sun 

𝑌̅ [MW] 

winter 5 396.45 5 501.18 5 539.88 5 408.05 5 340.32 5 124.29 4 887.36 

summer 5 151.63 5 314.92 5 142.26 4 837.76 4 929.93 4 476.53 4 230.46 

transition 4 899.53 4 883.30 4 881.34 4 869.16 4 795.88 4 384.30 3 827.43 

Q1 [MW] 

winter 4 821.07 5 043.25 5 015.85 4 891.91 4 914.03 4 796.97 4 488.83 

summer 4 443.42 4 731.33 4 759.73 4 519.87 4 586.45 4 237.23 3 861.42 

transition 4 480.57 4 707.46 4 663.91 4 601.99 4 561.74 4 209.40 3 694.68 

Me [MW] 

winter 5 798.47 5 835.29 5 883.33 5 772.15 5 638.47 5 283.88 4 997.30 

summer 5 492.63 5 568.60 5 352.26 4 992.08 5 038.09 4 573.68 4 455.15 

transition 5 202.25 5 098.33 5 117.09 5 072.33 4 978.13 4 481.00 3 862.72 

Q3 [MW] 

winter 5 900.50 5 911.02 6 064.95 5 916.05 5 698.83 5 521.76 5 236.65 

summer 5 766.76 5 901.37 5 512.43 5 232.89 5 362.40 4 795.27 4 555.81 

transition 5 311.14 5 238.27 5 241.25 5 277.33 5 182.99 4 634.17 4 097.67 

𝜎 [MW] 

winter 753.89 621.33 672.01 674.40 594.00 488.13 524.51 

summer 754.41 694.19 519.59 490.81 541.02 416.50 452.93 

transition 596.95 477.43 506.92 520.90 474.31 377.57 368.16 

V [%] 

winter 13.97 11.29 12.13 12.47 11.12 9.53 10.73 

summer 14.64 13.06 10.10 10.15 10.97 9.30 10.71 

transition 12.18 9.78 10.38 10.70 9.89 8.61 9.62 

3 

winter -0.93 -0.87 -0.80 -0.86 -0.93 -0.51 -0.29 

summer -0.78 -0.62 -0.85 -0.84 -0.76 -0.69 -0.67 

transition -1.03 -1.05 -1.07 -0.97 -0.99 -0.78 -0.58 

Source: author’s own calculations (R) and table. 

Table 25 shows the between variance / total variance ratio (in the Hungarian literature 

the so-called H2-measure) values of months, days and hours/quarter-hours as grouping 

variables for some curves, not only for portfolios, but for individual curves as well.151  

                                                           
150 Descriptive statistics in Table 24 are the following: mean, lower quartile, median, upper quartile, standard 

deviation, relative standard deviation, and α3 measure of assymetry. As these are all familiar measures, only 

the latter two will be explained here. Relative standard deviation is the ratio of the standard deviation and the 

mean. As it measures dispersion in percent, the various curves are comparable in terms of where the degree of 

dispersion is highest. α3 is the so-called moment-coefficient of skewness, its positive values mean (positively) 

right skewed, and negative values mean (negatively) left skewed distribution, its values near zero indicate 

approximately symmetrical distribution.  
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Table 25: Variance ratios explained by seasonal variables for curves  

Curve 
Grouping variable 

Months Days  Hours Quarter-hours 

C25 3.45 49.76 11.48 11.87 

C66 0.46 18.63 52.52 52.84 

C96 4.94 0.51 69.90 70.19 

C109 12.52 1.38 62.14 62.84 

Portfolio 3.66 23.72 48.07 48.37 

System load 9.68 11.59 60.84 61.50 

Source: author’s own calculations (R) and table. 

  

                                                                                                                                                                                 
151 This task needs to be thought of as a relationship where the continuous variable is the curve time series and 

the grouping variables are months, days of the week, and hours, quarterhours. Based on this, it is possible to 

calculate the total, within and between error sum of squares, based on which it can be identified what 

proportion of the variance of the curve’s time series is explained by the grouping variable.  
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D) SI ratios in the seasonal adjustment of national gas consumption 

The appendix describes the SI ratios produced in the seasonal adjustment framework shown 

in Chapter 2; depending on how the dependent variable was included (using logarithmic 

transformation or not), and with the different treatments of degree days (using HDD or 

HDD-deviation). For a better comparability of results, for each degree day variable only 

one coefficient (beta parameter) was estimated in each model setup, thus the increase of 

more estimated coefficients does not distort the results here regarding the best fit.152 The 

following figure shows the SI ratios calculated for four different model setups153. 

Figure 72: SI ratios in different seasonal adjustment model setups  

  
a) using logarithmic transformation and HDD  b) using logarithmic transformation and HDD-deviation 

  
c) using HDD  d) using HDD-deviation 

Source: author’s calculations (X13-ARIMA-SEATS, Excel) and author’s own diagrams (Excel). 

                                                           
152 Whether the dependent variable needs to undergo logarithmic transformation, and how degree-day should 

appear can be tested for within the framework of the software package through model selection criteria. Based 

on this, the recommended model is the one that appears in the main text (logarithmic transformation and the 

estimation of the monthly different HDD-deviation coefficients; see Figure 24 in the main text and Figure 72. 

b) here). 
153 In an additive model (in the above example when the dependent variable value is not logarithmised) these 

appear removing the trend component not as executing a ratio but as a difference – this problem in using 

precise terms will be disregarded here (and is disregarded in the literature as well). 
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E) Typical daily profiles and weekly load time series figures  

This appendix contains some time series figures of curves studied in Chapter 4. 

Figure 73: Typical daily profiles of individual curves and the portfolio 

   
a) Curve C25  b) Curve C35  c) Curve C66  

   
d) Curve C79  e) Curve C109  f) Curve C1  

   
g) Curve C4  h) Curve C27  i) Curve C108  

  
j) Curve C47 k) Portfolio 

Source: author’s own calculations (R) and author’s own figures (R).  
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Figure 74: Weekly time series of individual curves and the portfolio by season  

   
a) Curve C25 b) Curve C35 c) Curve C66 

   
d) Curve C79 e) Curve C109 f) Curve C1 

   
g) Curve C4 h) Curve C27 i) Curve C108 

  
j) Curve C47 k) Portfolio 

Source: author’s own calculations (R) and author’s own figures (R).  
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F) The diversification of volume risk 

Figure 75 shows the linear correlation coefficient values between the normalised (by 

conditional standard deviation154) residuals of C35 and the portfolio that appears many 

times in the dissertation. Larger dots indicate the significant coefficients at a 5% 

significance level (weekdays are marked red, weekends black). It can be stated that the 

values of these coefficients differ significantly from zero especially on weekdays, in peak 

periods, and they typically mark a positive relationship.  

Figure 75: Linear correlation coefficient values between the standardised residuals of the individual 

curve C35 and the portfolio155 

Winter Summer Transition 

   

Source: author’s own calculations (R) and author’s own figures (R). 

The linear correlation coefficient value for the whole sample is 0.0671 (p-value = 

0.0000), which shows weak, positive (but significant) relationship between the residuals of 

individual curve and the residuals of the portfolio, which thus blurs seasonal trends.  

Obviously, linear correlation coefficients measure the strength of the relationship 

appropriately if the relationship between the variables is linear. What can be stated 

nevertheless is that the non-diversifiable part of the volume risk may be smaller or larger 

depending on the period, and assuming constant strength of relationship its value will be 

over- or underestimated.  

The comprehensive study and modelling of the above is beyond the scope of this 

dissertation, however, this short (rather illustrative) example draws the attention efficiently 

to the fact that it is especially the periods with greater standard deviation whose risk can be 

decreased in a lesser extent by diversification, which is definitely to be considered in 

modelling.  

                                                           
154 This way heteroscedasticity does not influence the results. 
155 Weekdays are marked red, weekends are black.  
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Examples to this phenomenon – as a kind of stylised fact – cannot be found either in 

academic or practical studies; as a consequence, there is no publicly available model to 

capture this feature.  

The strength of the relationship in this example was made weather-(independent 

variable-) dependent in a rather ad-hoc way. In the same way, the time-dependent strength 

of a relationship may be calculated with wavelet transform, which also reveals in which 

frequency the relationship (co-movement) exists. A likewise appropriate technique may be 

the application of the so-called local correlation coefficients (see: Tjostheim–Hufthammer 

[2013]), for which there are a number of examples in finance. The problem with this is that 

the ‘localised’ prefix is to be understood not temporally, but regarding the domain of the 

variable. Notwithstanding the above, a solution may be imagined even in the framework of 

mixture models.  
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